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Nonlinear Mode Coupling in Free Electron
Lasers

C.L. Frenzen
Department of Mathematics
Naval Postgraduate School

Monterey CA, 93943

Abstract

The optical field in free electron lasers can sometimes develop side-
bands and exhibit very complex behavior. The purpose of this report
is to develop a two mode model of the optical field in a free electron
laser in which the optical modes are coupled by the free electrons in
the laser. This model may be used to study the long term stability
of the optical wave and the development of sidebands in the optical
field. In this report the equations of motion governing the interaction
of an electron with the optical modes will be derived.

1. Introduction

Initial theoretical studies of the free electron laser (FEL) used quantum me-
chanics ([1]-[3]). However it was shown in [41 that a classical treatment of
FELs would adequately describe most phases of operation ([5]-[10]) and re-

sult in substantial simplification of the resulting equations describing their
operation.

One way to understand some of the main features of the FEL problem
is to consider the motion of a pendulum with weak damping and a nearly
constant tangential forcing. In a mathematical model of the FEL with a
tapered magnetic wiggler, however, the weak damping term in the pendulum
equation cannot be ignored because the wiggler is extremely long compared to

its period, and one must account for the "cumulative" effects of this damping
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over the entire length of the wiggler in order to obtain accurate solutions.
The only way to systematical y account for these higher order effects is to
formulate a completely dimensionless problem which contains dimensionless
parameters whose magnitudes characterize various distinguished limits.

In a FEL frequently the optical field can develop sidebands and become
highly complex in its behavior. The purpose of this report is to develop a
model in which there are only two modes present in the optical field: these
modes are coupled to one another through the electrons in the FEL. This
model can be used to study the long term stability of the optical wave and the
development of sidebands in the optical field. A regime of particular interest
is that of sustained resonance in the two mode model. In this report we shall
derive the equations of motion governing the interaction of an electron with
the optical fields in the two mode model of a FEL.

2.1 Equations of Motion

We shall formulate the equations of motion as a first order system of
ordinary differential equations. Our derivation follows that in tI 1]. However
we shall be extending the derivation given there for a single optical mode
to the two optical mode case. The convention we shall use is that upper-
case letters will represent dimensional variables and lower-case letters will
represent dimensionless variables.

To determine the leading order equations, consider a single electron mov-
ing in a helical wiggler magnetic field given by

B = B. 1 cos Z+Ysin Z), (1)

where B,, is the magnetic field amplitude and A, is its wavelength. The
vectors X, Y, and Z are orthonormal and are associated with the coordinates
X, Y, and Z, where Z is the coordinate along the direction of the magnet axis.
We shall assume that the radiation (or signal) field is a linear superr isition
of two modes and is given by

((2)ES = Ej(') + E•', (2)

where
E(#')= -E('(Z) {Xsin O, + cos O},1 i 1,2 (3)
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and
Ba- B•m) + B.2), (4)

where B,(') x E,('),i = 1,2.()

ElIW is the radiation amplitude of mode i and

e, =7, ) + = (6)

where A10) is the wavelength, wi}) is the frequency, T is time, and o,;) is the
phase of mode i, i = 1,2.

W: shall assume that the electron is relativistic, though its transverse
velocity (the velocity orthogonal to the Z axis) is small. Let 13 be the dimen-
sionless electron velocity (13 is the electron velocity divided by c, the speed
of light). We shall decompose )3 into a component parallel and a component
perpendicular to the Z axis:

0l = 0illZ + Pl.L, 0 < Pix <</311 < 1.(7)

The equation of motion (Newton's second law) for the electron is

P= eE,+e)3 x(B,+B,,)+space charge force+radiation reaction force, (8)

where e is the electron charge and P = 7mc/i is the electron momentum. -
is the Lorentz factor, defined by

1

= v -sF -7' (9)

c is the speed of light, and m is the electron rest mass. Criteria for neglecting
the effects of the radiation reaction force and the space charge force were given
in 1121, and were derived by examining higher order terms in the equations
of motion. These conditions will be given later in this report.

The conservation of energy implies (ymc 2) = ec13 • E, or

-0-E. (10)
mc

To gain a rough idea of the approach to be followed, we shall assume 71
initially that only a single mode in the radiation field is present. Later we -.
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shall repeat the same calculations in more detail with two modes in the
radiation field.

