
AD --A263 993
NPSOR-93-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

o" STA rý ,

'C..

97'G R A DU

DYNAMIC FACTORIZATION IN
LARGE-SCALE OPTIMIZATION

Gerald G. Brown
Michael P. Olson

March 15, 1990
(Revised March 12, 1993)

Approved for public release; distribution is unlimited.

93-10290Q,3 • ! • .O 7. HE!HllllllINlllllII~il

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral T. A. Mercer Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research funded by the Air
Force Office of Scientific Research and the Chief of Naval Research, Washington,
D.C.

This report was prepared by:

Reviewed by: Released by:

TETER PURDUE PU-.M T
Professor and Chairman Dean of Res irch
Department of Operations Research

UNCLASSIFIED
SECGUHI I Y CLASSIF-IUA I ION U" I HIS PAOE

REPORT DOCUMENTATION PAGE OMABp oO48

la REPORT SECUHIIY GLASS1FIGAIION "1b. HICRIGIVE MARIN

UNCLASSIFIED

'" SECUHRI T CLASSIFICA TION AU IHOHI TY a DiStRHIBrUITION/AAILABILI OF RIHEPORT
Approved for public release; distribution is

2b. L)ECLASSIFICAIIONiDOWNGRAUING SCHELJULE unlimited.

4. PERFORMING ORGANIZAIION HEPOR I NUMBER(S) 5. MONITORINi G ORGANIZAIION HEPOHI NUMBER(St

NPSOR-93-008

6a NAME OF- PEKI-OHMINU OHGANIZA I IUN I 6b. U-ICE SYMBOL 7a NAME O1- MONI 1ORING ORGANIZA I ION
I(if applcable

Naval Postgraduate School OR/BW
6c. ADUHEM (Ci,, State, and ZIP Gode) 7b, ADDRESS (City, Staei, andZIP G_-6)

Monterey, CA 93943
8a NAME OF FUNDING/SPONSORiNG . 8b. OFTIGE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if 40ca") AFOSR - MIPR-92-0007
Air Force Office of Scientific
Research CNR - N0007493WR24006
Chief of Naval Research

8C. A ,URESS(Ci4, stayt andZ1PGode) 10. SOURCE OF FUNUINU NUMBERS
Washington, DC ROGRAM IPROJECT ASK IWORK UNIT

ELEMENT NO. INO. NO ACCESSION NO

11. 1i LE (Include ,ecunty ClaS$1tWCaIJOn)

Dynamic Factorization in Large-Scale Optimization

12. PERSONAL AU I HUH(S)

Gerald G. Brown and Michael P. Olson
1.3a. IYYFF UP H FI-POT I13b. TIME CA:VEHLIJ 14, DA Fit, OF HhPUHTI (Year Month Ma)''" y PAGE G;OUN1I

Technical I FROM TO 1993, March 12 T 39
16. 5UPPLEMEN 1AHY NQOIAI IUN

17. COSATICODES S 18. SUBJECT TERMS (Gontnue on reverse if necessary and identify by block number)FE,..0 ! ROUP I SUB-GROUPI

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Factorization of linear programming (LP) models enables a large portion of the LP tableau to be
represented implicitly and generated from the remaining explicit part. Dynamic factorization admits
algebraic elements which change in dimension during the course of solution. A unifying mathematical
framework for dynamic row factorization is presented with three algorithms which derive from different
LP model row structures: generalized upper bound rows, pure network rows, and generalized network
rows. Each of these structures is a generalization of its predecessors, and each corresponding algorithm
exhibits just enough additional richness to accommodate the structure at hand within the unified
framework. Implementation and computational results are presented for a variety of real-world models.
These results suggest that each of these algorithms is superior to the traditional, non-factorized approach,
with the degree of improvement depending upon the size and quality of the row factorization identified.

20. 1DSTRI8U lON/A VAI LABIlLITY OF ABSTRACAT 121. A [OrCI SECURITY C;LASS(ICIATION

[• UNCLASSIFIED/UNLIMITED [] SAME AS RPT, [] DTIC USERS UNCLASSIFIED
22a. NAME OF HESPON51BLE INDIVIDUAL 42b. 1 ELEPHONE (Inckxb Area ode) I 2c. OFFICE SYMBOL

G. G. Brown (408) 656-2140 OR/BW
DO Form 1473, JUN 86 Prewous editons are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED

Dynamic Factorization in Large-Scale Optimization

Gerald G. Brown
Michael P. Olson

Naval Postgraduate School, M'onterey, California 93943

March 15, 1990 (revised March 12, 1993)

Abstract

Factorization of linear programming (LP) models enables a large portion of the LP
tableau to be represented implicitly and generated from the remaining explicit part. [)y-
namic factorization admits algebraic elements which change in dimension during the course
of solution. A unifying mathematical framework for dynamic row factorization is presented
with three algorithms which derive from different LP model row structures: generalized
upper bound rows, pure network rows, and generalized network rows. Each of these struc-
tures is a generalization of its predecessors, and each corresponding algorithm exhibits just
enough additional richness to accommodate the structure at hand within the unified frame-
work. Implementation and computational results are presented for a variety of real-world
models. These results suggest that each of these algorithms is superior to the traditional,
non-factorized approach, with the degree of improvement depending upon the size and qual-
ity of the row factorization identified.

77

1 Introduction

A recurring theme in the development of algorithms for linear programming has been the iden-
tification and exploitation of special problem structure. Ideas as apparently disparate as the
bounded-variable simplex method, primal and dual decomposition methods, pure and gener-
alized network primal simplex algorithms, primal partitioning and column generation schenu-s-
may be unified to a degree with this view.

The factorization approach introduced by Craves and McBride [1976] isolates special st ruc-
ture in LP tableaus. We are interested in using factorization to reinterpret existing algorithms.
and to discover common principles and apply them to develop new algorithms. Although all
algorithms developed tiiis way will, in theory, solve any LP, the efficiency of any particular fac-
torization approach will be influenced by the relative number of factored constraints and their
influence on the algorithm: the size and quality of the special structure isolated determines
the influence of any particular factorization applied to any particular LP.

Based on prior work by Brown and Graves [1975], in which generalized upper bound rows
were successfully incorporated in a large-scale optimization system, we are interested in pursuinng
dynamic row factorization, where the dimension of the factored structure may vary (or even
fail to be present) as the solutior progresses. In our setting, we require the row structure of
the model instance to be specified prior to solution, and that this structure remain fixed during
solution. An extension of this approach is to allow the row structure to vary as the model is
solved: this is a conceptually simple extension of the approach.

Each algorithm is developed by factoring the constraints of the LP model into two classes:
those that have the special structure (factoed) and those that do not (explicit). This constraint
factorization induces a factored structure in the LP tableaus which is exploited computationally.
We demonstrate the dynamic factorization approach for three special structures:

generalized upper bound rows;

pure network rows; and

generalized network rows.

We implement each of the factorization algorithms by integrating it within the X-Systein
(Brown and Craves[1975]).

While the terms "partitioning" and "factorization" are frequently used interchangeably in
the literature, we observe a distinction between the two approaches. We consider partitioning
methods to be based on special structure in the original problem instance, which need not
induce special structure in the LP tableau-in fact, the method need not be ta!bleau-based.
In contrast, factorization methods are based on special structure which occur- in bases and
thus in the basic tableau. Thus, we classify dual decomposition (Dantzig ;,.d Wolfe [1960]),
primal decomposition (Benders [1962]), and primal partitioning (Rosen [P)64]) as examples of
partitioning methods.

Perhaps the earliest example of what we consider factorization is the treatment of simple
upper bounds by Dantzig [1954] and [1963] and, independently, by Charnes and Lemke [1954].
They observe that it is more efficient to enforce the "logical" u:)per bound constraints with
logical tests within the algorithm rather than treat them explicit!y along with other "structural"
constraints. While not originally presented in the context, of a formal tableau factorization, the
approach is easily viewed as such.

