
I AD-A263 995l Jlilill!l l it lit t ,

Contract N00014-89-C-0137 ..LLL-, I M.Task Final Technical Report MAY 111993H

Contract LIN 0001, 0002 (partial) 0 M 1

* Application of Polynomial Neural
Networks to Classification of Acoustic

i Warfare Signals
I

David G. Ward

Roger L. Barron
B. Eugene Parker, Jr., Ph.D.

1 April 1993

I

I Prepared for:

DEPARTMENT OF THE NAVY
Office of the Chief of Naval Research

Applied Research and Technology Division
800 North Quincy Street

Arlington, Virginia 22217-5000I _ _ _ _ _ _ _ _ _ _•

i / ~Appreo't'• 'u= tO1.GS, eicr

Prepared by:

BARRON ASSOCIATES, INC.
Route 1, Box 159

Stanardsville, Virginia 22973

(804) 985-4400 93-10027
hh1\ 12

m ,formApproved

REPORT DOCUMENTATION PAGE OMU No, 0704-0188

0"rI'qan ~ le, IV 'T" !O17C TI, ift ,.e al 'a. 0 St' (o o i feiae to 'n .# . aq v I -)U of e r '"o -0 fl0tvfl4(tf MeWo~tnt t- aOn l 48, ,,. oCr daan ,Tr., e.

oII..C''n of fcf''7IC nf20 uqe o.' C eouinq thil b4'0*e to yWash'nOntq .1u0tos Svverl' t. O'at r ;0, rl' -f' Of 0ly,"non s *(O no 4' W~c'mt 1)$ 'T .c~qOuQ~O ' llno tnon,(O ~w t 1re'e"$O rwnP nfI.~qt' UC 0 r.wn ft(,f~ (Wnn ,stn aeb~~S
SSUIT 12C4 ArttnqtOn.VA 12211A~4302. -nd to Me! 0f~FIC9O Maof ee an ,r vaoqt. F`40eirviool iqcr~orC1 FPfet' IrA0 181C' val'S Of. .g,'o CC 20501.

I. AGENCY USE ONLY (Leave bWank) 12. REPORT DATE 3. REPORF TYPE AND DATES COVERED

April 1993 Final Technical, 20 Aug 89-31 Mar 93
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Application of Polynomial Neural Networks to
Classification of Acoustic Warfare Signals C: N00014-89-C-0137

6. AUTHOA(S)

David G. Ward
Roger L. Barron
B. Eugene Parker, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) B. PERFORMING ORGANIZATION

Barron Associates, Inc. REPORT NUMBER

Rt. 1, Box 159
Stanardsville, Virginia 22973 141-01 FTR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/MONITORING
Advanced Research Projects Agency Office of Naval AGENCY REPORT NUMBER

Maritime Systems Technology Office Research
3701 North Fairfax Drive 800 N. Quincy St.
Arlington, VA 22203-1714 Arlington, VA

22217-5000
11. SUPPLEMENTARY NOTES

1 m2a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

A. Approved for Public Release. Distribution is
Unlimited.

13. ABSTRACT (MaximUm 200 Word's)

For both estimation and classification problems, the benefits of using artificial
neural networks include inductive learning, rapid computation, and the ability to
handle high-order and/or nonlinear processing. Neural networks reduce the need
for simplifying assumptions that use a priori statistical models (such as
"additive Gaussian noise") or that neglect nonlinear terms, cross-coupling

effects, and high-order dynamics. This report demonstrates the usefulness for
acoustic warfare applications of an interdisciplinary approach that applies the
rigorous theory and algorithms of statistical learning theory to the field of
artificial neural networks. In particular, this approach provides two important
results: (1) a generalized way of viewing neural modeling in terms of statistical
function estimation, and (2) a constrained minimum-logistic-loss polynomial neuralnetwork (PNN) classification algorithm, These classification neural networks
mtrain rapidly, provide improved discrimination, and use an information-theoretic
approach to limit structural complexity and thus avoid overfitting training data.
The report documents the successful application of these algorithms for the
purpose of discriminating among broadband acoustic warfare signals and makes
recommendations concerning further improvement of the algorithms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Artificial Neural Networks Acoustic Warfare Sonar Signal 188
Estimation Machine Learning Processing 16. PRICE CODE
Classification Modeling
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION " 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF R•PORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED NONE J
NSN 7540-01-280-5500 Standard Form 298 (Rev 2A•9)

L

I
I

FOREWORD

From September 20, 1989, to March 31, 1993, under the terms of Contract
N00014-89-C-0137 with the Office of the Chief of Naval Research (OCNR), Barron
Associates, Inc. (BAI) studied the synthesis and use of artificial neural networks for
the purposes of detecting and classifying underwater transient acoustic sources using
broadband information. Particular emphasis was placed on neural networks trained
using a constrained logistic loss function. These are here called minimum-logistic-
loss polynomial neural networks (PNNs). This work leading to this report has been
supported primarily by the Adva-iced Research Projects Agency (ARPA) and the
Naval Command, Control and Ocean Surveillance Center (NCCOSC) via the above
ONR contract.

I • This is the final technical report on BAI's work under the ARPA Non-
Traditional Exploitation System (DANTES) program. This report and prior
submittals fulfill the requirements of Contract Line Item Nos. 0001 and 0002. Under
CLIN 0003, 0004, 0005c and 0006 of the contract, BAI performed research in the area
of static and dynamic (ur recurrent) polynomial neural networks (with particular
emphasis on active control of combustion systems and predictive modeling of
synchronous generators); this work was completed and a final technical report
thereon was delivered to OCNR on May 30, 1992. Under additional modifications to
the contract, BAI continues to investigate the application of static and dynamic
neural networks in the areas of acoustic radiation and multivariable control. This
ongoing work will be documented in future technical reports for OCNR.

I Many individuals in the Government, in industry, and in academia have
contributed importantly to the work reported. The OCNR Scientific Officers for this
work have been Dr. Robert J. Hansen (now with The Pennsylvania State
University), Dr. Eric W. Hendricks (with NCCOSC and OCNR), Mr. James G. Smith,
and Cdr. Daniel A. Forkel. This work would not have been accomplished without
their guidance, support, and encouragement, for which the authors are deeply
appreciative. The support and direction of the ARPA Maritime Systems Techliology
Office, NCCOSC/NRAD, Planning Research Corporation, and Orincon Corporation
are gratefully acknowledged. The ARPA program managers (chronologically) have
been Charles E. Stewart, Dr. Paul R. Blasche, and Paul A. Rosenstrach. The
NCCOSC/NRAD program manager has been Louis E. Griffith, Code 7304. Thomas J.
Martin of the Planning Research Corporation ASW Division (ARPA contractor) has
been closely involved in program administration. Many at Orincon Corporation
(ARPA/NCCOSC contractor) have contributed, including Dr. Vivek Samant, Dr.
Thomas Brotherton, Michael Kurnow, and Dr. Avi Krieger. Paul Hess (Consultant)
participated closely in behalf of BAI during the work that was performed at Orincon.

I Within BA!, the work of Dean W. Abbott, Richard L. Cellucci, and Paul R.
Jordan, III, as well as other members of the BAI staff has been of considerable benefit
to earlier phases of this research. Dr. Andrew R. Barron, Professor of Statistics at

I

i

Yale University, has provided invaluable advice on information-theoretic aspects of I
neural network synthesis. Furthermore, the authors express their appreciation to
Susan L. Woodson of the BAI staff for the word processing involved in preparation
of this report.

The evaluation of the classification algorithms on Short-Net data was funded,
in part, by an Orincon Corporation subcontract (Orincon purchase order S04365).

This report is published in the interest of scientific and technical exchange.
Publication does not constitute approval or disapproval of the ideas or findings
herein by the United States Government or Orincon Corporation.

i
I
I

Ii
I
i
i
I
i
I

I
ii i

I
I

TABLE OF CONTENTS

FO R EW O RD .. i

1. INTRODUCTION AND SUMMARY ... 1

2. PRINCIPLES OF FUNCTION ESTIMATION USING ARTIFICIAL NEURAL
N E T W O R K S ... 5

2.1 Introduction ... 5
2.2 N etw ork Structure ... 5

2.2.1 Network inputs and Outputs .. 6
2.2.2 Element Definitions .. 7

2.2.2.1 Basis Functions and Series Expansions 9
2.2.2.2 Limiting Series Expansion Complexity 13
2.2.2.3 Linear and Nonlinear Post-Transformations 16

2.2.3 Layer Definition ... 17

2.2.4 Network Interconnections ... 17

2.3 N etw ork Training ... 18

2.3.1 The Loss Function .. 18
2.3.1.1 Squared-Error Loss Function .. 19
2.3.1.2 Logistic-Loss Function .. 20
2.3.1.3 Likelihood-Based Loss Function 21
2.3.1.4 Additional Penalty Terms .. 21

2.3.2 Model Selection Criterion ... 22

2.3.3 Optimization Strategy .. 26
2.3.4 Optimization Method .. 28

2.3.4.1 The ILS Algorithm 28
2.3.4.2 Incorporation of Additional Penalty Terms 32
2.3.4.3 Relationship to Other Optimization Techniques 35
2.3.4.4 Regularization ... 37
2.3.4.5 Global Optimization ... 38
2.3.4.6 Elements with Feedback .. 39
2.3.4.7 Recursive Form s .. 40 on For

2.4 Relationship to Other Neural Network and Statistical Modeling CE:&

3 Paradigms ... 45 TAB

2.4.1 Group Method of Data Handling (GMD1) ... 45 ation

2.4.2 Multi-Layer Perceptron (MLP) .. 47. . .-----

Distribution f

IDTIC QUALITY INSPECTED Availability

Dist AvOh endl,-- ii O+•t sw~

U
2.4.3 Radial Basis Function (RBF) Networks .. 50
2.4.4 Pi-Sigma and Other Higher-Order Networks 55

2.5 S u m m ary .. 56

3. POLYNOMIAL NEURAL NETWORK (PNN) SYNTHESIS ALGORITHMS 57
3.1 Introduction .. 57 3
3.2 Algorithm for Synthesis of Polynomial Classification Neural Networks

(C L A SS) ... 59
3.2.1 Network Structure ... 59
3.2.2 Levenberg-Marquardt Optimization ... 66

3.2.3 Complexity Penalty and Building Terms ... 70
3.2.4 CLASS Convergence ... 72

3.3 A Rapid Structure-Learning Classification Algorithm 73

3.4 Algorithm for Synthesis of Polynomial Neural Networks for Estimation

(A SP N) .. 80
3.4.1 Network Structure ... 80
3.4.2 Optimization via Linear Regression ... 83

3.4.3 ASPN Convergence ... 85

3.5 Algorithm for Synthesis of Dynamic Polynomial Neural Networks for

Estimation (DynNet) .. 86 I
3.5.1 Network Structure ... 86

3.5.2 Network Training ... 88 3
3.5.3 Random Global Optimization Techniques ... 92

3.5.3.1 Guided Random Search (GR) .. 92
3.5.3.2 Guided Accelerated Random Search (GARS) 94 I
3.5.3.3 Combined GR/GARS Search ... 97
3.5.3.4 Gambit Search .. 98 1

4. APPLICATION OF POLYNOMIAL NEURAL NETWORKS TO ACOUSTIC
WARFARE SIGNAL PROCESSING .. 101

4.1 In trod u ction ... 101

4.2 AcW Classification Signal Processing Overview ... 103

4.2.1 Scope of Research Conducted by Barron Associates, Inc 103
4.2.2 D etection ... 104

4.2.3 Feature Extraction ... 105 i

4.2.4 Data Qualification ... 106
S4.2.5 Data Classification ... 107 3
4.2.6 Classification Post-Processing ... 107

iv
*" e I

I
I

4.3 Database Design ... 1071 4.4 Feature Generation ... 109

4.4.1 PNN Predictors as Feature Generators ... 109
4.4.2 Additional Time-Domain Features .. 115
4.4.3 Frequency Domain Features ... 116
4.4.4 Automatic W indow Centering .. 120

I 4.4.5 Moving W indow Feature Calculations ... 120

4.4.6 Principal Component Analysis .. 122

4.5 Data Qualification ... 124
4.5.1 Supervised Hyperellipsoidal Clustering (HEC) 124

4.5.1.1 The HEC Methodology ... 124
4.5.1.2 HECs as Pre-Classifiers and "Family" Detectors 129
4.5.1.3 HECs as Feature Generators ... 130
4.5.1.4 HECs as Implemented by PNNs ... 132
4.5.1.5 HECs, Radial Basis Functions, and Unsupervised

Clusterin0 134
4.5.1.6 HECs as Probability Density Function Estimators

(Bayes Approach) ... 137
4.5.2 Coherent Signal Processing .. 137

4.6 Classification Post-Processing ... 138
4.7 On-Line Updating ... 142

I 5. PNN SYSTEMS DELIVERED .. 145

5.1 PNN Stand-Alone System for Build 2 ... 1453 5.1.1 Introduction ... 145
5.1.2 PNN Software Processing Flow ... 146

S5.1.3 DANTES Implementation .. 155

5.1.4 Build 2 Sea Trial Test Plan .. 156
5.1.4.1 Interrogation ... 156
5.1.4.2 Update and Resynthesis ... 157

5.1.4 Build 2 Evaluation .. 157

5.2 Short-Net System for Build 3 159
5.2.1 Introduction ... 159
5.2.2 Processing Flow ... 160

5.2.3 Database Issues and Discussion .. 161
5.2.4 Short-Net Classification Results .. 166

6. CONCLUSIONS AND RECOMMENDATIONS ... 169

7. REFERENCES ... 171

S7V

i
APPENDIX A: UNCLASSIFIED CLASS ABBREVIATIONS 177 I

APPENDIX B: CHRONOLOGY OF BA! WORK EFFORT............................. 179 I

APPENDIX C: BUILD 2 PNN SOFTWARE DOCUMENTATION 181 I

i
i
i

I

I
i
i
I
i
i
i

vi I

I
I

LIST OF FIGURES

3 Figure 2.1: Artificial Neural Network Structural Hierarchy 6

Figure 2.2: MIMO Network Controller .. 7

Figure 2.3: Neural Network Used for Data Classification................8

Figure 2.4: Generalized Network Nodal Element .. 8

I Figure 2.5: Example of a "Full Double" Network Element 11

Figure 2.6: An MLP Network Element .. 16

I Figure 2.7: Network Interconnections .. 18

Figure 2.8: Projection-Pursuit Optimization Strategy 26
Figure 2.9: A Desired Network Response that Requires an Additional

Penalty Term ... 33

I Figure 2.10: A "Hidden" Nodal Element .. 38

Figure 2.11: Interconnections on Final Network Layers 39

Figure 2.12: A Gaussian Kernel Implemented using Multiple Generalized
N odal Elem ents .. 51

I Figure 2.13: Measuring Cluster Distances .. 54

I Figure 3.1: CLASS Network Structure .. 60

Figure 3.2 Minimum-Logistic-Loss Classifier with Linear Nodes 65

Figure 3.3: Levenberg-Marquardt Optimization Algorithm 71

I Figure 3.4: Pseudo-Code for CLASS Algorithm with Parameter Building 72

Figure 3.5: Learning Curve for Three-Class Network Using LM
A lgorithm .. 73

Figure 3.6: Learning Curve for Three-Class Network Using LMS

Algorithm, with g = 0.1 ... 73

Figure 3.7: An Objective Function for Classification 77

Figure 3.8: 91 vs. Desired Probability, Pd .. 78

Figure 3.9: Sample Polynomial Network ... 83

Figure 3.10: Equation-Error System Identification...87

I vii

I

Figure 3.11: Output-Error System Identification .. 88

Figure 3.12: Sample Dynamic Network ... 89

Figure 3.13: DynNet Algorithm for Constructing a DPNN 91

Figure 3.14: Sample GR Amoeba Acceleration 94

Figure 3.15: GARS Algorithm Block Diagram .. 96

Figure 3.16: Combined GR/GARS Search .. 97

Figure 3.17: Example Learning Curve for GR/GARS Search 98 I
Figure 4.1: Processing Chain for a General Classification System 103

Figure 4.2: PNN Predictors as Feature Generators .. 109 I
Figure 4.3: Static Polynomial Neural Network Predictor (PNP) 110

Figure 4.4: Dynamic Polynomial Neural Network Predictor (PNP) 110

Figure 4.5: ASPN Classification Network for PNP Features 111 n

Figure 4.6: PNP Coefficients as Classification Features .. 114

Figure 4.7: Time-Domain Pre-Processing for PNP Feature Generation 114 3
Figure 4.8: Sample Discrimination Filters for a Three-Class Network 115

Figure 4.9: A Typical Lofargram Display ... 116

Figure 4.10: Time-Domain Preprocessing for FFT Feature Generation 118

Figure 4.11: Self-Centered Spectral Windowing via Red Shift 120 3
Figure 4.12: Cumulative Percent Variance Explained by Principal

C om ponents .. 123

Figure 4.13: Data Qualification Using Ellipsoidal Cluster Tests 125

Figure 4.14: HEC For a Two-Class Problem .. 126 3
Figure 4.15: Graphical Representation of Ellipsoidal Clustering 127

Figure 4.16 (a): A Cluster with Excessive Capture Area (volume) 128 n

Figure 4.16 (b): A Preferable Cluster ... 128

Figure 4.17: Grouping Classes by Frequency ... 129

Figure 4.18: Classifier Using Linear Polynomials ... 133

Figure 4.19 (a): RBF/EBF Classification Network Structure ... 135

Figure 4.19 (b): HEC PNN Classification Network Structure 135 3
viii 3

I
i

Figure 4.20: Five-Class Bayes' Classifier Using PNNs and HECs 137

Figure 4.21: Data Qualification for Narrow-Band Steady-State (Coherent)
Signals .. 138

Figure 4.22: Multi-Look Post-Processing (Decision Accumulation) 139

Figure 4.23: Multi-Look Post-Processing (Probability Averaging) 139

Figure 4.24: Automated Database Preparation and Classifier Retraining 143

i Figure 5.1: Build 2 PNN Software Processing Chains .. 146

Figure 5.2: Build 2 PNN Preprocessing and Feature Extraction 147

Figure 5.3: Build 2 PNN Data Qualification and Classification 147

Figure 5.4: Using HECs to Assign a New Class to the Nearest Family 149

Figure 5.5: Build 2 PNN Classification Postprocessing .. 150

Figure 5.6: Output Probability Shaping 151

Figure 5.7: PNN Short-Net Processing Flow .. 161

Figure 5.8: PNN Short-Net Network Accuracy vs. Number of Training
Exem plars per C lass ... 164

Figure 5.10: Learrdng Curve for a Five-Class PNN Short-Net Classifier
Using Ten Input Features and 81 Total Network Coefficients 167

II
i
I
i
I
i i

I
I

LIST OF TABLES

Table 2.1: Some Basis Functions Commonly Used for Function Estimation 10

Table 2.2: Summary of ILS Variables .. 32

Table 3.1: Differences between Several Polynomial Neural Network U
Synthesis Algorithm s .. 58

Table 4.1: PNP Classification Results (Four-Classes) ... 111

Table 4.2: Signal Fam ily Groupings ... 112

Table 4.3: PNP Classification Results (Family One) .. 112

Table 4.4: PNP Classification Results (Family Two) ... 113

Table 4.5: PNP Classification Results (Family Three) .. 113 3
Table 4.6: PNP Classification Results (Family Four) .. 113

Table 4.7: FFT-Based Classification Results (Family One) ... 119 3
Table 4.8: FFT-Based Classification Results (Family Two) .. 119

Table 4.9: FFT-Based Classification Results (Family Three) 119

Table 4.10: FFT-Based Classification Results (Family Four) 119

Table 4.11: Single-Look HEC Pre-Classification Results .. 130 I
Table 4.12: Single-Look HEC-Distance Classification (Family One) 131

Table 4.13: Single-Look HEC-Distance Classification (Family Two) 131
Table 4.14: Single-Look HEC-Distance Classification (Family Three) 131

Table 4.15: Single-Look HEC-Distance Classification (Family Four) 132

Table 4.16: Multi-Look HEC-Distance Classification (Family One) 140

Table 4.17: Multi-Look HEC-Distance Classification (Family Two) 140
Table 4.18: Multi-Look HEC-Distance Classification (Family Three) 141

Table 4.19: Multi-Look HEC-Distance Classification (Family Four) 141

Table 4.20: Multi-Look HEC Pre-Classification Results ... 141 3
I

I

Table 5.1: Signal Family Groupings .. 151

Table 5.2: Build 2 PNN Classification Results (Family One) for Dataset B 152

Table 5.3: Build 2 PNN Classification Results (Family Two) for Dataset B 152

Table 5.4: Build 2 PNN Classification Results (Family Three) for Dataset B 153

Table 5.5: Build 2 PNN Classification Results (Family Four) for Dataset B 153

Table 5.6: Build 2 PNN Classification Results (Family One) for Rangex
D a ta .. 154

Table 5.7: Build 2 PNN Classification Results (Family Two) for Rangex
D a ta ... 154

Table 5.8: Build 2 PNN Classification Results (Family Three) for Rangex
D ata 154

Table 5.9: Build 2 PNN Classification Results (Family Four) for Rangex
D ata ... 154

Table 5.10: Build 2 Sea Trial Data Used for PNN Demonstration 158

I Table 5.1: Short-Net Training Database ... 159

Table 5.12: PNN Short-Net One-vs.-All Performance for SI 162

Table 5.13: PNN Short-Net One-vs.-All Performance for S3 162

Table 5.14: PNN Short-Net Three-Class Network for Less Populous Classes 163

Table 5.15: I'NN Short-Net Three-Class Network for Less Populous Classes
and "O ther" C lass ... 163

Table 5.16: Percentage Correct for Two Orincon Networks 164

Table 5.17: Performance Summary for all Short-Net Classifiers 165

Table 5.18: Five-Class PNN Short-Net "Jackknife" Classification Results
(O p tio n 3) .. 166

I Table 5.19: Five-Class PNN Short-Net Classification Results on Evaluation
D ata (O ption 3) .. 168

I
I
I
I
I x

I
I
I 1. INTRODUCTION AND SUMMARY

As sonar systems become increasingly complex and sensitive, sonar displays
may become cluttered with hundreds of possible target signatures. Traditionally,
sonar operators have manually classified each target signature; however, as an
increasing number of signatures appear, timely manual classification of all potential
threats is nearly impossible; this problem becomes even more pronounced if, as is
often the case, a threat is operating quietly in an attempt to avoid detection.
Additionally, due to the relatively infrequent occurrence of hostile targets, a human
operator may be required to observe cluttered sonar displays for long periods of time
without ever sighting a potential threat, leading to inattention, operator fatigut, and
an increased risk of missed detections.

I The DARPA Non-Traditional Exploitation System (DANTES) addresses these
problems in part by combining advanced passive sonar devices with digital signal
processing to automatically detect, classify, and track targets of interest. The primary
technical objective of the research conducted by Barron Associates, Inc. under the
DANTES program was to apply dynamic and static polynomial neural network
synthesis algorithms to the modeling of functions that detect and classify a broad
range of acoustic signal classes, with particular emphasis on transient and other
broadband acoustic sources. The work combined state-of-the-art techniques in
neural networks, statistical inference, and computer science, and had two main
goals:

(1) Develop a design methodology and specific design embodiments to provide
accurate pre-classification and classification of signals received by an acoustic
surveillance system.

I (2) Develop on-line learning capabilities to incorporate new signal classes into
the system design.

I The ability of neural networks to derive inductively (from the data) complex
nonlinear system models has made them good candidates for the automation of
detection and classification processes. However, most neural network approaches
employed to date, including those using multi-layer perceptrons trained via
Backpropagation, suffer from a number of disadvantages: (1) use of a squared-error

I loss function is not optimal for multi-class data; (2) training time is prohibitively
long; (3) training data for which limited numbers of training exemplars are available
are prone to be overfitted, resulting in poor performance on unseen data; (4) outputs

I require post-processing before decisions can be made; and (5) complex structures,
often with tens of thousands of coefficients, require a computationally-intersive on-
line interrogation process.

In addressing these problems, the authors took an interdisciplinary approach
that applied rigorous statistical learning theory to the field of artificial neural
networks. This approach yielded two important results:

1!

n

(1) A generalized way of viewing neural modeling in terms of statistical i
function estimation. A number of traditional neural modeling techniques
can be recast in terms of this generalized function estimation technique; as i
a result, the strengths and weaknesses of particular neural modeling
algorithms become more readily apparent, and potential algorithmic
improvements often suggest themselves.

(2) A minimum-logistic-loss polynomial neural network (PNN) classification
algorithm. This algorithm retains the benefits of traditional neural-
network-based approaches while overcoming many of the difficulties
mentioned above. Some of the most important characteristics of
minimum-logistic-loss PNN classifiers are:

" Minimization of the logistic loss function, resulting in optimal
(maximum likelihood) classification of data having a multinomial
probability distribution. (Estimators of functions with categorical output
values are more likely to have a multinomial error distribution than a
Gaussian distribution [71.)

"* A Levenberg-Marquardt optimization algorithm for rapid on-line and
off-line network training.

" Ability to provide nonlinear classification having a degree of complexity
(i.e., classification power) commensurate with the quantity and i
representativeness of the training database.

" Outputs that are estimates of the a posteriori probabilities of class
membership. These are particularly useful when these outputs are used
by higher-level decision-making processes.

"* Simple network structures that do not overfit the training data and that
can be interrogated rapidly on-line.

Section 2 of this report presents a neural modeling perspective based upon
the theory of statistical estimation of functions. Two aspects of neural modeling are
covered in detail; these are: (1) generalized network structures capable of
implementing a variety of current and proposed neural paradigms, and (2) fast
learning algorithms capable of optimizing a variety of nonlinear network structures.
Section 2 concludes with a discussion of some of the more popular neural network I
paradigms in light of the function estimation principles discussed; these principles
form the basis of the classificatory neural network paradigms investigated under the
DANTES program.

Section 3 presents the details of the polynomial neural network synthesis
algorithms used by the authors and outlines directions for further algorithmic I
research. Particular attention is given to the Algorithm for Synthesis of Polynomial
Neural Networks for Classification (CLASS). This algorithm has provided excellent

2

I
I

results in the classification of acoustic transients and has also proven highly useful
in other application domains including image processing, financial analysis,
guidance, and control.

Section 4 documents the successful application of PNN classification
algorithms on actual sonar data, and Section 5 describes two PNN systems delivered
for incorporation in DANTES.

I3

I
I
I
I
I
I
I
I
I
I
I
I
I
I3

I
I
I
I
I
I
I
I
U
I
U
I
I
I
I
I
I
I

4 I

I
U

2. PRINCIPLES OF FUNCTION ESTIMATION USING ARTIFICIAL
I NEURAL NETWORKS

2.1 Introduction

To construct an effective neural network for any purpose, including
classification of acoustic transients, one must make several decisions regarding the
fundamental structure of the network and the algorithms that will be used for
network generation. To make these decisions properly it is helpful to understand
network structure and network training in the broader context of generalized
function estimation. This section is intended to bring unity to a variety of neural
network paradigms including polynomial neural networks (PNNs). The section
begins with a discussion of a generic neural network structure, proceeds to discuss
methods for optimizing both the network coefficients and structure, and concludes
with a discussion of the relationship between the method presented and a variety of
other commonly used neural-network and statistical function-estimation
techniques.

Some notes concerning terminology are in order. The authors emphasize the
difference between estimation and classification neural networks, the former being
suited best for function estimation, filtering, control, smoothing, and prediction
tasks, and the latter being most appropriate for data discrimination tasks. In this
section, however, classification networks are viewed as networks trained to provide
the best estimates of discrimination functions between classes of data. And so, in
this context, classification networks are viewed as particular instantiations of
function estimators.

I 2.2 Network Structure

An artificial neural network is typically composed of nodal elements that
perform a learned transformation between input and output data vectors. Sets of
nodal elements are connected in a specific way to comprise layers; the layers in turn
are connected to create the entire network. Fig. 2.1 shows the structural hierarchy
there exists, at least in principle, within a neural network:

U
I
I
I
I5

Network U

Interconnections Layers

Interconnect"ons Elements

Tapped Delay Bank SISO Transformation

MISO Series Expansion

Figure 2.1: Artificial Neural Network Structural Hierarchy

2.2.1 Network Inputs and Outputs

On the highest level, an artificial neural network is a transformation which,
when interrogated, produces an output vector, ,i in response to a given input
vector, 2. In the case of static networks, the output vector is a single-point
transformation of the input data:

A, = f Oh,0) 2:1

where Q is the set of network parameters. Dynamic networks contain internal
feedbacks and time delays, and produce a transformation of the form 3

1= = 2:2

Neural networks are typically imbedded in systems and are trained to produce
a desired output or effect on the system response. Training involves batch or
recursive fitting of a numerical database; we define the training database as: 3

X, -)4.) ; i = 1, 2, ... , N 2:3

where N is the number of data vectors in the training database and x and Y,. are the
measured inputs and desired outputs or system responses for the itb observation. If
the training is unsupervised, then there is no knowledge of the desired outputs, Y,,
and only x. is used for training. In one sense, the distinction between supervised
and unsupervised learning is not necessary, since even in unsupervised learning,
networks are trained to perform some desired transformation on the input data, and I
the means for determining success or failure are always provided by the analyst a
priori. In this sense, all learning is supervised.

Often the network output is written as ý_ instead of 1; however, this invokes
the interpretation that the network output is an estimate of the system response

6

I
U

recorded in the training database. For system identification, inverse modeling, and
classification such is certainly the case, but there are other instances in which the
network output is not intended to be the best estimate of the database response
vector.

I In certain control applications, for example, it is not the network output, but a
transformation of the network output, that is fitted to the response values recorded
in the training database. Fig. 2.2 illustrates a multiple-input, multiple-output
(MIMO) network controller. In this figure, the network is adapted on-line because
the network itself is part of the overall input-output transfer function. The desired
network response is the one which, when passed as input into the plant, produces
over time the minimum absolute error between plant output and the reference
signal.

N Reference

s Neural Network Plant

I
Figure 2.2: MIMO Network Controller

In some network applications, the desired network output is neither the best
estimate of the database response values nor a best control signal, but is operated on
by an additional transformation. In many classification tasks, for instance, the
training database response vector, y.1, is assigned an integer scalar representing the
class of the x vector. The desired network output, however, is a vector of estimated
class probabilities (or log-odds) given that the input state is xi. This output vector
may then be fed into appropriate decision logic to determine the signal classification
(Fig. 2.3). These decision rules may be as simple as assigning the signal to the class
corresponding to the network output with the highest probability.

2.2.2 Element Definitions

Most artificial neural networks are comprised of fundamental building blocks
called nodes, elements, or nodal elements; a generalized nodal element is shown in
Fig. 2.4. This generalized nodal element may be built upon an algebraic or other
series expansion, sometimes called the core transformation. The expansion is often
composed with a fixed post-transformation function, h(.), that may be linear or
nonlinear. In addition, the inputs to a nodal element may be passed through shift
registers or delay banks to allow the series expansion to have access to prior input
values.

I 7

Likcelihood (Logistic-Loss Criterion)

Featrer-Decision sisal

Note 2 *uls CassificationI

Note 1: Multi-Input, Single Output (MISO Network)
Note 2: The output probabilities are calculated using the formula:

Figure 2.3: Neural Network Used for Data ClassificationI

Generalize Net or No a le

linear or ~

X, (t -mAt) Series Expansion nonlinear Izt

00 04>itransformtwon g

t;WW~ eI it eitr

apd deay line (shfreit)

Figure 2.4 Generalized Network Nodal Element3

81

U
U

2.2.2.1 Basis Functions and Series Expansions

The series expansion of Fig. 2.4 is of the form

J
Z =I 2:4

j=O

I where !k is the vector of element coefficients, J is the total number of non-constant
terms in the expansion, k. is a vector of integers. A bias term is ensured by requiring

that 0(0, x) = 1. The series expansion within a neural network element has the same
form as traditional series expansion techniques; however, with network function
estimation, it is desirable that the total number of terms in any given element be
kept as small as possible. This point will be elaborated on shortly.

The inclusion of 4, sometimes called the set of indices or multi-indices, in Eq.
I 2:4 allows the series expansion to handle both univariate and multivariate cases. For

the multivariate case, each cI(D4 x) is a product of functions of scalars. I. is usually
taken to be a vector of integers with each element of k, corresponding to one of the
variables in the X vector. Using this notation, the jth term in the series expansion
may be written as:

DI 11 ., x) = (D (kI, x1) • 'D (k 2,1x2) (D... . (kjDXD) 2:5

* where D is the total number of inputs to the series expansion.

The notation introduced above (and thus the nodal element) is sufficiently
general to implement a variety of basis functions. Table 2.1 gives examples of how
the function 4b(kjd,x) may be chosen to implement some basis functions commonly
used in function estimation (note that in Table 2.1 the subscripts have been dropped
from k where the basis function does not depend on them).

For the polynomial basis function (Eq. 2:6), the]• vector is used to determine
I the powers to which the input variables are raised in the jth term of the expansion.

The same is true for the spline basis function (Eq. 2:7); however, the degree of the
function is never allowed to exceed r; thus r = 3 results in the commonly used cubic
spline.

Note that in both the spline and the wavelet cases an additional set of multi-
indices, a d, must be specified. The parameter Oajd in Eq. 2:7 is sometimes called the
"knot" and is the value about which the approximation takes place. In some cases,
such as uniformly spaced knots, the knot set can be obtained automatically,
eliminating the need to pre-specify the additional set of multi-indices.

I9

I

Table 2.1: Some Basis Functions Commonly Used for Function I
Estimation

polynomial cD(k, x) = xk 2:6
ii. I

spline cb(kjd, x) = (x.) r ifk<r 2:7k3

{ -j~ if k ifk> r

orthonormal wavelet c?(kjd, x) = 2 -k (2 x - ajd) ifkk>O 2:8
1 if k 2: od

trigonometric 0(k, x) = csin(21r fj1 x) if k is odd

T x if k is even 2:9

I
In the orthonormal wavelet basis function, T(.) is termed the "mother

wavelet" and must satisfy a number of specific conditions, including that it be
continuous, integrate to zero, and be non-zero in a very specific limited range [21].
One such function is the Littlewood-Paley basis function:

sin 2itx - sin irx

TI(x) = 7rx 2:10

In the trigonometric basis function (Eq. 2:9), L represents the fundamental period of
the expansion and depends on the sampling rate. 3

From Eqs. 2:4 - 2:9 it can be seen that the core expansion may be fully specified

via a univariate basis function (of the form in Table 2.1) and a J x D matrix K, where 3
each row of K is the vector of integers k.s as defined above. We will illustrate this

using two examples:

I
I
I

10I

I

Example 1: Consider the "Full Double" element of Fig. 2.5. Because this
element has no input delays and no post-transformation h(-), it is completely
specified by the scries expansion of Eq. 2:11

I = 0 0 + OiXl + 0 2 X2 + 0 3 Xl 2 + 6 4 X2
2 + 0 5 XI X2

+ 06xi 3 + 07X23 + 0 8XI 2X2 + 09XI X2
2 2:11

....................I
I••-

I N
I xl•
IX2 IX

IX

I
<• Exponientiation to the power n:

U Cross Product

Two-Input....... Ful Dobl El Multiplication by a constant

SFigure 2.5: Example of a "Full Double" Network Element

1
I
I 11

I

If one chooses a polynomial basis function (Eq. 2:6), the J x D matrix K
corresponding to the expansion in Eq. 2:11 is

0 0
10
0 1
2 0

K= 02 2:12

30
0 3
2 1
12 2

L i

Note that because the basis functions of Table 2:1 were defined so that the value of

any basis function at k = 0 is unity, the 80 coefficient is represented by an additional
row of zeroes in the K matrix.

Example 2: Consider the trigonometric series expansion I

80 + e sin (27-'x + 62sin 2n A x cos(2nr; x) 2:13 3
If we choose a trigonometric basis function (Eq. 2:9), then the J x D matrix, K, that
will yield the series in Eq. 2:13 is given by

K = 5 0 2:14
-- 7 4 J

The above K matrix found as follows: The first term in the expansion of 2:13 is the

bias term corresponding to a row of zeroes in the K matrix (since 0 (0,X) = 1). The
second term in the series expansion contains a single sino term. Comparing this
first term with the sin() expansion of 2:13, one finds that (k+1)/2 = 3, or k--5; since x2 3
does not appear in the second term, the second column of the K matrix
(corresponding to x2) contains a zero. The third term contains both an x, and an x2

term. Solving (k+1)/2 = 4 and k/2 = 2 for the sin() and cos() terms respectively, one

obtains the final row of the K matrix.

12 I

U
I

2.2.2.2 Limiting Series Expansion Complexity

* While the generalized nodal element is capable of implementing many
commonly used series-expansion basis functions, neural network function
estimation is fundamentally different from traditional series and nonparametric
estimation techniques in the following ways:

Each network element implements only a limited subset of the terms that
would make up a complete series expansion; thus element complexity is
kept low.

I Network interconnections allow a set of relatively simple network elements
to be combined so that they can implement complex transformations; thus
the network connections do a great deal of the "work" involved in the
estimation problem.

As the number of inputs to the function increases, the error bounds for
network estimation can be shown to be more favorable than that of
traditional function estimation techniques [11].

SThere are five factors, discussed below, that determine the number of
coefficients (i.e., complexity) that will be needed in a given series expansion; by
limiting one or more of these factors, the complexity of the nodal element may be
kept relatively low.

Maximum Degree (R) and Number of Inputs (D): The degree, R, of any given
Ibasis function is the maximum value of the sum a row Kbaisfuctonisth mxiumvaueofth smof the elements in arwof the

matrix. Thus, for polynomial basis functions, the degree of a given term
corresponds to the sum of the powers of the variables in the term. Thus, the K

matrix corresponding to a series expansion with three inputs (D=3) and maximum
degree two (R=2) is:

I
0 0 1

I0 0 2000
0010

I 0 1 0

K 0 2:15

1100I1 0 1
1 1 0
200I

And, the K matrix corresponding to a series expansion with two inputs (D=2) and
maximum degree three (R=3) is:

3 13

I
I

0 0
0 1
0 2
0 3

K 1 2:16

1 2
20 0
2 1
30

These expansions are referred to as complete expansions of degree R, and it can be
shown that the number of terms in a complete series expansion is a function of the
number of inputs to the expansion and the maximum degree of the expansion.