The momentum equation (8) implies

(Ymcp3 ) = 4(mcp ) + Ymc3 = -Y3(mc3 )(03 " ) + ,/mc13, (11)

since•j = 13,3 •3 .
Combining the momentum equation (11) and the energy equation (10),

we conclude that
-ymco3 =eE,-e3(3 "E,)+c3 x(ZxE,)+e-3 xB. (12)

Since /3 x (t x E,) = t(/3 • F.) - E,(/3 Z), equation (12) may be written
as

Ymc/3 = e(1 - 011)E. + eZ/3 • E. + e/3 x B.. (13)

Using the fact that 1 - ol <« 1 and that

03 .E. = 3 .E, ,/ .« < 1, (14)

we obtain the approximate equation

3 x B,. (15)
-Ymc

Substituting j3, the solution of equation (15), into the energy equation (10),
we find eE,O.± sin , (16)

mc

=2 - c- 1 A--I- + ,2 , (17)

where 4b = (2ir/A• + 27r/A.)Z - w.T + ,., and

2=rmc2 ' (18)

is defined as the dimensionless amplitude of the wiggler in Section (2.2). The
details of the above calculations (for the case of two modes) will be given in
Section (2.3).
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We can now define a (dimensionless) resonant electron energy -Y, for which
= 0. This energy is obtained from equation (17) and has the value

r _ 2 +(19)
A,, 2

A free electron laser usually operates in a state for which - ; -Y, (see [2], [6],
and [7]). Equation (16) indicates that electrons with (dimensionless) energy
-y in a magnetic wiggler with wavelength A,, and field amplitude bw will
spontaneously emit radiation (if j, < 0) or absorb radiation (if -, > 0) of
wavelength 2)A,,, - ( + b ) (20)

2.2 Normalization and Nondimensionalization

It is very important to decide on characteristic scales for the dependent
and independent variables in the study of a system of differential equations
by asymptotic methods. The appropriate choice of scales is usually dictated
by the physical regime of interest represented in the system under study and
can, in fact, be changed to suit a different regime. They key point is that
once a set of scales is chosen all dependent and independent variables become
dimensionless and order one in magnitude. There then is no ambiguity about
the size or numerical magnitude of the dependent and independent variables.
Of course, there are now dimensionless parameters present in the problem
which are functions of the characteristic scales. It is their orders of magnitude
which indicate what physical regime is under study, and what is small, etc.

We shall use A,,/27r = L0 as a characteristic unit of length and Lo/c = To
as a characteristic unit of time. Let 2'r/A[. = K, be the wavenumber of the
wiggler. Then in terms of these units we define the dimensionless variables

Z T
z = K,,Z = ? t = KfcT = . (21)

(Note that lower case variables will always be dimensionless.)
We now introduce the dimensionless field variables:

e e e
bw = KwrC2Bw, b. = K..mC2Ba, es = - E., (22)



where mc2 = 0.511 MeV. Using the normalizations introduced in equations
(21) and (22), equations (8) and (10) may be written in dimensionless form
as

d(Td_= e, + ,0 x (b, + b.) + higher order terms, (23)
di

T=O . (24)

In equation (23), the higher order terms include the normalized space charge
force and the normalized radiation force.

To characterize the order of magnitude of each term in these equations
we need to introduce a small parameter E,0 < e << 1. One way to do this
is to choose the parameter r to be a measure of the slow variation of the
wiggler field along the magnet axis. To do this we define - as

_ Lo 1A. = Lo or E (25)

where L and I are respectively the dimensional and dimensionless length of the
wiggler and L0 is the characteristic length defined by the wiggler in equation
(21). The smallness of e signifies that the magnetic wiggler produces a small
effect which, for an electron moving along the magnet axis, lasts for a long
time.

Using the small parameter c we can define a "slow" variable i as

i=Ez, 0<C<1. (26)

The slow variable i enables us to define "slowly varying" functions of z in the
following sense: an O(1) function of z which varies slowly along the wiggler
axis while maintaining its order of magnitude can be written as f(4"). Note
that df/dz = 0(c). A slowly varying function f of the dimensionless variable
z may be written as

f(i)= f(z)= f(RL L o = f(Z),

so that slowly varying means changes occur over length scales which are much
smaller than the length of the wiggler.

Typically the wiggler length L is several meters and the wavelength A
of the wiggler's magnetic field is on the order of a centimeter, so - is a small

6



number, about 10'. Also since the dimensionless wiggler length I is l/e, the
wiggler must be considered long in the mathematical sense. This means that
the cumulative effects of higher-order terms may be important.