The mutual primal-dual method of Graves [1965] focuses attention on the special role of
nonnegativity constraints in linear programming. A clear distinction is drawn between the
computational convenience of treating nonnegativity constraints implicitly rather than explic-
itly and the unambiguous mathematical equivale-nce of all problem constraints, structural or
nonnegativity. Emphasizing the special importance of inequality constraints, the approach
yields an elegant theory and, as we will see, ufficient implementations. We view this algorithm
as the first formal example of factorization.

2

A similar primal-dual algorithm is presented 1y Balinski and Gornory [19651. Rlelated work.
in which efforts are made to exclude slacks from the product-form representation of the primal
basis, includes that of Zoutendijk [19701 and Powell [1975].

Dantzig and Van Slyke [19671 extend the earlier work for simple upper hounds arid lend
a more structured treatment to generalized upper bounds (CUB). In a problem with p (CUB3
constraints and m structural constraints, their approach requires a working basis of dimeension
(m + 1), a considerable savings when p is large.

Hartman and Lasdon [19721 specialize this approach to the multiconmiodity capacitated
transshipment problem. In this case, the structure of the basic pure network columns in-
troduces additional structure into the working basis, allowing further simplifications in bas.s•
representation and update techniques. Helgason and Kennington [1977] develop techniques for
representing the working basis in product form and provide graphic interpretation of the basis
updates. Kennington [1977] reports an implementation of the algorithm.

McBride [19721 and Craves and McBride [1976] formalize and generalize the factorization
approach. They view factorization as a unifying framework for tableau-based simplex special-
izations and illustrate this by developing a variation of the CLUB algorithm of Dantzig and Van
Slyke and a CUB algorithm for the doubly-coupled linear programs of lHartman and Lasdon
[19701. They present a new algorithm for the set partitioning LP and an equality-constrained
form of the pure network with side constraints model. Brown and (;raves [19751 report an
implementation of inequality-form, dynamic GUB row factorization for large-scale problems.

Schrage [1975] extends the succession of simple and generalized upper bounds by introducing
varirble upper bounds (VUB), which are constraints of the form x) < xk, where xk is said to be
the variable upper bound of xj. Schrage implicitly represents the VUB constraints by expressing
VUB variables in terms of other variables. This permits the basis representation to he treated in
two parts, one a large matrix which changes infrequently and thus needs only occasional update.
and the other a small working basis which requires regular attention. Thus, computation and
storage savings may be realized. Schrage [1978] extends these ideas to what he calls generalized
VUB ('VUB) constraints, which arise frequently in models with fixed charges.

Klingman and Russell [1975] sketch a factorization method for solving transportation prob-
lems with side constraints. They suggest techniques for performing simplex iterations and
updating the problem representation. Chen and Saigal [1977] present a similar approach for
solving capacitated network flow problems with additional linear constraints. Both of these pre-
sentations employ a graphical description of the basis update and treat the basis in two parts:
one corresponding to a rooted spanning tree defined on the underlying graph, and the other
a general working basis. Clover, et al. [1978] report an implementation of the Klingman and
Russell design, but one which (curiously) only accommodates a single side constraint. McBride
[1989] reports an implementation which requires the pure network rows to be equalities and
allows more than one side constraint.

Generalized networks with side constraints are addressed by Hult.z and Klingman 119761,
who present details for the simplex priceout, column generation, and basis update. Hultz and
Klingman [1978] report an implementation that (curiously) solves the "singularly constrained"
generalized network problem. McBride [1989] reports an implementation that is not restricted
to a single side constraint.

The factorization approach has been extended by consideration of embedded structures.
Clover and Klingman [1981] consider an LP with embedded pure network structure, i.e., the
pure network structure appears in only a subset of the rows and columns of the technological
coefficient matrix. They give an algorithm similar in spirit to their pure network with side
constraint model, but the presence of the "side variables" significantly complicates the basis
representation and update. They report. an implementation of the algorithm but. (curiously)
restrict test problems to have no complicating variables.

McBride [1985] solves an LP with embedded generalized network structure, presenting meth-
ods for pricing, column generation, basis representation update and data structures. A success-
ful implementation is reported to be about five times faster than MINOS (ca. 1977: Murtagh
and Saunders [1977]) for the models tested.

3

Algorithms to solve problems with special substructures have motivated research to effi-
ciently identify such subistructures. Brearley, Mitra and Williams [1975] describe algorithmrs
for detecting CUB row sets and exclusive-row structure sets (a set of rows whose structure
may be transformed to CUB by column scaling). Creenberg and Rarick [19741 and Brown and
Thomen [19801 develop algorithms to identify CUB sets. Brown and Wright [19811 identify
pure network constraint substructures. Brown, McBride and Wood [1985] present a method for
locating embedded and row-only generalized network structures.

Todd [1983] develops a geometric interpretation of factorization which is for our purposes
equivalent to the algebraic development of Craves and McBride [1976].

In the following sections we establish notational conventions, develop the mathematical
foundation of a primal-dual simplex method and show the effects of row-factorization. Next,
a general row-factorization algorithm is developed, specialized to (;UB, pure network, and
generalized network rows, and tested on a suite of real-world problems. Finally, we discuss how
the methods can be generalized further and how they can be applied more effectively.

2 Mathematical Preliminaries

The traditional statement of the linear programming (LP) problem is

(LP) min: wyy

s.t. aiy<ri , 7,=1.i.
ejy> j=l.n

where y is an n-vector of decision variables, w a vector of cost coefficients, each a, an n-vector
of technological transformation coefficients, each ri a scalar right-hand side coefficient, and t'j

the jth unit vector. While this statement of the problem is clear and unambiguous, there are
reasons for preferring an alternative. The insistence upon drawing a formal distinction between
the "structural" constraints aiy < ri and the "nonnegativity" constraints ejy > 0 obscures
the mathematical structure of the problem by suggesting that the two types of constraints are
inherently different. Certainly the exploitation of the special structure of the rjy > 0 constraints
leads to computational efficiencies; however, in our theoretical development of the algorithm,
we prefer to treat them simply as general inequality constraints.

In order to achieve a consistent form, we rewrite the nonnegativity constraints as -rjy < 0
and group them with the structural constraints. The problem statement then becomes

(PLP) min: wy

.t. : aiy < ri i=l ? fn,

where wy is called the extremal function.
From the standpoint of a primal algorithm, a matrix r artitioned form of the primal tableau

is derived. Let {a 1 , ai2 a,} be a basis for R"f at y . For notational convenience we will
partition the constraints into two sets, those that are basic (binding) at y0 and those that are
nonbasic (not necessarily binding) at y0

b aj, fl I.,

a=[]=L ai , f 2={fj= j2]

). a,, ,

d2 a j., .2g2 7 lz• ý
D=] = [; g= . =

d. adJ ÷•M

Using this notation, the current basic solution y0 may be expressed as By° = f, and since
the rows of B are by definition linearly independent, yO exists.

To isolate the important algebraic components let us assume that at the current basic
solution the basis consists of h structural constraints and (n - h) nonnegativity constraints.
Then

bl afl "r,,]
b2 ai2 hf?1

B = bh ai and f- fh ri,
bh+ - -- ej z A , 1+ 0

bh+2 fh2 0

b,, Ae.f 0

In partitioned matrix form,

h n-h

B All A12 h

0 (2) }n-h,

and thus

h n-h

P -B- - -All' -AllAI 2) h

0 I J} -h

Similarly, D can be written as

di91 0
d 2 92 0

D dh and g gh 0
d h ÷ 1 a i ,+, g h + I r ,,+,

dh+2 ai9÷• gh+2 'ih 2

dm a L

and in partitioned matrix form

h n-h

D= -I 0 }h

A21 A22 } n- h

Then

h n-h

DP =-DB-I (All' Aa - A1 2

-A2AIll A22 - A2 1A I-A 12 }rn-
and we shall call DP the principal part of the tableau. By partitioning w1= (w1 , u'2). g T

(g1 ,g92) and y0 = (y0, yO), the complete tableau may be written in partitioned matrix form a.-

h n-h I

SA-' ww A 1 1lA 12 y 0

-A21A11 A22 -A 21 Aj1 IA1 2 g2 -A 21y°- A22Y° }m-h

-Iy0 1 2 i-wIAH'• W2 -- wjlAlIA12 -wy } 1

Note that yo is displayed explicitly in this tableau. Also, y' = 0 since the corresponding
nonnegativity constraints are basic and thus binding.