(R + D)!
J R!D! 2:17

Thus, the first step in limiting the number of terms (or coefficients) in a series
expansion is to limit either the maximum degree, R, of the expansion or the I
number of inputs, D, to the expansion. The maximum degree of the expansion is
completely controllable by the analyst. And, while the number of inputs to the 3
network is largely determined by the application, it is possible to limit the number
of inputs to individual elements internal to the network (the GMDH algorithm
described later in this section is an example where the number of inputs to any I
given nodal element is limited to two.)

Maximum Coordinate Degree (P): By placing restrictions on the maximum 3
coordinate degree, P, the number of terms in the series expansion may be further
reduced. The coordinate degree of any given series expansion is the maximum
value of any integer in the K matrix. For a polynomial basis function, this
corresponds to limiting the power to which any given input may be raised. Thus, a
three-input (D=3), second-degree (R=2), series expansion with maximum coordinate
degree of one (P = 1) would have the following K matrix:

0 0 0

0 0 1
0 1 0K 2:18

1011 10 1

I 1 0
141

I
I

Maximum Interaction Order (Q): In multivariate function estimation, the
interaction order, Q, corresponds to the maximum number of different input
variables that may appear at the same time in a given term. Thus, in Eq. 2:13 above
the interaction order is two because both xi and x2 appear in the last term of the
series. High numbers of interactions result in a combinatorial explosion in the
number of terms needed for the complete series expansion, so a limit on the total
number of interactions is one of the most important restrictions that can be placed
on the nodal element series expansion. A cap on the maximum interaction order
can be thought of as limiting the total number of non-zero elements in each
vector. Thus, the K matrix for a three-input (D=3) second-degree (R=2) expansion
with a maximum coordinate degree of one (P=I) and maximum interaction order of
one (Q=1) is

F0 0 0
0 0 1

SI 002

K= 0 1 0 2:19

1 020I 100

2O00

Note that for any series expansion having D inputs, degree R, coordinate
degree P, and interaction order Q, the JxD K_ matrix may be obtained by "counting"
from zero in a base-P system; each row in the matrix represents one number in the
series. Once the sequence of numbers is generated, all rows containing more than Q
non-zero terms are removed, and all rows with sums greater than R are removed.

Expansion Density: Even after the number of inputs, degree, coordinate
degree, and interaction order for a given series expansion are limited, one may
choose to remove some terms to obtain a sparse or low-density expansion. Eq. 2:13
and the corresponding jK matrix in Eq. 2:14 exemplify a sparse expansion. While
this series has an interaction order of two, a maximum degree of 11, and two inputs,
there exist other terms that meet the interaction order and degree constraints and
yet are not included in the series expansion. Often a sparse series expansion is
obtained by "carving" away any terms in the expansion that have little or no effect
on the desired network response. Details of this carving technique are described in
Sect. 2.3.3.

I Because it is desirable to keep the total number of network coefficients small,
more emphasis is placed on determining an appropriate, efficient network structure,
and less on problems associated with extremely high-dimensional nonlinear
optimization. In general, this approach proves to be more parsimonious in its use
of computing resources and also leads to more robust models that do not have an
excessive number of internal degrees of freedom.

I15

I

2.2.2.3 Linear and Nonlinear Post-Transformations I
The linear or nonlinear fixed post-transformation, h(-), of Fig. 2.3, in

conjunction with the basis function selected, allows the element spec'fication to be I
sufficiently general to encompass most neural network nodal elements currently in
use. The transformation may be used to introduce helpful nonlinearities into the
network, especially when there are few or no nonlinearities in the core
transformation. Additionally, the transformation may be used to "clip" the output
of the core transformation, which often improves the stability of the network (in the
bounded-input, bounded-output sense). This may be especially important when a
polynomial core transformation is evaluated near or outside the boundaries of its
training region. Fig. 2.6 shows the role of the post-transformation for the popular
sigmoidal element used in multi-layer perceptron (MLP) neural networks.

The core transformation of the element shown in Fig. 2.6 also has no time
delays and implements a series expansion of the form I

D3
00 + Y e xi 2:20

j=1 m

Following the same method outlined above, this series expansion can be
represented by choosing the polynomial basis function of Eq. 2:6 and letting K be a

D x D identity matrix. Because K contains only first-order interactions and has a
maximum power of one, the number of terms in the series expansion is kept low..... -- ---

erceptron Nodal Element

1 0 XI

On I+z 7p-l~

Figure 2.6: An MLP Network Element

The post-transformation, h(.), of Fig. 2.6 is a sigmoidal transformation and I
has the formula given in the figure. Due to the nonlinear post-transformation, the
MLP nodal element is nonlinear in its parameters.

Another use for the post-transformation, h(.), is to allow the generalized
nodal element to implement other types of function approximations that are not

16 3

I
U

simple series expansions. Suppose, for instance, one wants a trigonometric function
* of the form

z = sin(O 1x + 6 2x 2 + ... + Onxn) 2:21

I In this case, the series expansion is a first-order polynomial expansion, while the
post-transformation is the sin(.) function.

2.2.3 Layer Definition

A layer is a set of elements whose inputs are selected from the same set of
candidates. It is important to define a layer as a distinct unit within the network for
the following reasons:

First, when determining network structure, it is often convenient to build a
unit of network structure and then freeze it while building other units of the
structure. The network layer is this unit of structure. This is analogous to
constructing a building one floor at a time; each subsequent floor is built upon the
floors below it, and construction on a new floor cannot begin until a sufficient
portion of the lower floors has been constructed.

Second, elements on a given layer are often trained to "work together" as a
I group to produce the desired network response (Section 2.3.3).

In addition to the internal layers, a network will often contain two special-
purpose layers. The first receives inputs, normalizes them, and passes the
normalized values to subsequent layers. Often if the inputs are normalized, the
network is trained on normalized outputs as well. When this is the case, a second
special-purpose layer is required to unitize (or un-normalize) the network outputs.
By normalizing and unitizing, each network input is allowed to contribute equally
to the solution of the problem, and the magnitudes of the network coefficients
become a more accurate reflection of the relative importance of a given term.

2.2.4 Network Interconnections

Fig. 2.7 shows the two types of network interconnections: feedforward and
feedback. Intra-layer connections consist of making the inputs to each layer
available to every element in the layer. The individual elements are then free to
choose which subsets of the available inputs to use. Element outputs are then
passed along as layer outputs; the layer outputs may be described by a vector
containing scalar values corresponding to the element outputs. Network inputs are
available as element inputs at successive layers.

I
*!1

i

vector of network n
inputs

*, Layer 1

interconnections Element 11 internal network
internal to the feedforward
layer. Element 1,2 interconnections

passed forward
to subsequent

internal network Element 1 layers

feedback
interconnection . -

?I

Figure 2.7: Network Interconnections

It is important to note that in the function estimation techniqe presented
here, we do not allow feedback connections internal to the layer or within elements.
This restriction allows the same layer definition to serve for both feedforward and
feedback networks. Connections between layers, however, may be passed forward as
inputs to subsequent layers (feedforward networks) or may be passed back as inputs
into the given layer and/or previous layers (feedback networks). Thus, for the I
generalized network structure outlined in Section 2.2, the only difference between
dynamic and static networks is the type of inter-layer interconnections allowed. 3
2.3 Network Training

Often networks are trained using a gradient-based search technique to find the
coefficients of a pre-structured network; the popular backpropagation algorithm [62]
is an example of this type of training, where the specific optimization algorithm is a i
form of least mean squares (LMS). The recommended approach, however, is to
allow for structural variations by including in the training algorithm(s) methods for
determining a network structure suitable for the task at hand. Thus, building the I
network structure and optimizing coefficients are inter-twined processes used to
create more robust networks with less training effort and time.

2.3.1 The Loss Function

For a given network structure the optimal coefficients are those which I
minimize the sum of a loss function evaluated at every observation in a training
database:

I
18l

IN
min d(X.d,,si) 2:22

* where:

N is the number of observations in the training database

I y- is the ith output vector in the training database

3 is the i output vector of the network; 5 = f(0, Q) for feedforward networks
(see Eq. 2:1)

d(.) is the loss or distortion function.

Because the goal of the network training algorithm is to minimize the output
error as quantified by the loss function, it is helpful if the loss function is a convex,
twice-differentiable function with respect to the coordinates of si. By imposing these
constraints on the loss function, one guarantees that, if the function being fitted is
linear in its parameters, the fitting algorithm will be able to find the set of
coefficients that globally minimizes the network error. Even if the network
function is nonlinear in the parameters, a convex, twice-differentiable loss function
will still result in the best performance possible for the optimization algorithm.
Depending on the nature of the application, a variety of loss functions may be used
effectively.

2.3.1.1 Squared-Error Loss Function

3 The squared-error loss function is by far the most commonly used and can be
expressed as

I = I yi - si 2:23

In this case, the vector norm 1. 12 is defined as the sum of the squares of the
differences between the coordinates of y, and si. This loss function is most suited to
create networks whose outputs estimate the dependent variable(s) in the training3 database as closely as possible.

One problem with the squared-error loss function is that data outliers tend
to have a greater-than-desirable impact on the coefficient optimization. A number
of robust loss functions have been suggested which reduce or nullify the effect of
outlying data. One such function is Huber's loss function

Id~ I '.E12 if Ii- Y i12

j - I' 2 2f1ý 2:24
di'i 2A I yX-- I -A if 12 >A

S,19

I

where A is the distance at which outliers begin to have less effect. When I
I y, - ji > A, d(.) becomes a 1-norm. Thus, this loss function has the advantages of a
1-norm; however, by using a 2-norm near the origin, the function is everywhere
continuous in the first and second derivatives, which is not the case with a 1-norm
loss function. Note that in Eq. 2:24 it may be desirable to shape each coordinate of
the output norms differently by using an N-dimensional vector of values for A.

2.3.1.2 Logistic-Loss Function

Optimization of Eq. 2:22 for the squared-error distortion function of Eq. 2:23
corresponds to the maximum likelihood rule in the case of a Gaussian probability
model for the distribution of the errors [44]. However, for multi-class classification
problems with categorical output variables, a multinomial probability model in
regular exponential form is more suitable than the Gaussian model. In this case, the
network functions should be used to model the log-odds associated with the I
conditional probability of each class given the observwd inputs. In this setting, the

maximum likelihood rule corresponds to the choice of the logistic loss function,

d(=i -) = . 5i + Ln Ye sij 2:25

where C is the number of outputs (or classes); s. is the ith element of the j, vector;
and Yi is a vector with the coordinate of the observed class equal to one, and all other
coordinates equal to zero (i.e., the observed conditional probabilities given &). In
this context, the likelihood associated with observation i is

P(yiIxi) =C 2:26 5
~eSjij

j= 1 I
and Eq. 2:25 expresses the minus log-likelihood d(.) = - log p(Y I i). In this way, it is
possible to compute estimates of the probability that an observation is a member of
class k, given that the input state is ji:

p(kl1) - e'.k 2:27

I eSi'j

j=1 I

20

I
I

2.3.1.3 Likelihood- Based Loss Function

Likelihood-based lIss functions, such as the logistic loss function described
above, can also be helpful for density estimation and clustering of input data. For
instance, the loss function may take the form

d(si) = -Ln si 2:28

I where s, = f(f, 0) and f(-) is the estimated probability density function. In that case,
the network output would need to satisfy

f Jf(s,)dx = 1 2:29

H and

f(&,a) Ž_ 0 Vx 2:30

If the network function output, f(x_, Q), does not satisfy the integrability
requirement of Eq. 2:29, this condition can be reflected in the choice of the loss
function by setting it equal to

-Ln s, + Ln f f(-x, a)dx 2:31

where the second term plays the role of normalizing the network output.

If the network does not satisfy the positivity requirement of 2:30, one can use
the network function to model the log-density, and take the density function to be

p(', = - 2:32
Ief(m' fldx

and the minus log-likelihood to be

-log (p(Ai, 90) = - si + Ln (S ef(X' iix) 2:33

where si = f(i' 0).

1 2.3.1.4 Additional Penalty Terms

Additional penalty terms may be incorporated to improve the ability of the
network to interpolate between unseen data points. The most important of these is
the complexity penalty, discussed below. However, there are a number of functions

I
* 21

I

of the network coefficients that may be added to any of the above loss functions to I
"smooth" the network output; these are often called roughness penalties.

In addition to improving the ability to interpolate, a roughness penalty can
also improve network input-output stability, such that small variations in network
input produce small variations in network output over the entire range of
operating conditions. Any of the following, for example, may be used as a
roughness penalty:

"* Sum of squares of coefficient magnitudes

"* Sum of squares of network gradients with respect to the inputs 3
"• Minus the log of the prior density function of the network parameters

Details concerning the implementation of some specific roughness penalties I
are discussed in Sect. 2.3.4.2.

2.3.2 Model Selection Criterion

A.R. Barron [II] has given general conditions such that the minimum mean
integrated squared error for an MLP neural network with one hidden layer will be
bounded by

+ O (log N 2:34

where O() represents "order of ()," n is the number of elements, d is the
dimensionality (number of coefficients per node), and N is the sample size (number
of training exemplars); nd, therefore, is the number of coefficients in the network. I
The first term in Eq. 2:34 bounds the approximation error, which decreases as
network size increases. The second term in Eq. 2:34 bounds the estimation error,
which represents the error that will be encountered on unseen data due to
overfitting of the training database; it is caused by the error in estimating the
coefficients. Estimation error, unlike approximation error, increases as network size
increases.

Pre-structured networks, because they often have excessive internal degrees of
freedom, are prone to overfit training data, resulting in poor performance on
unseen data. Additionally, because of a large number of network coefficients,
optimization of pre-structured networks tends to be a slow and computationally
intensive process. Without algorithms that learn the structure, the analyst often
must resort to guesswork or trial and 2rror if network complexity is to be reduced.

Improvements in network performance on unseen data can be made if one

incorporates into the optimization algorithm modeling criteria that allow the

I
22 3

I
I

network structure to grow to a just-sufficient level of complexity. Although this
technique requires additional effort to search for an optimal structure, the overall
network generation time is, in general, greatly reduced due to the reduction in the
number of coefficients.

I Two decades of research have gone into this topic. In Ukraine, Ivakhnenko
[41] introduced the Group Method of Data Handling (GMDH). With GMDH, the loss
function is squared-error, and overfitting is kept under control by means of cross-
validation testing that employs independent subsets (groups) of the database for
fitting and selection. GMDH is a satisfactory approach when sufficient data are
available. Usually, however, the quantity and variety of the available data are
limited by operational considerations, and it is desirable to use all of the data in the
fitting process. In Japan, Akaike [4] introduced an information theoretic criterion
(AIC) that uses all of the data and incorporates a penalty term for overfit control.
Akaike's criterion is one of several that take the form

I N KK d(yi,si) + C- 2:35

i=1

I where K in this context is the number of non-zero coefficients in the model, N is the
number of data vectors in the database, and C is a constant. Since the second term
does not depend on the network coefficient values, model selection criteria of the
form shown in Eq. 2:35 are often optimized one term at a time.

Akaike's information criterion and subsequent criteria introduced by Schwarz
[63] and Rissanen [59] require the loss functions to take the form of a minus log-
likelihood. When the loss function takes this form, the AIC is given by Eq. 2:35 with
C = 1, and the simplest forms of Schwarz's information criterion "B" (BIC) and
Rissanen's minimum description length (MDL) criteria are given by Eq. 2:35 with1

C = 1 log N. Note that these criteria are applicable to both squared-error loss (for

function estimation with a Gaussian error model) and logistic loss (for class
i probability estimation).

The AIC, BIC, and MDL criteria depend explicitly on an assumed probability
model to yield the likelihood expressions. However, other criteria of the form of Eq.

i 2:35 can be justified by the principle of predicted squared error (PSE) [5] [45], defined
below, or the principle of complexity regularization [91.

To use the AIC or MDL criteria in the squared-error case, the loss function is
recast in the form of a minus log-likelihood for a Gaussian model. This may be
written for the single-input case as

I
* 23

I
I 1I

d(yi, s) _ 202 + 1 log 2r02 2:36

Gaussian model.t The constant a2 could be replaced with its maximum likelihood I
estimate I

1 N
62= I yi-S i

2 2:37
i=1 I

which leads to a criterion of the form

1 1 l 2 1 K I
N 2+log + ý log 27 + C N 2:38

1 I
with C = 1 or C = ý log N for the AIC and MDL, respectively. Notice that the first

and third term are constants and do not depend on the network structure or
coefficients; these constant terms can be removed from the equation to yield a
criterion of the form

1log a2 + CK 2:39

A different a2 is obtained for each candidate network model. However, choices for I
62 which depend on the candidate model have two serious drawbacks: (1) these
criteria depend explicitly on the assumed family of the error distribution (Gaussian),I
and (2) they do not account for potential error due to differences between the model
structure and the actual system; thus, they tend to favor complicated overfit models.

As an alternative, it is better to use a prior estimate, 0;2, of the model error
variance that does not depend on the candidate models. Barron showed that even
when a prior estimate o2 is not extremely accurate, the criterion can still prove

__

t Eq. 2:31 may be extended for multiple outputs as follows:

2c 2 b IIj7-1

where ais a constant that may be regarded as the variance of the error of output j.

24

I
I

useful [5].t By inserting Eq. 2:36 into the criterion of Eq. 2:35, multiplying by 2o0- and3 ignoring a constant, it can be seen that minimizing Eq. 2:35 is the same as
minimizing

SN K

N• • yi-sil 2 + 2U2C " 2:40
i=

1

I With the value of C = 1, this represents the PSE criterion. This criterion, unlike the
general AIC, is appropriate even when the error distributions are non-Gaussian [5].

For C = 1 log N, the terms in Eq. 2:40 become the leading terms of the complexity

regularization criterion derived by Barron [9].

For the classification or conditional-probability estimation problem, one may
use the AIC or MDL criterion of Eq. 2:35 with the logistic-loss function. Since it has
been shown already that the logistic-loss function takes the form of a minus log-
likelihood, no modification to Eq. 2:35 is required, and the task becomes one of
minimizing

1 N K

d(.•, s + C - 2:41

where the distortion function, d(-), in Eq. 2:39, is the logistic-loss function of Eq. 2:25.

By minimizing the constrained loss functions, Eqs. 2:40 and 2:41, instead of
their unconstrained predecessors, Eqs. 2:23 and 2:25, network complexity can be
appropriately penalized so that overfit is avoided. One may follow the same steps to
modify a variety of objective functions.

The C E term in the model selection criterion is called the complexity penalty

and can be thought of as an additional term added to the loss function. The
complexity penalty allows the loss function to account for both estimation error and
approximation error. By adding the roughness penalty to the loss function, i.e.

Loss = distortion function + complexity penalty + roughness penalty 2:42

I
1 If no value of o2p is known a priori, one can use, for instance, the conservative nearest-neighbor estimate

of 2.5 The nearest-neighbor approximation consists of assuming that the output for each given data

vector is to be estimated using the output value of the data vector closest to it in the data space; q_2 may
then be set equal to the variance of these estimates. After modeling, the predicted error of the model
can be checked to verify that it is less than or equal to aP,

* 25

I

one has all that is needed to create a robust objective function that not only takes i
into account estimation and approximation error, but alsc function smoothness and
input-output stability. It is important to note, however, that it is not possible to
compute a gradient of the complexity penalty with respect to the network
coefficients. Thus, the optimization strategy must use a heuristic search method
while traversing the space of potential network structures.

2.3.3 Optimization Strategy

Having defined the structural building blocks for a generic artificial neural
network and an appropriate objective function, we next turn to consideration of an
efficient search strategy that will find the network structure and optimize the I
coefficients of that structure.

The optimization strategy proposed here is distinctive in two ways. First,
only small subsets of network coefficients are optimized at a given time, thus
reducing the dimensionality of the search space and improving the performance of
the search algorithm. In most cases, it is sufficient to optimize only the coefficients I
of a single element while holding all other elements fixed. Ivakhnenko [42] was the
first to propose this type of network construction. In his scheme, the coefficients of
each element are optimized in such a way that each element attempts to solve the I
entire input-output mapping problem.

While Ivakhnenko's method is powerful, it can be improved upon. A second i
major distinction of the proposed optimization strategy consists of training the
elements on a given layer so that they work in linear combination with other
elements in that layer to minimize the objective function. This is accomplished I
using a technique inspired by the projection-pursuit algorithm of Friedman

et al. [20] [27] [28] In this strategy, an additional set of "dummy" coefficients, PV " k,
multiply the outputs of the n elements on a given layer (Fig. 2.8):

Layer L

Element L,1

Elmnt L,2 P2

Element L~n

Figure 2.8: Projection-Pursuit Optimization Strategy

26

I
I

The coefficients of the node under consideration, along with the additional
dummy coefficients, may be optimized together so that the weighted sum of
element outputs minimizes the objective function. This has the effecr of training
each new element to work well in combination with the existing elements of a
given layer. Additional nodes are added to a layer only as long as their additional
complexity is justified.

Additionally, coefficients within the new elements may be built up or
"carved" away using an objective function that contains a complexity penalty; the
complexity penalty allows only terms which contribute significantly to network

* performance to be retained.

Entire layers may be optimized following a strategy originally used by
Adaptronics, Inc. in the 1970s and most recently suggested by Breiman and
Friedman [20]. In this strategy, which is called "backfitting," each coefficient subset is
improved by iterating the search algorithm a few steps while holding the rest of the
coefficients fixed. This method is then repeated for another subset of network
coefficients, etc. For neural-network-based estimation, the nodal elements become
the logical choice for the coefficient subsets to be optimized, and a layer may be
optimized by successively recursing through each nodal element, iterating the
optimization algorithm a few times for each element. Breiman and Friedman
showed that under appropriate conditions this method will yield the same
coefficient values as are obtained via a successful global optimization of the same
structure. Practical impleraentation of the backfitting strategy has an advantage in
that only a small set of linear equations needs to be solved at any given time.

An example of the way in which backfitting may be applied can be illustrated
using a network as defined in Fig. 2.8. Once the structure of the layer has been3 B determined, the coefficients of element L,1 and the dummy coefficients, D, are
adjusted using one iteration of the search routine (see Section 2.3.4). Next the
coefficients of element L,2 and 0- are adjusted using one iteration of the search
routine. This process continues n times until the coefficients of element L,n have
been adjusted. At this point, the process begins again with element L,1. The
optimization routine continues until the optimization no longer improves
performance significantly.

Another way backfitting can be used is during the search for network
structure. Elements may be backfitted each time a new element is added, and the
new element can be scored based on its performance in conjunction with the
backfitted prior elements. In general, backfitting will increase training time, but it is
a technique which can be used as often or as seldom as desired. Even when used to
a small extent, backfitting can be a highly efficient way of optimizing larger sets of
coefficients so that they work well together.

Once the structure of a given layer is determined, subsequent layers have the

option of combining the layer outputs linearly using the a coefficients chosen above,

3 27

I

or they may go on and recombine the outputs in more complex ways if the l
improved performance justifies the additional complexity. Layers are added one at a
time in this fashion until overall network growth stops. The stopping rule is that
the constrained fitting criterion has reached a minimum.

2.3.4 Optimization Method

An iterative least-squares (ILS) method for optimizing the types of nonlinear
networks described in this section will now be derived. The algorithm is iterative in
the sense that multiple passes through the data are usually required to achieve
convergence. It is a least-squares method in the sense that it minimizes a local
quadratic approximation of the objective function; it does not, however, require that I
a squared-error distortion function be used or that the network equations be linear
in the parameters.

2.3.4.1 The ILS Algorithm

The ILS algorithm consists of finding the local least-squares solution to a
linearized version of the network (or other) function at each consecutive operating

point (e.g., _). Because the optimization strategy described in Section 2.3.3 consists of
optimizing subsets of the coefficients, in particular those contained in a single I
network element, the entire network optimization task can be reduced to a series of
single-element optimization tasks.

Let Vf(ji, 90) be the J x C gradient of the C x 1 network output vector, f, with

respect to the J x I element coefficient vector, I evaluated at -o and abbreviated Vf0.

af, Df2 afcI

DOI DO I I
aft af2 afc

Vfa2 2
I

Df af ___

"Q=°oI

This gradient is used to make a local linear approximation of the network function

about %:

f(xi, 9) f(_x1, 9-0) + (Vf)'r(o -9-o) 2:43

28

I

Becaise the general form of the method is to be iterative, we wish to find a A0
* such that the iteration

Anew = 90o(1 + A A0 2.44

1 produces a minimum of the loss linearized about •-od" If g, the parameter that

controls the step size, is taken to be unity, then AD = Qnew - -old" Taking D as •oId, Q

as f-new, Eq. 2:43 may be rewritten

Mf(" Q) = f(x •,) + (Vf0)T(A2) 2:45

Now, let Vd(y, .) and V2d(yi, fi.0) be the C x 1 gradient and C x C Hessian,

I respectively, of the distortion function with respect to the C x i ,.% ctor of network

outputs, fi, at observation, i, and evaluated at fi fi.0" These are abbreviated Vd and

I V2d£o, respectively:

1 ad
afl

I ad
af2

Vd f=

I ad
DC

f fo

I a2 d a2d a2d
aflafI af P2 "" afIdfc

I a2 d a2d a2d
V2d£o = af2af af2af 2 .- f2afc

D2d a2d a2d

I afCafI afdaf 2 " f"afC ff

* 29

i

Where C is the number of network outputs. l

Because restrictions are put on the objective function such that it is convex
and everywhere twice-differentiable, the gradient and Hessian are known

everywhere and can be used to make a local quadratic approximation of the loss
function in the vicinity of the current network output, 0:

d(i, f-) = d(yi" 1o) + (Vdf0)T(-) + 1- f)T(V'd)(fi - L0) 2:46

Eq. 2:45 may be substituted into Eq. 2:46 to yield an approximation to the iPh

component of the objective function in terms of A.:

"l(i fi) -

d(y•,f.) + (VdI0)T(Vf)T(Aý) + 21(A)T (vLf)(V2d0)(Vf2Oo)T)(A.) 2:47

The total empirical loss, J, may then be calculated by summing the approximation of
the distortion function over all observations:

J(_Q) = N 3 d(•i, fo) + N-i= (Vd)T(Vf) T (Af) I

x (A$)T((Vfo)(V2d)(Vf-)T)(A•) 2:48
i=1

or I
J(9) = J(k) + bkTogA) + 2(AQ)TA (A-Q) 2:49

where

1N

A = (VfQ)(V 2df)(VfQ)T 2:501

and

b N
= " (Vfa)(Vd[) 2:51

i=1

30l

I
I

It is now possible to calculate the gradient of the empirical loss function with
respect to the coefficient vector Q:

VJ=k + A (A9) 2:52

I Because the loss function is required to be convex, the minimum is found at the
point where the gradient is zero. Thus, Eq. 2:52 may be solved for A.Q by the choice

(Ag) - 2:53

* Thus

| ,, = 9Id - 9A71 2 2:54

is the desired iteration.

Recall that each element is the composition of a transformation h(z), with a
linearly parameterized expansion (Fig. 2.4):

IJ
f(x,.Q) =h 2 X 1 6 (D(X)J 2:55

where c (D0 _) is unity by definition. Eq. 2:55 may be rewritten for clarity as

f(x, = h(z) 2:56

* where

J
z 1 X e :)(k ,x) 2:57

j=0

And the partial Vfa may be computed via the chain rule as follows:
I af ah dh az dh

--- -- d (Xk) 2:58

Thus, to use the ILS optimization technique, the analyst must provide the
following:

I . Analytic forms of the first and second partials of the objective function with

respect to the network outputs, Vd, and V2df.

I * An analytic form for the first derivative of the post-transformation h(z).

3 31

Given these three pieces of information, Eq. 2:58 may be used to compute Vf4, and
Eqs. 2:50 - 2:54 may be used to compute the ILS update.

Table 2.2 gives gives a summary of the variables that are used in the solution
of the ILS equations.

Table 2.2: Summary of ILS Variables

VARIABLE DESCRIPTION DIMENSION

A0 Coefficient update vector. J x 1

f or s Network output vector. Cx1

di The distortion function calculated at Scalar
observation i.

J The objective function; the sum of the Scalar
distortion function over all observations.

Gradient of the network output vector, L J x C
with respect to the coefficient vector, 9.

Vd1 Gradient of the distortion function with C x 1
respect to the network output vector, f. 3

V2df Hessian of the distortion function with CXC
respect to the network output vector, f.

b Computed gradient of the objective J x 1
function with respect to the coefficients. 1

A Pseudo-Hessian of the objective function J x J
I with respect to the coefficients. i

2.3.4.2 Incorporation of Additional Penalty Terms 3
Often it is desirable to incorporate additional penalty terms in the objective

function (Sections 2.3.1 and 2.3.2). These additional penalty terms may be divided
into three categories:

(1) functions of the network structure and database size (complexity penalty), 3
(2) additional functions of the network output, and

i
32 3

I
I

(3) functions of the network coefficients.

I As mentioned above, the first type of penalty term does not involve the
coefficients of the network; therefore, partial derivatives cannot be computed and
the penalty term must be minimized by a heuristic search of the space of potential
structure.

Penalty terms that are functions of the network output may be handled by
incorporating these functions in the computation of the A and bk matrices. This is
possible since the partial derivatives, Vda and V2d1 , exist for this type of function.
This method may be demonstrated by the following example.

Assume that the network is interrogated with time-series data, and that the
output is required to match a desired response for only a portion, M, of the samples.
Also assume that for subsequent samples, there is no deterministic network
response that is desired; and it is important that, in any event, the network response
does not become excessively large during subsequent samples. This situation is
shown in Figure 2.9:

Specific Desired Response Unknown

t-q

IO

0 M N

Sample Number

Figure 2.9: A Desired Network Response that Requires an
Additional Penalty Term

If the network is trained using only the first M samples, the response of the
network subsequent to sample M may grow without bound, because the response is
not constrained in this interval. However, if the network is trained to provide a
response of zero between samples M and N, its performance in the region 0 to M
will be degraded due to the severe requirement placed on the fit in the region M to
N.

One method for handling this case is to divide the objective function into two
parts. The squared-error distortion function may be used prior to sample N:

2d(, i,) = I yi - Si 1 0 < i < M 2:59

33

I

In the region where the specific desired response is unknown (M < i < N), however,
the squared-error distortion function is not appropriate. A modified squared-error
distortion function may be used instead to penalize the network only when its I
response falls outside some range ± q:

d 0 if l-sil5q M < i < N 2:60di'si) =I K L, - si - q 12 if y-i-ail > q

K is a user-specified constant that controls the "rigidity" of the ±q boundary. Thus, a m
large K will heavily penalize any excursion of the network response beyond the
boundaries, whereas a small K allows the network response to exceed the
boundaries by small amounts without significant penalty.

Note that the distortion function of Eq. 2:60 is convex and everywhere twice
differentiable. Therefore, the A and b matrices (Eqs. 2:50 - 2:51) may be computed as

before, keeping in mind that after sample number M in the summation, the
alternative forms of the objective function should be used.

The above example illustrates the incorporation of alternative or additional
penalty terms that are functions of the network output. If, however, the penalty
terms are direct functions of the network coefficients, a slightly different approach
must be used. Assume

d'(y-i, si) = d(yi, si) + g(Q) 2:61

where g(o) is convex and twice differentiable everywhere. Since g(o) is not a
function of the network output, Eqs. 2:50 - 2:51 cannot be used to compute A and b I

directly as before. Instead, the equations for A and b must be modified to account for

the additional term.

It has already been shown that the portion of the objective function
corresponding to the d(.) term may be represented by a second-order Taylor series
expansion

(,)= J+() + + (A) 2:62 I

with A and b_ matrices defined in Eqs. 2:50 - 2:61. The portion of the objective

function, J2(.Q), corresponding to the additional term, g(9), may also be expanded in a

similar manner
1 T

J2(.) = J2(k) + Vgo (AQ) + I(A0)T (V2 ,) (An) 2:63

34 I

I
I

where V , and V2 are the gradient and Hessian matrices of the additional term,

g(.), with respect to the coefficient vector, I. Combining Fqs. 2:62 and 2:63 to obtain
the sum of the two objective functions, one may obtain new A and t matrices:

I A' A + V 2 2:64

I =b+ V 2:65

The ILS update may now proceed as before with these new matrices. Note that this
type of additional penalty term requires that the analyst provide an analytic form of
the first and second partial derivatives of the additional objective function term
with respect to the network coefficients, V and V 2 .

The following example illustrates the use of a penalty term that is a function3 of the coefficients. Suppose one wanted to put a constraint on the magnitudes of the
network coefficients; one way of accomplishing this would be to use the following
distortion function

d'(yi, si) = d(yi, s1) + K 0ET 2:66

where K is a user-defined constant associated with the amount of penalty to be
applied to the coefficient magnitude term. In this case, following Eqs. 2:64 and 2:65,

the ILS update should make use of A' and b matrices defined by

A' = A + 2KI 2:67

I '=b + 2K9 2:68

Note that, in this example, summation over the observations is not required for the
computation of the additional term in the distortion function, because KO.T is
independent of the observation number, i.

2.3.4.3 Relationship to Other Optimization Techniques

ILS is closely related to a number of other optimization techniques. First,
consider the special case of a linear nodal element, a quadratic objective function,

and fId set to zero. In this case, Eq. 2:54 becomes

-.cw = 11 12 2:69

I where R is the correlation matrix of the input vector, x , and p. is the cross-

correlation vector between the input vector, x, and the desired response, y. If p = 1,

I
I 35

I

then Eq. 2:69 forms the Wiener-Hopf equations [38] and provides an optimal least- I
squares solution in a single step.

If the nodal element is nonlinear in its coefficients, and the distortion I
function is squared-error, and g = 1, these equations then correspond to the Gauss-
Newton optimization method; in fact, Gauss' fundamental contribution to I
Newton's method was to simplify the Hessian of the objective function by using a
linear approximation of the function being optimized (Eq. 2:43). A full Newton
method, on the other hand, would require the calculation of a complete Hessian via I
the incorporation of terms related to second partial derivative of the element output
with respect to the coefficients.

Gradient-descent algorithms, including least-mean-squares (LMS), are also
very similar to the ILS algorithm except that they ignore second derivative
information altogether. If the quadratic term in Eq. 2:46 is dropped, Eq. 2:48 becomes, I

1 N 1 N
J(Q) = " d(yi,a) + (VdY)T(Vf)T(AQ) 2:70

i=1 i=1

or

J(N) = J(Y) + bT(AQ) 2:71

where b is defined in Eq. 2:51.

We can now calculate the gradient of the cost function, J, with respect to the I
coefficient vector, 6.

aJ 1 N I
VJa = b-N (V Q)(Vd i) 2:72

From Eq. 2:72, it can be seen that the network coefficients may be adjusted in the

direction of steepest descent by,

-new = -old - Pb 2:73

where gi is the size of the step at each iteration. For a squared-error cost function,

VdS; - 2I = -2(y,-) 2:74

and for a linear filter,

V = 2:75

36 I

I
I

So the coefficient update in Eq. 2:64 becomes:

N
f-new = Dold + A 2 (y- - ai)T1 2:761 i=1

Comparing Eq. 2:73 to Eq. 2:54 one sees that by ignoring the distortion
function curvature information, the term A- 1 is dropped from the weight update.
While this simplification greatly reduces the number of computations required to
compute each iteration, the convergence rates for gradient-descent algorithms is
typically very slow.

2.3.4.4 Regularization

I Experience has shown that, for non-quadratic objective functions, Newton
methods may be unreliable, especially if the coefficients are initialized far from the
minimum. This is because techniques for solving the system of equations in 2:53
break down when the pseudo-Hessian matrix, A, becomes singular or nearly
singular. Regularization techniques are methods that can be used to ensure that A
is positive-definite. Many of these techniques can accomplish this and still provide
an iteration that is only slightly different than the optimal Newton direction. One
such technique is the Levenberg-Marquardt (LM) method [43] [48]. LM can be
incorporated into the ILS algorithm in a straightforward fashion..

Because the matrix A, as defined by Eq. 2:50, is square, it is also (by definition)
positive-semi-definite. Thus, one way of ensuring that A is positive-definite is
simply to add some small positive values to the diagonals. Thus, at each iteration,
A may be modified using one of the following methods [44] [57] [58]:

A' = A + XI 2:77

Sor,

A' = A + ?, diag(_) 2:78

where X is positive constant, I is the identity matrix and diag(A) denotes the matrix

A with all but its diagonal elements set to zero. When ?. is large, the second term in
the above equations dominates, and the iteration steps along the gradient (Eq. 2:64).
When X is small or zero, the first term in the above equations dominates, and the
iteration becomes a Gauss-Newton iteration. There are a number of heuristic
schemes for varying) during the course of the search so that A' remains positive-
definite and the algorithm converges rapidly.

I
I 37

I

2.3.4.5 Global Optimization I
Up to this point, we have only considered the optimization of single network

elements. While, for many GMDH-based neural network paradigms this is all that
is required, at times it may be desirable, once the network is constructed, to optimize
globally all of the network coefficients. Global optimization can be accomplished by
using the chain rule to propagate the gradient information through all the network
elements.