We will now denote all normalized (dimensionless) variables with an over-
bar. The wiggler magnetic field is then written in normalized form as

= b,(=){J*cos z + $,sin z). (27)

It can be seen now from equation (19) that b, > 1 leads to -y ' • ie.,
extra high energy electrons are required. On the other hand, if b' <« 1,
the wiggler field is then too weak to significantly decelerate electrons. We
conclude that the only reasonable choice is b. = = 0(1). Because the
operation of free electron lasers is near the resonant state defined in equation
(19) (see references [2], [6] , [7]), and since typical values of -Y, are large,
we shall write the dimensionless energy of an electron and the dimensionless
wavenumber of the signal in the following form consistent with equation (19):

-= •- e' 25, (28)

- k= &-k. (29)

In the allove equation, k. is the 0(1) dimensionless signal wavenumber
and e - is a second small parameter which measures the ratio A,/A,.
The determination of p comes from a consideration of the physical regime
under discussion. Recall that variables with an overbar are dimensionless
and 0(1).

After this preliminary analysis, let us assume again that there are two
modes present in the radiation field. In normalized form its components
appear as

e -, = -e4 {*sin #, + cos,}, # (30)

b -) = x e(,), (31)

for i= 1, 2, and where

6, = ca k( )(z - t) + qi) (32)

again for i = 1,2. Note that the total radiation field is given, as before, by
equations (2) and (4). The parameter ý in equation (30) is again determined
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by the physical regime under discussion. We shall show in section [2.3] that
the only really interesting limit for the free electron laser is t = 0.

The radiation parameters i' and 04') depend on the wave evolution pro-
cess and must be determined by Maxwell's equations. There are some open
questions here which will be discussed later. We will see that i, evolves on
a slower scale than b,.

There are basically three types of magnetic wigglers or undulators. There
are those in which A,, varies, those in which b,, varies, and those in which
both A, and b. vary. Our approach to this problem can be adapted to any
of these wigglers. However, the work in [7] suggests that the constant A,,,
case is probably the best method for enhancing efficiency. Since it also offers
apparent hardware advantages we will restrict our attention to this case.

2.3 Higher Order Correction Terms

In this section we calculate higher order correction terms for the equations
of motion and we mention conditions derived in [12] for neglecting the space-
charge force and the radiation reaction force.

We begin by looking at equation governing the temporal evolution of the
perpendicular component of the velocity,/f±. From equations (23) and (24)
we find

f- /2Tt (AL) = es + (A3li. + fl.) x (i. x e, -L b,). (3

Since e. is perpendicular to i, we find that the last equation may be
written

£-•/ 2 d(/3) = (1 - Al)es + Ait x bw + ( higher order terms) (34)

Now , for a single electron, d' = #,I. We can regard this as an ordinary
differential equation expressing z as a function of t. A little later it will be
convenient to invert this relationship and to express t as a function of z.

From [12], the following conditions must hold in order to neglect the
radiation force: (10- 3CM) = 

(35)

Conditions necesssary for neglecting the space charge force are

84
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W2
- 0 (f&k/2+C) (36)

Once a is determined (and it will be shown later that ý is zero), the above
two equations provide conditions which must hold in order to consistently
neglect the effects of the radiation and space charge forces on an electron. In

the second equation, the ratio 9 is the ratio of the plasma frequency to the
signal frequency. It will turn out that this ratio is a fundamental parameter
measuring the rate of evolution of the radiation field. Consequently the
second condition on the neglect of the radiation force plays Ln important
role in the evolution of the optical field.

Inserting the specific field quantities into equation (34) then gives

-o/2d -diib() (i sin z - ý cos z)
dt

-(1 - 011)cJb ') (i sin 6, + cos i) (37)

-(1 - 311)cbl2) (xsin 62 + ycos02)

+higher order terms,

where b' = P - since bli) = i x e~s.
Noting that #I/ dt = dz, we integrate equation (37) to obtain the form

= 'E' (:iCos Z+ jsin Z)

-•/_-- (. sin z - ý cos z)
53'I/+C b8  (i cos01 - lsind1) (38)

f3a/2+( bs() (i cos0 2- sin0 2)

where 0i = ,(')(z - t) + €j). In equation (38), bZ stands for the derivative
of bL with respect to edz. However since bý, is a function of i = cz, it follows
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that
d(•z)= 0(1-°)(39)

The O(c sa/2) error in equation (38) is due to ignoring the variations of
db./d(fc'),b., and 0, with i. To obtain (38) , we have also assumed that
1L±(O-) = O(tS5/ 2 ), ie., the transverse velocity of the incoming beam can be
ignored before it enters the magnetic wiggler.

Now
- = /20 , es = 8.1. (e(1) + e4(2)) (40)

dt
since the component of the electron velocity parallel to the wiggler axis is
orthogonal to the signal fields. Inserting equations (37) and (38) into the
above expression in (40) , we find after some calculation and rearrangement
that

d--t -_j+( "ý& sin(z + I)+ + sin(z + F)
dt 7 F

- cos(z + )+ Cos(Z + F2) (41)

•1i(2) - ,-(2)+C~+•-- sin(02 -- 01) + Z•1 sin(Ol -- 02)

+O(00).