The corresponding dual problem is

(DLP) max: xr
z

s.t. xaj < w) j =

xe <O , i=1 m

To develop a matrix partitioned form of the dual tableau, we proceed a• before. Assuming
the dual basis consists of h structural constraints and m - h nonnegativity constraints, we have

T = (Q •,t I _.... t) = (a j ý,• a ... , ail, . * c' -)
u = (u',.) = (W)I, W2, ... J,0.. 0),

so

u = (U, u 2) = (W', 0).

The nonbasic constraints are then

K = (k 1
, k2 , k"V) = (2, e .. . , a•, ...1, a1h)

v = (, , v 2. V") = (0, 0 . 0. , ,,,.

6

so V T h , Ve) = (0, w2) .
The matrix partitioned form of the basis is then

h , -h

T= All 0)h

kA 21 I] -h

and with the choice of Q = T`

h m-h

Q= All' 0)}

-A21 All' I) }m-h.

with the remaining constraints forming

I A12]
0 A22

The principal part of the dual tableau is

-A 21AlI 1 0 A 21

[Aj-' Al IA12]
- -A 2 1A--1 A22 - A2 1A-IIA] 2 J

which we find to be exactly the principal part of the primal tableau, so

DP = QK.

Thus a single tableau representation supports both primal and dual algorithms.

3 Interpretation of Primal and Dual Forms

We may interpret a primal or dual algorithm as simply different perspectives of this same
tableau, wherein a primal algorithm basis change is viewed as exchanging primal constraints and
a dual basis change exchanges dual constraints. The classical Simplex Method may then
be interpreted as solving (PLP) using the dual perspective. That the classical Simplex
Method is naturally interpreted as a dual algorithm comes as a surprise to the conventionally
trained. However, the consequent mathematical insight. is compelling, especially in light of
the notational simplification and apparent, underlying role of Ajll, which we refer to a., the
transformation kernel.

There are several reasons for preferring a Primal-Dual algorithm to the Simplex Method.
From a computational standpoint, because slack variables are carried logically rather than

introduced explicitly, we are able to clearly identify the essential information needed Wo execute
the algorithm. The matrix A,-,' plays a key role in the calculation of the tableau, and] the entire
tableau can be constructed from A,-,' and original problem data. Since A-,' is a subruatrix
of the inverse, T-1, used by the Simplex Method, it is smaller and requires fewer arithmetic
operations to update than does T'.

A second advantage of a Primal-Duai Algorithm lies in the flexibility it offers for special-
ization to particular problem classes or structures. Indeed, it is the special structure and
simplicity of the nonnegativity constraints that motivate the development of the algorithm in
the first place. It is frequently the case that other special structures can be identified in classes
of (PLP). Examples of such structures include simple upper bounds, generalized upper bounds.
variable upper bounds, pure and generalized network substructures, etc. Such structure may be
"static" in that its nature and dimension remains fixed throughout the solution process. or the
structure may be "dynamic" in which case its precise nature and/or dimension may vary as the
problem is solved. Some special structures may be more strongly characterized by their coluni
structure and others by their row structure. The Primal-Dual perspective leads naturally to
explanations of the implications of virtually any such problem structure and greatly simplifies
the implementation of such a specialization.

When an LP appears as a subproblem in a more sophisticated solution setting (for example,
in a mixed integer programming problem or a nonlinear programming problem), the row/column
symmetry of a Primal-Dual Algorithm is of critical importance in specializing the solution
approach. The inherent symmetry of such an algorithm permits easy adaptation to branch-
and-bound and cutting-plane approaches to mixed integer programming., to column generation
settings, as well as to primal and dual decomposition techniques.

We believe the reason for this flexibility offered by the algorithm lies in its more complete
mathematical foundation. There is a natural consistency that arises from the choice of
a vector space having the same dimension as the problem variables that is lacking
in other approaches. A natural geometric interpretation of the solution trajectory follows di-
rectly from this development. Incidental issues such as finding an initial basic feasible
solution and dealing with degeneracy are resolved constructively in this math-
ematical framework [Graves 1965]. Other approaches re.,ort to unnecessarily complicated
tangential efforts.

All the research results reported here can be developed, with some effort, in the framework
of the classical Simple., Method. However, we choose to present these results in the manner of
their development - the mutual Primal-Dual view presented by Graves.

4 Column and Row Generation

Rather than maintain a complete tableau DP, now consider the generation of just colbmn c
of this tableau. Rewriting in a manner that highlights our intentions, and labelling row and
column partitions for identification

(j) (Ji)

D (P) [AA•[A2tA121
(i) A21 [A'I• A22 - A21 tA[A 121'z

By properly sequencing our computations we will exploit the fact that region (ii) of a given
column is simply a linear combination of terms in region (i) of the same column.

Assume we want to place the current representation of column c into a work array z, which
we partition as z = (z1 , z2) to correspond to regions (i) and (ii). Expressed in terms of the
transformation kernel Al, we compute column c as

if c is in (j),

and then

Z2 = -A2[:I]

or, if c is in (jj),

ZI = [Ai '(A 1 2)c]

and then

z2 = (A 22)c - A 21 [Z I

Then the current representation of column e is available in zT (zT, z4T).
The computation of row ?- of the tableau proceeds in a similar manner. We now view the

principal part of the tableau as

(j) (ij)

DP M (i) I [I',] [AI-l•]A12

(ii)• [-A 21AI-11] A22 + [-A 21 A7I1]AI 2

If we want to place the current representation of row " in a work array z partitioned
conformably with (j) and (jj) asi == (-:3, z-4), we compute

if row 7, is in (i),

Z = [Ap]]J,

and then

or, if row r is in (ii),

2-3 = [(-A 21)rA•-'J

and

z4 = (A22),. + P-1AI 2

and the current representation of row r is available in (- z-34).
We see that in each case calculations proceed by first, using a representation of A, I to

compute a portion of the row or column and then using this initial coml)utation and original
problem data to compute the remaining part. We will discover that our specializations ex-
tend this approach by introducing additional tableau partitions which allow this computational
strategy to be applied on a larger scale.

9

5 Transformation Kernel Update

The dynamic behavior of AH1' is important. We see from the primal row basis 13 and rliba.,(

rows D that the dimension of A t corresponds to the nunber of basic structural const raints,
or, equivalently, to the number of nonrbasic nonnegativity 'onstraints (recall that if a nonnega-
tivity constraint is nonbasic and thus nonbinding, the corresponding variable may Iossibl'v be
nonzero). Recalling that our primal view of a basis exchange is as an exchange of constraints
between B and D, we see that one of four cases may occur during a pivot

A structural constraint enters the basis B and a structural constraint leaves the basis and
enters D. Since the number of basic structural constraints (and the number of ;i(nbas•iC

nonnegativity constraints) remains unchanged, the dimension of A,,' is unchangged. A
pivot of this type involves a row in region (j) of B and a row in region (ii) of I), and thus
it corresponds to a pivot coordinate in the location ((ii). (j)) of t he tlableau I) P.

A nonnegativity constraint enters the basis and a nonnegativity constraint leaves the
basis. Again, the dimension of AT-I remains unchanged. Since this pivot involves a row

in region (jj) of B and a row in region (i) of D), the corresponding tableau OP pivot
coordinate lies in ((i), (jj)).