Consider the generic "hidden" nodal as shown in Fig. 2.10, where the time I
delays have been dropped for notational convenience: I

A Previous i es s Subsequent f(s) e eLayer(.s Expanion •Layer(s) fs

Distortion
"4"Hidden" Nodal Element /Function

Figure 2.10: A "Hidden" Nodal Element I

To compute the gradient of the network output, f, with respect to the coefficients, •
of the hidden element, the chain rule must be used:

sf = Of as 2:79 1ae as DO_

The partial derivative, ,-, may be computed by summing th- partials of all the

paths that the variable, s, may take through the subsequent layers. To illustrate this,
assume the structure of the subsequent layers is as shown in Fig. 2.11. In the figure,
s is the input vector to the penultimate network layer, and f(s) is the final network
output. Notice that there may be other inputs to layer L-1; however, it is not
necessary to know the nature of these inputs to compute the gradient of f(s) with
respect to the single intermediate variable, s. Summing up the paths that s takes
through the subsequent layers, the gradient may be calculated as a sum of chain-rule
terms:

_f _ f a1n
a = as 2:80

38 s

38

I
I

output(s)
from =er1hidde elements s.f•

2 f

Layer L-1 : Layer L

Figure 2.11: Interconnections on Final Network Layers

I Thus, three analytic expressions are now required to perform ILS with global
optimization:

"I an analytic form of the first and second partials of the objective function
with respect to the network outputs, Vd10 and V2d o.*

"• an analytic form for the first derivative of the post-transformation h(z), and

0 an analytic form for the gradient of an element output with respect to its

input vector, Vf,.

I Once this information is known, the gradient of the network output with respect to
all coefficients, V may be calculated using Eq. 2:79, and the ILS update step of Eq.

2:54 may be computed as before. It should be noted that Vf & may also be used to
compute some forms of the roughness penalty as described in Section 2.3.2.

1 2.3.4.6 Elements with Feedback

If the network contains feedback, calculating the derivatives becomes more
complicated, because the inputs to a given nodal element may, in fact, depend on
prior values of the outputs of the same element. Hence, the inputs are functions of
the parameters of the element, and the core transformation is no longer linear in
the parameters. In this case we must add an additional chain-rule term to the
derivative calculation of Eq. 2:58. Thus, for a single input element, Eq. 2:58 becomes

a h dh JD 0;4',d 1 2i) axd
h(j(kj, X) + =Oj dj=j 4 (ki.d, :)a 2:81eI 39 dzj=1 d 2:8

| 39

m
I

where j(A .d, i) is the partial of the j,d term of the series expansion with respect to
the input xd. The derivatives of the inputs are readily calculated because the inputs
to the current nodal element are outputs from another element, and we have
provided an algorithm for calculating the derivatives for the output of an element.
Notice that the same information is required to compute Eq. 2:81 as is required to
perform global optimization.

In some cases, analytic forms of the gradients of the network or the objective
function may not be available (Fig. 2.2). In these cases, the ILS method cannot be
used and a direct search method such as simulated annealing, Powell search, or
GRIGARS must be used. A description of GRIGARS is provided in Appendix B.

2.3.4.7 Recursive Forms

It is possible to update the network coefficients recursively (at each sample I
interval) using a recursive iterative least-squares (RILS) technique. Updating the
network at each sample interval has a number of advantages including: (1)
computationally efficient recursive coefficient updates may be more suitable for on-
line network training; and (2) in some contexts, the process being modeled by the
network may be non-stationary; therefore, it may be desirable for the network
parameters to be adapted over time [72].t

The key to the development of a recursive ILS is to approximate the A and bm
matrices in a way that does not require the summation over the observations (Eqs.
2:50 and 2:51). This can be accomplished as follows:

A•N = (1- Y) -_AN-1 + y (VkN)(V 2dIN)(V.kN)T 2:82

and

BN = (1-7) N-1 + Y (VfaN)(VdN) 2:83

where N denotes the number of iterations.

t It is important to note that apparent time-varying characteristics of a process often are caused by

unmodeled nonlinearities. If the neural networks are originally trained to model these nonlinearities
properly, then on-line adaptation may not be required. A learning systerm (a system that includes a
modeled process, a neural network, and a network synthesis algorithm) consists generally of a
functional form capable of representing a complex process response over a wide range of operating
conditions, whereas an adaptive system is typically less capable of a wide range of representation until
it modifies its parameters. The line between an adaptive system and a learning system is fine, and
there are potential situations where a fixed network cannot be trained to model a process over the
entire operating range. (Note that "adaptation" has sometimes been associated with krnowledge
gained while in operation; however, current usage also employs "on-line learning" to make this
distinction when a neural network is designed to be trained on-line.)

40

I
I

Note that if the time-varying gain, y, is chosen to be 1/N at each sample, and
if the network coefficients are not updated during the process of recursively
computing Eqs. 2:82 and 2:83, then after N iterations the resulting - and b- matrices
are identical to the A and b matrices of Eqs. 2:50 and 2:51. If, however, the network
coefficients are updated at each observation, then Eqs. 2:82 and 2:83 are not
equivalent to Eqs. 2:50 and 2:51 because the matrices contain gradients that were
computed using previous versions of the network coefficients.

One problem with Eqs. 2:82 and 2:83 is that older gradient and Hessian
information is allowed to contribute equally in the computation of the A and t
matrices. This is a problem because (1) the estimated system parameters are
improving with each iteration, and therefore the more recent gradient estimates are
more accurate, and 2) if the system is varying with time, and the observations occur
in chronological order, prior gradient and Hessian information may be obsolete.

One way to place more emphasis on recent observations is to choose Y to be
greater than 1/N. A more computationally convenient method involves

introducing a forgetting factor, X, directly into the computations of the A and b
matrices. In this case, Eqs. 2:50 and 2:51 become

N
A = (-i) (Vf-)(V2di.)(Vfk)T 2:84

i=1

* and

N

2b - I (N-i) (V4i)(Vdf.) 2:85
i=1

* Now the A and matrices can be updated recursively as follows:

A N = XAh N-I + (VN)(V2djN)(VfN)T 2:86

and

I ?I= b N-1 + (V-fN)(VdLN) 2:87

With RILS, the new set of coefficients is found by solving the same set of
equations used to compute the ILS coefficients (Eq. 2:53):

i _-1 _

N N- 1 - -AN bN 2:88

* 41

I

Computation of Eq. 2:88 can be sped up significantly if Eq. 2:86 is modified to
. - I - -1

yield a direct recursive relhtionship between AN and ANI To obtain this
recursion, first make the following assignments:

P N-1 = A N-1 2:89a

X = (Vf9N) 2:89b

Y = (V2dfN) 2:89c

Z = (Vf%)T 2:89d

Inverting both sides of Eq. 2:86, one obtains

_ -1 -1
"PN = AN = [X PN-1 + XYZI - 1 2:90

The right-hand side of Eq. 2:90 can be rearranged according to the matrix inversion
lemma which is reproduced below without proof:

[W- 1 + XYZ]- = W-WX(ZWX + Y-1)-IzW 2:91
1

By noting that W = , p P = pT, and X = ZT, the matrix inversion lemma may be

used to rewrite Eq. 2:90 as follows I

PN = 1 PN-1 - 1-2 PN-1X PX + y- 1 XTPT 2:92

or

PN = (PN- 1 - QS-IQT) 2:93

where

Q = PN1(VfýN) 2:94

and

S = (VN•N)T PN-1 (VfkN) + X I (V 2dfN)-I 2:95

I
42

I
I

and I is the identity matrix. Substituting Eq. 2:89a into Eq. 2:88 one obtains the
update equations

ON = 0N-1 - PN 6 N 2:96

I where PN is computed from Eq. 2:93. Note that the whereas the update formerly

required the inversion of the J x J A matrix, it now requires the inversion of two C x

C matrices, S and V2dN, where C is the number of system outputs. Typically, the

number of outputs will be significantly smaller than the number of parameters, J.

Additionally, the inversion of V2 d f is frequently trivial since it is often either a

diagonal or an inverted matrix.t

As might be expected, RILS reduces to the popular recursive least-squares
(RLS) algorithm if the distortion function is squared-error:

1
Idi = 2 (y, - fi)T(y - fi) 2:97

and, the model being optimized is linear in the parameters:

fi = (Vfoi)T_-i- 1 2:98

For this special case, Eq. 2:85 may be rewritten as

* N
b N = - N (Vf.)(yi dI i=1

N
- (N -i fi)(Y-i - (V ki)TQN_1)

N iN + +;•,N-i, (Vf)i+N i1•Ni (Vfei(~)T._

I

II

I t A common squared-error criterion for multiple outputs is d 2- f)T A-1 (y.- fD, where A is the

covariance matrix of the estimation errors. Note, that when this is the case, (V2 dj)-1 = A and no

inversion is required.

I 43

I

N I
= - X(Ni)(Vf.)i + N QN-1 2:99

Substituting Eq. 2:99 into Eq. 2:88 one obtains

•N = •-N-I + A (-i V.• ~+~-
NiI

N AN X X(N-i) (V f +

i=l

-1 N-1I

AN X X((Vffi)yi + (VfgN)YNJ I

= A-N xA N-1 -N-1 + (V-f•N)N)

= N- ((A N-fN)(V2d IN)(V-f'N) T)N-1 + (Vtf-N)•N)

= N_+A-1 f•)V2dfN)(L- (VfoNTO-1 2:100 I
= QN-1 + A N (~V-fN)(V 0 fN N __ 2:100

Note that for a linear system, VfN may be rewritten as a vector of system inputs,

.%(N). Using Eqs. 2:93 - 2:95, A N (= PN) can be updated recursively.

SlpN=l _ PN-,-(N)2(N)T PN-I 2:101

"%N- X + %(N)T P (N)

Eqs. 2:100 and 2:201 are the RLS equations when a forgetting factor is used to
control the gain sequence. Thus, for a linear system and a quadratic distortion
function, the RILS equations (Eqs. 2:92-2:96) are equivalent to the RLS equations. In I
similar fashion, it can be shown that RILS is closely related to a number of other
recursive Gauss-Newton algorithms including the Kalman filter, sequential
regression, and stochastic-Newton optimization methods [44] [74]. RILS has the I
advantage, however, in that it is not restricted to a specific model structure and,
therefore, is suitable for neural network function estimation where the system
structure may not be known a priori.

44 I

I

2.4 Relationship to Other Neural Network and Statistical Modeling Paradigms

Many commonly used neural network and statistical function estimation
techniques are subsumed by the methods presented here. A description of the most
commonly used neural-network paradigms using the terminology presented in this
section offers the following advantages:

(1) By understanding the relationships among popular neural network
paradigms, the appropriate paradigm may be selected for the modeling task
at hand.

(2) By understanding to what extent specific paradigms, including polynomial
neural networks (PNNs), implement the general function estimation
techniques presented here, one may readily see where improvements might
be made to existing paradigms.

(3) By observing the close relationships among a variety of paradigms, one can
make more efficient use of software and hardware development resources.
For instance, it may be possible to implement a particular paradigm in
special-purpose neural network hardware that has been designed to
implement a different, but related, paradigm.

This section uses the terminology of generalized neural-based function
estimation to describe some of the most common neural network and statistical
modeling paradigms. Emphasis is given to paradigms that are designed to map data
from a continuous-valued input space to a continuous-valued output space,
although some "unsupervised" paradigms (i.e., techniques that find natural
groupings in the input data space) will be mentioned.

I 2.4.1 Group Method of Data Handling (GMDH)

As already discussed, the Group Method of Data Handling (GMDH) was
introduced in the late 1960's by A.G. Ivakhnenko, a Ukrainian cyberneticist.
Ivakhnenko found that in the modeling of complex systems it is often very difficult,
if not impossible, to develop a mathematical model and find all its parameters, and,
even if the models and parameters could be obtained, very often, as the models
begin to get sufficiently complex, they also begin to overfit the available data.
GMDH solves this problem by "growing" a model from zero complexity to just-
sufficient complexity [24].

Most early GMDH work employed the following quadratic multinomial in
two inputs as the fundamental model building block:

z = 00 + e 1 xi + o 2 x1 + 03 x2 + 4 xý + 5 xix 2:102

I 45

U

Eq. 2:102 provides in (m-l)/2 potential structural models (elements) for z, where m n
is the number of input variables. While this function is nonlinear in the inputs, it
is linear in its parameters, and for each pair of input variables, xi and xj, the

coefficients of Eq. 2:102 may be determined by linear regression. After finding all the
candidate tw-input elements using the input/output data, those that are best able to
estimate y are retained, the outputs of these elements become candidate inputs for
subsequent layers of processing, and the regression continues. Note that as each
layer is added, the degree of the resulting model increases by two. Any complete I
polynomial of any degree can be realized by suitable combinations of Eq. 2:70.

GMDH model construction continues until a level of optimal complexity is
reached. To determine when to stop model construction, Ivakhnenko suggested
using cross-validation, i.e., dividing the data into separate training (fitting) and
evaluation data sets. Coefficients are determined by performing a linear regression
on the training data; however, at each step, the resulting model is evaluated against
the independent set of observations. When the model performance on the
independent data ceases to improve, model evolution ceases. Many current
practitioners of neural-based modeling continue to employ this method of I
determining when to terminate network training.

To implement GMDH using the principles described in this section, one
begins with nodal elements that implement Eq. 2:102; such elements will have no
time delays and no nonlinear post-transformation, h(.). The outputs of these
elements will only feed forward (no feedback), and their basis function will be a
polynomial (Eq. 2:6) with the following set of multi-indices i

0 0
10

K 20 2:10302 0
0 2
1 1

GMDH, because it uses unconstrained linear regression, employs the squared- I
error distortion function of Eq. 2:23 without additional penalty terms; thus, at each
stage in network construction, the coefficients may be found with a single ILS step
(Eq. 2:54). While GMDH builds the network structure one element at a time, it does
not use the projection pursuit strategy. As mentioned above, GMDH stops model
construction when the network performance on independent data ceases to
improve.

GMDH has been criticized because of the "enormous number of large matrix
calculations [that] must be carried out" [39]. Although it is true that a large number

of matrix calculations is required, it is also true that at any given step only six

I
46

I
I

parameters need to be determined. Thus, the "curse of dimensionality," which is
usually the prime cause of long training times, is essentially avoided. The number
of computations required to fit parameters optimally is O(mn 2) + O(n 3), where m is
the number of independent observations, and n is the number of coefficients [37].
Clearly, for any sizeable number of inputs and models, GMDH is more efficient
computationally than other regression techniques.

Consider an example: Assume one wants to fit a fourth-order polynomial
(multinomial) with ten inputs. This high-order model will contain over 1000 terms
and require O(109) iterations to arrive at a unique solution. A two-laye" (fourth-
order) GMDH network, on the other hand, requires only 0(105) computations if ten
elements from the first layer are retained for use in subsequent layers or, at the
most, 0(106) computations if all 45 elements from the first layer are retained. Even
in the worst case, GMDH is over three orders of magnitude faster than brute-force
high-order modeling. This numerical example is confirmed by the authors'

experience, in which GMDH algorithms typically have been found to be orders of
magnitude faster than MLPs.

An additional advantage of GMDH is that the performance surface for a
single nodal element is always quadratic; thus, the coefficients on any nodal
element can be globally optimized, in the least-squares sense, in a single iteration.

A disadvantage to GMDH is the fact that network construction is "heuristic"
in tthat a definitive statistical theory of GMDH does not yet exist; however, there is
general agreement that GMDH function estimation generally yields accurate and
reasonably robust results [39]. In many other neural network paradigms (e.g., MLP),
however, network structure is assigned arbitrarily by the analyst, or refined by the
analyst using a trial and error approach. Another disadvantage sometimes cited is
the fact that polynomials can lead to erratic fits outside the training region. One can
reduce these effects, however, by incorporating a post-transformation, h(.), that
limits the range of element outputs. A final disadvantage to the GMDH algorithm
is the "corruption" of the independent test set by using it as part of the training
procedure; A preferable method for determining when a network has reached a
level of just-sufficient complexity is to add an information-theoretic complexity
penalty term to the distortion function (Section 2.3.2).

2.4.2 Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) trained via the backward-error propagation
(BP) technique is currently the most commonly used neural network paradigm. As
such, there are many variants on the algorithm (fully or partially connected,
Reduced Coloumb Energy (RCE) optimization, etc.); however, here, we shall deal
only with the standard form of the algorithm.

I
I 47

m

The fundamental nodal element for the MLP was originally proposed by I
Rosenblatt in 1958 [ol]. The perceptron element implements the following
nonlinear transformation: 3

i=D

z = h (0 + 0ixi 2:104
i=1)

where D is the total number of inputs to the nodal element, and h(.) is the
nonlinear post transformation. Rosenblatt's original work used the following step
nonlinearity for this post transformatioi:

h(z) 0 Z 2:105

With the emergence of gradient-based optimization techniques in the 1960s [73],
however, the hard limiter, with a discontinuity at z=0, could not be used. Therefore,
researchers substituted a continuously-differentiable approximation of Eq. 2:85. The
most popular choice was the sigmoidal function.

I
h(z) =+ .z 2:106

where y, the sigmoid gain, determines the steepness of the transition region; as the

magnitude of y increases, Eq. 2:106 approaches the hard limiter of Eq. 2:105. Often, y
is set to unity. I

The sigmoidal element of Eq. 2:104 can be implemented by a polynomial basis
function (Eq. 2:6) composed with the sigmoidal nonlinearity, h(z), of Eq. 2:106. Since

the polynomial basis function is linear, the K matrix (J x D) is:

0 0 ... 0
1 0 ... 0 0

K 0 1 ... 0 2:107

0 0... 1

If the network is fully connected, the number of inputs to the node, D, is the n
same as the number of outputs from the previous layer, and the polynomial
expansion has D+1 terms. Note that whereas GMDH reduces its complexity by
limiting the number of inputs to any given element, MLP reduces its complexity by
limiting the order of the polynomial expansion to one (i.e., it is linear). Note that

48

I
the generalized network nodal element of Fig. 2.4 can handle either of these

* scenarios.

By far the most common method for training MLPs is the backward-error
propagation (BP) algorithm, traceable to Robbins and Monroe [6Vj. The first
complete description of BP was provided by Werbos [71]; however BP was not
popularized as a useful procedure until 1983 [621. BP is an iterative, gradient-based,
least-mean squares (LMS) technique that tunes all the network weights
simultaneously in an attempt to minimize the mean-squared error of the network
output.

It can be shown that BP is the special case of the ILS optimization technique
when the squared-error distortion function is used, all second-derivative
information is ignored (Section 2.3.4.2), the network structure is fixed, and all
coefficients are globally optimized from some randomly initialized starting point.

The first derivative of the squared-error distortion function (Eq. 2:23) with
respect to the current network output, s, is given by

Vd- s 2(y - s) -2e 2:108

where y is the desired output and e is the error between the desired output and the
network output, s. Substituting Eq. 2:76 into Eqs. 2:62 - 2:64, one obtains

SJ() = J(f) + h(A9) 2:109

where

I
b -" eiVf !a:110

I i=1

and V is the gradient of the network output with respect to the coefficient vector, f.

* And

finew = f-old -{9b 2:111

where g is the size of the step at each iteration.

I As mentioned above, the MLP neural network assumes a fixed, pre-
determined network structure; however, once this structure is fixed, BP optimizes
the MLP by using techniques similar to those described for ILS global optimization
of a neural network (Section 2.3.4.5). In fact, the global optimization algorithm
described in 2.3.4.5 "backpropagates" gradient information through the network and
could be described as a backward-error-propagation algorithm. Such terminology

I 49

was intentionally avoided in Section 2.3.4.5, because BP usually refers to the specific m
case of linear polynomial expansions, sigmoidal post-transformations, and gradient-
based LMS optimization of the squared-error distortion function, whereas the ILS
global optimization strategy is not restricted in any of these areas.

2.4.3 Radial Basis Function (RBF) Networks

After MLPs, radial basis function networks (RBFs) are one of the most
popular and successful neural network paradigms [401. The RBF network contains i
two layers (not counting the input layer). The hidden-layer elements implement a
transformation that produces an output only when the input vector falls within a
specific region of the data space. The term basis function in the paradigm name I
refers to this transformation. The output layer consists of a single element that
constructs a weighted sum of the hidden-layer outputs.

The most commonly used hidden-layer transformation is the Gaussian
kernel function of the form:

z = exp - 2 x) 2:112

where w- and a are the parameters of the node (we use the notation w and a for now
because alternative coefficients, 9, will be specified later). Note that the node
outputs are in the range from zero to one, and the closer the input vector is to the
center of the Gaussian function (as defined by A) the larger the response of the node.
The radial symmetry of Eq. 2:112 is what gives RBFs their name.

The RBF output layer is simply a linear combination of the outputs of the
RBF nodal elements on the hidden layer.

y = rz 2:113

Eq. 2:113 may be implemented using a polynomial basis function and the same K
matrix that is used for MLPs (Eq. 2:107). -

The most straightforward way to implement the hidden RBF elements (Eq.
2:112) using generalized nodal elements is to use a small network for each hidden-
layer transformation. Such a network is shown in Fig. 2.12.

II
I

50 I

I
S............s f'ss f"lossss f•.liiI

RBF Nodal Element]

X11

IS

Figure 2.12: A Gaussian Kernel Implemented using Multiple
Generalized Nodal Elements

In Fig. 2.12, the nodes on the first layer, 11 ... I., implement a transformation of
the form:

z = 00 +0Ix 2:114

which can be accomplished using a polynomial basis function (Eq. 2:6) and the
following K matrix:

K [0] 2:115

I
These first-layer of nodes have no nonlinear post-transformation, h(.). The second-
layer node, s, in Fig. 2.12 then performs the following transformation on its input
vector, 1:

I e~ 0¶112 212 +... +61
ex 11 + 202 n n 2:116s = xp -2a2

I Eq. 2:116 may be implemented using a nodal element that contains a polynomial
power series expansion with a K matrix

2 0 .. 0

K 2:117

0 0 ... 2

II 51

U

and a nonlinear post-transformation: I

h(z) = exp -- • 2:118

where z is the output of the series expansion implemented by Eq. 2:117. Note that
for these nodes to implement Eq. 2:112 exactly, the following restrictions should be
placed on the nodal elements:

Layer 1
00 = -w

61 = 1.0 2:119 I
Layer 2

0i = 1.0 for alli

Also note that the post transformation Eq. 2:118 contains a parameter, a, and on-line
supervised updating will require the derivative of h(z) with respect to a. The
parameter, a, may be removed from the post-transformation by redefining the
coefficients on the first layer:

Layer 1

00 = -- 2:120
1.0 I

01 = 1

so that

h(z) = exp(-2) 2:121

Now all the coefficients have been moved to the first layer of Fig. 2.12, and it is
easier to interpret the tasks of the specific nodal elements. In short, the first layer
computes distance measures between an input exemplar, x_, and some pre-
determined vector, where each nodal element measures the distance along a single
axis. The second layer of Fig. 2.12 (Eq. 2:121) converts the distances along each axis I
into a single Euclidean distance measure (L2 norm) between the input vector and

the pre-determined vector, w. The nonlinearity of Eq. 2:121 then converts thisdistance measure into a probability of membership in a Gaussian cluster (i.e., high
values when the vectors are close).

Dividing the RBF into two layers of generalized Podal elements helps give n

insight into the nature of the RBF. Often, regardless of the network paradigm, it is

5
52l

m
n

useful to normalize all the input data; this can be done using an input layer
consisting of nodes having the same structure as the input nodes of Fig. 2.12 using

00 = 4i 2:122

and
n 1.0

681 =1 2:123
Oi

I where i corresponds to a particular input variable, xi; and gi and Gi are the mean
and standard deviation of that input variable. Thus, a normalizing node outputs a
measure of the distance between the input data point, xi, and its mean measured in
units of standard deviation. Note that these coefficients are determined prior to
network training and are based solely on the statistical nature of the training

* database.

In an RBF network, the parameters on the input layer serve the sameI purpose; only, instead of measuring the distance between an input data point, xi,
and the mean of the entire input data set, they measure the distance between the
input data point and the mean of some cluster in the data space. This distance is
measured in units of standard deviation of the cluster. Note that to perform
normalization, n input nodes are needed for the n input features, but to compute
cluster distances for m clusters, n x m input nodes are required because each cluster
has a different set of statistics.

As with normalizing input nodes, the parameters of the RBF input nodes are
determined prior to network training. Typically, this is accomplished using an
unsupervised clustering algorithm, such as K-means, to determine the statistics of

* the naturally occurring clusters in the data.

This interpretation of the RBF hidden layers suggests some potential
improvements. As noted above, RBF networks are radially symmetric; thus, for a
given Gaussian kernel, the value of a is fixed for all axes. However, if the Gaussian
kernel is intended to describe naturally occurring clusters in the data space, it is
conceivable, and indeed probable, that these clusters will have different standard
deviations along each feature axis. In this case, a more accurate distance measure
will be one that measures the distances along each axis in units of the standard

* deviation of the cluster along that axis.

Fig. 2.13 illustrates the distinction between radial and elliptical distance
measures. If the shaded region of the figure represents a naturally occurring cluster,
then the circle in Fig. 2.13 with radius a0 represents the one-sigma boundary for a
radial cluster in the data space. It is obvious from the figure that the point, A, lies

I 53

I

within this boundary. If however, a, and C2 are used to define the one-sigma K
boundary for an elliptical cluster, then the point, A, lies well outside the cluster.
The latter representation is more accurate.

Oj 2

Xl I

Figure 2.13: Measuring Cluster Distances

Generalized nodal elements can easily implement elliptical data clusters if the
constraints in Eq. 2:120 are relaxed, and each input node of Fig. 2.12 is allowed to use
a different value of a. The resulting network is an elliptical basis function (EBF)
network and it implements the following transformation:

z = exp(-(x-w)W -(x-w)) 2:124

where I

1 0 ... 0

0a2... 2:125

0 0 ... 1

The distance measures as computed by the input nodes are known as
standardized Euclidean distances or "Karl Pearson distances." Where desirable,
other distance measures may be used, such as the Mahalanobis distance, which
results in an EBF kernel of the form

z = exp (axw)T -l(xw) 2:126

I
54 U

I

where - is the normalization matrix for the kernel, and I is the covariance matrix
for the input data. Note that the expression in Eq. 2:126 contains the generalized
Fisher linear discriminant function

(_X _ W)T -1(xj _ w) 2:127

which itself constitutes a classical measure used in linear classification.

I We have already mentioned that the coefficients on the input layer
correspond to the statistics of naturally occurring data clusters and are found off-line
via data analysis. Once the RBF kernels have been set, the tuning of the output
layer consists of finding the best linear mapping between the kernel outputs and the
desired network output(s). Because the output layer is linear, a single ILS search
step will globally optimize the output layer coefficients. However, despite its
inferiority, LMS is frequently used.

Once the coefficients on the output layer have been determined, the RBF
network may be further enhanced by globally optimizing all layers of the network
using ILS. Thus, when global optimization is used, the hidden-layer parameters are
allowed to vary from their initialized values to form new "data clusters" that serve
even better as basis functions for the classification task at hand. This global
optimization method is often referred to as adaptive kernel classification (AKC) [34].

2.4.4 Pi-Sigma and Other Higher-Order Networks

Higher-order networks are networks that utilize polynomial series
expansions of higher order than the linear expansions used by MLPs. In this regard,
GMDH is often considered a higher-order network, because each nodal element
implements the second-degree polynomial expansion of Eq. 2:83. However, as
mentioned in Section 2.4.1, GMDH compensates for the higher-order series
expansion by limiting the number of inputs to any given nodal element and by
limiting the total number of nodal elements.

Pi-Sigma networks (PSNs) are another higher-order network paradigm in
current use [64]. PSNs get their name from the fact that the network output is a
product of sums of the input variables. Typically, a PSN contains two layers (not
counting the input layer). Each element in the single hidden layer implements the
following transformation:

Z = + 2:128

where D is the number of inputs to the network. Generalized nodal elements can
implement Eq. 2:118 with a linear polynomial expansion (Eq. 2:108) and no post-
transformation, h(-).

I 55

I

The output layer of a PSN computes I
s = h1{ Iz 2:129

i;1

where I is the number of nodal elements on layer one, and h(-) is the sigmoidal
transformation given by Eq. 2:106. Once again, this element may be implemented by
using a polynomial expansion; however, in this case, the polynomial consists of a
single cross term and can be implemented by the following 1 x I K matrix:

K = [1 1 1 1] 2:130 I
A hybrid GMDH/LMS approach is usually used to train PSNs. The network

structure is fixed with a small number (one or two) hidden-layer elements and
tuned using the LMS global optimization strategy described in 2.4.2 (backward-error
propagation when there arp no hidden layers). However, once the coefficients have
converged, an additional element is added to the hidden layer and the coefficients of
each element are re-tuned in an asynchronous fashion (i.e., only the parameters of a
single element are optimized at a given time; this tends to yield more favorable
results than a global optimization). At each step, performance is tested on
independent data (as with GMDH) and network growth is stopped when overfitting
begins to occurs. The order of the PSN is equal to the number of elements on the
hidden layer.

2.5 Summary

This section has provided a way of viewing generalized function estimation
in a neural network context. The intent is to provide a paradigm that is sufficiently
general to cover many estimation techniques currently in use, including GMDH,
MLPs, RBFs, static and dynamic polynomial neural networks, and many of the
estimation techniques popular within the statistics community. What follows is a I
discussion of specific polynomial neural network (PNN) algorithms that the
authors have implemented, with an explanation of how they fit into the overall
function estimation paradigm described above. The hope is that the general and I
comprehensive paradigm in this section will help the reader understand the PNN
algorithms, the relationships between various techniques, and the nature of
suggested improvements to the network generation algorithms.

II
I

56l

I
I

3. POLYNOMIAL NEURAL NETWORK (PNN) SYNTHESIS
* ALGORITHMS

i 3.1 Introduction

In the previous section, a way of approaching neural (and non-neural)
function estimation was presented and a variety of common neural modeling
techniques were recast into the terminology of generalized function estimation.
This highlighted the similarities and differences among various artificial neutal
inetwork (ANN) paradigms. In this section, we present three neural network
algorithms that have been developed by Barron Associates, Inc., and, as in the
previous section, describe these algorithms in terms of the approach to generalized
function estimation from the previous chapter. The three neural network
algorithms discussed in this section are:

(1) Algorithm for Synthesis of Polynomial Neural Networks for Classification
(CLASS)

(2) Algorithm for Synthesis of Polynomial Neural Networks for Estimation
(ASPN)

(3) Algorithm for Synthesis of Dynamic Polynomial Neural Networks for
Estimation (DynNet)

These algorithms primarily make use of polynomial basis functions (Eq. 2:6), with
no nonlinear post-transformations, h(z) (Fig. 2.4).

Table 3.1 outlines the differences between the above PNN algorithms. To
understand the differences, it is important to understand the contexts in which
these algorithms are likely to be used and the terminology associated with those
contexts.

Models of complex systems and processes can be created from physical
observations or from simulations. Direct models are used to predict future
outcomes or infer present situations that are dependent on observable antecedent
conditions, whereas inverse models infer the antecedent conditions that have
brought about observed outcomes or infer the present actions that will bring about
desired future events.

Estimation models can be direct or inverse estimators and are used to
calculate future, present, or past values of the parameters of a system or process.
The forms of these parameters are limitless, and may include the values of
observable or unobservable state variables, feedback gains, control settings, vehicle
or plant parameters, levels of impairment, Lagrange multipliers, etc. Classification
models, which can be direct or inverse classifiers, also perform estimations, but

I
I 57

I

specifically of the class or classes of future, present, or past input data vectors or the
probabilities of these classes.

Batch syntheses of models proceed from recorded databases of real or
simulated observations and the corresponding true (i.e., desired) model outputs.
(Note that "truth" is sometimes an uncertain observable.) Batch syntheses may be
performed either off- or on-line; when used on-line, batch syntheses require
periodic updating of the database. Batch syntheses are often referred to as
"supervised" training. Recursive syntheses usually do not employ explicit
databases. Instead, the memories of recursive systems generally reside in their
structure and coefficients. Recursive syntheses are most often used for on-line
learning.

Table 3.1: Differences between Several Polynomial Neural
Network Synthesis Algorithms

ALGORITHM

CLASS ASPN DynNet
Attribute (Static (Static (Dynamic

Classification) Estimation) Estimation)

Purpose j Estimate Estimate past, j Estimate past,
probabilities of past, present, or future 1 present, or future
present, or future values of variables values of variables
classes of input dependent on input i dependent on input
observation vectors observation vectors observation vectors

(FIR filtering) (IIR filtering)

Structure I Feedforward network Feedforward network Network with
of polynomial nodal with an analyst- internal memory
elements in first specified number of and/or feedback and

,layer, with logistic layers of polynomial an analyst-specified
transformation in and transcendental number of layers of
second layer nodal elements polynomial nodal

elements

Criterion of Constrained Minimum Predicted Squared Predicted Squared
Optimality Logistic Loss Error or Minimum Error

Description Length

Method ofj Levenberg-Marquardt Least-squares fitting i Least-squares H
Synthesis . fitting algorithm algorithm embedded S initialization and

used with pre- in combinatorial Levenberg-Marquardt
structured nodes in search among 1 optimization of l
first layer of network alternative network 1 elements with

structures ifeedback

58

Static models contain no internal feedback paths and no internal time delays
or other forms of internal memory. Static models are often ambiguously described
as using "feedforward" structure. Note, however, that "feedforward" models may
incorporate internal memory, in which case they may become dynamic with or
without the use of internal feedback. Models containing time delays and/or
internal feedback are properly called "dynamic." Dynamic networks that contain
internal feedback are also properly called recurrent or reverberatory models, and are
capable of producing oscillatory and aperiodically varying time responses even
when their inputs are constants. In filter terminology, static networks provide finite
impulse response (FIR) transformations, while recurrent networks provide infinite
impulse response (IIR) filtering.

3.2 Algorithm for Synthesis of Polynomial Classification Neural Networks
(CLASS)

The CLASS algorithm automates the batch synthesis of static polynomial
neural networks suitable for use as direct or inverse classification models.
Although it is possible to use estimation software to perform classifications (often by
discretizing or thresholding the output values and sometimes with majority-rule
voting), improved performance is obtained using algorithms specifically derived for
the task of classification. CLASS offers the following advantages:

I Minimization of the logistic loss function (Eq. 2:20), resulting in optimal
(maximum likelihood) classification of data having a multinomial

* probability distribution.

* A regularized nonlinear Gauss-Newton optimization algorithm for rapid
* on- and off-line network training.

* Ability to provide nonlinear classification having a degree of complexity
(i.e., classification power) commensurate with the quantity and quality of
the training data base.

- Outputs that are estimates of the a posteriori probabilities of class
membership. These are particularly useful when these outputs are used
by higher-level decision-making processes.

* Simple network structures that do not overfit the training database and
that can be interrogated rapidly on-line.

I 3.2.1 Network Structure

CLASS makes use of a pre-structured, fully-connected, feedforward network
structure, as shown in Fig. 3.1. This network has an input layer, a hidden layer, and
an output layer that together compute the estimates of the conditional probabilities
of class membership. The last layer is required for interrogation of the network.

I 59

1

During network training, however, the transformation implemented by the output
layer is incorporated in the distortion function, and the hidden layer elements are
treated as network outputs.

* ,

SSC.

xnI

, , Probability
Input Layer Hidden Layer : Computation

Figure 3.1: CLASS Network Structure 3
The input layer of a CLASS network may contain coefficients that unit-

normalize each input vector. These coefficients are optional, and are determined
prior to network training based on the statistics of the database. If normalization is
desired, the input layer nodes use a polynomial basis function with no nonlinear
post-transformation: i

z = 60+6Ox 3:1

which can be accomplished using a polynomial basis function (Eq. 2:6) and the
following K matrix:

K = 1 3:2

The coefficients have a direct relationship to the mean, g., and standard
deviation, a, of each input variable

(0 -)T 1 , 1 .0)T 3:3 i

Note that the results obtained with input normalization will, in general, differ from
those obtained without normalization. I

I
60l

In Sectiop. 2.3.1.2, we showed that for multi-class classification problems
having categorical output variables, a multinomial probability model in regular
exponential form results in maximum-likelihood estimation. In this context, the
probability that an observation is a member of class k is given by

eSk
p(kIx) = C 3:4

I •esi

j=1

I and the distortion function is minus the log of the likelihood

I d(k,'s) =-sk+ lnj= esJI 3:5

I Because the outputs of the probability computation sum to unity, only C-1
hidden nodal elements are required to solve a C-class problem (since the Cth
probability is one minus the sum of the C-1 probabilities). Each of the C-1 hidden
nodes (sub-networks) returns essentially unbounded values (- to - 0) which, after
the static logistic transformation, indicate the probabilities of membership in their

I respective classes. In CLASS, the output of the Cth node is defined to be zero. (This
is not required by the logistic model, but is done for convenience. With C (rather
than C-1) sub-nodes for a C-class problem, the class probabilities will still sum to
one.) Because the probability computation (Eq. 3:4) does not contain any coefficients
to be optimized, and because the distortion function (Eq. 3:5) is a function of the
outputs of the hidden layer, -?, one may treat the C-1 hidden-layer outputs, "L as
network outputs during the training process.

Each of the C-1 hidden elements in a CLASS network receives all of the
inputs (i.e., the network is fully connected). The series expansion, or core
transformation, chosen for the hidden nodal elements is the Kolmogorov-Gabor
(KG) multinomial [5], which is an algebraic sum of terms:

z=O0 + X OiXi + I OijXiXj + I Oijk XiXjXk + ... 3:6
i ij ijk

The KG multinomial can model any analytic single-valued transformation [421;
therefore it is a good choice as a basis function, but, in principal, many kinds of
building-block elements could be used in modeling by induction (see Section 2.2.2).
The attention to algebraic elements derives from the pioneering work in the 1940s
of Kolmogorov and, working independently, Gabor [31] [32]. They demonstrated the
near universality of multinomials in representing physical processes, including
dynamic systems. In fact, recent developments in statistics, information theory,
computational methods, and approximation theory suggest that a multinomial
description of the network learning process highlights some of the similarities (as

61

I
I

well as important differences) among network syntheses and modern statistical
inference methods [7]. Eq. 3:6 explicitly shows the first four KG multinomial
summations, corresponding to all degree 0, 1, 2, and 3 terms.