We shall now define the phases i, i = 1,2 by

i = z +F=z +-*k(z -0)+01 € (42)

We observe that since many of the parameters in the problem depend on
z, as previously mentioned, it will be convenient to use d/dz rather than d/d
for the equations of motion. The velocity dz/dt can be determined from the
relationships dz/dt = Oil and

= ( - 1/2 (43)
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Using the above equation and the expressions for -y and /3, in equations
(9) and (38) , we find after some effort, that

+ b2

Oil2"• 25`

~2o+ fbb' coý,+ w2)-f, i, - Co 1 + ý COS 0 2 (44 )
L ~2 k(.2)

+0(f3-)

Since
di dz d(45)d--t d-- d"-z 5

it follows that
dj 1 d•-ý Id (46)
dz 311l di"

We thus can combine equations (41) and (44) above to derive an expression
for the rate of change of ' with respect to the dimensionless distance along
the wiggler axis, z. We find after some calculation that

d"-z = •+ sin 01 + sin 02
dz J±ýL.rn5 1

C 2 Vsin 0, + ]sin 02

[bf (ý) Cos401 + b,' COS0 2 ) (47)

+ f 2a (C si(02-01) 12

Equation (47) determines the evolution of '4 with respect to z, and it can
be seen that this depends on the field quantities, and on the phases 01, 02

defined in (42). We now determine the evolution of these latter quantities
with respect to z. Differentiating the expression for 01 in equation (42) with
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respect to z, recalling that A = 1/fi0, and using equation (44) for l/0i1, we
find that

do,_(1_ 2 + [/8k-,() ~2 +00

dz - * 242 ) -/8. 2~+
LI ,,,.co ] ,s')'

Cos0 + cos 2 + t,. (48)
L 42~I) 42k()

+O(t2o)

We can obtain an expression for the rate of change of ¢2 with respect to z in
a similar fashion:

d0 2  = 1_2)1 + b,2 [ cc+3/8_0) 1 2 + 02)

dz - 5( 242/ ) I- *( 42] )j
O++ ( 12)[t cos ¢ (b) + ± Cos 2• 2 + o(2)i (49)

ka 2kj(') 42k(2

+O(f2o),

where 00') -. dO,('/dz must be determined by using Maxwell's equations to
determine the evolution of the optical field.

Note that the electron energy (4 in (47) depends on both the phases

01, 02, whose evolution is determined by equations (48) and (49). Note also
that the evolution of these phases depends on the electron energy 4.

If we now compare the higher order terms in the exprk -ions for d4/dz,
do,/dz, and d0 2/dz, we see that unless ý = 0, oscillatory solutions for 4, 01,
and 02 will not exist. Since the existence of oscillations in 4 implies a transfer
of energy from the electron to the optical field, and this is essential to the
operation of the FEL, we find that we must take • = 0 in equations (47),
(48), and (49).

At this point we have two independent small parameters: c and ' =- y
(as we have not yet specified a). From equation (25) c is a measure of the
smallness of A, compared to L, while p-1/ 2 measures the energy -y of the
electron (see (28)). As in [12], near the resonant state (-y ; j,), there are
two distinguished limits corresponding to a = 0 and a = 2/3. The latter
case is known as "slow resonance" ani is substantially more difficult to solve
than the case when a = 1, and for this reason we shall restrict our attentioz,
to the a = 1 case.
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Equations (47), (48), and (49) form three coupled ordinary differntial
equations for ', 01, and 0 2. The coefficients in these ODEs are slowly varying
functions of i. = cz. Though the single mode case (see [12]) can be cast
into Hamiltonian form, it does not seem possible to express the two mode
equations in Hamiltonian form. One must also study how the optical wave
interacts with and evolves according to the presence of the electron beam.
(We have derived the equations for a single electron, but generally in the
electron beam of a FEL there are many electrons).

In order to maintain the coherence and monochromicity of the radiation,
the evolution of the optical wave should be slow. Thus the leading order parts
of the signal parameters b(') and 0' must either be constant or depend on
the prescribed slowly varying wiggler parameters. These signal parameters
in the radiation field are determined by the wave evolution process which is
governed by Maxwell's equations. Though determination of the asymptotic
behavior of the signal parameters is relatively straight forward in the one
mode model (see [12] for example), it still is not quite clear how the wave
evolution occurs in the two mode model.

We leave the further details of this analysis, and the study of the three
ODEs in (47), (48), and (49) to a future report.
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