A structural constraint. enters the basis and a nonnegativity constraint leaves 1he basis.
and thus the number of basic structural constraints (equivalently. the number ,of nonba;sic

nonnegativity constraints) incr7eases by one. The dimension of" AH-' is increased byv or.e
This corresponds to a pivot coordinate in region ((ii), (jj)) of the tableau I)P.

A nnnnegativity constraint enters the basis and a structural constraint leaves the basis.
and thus the dimension of AH) decreases by one. The corresponding pivot co•ordinate in
DP is ((i), (j)).

We see that we may exert some influence on the behavior of the dimension of Al- by our
strategy for selecting target exchanges for primal and dual constraints (i.e.. our oricing strategy)
and through our tie-breaking rules for choosing pivot row/column. and that this dynamism is
an inherent feature of an effective algorithm. We have already seen the fnldamental importance
of the kernel (All) in our computations. Thus, a successful implementation must manage this
dynamic behavior efficiently and reliably.

6 Factorization

The row-factorized problem to be considered is

(FLP) rnin wy

s.t. Ey < 7 } explicit constraints

Fy _ b } factored constraints

-ly ! 0 } nonnegativity constraints

where y is an n-vector of decision variables, w a vector of cost coefficients, E a matrix of (on-
straint coefficients for "explicit" constraints with right-hand side rn-vector r7, F a matrix of
constraint coefficients for "factored" constraints with right-hand side p-vector 1. and -1 the
negative of the identity matrix. In this general development, we refer to the F-type(c(nstraiitts
as "factored" only to distinguish them from the "explicit" E-type constraints, and assutne not lh-
ing about their structure. Not until our specializations later will we impose special st ructure MO
F, and the structures we will consider may permit the representation of the J'- ype 'onst raints

10

without the inversion of a matrix. We will see that this approach is ('entered around handling
the part of the basis corresponding to the E-type constraints explicit ly while factoring the I)por-
tion of the basis corresponding to the F-type constraints. The notation is (i'sen to sugg -st
this idea.

Recall that a basis for the p)rimal algorithm consists of Ti linearly independent rows from
the constraint matrix when it is assumed to include both structural (explicit and factored) and
nonnegativity constraints. Assume that the current row basis consists of k rows from E, I rows
from F and (n - (k + 1)) rows from -I. Repeating our notation

k L n-(k+L)

k±
B= All A,, }2 k + I

(0 -1)it -(k+l)

where [All A121 includes all basic structural rows, from both E anrd F.
We will ultimately be interested in isolating the effect of each type of structural comstirairt

algebraically in the factored tableau, and thus we require greater resolution in our factored
basis. Introducing obvious notation, we have

k I ,t--(k-,/)

[All A12]= El I:2 E122 E13F)} kl

(F21 22:)3
where the kernel of dimension (k + 1) is given by

[Al] Ell E12]

[A111 = F21 ,22

Because AII is a basis foi 1 k'-t it follows that it is always possible to identify among the
columns of [F21 F22] a nonsingular submatrix F22 of dimension 1. since otherwise the rank of
[F2 1 F22] is at most (I - 1) and thus the rank of AII is at most (k + I - 1), or equivalent ly
the rank of B is at most (n - 1). We will later see that one of the important implementation
challenges is the task of efficiently managing the structure and nonsingularity of F1:;.

The full factored row basis is then

k I n -(k-1)

El) Et12 E13 k

B =) F2 1 f":22 F2 }3

(0 0 - }i- (k + 1)

Introducing the notation

11

All = Ell - E12 F221 F21

A13 1 E13- El 2 FIj21 F

where Ali is the Schur complement, or Gauss transform, of F 22 in All (e.g., Colub and Van
Loan (19831), we can write its inverse as

-= -Fi'F 21 ,A4' (1+ F(I F2iAT1 1 EI2)Fj2, Fi2
1(F23 - F21 AhIIA 13)

0 0-

Grouping the coefficients of the nonbasic constraints and applying the same column ordering
yields

k I n-(k+l)

(i) -I o o k

D= (ii) 0 -1 0 1

(iii) E31 E 3 2 E33 ri, - k

(iv) F4 1 F 42 F43 } - I

The principal part of the factored tableau is DP, where P = -B-1 is the conjugate row
basis. With the additional notation

A 3 1 - E 3 2Fj2'F 21

Am = E3I - E 32 F921F23

A41 F41 - F4 2Fj'F 2

F 4 3 F 4 3 -F 4 2 Fj2 'F 23

the principal part of the factored tableau is

Ai Ai11 1-A iI E12Fj2) AltlA .3

DP =i) -F22'F2 1 Al' (I + F'F 21 A H'El2)Fj23 Fj2'(F2 . - F2 ,A1-,A,3)

(iii) -A 3 1A111 (A.31 A El E2 - E32)F2j2 A34 3 - A3 1A ,I IlA3

(iv) - F41 AAI1 (A-,A E 1 - F42•)•2,' 2 -F 43 - b1,,AI/,A

12

Partitioning w = (w 1 , w 2, ww 4), ,.T. (,.rr") and bT (bT, b.) and introducing the
notation

I2 - w2 - Fw1 FbF 2 ,

Wb3 W3 w-W 2 F,2
1 F23

b2 b-F1F2b
f, r-," - El F21ýýbl

f 2 2 - E 21 Fjlb1

the complete factored tableau is

I AI IApE12F9-' -F2A 1
1AM llIf

-Fj2'F 21 A•I' (I + F 2 l'F21AIl'EI2)Fj2 F) (F 3 - F2 1A -1 A13) F29
1(bI-, F1A,,f1)

-A 31A'11 (A31AjI-'E 12 - E 32)F22' A33 - A31A],' 13 f2 - A31 A 1 fi
-P41A I (F 4 1AII E12 - F 42)F 22 F - F 41A-Q A, 3 b2 - fý41A il-1

(-2 w,)i) 3 - wý2 A 1, 3 WI ,Fj2b I + t&,A I If-W2 A i11 (12Al 'El2 - wl)Fj-21 Af -tZIlII l2ll+fzi 1

We see that with knowledge of the current factorization, we can construct the entire tableau
from Fe1, Al1 I and the original problem data. The dimension of F9' is equal to the number of
F-type constraints that are currently basic, and thus can be at most p. The dimension of AIII
is equal to the number of E-type constraints that are currently basic, and thus cannot exceed
m. We call A,,' the explicit transformation kernel and F-21 the factored transformation
kernel.

7 Factored Column and Row Generation

Consider generation of column c from the principal part of the tableau DP. Rewriting in a
manner that highlights our intentions

W) (0J) O)M

()[A , 1 Jl [- i~ EI2Fj2 1 [All' A 1.3l

DP= (ii) {-F•2'FI[1} {F 2 'l- Fj 2
1 F2 [1} {F 9 'F 23 - F 2 1 F2 1[]}

(iii) -Et[1- E32 { } -E 31[I - E3 2{ } EM3 - E311 I - E.3 2{

(iv) -F 4 1[]-F 42{ I -F 41 []- F 42{ } F43 - F41 [] - F42{ }

where A13 is defined as before, and the brackets "[1" and "{ }" contain terms common to but
displayed only --)nce for each column.

Assume we want to place column c into work array z. We partition z conformably as
(j, 4z(, T4, z4), refer similarly to components of unit. vector c'. and employ a (m + p)-

vector work array •. The notation "--" denotes simple assignment, "=" indicates that a set of
factored equations must be solved, and ";" explains the corresponding result.