As was shown in Section 2.2.2.2, the number of terms (coefficients), J, for any
series expansion, including the complete KG multinomial of Eq. 3:6, is

S(R + D)!i
= R!D! 3:7

where R is the degree of the multinomial (i.e., the maximum sum of the exponents
for any given term). D is the number of inputs to the core transformation. As can
be seen from Eqs. 3:6 and 3:7, the number of terms in the complete KG multinomial
can become very large for even small values of D and R. CLASS allows the analyst
to limit the number of terms in the series expansion in one of three ways:

(1) Limit the maximum degree, R, of the series expansion. The resulting *
polynomial expression is called a complete polynomial of degree R. For a
polynomial basis function, limiting the degree is equivalent to eliminating
any terms for which the sum of the powers on the inputs exceeds R. Thus,
the number of summation terms in Eq. 3:6 is limited, and the sum of the I
rows of the J x D matrix of indices, K cannot exceed R. A two-input (D = 2),
third-degree (R =3) complete polynomial is

z = 0o + 81x1 + 82x2 + 03x? + 04x2

+ 0 x2x1 + 0 x2x2 + 0ex2 + a x22x + 0 x3 3:8 i

(2) Limit the maximum coordinate degree, P, of the expansion to one, and limit
the maximum degree, R, of the expansion. The resulting polynomial
expression is called a multilinear multinomial of degree R. For a
polynomial basis function, limiting the coordinate degree is equivalent to I
eliminating any terms in the expansion that contain inputs raised to a
power greater than P. Thus, the size of any integer in the K matrix can
never exceed P. Experience has shown that in many applications just the I
cross terms, xixj, represent very effective nonlinearities. Eliminating all
terms where the maximum coordinate degree is greater than one reduces
the complexity of the element, yet retains its power to introduce
nonlinearities when such are needed to produce a desired output. A three-
input (D = 3), second-degree (R = 2), multilinear (P = 1) element is

z = 00 + 0x1 I + 8 2x2 + 03x3 + 04xIx 2 + 05xIx 3 + 06x2x3 3:9

Notice that the degree of a multilinear multinomial corresponds to the i
number of inputs allowed to appear together in any given cross term.

I
62l

I
I

(3) Limit the interaction order, Q, to one, and limit the maximum degree, R, of
the expansion. The resulting polynomial expression is called an additive
multinomial of degree R. For a polynomial basis function, limiting the
coordinate degree is equivalent to eliminating any terms in the expansion
that contain more than R inputs. Thus, the rows of the K matrix may not
contain more than R non-zero terms. A three-input (D = 3) second-degree
(R = 2), additive (Q = 1) expansion is

I = + 61 x1 + 02 x2 + 83 x3 + 04x 1
2 + 05 X2

2 + e 6X3
2 3:10

Thus, although P, Q, and R could, in general, be specified independently (see
Section 2.2.2.2), CLASS restricts the user to specifying R and optionally selecting a
single additional restriction: P = 1 (multilinear) or Q = 1 (additive). Without P and Q
restrictions, a complete polynomial is selected. Note that regardless of any
additional restrictions, R = 1 will always result in a linear polynomial.

In addition to the above restrictions, CLASS allows the analyst to specify other
multinomials by creating a custom K matrix and saving it in a named node file.
Because the network is fully connected, and all input data components (x) are
submitted to each node, it is important for the analyst to keep the degree of the
specified polynomial reasonably low to prevent the number of coefficients from
increasing exponentially.

Once the specific terms in the KG-multinomial are specified by one of the
above methods, CLASS creates C-i structurally identical hidden-layer nodal
elements; this uniformity is a matter of convenience. Additionally, to use C-I
nodal elements to compute C probabilities, one defines an additional hidden-layer
output, sc, that is always zero by definition. Once again, this restriction is not
necessary, but it limits the complexity of the network and leads to the following
interpretation of the hidden-layer outputs: the output sub-network, k, is the natural
log of the ratio of the probability of membership in class k to the probability of
membership in some baseline class, C (with CLASS, the baseline class should be the
"all-other" class; in the logistic model, however, class C can be any of the classes):

sk -- In I 3:11

I To arrive at Eq. 3:11, define F(s) as follows:

C
F(s) e ej 3:12

j=1

I Therefore, Eq. 3:4, may be rewritten for class C as

I
* 63

U

p(Clx) = 1 3:13-n

Additionally, Eq. 3:4 may be solved for sk as follows:

sk = ln[F(s)] + ln[p(k Ix)] = In[F(t) p(kIx)] 3:14

Substituting Eq. 3:13 into Eq. 3:14, one obtains the result in Eq. 3:11.

The C-1 sub-networks are trained simultaneously as the numerical search
seeks to minimize the loss function of Eq. 3:5. Each sub-network computes the log-
odds of a particular class vs. the baseline class. (The choice of the baseline class is m
arbitrary.) The sub-network results are processed by an output layer as given by
Eq. 3:4 to obtain the class probabilities.

Minimization of Eq. 3:5 produces the maximum log-likelihood that the
classification probabilities are correct. Suppose the polynomials in the C-1 branches
of the minimum-logistic-loss classifier are linear functions of the form I

N

Sk 0 O.k + • xj 3:15 n
j=1

If we first examine a two-input, two-class minimum-logistic-loss network using a
linear node, we see that the network performs a linear separation between the two
classes. This linear node defines the discrimination boundary between classes (Fig.
3.2). The example can be extended to more than two inputs and more than two
classes. When more than two classes are involved, use of linear nodes with the
minimum-logistic-loss criterion creates an optimal family of discrimination lines
(or hyperplanes) dictated by the distributions of the synthesis data populations for
the various classes. This family is found using a simultaneous search as
interactions arise between classes when locating multiple discriminant functions.

Considering, next, a two-input second-degree additive polynomial as the
nodal polynomial form, and assuming only two classes are to be discriminated, the
minimum-logistic-loss classifier finds the best (at least locally) quadratic separator. I
In general, the coefficients of the quadratic polynomial will be different from those
found using traditional clustering techniques unless the statistics of the features are
Gaussian. (Indeed, closed-decision boundaries are not guaranteed with CLASS, but
the decision surface geometry an be determined by examination of the
relationships of the nodal parameters within the sub-nodes.) The advantage,
therefore, of using the minimum-logistic-loss network is that the coefficients are
more general and reflect the distributions found in the data. The network can only
do better (at least on the training data) than traditional clustering techniques. In fact,
given suitable values of the coefficients, a second-degree multilinear polynomial

I
64l

I
I

can describe a point, a line, a circle, an ellipse, a hyperbola, or a pair of intersecting
* lines.

Ux'

linear separator

i ,• •Not Class k

'Classok (k

|> 0

IXI

Figure 3.2 Minimum-Logistic-Loss Classifier with Linear Nodes

Further, one may implement even more general forms of data clustering
with minimum-logistic-loss networks by using a two-input second-degree complete
polynomial. Note that the only difference mathematically is the inclusion of a
cross-product term in the complete polynomial. Given this form, not only can any
conic section form of separation be performed, but the separation can be rotated with
respect to the coordinate system defined by the features. The advantage here is that
the minimum-logistic-loss network will automatically perform a linear rotation of
the coordinates if it provides better separation than the principle axes of the features.
With traditional clustering techniques, this would have to be performed in a
separate step before clustering, e.g., by using the Karhunen-LoZve transform or
singular value decomposition. (See Section 4.5.1.6 for further details.)

The constrained minimum-logistic-loss criterion, which is explicitly designed
for classification problems, provides performance superior to classifiers fitted using
estimation criteria. Estimation networks place emphasis on estimation accuracy;
minimum-logistic-loss networks instead place emphasis on maximizing the
likelihood of correct class discrimination. Whereas true probabilities are always
between 0 and 1, estimation networks are unbounded; in contrast, the logistic-loss
criterion correctly maps the network outputs onto {0, 11. A significant advantage of
the minimum-logistic-loss classifier is that the nodes are fitted simultaneously,
giving the system a complete view of the problem at hand, with the coefficients in
all nodes fitted simultaneously to the entire synthesis data set, instead of using

rI 65

I

separate fitting of partitioned data sets. This property also forces the trained nodes to
be consistent with each other.

Often the output of a CLASS network is post-processed by one or more
decision rules. If all of the classes of interest are included in one classifier, the final
decision rules can be simple. An obvious decision rule is to select the class having
the highest probability. However, one may impose further requirements. For
example, one may require that for a class to be selected, its probability must exceed a
threshold.

If it is known that class occurrences are independent events (or nearly so) and
if the quantity of synthesis data is very limited, it may be appropriate to use CLASS
to create C (C - 1)/2 pairwise (one vs. all) sub-classifiers. All of the available data
may be used in synthesizing each sub-classifier, and the probability for class k may
then be calculated by

p(klx) = p(k vs. class 1 1x)*
p(k vs. class 21 _x) *
... * I

p(k vs. class C-i I x) *

p(k vs. class C I x) 3:16

Where p(k vs. k Ix) is unity.

3.2.2 Levenberg-Marquardt Optimization

The underlying statistical criterion for classifier synthesis using the CLASS I
algorithm is of the form given in Eq. 2:35

J= K- d(ki,si) + KyKy 3:17
i=l I

where:

N= number of synthesis-data input vectors (exemplars) I
K = number of non-zero degrees of freedom (weights) in neural network

d (ki, a,) = loss (distortion) function for the ith input vector

ki = Correct classification number for the ith input vector. Recall from I
Section 2.3.1.2 that the desired output may also be represented as a
desired output vector, yi, where each component of this vector is a
member of the set 10, 11; if class k is the actual class, the kth component
of _y is unity and the other components are zero

I

I

Sbinary vector of actual classifications by the neural network for the ith

input vector; each component of this vector is a member of the set {0,
1}; if class k is the estimated class, the kth component of 5i is unity and
the other components are zero

I c = A constant that can be taken to be unity for the present discussion

3 Node output k within the network is denoted

Si~k(_X i; _9k) ; i = 1,...,n; k = l,...,C -1

I in which the index i represents the ID number of a given one of the input-data
vectors, the index k represents the ID number of a given one of the network nodes

n (each node corresponding to an output of the classifier prior to the logistic
transformation), _i is the i'h input vector, 0 k is a vector of parameter values
internal to node k, and C is the number of different classes that the network is
trained to recognize. From this point on, the subscript, i, will be dropped from all
equations.

* The distortion function for logistic-loss classifiers is minus the log of the
likelihood of class membership (Eqs. 2:25 and 3:5) and is reproduced here for

n convenience

d(k,s) = -ln[(p(klx)] = -sk- ln[F()] 3:18

3 where F(s) is defined by

C
F(s) = le 3:19

j=1

I The logistic-loss criterion is to be minimized over the synthesis database
during classifier design by adjusting K degrees of freedom in a network having the3 C-1 outputs sl,..., sc_* , as shown in Fig. 3.1.

Because minimization of logistic loss involves a nonlinear transformation
between the classifier weights and the estimated probabilities for the different modes
of impairment, a linear regression method of adjusting the weights is inappropriate.
Instead, the Levenberg-Marquardt (LM) algorithm is be employed. LM is a
nonlinear regression technique that exploits the derivative information that isknown analytically. LM combines Gauss-Newton and gradient descent methods
and is subsumed by the ILS network training technique (Section 2.3.4.4).

n Recall that the ILS global optimization requires the analyst to provide the

following information:

67

U

" an analytic form of the first and second partials of the objective function I
with respect to the network outputs, Vd. and V2dI

"* an analytic form for the first derivative of the post-transformation h(z)

"* an analytic form for the gradient of an element output with respect to its
input vector, Vfa

Because CLASS has only one layer to optimize, and the elements on that layer do I
not make use of the post-transformation h(z), only the partials of the objective
function need to be specified.

The partial derivative of Eq. 3:18 with respect to the mIh network outputs, sm,
may be calculated as follows:

ad 1 aF 1 if m=k
asm F(s) iFsm 0 if m k 3:21

Eq. 3:21 may be simplified by using the mth element of the desired output vector, ym"
Thus

Dd - e s1 :2
asm - F(5) Ym 3:22

The second partial derivative of Eq. 3:18 with respect to the mt" and nth network
outputs is given by

e Sine s, form

a2d -F2()

asmasn e sn e 2sin3:23

F(s) F2(s) for m = n

The only other information required to find the gradient of the objective I
function with respect to the network coefficients is the vector of partial derivatives
of the output of the series expansion with respect to the coefficients. For a series
expansion of the form

Z J
z = DM (ki, x) 3:24

j=O
with no post-transformation, h(.), the vector of partials with respect to the I
coefficients is

68I

* as
Doi €0 (kilx)
as

n a0 2 4D (k2,)
Vs.0= 3:25

as L (kJ, X)

where

j = (D (kj1, x1) . cD (kj2, x 2) 0 ... • cI(kiDXD) 3:26

and kjk is an element in the J x D matrix of indices, K. For the polynomial basis
functions used in a CLASS network

(D(kjk, x) = xkjk 3:27

I Note that for C outputs, the gradient of the vector output s with respect to the

coefficient vector , is a matrix

_• = [VS1 l, VS2 o, ... , Vsc_1i0 3:28

Because each element contains only a small subset of the overall network
coefficients, the gradient matrix of Eq. 3:28 is block-diagonal, and block optirnizations
may be used to compute the matrix efficiently.

The A and b required for ILS optimization may be calculated as was described
in Section 2.3.4.1:

N
A N= (V)(V2do)(Vf.)T 3:29

* and

1 (Vfft)(Vd°) 3:30

where s f(x, Q) and so Z,= . Normally, the ILS update is given by

n 69

=•old - A"1 3:31

However, for nonquadratic objective functions, it is desirable to incorporate
regularization as described in Section 2.3.4.4. With regularization, Eq. 3:31 becomes

9ew, = 8-d - 4 U + X diag(A)] -1 t 3:32 1
If i = 1, Eq. 3:32 becomes the Levenberg-Marquardt (LM) optimization algorithm,
and this is the technique used in CLASS to optimize the polynomial elements. The

heuristics for adjusting X and performing LM optimization are shown in Figure 3.3.

3.2.3 Complexity Penalty and Building Terms •

CLASS can fit the entire network simultaneously, can build the parameters
one at a time, or can build the parameters in groups. Fitting all of the parameters
simultaneously is just that: the search is applied to all of the parameters. However,
to build parameters, a criterion that trades off complexity and fitting error must be
employed. As shown previously, for the logistic-loss function, a complexity penalty
may be added as follows:

I N K

N _d(yi, i) + K KT 3:33

where di is the multiclass logistic-loss function evaluated at observation i, Kc is a
constant complexity multiplier, K is the number of non-zero parameters, and N is

the number of observations in the database. Theoretically, the correct value for K is
one [7]; however, CLASS allows the analyst to increase or decrease the complexity
penalty term a priori.

The procedure for building parameters is a forward stepwise greedy
algorithm. At each step, given a set of parameters to add to the model, the one
selected is that which produces the smallest J when the model is refitted with that
parameter enabled. This process is repeated until no improvement in J is obtained,
or until all of the parameters have been added.

Building the network parameters in groups can save computing time. There
are Q* groups in the network (Q* is the number of parameters per node). Because U
the structure of each node is identical, corresponding parameters in each node may
be grouped together, i.e., enabled and disabled simultaneously. For binary
classification problems, grouping does not exist (since there is only one node).
Problems with more than two classes, however, can benefit greatly from parameter
grouping, since the time required to add one parameter at a time could be i
prohibitive.

I
70

I

rSTART)

Iter = 0

I0
Compute

anew = oId - [A + X diag(A)] 1 b

JUnew)I
no kw ye

x J(Qnew) J(-ld) yesSTP1I2 X0- 6•

I x =

I ,,Iter = Iter + q

25ter
n

I

I Figure 3.3: Levenberg-Marquardt Optimization Algorithm

I
I 71

I
I

Fig. 3.4 presents a pseudo-code definition of the CLASS algorithm with
parameter building.

Set all parameters to zero and disable all of them from fitting.
Set the best overall score to infinity. I
LOOP - Enable the next best parameter one parameter at a time.

Set the best local score to the best overall score.
Save the parameter values. I
LOOP - Find the next best (disabled) parameter.

IF there is none left, exit this inner loop.
Enable this trial parameter and fit the network. i

Only the enabled parameters will be fitted.
IF the current score is less than the best local score, set the

best local score to the current score and save the
best parameter values. I

Disable this trial parameter and reset the parameters to
their previous values.

END
IF the best local score is no better than the best overall score, there

has been no improvement, so exit this outer loop.

ELSE set the best overall score to the best local score and save the
parameters.

END
SSet the network parameters to the best parameters.

Figure 3.4: Pseudo-Code for CLASS Algorithm with Parameter Building

3.2.4 CLASS Convergence

The CLASS algorithm converges rapidly for two reasons: I
1) CLASS makes use of curvature (second-derivative) information during

optimization (Eq. 3:32 A matrix). This curvature allows the ILS search to
proceed in a Newton direction rather than just a gradient-descent
direction.

2) CLASS does not use sigmoidal nonlinearities. These nonlinearities have
very weak gradients far from the origin (see Fig. 2.6). Many iterations are
required to traverse the objective function in the region of these near-zero
gradient values; attempts to speed up this portion of the search via the
introduction of a larger learning rate, p., present difficulties when the
search enters the steep region of the sigmoidal nonlinearity.

Figs. 3.5 and 3.6 show CLASS learning curves for networks trained to
discriminate between three species of iris [251.

I
72

I
I
I 0.9

0.8

E 0 .7 .

0 0.6

•0.4

0.3--- -....

0.2

* ~0.1--0I ... \jI .

0 2 4 6 8 10 12 14 16 18
Number of Iterations

Figure 3.5: Learning Curve for Three-Class Network Using LM
Algorithm

* 0.9-

0.8
S•0.7--

o 0.6- - - - - - - - - -

0J -0 .5. - - - - - -

I o0:z1:.-
0.2

0.1 "

Number of Iterations

Figure 3.6: Learning Curve for Three-Class Network Using LMS

Algorithm, with g = 0.1

I 73

I

The structures of the LM and LMS CLASS networks with learning curves
shown in Figs. 3.5 and 3.6 were identical: the input vector contained four features,
and the network was pre-structured with first-degree nodal elements. Both learning
curves were obtained by performing multiple training runs with network weights
randomly initialized between -0.5 and 0.5; however, the shape of the learning
curves proved to be independent from the initial coefficient values, so only one
learning curve is shown.

As can be seen from the figures, the LM-trained network (Fig. 3.5) had nearly
converged by the sixth iteration, providing a 98.7% classification accuracy. The LMS-
trained network (Fig. 3.6), on the other hand, had an accuracy of 97.4% and had still
not converged at 2000 iterations. Additionaliy, multiple trial-and-error runs of the

LMS network had to be performed to determine the learning rate, P, of 0.1 that
provided the most rapid convergence. I
3.3 A Rapid Structure-Learning Classification Algorithm

As discussed in Section 3.2 above, the CLASS algorithm makes use of a fixed U
network structure, with terms that may be built as needed. It has been shown that
when term building is not used, CLASS converges on a solution very rapidly
(Section 3.2.3). Building the terms, however, places an increased computational
burden on the algorithm for any large classification task, because a nonlinear Gauss-
Newton optimization must be performed for each candidate coefficient subset. If, in
addition to building terms, were the network structure allowed to grow from zero
complexity to a level of optimal complexity (as implemented in ASPN), this
computational burden would increase dramatically.

ASPN (and its predecessor, GMDH) can build estimation network structures
rapidly because, at each stage of network construction, linear regression is used to
find optimal coefficients rapidly in a single iteration. A way that a classification
network structure of just-sufficient complexity can be found rapidly will now be
described. Once the network structure is fixed, the coefficients may be globally
optimized using an appropriate (non-quadratic) distortion function.

Rec.11 that the probability that the ith observation, xi, is a member of class k, is
given by

e X-i• -li
P(yi I-x) - e 3:34

P~yi C
I esik

k=1

where yi is the vector containing a value of one in the kth position and zeroes

everywhere else, C is the number of classes, and si is the vector of outputs from the
C polynomial nodal elements.

74 I

I
Also recall that the optimal distortion function, in a maximum-likelihood

sense, is given by

I In [p(i_ = • + In e Si'k 3:35

For the CLASS algorithm, siC is zero by definition, because only C-1 values are
required to compute C probabilities. However, neither Eqs. 3:34 nor 3:35 require this
restriction, so for now it will be dropped. Additionally, the subscript, i, will also be

Sdropped for notational convenience.

If all C elements in the s vector are allowed to take on any real value, then it3 can be seen that for the vector of estimated probabilities, p(y Ix), to take on the same
values as the vector of known probabilities, y-, then the ideal output vector, ji,

should contain a value of + oo in the kth position and a value of - in all other
positions. This is shown in Eq. 3:36 below.

-00 0

U -00 Eq. 3:34 0
+ 1 = p(.IA) =Y 3:36
-00 0

CP 0I- -00

I Thus, if a network would output the appropriate s vector for all observations,
containing + o in the desired location, k, and - in all other locations, that
network would provide perfect probability estimates. The remaining question,
therefore, is what objective function will efficiently optimize the structure and
coefficients of such a network.

For computational reasons, the first step in defining such an objective
function involves approximating oo with a large number, Q. How large 0 must be
will be addressed later. This step results in a desired output vector

I 75

I
I

F I

Id = + 3:37

I
L J

Note that 5 and y are related to each other by

ad = 22 (y - 0. 5) 3:38

since y is a vector of binary numbers; thus, for yj = 1,sJ = K2 and for yi =0,s1= - . I
During construction of a network designed to estimate id, it is desirable not

penalize the network for having outputs that are "closer" to 0o than K2, because for
those cases the outputs are closer to the ideal, s1, than our approximation, ad -
Additionally, if rapid optimization is to be possible at each step in the structure I
generation process, then the distortion function must be quadratic in the network
output, a. The following distortion function meets these criteria and may be used to

optimize each element in the a vector

(K2- sj)2 x e class k and s < 2

d(k, sj) {(_ sj)2 x 0 class k and si > 42 3:39

0 otherwise

Notice that this function, because it is quadratic, is convex and everywhere twice

differentiable. Fig. 3.7 illustrates such an objective function for the output of the j'b
network, sj. If the input vector, x, is a member of class k, then the network output, s,

is driven toward K2; whereas if x is not a member of class k, then s is driven toward

- Q. The distortion function for the overall network is the sum of the distortion
functions for each network output

d(k,) = d(k, sd) 3:40

i=7 I

I
76I

d(k, si)I

A e Class k a e Class k

Output of the jtb Network, si

Fiur 3.7: An OjcieFunction for Classification

SIf the coefficients are initialized to zero, the network outputs will be zero;
thus, if Q2 is non-zero, the first iteration of Eq. 3:40 will yield the same results as a
simple squared-error distortion function for a vector output:

I d~k, • =(.ýd - s)T(.ýd - s) 34

Swhere zdis the desired output vector having + Q2 and - 9 elements the (positions of

which depend on the true class, k). If, however, the minimization of the distortion
function of Eq. 3:40 is iterated a second time from the operating point found in the
first iteration, network outputs that are "too large" in the correct direction will not

be penalized. Once again, this is desirable because these outputs are closer to 00 than
I Q. The performance improvement obtained via more than a single iteration of the

optimization algorithm is still a research issue; nevertheless, sub-optimal
classification can be achieved rapidly using one or two iterations of the above

I objective function.

We now turn to the question of how large Q2 is required to be. Consider a C-
I class network that produces a desired response, ki, when interrogated with an input

vector, & that is a member of class k. The estimated probability that x is a member of
class k may be computed using Eq. 3:34

i ~ p(k lx) = -f + C -ef = Pd 3:42

! • Eq. 3:40 may be solved to find Q• as a function of Pd

I] In Pd (C - 1) 342 G nL(- P-d).]34

I77

I

Eq. 3:42 confirms the result, presented above, that to achieve a perfect I

probability estimate of unity, 9) would have to equal oo. However, values of f far
less than infinity yield very adequate probability estimates, as shown in Fig. 3.8.

20-

181
16-

14 C=10

• 12-

10 2 41C=2

6

4-
2

0 2 4 6 8 10 12 14 16
- log(Pd) 3

Figure 3.8: Q vs. Desired Probability, Pd

Note that, in Fig. 3.8, an abscissa value of 2.0 corresponds to Pd of 0.99; an

abscissa value of 4.0 corresponds to a Pd of 0.9999, etc. As can be seen from the figure

above, K2 need not be very large to yield probabilities quite close to the ideal (unity).
Additionally, optimal classification is not required at this stage of network

construction; therefore a value of 9 = 10 should be more than adequate for most
purposes when learning the classifier structure.

The discussion above implies that a squared-error loss function may indeed
be used to determine rapidly the structure of a classification network. Although the
structure and coefficients may constitute sub-optimal classifiers, they do I
approximate optimal classifiers, and are surely better than analyst guessing. Because
Eq. 3:39 is a quadratic distortion function and converges rapidly for network
elements that are linear in their coefficients, the method of growing network
structures from zero complexity to just-sufficient complexity (Section 2.3.3) may be U
applied efficiently. All that is required is an additional complexity penalty, as shown
in Eq. 3:33 above.

In Section 3.2.1, we showed that for a C-class network, only C-1 nodal
elements are required. C nodal elements may, of course, be used. This led to the

78

I
I

interpretation that the outputs of the nodal elements are natural logarithms of the
ratio of the conditional probabilities, and class C, the class for which there was no
corresponding nodal element, was considered a baseline class. For pre-structured
CLASS networks, the choice of C is arbitrary; however, if data is available for a
background, no-fault, or "all other" class, this is often the best choice for class C.
With the structure-building approach presented here, the baseline class, C, may be
chosen to be the class for which network performance is the poorest. In this way,
rather than estimating the probability of membership in class C from a poorly
performing sub-network, one may infer that probability from the probabilities of
membership in the other C-1 classes, and those probabilities are estimated more
accurately than the probabilitiy of class C. Thus, if one of the C networks is
performing poorly in relation to the other C-1 networks, then that sub-network
output may be assigned identically to zero. When to make this decision and the
performance advantages resulting from it are current topics of research.

Once the C (or C-1) network structures have been determined, the squared-
error objective function of Eq. 3:31 may be replaced with the more appropriate (for
classification) logistic-loss objective function of Eq. 3:5, and the network optimized
globally. Global ILS optimization of a multi-layer network, as described in Section
2.3.4.4, requires analytic forms for the following:

* analytic forms of the first and second partials of the objective function with
respect to the network outputs, Vd and V2d

i an analytic form for the first derivative of the post-transformation, h(z), and

an analytic form for the gradient of an element output with respect to its
input vector, Vf1 -

Analytic forms of the gradient and Hessian of the objective function were derived
above in Section 3.2.2, and there is no h(z) in the proposed polynomial neural
network. Thus, all that remains is to define the gradient of an element output with
respect to its input vector. For polynomial nodal elements of the form described in3 Eqs 3:24 - 3:27, the gradient may be defined in terms of the J x D matrix of indices, K

z J D
Ix= I kmiOm I- r xk'in 3:45

m=l n=1

where J is the number of terms in the expansion, D is the number of inputs to the
expansion, and k' is defined for each input xi as

Ikmn -1 if n = i
kI(i) lkmn otherwise 3:46

79

I

Notice that the non-zero terms in Eq. 3:45 correspond to the rows of the K matrix i
that have non-zero elements in column i.

3.4 Algorithm for Synthesis of Polynomial Neural Networks for Estimation
(ASPN)

The ASPN Facility synthesizes static estimation neural networks having no
internal feedback paths, no internal time delays, no post-transformations, and (in
general) a polynomial basis function (time-dealyed input or output data may, of I
course, be provided to ASPN). The main function of ASPN is to create a neural
network that estimates the value(s) of a dependent variable or variables when
interrogated with an input observation vector. In synthesizing a network, ASPN I
selects the most relevant inputs from a list of candidates, determines the most
appropriate structure (connectivity) of the network, determines the best algebraic
function to use at each node, and optimizes the weights in the network. With
ASPN, the network structure evolves from the simplest form (a single input
connected to the output) to a feedforward network having just-sufficient complexity
for the database under consideration. Because ASPN synthesizes a static network,
the network output vector is a single-point transformation of the input data.

3.4.1 Network Structure I
Each ASPN network is a combination of nodal elements, where each nodal

element may contain a series expansion made up of terms that are a subset of the
complete Kolmogorov-Gabor (KG) multinomial (either pre-&. _..ed or analyst
defined). Just as CLASS, with its "building" option enabled, selects the best inputs to 3
use in network synthesis, so does ASPN. For the most part, ASPN nodal elements
do not have more than three inputs.

Whereas GMDH used one basic element type (Section 2.4.1), ASPN makes use
of a number of subsets of the complete KG multinomial (Eq. 3:6). The pre-defined
polynomial elements used by ASPN are listed below, with their corresponding K
matrices:

Single: n

y = + e xi + 02x? + 03x' 3:47

-] I0
K -- 23:48

_3I

80

I
I

Double:

I y = 0 + Oxi + 02xj + 03xixj + 04x2 + 05xJ 3:49
I + 0 x +0ex?

0 0
01
02| 03

S1 0 3:50

2 03 30
11

I Triple:

Y= 0 + O+ 2 Xj + 03Xk + 04XiXj + 05XiXk 3:51
+ xJ + 0X+ 0 X2 + 69X2 +
06Xj~ +0 8j k97k I

I IXý + 02x 3 + lxixjx

011x 12 k +1O3Xjk

F 0 0 0

0 0 100

003
010I__K = 0 20 3:52

- 030

0010 101
110

I 11i

I Linear:

D

y =0 + I0ixi 3:53

I8i=1

*!8

I

Note that whereas the "single" is a one-input, third-degree, additive I
polynomial, the double and triple cannot be described completely by simply placing
limits on the degree, coordinate degree, or interaction order. In this sense, the
double and triple have a low expansion density and may be described as sparse
expansions (Section 2.2.2.2). ASPN also allows the analyst to define a custom
polynomial nodal element simply by specifying its K matrix; however, this is
seldom necessary.

In addition to the polynomial elements described above, the following
transcendental nodal elements are sometimes desirable.

Exponential: 3
y = Oo + 01e (02xi) 3:54

Cube-Root:

y = 00 + 0 1 (xi - 02)"' 3:55 3
Sigmoidal:

z = h 00 + • Oixi 3:56

where h(z) - 3:57
1 +e-'z

ASPN currently implements the exponential or cube-root element, and the m
sigmoidal element may be incorporated readily into the algorithm. However,
experience has shown that these functions are rarely selected by ASPN during
model syntheses.

Using ASPN, the model for each dependent variable usually consists of a
network of polynomial elements arranged in layers; such a network is shown in
Figure 3.9. In this figure, y, and Y2, the two outputs of the example network, are
simultaneous estimates for two dependent variables. The sub-network for y, is
three layers deep and employs six elements and six original inputs. The Y2 sub-
network consists of only two elements, one on each of its two layers, and employs
four original inputs. Note that there is cross-coupfing, or sharing of results, between
the sub-networks, and only six of the original 12 or more candidate inputs are used.
As with all ASPN-synthesized networks, the inputs pass through a mean-sigma
normalization stage (N) before introduction into the network, and the dependent I
variable estimates are re-scaled, i.e., unitized (U) at their outputs.

I
82 3

I
I

X 12
Linear]

I Yl
I

X4X

|S

X Figure 3.9: Sample Polynomial Network

T 3.4.2 Optimization via Linear Regression

I For each layer of the ASPN-synthesized network, a succession of the various

Snodal functions, w ith different com binations of inputs, is fitted and scored. Fitting
consists of computing the optimum values for the candidate element coefficients
using a batch least-squares technique. The candidate element is fitted in such a way
that it attempts to solve the entirE input-output mapping problem by itself [42]. A
candidate element is scored using a model selection criterion that considers a loss
function and a complexity penalty (see Section 2.3.2). The model sel ction criterion
used by ASPN is either the predicted squared error, PSE, minimum description
length, MDL, or predicted classification error, PCE.

In its simplest form, PSE is written

PSE = FSE + 2KU 2 /N 3:58

in which G2is a prior estimate of the true error variance that does not depend on the
model being considered, K is the number of parameters within the model, N is the
number of exemplars in the training database, and FSE is the fitting squared error
(i.e., the mean squared error)

* 83

I

1N
FSE = - yisi23:59

A

where si = f(•, fl) is the network output.

PSE is a very conservative criterion provided the chosen a 2 exceeds the true
error variance, a condition readily verified upon completion of model synthesis.
This conservatism is important in engineering and predictive estimation
applications. PSE is not dependent on the shape of the error distribution.

In addition to PSE, ASPN provides two other distortion functions. The MDL
criterion is based on Shannon coding theory and follows the equation

MDL = Ceiling [BN + N log (2nre FSE NJ] bits, 3:60

where B is the number of bits that would be used to encode each observation elror I
(say, 16), N, is N raised to the (K+1)/N power, and the Ceiling function refers to use
of the next-highest integer. Use of the MDL criterion is best where the "shortest
explanation" of the existing data is believed to be appropriate.

The final model selection criterion available in ASPN is PCE: 3
PCE 1.0 - I H (Iyi-ii1, CTOI) + CMuti 3:70

where:I
where: 1if lYi- Yi l < C~ rol

H y 3:71-" 0if I Yi- _ i[- CrolI

Yi is the true output given the iPh input vector i. (For PCE, true outputs must
be positive.)

A.
Yi is the candidate model output given input vector i

CT.1 is the classification tolerance (default value 0.5) I
CMUlt is the complexity penalty multiplier (nominally 1.0).

Once an element has been fit, the analyst has the option of instructing the
algorithm to carve away terms that are not statistically justified. If an element has a
polynomial expansion with J terms, the carving algorithm tries all possible

84

I
I

combinations of J-1 terms. If one of the new elements has an improved score, the
original element (J terms) is replaced by the best new element (J-1) (i.e., the term
that was carved was not statistically justified). The carving process continues,
removing one term at a time, until the removal of terms no longer improves yields
an improvement in the score. This method of carving is referred to as a "greedy"
carving algorithm in that once a term has been removed, it can never be considered
again. A "complete" or "exhaustive" carving algorithm, on the other hand, would
first consider all J-1 combinations of the original element, then all J-2
combinations, etc. While the exhaustive carving algorithm is guaranteed to find
the optimal coefficient subset, experience has shown that the additional

* computational burden is rarely justified.

When all possible candidate elements have been fitted and scored by ASPN, a
given layer is constructed by selecting the "best" elements, as gauged by the model
selection criterion. The maximum number of "best" elements allowed in each layer
and the maximum number of layers are specified by the analyst. To improve
performance (minimize the modeling criteria), elements may be joined in series
and in parallel, creating a feedforward network. The inputs for the next layer
include the previous layer outputs and the network inputs. Since only the best
elements or nodes are retained in each layer, successive layers can only improve or
maintain the performance of the previous layer. The growth of the network is
halted when the model ceases to improve with the addition of new elements, or the3 maximum number of layers has been reached. Candidate elements (and their
inputs) not required for the final network output(s) are then eliminated.

1 3.4.3 ASPN Convergence

ASPN networks synthesize rapidly for the following reasons:

1) The PSE criterion is quadratic in the network output, and the polynomial
nodal elements are linear in their parameters; therefore, during network
construction, the coefficients of each nodal element may be optimized in a
single ILS update step.

2) The polynomial elements in an ASPN network contain relatively few
coefficients; therefore, the size of the system of linear equations to be

i solved at each step is relatively small.

3) The correlation information (the A matrix in Eq. 2:50) from each linear
regression step may be saved and reused on subsequent linear regression
steps for other candidate network structures.

4) ASPN employs a set of heuristics to limit the number of candidate inputs
to layers other than the input layer. These heuristics make available only
the "most promising" original inputs and prior layer outputs to a layer

I
* 85

i

that is being constructed, greatly reducing the number of potential N
combinations of layer inputs.

Because at each stage in network construction, coefficients may be optimized
rapidly and globally in a single step, ample computational resources remain to solve
the network construction problem. It is not relevant to discuss ASPN convergence
in terms of numbers of iterations of a search algorithm; but experience has shown,
as with CLASS, that ASPN trw.ins much more rapidly than the LMS-based network
training algorithms, such as backpropagation.

3.5 Algorithm for Synthesis of Dynamic Polynomial Neural Networks for
Estimation (DynNet) 8
Recently, the authors have been investigating two specific aspects of the

synthesis and use of neural networks for estimation. The first concerns the use of I
tapped delay lines ti.e., memory) within the network elements, whereas the second
pertains to the use of feedback connections internal to the network. By including
delays (which are usually time delays in applications, although are not necessarily i
so) and feedback connections, dynamic networks can:

"* compute time-varying transformations given static inputs i
" perform infinite impulse response (IIR) filtering operations along with

finite impulse response (FIR) filtering operations I
"• provide a phase-shift operator between time-varying inputs

* provide better modeling accuracy with fewer internal degrees of freedom

* handle time-series data more naturally than feedforward networks 3
The core transformation of the networks described here uses the polynomial

basis function given in Eq. 2:6. Because the networks described in this section 3
usually incorporate internal time delays and feedback paths, they will sometimes be
referred to as dynamic polynomial neural networks (DPNNs). Although DPNNs
have been used primarily for function estimation, it is conceivable that they may be U
adapted to allow for classification of spatio-temporal input patterns. Additionally,
these networks may be used to generate features for classification purposes (see
Section 4.3.1).

3.5.1 Network Structure 3
The candidate nodal elements for a DPNN are exactly the same as those

available for a CLASS network: additive, multilinear, and complete polynomials
with no post-transformation, h(z). DPNNs, however, unlike static networks
incorporate delay banks internal to the elements. Thus, when the analyst specifies
an element structure, the numbers and values for the time delays must also be i

86 i

I

specified. Additionally, DPNN networks allow the output of a given layer to feed
back upon itself, or, the output of the entire network to feed back upon itself.

There are two approaches to adaptive IIR filtering that may also be applied to
dynamic neural networks; these are known as the equation-error and output-error
methods. In the equation-error method, the output estimate is found using
previous output measurements obtained from the system itself or from the training
database. Fig. 3.10 shows the application of an equation-error network to a system
identification problem:

x _- Plant or :-- I Database -

I ANN with
Internal Delays A

and 46 fý Y
I No Feedback

U/I adapt

I Figure 3.10: Equation-Error System Identification

3 Because an equation-error network need not contain internal feedbacks, one
can treat the equation-error formulation as a feedforward network. As such, the
rapid batch ILS techniques used for the synthesis of static feedforward polynomial

* neural networks can be applied to the synthesis of equation-error dynamic
networks.