If column c is in (j),

13

Z14.-I
T

and then

z--F 21[zl]
F22Z2 = ~ Z2 ~-{Fý' F2 1 [z I

then

Z3 '--E3l[ZiI E-32Z

and finally

4- -F41 [Z] I-4 21

if c' is in (jj), solve

F22z2 = -(2) Z2 4-(F2

z- A11 2>] 4- [Al 1 lE 1 2 Fj~~c,

then

2 C2 - F21 [zu]

F22Z22 Z2 J(iT F2Flz~

and finally

Z3 4- -E3 1 [z]I E3 2{fZ2}
Z4- -F41 [ZI] -41Z)

if r is in (jjj),

(F23)c
F22Z2 =2 •:'Z i2(j~

(E13- - E 12z 2 A'2 -] (A 3)
4- All, z~ Ij4 [A -A1 31 aC,

then

(F4-) -)F21ZI

F22Z2 = > Z ~2 '- Fj2(F 23)c - Fj2§F 21[Zulj,

and finally

Z3 .- (E 33)- E.1)[Z I E32{ Z2}
Z4 - (F43): - F4ilzd- E4 2 1Z2}.

Similarly, row r" can be generated. The principal part of the tableau is now %iewed as

(U) 01) OM)

(i) [AI~Q] {-[]EM2 F;1 } []E1 . + { }F,23

DP = (ii) [-FýQF 21AI I'] {F•2' - []E12Fj2j []E13 + { })F23

(iii) [1J~1 {(-E 3 2 -[]El 2)Fj2 2' } E.3. + [JE13 + { i F23

(iv) [-F 4A AI 1] {(-F 42 - [1E, 2)Fý2 '} F43 + [E13 + { }F23

where A31 and P41 are defined as before, and the brackets "[]" and "{ }" contain terms common
to but displayed only once for each row.

Assume we want to place row r into work array 5. We partition : conformably as =

(05,, ;E7), refer similarly to components of unit vector c., and employ a (Tn + p)-vector work
array =7.

If row r is in (i),

then

,i- 5E12 1 A~'i~ 2

=6 F2 = Z 6 4-{[Aj 1
1 'jEl2Fi2 1},

and finally

27 ý- [-;5]E13 + {14}F2.3 ;

if 7 is in (ii), solve

i6F 22 = -(eC), =€ 6 --- (Fý21),

then

- r6 , - [zirfJii2
F2 2 4- {(F 22),- - [5,.,jEj2'1,

and finally

15

Z7 - [i5 JE 13 + {Z-6 }F23 ;

if 7- is in (iii),

- (E32)r
-6 F 22 -- 5 - (E3)2

then

S- (E 3 2), - ir]2

46 F 22 = 6 {(-(E3 2)r - [5]Er12)Fj27 1

and finally

7 +'- (E33), + [fz5 1]El + {- 6 }F2 3;

if r is in (iv),

z 4 -- (F 42),

46 F 2 2 - F42), Fi2

'~(F 4 1), i- ~F21 => 4 (P41~

i5 4- I'] =:> 4- A IA1 'Ir

then

-' (F 42)r- [55]E12

=; F2 (-{((F4 2), - (z)E211T

and finally

z7 4- (F43)r + [,:5]E]3 + {z 6 }F 23.

8 The Complete Algorithm

The complete algorithm is described in terms of abstract, functions which operate on funda-
mental data structures.

Tableau management requires two index maps: one yielding the intrinsic coordinate in the
principal part of the tableau for each original, extrinsic problem row or column, and the other
its inverse map. Intrinsic arguments are shown in lower case, and extrinsic in upper case.
IndexExchange(indexl,index2) updates these maps for the exchange of a pair of tableau
coordinates indexl and index2.

The tableau regions are successive partitions of indices

16

TABLEAU ENDING
REGION INDEX CONTENTS OF REGION

(i) MEC basic Columns solving Explicit rows
(ii) MFC basic Columns solving Factored rows
(iii) MER nonbasic Explicit Rows
(iv) m nonbasic Factored Rows
(j) NER basic Explicit Rows

(jj) NFR basic Factored Rows
(jjj) m + n nonbasic Columns.

Increment(endingi ndex) and Decrement(endi ng-index) are functions to modify the'se
ending indices.

Generate -Row(row) and GeneiateColumn(column) place numeric values of a tableau
row or column in ROWCOLO, which is commensurate with the tableau dimensions.

Using ROWCOL(), UpdateRim(row,col) maintains current numeric values of the right-
hand-side and bottom row of the tableau in RIM(.

The explicit transformation kernel, Aj1 , is operated on by functions using ROWCOLO:

AddE-Kernel.Row(ROW),
Add_ E-KernelColumn(COL UMN),
DeleteE-KernelRow(ROW),
DeleteE-&KernelColumn(COLIUMN),
ReplaceE-KernelRow(REP LACEDROW,REPLAC IN ('ROW), and
Update-Explicit -Transformation_-Kernel, the pivotal update.

AllI can be represented in any way that suits the implementer and efficiently supports these
functions. Generally, we find AjQ to be relatively sparse, and report here results using an array
with an entry-point for each inverse row and column which accesses a stack of orthogonally-
linked nonzero inverse elements. We have also implemented a dense vector-processor version,
and the design issues for LU-based schemes are given by Olson [1999].

The factored kernel, F22, is manipulated with:

Factored _KernelSingular(ROW,COLUM N), a Boolean function.
Find .E-KernelIColumn-for-Key(ROW ,COLUM N), a column from region (i),
FindF-KernelColumn~toRemove(ROW,COLUMN), a column from region (ii), and
UpdateFactoredKernel(ROW,COL (MN), the pivotal update.

17

The complete albstract algorithm is:

0. Initialize;
1. select primal or dual algorithm;
2. Select a primal (col) or dual (row) violation;

STOP if current solution is terminal, or
GenerateColumn(col) or GenerateRow(row);

3, By ratio test with RIM() and ROWCOLO,
select a (row) or (col) pivot coordinate;
STOP if current solution is terminal, or
GenerateRow(row) or GenerateColumn (col);

4. Update.Rim(row,col),
primary IndexExchange(row,col),
perform secondary and tertiary exchanges (Table F-1),
UpdateFactored-Kernel(ROW,COL)

Update-Explicit -Transformation -Kernel,
(o to step 1.

00

~- U

T : :

C6

S0 0oc Lo40

.14

20 La~ w oj t' .4.

a -v

A. A v- N2 24fi l?

.H H .0§

0 0

Vk 'k 0

21 0O*A Ull -.

vIlll I 1 Hli
coo~~ -0 RM 0.

Functions for maintaining the factored kernel vary with the factorization, and a good im-
plementation will exploit these differences. However, a general specification will suifice for all
factorizations here.

We are exclusively interested in performing two fundamental operations:

1. Solving factored equations of the form:

F112Z2 = b2

and

222= b2

where Z2 and :2 are unknown and b2 and b2 are rational (not necessarily integer), and

2. Restoring F22 to the desired form of F22 which makes the factored equations above easy
to solve, where F2 2 results from inflicting F 22 with a column exchange, a column and iow
deletion, a column and row addition, or a row exchange.

FactoredKernelSingular(LABEL1,LAB EL2) predicts whether F22 will be singular if:

1. LABELI gives a basic column in a basic factored ROW for which COL=LABEL2 would
be exchanged;

2. LABEL1 is a basic factored ROW solved by basic column COL=LABEL2, both of which
would be removed from the factored kernel;

3. LABEL1 is a nonbasic factored ROW, which would be added to the factored kernel with
column COL=LABEL2, or

4. LABELI is a basic factored ROW which would be replaced by some other row LABEL2.

The first case, a column exchange, is equivalent to asking whether solving F22 Z2 = b2 with b2
equal to region (ii) of the proposed entering column COL, yields a nonzero term associated with
the basic factored row in z2(row). This is easy to answer for the factorizations we discuss. For
instance, Brown and McBride [1984] show that back-solving a "nearly-triangulated generalized
network" basis F2 2 only as far as ROW will suffice, and that this can be implemented as a
traversal of the "backpaths" of the (zero, one, or two) coefficients in b2 for the column now
basic in ROW. If numerical precision is an issue, z 2(row) can be computed during this search
and tested for significance.

The second case, a row and column deletion, is trivial because the resulting F 22 will always
be nonsingular.

The third case, a row and column addition, can be answered by adding ROW and COL to
F2 2 without disturbing its desirable special structure, thus creating an instance of case one. For
instance, placing ROW first, and COL last in F22 suffices for all factorizations discussed here.

The fourth case, a row exchange, can be answered by applying the second case, deleting
ROW and its basic column, and then (perhaps repeatedly) applying the third case, adding the
row with index COL and any column which would yield a nonsingular F22 .

FindSF-KernelColumn.toRemove(ROW,COL) given basic factored row ROW, r(-
turns its basic, or "key" column COL.

FindE-KernelColumn__forKey(LABEL,COL), given either a nonbasic factored ROW=
LABEL, or a basic column LABEL solving a basic factored ROW, searches for an acceptable ba-
sic column COL in Explicit. Rows (region (i)) using Factored_-Kernel-Singular(HOW,(COL).

UpdateFactoredKernel(LABELI,LABEL2) restores F22 to the desired foirm of F2,
with a possible increase or decrease in dimension. Following the case-by-case scheme of Fac-
tored-KernelSingular, we pre- and post-process the factored basis representation to permit
use of a single, static factorization update of conventional design. Olson [19891 pursues this in
considerable detail.

"Table 8-2 displays supl)porting data structures for these functions.

20

TABLE 8-2 Factorization Algorithm Data Structures

DATA
FACTORIZATIONS STRUCTURE SIZE USE

C(UB,PN,GN RIM() m + n current tableau right-hand side.
bottom row

ROWCOL0 m + n current tableau row and column
MSKRC0 m + n logical mask true for corresponding

nonzero in ROWCOL0, false otherwise
LQRC() m + n LIFO queues of nonzero row and

column coordinates in ROWCOL()
KEY() 77 + n blasic column in basic factored row,

and vice versa

PN,GN WORK() p values for b2 or 62
in basic factored equations

MSKWK(p logical mask for nonzero row and
column coordinates in WORK()

LQWK0 p LIFO queue of nonzero coordinates
in WORK()

PO0 p next basic factored row in pre-order
PO p off-diagonal row with

nonzero factored coefficient
Do p depth, remaining back-substitution

path length in factored component

CN VGN0 p generalized network cycle factors
JMUL0 n ratio of generalized network

coefficients in each column

Generalized upper bound (CUB), pure network (PN), and generalized network

(GN) factorizations respectively require more data structures to support kernel

factorization. For each factorization, F22 is maintained in some partial ordering

of rows, and of columns -- a signed identity for CUB, upper-triangular for PN

(e.g., BradleyBrown, and Graves 119771), and nearly-upper-triangular for GN (e.g.,

Brown and McBride 119841). Direct solution of factored kernel equations F2,2z2 = b2

and ;.4F22 = bj is performed alternately using the data structures shown.

21

9 Computational Experience

The factorization methods introduced here have been implemented and used to solve a variety
of existing models provided by our colleagues. With their help, we have extracted suggested
problem instances from a diversity of decision support systems on host computers ranging
from mainframes to micro-computers. Because our goal is to test factorization technology in
isolation, the results reported here are achieved without benefit of any model-specific knowledge
or tuning.

However, we also seek to develop effective modeling tools for customized use in developing
and refining new models. To this end, we have greatly benefited from the experience and advice
of our colleagues, and we include some discussion of modeler guidance and insight along with
the numerical results.

Each model is introduced below by a short synopsis. Multiple instances of some models
are reported where diversity of size, structure, and taxonomy have proven interesting to the
modelers. For those models that employ nonlinear, mixed integer, or decomposition features.
we report solution statistics for the initial linear program.

"* GTE The seven Telephone Operating Companies within GTE have adopted an integrated business system
called Capital Program Management System (CPMS) to guide their 3 billion dollar per year capital planning.
The system includes a large scale mixed integer programming optimization system that optimizes the critical
economic tradeoffs between maximizing the long-term budget value of the firm's equity and satisfying shorter-
term financial constraints, resource limitations and service objectives. Investment opportunities for the next
5 years are modeled as 0-1 variables with alternative implementations for each. The objective is to maximize
the net present value of the capital portfolio. There are financial constraints on capital, internally generated
funds, net income to common, and limits on resources such as labor hours, lines installed, etc. There are also
constraints that enforce logical relationships among opportunities (such as, if choose A then must choose B).
See Bradley 119861.

"* INVEST Capital allocation and project selection for Mobil Oil Corporation are modeled as a two-stage
multi-year nonlinear capital budgeting problem with over 40,000 integer variables. A master problem allo-
cates capital among markets over a multi-year horizon considering the estimated nonlinear effects on sales
of concentrated marketing investments. The instance reported here is a mixed-integer linear program sub-
problem of the two-stage model which, given these annual capital expenditure limits for a market, selects
particular alternate investments. Such subproblems are easy to solve, and optimality is achieved with a single
iteration of the nonlinear master problem. See Harrison, Bradley and Brown [19891-

"* TANKER A crude oil tanker scheduling problem faced by a major oil company is solved using an ela.tic
set partitioning model. The model takes into account all fleet cost components, including the opportunity
cost of ship time, port and canal charges, demurrage and bunker fuel. The model determines optimal speeds
for the ships and the best routing of ballast (empty) legs, as well as which cargoes to load on controlled ships
and which to spot charter. All feasible schedules are generated the cost of each is accurately determined
and the best set of schedules is selected. See Brown, Graves and Ronen [19871.

"* HFDF A large-scale elastic set partitioning model used to assign frequencies for a network of high frequency
direction finding receivers. See Brown, Drake, Marsh, and Washburn [1990j.

"* GAS A multi-time period strategic model for use by natural gas utilities for determining optimal contract
levels for gas purchase, storage and transmission. An underlying generalized network flow model represents
gas being bought, stored, shipped and consumed over a multi-year time horizon, typically at a monthly level
of detail. Constraints and variables are added to handle variable maximum and minimum purchase levels,
variable leased or constructed storage and variable transmission capacities. An integrated parall.l model
incorporates the peak requirements necessary on some days during cold winter months. This model has been
used by a number of utilities including Southwest Gas Corporation and Questar Pipeline Corporation to plan
operations and to justify such plans to regulatory agencies. See Avery, Brown, Rosenkranz and Wood 119.92].

"• KELLOGG A multi-time period, multi-plant production/inventory/transshipment linear program for Kellogg
cereals. The model guides weekly processing, packaging and shipping decisions. Production consists of two
stages: processing lines produce basic products which are then packaged on packaging lines into different-
sized containers to yield finished products. Processing lines produce a subset of the basic iroducts and have
limited capacity with overtime charges for weekend shifts. Packaging lines are analogous. In-house inventory
capacity is limited although outside storage is available at additional cost. Inter-plant shipments of finished
products are made by rail or truck. See Wood [19891.

22

"* ODS A commonly occurring problem in distribution system design is the optimal location of intermediate

distribution facilities between plants and customers. A multicommodity capacitated single-period versiom

of this problem is formulated as a mixed integer linear program. A solution technique ba.h'd on Benders

Decomposition is developed. An essentially optimal solution is found and proven with a surprising1% small

number of Benders cuts. See Geoffrion and Graves [1974]. The instances reported here are decomposition

master problems.

"* TAM The annual decision on how much the Air Force should spend on aircraft and on munitions is of great

interest to many people. How the Air Force staff develops information to support the decision has changed
over the years. Currently, a linear program is being used by the Air Force C'enter for Studies and Analy.vis

and is being tested by the Munitions Division of the Plans and Operations Directorate (AF/XOXFM) for
munitions tradeoff analysis. The LP uses existing data and estimates of (1) aircraft and munition effectiveness,

(2) target value, (3) attrition, (4) aircraft and munition costs, and (5) existing inventories of aircraft and

munitions. Other factors considered are weather and length of the conflict. See Might [19871 and Jackson

[19891.