It is not, however, always possible (nor necessarily desirable) to use the
equation-error formulation. In an on-line situation, prior measurements of the
system output(s) may not always be available for use as inputs to the network. Even
if prior measurements are available, it has been shown that the equation-error
formulation can lead to biased coefficient estimates if the underlying system
dynamics truly contain feedback dynamics; especially in cases where the measured
responses contain additive noise [66].

I 87

I

The output-error formulation feeds back previous estimates of the output i
values. Fig. 3.11 shows the application of an output-error network to the same
system identification problem that was shown in Fig. 3.10:

- ~~Database •

..I

Internal ,,
Feedbacks and -'Y

Time Delays

{Feedback

* adapt

Figure 3.11: Output-Error System Identification

The output-error network has both internal time delays and internal feedback
paths, and as such has all of the advantages of dynamic networks that were listed
above.

The DynNet algorithm can synthesize both equation-error and output-error

dynamic neural networks. Since internal delays are the only aspect of equation-
error networks that distinguish them from static feedforward networks, this section i
will instead concentrate on the creation and optimization of output-error networks.
However, it will be seen that even in the synthesis of output-error networks, a
number of equation-error networks may be created as intermediate steps.

3.5.2 Network Training

The potentially improved performance of output-error dynamic networks
comes at a price. Because of network feedbacks, the nodal elements of these
networks can become nonlinear in their coefficients. Fig. 3.12 shows a simple

example of a network containing feedback and delays. Note that At represents a
delay of one sample step.

8
88l

I

In Fig. 3.12, the output, zA, of nodal element A depends on the input vector Ai

and on the coefficients, 0A, of element A, i.e.

ZA= f(i. QA) 3:72

I _xi ,,Nodal

Element ABIA Nodal .
Element

Element

si-1 B

3 Figure 3.12: Sample Dynamic Network

Thus, if f(.) is linear in its coefficients, the coefficients of A may be optimized using a
batch least-squares technique. For nodal element B, however, the situation is
different:

I ZB = f(xi. 5.i-, 9B) 3:73

But 5 is also some function, g(913), involving Q thus

I ZB = f(x.g(0B), %) 3:74

which is usually not linear in the coefficients 9-0. Any nodal element that is
involved in a feedback loop is nonlinear in its coefficients, and the batch least-
squares techniques that are useful in synthesizing static feedforward networks (see
Section 3.4) cannot be used to fit these nodal elements. Instead, the optimization of
dynamic networks and dynamic nodal elements generally involves one of the more
computationally intensive iterative techniques described in Section 2.3.4.

Feedback connections also introduce a further difficulty concerning network
optimization. Parameter nonlinearities tend to distort the surface of the objective
function and often introduce multiple minima, making it impossible to guarantee
global optimization in all cases. Because of these multiple minima, great care must
be taken when initializing the parameters for an iterative search; additionally, it
may be desirable to use a multi-modal search method that is better suited to finding3 the global minimum of a surface having numerous local minima.

I 89

i

Another cost of dynamic networks is the initialization required, which results U
from the use of sample delays. System input and/or output values must be used to
fill all delay banks before the element core transformation can generate an output 3
value. This does not pose a problem if one can afford to wait M observations before
generating the network output, where M is the maximum delay value. In other
applications, however, such as tracking and control, output estimates must be i
generated beginning at the first observation. In these cases, one may need to create
a static network to provide the network output or to initialize the values of the
delay banks contained within the dynamic network.

To overcome some of the problems associated with DPNNs, DynNet extends
a principal applied frequently in the generation of adaptive IIR filters: the equation- i
error structure that best solves the mapping problem is close to the desired output-
error structure [741. Thus, when determining the initial structure of a DPNN, one
may replace the feedback values with the known values of the output. This is true
even for layer feedbacks, since the output of each layer in a PNN is an estimate of
the true system output. Once this assumption is made, the DPNN structure may be
determined in exactly the same way the ASPN structure is determined, by treating i
prior output values as candidate inputs.

Fig. 3.13 shows the general algorithm for constructing either an output-
feedback or intra-layer-feedback MISO DPNN. This algorithm may be easily
extended to the MIMO case as in DynNet; however, the MISO case is shown here
for simplicity.

The DinNet algorithm shown in Fig. 3.13 may be summarized as follows:

1. Find the M best MISO equation-error Dyn3 networks for each output, with
the element complexities limited as described above. If a database output is
used as an input variable, make sure it passes through a one-step sample I
delay.

2. To account for additional error that might be introduced when the true i
equation-error (database) values of the network output are replaced by
feedbacks of the output estimates, add an additional PSE penalty term
proportional to the prior estimate of the error variance of the variable that I
will be fed back.

3. Recombine the elements from Step 1 so that there are M potential MIMO 3
layers, with each layer containing one element corresponding to a network
output.

4. If intra-layer feedback is desired, replace the equation-error network inputs
which are prior values of the output columns of the training database, with
feedbacks of the output estimates, thus creating M potential output-error I
first layers.

9
90l

n
m

uSTART
3 [Set up candidate inputs

for equation-error case

Try to model the output

using a linear element

ITry to model the outputIusing all possible single-
input elementsI

1No Doselement useTry to model the output prior value of network
using all possible two-

M element outputs input elements
become candidate

inputs for Try to model the output Connect layer output
subsequent layers using all possible three- toappropriate element

input elements input

3vSave best M elements ecrthelmn

Inralae Yes Fiiheol

Feedback
w ih ee ba kIt

II

B Figure 3.13: DynNet Algorithm for Constructing a DPNN

* 91

i

5. Optimize the coefficients of each layer using a GR/GARS search technique. i
(See Section 3.5.3.)

6. Continue adding layers until the overall network score ceases to improve.
Subsequent layers are built in the same way as the first layer, except that in
addition to system inputs and outputs, every element on subsequent layers
must have at least one input which comes from the immediately preceding
layer.

The above algorithm may be tuned and modified in a number of ways depending i
on the application.

3.5.3 Random Global Optimization Techniques

In principle, DPNNs could be optimized using a combination of the ILS
optimization techniques described in Sections 2.3.4.5 and 2.3.4.6, respectively.
Currently, however, the DynNet algorithm uses random optimization techniques
that do not depend on any analytic gradient information. Presently, the authors I
make use of one of three techniques: (1) Guided Random Search (GR), (2) Guided
Accelerated Random Search (GARS), and (3) The Gambit Search Method.

3.5.3.1 Guided Random Search (GR) [19]

The Guided Random (GR) Search algrithrn is a random optimization procedure 3
intended primarily for the initial and final stages of numerical searches. It has
multimodal search capabilities, but these are not as powerful as those of the GARS
algorithm, which is described in Section 3.5.3.2. The basic GR algorithm is quite I
simple, yet it embodies many qualities of other, more sophisticated, search
algorithms.

GR uses an "amoeba," which is a set of search points, typically five,
comprising the current information to be used by the search algorithm. The amoeba
moves through the search space by adding and removing points from its search set i
in the following manner:

1. Remove worst point from the amoeba. i

2. Add most recent point to the amoeba.

3. Recompute mean and standard deviation of the amoeba for each search
dimension.

4. Determine the next search point to test using the following vector
equation:

jig = 2Z + speed .-(. -14) 3:75

92 l

I
I

a= + dispersion- N[jLg, g.] 3:76

I where n denotes the iteration number and:

a is the mean of the goal region,

i is the location of the best point in the amoeba,

is the vector mean of the five amoeba points,

3 4, is the next search point to be tested,

i is the vector standard deviation of the five amoeba points,

N [ILg, Z] is a Gaussian random vector of mean Ug and standard
i deviation a., and

speed and dispersion are search parameters (constants) set by the3 analyst, each typically to unity.

Thus, the strategy of the amoeba search is very simple: move from the
centroid of the amoeba beyond the point with the best score. The distance beyond
the current best point to use, the "goal" region, is proportional to the distance
between the best point and the amoeba centroid. With speed set to unity, the mean
of the goal region for the next search point will be collinear with X and j•, at a
distance (Q - a.) beyond A. The shape of the goal region is determined by the3 standard deviations of the current amoeba.

If an amoeba repeatedly receives good points in a particular direction it will
stretch out along that direction and thus begin to accelerate. (See Fig. 3.14.) If an
amoeba comes across an area representing a minima, it will surround that region
and shrink, causing it to focus on that region or, when necessary, "thread the
needle" and re-expand after getting through that portion of the search space.

I
I

I
I 93

I

o mean of amoeba
a x point with best score

0 "IE0" point with wonst score

Q I" I

Figure 3.14: Sample GR Amoeba Acceleration I
To initialize the GR search, initial values and standard deviations for each n

search dimension are specified.

3.5.3.2 Guided Accelerated Random Search (GARS) [191 3
The Guided Accelerated Random Search (GARS) algorithm is a random

optimization search intended primarily for the mid-game stage of numericalm
searches. GARS is a powerful multimodal search technique that avoids trapping in
local minima of the performance surface. It is also offective when there is a shallow
score slope to be traversed, in which case the GARS acceleration/deceleration I
capabilities quickly find the local minimum.

To govern random experiments, the GARS algorithm uses the following 3
vector equation:

2-n.l = 2!* + dispersion • N[O, g-] 3:77 3
where 2 is the location of the best-to-date trial, N[O, .n] is a Gaussian random vector

of mean zero and standard deviation. -n, and dispersion is a search parameter
(constant) set by the analyst, typically to unity. Note the similarity of Eq. 3:77 for
GARS to Eq. 3:76 used in the CR search. Whereas GR conducts its random
explorations in a region removed from g, GARS performs its random trials in a
region centered at 2Z.

Whereas GR establishes g-. from the standard deviation of the five amoeba

points, GARS determines an from the score of the best-to-date trial. Thus, for GARS 3

94 I

I

j=- 3:78

where:

Ign is the standard deviation vector used in computing X•l

g is the initial standard deviation vector

J* is the best-to-date score as of iteration n

J5 is the initial best-to-date score.

3J6 can be the value determined from an opening GR search. g- is usually specified

by the analyst using GARS, but may be determined from an opening search with
* GR.

Using Eq. 3:78, the standard deviations of the random trial components

shrink to zero as the score Jg approaches zero (perfection). However, even when the

standard deviations become small, the search can still move quickly to remote
regions of the search space, propelled by a deterministic acceleration heuristic that

* will now be described.

Once X,, is selected, the new point and the corresponding score are
computed. If a new best score is not found at this new point, another random trial is
selected and another new point is tested. If a new best score is found, the step AX =
XnI - X is multiplied by two to establish the next trial. As long as consecutive new

3 best scores are found, AX is repeatedly doubled, causing exponential acceleration of
the search. Once a new best is not found, the search decelerates (it has gone too far)
and tries again. If deceleration fails to improve the score, a final point is attempted

I on the opposite side of the best point found so far from the decelerated attempt, and

the search resets, finding a new random AX with acceleration factor of one.

I Fig. 3.15 presents details of the GARS algorithm.

I
U
I
I
1 95

I

Begin GARS Search

Set~ ~ Bs AceeaYo

Choose New PointFato (*+ACC) t I no

Choose New Point ?

X* + ACC*4L

Y* =AX* + ACC*AK
SI I

Divide Acceleration
Factor (ACC) by 4

(Deceleration Heuristic)

S. I
yes Is This

Set Acceleration New Best Scor
Factor (ACC) to 2?

Choose New Point Choose New Point
_*=,X* + ACC*4K Y = X" + ACC*& I

ru Is This yes Save Multiply U
Sae w . es Do] SaveAccelerationNe Bt BestX* Factor (ACC) by 2

Figure 3.15: GARS Algorithm Block Diagram 3

I
96 3

I
i

3.5.3.3 Combined GR/GARS Search [19]

i Care must be taken in initializing GARS. If GARS is initialized with
standard deviations that are too large, the random phase may not readily find a new
best score from which to begin the acceleration process, thus increasing search time.
However, initial standard deviations that are too small may prolong the search time
by requiring very large accelerations to provide meaningful improvement of the
best score. Therefore, GARS is most effective when preceded by a search algorithm
such as GR. The flow chart for a combination of GR and GARS (called GR/GARS) is
shown in Fig. 3.16. The GR startup finds a good region for GARS and, because GR
sets its own standard deviations based upon the four best scores found and the most
recent point tested, an estimate of standard deviations is made available for use by
GARS.

I Begin CR Phase: Begin GARS Phase:

IRun Trial RunI I Ru .al I
Initialize Cos

CA Prrnth Chosew

!!

Search iedGR /GA Search

Ss earchEove ge ePovra Evaluate Point

P n 9formance
(Assign aScore) I (Assrign a Score)

no s hi00 Is This
One otheFivea New Best

ImI hen a no
eto rovement in the Maxitnutt Number of Iterations

erforranceBeen Reached?

ye yea

STOP

th*aiu ubrofIeain ,X1 a ete 5)

3 Figure 3.16: Combined GRIGARS Search

Fig. 3.17 shows a representative search convergence (learning) curve for
CR/CARS. The abscissa of Fig. 3.17 is the iteration number, and the ordinate is the
relative penalty assigned by the utility function. Note the rapid acceleration of
search convergence several times during the search.

I 97

I

N I

I n
0 1

I
Iteration I

Figure 3.17: Example Learning Curve for GRIGARS Search

3.5.3.4 GAMBIT Search

The GAMBIT search is an alternative mearto of combining GR and CARS
searches. GAMBIT incorporates two amoebas and a mid-game GARS search within
a search "cycle." A cycle consists of the following four stages: I

1. Perform an analyst-specified number of gambits: random trials normally
distributed as N[X2n, dispersion - 00o], used to fill a ten-point "global" amoeba
excluding X21

2. Perform a "global" amoeba search until: 3
(a) amoeba is filled with better points, or
(b) search exceeds an analyst-specified maximum number of consecutive

unsuccessful trials.
3. Perform CARS search using fixed standard deviations, conmputed by "local"

or "global" amoeba, until maximum number of consecutive unsuccessful
trials is exceeded, where an improvement in score below tolerance also
counts as an unsuccessful trial.

4. Perform "local" amoeba search, where the amoeba is populated to includeI
Xn, as determined by G ARS, and four points distributed as
N [X*, dispersion • (7n] until: n
(a) Two times the maximum consecutive unsuccessful trials is exceeded,

at which point the termination condition is tested:

98

i. If true, the GAMBIT search is finished.

3 ii. If false, the "local" amoeba hands off X• to the "global" amoeba,
and one full cycle has been completed, or

(b) Five times the size of the "local" amoeba better points is found, at
which point CARS is started using On, as computed by the "local"
amoeba.

I When initializing the search, the analyst sets _X•, the initial best point, and
go, the "global" standard deviations, which play an important role in the powerfulSmulti-modal caaiiisof GAMBIT. The global amoeba is pultdafter a

handoff from the "local" amoeba by choosing points normally distributed about the
current best point, Xn*, but not including it. The relatively large "global" standard
deviations set by the analyst allow the search to jump out and escape a local
minimum and converge to better solutions elsewhere in the search space. If the
search reaches the same point, within some analyst-specified tolerance, on three
consecutive cycles, GAMBIT assumes that the point is a global minimum and sets
the termination condition to "true."

I GAMBIT incorporates the best characteristics of GR and CARS. GR gives the
GAMBIT search the ability to maneuver through difficult search spaces, and is
particularly useful in the end-game stage of a search as the amoeba shrinks and
lowers its standard deviations to look near its best point. GARS allows the GAMBIT
search rapidly to cover portions of the search space with shallow slopes. CARS
exhibits more of a tendency to avoid local "trapping" minima, by accelerating over
holes, or jumping out of them, provided its standard deviations are set correctly.

While the GAMBIT search algorithm is powerful and can successfully avoid
many local minima, it does so at the expense of numerous iterations. A typical cycle
can require 1,000 to 10,000 or more iterations, where other search techniques may
converge in fewer iterations. However for difficult search problems, where gradient
information is not available and other techniques fail, the GAMBIT search
algorithm can find better solutions when given sufficient computing time.

I
I
I
I
I
I 99

I
U
I
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I

100 i

I
I

4. APPLICATION OF POLYNOMIAL NEURAL NETWORKS TO
ACOUSTIC WARFARE SIGNAL PROCESSING

4.1 Introduction

In Section 2 of this report, a way of viewing neural networks in the context of
general function estimation principles was presented. Additionally, classification
tasks were viewed as a particular type of estimation problem that involved finding a
function that mapped an input vector of features into a vector of conditional
probabilities of class membership. In Section 3, some specific polynomial neural
network (PNN) structures and learning algorithms were presented in light of the
principles discussed in Section 2. Because, under the scope of this project, the
authors were tasked with applying PNN techniques to the detection and
classification of acoustic warfare (AcW) signals, Section 3 emphasized logistic-loss
PNN classifiers.

One reason for discussing a number of popular neural network paradigms
using the common terminology of Section 2 was to allow these paradigms to be
readily compared. Section 3.2 discussed a number of advantages of the minimum-
logistic-loss PNN classification algorithm (CLASS); these advantages are
summarized here:

Whereas most neural network paradigms minimize a squared-error loss
function (Eq. 2:23), resulting in a maximum-likelihood classification of
data having a Gaussian probability distribution, CLASS minimizes the
logistic loss function (Eq. 2:20), resulting in maximum-likelihood
classification of data having a multinomial probability distribution,
which is more suited to discrete multi-class problems.

Whereas most neural network paradigms use gradient information only
during the optimization process, CLASS uses a regularized nonlinear
Gauss-Newton optimization algorithm (ILS) that can also use curvature
information for more effective training iterations. This algorithm
provides rapid on-line and off-line network training.

"" Whereas most neural network paradigms use arbitrarily complex pre-
structured networks, CLASS can build its structure to provide nonlinear
classifiers having a degree of complexity (i.e., classification power)

commensurate with the quantity and representativeness of the training
database.

"" Whereas most neural network classifiers output confidence measures
for a particular class, CLASS outputs estimates of the a posteriori
probabilities of class membership. These are particularly useful when

these outputs are used by higher-level decision-making processes.

3 101

I

Whereas many pre-structured neural networks require thousands of U
coefficients and interconnections, CLASS uses simple network structures
that do not overfit the training data; these structures are particularly
well-suited for rapid and efficient on-line interrogation.

Section 3.2 also discussed some limitations of the CLASS algorithm as
currently implemented; however, it is important to note that these limitations arise
primarily from the pre-structured nature of the networks created by the current
algorithm and are shared by all pre-structured neural network paradigms. i
Limitations of the present CLASS algorithm include: (1) full interconnectivity that
may lead to overly complex networks and (2) the restriction that all nodal elements
have identical structure. Additionally, CLASS is currently lirpited to one hidden
layer of nodal elements and the potentially sub-optimal arbitrary assignment of a
baseline class against which all other classes are compared. Section 3.3 outlined
algorithmic enhancements that can potentially overcome these limitations by
building a just-sufficiently complex CLASS network structure. However, even
without these algorithmic enhancements, the advantages of CLASS outweigh its
limitations; especially considering that these limitations are shared by most I
alternative paradigms.t

This section focuses on the specific design of an AcW classification system
that makes use of the polynomial neural network (PNN) technology discussed in
previous sections. The material presented below is organized topically, with a
major subsection devoted to each stage of the classification process. Classification I
results are presented along the way where they help illustrate the utility of the
technique being discussed. BAI worked primarily with two datasets: (1) Dataset B"
and (2) the Rangex data.** For the most part, Dataset B contained a greater quantity I
of cleaner signals resulting in better classification performance; all of the 20-class
confusion matrices presented were taken from this dataset. The Rangex data, on the
other hand, proved more challenging to classify for the following reasons: (1) there i
were numerous low SNR exemplars, (2) the exemplars within a given class tended
to be quite diverse, (3) many exemplars from differing classes tended to be quite

I
I

t The Algorithm for Synthesis of Polynomial Neural Networks (ASPN) is an alternative algorithm
that does not have the limitations of a pre-structured network; however, comparisons between ASPN I
and CLASS have shown that CLASS, using the logistic loss function, achieves better multi-class
classification performance than ASPN using the squared-error loss function.

"These data were provided by Orincon Corp. in the second quarter of 1990. I

These data wp-e provided by Orincon Corp. in December 1990.

102

I

similar,t and (4) the supply of quality exemplars for a number of the shorter (and
more difficult) classes was very limited.

Appendices A and B give a complete listing of these datasets and the use
made of them in this project. Section 5.2 contains a more detailed analysis of some
of the shorter classes found in the Rangex dataset.

4.2 AcW Classification Signal Processing Overview

Whereas the research conducted by Barron Associates, Inc. has focused on
data classification, the classification task is only one element of an entire acoustic
warfare signal classification system, and the synthesis of a discrimination function is
not isolated from the overall context of the signal processing flow. Fig. 4.1 shows
more of the steps required for proper classification of unknown input signals.

g eaturao Yes Qualification Classification

I To Higher-Level
u 1Decision Making

Extraction Signal Classification Processes
Etci Post-Processing

I Figure 4.1: Processing Chain for a General Classification System

I 4.2.1 Scope of Research Conducted by Barron Associates, Inc.

Because the synthesis of improved discrimination (classification) functions is
not isolated from the other aspects of AcW signal processing, BAI investigated data
qualification and post-processing as steps that could potentially improve the
classification performance. Additionally, because the information-theoretic neural
network approach used by BAI stresses the generation of networks with limited
complexity commensurate with the amount and diversity of the training data,
research was conducted in the area of reduced-dimension feature extraction, since
one method employed to limit the network complexity is to limit the size of the
input feature vector. Signal detection, as discussed below, was considered to be

I For example, both BAIs and Orincon's networks had difficulty discriminating between Classes 3 and 4

(DW and SD); time- and frequency-domain analysis also showed numerous exemplars from these two
classes that looked and sounded alike. Therefore, when possible, these two similar classes were
combined by the authors into one superclass to achieve improved performance.

1 103

U

generally outside the scope of the present research effort; however, a type of detector I
was used in the data qualification stage to determine if the incoming feature vector
fell inside the region for which the classification networks had been trained.

4.2.2 Detection

Detection is the initial step of separating signals of interest from background
noise. This step may also include pre-processing operations, such as use of a
whitening filter to decorrelate the signals of interest from background noise, I
interference, and sensor characteristics. Accurate performance of the detection task
can greatly enhance subsequent signal classification tasks by freeing these algorithms
from spurious detections.

The signals of interest in AcW signal processing are generated by complex,
possibly nonlinear, vibrations. Such signals may exhibit non-Gaussian statistical I
behavior, as evidenced experimentally by the successes of kurtotic features (fourth-
order statistical moments) in the classification process (see Section 4.4.7). For AcW
signatures with random characteristics, deterministic signal analyses based on U
matched-filtering (for the coherent case) or banks of matched filters (for the
incoherent case) generally do not apply. In many cases, these signals can be detected
adequately using conventional radiometric techniques, which do not exploit the
distributional characteristics of the signals. Radior'etry assumes that there is no
structure to either the AcW signal or the noise (i.e., both are assumed white) and
that both the signal and the noise have Gaussian amplitude distributions. It
involves comparing the received normalized energy to a threshold, which may be
set and adapted as a function of operating conditions. The nominal threshold can be
learned on line, for example, by continually reducing it to a level where many false
detections are observed (internally only). Then, the actual threshold used is set to
some function of the recurring false-detection threshold. Radiometry, however,
may be sub-optimal for this application, and it may be possible to improve
significantly upon it by exploiting the more detailed statistical behavior of the
signals of interest [33]. For example, the use of higher-order spectral information
can potentially result in significant improvements in the early detection capabilities
of subtle AcW transients. More sophisticated detectors or Gabor and wavelet
representations may also be useful in detecting transient AcW signals when the
signal is non-white [26]. Such improvements may be particularly crucial for the
early detection of subtle but important AcW signals.

Along with the detection of signals that have previously been characterized,
an important task is the detection of signals that have not been seen previously by
the detection system. This problem is essentially one of hypothesis testing, in which
the null hypothesis consists of those statistical models, arising both from target and
non-target signals, that have been previously characterized. If sufficient evidence
arises to reject this hypothesis, it can reasonably be assumed that a new signal class I
has arisen, since the range of normal conditions can be characterized a priori. To
test such an hypothesis, it is necessary to operate on a set of observables that is

104 3

I
I

sufficiently rich to capture the behavior of the possible signals of interest. Rejection3 of the entire class can then be based on a chi-square or related statistic.

Since a suitable set of observables will already be available from the detection
and feature extraction stages of the system, the implementation of algorithms for
detecting novelty should involve relatively modest additional complexity. The
development of suitable algorithms for the purpose of novelty detection is,
however, a separate task. Initially, these algorithms are constrained to operate on
the observables generated by other stages of the system. Within this constraint, the
efficacy of traditional statistical tests, such as the aforementioned chi-square test,
should be examined. If such tests do not perform sufficiently well, then tests that
use more detailed information, such as Kolmogorov-Smirnov-type tests (56], should
be considered. If these more sophisticated tests do not suffice, then additional
features should be customized for novelty detection by examining subspaces
orthogonal to the other features extracted by the system.

4.2.3 Feature Extraction

Feature extraction involves preliminary processing of sonar time-series data
I to obtain suitable parameters that, in linear and/or nonlinear combination, allow

the subsequent neural networks to discriminate between various classes of signal.
Some relevant feature extraction techniques include:

* Spectral analysis
Time-frequency and scale analysis (e.g., Wigner distribution, wavelets,

I etc.)
Recursive estimation methods (linear and nonlinear predictive coding,
etc.)
Dynamic neural network prediction approaches

• Prony's method
* Moment analysisI * Auto/cross bi-coherence (bi-spectrum), tri-spectrum, etc.
* Higher moments (e.g., kurtosis)
* CumulantsI * Generalized hypercoherence
* Hypercoherence filtering
* Phase-domain averagingI * Nonstationarv analysis
* Extrema signal processing

* * Heuristic features

All of the above techniques, and others, have potential merit for acoustic
waveform signal feature extraction. Parameters extracted from theseI representations can be used as input vectors to detection and classification neural
networks. Spectral and recursive techniques make the assumption that the signal is
not white but that the noise is. Nonlinear and higher-order techniques (e.g.,

105

U

cumulants, polyspectra, etc.) are especially valuable when the acoustic signal and/or H
noise are non-Gaussian. In such cases techniques based on second-order statistics
(e.g., coherence, spectral analysis, etc.) and linear (e.g., wavelet) and bilinear (e.g.,
Wigner) transformations are suboptimal. All of the above approaches may be
considered in a three-dimensional context (e.g., amplitude vs. frequency vs. time)
and (where practicable) combined with spatial selectivity derived from implicit or
explicit multi-channel sensor beamforming, to provide distinct and representative
spatio-temporal patterns. In this regard, classification of acoustic signals is
somewhat analogous to the "cocktail party problem" in human audition, whereby U
people attending a large gathering are able to isolate a single conversation occurring
at a particular spatial location from all other spatially-distributed conversations.
This is achieved, in part, by taking advantage of auditory spatial processing I
capabilities derived from the use of multiple sensing channels (i.e., one for each
ear); different perception by each ear of the phase and amplitude of stimuli enables
humans to determine the angle of arrival of sound sources. (Although the ear I
pinnae are used to distinguish sounds arriving in front from sounds arriving from
behind, three or more vibration sensors will provide a more precise isolation
capability.) This is a form of adaptive beamforming.

Features considered for use with the logistic-loss PNN classifier are discussed
in Section 4.3.

4.2.4 Data Oualification 3
Data qualification is a pre-classification stage to determine if an acoustic

signature is one for which prior information is available and for which classification
should be attempted. Pre-classification is best done using closed decision boundaries
in feature space and may be implemented using hyperellipsoidal clustering
techniques or suitable polynomial neural networks to form hyperspheres
(normalized hyperellipsoids) in feature space, each of which encloses a
hypervolume corresponding to a different AcW class or portion of a class. All space
outside of the hyperspheres then corresponds to background or unknown cases.
Alternatively, the features derived from background sounds may form one or more
hyperspheres, in which case exemplars falling outside of these hyperspheres
represent signals of interest. m

For pre-classification purposes, the closed decision boundaries defined by the
hyperellipoids represent a significant improvement over hyperplane class
separators. This is because an extreme value in one or more of the feature vector
components will cause classifiers based on hyperplanes to see the vector in one of
the boundary classes, even if the vector is displaced far from any feature vector on I
which the classifier was trained. The advantage of using PNNs to form closed
decision boundaries is that no assumptions regarding the Gaussianity of the signal
or noise are necessary, which is not true for Bayesian (i.e., Gaussian feature) I
classifiers. If the acoustic signals are Gaussian, the PNN closed-boundary decision
functions will automatically adapt to the Gaussian decision properties. Any

106

I
I

boundary selected by the PNN car, be checked analytically to verify that it forms a
closed region.

4.2.5 Data Classification

I Data classification infers the specific classes of detected acoustic signals. As
mentioned above, classification neural networks should be trained using a
constrained logistic-loss fitting criterion, rather than a least-squares fitting criterion,
as the former are demonstrably superior. Multi-class networks based on the logistic-
loss criterion attempt to separate classes by maximizing the probabilities of correct
class membership for all observations in the database. Thus, the outputs of these
networks are estimates of the true probabilities of class memberships, rather than
estimates of arbitrary class output numbers.

4.2.6 Classification Post-Processing

* Classification post-processing represents any additional operations that are
performed subsequent to any of the steps outlined above. Subsequent to both the
detection and classification stages, for example, post-processing operations may be
used to reduce false-alarm rates via multiple-look strategies. Here the post-
processor accumulates a number of single-look decisions before actually making
final detection/classification decisions. Additionally, a passive sonar system may
incorporate current and historical target track information to assist in its post-
processing. Syntactical decision rules may also be used, based on the computed
probabilities and knowledge of the AcW context.

4.3 Database Design

I Databases used for neural network syntheses must take into account (1) the
conditions under which the system must operate, (2) the means of observing the
physical process, and (3) the nature of the physical system itself. Each of these
should have a strong bearing on database design.

The conditions under which the system must eventually operate should
determine the conditions for which data are obtained and the quantity of data. The
properties of the data space should determine how the data in the database are
distributed. Consider a physical system that is definable in terms of the equivalent
of F descriptors or features. The space of these F features has the following
properties:

Nc = 2F 4:1

I Ne = F2F-1 4:2

Nb = 2F 4:3

107

I

where NC, Ne, and Nb, are the numbers of corners, edges, and spatial boundaries,
respectively.

The corners (vertices) are the points at which all independent variables have
limiting values, and are of particular concern. When F is large, most of the volume
of the space is crowded near the corners. For the neural network to provide good
discrimination, in most applications, it must perform acceptably in these corner
regions of the input feature space as well as in the interior. Thus, when F is large,
considerably more samples are needed remote from the center of the space, near the I
edges and particularly near the corners, than are required near the center of the
space. To achieve model quality with a nonlinear network at the corners of the data
space comparable to the quality at the center, each corner region ideally should be m
represented by 2 F times the density of samples used to represent the interior of the
data space. In practice, this may not be practicable and the user should be cautioned
that the neural network is less reliable in the corner (and other fringe) regions than I
in the middle of the space.

For AcW classification, a number of measures may be taken to ensure I
adequate performance of the neural networks in spaces involving many features:

(1) Use as many data vectors in the corner regions as are reasonably possible. I
(2) Keep the dimension, F, of the feature vector as low as possible.

(3) Fit the networks to an artificially enlarged data space, so that the fitting
quality is improved within the space of actual variation.

(4) Use nonlinear terms in the networks sparingly.

(5) Carefully test the networks in the corner regions before judging their
performance to be acceptable.

(6) When interrogating the networks operationally, verify that each
unknown data vector is within the region of accurate representation by
the networks. n

In sizing the database, allowance should also be made for reserving a
significant fraction for design evaluation, which must be performed on an
independent (and statistically representative) subset of the data.

Because, in this work, emphasis was placed on testing and evaluating
classification methods on real-world data, and because the collection and truthing of I
acoustic data are costly, the number of exemplars in the database was often
extremely limited. When limited training data are available, great care must be
taken to achieve a quality network model capable of adequate generalization that I
does not overfit the training database; a specific example and delailed analysis of
these tradeoffs is found in Section 5.2.

108

U
I

4.4 Feature Generation

Barron Associates, Inc. (BAI) considered a number of different features for use
with the minimum-logistic-loss PNN classification algorithm, CLASS. The primary
focus in all of the feature research was to reduce the dimensionality of the input
vector to the neural network for the reasons cited above, and all feature researchwas performed on the data provided to BAI by Orincon Corporation.

1 4.4.1 PNN Predictors as Feature Generators

One method for generating input features for data classification is to use a
bank of polynomial neural networks to predict the future values of the time-series
data input; this type of feature generation is illustrated in Fig. 4.2.

S•1(t + A t) E

trained on ".: Compute

Sx(t) AFeature

[] t + At •Vector
I PN~ redctotrained 7on B *- '+ i Compute = •

Additional Features (if desired) , ,,•

I To use PNN predictors as feature generators, multiple PNN predictors (PNPs)
are trained to predict future values of tb,ý incoming data stream, x(t), using dataI from a different class of signal for each PNP. If the incoming data represents class k,
then predictor k should provide the best prediction. In this sense, the PNPs could
themselves serve as a form of classifier; however, better performance can be

obtained by using the statistics of the prediction errors as features in a further
classification process.

Either static estimation networks (ASPN: Section 3.4) or dynamic estimation
networks (DynNet: Section 3.5) may be used as predictors. Figs. 4.3 and 4.4 show
static and dynamic PNPs, respectively.

I
I 109

I

* ~~tAtt+ At) Ix(t) I

X(t) A:['t t ~-
"* • StaticPNN I

Att 3 t A At

* tapped delay line (shift register)

Figure 4.3: Static Polynomial Neural Network Predictor (PNP)

x(t +At)

x(t) Initialization & k Step
Ahead Prediction - - -

Controller I U
At Ax(t + kAt)

Dynamic PNNI • At!-
Shift Register

Figure 4.4: Dynamic Polynomial Neural Network Predictor (PNP)

In Fig. 4.3, the shift registers outside the network are used to provide current I
and historical values to the network as inputs. Then, a multi-input multi-output
(MIMO) static transformation maps these inputs into expected future values of the
time series, x(t). In Fig. 4.4, the shift registers are contained inside the dynamic PNN
(see Section 3.5 and Fig. 2.4). These shift registers are initialized, and the network is
allowed to "run ahead" for k samples to predict future values of the time series.
The output shift register serves to convert the DPNN series output into a vector
output as required by the system shown in Fig. 4.2.

In work conducted on the AcW data, static PNPs were used to predict one U
sample into the future, and the statistical computation of Fig. 4.2 consisted of
computing a time average of the absolute errors and, for one class, the squared-
errors (see Section 4.4.5); no additional features were used. These statistics were

I
110 3

I
I

then passed on to ASPN for classification.t The four-class network created by ASPN3 is shown in Fig. 4.5 (element definitions are given in Section 3.4.1, Eqs. 3:47 - 3:53).

MWAA I -- •'W" Double 6-. CubeRoot 1___•

MWAA 2

MWAI (14 coe•fficien ts) (4 coefficients)
MWAA 3

IW"I '__~ a

MWA . Triple CubeRoot $4

MWAA 4 (14 coefficients) (3 coefficients)

I Figure 4.5: ASPN Classification Network for PNP Features

i In Fig. 4.5, the input values (MWs) represent moving-window statistics of the

prediction error as described above and defined in Section 4.4.5. The network
output, •, contains an estimate of class membership for each of the four classes. The

i results of the network shown in Fig. 4.5 on the limited amount of data initially

available are shown in Table 4.1 [18].
Table 4.1: PNP Classification Results (Four-Classes)t

M.AA

True Class System Decision

_______Class 1 Class 2 Class 3 Class 4 Unknown
i Class 4 4/4 0 0 0 0

I Classi2 0 1/1 0 0 0

Class3o Class4 0 0 0 4/4 0

UnknownI 0 0 0 0 1/1

SUnknown2 1 1/1 0 0 0 0

I
t At this stage in the work effort, the CLASS algorithm had not been completed.

I •: An unclassified key to class numbers can be found in Appendix A.

I 111

I

To demonstrate the utility of PNPs on a larger and more difficult K
problem, BAI later extracted exemplars for 20 data classes [1]. These classes were
then manually grouped into four families (see Section 4.5.1.2) as follows: 3

Table 4.2: Signal Family Groupings

Group Signals

Family 1 1,2,3,4, 11, 16 i

Family 2 5,6,8,10,13,15 1
Family 3 12, 17, 18,20

Family 4 1 7,9,14,19 1
Tables 4.3 - 4.6 present the results of PNP predi cors when used in i

conjunction with a CLASS network on this dataset.

Table 4.3: PNP Classification Results (Family One)

True Class System Decision 3
Class 1 Class 2 Class 3 Class 4 Class 11 Class 16

Class 1 0.92 0.01 0 0 0.05 0.03 3
Class 2 0.01 0.93 0.05 0 0 0.01

Class 3 0 0.04 0.93 0 0 0.03 1
Class 4 0 0 0 1.0 0 0

Class 11 0.02 0 0 0.01 0.98 0

Class 16 0.02 0.01 0.03 0 0 0.92 3
I
I
I
I
I

112 i

I
I

Table 4.4: PNP Classification Results (Family Two)

True Class System Decision

_Class 5 Class 6 Class 8 Class 10 Class 13 Class 15

Class 5 0.87 0.02 0 0 0.11 0

Class 6 0.01 0.98 0 0 0.02 0

Class 8 0 0 1.00 0 0 0

Class 10 0 0 0 1.00 0 0

Class 13 0.06 0.01 0 0 0.94 0

Class 15 0 0 0 0 0 1.00

Table 4.5: PNP Classification Results (Family Three)

True Class System Decision

Class 12 Class 17 Class 18 Class 20

Class 12 1.00 0 0 0

Class 17 0 0.79 0.11 0.10

Class 18 0 0.36 0.45 0.19

Class 20 0 0.21 0.17 0.62

I
Table 4.6: PNP Classification Results (Family Four)

True Class System Decision

Class 7 Class 9 Class 14 Class 19

Class 7 1.00 0 0 0

Class 9 0 1.00 0 0

Class 14 0 0 1.00 0

Class 19 0 0 0.02 0.98

An alternative way of using PNPs as feature generators is to adapt a single
predictor on-line, and use the coefficients of the predictor as features for the
classifier; this approach is shown in Fig. 4.6:

I
I 113

Adapt K

Additional Features (if desired)r + Vector

Figure 4.6: PNP Coefficients as Classification Features I

Use of PNP coefficients as features is closely related to linear and nonlinear

predictive coding. Modern spectral analysis techniques have shown that theseI

coefficients contain information concerning the power spectrum of the input time
series [47).I

One method of improving the performance of the PN* technique described

above is to add a bank of passband filters prior to the prediction process. Fig. 4.7

illustrates the use of passband filters and additional data scaling in conjunction with
a one-step ahead PM'.