"* PHOENIX A planning model for the multi-year, multi-billion dollar modernization of the 1'. S_ Arrmy's aging

helicopter fleet. The mixed integer linear program employs a multi-product production/inventory forroulari~n

with aged inventory. Goal constraints attempt to enforce fleet size, maximum age, aid technology g•oals for

each year and each of four aircraft missions, while also keeping expenditures within upper and lower limits.

Additionally, combinatorial constraints and variables handle production line startup and shutdown costs.

minimum and maximum production levels and requirements linking certain production lines. See (lemence.

Teufert, Brown and Wood [1988] and Brown, Clemence, Teufert, and Wood [19901.

"• EA6B Configures jammers of hostile radar on an EA-6B "Prowler" Naval electronic warfare aircraft. See

Sterling [19901.

"* DEC Digital Equipment Corporation uses this model to determine worldwide manufacturing and distribution

strategy for new products. This mixed integer, linear program suggests a production, distribution, and vendor

network which minimizes cost and/or cumulative cycle times subject to constraints on estimated demand,

local content, and joint capacity, over multiple products, echelons, and time periods. Cost factrs include

fixed and variable production charges, distribution via multiple modes, taxes, duties and duty drawback, and

inventory charges. See Harrison, Arntzen, and Brown [19921.

"• AMMO 4H A four-commodity transshipment mpdel for delivery over time of military products from pro-

duction and storage locations to overseas locations to support theater operations is developed. The model

covers five physical echelons, including production plants, storage depots, ports of embarkation, ports of

debarkation and geographic field locations. Road, rail, sea and air transportation are modeled, and product

demands are time-phased. Capacitation occurs primarily on sea and air links, and as throughput capacities

on transfer points, requiring replication of some echelons. The obiective of the model is to minimize deviation

from on-time deliveries. See Staniec [1984].

"* BUSCH A model of brewery-to-wholesaler movements of beer for Anheuser-Bubch. The model also includes

some packaging decisions and is essentially a multicommodity flow model with joint capacity constraints

arising from loading dock and inventory capacities as well as some managerial requirements. See Brown,

Mamer, McBride and Wood 119921. The instance reported here is a small pilot model for the full-scale

system with millions of variables which is solved directly, or by decomposition.

"* BAR A linear, mixed-integer multi-period production-inventory master planning model. See Harrison [1992).

Four implementations are compared: "XS" is an unadorned version of the X-System, an

implementation of the Graves mutual primal-dual method with its (;UB factorization disabled,
while "XS((IB)", "XS(PN)", and "XS((CN)" eacti employ the respective factorizations dis-

cussed here. To estlablish a frame of reference, performance of these implementations is corn-
pared with two well-known commercial solvers: IBM's Optimization Subroutine Library "OSL"
(Release 2 [19911), and two versions of "CIPLEX" (Version 1.2 [1990] and Version 2.0 [1992]).

Ideally, one would develop four equivalent formulations of each model, each customized for
its particular solver with the goal of inducing a large factored row set of the appropriate type.

This approach is a consistent theme in the literature dealing with specialized algorithms and
one that, we strongly endorse. Alternate formulations of a model are often available,, and it

seems sensible to choose one that exploits as much as possible the strengths of the solver.

23

I lowever, all of the models used here are "off-the-shelf" in the sense t hat they wert- devehpl)i
at various times by various modelers, and alternate formulations are impracticable,. Thus. tihlt
approach is to preserve a single, unfactored representation of each model, and attempt th
identify favorable row structures through the use of heuristics. ihte procedure is ba.sod mr
the work of Brown and Thomen [19801, Brown and Wright f19*3] and Brown, McBride and
Wood [19851. The heuristics are greedy and myopic in the sense Iha they initially ('cmisider Ilhe
entire row set of the problem, and discard one row at a time without backtracking until Ihe
remaining set satisfies the desired row faxctorization. This can be expected to (onfound or d(i.iSroiv
structure introduced by the modeler. Although the automatic factorizat ion implement at ion ha.4
options to accept modeler guidance, the methods are compared here without this sub)jectiwe
complication. While these model-naive experiments yield interesting and uspful observations
about the implementations, they suffer for lack of guidance by a skilled modeler.

24

Table 9-1 shows the important structural informnation concerning the miodel instance" to be
solved.

TABLE 9-1 Problem Dimensions

m1 PB/V/ PPN/% p(;x. NZEI.

GTE 6,624 960 909/95 909/95 922/96 58ý
INVEST 11,989 1,338 941/70 1,101/82 1,168/87 33
TANKER 7,598 83 32/39 32/39 66/90 31
HFDF 10,548 61 31/51 31/51 32/52 189
GAS PN A 27,884 6,848 4,1345/63 5,934/87 5,976/87 37
GAS PN C 15,362 3,794 2,658/70 3,418/90 3,420/90 20
GAS PN E 5,102 1,184 434/37 877/7.1 883/75 7
G;AS GN A 27,884 6,848 4,484/65 5,142/75 5.976/87 37
GAS GN C 15,362 3,794 2,664/70 3,084/81 3420/90 20
KELLOG(G 2 17,841 3,818 1,265/33 2,578/68 2.596/68 35
KELLOGG 3 27,490 5,727 2,295/40 3,867/68 :1,892/68 5-4
KELLOGG 4 37,139 7,636 2,428/32 5,156/68 5,188/68 741
KELLOGG 5 46,788 9,545 3,388/36 6,445/68 6,484/68 93
ODS 1 11,568 3,023 528/17 540/18 558/18 21
ODS 3 23,993 594 490/82 490/82 490/82 68
TAM 5 10,531 438 102/23 132/30 162/37 94
TAM 8 6,104 420 118/28 154/37 196/47 49
TAM 12 17,793 629 177/28 231/37 294/47 165
PHOENIX 10 6,884 1,618 206/13 220/14 1,153/71 141
PHOENIX 30 17,212 4,305 293/07 303/07 3,604/84 48
EA6B 12,247 2,978 1,610/54 2,921/98 2,921/98 16
DEC 14,518 2,171 677/31 677/31 1,088/50 24
AMMO 4H 83,497 13,963 6,874/49 12,892/92 12,892/92 129
BUSCH 4 7,997 1,248 649/52 1,140/91 1,148/92 15
BAR 49,032 7,446 2,712/36 4,575/61 5,134/69 102

For each problem, the total number of structural variables is n, structural con-
straints m, GUB rows found by the identification heuristic Pctj!, pure network

rows PPN, generalized network rows PGN, and thousands of nonzero technological

coefficients NZEL. For example, GTE has 58 thousand nonzero technological c(-

efficients for 6,624 variables; GTE can be viewed as having 960 explicit and no

factored rows, or as 909/95% CUIB-factored and 960 - 909 = 51 explicit rows, as

909 PN-factored rows, or as 922 ON-factored and 38 explicit rows.

25

Table 9-2 displays solution times for the sarnple problems. These CPU times exclude initial
problem input, factored row identification, and final output --- on average about. 0.2 secrond pe'
problenI.