Xk(t) coficets (t) X(t + At) 3F _ 71E

k 1

The Fist caling inFg 4.7lensursital • It thInutt h newi•ork is inthe ragI1

I~ ~ ~ Adtoa Fetue (i deird V-IectI---o-_I ris .iua •

The ofpsbNd cefiierts inth figtures poide blotnoselyrltdt suppareso and nolna

--"peitv coig Moenspcrl anaysi tehiqe have- shw tha these

dilscrinatisteueon cpabiliie foltrs each cassdditionally fora saligiven classctiono energ

SI

4 Moving

The Scaling in g 47 nsrurstat +h inpu Squa ntw rksintedrne 1
The pasband iltersin thefigureprovid both noie'4 prssonWA

discrminaion apablitie foreachclas. Aditionllyfor givn clssi oeeg

ArI
114.,

II
I

outside th• Vrequency of interest is put into the classification system. The passband
filter may be represented mathematically in the frequency domain as

i C 4:4

Pi() + C -1 (PnO
I n=I

where (pi(]) is the spectral magnitude of the signal corresponding to class i at
frequency f, yi(f) is the gain of the filter at frequency f, and C is the number of classes
considered by the classifier. Sample filters for a three-class classifier are shown in
Fig. 4.8.

(B|A filter subband

I I LI f

Figure 4.8: Sample Discrimination Filters for a Three-Class Network

I 4.4.2 Additional Time-Domain Features

Higher-order statistics are an additional type of time-domain information
that can be helpful for AcW classification if the signals of interest are non-Gaussian.
Two statistical measures investigated were the skewness or third moment, and the
kurtosis or fourth moment. Skewness, which characterizes the degree of asymmetry
of a distribution around its mean, is defined as

I
N 13

I ~j=lo

I

where R is the mean of the input data vector, and (Y is the standard deviation.
Kurtosis, which measures the relative peakedness or flatness of a distribution, is
defined as

Kurt() = 3 4:6

Experiments with the Rangex data set showed that the Kurtosis of the time-
series data may be particularly useful in distinguishing man-made signals from
biological waveforms. In fact, on the particularly difficult Orincon "short-net"
database [521, the authors were able to achieve perfect discrimination between
biological and man-made signals on both training and evaluation data sets using a
minimum-logistic-loss PNN classifier and kurtosis as the sole network input.

4.4.3 Frequency Domain Features

In addition to the time-domain features presented above, various means
were investigated for reducing the dimensionality of frequency-domain features for
logistic-loss PNN classification. Fig. 4.90 shows a typical lofargram display.

tj -kAt F i
E k

NI
Event of Interest

_ _ _ _ _ _ _ _ _-

f, Frequency 4

Figure 4.9: A Typical Lofargram Display

The F x k lofargram will often contain hundreds of frequency bins and historical I
time scans, resulting in O(105) pixels in the overall display. This would present an
unreasonably large number of inputs to a neural network, especially given the n
limited amount of training data available (Section 4.3).

As Fig. 4.9 shows, for many types of signals it may not be necessary for the 3
network to see the entire lofargram. If the events of interest to a particular network
have an expected frequency range, F', and an expected duration, k', then the number

116 3

I
I

of pixels required to display the event (shaded region) can be reduced. However, the

new F x k' retina may still contain an unacceptably large number of inputs for a
neural network trained on a limited number of signals. One popular method of
reducing the dimensionality of the retina is to average the bins, scans, or both.
While this technique may be able cut the number of inputs in half, it does not
significantly affect the order-of-magnitude of the retinal area.

Two alternative methods to reduce the dimensionality of the frequency-
domain features were used: (1) heuristic features derived from the FFT information,
and (2) principal component analysis of the input features. The latter technique is3 discussed in Section 4.4.6 since it is not limited to frequency-domain features.

In a first attempt to reduce the dimensionality of the input feature vector, the
following twenty-one heuristic features were chosen based on their ability to
characterize the information in a single scant of Rangex data. Previous experience
with similar features had also yielded favorable results.

I 1. Total spectral energy between 100Hz and 1000Hz (El).

3 2. Total spectral energy between 1000Hz and 3000Hz (E2).

3. Total spectral energy between 3000Hz and 5000Hz (E3).
4. The ratio El

1-E 1+

I 1I - El - E2"S5. The ratio

E2
6. The ratio 1 - E2

7. The frequency at which the largest spectral peak occurs (F1).

I 8. The frequency at which the second largest peak occurs (F2).

9. The frequency at which the third largest peak occurs (F3).

10. The magnitude of the largest spectral peak (M1).

3 11. The magnitude of the second largest spectral peak (M2).
M1

12. The ratio M22- (a measure of coherence)

I
t A single scan constituted one row of the lofargram display shown in Fig. 4.9. This represented a subset
of the frequency bins resulting from a 1024-point FFT. Adjacent scans overlap each other by 509/6 (i.e.,I the FFT window slides by 512 points in the time-domain between each scan).

1 117

I

13. The ratio M-3. (Where M3 is the magnitude of the third largest peak)

14. Frequency of 10% cumulative power (fl 0). (i.e.,10% energy below flo)

15. Frequency of 25% cumulative power (f2 5).

16. Frequency of 45% cumulative power (f4 5).

17. Frequency of 70% cumulative power (f7 0). I0.10 -0.00

18. The ratio .f10 - f0 (Where fO is 0.0.)

0.25- 0.10
19. The ratio f25-fl0

0.45 - 0.2520. The ratio 0450-0.45

0.70 - 0.4521. The ratio f7 - f4

Before the FFT is taken, the time-domain data are preprocessed as shown in
Fig. 4.10.

Input DaaTime Data
Lo asBfe Kaiser-Bessel Background I

Fitran eteig Window Removal

Figure 4.10: Time-Domain Preprocessing for FFT Feature Generation 3
In Fig. 4.10, the data buffer and centering adjustment is described in Section

4.4.4, and the Kaiser-Bessel (KB) window is defined by:

.0] N

w (n) 05 I•n1•5-4:

where

00x o (/)
4:8

UX I

I
118 3

I
I

These single-scan features were tested on five classes from the Rangex data
set. The classes were divided into four families using hyperellipsoidal clustering
(see Section 4.5.1), and a classifier was generated for each family. The classification
accuracies obtained on independent evaluation data are presented in Tables 4.7 - 4.10I [3].

Table 4.7: FFT-Based Classification Results (Family One)

i True Class System Decision

3 Class 6 Class 11 Other

Class 6 6/6 0 0

Class 11 0 3/3 0

Other 0 0 68/68

Table 4.8: FFT-Based Classification Results (Family Two)

True Class System Decision

Class 3 or 4 Other

Class 3 or 4 45/45 0

Other 2/34 32/34

3 Table 4.9: FFT-Based Classification Results (Family Three)

True Class System Decision

Class 8 Other

Class 8 6/6 0

Other 0 ill/11

i Table 4.10: FFT-Based Classification Results (Family Four)

I True Class System Decision

3 Class 2 Other

Class 2 15/19 4/19

Other 1/35 34/35

119

I

All results presented in Tables 4.7 - 4.10 included the use of hyperellipsoidal I
cluster detectors, and did not include any multi-look post-processing (Section 4.6).

4.4.4 Automatic Window Centering

The location of an AcW transient within a window of data can affect the 3
nature of the power spectrum. This is especially true if the transient is brief as
compared to the window size and the classifier is using a single-scan feature vector.
Fig. 4.11 shows a technique that can be used to ensure that the AcW transient is I
automatically centered in a given FFT window.

E 25 = Energy in first I
Energy Ratio 25% of spectrumof Unknownn

Transient
E 100 = Energy in 100%

Energy Ratio, of spectrum

E 25/E 100

("Red Shift)•)_ _

Energy Ratio
of Batnground Optimum Center

Noise3

Window Center (Sample Number)

Figure 4.11: Self-Centered Spectral Windowing via Red Shift n

As the sampled-data window approaches its optimum center position relative
to the buffer-stored transient acoustic energy, the spectral power distribution 3
undergoes its maximum red shift to low frequencies. The red shift is defined as
follows:

E
SR E4:9=E100I

where E is the energy in the first p percent of the power spectrum bins.

4.4.5 Moving Window Feature Calculations U

The frequency-domain features described above were all calculated for a
single FFT scan. Often a single scan is all that is veeded to classify an AcW signal

correctly; especially if that scan is derived from a window that is consistently

I
120I

I
U

centered on the onset of the signal.t However, it is often desirable to give the
network access to the temporal characteristics of the transient that correspond to
multiple scans (see Fig. 4.9).

The most common method of incorporating temporal information is to give
the network access to historical feature vectors. However, once again, doing so
tends to result in an overly large number of network inputs given the size of the
training data. Just as heuristics can be used to reduce the dimensionality of the
frequency (spatial) axis of the lofargram shown in Fig. 4.9, similar heuristics can be
used to reduce the dimensionality of the time (temporal) axis. These are known as
moving-window (MW) features, and some commonly used MW features are given
below. Note that in Eqs. 4:10 - 4:17, the vector, &, here represents current and
historical values of a single feature rather than current values of multiple features.

I Average:

N

MWA(& N) - N-I 1 x(t-i) 4:10

I Standard Deviation:

* N

MWSD(x,N) = x(t-i)-] 4:11
Ai=O

Average Energy:I _ N"

1 N-1
MWAE(i 4:12

Average Absolute:

1 N

MWAA(2, N) - N-i1 Ix(t-i) 4:13| =O

Historical Value:

MWV(& N) - x(t-N) 4:14

t For instance, the ShortNet test results (Section 5.2), obtained using a single FFT scan for each event,
compare favorably with other short-net networks that made use of multiple scans.

121

I

Span: I

MWS(-, N) I x(t) - x(t-N) 1 4:15

Average Derivative:

MWD(,N) [x(t)-x(t-i)] 4:16

Point of PE Power:

MWP(x, N, PE) J; 4:17a

where

j X~ 2 /N-1

PE = 100"* [[x(t-)I 2 4:17bI
i=O i=0

Notice that these moving-window functions calculate first and second I
moments for a window of temporal data (Eqs. 4:10 and 4:11). The temporal data may
be raw time-domain data, as in the case of the PNN prediction errors described in
Section 4.4.1 and shown in Figs. 4.2 and 4.9. Or, the data may be current and
historical values of the frequency-domain features described in Section 4.4.3. This
type of spatio-temporal approach was used for the Build 2 sea trial and is discussed
in Section 5.1.

4.4.6 Principal Component Analysis

Principal component analysis (PCA) is a non-heuristic technique for reducing
the dimensionality of an input feature vector. The principal component
transformation, also known as the Karhunen-Lo~ve transformation, uses a
standardized linear combination (singular value decomposition) of the input data to
maximize the variance of the transformation output data. The idea behind
maximizing the variance is to "maximally separate" the input feature vector,
thereby easing consideration of differences between feature vectors. The coefficients
that weight the old input features, in forming the linear combination, are scaled so
that the sum of their squares is equal to one.

To transform an input feature vector, x_, into a new feature vector, X', the
following principal component transformation is used:

A 4:18

122 I

I
U

where A is the transformation matrix with rows that contain the eigenvectors of the
sample data covariance matrix [46]. The result of the principal component
transformation is that the new set of xt vectors will have linearly independent
columns (features). Additionally, if the A matrix is arranged so that the
eigenvectors are sorted according to the magnitude of their corresponding
eigenvalues, then the features of x' will be sorted according to their ability to account
for variance in the original feature database.

I A useful property of eigenvalue analysis is that the sum of any N eigenvalues
divided by the sum of all the eigenvalues represents the proportion of the total
variation explained by these N eigenvalues. The "total variation," which is the sum
of all of the eigenvalues, is equal to the trace of the data covariance matrix. Values
on the diagonal of the data covariance matrix can also be divided by the trace of the
covariance matrix to compute the proportion of the total variation explained by the
original variables. Fig. 4.12 illustrates this for a typical feature database containing 84
original features.

I0.9 -1 xX. O ,•

0.8- - _x

W x
S0.7-I× X

P056- x

> X

I ~~~ 0.4-
x

I = 0.3
E

S0.2-

0 10 20 30 40 50 60 70 80

Principal Component
Figure 4.12: Cumulative Percent Variance Explained by Principal

Components

I As can be seen from the figure, almost 80% of the variance in the original
database was explained by the first ten elements in the principal component vector,3 x'. Thus, for this example, the size of the input feature vector could be reduced by

I 123

I

88% with only a 20% loss of information. Twenty principal components achieve a
76% reduction in the dimension of the feature vector with only a 10% information
loss.

Clearly, for this example, the feature vector could be reduced in size by one-
half with viriually no loss of information; however, the effects of further
reductions in the size of the input feature vector on classification performance
cannot be determined a priori.t Experience has shown that in many cases the size of
the input vector can be reduced so that X' accounts for 60% to 80% of the variance in
the original data with little adverse effect on classification performance. Section 5.2
discusses the use of PCA on AcW data and the corresponding classification results
obtained with the CLASS algorithm.

4.5 Data Qualification

Data qualification, or detection, address the question of whether an input
vector of observables represents a class or classes from among C classes on which a
classifier is trained. Classification is not performed on input vectors that fail the I
qualification criteria. The idea behind data qualification is to provide a means for
the identification of signals (and their corresponding feature vectors), for which the
classifier has not been trained; it is often desirable to classify these signals by other
means (see Section 4.7) and then use them to retrain the AcW classifier so that in
the future it can respond to this type of input; 3
4.5.1 Supervised Hyperellipsoidal Clustering (HEC)

4.5.1.1 The HEC Methodology

Physically, the process of representing data vectors as points in feature space
can define hyperellipses, based on the statistics of the data features. Data
qualification may be performed by computing normalized distances from
hyperellipsoidal centroids and comparing each distance with a threshold. The
interrogation process is shown in Fig. 4.13.

I
t Note that a structure-learning classification algorithm, such as that proposed in Section 3.3, is
capable of automatically selecting suitable inputs from among the principal components, eliminating
the need for analyst involvement in the reduction of the size of the input vector. One might then ask
why one would use PCA with a structure-learning algorithm at all; PCA can improve the speed of
network learning by eliminating candidate inputs and reducing the number of input combinations that
need to be tried.

t The data qualification stage may also correctly be called a "detection" stage of the AcW
classification process, in the sense that it "detects" whether or not the incoming signal is one for which I
the classifier has been trained. This type of "detector" should not be confused with the detector in Fig.
4.1. That detector is responsible for determining the presence of a signal of interest among the
background noise and is not concerned with the region for which the classifier has been trained.

124

l

I X 1 xid i
V 0 Feature D ifDtc s Detection
(t •Calculations OP if < eii N NW

Conditioned C (x0 De)ision
lilXN •(-XN' 2 dk

I
.• (XNkN2dI,4 Decsio

Figure 4.13: Data Qualification Using Ellipsoidal Cluster Tests

In Fig. 4.13:

ijk the mean of feature j for class k

(Yjk =the standard deviation of feature j for class k
i=1,. . ., n; n is the number of input data vectors
j=1,... . N; N is the number of features (dimensions) in the input vector
k=1 ... , C; C is the number of known classes
Ok the detection threshold for class k.

During the synthesis of the data qualification stage, N-dimensional ellipsoidal
l clusters (one dimension for each feature) are formed with closed boundaries;

within each cluster it is likely that the input vectors for a given class will appear.
These n-dimensional boundaries are learned from the data in the form of ellipsoids,

l nominally at some multiplicative constant, 0 k, times the N-dimensional input

feature standard deviation vector. Closed decision boundaries are important
because they provide greater robustness than linear separators; without closed
decision boundaries, input vectors unlike anything seen during training might pass
through the data qualification stage.

I Note that for data qualification, the ellipsoids are chosen to define crude class
boundaries. While it would be possible to define a single ellipsoid that enclosed the3 data seen by a network for all classes, it is preferable to cluster by classes.

Consider a two-class problem with data distributed as shown in Fig. 4.14. If3 qualification of the data in the figure is accomplished by computing the statistics for

I 125

I

all the data (classes 1 and 2) the decision boundary will enclose a large amount of
space for which training data did not exist (the shaded region). If, on the other hand,
a separate cluster is formed for each data class, the resulting decision boundaries will
exclude these regions, resulting in improved (i.e., more discriminating) data
qualification.

~Class 2

X2

Sx,

Figure 4.14: HEC For a Two-Class Problem

For the special case of two input features, the equation for the distance
measure for a single class as computed in Fig. 4.13 is given by

D, = (xi -xV1 1) 2 + (x2 - 312)22 4:19

cr11 2 U122

which may be expanded into the general polynomial form

A 22DI y = a0 + al x, + a 2x, + a3 x2 + a4 x, 4:20

where:

a0 = (• I / 4911) 2 + (3ý12 / (12) 2

a, -2 3l,(2

2 1C2 4:21

a -2 5Z 2/l

a3 12 -2 12/4 1I

126I

I

Each coefficient value is fixed based upon the mean, 5ij, and the standard deviation,

3 ~ij (assuming a Gaussian distribution) of each of the features.

A graphical representation of the ellipsoidal clustering process using two
features, x1 and x2, is shown in Fig. 4.15(a).

2 Not Class k X2 ' .e~ NotClass k

Class Not Class k <

Not Classk I Xl X1

(a) Principal Axes Collinear with Features (b) Rotated Principal Axes

Figure 4.15: Graphical Representation of Ellipsoidal Clustering

I Everything in the above figure that is not in the shaded region denoted "Class
k" is, by definition, not in Class k. Note that the principle axes of the ellipse
represented by Eq. 4:20 are collinear with the principal axes of the feature space, as in
Fig. 4.15(a). The HEC transformation, Eq. 4:20, cannot represent a cluster that is
rotated on its principal axes as in Fig 4.15(b). However, Eq. 4:20 may be modified to
incorporate the Mahalanobis distance measure (Section 2.4.3, Eq. 2:126). This
distance measure accounts for cross-correlations between the input features and is
related to principal component analysis (Section 4.4.6). An alternative to the
Mahalanobis distance is to use PNNs with nodal elements that contain cross terms
to represent the clusters. In addition to being able to rotate the principal axes of the
clusters, the general polynomial network approach has the advantage that no a
priori structure is imposed on the data other than the nodal element model, which
may be expanded into any general form (see Section 4.5.1.4).

In supervised hyperellipsoidal clustering the class membership of each item
I is determined analytically by the user. The cluster algorithm then determines the

size and location of each cluster by computing the mean and standard deviation
along each dimension of all points which belong to that cluster. The following
statistics are accumulated for each cluster:

1. Standard deviation along each dimension of the database.

I 2. Mean along each dimension of the database.

During interrogation the normalized distance from a data point

X [xil ,... ,Xij,..., Xi NIT to the centroid of a cluster k is given by

* 127

I

2 1
D(X i) = N 4:22

j=1

where Nk is the total dimensionality of cluster k. The point X can then be classified
as being most similar to that cluster for which it has the smallest normalized
distance. An inverse measure of relative likelihood for membership in cluster k is

e-D (A i) 4:23

As the distance to the center of the cluster goes to zero, the likelihood of
membership goes to unity. By computing Eq. 4:23 for k=1,. .. , C, one may establish
the class of most likely membership of X i-t I

Two or more of the input features in a duster may be correlated, causing the
cluster to become large in the involved dimensions, creating a large volume within
the cluster that is not populated. A point from a different class, such as shown in I
Fig. 4.16(a), may then more readily appear within the cluster, leading to false
classifications. 3

X2 X2 I

0 (tat point)

XiXI-vXl Xl I

(a) (b)

Figure 4.16: (a) A Cluster with Excessive Capture Area (volume);
(b) A Preferable Cluster

Two modifications to the supervised clustering technique would address this I
concern:

1. Provide partially supervised clustering, in which the analyst determines I
the class membership for each vector in the database, but an I

t Note the relationship between the cluster distance measure and the Radial Basis Function (RBF)
networks discussed in Section 2.43.

128 n

I
I

unsupervised clustering algorithm operates separately on each class of
data to determine sub-clusters within that class.

2. Transform the input variables of each cluster using singular value
decomposition. This provides a linear transformation of the inputs bywhich the principal components become aligned with the cluster axes,
resulting in dusters as depicted in Fig. 4.16(b).

I 4.5.1.2 HECs 2s Pre-Classifiers and "Family" Detectors

In addition to rejecting exemplars outside the training region of the
classifiers, HEC data qualification can improve classification performance by
allowing the use of multiple PNN classifiers. Often, in feature space, there exist
class groupings that may be distinguished from each other using cluster techniques.
The classes within each grouping, however, may not be distinguishable using
cluster techniques. A natural approach, then, is to create superclasses or families of
classes. A different PNN classifier may then be trained for each family, and pre-
classification may be used to determine the family (or families) to which the
incoming data belong.

I One approach to creating families is to group signals by duration; this is the
technique that is currently used by Orincon Corporation in the Build 2 and Build 3
systems (short-net and long-net) [52]. Another approach is to group the AcW classes
by frequency rang- %e shown in Fig. 4.17. This approach is especially useful if the
classification features are already in the irequency domain.

II

IFam il Y. Famil 2 Family 3 Famil4 4,

I Frequency, Hz fs/2 fs

Figure 4.17: Grouping Classes by Frequency

The hyperellipsoidal clustering method was applied to the same 4-family, 20-
class data used for the PNP experiments (Section 4.4.1, Tables 4.2 - 4.6). The cluster
det(:tion results on independent evaluation data are shown in Table 4.11 [52].

Improved results can be obtained using multi-look post-processing (Section
4.6, Table 4.20). Note that for HEC data qualification, the rows of the confusion
matrix (Table 4.11) need not sum to unity because an exemplar may be a member of
more than one data cluster (i.e., some clusters overlap).

I 129

I

Table 4.11: Single-Look HEC Pre-Classification Results

Single-Look Detected Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 i

a,60 0 0 0 0 0 0 0 00.430 0 0 0 0 0 0 0 0

2 0 . .14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 00 .400 0 0 0 0 0 0 0 0

4 0 0 80 0 0 0 0 0 0 1.00 0.11 0 0 0 0 0 0 0 0

5 0 0 0 0 .86 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0

6 0 0 0 0 0. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0I
7 0 0 0 0 0 0 ,0 0.04 0 0 0 0 0 0 0 0 0 0

tz 8 0 0 0 0 a 0 0 .84 0 0 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 ..900
10 0 0 0 0 0 0 00 0 .9)0 0 0 0 0 0 0 0 0 0

> 1 0.290 0 0 0 0 0 0 0 00. 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 .8 0 0 0 0 0 0- - 08 I

013 0 0 0 0 0 0 0 0 0 0 0.86 00. 0 0 0 0 004: 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 .74 0 0 0 0 0 0

is 0 0 0 0 0 0 0 0 0 0 0.5 0 0.86 0 93, 0 0 00 .29 0

16 0 0 0 0 0 0 0 0 0 0 0-76 0 a 0 0 .74 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 74 14 0 0

is 0 0 0 0 0 0 0 0 0 0 0 00.040 0 0 0.2. -.60 0

19 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 a .0 g
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 .60

I
In general, supervised clustering should not be used as a stand-alone tool for

classification because of the inherent assumption that all points in the same class
will belong to a unimodal Gaussian distribution. However, as can be seen from
Table 4.11, for this particular dataset the hyperellipsoidal clusters were adequate class
discriminators for pre-qualification.

4.5.1.3 HECs as Feature Generators

In addition to data pre-qualification, hyperellipsoidal clustering may also be
used to generate features for classification. The most useful features are based on
the cluster distance measures, Dk, defined in Eq. 4:22.

The most straightforward way to use the distance measures as features is to
tap off the distance measures prior to the thresholding in Fig. 4.13 and send them
directly to the classifiers as features. To evaluate the effectiveness of HEC distance
measures, CLASS networks were trained using only cluster distances as input
features. The single-look results on independent evaluation data containing ten i
known and three unknown classes are shown in Tables 4.12 - 4.15 [2].

I
I

130 3

N
U

Table 4.12: Single-Look HEC-Distance Classification (Family One)

True Class System Decision

Class I Class 2 Class 3 Class 4 Class 11 Class 16 Unknown

Class 1 1.00 0 0 0 0 0 0

Class 2 0 1.00 0 0 0 0 0

Class 3 0 0.50 0.13 0 0.38 0 0

Class 11 0 0 0 0 1.00 0 0

Unknowns 1&2 0 0 0 0 0.05 0 0.95

Unknown 4 0 0 0 0 0 0 1.00

Table 4.13: Single-Look HEC-Distance Classification (Family Two)

True Class System Decision

Class 5 Class 6 Class 8 Class 10 Class 13 Class 15 Unknown

3 Class 5 1.00 0 0 0 0 0 0

Class 6 0 1.00 0 0 0 0 0

Class 10 0 0 0 0 1.00 0 0

Class 13 0 0 0 0 0.67 0 0.33

Unknowns 1&2 0.07 0.01 0 0.08 0 0 0.83

Unknown 4 0 0 0.01 0 0 0 0.99

Table 4.14: Single-Look HEC-Distance Classification (Family Three)

True Class System Decision

3 Class 12 Class 17 Class 18 Class 20 Unknown

Unknowns 1&2 0.04 0 0 0 0.96

I Unknown 4 0.46 0 0 0 0.54

I

i 131

!

Table 4.15: Single-Look HEC-Distance Classification (Family Four) I

True Class System Decision U
Class 12 Class 17 Class 18 Class 20 Unknoywn

Class 7 1.00 0 0 0 0

Class 9 0 1.00 0 0 0

Unknowns 1&2 0.01 0.17 0 0 0.82 1
Unknown 4 0 0 0 0.35 0.65

Once again, the results presented in Tables 4.12 - 4.15 can be mproved upon
by using a multi-look post-processing technique (Section 4.6, Tables 4.16 - 1.19).

The fact that HEC distance measures provide useful features is not surprising
given the fact that there is a close relationship between their use as PNN inputs and
Radial Basis Function (RBF) neural networks (see Section 4.5.1.5).

4.5.1.4 HECs as Implemented by PNNs I
Suppose the polynomials in the C-1 branches of the minimum-logistic-loss

classifier are linear functions of the form

A N 4
Y = ao,k + j aj,1 xj 4:24

j=1

If we first examine a two-input, two-class minimum-logistic-loss network using a I
linear node, we see that the network performs a linear separation between the two
classes: the linear node defines the discrimination boundary between classes (Fig.
4.18). This can be extended to more than two inputs and more than two classes.
When more than two classes are involved, the minimum-logistic-loss criterion
creates an optimum family of discrimination lines (or hyperplanes) dictated by the
distributions of the synthesis data populations for the various classes. This family is
found in a simultaneous search because interactions arise between classes when
locating multiple discriminant functions. 3

I
I
I

132 1

I

linear separator

"Cls k Not Classk
,CAs (< <0)

3 Figure 4.18: Classifier Using Linear Polynomials

It should be noted that a multi-layer perceptron (MLP) nodal element is3 limited to linear separation boundaries. The polynomial nodal element, however,
with its incorporation of nonlinear terms, does not have this limitation.

3 Consider, next, the two-input second-degree additive polynomial as the
branch polynomial form

S=a 0 + ax 1 + a2 xi + a3x2 + a 4x2 4:25

Assuming only two classes are to be discriminated, the minimum-logistic-loss
I classifier finds the best (at least locally) quadratic separator. Note that Eq. 4:25 has the

same form as the hyperellipsoidal duster equation (Eq. 4:20). While the polynomial
form is the same, the coefficients of the quadratic polynomial, in general, will be
different from those found using ellipsoidal clustering; they will be the same only if
the statistics of the features are Gaussian. The advantage, therefore, of using the
minimum-logistic-loss network is that the coefficients are more general and reflect
what is found in the data. The network can only do better (at least on the training
data) than ellipsoidal clustering techniques. In fact, given suitable values of the
coefficients, Eq. 4:25 can describe a point, a line, a circle, an ellipse, a hyperbola, or a
pair of intersecting lines.

Further, one may implement even more general forms of ellipsoidal
_ clustering with minimum-logistic-loss networks. If, instead of using the additive

quadratic polynomial in Eq. 4:25, a complete quadratic polynomial is used, for the
case with two input features and two class outputs, the describing equation is:

A 2 2y = a0 + alxi + a2 x, + a3 x 2 + a4 x2 + a5 xx 2 4:26

I Note that the only difference mathematically is the inclusion of a cross-product
term. Given this form, any conic-section form of separation can be performed and
the separation can be rotated with respect to the coordinate system defined by the

133

I
features, as shown in Fig. 4.15(b). The advantage here is that the minimum-logistic-
loss network will automatically perform a linear rotation of the coordinates if it
provides better separation than the principle axes of the features. With ellipsoidal U
clustering, this would have to be performed in a separate step before clustering, e.g.,
by using the Karhunen-Lo~ve transform or singular value decomposition.

In summary, minimum-logistic-loss networks subsume the capabilities of
ellipsoidal clustering techniques and should provide superior performance in
detection as well as isolation. The minimum-logistic-loss network is a completely I
general way of reflecting the natural distribution of the data, without imposing an
assumed structure on the data. However, when the features have Gaussian
distributions and the network used to fit the data is a quadratic additive polynomial,m
the minimum-logistic-loss classifier boundaries are essentially the same as those
obtained with multivariate-Gaussian hyperellipsoidal clustering.

4.5.1.5 HECs, Radial Basis Functions, and Unsupervised Clustering

Hyperellipsoidal clustering techniques, especially when used as feature n

generators (Section 4.5.1.3), are closely related to radial basis function (RBF) neural
networks. Recall, from Section 2.4.3, that RBFs contain one hidden and one output
layer. The most commonly chosen hidden layer is the Gaussian kernel function

/(x-'-)T(-x - w))) :2

z = exp 4:27

and the output layer is a linear combination of the input layei nodal outputs.

y = 9Tz 4:28

Rewriting the exponent in Eq. 4:27 as

(x. - wJ)2

2. 4:29
j=l 2C2 4

results in an equation of nearly the same form as the HEC distance measure, Dk,

shown in Fig. 4.13, and Eq. 4.19, the difference being that in Eq. 4:29 the standard

deviation, a, is constant in each dimension. This constant a is what makes RBFs
"radial." If instead of a constant parameter, c, a vector of standard deviations is
used, one for each dimension of the input database, the radial basis function neural
network becomes an elliptical basis function neural network (EBF), and Eq. 4:29 will
take exactly the same form as the HEC distance measures. Fig. 4.19a shows the
structure of an EBF network.

134 3

I
I

Distance Cluster Linear
Measures Membership Combination

I Input " i /J I ' iI

I~ ~ ~ ~ xs~,, L•XN-lI, '%z di IN_

NsNetwork
Outputs

I

i _ _ _ty

RBF/BF Str ctur

Figure 4.19a: RBFIEBF Classification Network Structure

I Note that the CLASS network can readily implement the transformation
shown in Eq. 4:28 as well as more complex nonlinear combinations of the hidden
layer outputs. Fig. 4.19b shows the structure of a CLASS network with HEC distance
measures as input features.

Multi-Input
Distance Single-Output Probability
Measures Polynomial Computation

Input : %,I) d. D-I ~ ~~~~Features: I Ir -F -- s
" -X- N(XN -IN)\ dIN/

II

I Figure 4.19b: HEC PNN Classification Network Structure

I
I 135

I

Figs. 4.19a and 4.19b illustrate the structural differences between RBF/EBF i
networks and PNN classification networks that use HEC distance measures as
features. One difference is the presence of the membership calculation (Eq. 4:27) in
the RBF/EBF network. This function serves to convert distance measures into a
probability of membership in a Gaussian cluster and could have been used as part of
the feature calculations for the PNN network of Fig. 4.19b (Eq. 4.23); however, this
transformation is not essential because it does not add additional information.
While HEC PNN classifiers can be used to implement RBF/EBF networks, the
reverse is not the case. CLASS networks have two structural advantages over
RBF/EBF networks: (1) they can combine the distance measures nonlinearly, and (2)
they output estimates of actual a posteriori probabilities as a result of the logistic-loss
training method.

In addition to the structural advantages mentioned above, CLASS networks
have one significant algorithmic advantage over RBF/EBF networks: they optimize i
the layer of MISO polynomial nodal elements using a logistic loss function as
opposed to a squared-error loss function.

Another significant algorithmic difference is the method in which the cluster
statistics are determined. Supervised HEC assigns one cluster to each data class and
computes the cluster coefficients by finding the distributions of the class I
observations. The RBF/EBF approach, however, typically uses an unsupervised
technique such as K-means [22], to determine an analyst-specified number of natural
data groupings (clusters). The advantages of the supervised approach over the I
unsupervised approach is an issue of ongoing research. In the current work, all
cluster coefficients were determined using the supervised technique. However,
unsupervised clustering could be valuable in finding the natural distributions of I
data points in multidimensional spaces with minimal reliance on a priori
assumptions. One alternative to the K-means technique is BAI's F-Cluster program
for unsupervised data clustering. The strength of F-Cluster is that it generates all
possible valid clusters of the data set and evaluates them using multidimensional F-
tests (significance tests) to identify the partitions that best describe the true geometric
subjects of the data.

F-Cluster produces its final answer by generating a provisional cluster starting
from each point in the observation database. As each of these provisional clusters is
generated, it is compared to clusters that were found earlier to see if the new cluster
is essentially the same as something the program already knows about. When this
happens, the new provisional cluster is merged with the composite cluster. This
allows a parsimonious description of the data space while still ensuring that the
boundaries of each of the final clusters have been well explored. One benefit of this
approach is that the analyst does not need to provide, a priori, the number of
natural data groupings.

i

136i

I
I

4.5.1.6 HECs as Probability Density Function Estimators (Bayes Approach)

I While HECs are used primarily in a data qualification contexi *he€ u.-ay also
be used indirectly as part of the classification process. As mentioned above,
ellipsoidal clustering essentially involves computing the statistics of a Gaussian
class distribution. Given these statistics, it is possible to generate a Bayes' classifier
using decision features generated by polynomial neural netwer_,• and multimodal
probability density functions generated by HECs. Fig. 4.20 illustrates this approach
for a five-class problem.

BAI considered the implementation of the Bayes' classifier approach outside
the scope of the current work effort.

Original Input PNN-Computed New Input PDFs for K Classes A Priori A Posteriori
Features Nonlinear Features Space via HEC Analysis Probabilities Probabilities

IP(Y I p(YI 1)p(1)PNN #21 vs. C)

P

c -- + . - . -- - .------. ,• , , • , •. I p (2)

I =• PNN #2 Ti•pY2__ý p(Y I2)p(2)•

S(Cl vs. C3)
YI

p(5)
jPNN #10*pY5 p(Y I5)p(5
---.................... P D F #5

Figure 4.20: Five-Class Bayes' Classifier Using PNNs and HECs

4.5.2 Coherent Signal Processing

In addition to hyperellipsoidal clustering, a study was made of the use of
coherent signal detectors as data qualifiers to remove and classify steady-state
narrow-band classes (e.g., an RMS pulse). This method is shown in Fig. 4.21.

II
I 137

I

_• Ratio Top
I

Two Peaks
I

Existing Coherent Clas•
Pre-Processed {Calculate FFT tor

Time Data] and Provisional New
Pro>visional NewDetermine

Decsion or

Spectrum Logic Coherent Class
or 3

ComputeNo Coherent Class

CoherentI

Figure 4.21: Data Qualification for Narrow-Band Steady-State
(Coherent) Signals

The following steps were used in the discrimination of coherent signals: I
(1) Locate the highest and second-highest spectral peaks in the signal, and

label them P1 and P2 respectively.

(2) Determine the frequency, fk, of P1. I
'3) If P 1/P 2 is smaller than a pre-defined threshold, the signal is deemed not

coherent and is submitted to PNN classification. 3
(4) If the signal is coherent, the signal is classified by comparing the

frequency fk with a database of known coherent signals. 3
This method obviously can be extended to multiple-tone coherent signals.

4.6 Classification Post-Processing

Classification post-processing consists of a set of decision rules that map 3
current and historical classification output probabilities into a class decision. The
simplest decision rule, maximum select, involves selecting the class corresponding
to the largest classifier output probability. The decision rule may include a
requirement that the maximum probability be above a class-specific threshold. If
decisions are based upon one interrogation interval only, they are called single-look
decisions. Single-look decision rules provide good benchmarks against which otherschemes can be measured.

Classification performance can be improved with multi-look classification I
post-processing. Figs. 4.22 and 4.23 show two multi-look post-processing schemes:

138

I
I

p(Decision (0 or 1)
I(..... > 61 AtfrCls

I

I

p(CII) D Decision (0 or 1)

10 ~ ~ ~ ~ •(Px) I X)iej _frClsC

I[,

i Figure 4.22: Multi-Look Post-Processing (Decision Accumulation)

(In 1i.422, Dhecision (0i elrscas ftesm o r 1) atN ige

the ~ ~ 00 shif reiser for eahcasmy>dfeetlnts Ther fore Cas nubro

IN

Figure 4.23: Multi-Look Post-Processing (Probability Averaging)

In Fig. 4.22, the decision logic declares class k if the some of the last N single-3 look classification probabilities exceeds some threshold, Ok' In Fig. 4.23, the decision
logic declares class k if the average of the last N probabilities exceeds some threshold,
tck* Note that there is a unique threshold corresponding to each class; additionally,I the shift registers for each class may be different lengths. There are a number of
variations on these two post-processing methods: for instance, in the method of Fig.
4.22, instead of requiring all N single-look probabilities for a class to exceed a
threshold (shown by the and gate in Fig. 4.23), one could relax the requirement so
that only K of N single-look values are required for classification.

I
I 139

i

While the choice of a specific multi-look post-processing method and its
corresponding parameters must be determined experimentally, the authors,

experience has shown that even minimal, and perhaps sub-optimal, post-processing
improves classification performance and should be used. To illustrate, the multi-
look post-processing technique shown in Fig. 4.22 was used with the data from
Section 4.5.1.3 (Tables 4.12 - 4.15) to obtain the improved results shown below in I
Tables 4.16 - 4.19:

Table 4.16: Multi-Look HEC-Distance Classification (Family One)

True Class System Decision

Class 1 Class 2 Class 3 Class 11 Class 11 Class 16 Unknown

Class 1 1.00 0 0 0 0 0 0 I
Class 2 0 1.00 0 0 0 0 0

Class 3 0 1.00 0 0 0 0 0

Class 11 0 0 0 0 1.00 0 0

Unknowns 1&2 0 0 0 0 0 0 1.00

Unknown 4 0 0 0 0 0 0 1.00

i
Table 4.17: Multi-Look HEC-Distance Classification (Family Two)

True Class System Decision
Class 5 Class 6 Class 8 Class 10 Class 13 Class 15 Unknown 3

Class5 1.00 0 0 0 0 0 0
Class6 0 1.00 0 0 0 0 0

Class 1 0 0 0 1.00 0 0 0

Class 13 0 0 0 0 1.00 0 0

Unknownss&2 0 0 0 0 0 0 1.00
Unknown 4 0 0 0 0 0 0 1.00

I

I
140i

I

Table 4.18: Multi-'Look HEC-Distance Classification (Family Three)

i True Class System Decision

U n Class 12 Class 17 Class 18 Class 20 Unknown

1&2 0 0 0 0 1.00

Unknown4 0 0 0 0 1.00

I Table 4.19: Multi-Look HEC-Distance Classification (Family Four)

True Class System Decision

Class 7 Class 9 Class 14 Class 19 Unknown

Class 7 1.00 0 0 0 0

Class 9 0 100 0 0 03 Unknowns l&2 0 0 0 0 1.00

Unknown 4 0 0 0 0 1.00

Table 4.20: Multi-Look HEC Pre-Classification Results

Multi-Look Detected Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 .00 3 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0

4 0 0 0 00 0 0 0 0 0,33 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0". ,. a0 0 0 0 0 0 0 0 0 0 0 0 0 0

" 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0

i9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 0 0 0 0 0 0 0 1. 0 0 0.000 0 0 0 0 0 0 0

i2 8
3 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0

""14 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0

U216 0 0 0 0 .0 0 0 0 0 0 1 .000 0 0 0 1.0 0 0 0 0

13 0 o 0 0 o 0o .70 .0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

is 0 0 0 0 0 0 0 0 0 0 0.50 0 0. 1.5 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 1

17

a

0
,0I0

0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .00 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .00

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 a .00

i 141

n

4.7 On-Line Updating

The success of any neural-network-based application depends not only on the
neural network paradigm employed but also the quality of the data used to optimize
the network coefficients and/or structure. However, time and cost constraints often
place limits on the effort that can be spent preparing a large and representative
network database or fine-tuning network structures. Additionally, it is highly I
unlikely that all signal classes will be anticipated in the initial design phase, and
subsequent off-line data collection and network training can prove costly.

To account for unforeseen circumstances, it is desirable to create an AcW
classification system that can be easily and rapidly retrained at sea. Such a system
presents two challenges: (1) the traditionally labor-intensive process of manually I
collecting and truthing new training data, and (2) the computationally intensive
process of neural network training. The key to overcoming the first challenge, data
preparation, is found in the use of unsupervised clustering techniques to preprocess
raw data and assist the analyst in assigning a "truth" class to large numbers of
exemplars simultaneously. Such automation could potentially result in a drastic
reduction in the amount of analyst time required to prepare and update training
databases. The key to overcoming the second challenge, network training, is found
in the use of logistic-loss PNN classification networks. As discussed in Section 3.2.4
and demonstrated at Orincon Corporation,t the CLASS algorithm is capable of very
rapid optimization of AcW classification networks. A proposed system capable of
rapid on-line updating is shown in Fig. 4.24.

In Fig. 4.24, the training database is continuously updated with signals of
interest (i.e., signals that passed through the detector in Fig. 4.1) that either fail to
pass the data qualification stage or fail to be classified with a high degree of
confidence (additionally, the analyst or operator may choose to include any signals
that he knows have been misclassified). While one could also update the training
database with exemplars that are classified correctly with a high degree of
confidence, this, in general, is not necessary since a high confidence decision
indicates that the classification algorithm is already performing properly in the
relevant region of feature space. If, on the other hand, the classifier cannot classify
an incoming event with a high degree of confidence, the classifier should be
retrained so that, in the future, similar incoming exemplars will be classified
correctly.

t Rapid On-Line retraining was demonstrated at Orincon Corp. at the following QPRs: July 1991,
October 1991, and October 1992.

142

I

I Adapt

Events of R Hgh-Confidence

SInterest Class Decisions
SQuaDlifiation • ClassDfctaation Pot p•prfocasti°ngj

I
"Truthed"

Unknown Database UnknownI Clases ,•Classes

Cs Graphical Display and

Analyst Confirmation

New Database
with

Computer-
Determined

Classification

i unsupervised rtL• Clustering

!Algorithm

Figure 4.24: Automated Database Preparation and Classifier
I Retraining

iBecause the classification algorithm is a supervised learning technique (i.e.,
the algorithm is trained using a database that contains a priori information
concerning exemplar classes), each new exemplar must first be assigned to a class
before the network can be retrained. As already discussed, manually truthing new
data is analyst-intensive and costly. Therefore, Fig. 4.24 proposes the incorporation
of a feedback loop in the classification process. This feedback loop would use an
unsupervised clustering algorithm to determine the natural groupings (i.e., classes)
of novel data. The initial assumption is that detected unknown events represent
new classes for which the classifier has not been trained. As each event is added to
the database, a clustering algorithm would be used to determine if the event isI "similar" in feature space to any other detected but unclassified events. After the
clustering algorithm has completed its calculations, an analyst would be presented
with a graphical display of the identified data clusters. By manually examining aI few events within each cluster, an entire cluster of like events, perhaps containing
hundreds or thousands of exemplars, may be automatically assigned to the same

* class of signals.

I
I t43

U

The development of techniques to implement the system shown in Fig. 4.24 i

is a logical choice for continuing research in the area of cost-effective on-line, near-
real-time retraining of neural-based automated classification systems.

U
I
I
I
I
i
I
I
I
I
I
I
I
i
I

144i

I

I 5. PNN SYSTEMS DELIVERED

During the course of investigating logistic-loss PNN techniques for the
classification of AcW signals, Barron Associates, Inc. (BAI) delivered the following
PNN-based AcW classification systems to the Government via OrinconCorporation:

I (1) In October of 1991, BAI shipped software for a stand-alone system to be
incorporated into the Build 2 application. This system, described in
Section 5.1, included time-domain pre-processing, feature extraction,
data qualification via hyperellipsoidal clustering, logistic-loss PNN
classification, and multi-look post-processing. This system performed
well on Dataset B, Rangex, and Build 2 Sea Trial data.t

(2) In January of 1993, BAI shipped software for a PNN classification system
to be incorporated into the Build3 system. This system, described in
Section 5.2, included principal component analysis routines and logistic-
loss PNN classifiers. It was designed to make use of the Orincon
Corporation pre-processing, feature extraction, and post-processing
routines. This system performed well on Rangex Short-Net evaluation
data [52].

I The architecture and performance of these systems are described in detail
below.

5.1 PNN Stand-Alone System for Build 2

I 5.1.1 Introduction

A PNN classification system was developed for incorporation in the Build 2
system for the July 1992 sea trial. The software was written using the ANSI standard
"C" programming language and was tested at BAI as a stand alone system using
signals from both Dataset B, and the Rangex data.

Orincon Corporation was responsible for the data interfaces, user interfaces,
and any modifications required to take advantage of the 1860 digital signal processors
used in the PRISM hardware chassis. At the request of the Government, BAI sent
engineers to Orincon prior to the sea trial to assist with the implementation of the
core of the system (data pre-processing, single-scan feature extraction, and logistic-
loss PNN classifiers).

t See Appendix B for a description of these datasets.

145

I

Subsequent to the sea trial, at the request of Orincon, BAI sent engineers to
Orincon to assist in the implementation of further portions of the PNN system
(moving-window feature calculations and multi-look post-processing). This
version of the PNN software was trained on data collected during the sea trial and
demonstrated by BAI at the October, 1992, Quarterly Progress Review meeting in San
Diego, CA.

5.1.2 PNN Software Processing Flow

The standalone PNN system is designed to allow easy database management
and network retraining to account for acoustic events that represent either new
classes or new examples of an existing class. The software has three distinct I
processing chains: Update, Resynthesize, and Interrogate (Fig. 5.1).

I

o A naltb Create Features
SDetectiona

Classification

"* Preprocess signal * ML Rules

" Create features Train detector(s)

" Add to training L
Sto Operator-Machine

Train classifier(s) Interface (OMI)

? Store new nets or

S~I

Figure 5.1: Build 2 PNN Software Processing Chains

The update chain updates the training databases to incorporate new classes or I
new exemplars for an existing class. This chain consists of data pre-processing and
frequency-domain feature extraction. The features, along with a corresponding class
number, are appended to the training database. If the class is new, it is assigned to

I
146I

I
I

the network family that is closest in data space, and the PNN structure and
corresponding model files are updated.

The resynthesize chain uses flags set by the update chain to determine
whether the detection network or any of the classification networks needs
retraining. If so, the information in the training database is used to modify the
statistical information contained in the detection network. This information is also
used to adjust the coefficients of a classification network. If a class has been added,
then the structure of the classification network responsible for that family must be
modified, and the network is completely retrained. The new detection and

I classification network information is stored in corresponding network files.

The interrogate mode preprocesses and extracts features in the same way as
the update mode. The incoming data may be either real-time data or previously
stored time-series data recalled for interrogation. If one or more classes are detected,
appropriate classification networks are interrogated to determine the probabilities
that the incoming data correspond to given classes. These probabilities are averaged
over time and reported to the acoustic warfare analyst via the operator interface.

Fig. 5.2 shows the preprocessing and feature extraction signal processing used
in both the update and interrogate processing chains, and Fig. 5.3 shows the data
qualification and classification signal processing used in the interrogate processing

I chain.

"""' Normalization Windlowing FFT -4 ExtractionI = 4 Tpq4

I Figure 5.2: Build 2 PNN Preprocessing and Feature Extraction

II

SHyperellipsoidal PNN Single- Class Probability
-- Features / . . • NO Cluster Test in Look Vector

PNN Classifier * PNN Single- CIlas ProbabilitySNetwork(s) to Look Vco

YES ActvateClassification

Output class probabiliby ector
with unity probability for

coherent class, zero elsewhere

Figure 5.3: Build 2 PNN Data Qualification and Classification

The features chosen for the Build 2 PNN system were the 21 FFT-based
features described in Section 4.4.3 and reproduced below for convenience:

147

1

1. Total spectral energy between 100Hz and 1000Hz (E2). -

2. Total spectral energy between 1000Hz and 3000Hz (E2).

3. Total spectral energy between 3000Hz and 5000Hz (E3).
E1

4. The ratio1 E

El + E2

5. The ratio 1-E1-- E2"

E2
6. The ratio -E2" I

7. The frequency at which the largest spectral peak occurs (F1).

8. The frequency at which the second largest peak occurs (F2). I
9. The frequency at which the third largest peak occurs (F3).

10. The magnitude of the largest spectral peak (M1).

11. The magnitude of the second largest spectral peak (M2).

12. The ratio M22" (a measure of coherence)M2

13. The ratio M33. (Where M3 is the magnitude of the third largest peak)

14. Frequency of 10% cumulative power (fl 0). (i.e.,10% energy below flo)

15. Frequency of 25% cumulative power (f2 5).

16. Frequency of 45% cumulative power (f4 5).

17. Frequency of 70% cumulative power (f7 0).

18. The ratio 0.10- 0.00 (Where fo is 0.0.)

0.25 - 0.10
19. The ratio f25-0."

0.45 - 0.2520. The ratio f45-0.45

0.70 - 0.4521. The ratio f70- I4
During database updating, the hyperellipsoidal clusters (HECs) used for data

qualification are also used to assign automatically new classes to an appropriate
family. As exemplars for a new class are added to the database, the update process

148

I
I

computes HEC statistics for the new class. These statistics are then used to add the
class to the family containing the nearest existing HEC. If no existing HEC is near
enough, or all families in the neighborhood contain the maximum allowable
number of classes, then a new family is created, and the new class is assigned to it.
The process of determininig the family assignment of a new class is a type of
unsupervised nearest-neighbor clustering in which new classes are assigned, if
possible, to the HECs nearest to them in feature space. The processing logic for
duster updating is shown below in Fig. 5.4.

Statistics for Distances • Select ClosestI
Is Distance T'3 nN

to HEC PuYEasSi
> Family (Netwok))

• • NO

Closest HEC Room ~t •ls in EYiFi
__Family for 'IPtCls nExsig

New Class? Family (Network)j

•- NO

An Mre N Put Class in eA

Eitn Family (Network)j

YES

Figure 5.4: Using HECs to Assign a New Class to the Nearest Family

I Every neural network (family) in the Build 2 PNN system contains a class for
background noise, and this background class is assigned to the baseline class, C, as
described in 3.4.1. Therefore, before a new network can be created or an existing

I network can be retrained, background exemplars must be present in the training
database. This class is not used for the generation of the data qualification HECs.

I Fig. 5.5 shows the postprocessing incorporated into the Build 2 PNN system.

S~149

I
!

Return Hlighest Outpuusion
Probability Exceeding Chain FusionI!Prest Threhold as andPost-I

Cs M g Single-Class Decision Processing
Probability 0 of Classa son

Vector Probability Perform Probability ' to'
Shapinh g on MW |_Outputto

Averages and Return OMI

Vector of Modified Network

Class Probabilities r Display

Figure 5.5: Build 2 PNN Classification Postprocessing

The single-look class probabilities are first averaged over a predetermined
number of samples as shown in Eq. 4:10 (the number of samples that make up the
average may be different for different classes). If the highest average probability I
exceeds a predetermined threshold, then the classifier declares an occurrence of the
event corresponding to that probability. As discussed in Section 4.6, this method of
post-processing improves results considerably.

For the PRISM implementation of the system, an additional probability-
shaping post-processing step was required. The Build 2 operator-machine interface [
(OMI) was designed to display the non-probabilistic outputs of multi-layer-
perceptrons (MLPs). To produce a color mapping that displays probabilistic network
outputs well, a further transformation was required.

For a C-class problem, the probability shaping used was:

A 1
0 if y _ C---

1 A

Y Ty' 2 if < A <T
yaMI -+

5:1

A I
y if y>T i

To ensure continuity, y' must be a function of the network output probability,
A, that takes on a value of zero at A = 1/(C+1) and a value of one at 9 = T. The linear
equation that meets these constraints is

+ T(C+1_ 15:25

It was found that setting T = 0.7 resulted in an improved OMI display; Fig. 5:6 shows
this probability shaping function for T = 0.7 and C =3.

I
150

I
U/ 1- -

*0.9 -- - -

0.8-

I °.0 7 - --
S0.6 - - - - - -

0 ,,. 0,5I ---/
0.5- - - - - -U 0.4-

I o1 0

I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Output Probability

Figure 5.6: Output Probability Shaping

Prior to delivery of this system, the processing chain was evaluated on the
two most complete datasets available: Dataset B, and the Rangex data.

The first evaluation was conducted on the 20-class problem using data taken
from Dataset B. The 20 classes in this dataset were manually divided into fouri families as follows:

Table 5.1: Signal Family Groupings

I Family Signals

1 1,2,3,4,11,16

2 5,6, 8,1 0, 13, 15

3 12, 17, 18, 20

4 7,9,14,19

Tables 5.2 - 5.5 present the multi-look results of the Build 2 PNN processing
chain evaluated on independent evaluation data from Dataset B..

I
3 151

I

Table 5.2: Build 2 PNN Classification Results (Family One) for i
Dataset B

True Class System Decision

Class 1 Class 2 Class 3 Class 4 Class 11 Class 16 Unknown

Class 1 1.0 0 0 0 0 0 0

Class 2 0 0.6 0.2 0 0 0 0.2

Class 3 0 0.4 0.6 0 0 0 0

Class 4 0 0.2 0 0.8 0 0 0

Class 11 0 0 0 0 1.0 0 0

Class 16 0 0 0 0 0 1.0 0

Unknown 0 0 0 0 0 0 1.0

I
Table 5.3: Build 2 PNN Classification Results (Family Two) for

Dataset B

True Class System Decision

Class 5 Class 6 Class 8 Class 10 Class 13 Class 15 Unknown

Class 5 1.0 0 0 0 0 0 0 3
Class 6 0 1.0 0 0 0 0 0

Class 8 0 0 1.0 0 0 0 0

Class 10 0 0 0 1.0 0 0 0

Class 13 0 0 0 0 1.0 0 0

Class 15 0 0 0 0 0 0.8 0.2 i

Unknown 0 0 0 0 0 0 1.0

I
i
I
I

152 i

I
I

Table 5.4: Build 2 PNN Classification Results (Family Three) for
Dataset B

True Class System Decision

Class 12 Class 17 Class 18 Class 20 Unknown

Class 12 1.0 0 0 0 0

Class 17 0 0.5 0 0 0.5
Class 18 0 0 1.0 0 0

Class 20 0 0 0 1.0 0

Unknown 0 0 0 0 1.0I
Table 5.5: Build 2 PNN Classification Results (Family Four) for

Dataset B

3 True Class System Decision

Class 7 Class 9 Class 14 Class 19 Unknown

Class 7 1.0 0 0 0 0

Class 9 0 1.0 0 0 0

i Class 14 0 0 0.8 0 0.2

Class 19 0 0 0 1.0 0

Unknown 0 0 0 0 1.0

I Results of the Build 2 PNN processing chain on the Rangex dataset have
already been presented in Section 4.4.3, Tables 4.7 - 4.10. These tables are reproduced

i here for convenience (note that these results do not include the multi-look post-
processing).

I
I

I

I 153

I

Table 5.6: Build 2 PNN Classification Results (Family One) for i
Rangex Data

True Class System Decision

Class 6 Class 11 Other I
Class 6 1.0 0 0

Class 11 0 1.0 0

Other 0 0 1.0

Table 5.7: Build 2 PNN Classification Results (Family Two) for

Rangex Data

True Class System Decision

Class 3 or 4 Other

Class 3 or 4 1.0 0

Other 0.06 0.94

Table 5.8: Build 2 PNN Classification Results (Family Three) for

Rangex Data i
True Class System Decision

_ _.Class 8 Other I
Class 8 1.0 0

Other 0 1.0 3
Table 5.9: Build 2 PNN Classification Results (Family Four) for i

Rangex Data

True Class System Decision i

Class 2 Other
3

Class 2 0.79 0.21

Other 0.03 0.97

I

154 3

I

5.1.3 DANTES Implementation

3 The PNN software as described above was originally delivered to the
Government via Orincon Corporation on September 30, 1991. During the period
July 6-19, 1982, BAI sent a consultant to Orincon Corporation at the request of the
Government to assist with the installation of a version of the Build 2 PNN software
on the DANTES system. Because access to the DANTES hardware was severely
limited due to conflicting priorities related to preparation for the sea trial, the
software installed in the DANTES system had somewhat reduced capabilities from
the PNN software as originally delivered. Nevertheless, the work produced
significant benefits for the over-all DANTES program, because: (1) valuable
technical insights, working relationships, and know-how were acquired by both BAI
and Orincon during installation of the PNN software in Build 2, and (2) the
experience gained by BAI while at Orincon provided a basis for subsequent
evaluation of the PNN algorithms on the DANTES hardware with the Build 2 sea-
trial data.

I The following PNN capabilities were integrated in the DANTES system for
the Build 2 sea trial:

I * Real-Time Interrogation: The PNN networks can be interrogated in real-
time, providing class probabilities and classifier decisions to the PRISM3 OMI interface.

Collection of Exemplar Data: The operator can collect exemplar data and
generate the features required by the PNN using the PRISM OM'I interface. The PNN does not require a fixed retina size, so the operatoi
can adjust the retina size depending on the duration of signals being

3 captured.

On-Line PNN Training (X-Window and command-line interfaces): An
existing PNN can be updated, or a new network can be created created by
using an operator-selected subset of the exemplar data that have been
collected.

1 * Database Management: The operator can incrementally build a training
database by selecting various exemplar files. Utilities are provided for

* examining and editing the class composition of the exemplar files.

Configuration Management: The operator can store and retrieve
various trained networks using keyword identification. For example, if
the operator wishes to retrieve a network that was saved under the
keyword "Jul30", all files associated with that network can be
automatically retrieved and installed.

I
---- 155

i

The following capabilities of the original Build 2 PNN software were not I
implemented, although they should be restored in subsequent implementations of
the PNN classification software:

Family Processing: The multi-family capability of the PNN system
should be activated and tested. This will allow for automatic assignment
of new classes to particular detection clusters and their corresponding
neural networks. In conjunction with this effort, an interface screen
should be designed which will allow the operator to see which classes fi
have been assigned to which PNNs and to override manually any
automatic class assignments.

Code Optimization: The PNN code should be reviewed and optimized i
for the PRISM architecture. As part of this optimization, the code should
be tested for both functionality and statistical performance on the Build 2
sea trial data, and the algorithm should be tuned to provide accurate,
robust answers.

5.1.4 Build 2 Sea Trial Test Plan

The following recommendations were made by BAI concerning the testing
and evaluation of the PNN software:

5.1.4.1 Interrogation 3
The PNNs were trained on classes for which laboratory data were available.

The time available for pretraining the networks at Orincon was limited due to the
heavy use of the system hardware for other purposes in the weeks immediately
preceding the sea trial. Nevertheless, it was recommended that the pretrained
networks should be interrogated with at-sea data that contain one or more of the I
transients for which for which the network was pretrained. Classifier and detection
performance should be noted.

When the BAI PNN software was connected to the Orincon OMI, there was a
great deal of clutter in the network output display. Two factors contributed to this
clutter: (1) The neural networks were designed to output estimates of the true
conditional probabilities of the classes and background noise. As with any set of
probabilities, these values summed to unity. In most applications decisions are
made by comparing the probability values. The OMI, however, displayed each
"raw" class probability value. Thus, "unlikely" events which had some low
probability assigned to them showed up as color on the display. The probability
shaping described above represented an attempt at filtering these probabilities to
remove "unlikely" outputs from the display and make the visual evaluation of the
PNN software easier. (2) When the PNNs were applied to short-duration
transients, a class output could be high for one or two pixels only; these pixels may
or may not have been visually detectable by the operator; looking at the detector

156 3

I
output may help. BAI recommended that the operator be aware of these interface
issues and comment on any interface problems that could be readied by additional
post-processing.

i 5.1.4.2 Update and Resynthesis

Because the PNN can be trained very rapidly, it will be possible to perform
more thorough network training at sea. One anticipated use for the PNN is in the
very rapid learning and tracking of new transients; especially when there is not time
to train the MLPs. BAI recommended that network retraining be tested by gathering
a few exemplars for background noise and some known transient signals at the
beginning of a data collection run, retraining the PNNs immediately, and then
interrogating the networks on the live data before completing the data collection
run. It would be especially important to record the number of classes assigned to the
PNN, whether the retraining was partial or complete. (Did retraining include data
from the laboratory or previous data collection runs, or were all the data new?) In
this test, complete retraining would be more desirable. It would also be helpful to
record how much time was required for the network training.

Because retraining is not computationally expensive, it was recommended
that the PNN be trained a number of times. Experiments are desirable concerning
the effectiveness of the PNN when trained on laboratory data alone, on a mixture of
laboratory data and at-sea data, and when trained on at-sea data alone.

5.1.4 Build 2 Evaluation

Due to difficulties encountered by Orincon Corporation during the sea trial,
none of the tests outlined above was conducted. Therefore, Orincon requested that
BAI send personnel to Orincon to train and demonstrate the PNN system on data
recorded during the Build 2 sea trial.

Once again, due to limited access to the DANTES hardware, BAI was unable
to incorporate the multi-family processing capabilities as originally desired.
However, BAI was able to include moving window features (see Section 4.4.5) to
improve classification performance on longer signals. The following moving-
window features were added:

(1) MW averages of all 21 single-scan features.

(2) MW standard deviations of all 21 single-scan features.

DANTES OMI was used to create a training database for the neural networks.
This proved extremely difficult, especially for the shorter signals, due to the low-
resolution of the FFT/Feature display. Nevertheless, BAI was able to extract data as
shown in Table 5.10.

157

I

Table 5.10: Build 2 Sea Trial Data Used for PNN Demonstration

Class Total Events Events Used Number of Training
for Training Exemplars Usedt

Background N/A N/A 111 I

Class I 5 4 109

Class 2 3 1 22

Class 3 6 3 15

Class 4 1 1 32 1
Class 5 10 3 9

Class 6 1 1 20

TOTAL 26 13 318 I
A total of 318 exemplars were extracted from 13 of the 26 "truth" events, and

an eight-class PNN was trained in 29 minutes on a Sparc 1E (equivalent to less than
one minute on the Mercury processor). While it was difficult to create a truly
independent evaluation set, and the amount of training data used was small,
judging from the OMI display during real-time interrogation, the minimum-
logistic-loss PINN classifier performed well on events that were withheld during
training. Quantitative results, however, were unavailable due to the limited
capabilities of the Build 2 OMI in the areas of exemplar extraction and database
management (especially for the shorter signals).

In ligLt of the qualitatively successful demonstration of a streamlined version
of the PNN algorithm on data collected during the sea trial, the following
recommendations were made:

"Traini,,,g Speed: Port the PNN training algorithm to the Mercury processors. U
The 40-fold increase in floating-point processing speed would allow for very
rapid at-sea retraining. (As mentioned above, the demonstration network
would have trained in less than a minute on the Mercury processor).

" Family Processing: Incorporate the multi-family capabilities of the PNN code
as originally intended. This would allow for automatic assignment of new
classes to a particular network. The results would be improved training time
and improved classification accuracy.

I
t For the longer-duration events, it is possible to extract more than one training exemplar from a single

event.

158

I
I

0 Reduction in Signal Features: Incorporate principal components of the (now
63) features to reduce the number of features, allow i-se of greater PNN
nonlinearities, and further reduce the training time.

* DANTES Pre- and Post-Processing: Fully incorporate the PNN algorithms
into the DANTES processing chain to allow the algorithm to take advantage
of Orincon's detection procedures and normalized FFTs. This would also
allow the IP and MHT to take advantage of the PNN classifier.

5.2 Short-Net System for Build 3

5.2.1 Introduction

Subsequent to the Build 2 sea trial, Orincon requested that BAI assist in the
inclusion of the PNN technology into the Build 3 system. To conduct an evaluation
of the proposed classifier processing chains, Orincon required quantitative results of
PNN algorithm performance on the Rangex "Short-Net" data. This section presents
these quantitative results. Additionally, some important comments are made
regarding interpretation of Short-Net evaluation results for both the multi-layer
Perceptron (MLP) and the PNN given the nature of the Rangex database.t t

The quantities of training data originally given to BAI are shown in Table 5.11

Table 5.1: Short-Net Training Database

* Class Unclassified Number of
Abbreviation Occurrences

I S1 BIO 35

S2 DW 11
S $3 P 37

S4 SD 9
$5 WSR 7

I

I rt Most of this work was funded by Orincon Corporation under P.O. S04365, and these results were first
reported to Orincon in a letter to Mr. Mike Kumow dated January 8,1993.

I t BAI was also given data for five transients of relatively long duration. However, BAI concentrated on
the short-net classes for the following reasons: (1) the short-net classes are the most difficult to classify
correctly; (2) in the Build 2 work, Orincon encouraged BA! to concentrate on these classes; and (3) BAI's
time and resources for this experiment were limited.

159

I

BAI later learned that some of the events contained in the training and i
evaluation data sets were not used in the training and evaluation of Orincon's
networks. Not knowing which events to leave out, BAI worked with all the data.t

5.2.2 Processing Flow

The PNN algorithm, as originally delivered by BAI to the Government via
Orincon, used multiple minimum-logistic-loss PNNs and a hyperellipsoidal
detector to achieve improved classification. For purposes of the Short-Net
comparison, however, the detector was removed and all five classes were assigned
to a single PNN classifier; BAI believes that this configuration yielded acceptable but
sub-optimal results. An additional modification was made in that, whereas all the I
original PNN classifiers contained a "background" class, no "background" class was
used for this evaluation. The re-inclusion of a "background" or "other" class in the
actual implementation of the classifier processing chains is strongly encouraged, I
because it is highly unlikely that every event detected will be a class for which a
network has been trained.

The small numbers of Rangex Short-Net training data made available for
classes S2, S4, and S5 require that the following precautions be taken during network
training and evaluation:

1. Interpret cautionsly any statistical measure on a data set comprised of a
few exemplars. (For class S5, a 14% improvement was obtained by I
classifying a single additional evaluation exemplar correctly.)

2. Given a class with only seven exemplars, network complexity should be
restricted to six degrees of freedom if overfitting is to be avoided. In the
case of minimum-logistic-loss PNN classifiers having linear input
layers, this means limiting the number of inputs.

Because of the restrictions on network complexity, BAI was unable to use the
63 FFT-based features described in Section 5.1. Instead, (1) only a single retinal scan
of the ShortNeti retina was used (historical feature data was ignored), and (2) a
principal component analysis was performed on the single scan; the principal
components that explained the largest amount of variance in the data were used as
inputs to the network. Once ag: .n, were more data available, these techniques
would be sub-optimal; however, for this limited training data set, a network was
obtained with a statistically justified complexity that could be expected to perform
comparably on unseen data from the same population as the training data. I

t In the case of S3, BAI removed four events from the training database for which the SNR was so low

as to make the event hardly distinguishable from background noise.

160

I
I

One advantage to using principal components is that as more training data
become available, more principal components may be used, and optimum logistic-
loss networks can be rapidly retrained to employ the greater complexity allowed by
the additional data. Additionally, if the PNN algorithm is implemented as
originally envisioned, of multiple networks (families) may be used with more
complex networks handling the classes for which more data exist.

Orincon requested that no post-processing be included in the PNN processing
chain. Fig. 5.7 shows the PNN processing flow for the Short-Net software:

Incoming Principal Output
Single-Scan FFT Component Probability

ValueseEstimatesValue ",> Extratcm oetsPrincipal Five-Class Logistic- .

Component Loss PNN Classifier i "

I Figure 5.7: PNN Short-Net Processing Flow

5.2.3 Database Issues and Discussion

Orincon Corporation properly withheld from BAI the evaluation portion of
the Short-Net database, and there were not enough events in the training data base
to allow its further partitioning into training and evaluation sets. Therefore, except
for Table 5.19 which represents results on Orincon's independent test set, all of
BAI's estimates of network performance were obtained via a jackknife approach.

In the jackknife approach, a single training exemplar is removed from the
Sdatabase, and a network is trained on the remaining exemplars. This network is

then evaluated on the exemplar that was removed. If there are N training
exemplars, this technique is performed N times, and the statistics of the resulting N
evaluations are combined to provide an estimated performance matrix. This
technique provides a statistically sound estimate of how a network will perform on
unseen data, provided that (1) the unseen data are drawn from the same statistical
population as the training data, and (2) the classes in the unseen data base are
represented in the same proportions as those in the training data base (i.e., if the
training data containes twice as many exemplars for class 1 as for class 2, the
evaluation data should also containe approximately twice as many exemplars for
class 1 as for class 2.)

I A class for which a significant number of training exemplars existed is S1.

The jackknife statistics for a one-vs.-all minimum-logistic-loss classifier for class S1

161

I

using ten principal components are presented in Table 5.12. Note that the S1
network, while incorrectly dismissing 8.6% of the data, had no false alarms.t

Table 5.12: PNN Short-Net One-vs.-AlU Performance for S1 I

True Class System Decision I

Class S1 Other

Class S1 0.91 0.86

Other 0.00 1.00 1
The other populous class was S3. The jackknife statistics for a one-vs.-all

minimum-logistic-loss classifier for class S3 using ten principal components are
presented in Table 5.13. The numbers in parentheses represent the network
performance obtained when the "other" class did not include class S1.

Table 5.13: PNN Short-Net One-vs.-All Performance for S3

True Class System Decision

Class S3 Other 3
Class S3 0.76 (0.90) 0.24 (0.10)

Other 0.12 (0.22; 0.89 (0.78)

For the three remaining classes, for which the size of the training set was
extremely small, a less-complex network had to be used to achieve a robust design.
The jackknife statistics for a three-class minimum-logistic-loss network with linear
input layers, using five principal components, are shown in Table 5.14: 1

i
I

t BAI found that use of a single additional feature, the kurtosis of the time series, resulted in perfect
classification of this event. In general, the kurtosis may prove very useful in discriminating between
man-made and biological signals; however, BAI decided that for the purposes of the current
experiment, this feature was too "data dependent" and rrmight lead to misplaced optimism.

162

I
I

Table 5.14: PNN Short-Net Three-Class Network for Less Populous
Classes

True Class System Decision

Class S2 Class S4 Class S5

Class S2 0.64 0.18 0.29

Class S4 0.11 0.67 0.14

Class S5 0.29 0.14 0.57

Network accuracies when an "other" class was added to the above three-class3 network are shown in Table 5.15:

Table 5.15: PNN Short-Net Three-Class Network for Less Populous
Classes and "Other" Class

True Class System Decision

Class S2 Class S4 Class S5 Other

Class S2 0.37 0.18 0.09 0.36

Class S4 0.11 0.56 0.11 0.22

Class S5 0.29 0.14 0.57 0.0

"Other 0.03 0.03 0.02 0.92

Based on the statistics presented in the above tables, it is seen that network
accuracy improved greatly when more data per class were available. This behavior
is presented graphically in Fig. 5.8:

163

I
(U I
S100- -

8 I

•40

"U 20

X 0. ti l I. . I l
0 5 10 15 20 25 30 35 40

Number of Exemplars in Training Database

Figure 5.8: PNN Short-Net Network Accuracy vs. Number of
Training Exemplars per Class

Presumably, differences in accuracy between the classes were partly due to
some classes being more difficult to discriminate than others (e.g., classes S1 and S3); I
however, for this data set, three of the classes did not contain enough data to train a
robust network and accurately predict performance on unseen data. This can be
seen in the October '92 QPR matrices given for Orincon's ShortNet1 and
ShorLNet2, reproduced in Table 5.16 for convenience:

Table 5.16: Percentage Correct for Two Orincon Networks

Network Short Signals

Class S1 Class S2 Class S3 Class S4 Class 55

ShortNeti 0.91 0.84 0.80 0.53 0.50 3
Short Net2 0.82 0.40 0.77 0.78 0.33

While the two networks of Table 5.16, using frequency-domain features,
achieved somewhat comparable results on classes Si and S3, there was a great deal
of variance in the results for the other three classes. Table 5.17 gives a summary of
the statistics of all the Short-Net classifiers.

I
I

164i

I

Table 5.17: Performance Summary for all Short-Net Classifiers

Statistics Short Signals

Class Si Class S2 Class S3 Class 54 Class S5

Number of Exemplars 35 11 37 9 7

Mean Performance 0.91 0.58 0.80 0.52 0.47

Performance Variance 0.07 0.19 0.08 0.30 0.18

i As can be seen from Table 5.17 (and Fig. 5.8), the mean classification accuracy
for all Short-Net classifiers improved with the number of training exemplars.
Additionally, there was a very large variance among the Short-Net classifiers for the
classes with limited numbers of independent training exemplars (S2, $4, S5). These
statistics imply that the different classification results for the other classes may not

I have been entirely due to the features used or network structures used, but may
also have been evidence of the dangers involved when networks are trained on
very small data sets (even when data set sizes were artificially increased via addition
of noisified exemplars).

BAI also noted that even with a single classification technology (i.e.,
minimum-logistic-loss PNN classifiers), slight changes in the features (e.g., the
number of principal components used) or the network structure (e.g., linear vs.

additive polynomial nodal elements) resulted in large differences in performance
I on classes for which limited training data existed. These indicators suggest that all

of the Short-Net classification networks may have been overfitting the data for
those classes having few training exemplars. This overfitting may account for many
of the performance differences between the various Short-Net classifier chains.

For the five-class Rangex data set in question, therefore, three options were
and are available concerning the creation of classification networks:

1. Subdivide the data to allow multiple networks of differing complexitiesI to handle the classification problem. This approach will give statistically
optimal classifiers; however, it req,:ires the use of multiple neural
networks for different sets (families) of classes.

2. Use a five-class network, but limit network complexity so as not to
overfit the class for which the fewest number of exemplars exists. This
will result in a sub-optimal five-class network that does not overfit any
of the classes.

3. Use a five-class network, but give the network sufficient complexity so as
to perform well on the classes for which significant training data do exist.
This will result in a five-class network that overfits the classes for which

i 165

i

limited quantities of independent training data exist. This must be taken i
into account in the decision fusion process. With subsequent additions
to the database, the network can be retrained to eliminate its overfitting.

BAI presented classification results using the first option above; however, for
purposes of comparison with Orincon's short nets, BAI followed Option 3 and
trained a five-class network allowing sufficient complexity to perform well on
classes Si and $3.

5.2.4 Short-Net Classification Results

Using ten principal components and a second-degree additive network
polynomial form (see Section 3.2.1) the jackknife statistics shown in Table 5.18 were
obtained:

Table 5.18: Five-Class PNN Short-Net "Jackknife" Classification
Results (Option 3)I

True Class System Decision

Class Si Class S2 Class S3 Class S4 Class S5

Class S1 0.80 0.09 0.03 0.03 0.05

Class S2 0.09 0.64 0.27 0 0 i

Class S3 0.03 0.12 0.73 0.06 0.06

Class S4 0 0.11 0.22 0.56 0.11 3
Class S5 0 0.14 0.14 0.29 0.43 I

This network had a figure of merit (FOM) of 63% (the average of the
diagonals); however, once again, it should be emphasized that any contribution to
the FOM made by classes S2, S4, and S5 should be taken cautiously.

A five-class network was then trained using all the training data. The
learning curve for this network is shown in Fig. 5.10:

Ii
i
i

166i

U
I

1 r

!0.9

0.8

II
•0.4-.00.6

* 0.3-

0.2-

0.1-

01 --.

I 0 2 4 6 8 10 12 14
Number of Iterations

Figure 5.10: Learning Curve for a Five-Class PNN Short-Net
Classifier Using Ten Input Features and 81 Total
Network Coefficients

The five-class classifier was evaluated at Orincon Corp. using independent
evaluation data; the results of this evaluation are shown in Table 5.19.J

These results bear out the caveat stated in Option 3 above: Even though the
FOM (60%) is comparable to that predicted by the jackknife statistics, there is a
significant variance in the performance on the classes for which limited quantities
of independent data exist. This confirms the earlier assertion that the network
statistics for these classes are less reliable than the statistics for the other classes (for
which larger quantities of independent evaluation data exist). Since these less
reliable statistics are allowed to contribute equally in the overall FOM calculation,
the resulting FOM may also have been an unreliable indicator (possibly either
optimistic or pessimistic) of future network performance.

[I

t A single FFT scan was extracted from each exemplar. BAI used the same bins, 16-163, as Orincon.
BAI's FFT routines were used for feature generation and did NOT remove background noise by
normalizing the FFT; however, it is believed that the different FFT normalization was not a
signfiicant factor in the results.

167

i

Table 5.19. Five-Class PNN Short-Net Classification Results on i
Evaluation Data (Option 3)

True Class System Decision

Class S1 Class S2 Class S3 Class S4 Class S5

Class S1 0.91 0.03 0 0 0.06

Class S2 0.08 0.54 0.15 0 0.23

Class S3 0.03 0.09 0.71 0.03 0.14

Class S4 0.10 0.40 0.20 0.10 0.20

Class S5 0 0.29 0 0 0.71

In conclusion, the Short-Net experiments show that for this particular i
limited data set, the PNNs and MLPs exhibited similar performance. However, the
PNN classifiers trained considerably faster than the MLPs (which used backward-
error propagation), and the PNNs were considerably less complex. In fact,
information theory implies that networks with a large degree of complexity are not
justified when very limited quantities of training data are available. As additional
and more representative data become available at sea, more complex networks will
be statistically justified. Using PNN techniques, statistically justified networks can
be synthesized on-line to obtain improved performance.

Ii
I
i
I
I
i
I

168I

I
I

6. CONCLUSIONS AND RECOMMENDATIONS

For both estimation and classification problems, the benefits of using artificial
neural networks include inductive learning, rapid computation, and the ability to

I handle high-order and/or nonlinear processing. Neural networks reduce the need
for simplifying assumptions that use a priori statistical models (such as "additive
Gaussian noise") or that neglect nonlinear terms, cross-coupling effects, and high-

I order dynamics.

This report demonstrates the usefulness of an interdisciplinary approach that
Sapplies the rigorous theory and algorithms of statistical learning theory to the field
of artificial neural networks. In particular, this approach provides two important
results:

(1) A generalized way of viewing neural modeling in terms of statistical
function estimation.

(2) A constrained minimum-logistic-loss polynomial neural network (PNN)
classification algorithm.

The successful application of the PNN classification algorithm is
demonstrated for transient acoustic warfare (AcW) signals. Additionally, a number
of algorithmic improvements are suggested to allow the rapid automatic learning of
multi-layered PNN classification network structures and coefficients.

*One of the significant problems facing the design of neural-network-based
AcW signal processing systems is the lack of significant numbers of exemplars for
off-line training. The proposed algorithms address this problem in two ways: (1)

I they make use of information-theoretic criteria to create networks with a
statistically-justified level of complexity that do not overfit the training data and
generalize well on unseen data, and (2) they make use of rapid Gauss-Newton
optimization techniques that are suitable for rapid on-line retraining of
classification networks as more data become available.

However, neural network algorithmic enhancements can only partially make
up for deficiencies in the quantity and diversity of the training database; the work
reported underscores the need for further development of systems for the
automated collection and management of large amounts of AcW data. Only when
such data are available and fully exploited will the complete benefits of neural

i network techniques be realized.

I

3 169

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

170 i

I
I

7. REFERENCES

[11 Abbott, D.W., P.R. Jordan, R.L. Barron, Application of Polynomial Networks to
Detection and Classification of Non-Steady-State Signals, Presentation to
personnel of DARPA, NOSC, and Orincon Corp., June, 1990.

[2] Abbott, D.W., P.R. Jordan, R.L. Barron, Application of Polynomial Networks to
Detection and Classification of Non-Steady-State Signals, Presentation to
personnel of DARPA, NOSC, and Orincon Corp., Nov., 1990.

[3] Abbott, D.W., P.R. Jordan, P.R., R.L. Barron, Dr. B. E. Parker, et al., Application
of Polynomial Networks to Detection and Classification of Transient AcW
Signals, Presentation to personnel of DARPA, NOSC, and Orincon Corp., Mar.,
1991.

[41 Akaike, H., "Information theory and an extension of the maximum likelihood
principle," Proc. Second Int'l. Symp. on Information Theory, B.N. Petrov and

F. Csaki (Eds.), Akademiai Kiado, Budapest, 1972.

[5] Barron, A.R., "Predicted Squared Error: A Criterion for Automatic Model
Selection," Self-Organizing Methods in Modeling: GMDH Type Algorithms
(S.J. Farlow, Ed.), Marcel Dekker, Inc., New York, Chap. 4, 1984.

[6] Barron, A.R., Logically Smooth Density Estimation, Ph.D. Dissertation, Dept. of
E.E., Stanford University, Palo Alto, CA, 1985.

[7] Barron, A.R. and R.L. Barron, "Statistical learning networks: A unifying
view," Proc. 20th Symposium on the Interface: Computing Science and
Statistics, Reston, VA, Apr., 1988.

[8] Barron, A.R., "Statistical properties of artificial neural networks," Proc. IEEE
1989 Conf. on Decision and Control, Tampa, FL, Dec., 1989.

[9] Barron, A.R., "Complexity regularization with applications to artificial neural
networks," Proc. NATO ASI on Nonparametric Functional Estimation,
Spetses, Greece, G. Roussas, Ed., Kluwer Academic Publishers, Dordrecht,

Netherlands, Aug., 1990.

[10] Barron, A.R. and X. Xiao, "Discussion on multivariate adaptive regression,"
Annals of Statistics, Vol 19, No. 1, 1991.

[11] Barron, A.R., "Approximation and estimation bounds for artificial neural
networks," Computational Learning Theory: Proc. of 4th Ann. Workshop,
Morgan Kaufman, 1991.

171

I

[12] Barron, R.L., "Adaptive transformation networks for modeling, prediction, I
and control," Proc. Joint Nat'l. Conf. on Major Systems, IEEE/ORSA, Oct., 1971.

[13] Barron, R.L., "Guided accelerated random search as applied to adaptive array I
AMTI radar," Proc. Adaptive Antenna Systems Workshop, Naval Research
Laboratory, Washington DC, 11-13 Mar., 1974.

[14] Barron, R.L., "Theory and application of cybernetic systems: An overview,"
Proc. 1974 NAECON, May, 1974.

[15] Barron, R.L., A.N. Mucciardi, F.J. Cook, J.N. Craig, and A.R. Barron, "Adaptive
Learning Networks: Development and Application in the United States of
Algorithms Related to GMDH," Self-Organizing Methods in Modeling: GMDH
Type Algorithms (S.J. Farlow, Ed.), Marcel Dekker, Inc., New York, Chap. 2,
1984.

[16] Barron, R.L., D.W. Abbott, Application of Polynomial Neural Networks to
Transient Signal Analysis, Presentation to personnel of DARPA, NOSC, and
Orincon Corp., July, 1989.

[17] Barron, R.L., D.G. Ward, Algorithms for Synthesis of Dynamic Polynomial
Neural Networks for Estimation and Classification, Presentation to personnel
of DARPA, NOSC, and Orincon Corp., July, 1989.

[18] Barron, R.L., D.W. Abbott, R.L. Cellucci, P.R. Jordan, Application of n

Polynomial Networks to Signal Analysis, Presentation to parsonnel of
DARPA, NOSC, and Orincon Corp., Jan., 1990.

[19] Barron, R.L., P. Hess, P.R. Jordan, III, and C.M. Hawes, Diagnostic Abductive
and Inductive Reasoning for Flight Control Effector FDIE and Reconfiguration,
Part I: Synthesis Algorithms and Results for Pre-Trained FDIE, Part II:
Recursive Estimation of Aircraft Parameters Using Neural Network
Calculation of Impairment Probability, Barron Associates, Inc. Final Technical
Report for Flight Dynamics Directorate, Wright Laboratory (AFSC), under
Contract F33615-88-C-3615, WL-TR-91-3108, Mar., 1992.

[20] Breiman, L. and J.H. Friedman, "Estimating optimal transformations for I
multiple regression and correlation," 1. Amer. Statist. Assoc., Vol. 80, 1985.

[21] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conference I
Series in Applied Mathematics, Capital City Press, Montpelier, VT, 1992.

[22] Duda, R.O. and P.E. Hart, Pattern Classification and Scene Analysis, Wiley, n
New York, 1973.

[23] Farley, B.G. and W.A. Clark, "Simulation of self-organizing systems by digital I
computers," IRE Trans. on Inform. Theory, Vol. PGIT-4, 1954.

1
172i

I
I

[241 Farlow, J. (Ed.) "The GMDH Algorithm," Self-Organizing Methods in
Modeling: GMDH Type Algorithms, Marcel Dekker, Inc., New York, Chap. 1,
1984.

[25] Fisher, R.A., "The use of multiple measurements in axonomic problems,"
Annals of Eugenics, Vol. 7, 1936.

[261 Friedlander, B. and B. Porat, "Detection ot transient signals by the Gabor
representation," IEEE Trans. of ASSP, Vol. 37, No. 2, Feb., 1989.

[27] Friedman, J.H. and J.W. Tukey, "A projection pursuit algorithm for
exploratory data analysis," IEEE Trans. on Computers, Vol. 23, 1974.

[281 Friedman, J.H. and W. Stuetzle, "Projection pursuit regression," J. Amer. Stat.
Assoc., Vol. 76, 1981.

[29] Friedman, J.H., "Fitting functions to noisy scattered data in high dimensions,"
Proc. 20th Symposium on the Interface: Computing Science and Statistics,
Reston, VA, Apr., 1988.

[30] Friedman, J.H., "Multivariate adaptive regression splines," Annals of
Statistics, Vol 19, No. 1, 1991.

[31] Gabor, D., "Communication theory and cybernetics," Trans. of IRE, Vol. CT-1,
No. 4, 1954.

[321 Gabor, D., P.L. Wilby, and R. Woodcock, "A universal non-linear filter,
predictor and simulator which optimizes itself by a learning process," J. lEE,
paper received Oct. 17, 1959.

[331 Garth, L.M. and H.V. Poor, "Detection Techniques for Acoustic Non-Gaussian
Signals," Technical Report NOSC TD 1855, Naval Ocean Systems Center, San
Diego, May, 1990.

[34] Ghosh, J., L. Deuser, and S. Beck, "A neural network based hybrid system for
detection, characterization and classification of short-duration oceanic signals,"
IEEE 1. of Oceanic Engineering, Vol. 17, No. 4, Oct., 1992.

[35] Giles, C.L. and T. Maxwell, "Learning, invariance, and generalization in high-
order neural networks," Applied Optics, Vol. 26, No. 23, Dec., 1988.

[36] Gilstrap, L.O. Jr., "An adaptive appioach to smoothing, filtering and
prediction," Proc. 1969 NAECON, 1969.

[37] Golub, G.H. and C.F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1983.

[38] Haykin, S. Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, 1986.

173

I

[39] Hecht-Nielsen, R., Neurocomputing, Addison-Wesley Publ. Co., Reading, MA, I
1989.

[40] Hush D.R., and B.G. Horne, "Progress in supervised neural networks: What's U
new since Lippmann?," IEEE Signal Processing Magazine, Jan., 1993.

[41] Ivakhnenko, A.G., "The group method of data handling - A rival ofI
stochastic approximation," Soviet Automatic Control, Vol. 1, 1968.

[42] Ivakhnenko, A.G., "Polynomial theory of complex systems," IEEE Trans. on I
Systems, Man, & Cybernetics, Vol. SMC-1, No. 4, Oct., 1971.

[43] Levenberg, K., "A method for the solution of certain nonlinear problems in I
least squares," Quart. App!. Math., vol. 2, 1944.

[44] Ljung, L., and T. S6derstr6m, Theory and Practice of Recursive Identification, I
MIT Press, Cambridge, MA, 1983.

[45] Mallows, C.L., "Some comments on Cp," Technometrics, Vol. 15, 1973. I
[46] Mardia, K.V., J.T. Kent, and J.M. Bibby, Multivariate Analysis, Academic Press,

London, 1979. U
[47] Marple, S.L. , Digital Spectral Analysis with Applications, Prentice Hall,

Englewood Cliffs, NJ, 1987.

[48] Marquardt, D.W., "An algorithm for least-squares estimation of non-linear
parameters," Journal SIAM, vol. 11, 1963.

[491 McCulloch, W.S. and W. Pitts, "A logical calculus of the ideas immanent in
nervous activity," Bull. Math. Biophys., Vol. 5, 1943.

[50] Minsky, M.L. and S. Papert, Perceptrons: An Introduction to Computational
Geometry, M.I.T. Press, Cambridge, MA, 1969.

[51] Moddes, R.E.J., R.j. Brown, L.O. Gilstrap, Jr., R.L. Barron, et al., Study of
Neurotron Networks in Learning Automata, Adaptronics, Inc., AFAL-TR-65-9, U
Feb. 6, 1965.

[52] Orincon Corporation, "DARPA Non-Traditional Exploitation System
Quarterly Review." Presentation to personnel of DARPA, NOSC, and Barron
Associates, Oct. 1992.

[531 Parker, B.E., W.A. Patterson, D.W. Abbott, R.L. Barron, Application of
Polynomial Networks to Detection and Classification of Transient AcW
Signals, Presentation to personnel of DARPA, NOSC, and Orincon Corp., July,
1991.

I
174

I
[54] Parker, B.E., W.A. Patterson, D.W. Abbott, R.L. Barron, Application of

Polynomial Networks to Detection and Classification of Transient AcW
Signals for BUILD 2, Presentation to personnel of DARPA, NOSC, and Orincon
Corp., Oct., 1991.

[55] Parker, B.E., T.M. Nigro, M.P. Carley, R.L. Barron, D.G. Ward, H.V. Poor, D.
Rock, T.A. DuBois, "Helicopter gearbox diagnostics and prognostics using
vibration signature analysis," SPIE Int'l. Symp. on Optical Engineering and
Photonics in Aerospace and Remote Sensing, Vol. 1965, Paper No. 39, Orlando
FL, Apr., 1993.

[56] Poor, H.V., An Introduction to Signal Detection and Estimation, Springer-
Verlag, 1988.

[57] Press, W.H., Brian P. Flannery, et al., Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, NY, 1986.

[58] Reklaitis, G.V., A. Ravindran, and K.M. Ragsdell, Engineering Optimization
Methods and Applications, John Wiley & Sons, 1983.

[591 Rissanen, J., "A universal prior for integers and estimation by minimum
description length," Annals of Statistics, Vol. 11, No. 2, 1983.

[60] Robbins, H. and Monro, S., "A stochastic approximation method," Annals of
Math. Stat., 22, 1951.

[61] Rosenblatt, F., "The perceptron: A probabilistic model for information storage
and organization in the brain," Psychological Review, 1958.

[62] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, "Learning Internal
Representations by Error Propagation," in D.E. Rumelhart and J.L. McClelland,
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition,Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, 1986.

[63] Schwarz, G., "Estimating the dimension of a model," Ann. Stat., Vol. 6, No. 2,
1977.

[64] Shin, Y. and J. Ghosh, "The pi-sigma network: An efficient higher-order
network for pattern classification and function approximation," Proc. IEEE
Joint Conf. Neural Networks, July, 1991.

[651 Shrier, S., R.L. Barron, and L.O. Gilstrap, "Polynomial and Neural Networks:
Analogies and Engineering Applications," Proc. IEEE First Int'l. Conf. on
Neural Networks, Vol. II, Jun'e, 1987.

[66] Shynk, J.J., "Adaptive IIR filtering," IEEE ASSP Magazine, Vol. 6, No. 2, Apr.
1989.

175

I

[67] Specht, D.F., "Generation of polynomial discriminant functions for pattern I
recognition," IEEE Trans. on Electronic Computers, Vol. EC-16, No. 3, pp. 308-
319, June, 1967.

[68] Ward, D.G. and R.S. Bahiti, "Parallel Algorithms and Architectures for
Kalman Filters," IEEE Conference on Decision and Control, Jan., 1987. 1

[69a] Ward, D.G., B.E. Parker, Jr., and R.L. Barron, Active Control of Complex
Systems Via Dynamic (Recurrent) Neural Networks, Barron Associates, Inc.
Task Final Technical Report for ONR, Contract N00014-89-C-0137, May 1992.

[69b] Ward, D.G., B.E. Parker, Jr., C.M. Hawes, and R.L. Barron, Active Control of a
Multivariable System Via Polynomial Neural Networks, Barron Associates,
Inc. Final Technical Report for ONR, Aug., 1992.

[70] Ward, D.G., R.L. Barron, P. Hess, PNN Classifier Results on Range-X Short-Net I
Data, Presentation to personnel of DARPA, NOSC, and Orincon Corp., Jan.,
1993.

[71] Werbos, P.J., "Backpropagation: Past and future," Proc. of the Intl. Conf. on
Neural Networks, I, 3430353, IEEE Press, New York, July, 1988.

[72] White, D. and D. Sofage, Handbook of Intelligent Controw, Van Nostrand
Reinhold, New York, 1992.

[73] Widrow, B. and M.E. Hoff, "Adaptive switching circuits," 1960 IRE WESCON
Conv. Record, New York, 1960.

[74] Widrow, B. and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall, Inc.
Englewood Cliffs, NJ, 1985.

I
I
I
I
U
I

176I

I
Ii

APPENDIX A: UNCLASSIFIED CLASS ABBREVIATIONS

Table 4.1

Data Received from Orincon Corp. Prior to January, 1990

Class 1: P__
Class 2: Pile Driver
Class 3: Noise from P__
Class 4: Noise from Pile Driver
Unknown 1: Ice
Unknown 2: Seal Bomb

Tables 4.2 - 4.6; 4.11; 4.12 - 4.15; 4.16 - 4.19; 4.20; 5.2 - 5.5

Dataset B: Received from Orincon Corp. Prior to June, 1990

Class 1: T_ F_
Class 2: T__ St
Class 3: T_ R
Class 4: T_ SpR

Class 5: V_ St
Class 6: V_ H
Class 7: Fl__ R_
Class 8: St__sl__
Class 9: Ping #1
Class 10: Active Sonar
Class 11: Pile Driver
Class 12: Killer Whale
Class 13: Seal Bomb

I Class 14: Snapping Shrimp
Class 15: Ice
Class 16: Rain
Class 17: WS
Class 18: 2nd Propeller Moter
Class 19: Ping #2
Class 20: Triple Ping

Tables 4.7 - 4.10; 5.6 - 5.9.

Rangex Data: Received from Orincon Corp. Prior to December 1990

Class 1: Catss Pulse
Class 2: Catss BB
Class 3: Slam W/T Door

177

I

Class 4: D W I
Class 5: RMS Pulse
Class 6: T__ WS
Class 7: (not used)
Class 8: Sig- Ej. WS
Class 9: (not used)
Class 10: (not used)
Class 11: SPM

Tables 5.12 - 5.15; 5.16 - 5.18; 5.19

Rangex Data: Received from Orincon Corp. December, 1992

Class 1: Biologic
Class 2: D W__
Class 3: P__
Class 4: S__ DI
Class 5: WS R.

I
!
I
I

I

I

I

I
178l

I

Im APPENDIX B: CHRONOLOGY OF BAI WORK EFFORT

I _[System Description

QPR iData Classification
Date I Date' Pre- Processing Features Method Post-Processing

1/90 1/90 - PNPs ASPN Multi-Look

1 6/90 6/90 KB Window HEC Distances CLASS Single-Look
HECs Multi-Look

6/90 6/90 Pacsbank Filter PNPs CLASS
S c a lin g _

11/902 I 6/90 KB Window HEC Distances CLASS Single-Look
____ IHECs FFT-Based Multi-Look

LPF
3/91 12/90 Auto-Center FFT-Based CLASS

KB Window

7/913 12/90 KB Window FFT-Based CLASS Multi-Look
10/91 HECs

10/924 Build2 KB Window FFT-Based CLASS Multi-Look
............ _............... H istorical ,.......

2/935 12/92 KB Window PCAs of FFT CLASS

1See Appendix A.

2 lnterrogation on Rangex data demonstrated at QPR.

3 0n-line retraining on Rangex data demonstrated at 7/91 QPR; Demonstration of BAI PNN software
based on this processing chain presented at 10/91 QPR. This software formed the bases for the Build 2
implementation.

4 Training and interrogation demonstrated on PRISM hardware using data collected from Build 2 sea
trial.

5 Results of Rangex short-net evaluation funded in part by Orincon Corporation.

179

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

180 I

I
i
I APPENDIX C: BUILD 2 PNN SOFTWARE DOCUMENTATIONt

I 1. Algorithm Summary

The PNN algorithm is summarized in Section 5. .

2. PNN Procedures

I 2.1 Introduction

This appendix describes the configuration and procedures for operation of the PNN Build 2
software. If there are any questions about using the PNTN software, please do not hesitate to
contact us using the numbers shown below.

I Paul Hess: (800) 323-8790 (24 hrs)
David G. Ward: (804) 985-4401 (Barron Associates Office)
Ross Mahtafar: (619) 455-5530, x414 (Orincon Office)

2.2 Real Time Version

A stand alone version of the real time PNN software resides on the Dantes workstation in the

following directory:

/homellross/prism2/Scripts

'There is also a version of the real time PNN integrated into the overall Build 2 softwa.e. Please
check with Ken Stanwood (Orincon) to find out the current location and configuration of these
files.

I Pre-trained PNN networks are available in the directory:

/homel/danteslnt/dantes/pnnTrainer

Install the pre-trained network by copying the files PNN.model, class.net, detectjnet, and training
to the directory from which you will run the PSC program. Refer to the file
/homel/danteslnt/dantes/pnnTrainer/bck/pre_test.readne for information concerning the event
names and class numbers for this pre trained network.

r IIP has been linked under the existing "SVD" menu item. To invoke PNN, selectI jthe'"SVD" menu item for display while running the PRISM interface. I
I

t Hess, P., Barton, R.L., Ward, D.G., and Mahtafar, R. Polynomial Neural Network (PNN) Acoustic
Warfare Software: Configuration and Test Procedures for the Build 2 DANTES System Sea Trial,
Report prepared by Barron Associates, Inc. for Orincon Corporation, July, 1992.

I 181

I

Background noise will not appear in the PNN output display as a separate class during build 2, but
will have been used as part of the computation of the probabilities of the other classes.

2.3 Collecting Exemplar Data

There is a single PNN network with a maximum of II signal classes. You may use various retina
sizes for collecting exemplar data. To configure the retina size, edit the exemplar.rows and
pixeirows settings in the "dantes.ocfg" file and restart the OMI interface.

exemplar_rows This is the actual size of the retina which will be captured by the PNN. Set I
this to any value from I through 8 (4 is a good value for most short and
medium duration signals).

pixel-rows This is the size of the yellow capture window which will be displayed on
the screen. The best setting for pixel-rows is two greater than
exemplar rows. The effect will be that the selection box will not cover up
and hide the actual pixels that are being captured.

Figure 2-1 illustrate an example setting for these parameters.
r -------------------

I ' I exemplar-rows = 4
pixel-rows = 6

Fig 2-1: In this example, the retina is set up for an exemplar size of 4 to be
captured by the PNN. The pixel-rows setting is 6, which allows all four rows of I

the retina data to fit inside yellow capture window.

When selecting exemplars from a signal, be very sure not to include background noise or other
classes of signals within the capture window. If it is difficult to position the window to includeonly the signal of interest, then reduce the retina size.

Since the PNN Training software allows you to quickly and easily select multiple data files for
training, it is a good idea to output your data into small manageable units. During data collection at
Orincon we would typically create data files of 10-30 exemplars. It is a good idea to collect
separate files containing background noise, since background exemplars must be included during 3
all training sessions.

lBack round noise must i s iiedas class 12.

2.4 PNN Trainer and Utilities

The PNN neural network training and database management takes place in the directory called
/homel/danteslNT/dantes/pnn Trainer. Figure 2-2 illustrates the subdirectory directory structure
for the trainer and utilities.

I

182

I

I __pnnTralner I
II

bi bI~ ckJ data

Figure 2-2: Directory structure of pnnTrainer

The "bin" subdirectory contains all of the programs and utilities available:

PNNTrainX - PNN Trainer (X-Windows version) [sect. 2.4.1]
PNNTrain - PNN Trainer (command line version) [sect. 2.4.2]
LookClass - Examines ".sel4" exemplar files [sect. 2.4.3]

ChangeClass - Edits ".sel4" exemplar files [sect. 2.4.4]
PNNBck - Backs up a current PNN network for later use [sect. 2.4.5]
PNNGet - Recalls previously backed up PNN network [sect. 2.4.6]

It is recommended that the operator include this "PNNTrainer/bin" directory as part of the "
UNIX path environment variable. If this is not done, the operator will have to specify the I
bin pathname each time the PNN Trainer and utilities are used.

The "bck" subdirectory contains archived PNN networks are stored and retrieved using the
PNNBup and PNNUnBup commands. See sections 2.4.5 and 2.4.6 for more information.

The "data" subdirectory contains the original exemplar data files extracted at Orincon from the
Sound Designer data. The operator is encourage to create additional directories and subdirectories
to manage the data and networks generated during the sea trial.

2.4.1 PNNTrainX

PNNTrainX is the X-Window's version of the PNN trainer program. The PNNTrainX develops a
new PNN network or updates an existing PNN network in the directory that the program is started
from. The PNN trainer will automatically determine whether to update or completely resynthesize
the network files.

I The four files associated with the PNN network are: PNN.model, c , detect.net, and
training. The three buttons on the PNNTrainX main window are initialize, file, and synthesize.

Initialize: Pressing the initialize button will clear the PNN~model, class.net, detectnet, and
training files so that you may begin creating a new PNN network from scratch.

File: Pressing the file button will open a file selection window which allows you to
specify training data to add to the PNN working database (which is accumulated
in the local trining file). Use the file selection window to go to the directoriesI where the raw exemplar data (*.sel4 files) are stored. Select a file to add by

183

U

clicking on its name and press the load button. The command window will I
display an itemization of the exemplars and classes that were contained in the new
file, and the summary window will show a history of exemplars that have been
added so far.

Synthesize: Synthesize will create (or update) a PNN model using the data accumulated in the
tn file. Watch the command window for the progress of training. First the
PNN detector will be trained, then the classifier. Training the classifier is an
iterative process (much like the Fishnet training process). Each iteration you will
see the current and best scores displayed in the command window. Training will
take anywhere between I and 25 iterations.

Remember, unless you select initialize, there is no need to load data that has been loaded in
prior sessions. Use the file button to add new data only. If you press the initialize button, I I
then all data must be re-added.

IMPORTANT: IN ORDER TO SYNTHESIZE A NETWORK, YOUR TRAINING
FILE MUST CONTAIN BACKGROUND NOISE EXEMPLARS. THERE MU!ZT ALSO
BE NO MISSING CLASS NUMBERS. FOR EXAMPLE, IT WOULD BE ILLEGAL TO
USE EXEMPLARS FROM CLASSES 1 AND 3, BUT NOT FROM CLASS 2. USE
THE ChangeClass UTILITY (section 2.4.4) TO MODIFY THE CLASS NUMBERS OF
THE EXEMPLAR FILES TO COMPLY WITH THIS RULE.

When training is complete, you may install the new networks by copying the files into the proper
script directory. The best way to do this is to create a named backup using the PNNbck command I
(sect. 2.4.5), changing to your script directory, and then retrieving the backup with the PNNget
command (sect. 2.4.6).

Once a network is created, it is useful to keep a worksheet describing the classes which the I
network has been trained for and the data files which were used for training.

2.4.2 PNNTrain I

PNNTrain is a command-line version of the PNNTrainX program. Run the program by typing
"PNNTrain" along with any command line argumnents. Typing PNNTrain by itself will displayinstructions on how to use the program. There are three modes of running the program:

PNNTrain init C' •ars the P d, class.net detect.ne , and trainngI
files so that you may begin creating a new PNN network
from scratch. i

PNNTrain filenames... Adds the exemplar files to the training database. UNIX
wildcard characters may be used for convenience. For
example, you may type "PNNTrain p*.sel4" to add all
exemplar files whose name begins with p. The program
may be run multiple times in this mode to add all of the data
for training. 3

PNNTrain go This mode will create (or update) a PNN model using the
data accumulated in the traning file. First the PNN detector

184 3

I
will be trained, then the classifier. The PNN trainer will
automatically determine whether to update or completely
resynthesize the network files. Training the classifier is an
iterative process (much like the Fishnet training process).
Each iteration will be displayed along with the current and
best scores. Training will take anywhere between I and 25
iterations.I Remember, unless you use init mode, there is no need to add data that has been loaded inIprior sessions. Add n.w data only. If you use the initialize mode, then all data must be re-

added. II
IMPORTANT: IN ORDER TO SYNTHESIZE A NETWORK, YOUR TRAINING
FILE MUST CONTAIN BACKGROUND NOISE EXEMPLARS. THERE MUST ALSO
BE NO MISSING CLASS NUMBERS. FOR EXAMPLE, IT WOULD BE ILLEGAL TO
USE EXEMPLARS FROM CLASSES I AND 3, BUT NOT FROM CLASS 2. USE
THE ChangeClass UTILITY (section 2.4.4) TO MODIFY THE CLASS NUMBERS OF
THE EXEMPLAR FILES TO COMPLY WITH THIS RULE.

When training is complete, you may install the new networks by copying the files into the proper
script directory. The best way to do this is to create a named backup using the PNNbck command
(sect. 2.4.5), changing to your script directory, and then retrieving the backup with the PNNget
command (sect. 2.4.6).

2.4.3 LookCiass

I This is a useful utility which can be used for both PNN and Fishnet exemplar files. Run the
program by typing "LookClass <filename>" where <filename> is the name of an exemplar (.sel4)
file.LookClass will display summary information about the file such as number of exemplars.
number of cases per exemplar, and total number of cases in the file. It will then list each exemplar
and print the class that the exemplar belongs to.

Once a network is created, it is useful to keep a worksheet describing the classes which the
network has been trained for and the data files which were used for training.

I 2.4.4 ChangeClass

This is a useful utility which can be used for both PNN and Fishnet exemplar files. The
ChangeClass utility will automatically edit an exemplar file to change selected class numbers. For
example, you may wish to change all class 5's into class 2's. Other classes within the same file
will remain unchanged.

I The syntax for using the ChangeClass utility is as follows:

ChangeClass infilename outfilename classnum newclassnum

Infilename is the name of the exemplar (.sel4) file to be edited. Outfilename is the name of the
new, edited exemplar file. Classnum is the number of the class to be changed. Newclassnum is
the number of the class which Classnum is to be changed into.

185

I

2.4.5 PNNBck I
PNNBck is a backup utility which will create an archive of the PNN.model, clis.net, detectnet,
and trainine files. The files will be stored in the pnnTrainer/bck directory under a user supplied I
keyword. The syntax for the PNNBck command is:

PNNBck keyword

2.4.6 PNNGet

PNNGet is a backup utility which will retrieve an archive of the PNN.model, claisL, dACingtc,
and trainng files. The files will be retrieved from the pnnTrainer/bck directory and stored in the
directory from which you run the command. The syntax for the PNNGet command is:

PNNGet keyword

Example: I
You have just finished synthesizing a PNN network which you may wish to use. Archive the
network using the command: I

PNNBck Jul19

Where Jul19 is the keyword to store the network files under. When you wish to use the files, go I
to the location that you want the files restored to and type:

PNNGet Jul19

2.5 Development Directories

Following is a list of the development directories for editing and running the standalone versions of
the PNN software. To run the PNN in an integrated fashion, changes to this source code must be
checked into the PRISM configuration control and rebuilt.

1. /homel/ross/prism2/pnnltool.d Type 'make' to build,
then build the mcp.d (see 4)

2. /home l/ross/prism2/omi.d Type 'make' to build,
then build the mcp.d (see 4)

3. /homel/ross/prism2lpnn/train Type 'make' to build text version,
then move the file PNNTrain into
/home I/danteslNT/dantesfPNNTrainer/bin

Type 'make -f pnn-gui.make' for GUI,
then move the file PNNTrainX into

/home 1/danteslNT/dantes/PNNTrainer/bin

4. /homel/ross/prism2/mcp.d Type 'make' to build,
then type 'mv *.860 ../S*' to install.

I
186m

II

5. /homel/ross/prism2/pnn/backup Backup versions of the tool and train
SMrdirectories.

SIMPORTANT: Prior to Sea Trials please check in (to co. figuration management) all of the
source code in the tool.d directory and rebuild the software. See Ken Stanwood for more
details. The pre-trained networks must also be installed in the proper script directory (use[,the PNNGet command, sect. 2.4.6). ,

3 3. Build 2 Sea Trial Test Plan

3.1 Introduction

The three PNN modes, update, resynthesize, and interrogate, are to be tested in the DANTES
Build 2 sea trial. Other than the Background class, the AcW classes used for laboratory pretraining
of the PNN detection and classification software are described in the *.readme file in the directory
Ahome 1/danteshNT/dan tes/pnn Trainer/bck.

Bear in mind that the scope and amount of PNN pretraining have been extremely limited.

The PNN software is presently configured for use with up to eleven AcW waveform classes plus
the Background class, and the PNN training algorithm provides capabilities for very rapid updating
and resynthesis of the PNN at sea. The updating capability is to be exercised extensively during
the sea trial to augment the pretrained PNN and to evaluate the speed, accuracy, and utility of on-
line training. The interrogate mode is to be exercised throughout the PNN sea trial.

I Updating and interrogation of the PNN during the Build 2 sea trial should emphasize work with
Acoustic Classes and Background signals of short-to-medium duration.

The recommended test plan follows. This plan is not intended to be rigid. For instance, it may be
valuable to update the PNN relatively early if exemplars of a novel acoustic class become available
at the opening of the trial, or if the background noise is characteristically different from that which

* was used during training.

3.2 Test Interrogation of Pre-Trained PNN

Prior to any updating, at least a few basic interrogation tests of the pretrained PNN should be
performed. The steps are:

(1) Familiarize personnel with the PNN operator-machine interface. (Be aware that,
for short-duration signals, a class output may be high in color value for one or two
pixels only. If the high-color-coded pixels are not readily detectable by the
operator, looking at the detector output as a cue might be helpful.) The operating
personnel are requested to log their comments regarding OMI issues so that these
can be resolved in Build 3.

(2) Test the PNN interrogation process when the input waveforms are those for the
ambient Background. Log the detection and classification performance results for
this test and the comments of operators.

(3) Test the PNN interrogation responses for representative accoustic waveforms,
particularly for accoustic waveforms in the classes for which the network has been
pre-trained. Log the detection and classification performance results and the
comments of operators.

3 187

I

3.3 Test PNN Updating Procedure and Algorithm I
To evaluate the existing Build 2 PNN software and help Orincon Corporation and Barron
Associates in coming work on the Build 3 system, it will be important to test the PNN updating I
procedure and algorithm. The steps are:

(1) Following the protocol in Section 2, update the pretrained PNN exemplars for one
additional AcW class. Log the CPU time required for the updating and log the I
comments of the operators.

(2) Test the PNN interrogation responses for specifically the added AcW class,
preferably using new exemplars of this class rather than the exemplars used for I
updating. Log the detection and classification performance results and the
comments of operators.

(3) Test the PNN interrogation responses for one or more of the other AcW classes that
were represented in the PNN pretraining. Test the PNN on Background. Log
performance results and operator comments. I

3.4 Continue PNN Updating and Training with Further Accoustic Classes

Continue as in Section 3.3, adding further accoustic classes. Also, attempt to create a completely
new PNN network using only Background and accoustic class exemplars obtained during the sea
trial.

4. Comments on Scope of Build 2 Software I
Due to the tight availability of resources leading up to the sea trial, a subset of the total PNN
algorithm was chosen for integration into the Build 2 sea trial. I
The primary capability being tested is the core PNN classification algorithm and the rapid retraining
capability. Analysis of results from the PNN classifier should be cognizant of the fact that the
neural network receives a limited input vector of 21 features not based on historical data. This
performance will provide a baseline which may improve dramatically for certain longer term
signals with the addition of historical feature processing.

Future systems will also contain integration of a family structure for the classes. Family structures
allow the PNN to group accoustic signals which are statistically similar using a partially
unsupervised learning technique. Also, because the number of output nodes for any given I
classifier of the PNN will be reduced, training time will grow only gradually as the system
expands to handle many more classes. Analysis of data and results from this sea trial of the single
family PNN will assist in determining the specific choice of algorithms which will be used.

Due to the limited availability of resources, limited verification and validation has been performed
on the build 2 software.

I
I
I

188i