TABLE 9-2 Solution Seconds

AMDAHL 5995-700 486/33MHz PC
X-Systern IBM XS CPLEX

none CUB PN (N OSL C N 1.2 2.0

GTE 9 8 8 8 43 41 65 59
INVEST 4 5 4 4 23 24 52 19
TANKER 8 10 10 8 6 -18 8 9
HFDF 100 101 101 111 40 462 581 5.12
GAS PN A 2,376 778 50 57 291 321 1,714 1,221
GAS PN C 4 4 3 3 79 26 185 245
GAS PN E 72 33 4 6 13 33 165 50
GAS GN A 1,115 542 294 72 312 385 3,532 2,262
GAS GN C 4 4 3 3 71 26 186 236
KELLOGG 2 3 2 2 2 69 5 219 19-1
KELLOGG 3 5 5 5 5 144 9 513 440
KELLOGG 4 48 36 26 24 500 115 1,274 1,111
KELLOGG 5 1,122 1,459 320 248 1,210 926 2,615 2,2.13
ODS 1 6 3 2 5 125 22 1,042 414
ODS 3 6 6 6 6 23 38 58 56
TAM 5 55 60 45 40 44 231 151 86
TAM 8 24 14 14 17 21 69 77 71
TAM 12 108 112 88 106 101 312 416 378
PHOENIX 10 4 2 2 2 20 10 84 73
PHOENIX 30 41 25 26 9 335 69 1,171 1,239
EA6B 75 33 9 9 45 44 177 244
DEC 189 32 42 80 71 93 317 293
AMMO4H 42 41 35 46 1,000 277 1,762 1,597
BUSCH 4 5 5 4 4 26 34 55 46
BAR 290 212 106 114 382 480 1,366 1.222

An AMDAHL 5995-700 running under IBM VM/CMS/XA with IPM VS FOR-
TRAN 2.3.0 is used to render performance in CPU-seconds accurate to the precision
shown for the basic "XS"-system using no factorization, compared with dynamic
factorizations of "XS(GUB)", pure network "XS(PN)", and generalized network
"XS(GN)" rows, "IBM-OSL" shows primal simplex performance on the same com-
puter of the IBM Optimization Subroutine Library, Release 2 [19911. "486/33"
shows the clock-time performance of "XS(GN)" on a microcomputer (33 MHz Intel
486 with 32 MB RAM) followed by that of "CPLEX" (Version 1.2) 11990] and of
"CPLEX" (Version 2.0) 119921 on the same microcomputer.

The original formulations of most of the test problems are strongly influenced by the mod-
eler's solution strategy. For instance, TANKER is endowed with a (GITB structure which places

26

every binary variable in an associated set from which only one member can be chosen: this
maximal (GUB set is also sought for its tendency to yield nearly-integer solutions to the linear
program. AMMO 4H is a multicommodity capacitated transshipment problem and thus is best
suited to a pure network factorization; it. was originally solved by dual decomposition rendering

pure network sub-problemns. PHOENIX is a multicommodity equipment replacement modet

closely following the generalized network factorization paradigm.

The row structures in Table 9-2 have been found without modeler help hy our automatic
identification heuristic, yet they corroborate the modelers' intentions. TANKER reveals the

same pure network rows as the (CUB rows, or a generalized network constructed by identifying
one additional row to be paired with each CUB row. PHOENIX exhibits a dorminant st ruct urv
that is clearly a generalized network.

One would anticipate the factorization exploiting the dominant row structure to win com-
putation tests. This is wrong more often than right. Table 9-2 shows that the more general
factorization dominates the less general, with few exceptions: GTE's relatively large G('•- set.
and the large pure networks in GAS PN A, GAS PN E, and AMMO 4H seem to satisfy our
prior bias toward model-dictated factorizations.

Table 9-2 also suggests that our myopic use of heuristics to automatically identify factored
structure has its pitfalls. In a number of problem instances, we identify significant ly larger fac-
tored sets with the more general factorizations, yet we enjoy little improvement in computat ion
times (e.g., INVEST, ODS 3, TAM 8). This suggests that the "quality" of a row factorization
is not completely specified by its size.

We have pursued this notion by inviting some of the modelers to guide our identification
heuristic to precisely the row sets they intended. Some of the results have been striking: Wood
[1989] reports significant improvements for problems in the CAS system.

A few of our corresponding modelers have had the opportunity to build models front scratch
with a particular factorization in mind. This admits model coercion and a wide range of well-
known reformulation methods which we think can materially change both the size and quality
of the result. Their early reports show promise. Among the models discussed here, the GAS
and KELLOGG systems have been subsequently reformulated to enhance generalized networks,
(;TE has been re-engineered to further accentuate its dominant CUB set,, and TANKER-like
and many ODS models have been moved to a micro-computer; all these models are now larger.
but much easier to solve.

It is surprising and encouraging that the transition to more general factorizations seldom
degrades performance much, even when few additional factored rows are wonf by the increased
generality. This contradicts popular folklore that the more general factorizations demand sub-
stantial, if not overwhelming increases in the resulting sizes of the factored structures. In
fact. computational testing reported by others has usually been limited to models in which
the number of explicit, rows is in the range of one to twenty (e.g., Chen and Saigal [19771.
Clover, Karney, Klingman and Russell [1978], Clover and Klingman [1981]). Our results are
all the more remarkable given the lack of guidance from the modeler for the "intended" row
factorization.

27

Table 9-3 shows the maximum size of the A~' in terms of its nonzero elements.

TABLE 9-3 Maximum Number of Elements in Explicit Transformation Kernel

XS XS(GUB) XS(PN) XS(CN)

(TE 13 0 0 0
INVEST 9 1 1 1
TANKER I 1 1 0
HFDF 3 1 1 1
GAS PN A 1,550 891 30 54
GAS PN C 18 5 0 0
GAS PN E 263 110 75
GAS GN A 1,470 758 340 59
GAS GN C 19 7 1 0
KELLOGG 2 6 2 0 0
KELLOGG 3 9 4 0 0
KELLOGG 4 79 41 10 11
KELLOGG 5 1,299 1,015 138 128
ODS 1 9 1 1 5
ODS 3 0 0 0 0
TAM 5 28 22 15 18
TAM 8 20 15 8 10
TAM 12 38 42 16 21
PHOENIX 10 32 21 21 1
PHOENIX 30 169 157 185 1
EA6B 1,155 270 0 0
DEC 218 39 49 46
AMMO 4H 235 92 0 0
BUSCH 4 10 5 0 0
BAR 290 163 70 41

The number of nonzero elements (in nearest thousands) in the explicit transforma-

tion kernel A-,' gives some indication of how much information is not captured by

factorization, as well as an idea of relative storage requirements.

We see that the maximum size of the explicit transformation kernel tends to decrease as the
generality of the factorization increases. Recalling the definition of the explicit transformation
kernel,

= (Ell -

this trend is as we would expect. Each potentially binding explicit. row which can be converted
to a factored row reduces the likely size of A-l'. Also, the density of the term -E12 E22 F), 1

generally increases with the density of F.2 1. For F22 k-by-k, the number of nonzeros in f[2,
for the (UB factorization is k, for pure networks perhaps as large i, and for generalized

28

networks as large a.; 0. There are some exceptions to this I rend in Table 9-3. especially in

model instances in which the size of the ((.N) factored row sut is not significant ly larger thari

that of (PN). This is because for a given factored kernel F2., the exact (lPN) representation of

F- is generally more sparse than that of the less exact floating-point representat ito of (GN).

29

It is usually the case that many constraints are not binding at optimnality, as can be seen in
Table L-4.

TABLE 9-4 Binding Explicit Constraints at Optimnality

Binding/% (ClUr/%i PN/% (N!GN/%

GTE 554/58 20/02 20/02 18/02
INVEST 763/57 201/15 195/15 162/12
TANKER 51/61 60/72 39/47 9/11
HFDF 58/95 29/48 29/48 28/46
GA S PN A 3,068/45 1,953/29 '299/04 349/05
GAS PN C 2,324/61 850/22 68/02 90/02
GAS PN E 901/76 573/J8 90/08 79/07
GAS CIN A 3,064/45 1,854/27 1,155/17 359/05
GAS GN C 2,323/61 861/23 402/11 89/02
KELLOGG 2 1,950/51 1,015/27 92/02 118/03
KELLOGG 3 2,942/51 1,368/24 148/03 183/03
KELLOGG 4 4,136/54 2,491/33 391/05 452/06
KELLOGC; 5 5,270/55 2,305/24 592/06 617/06
ODS 1 361/12 83/03 76/03 117/04
ODS 3 410/69 0/00 0/00 0/00
TAM 5 264/60 227/52 168/38 186/42
TAM 8 279/66 240/57 142/34 175 /42
TAM 12 412/66 352/53 205/33 251/40
PHOENIX 10 1,098/68 1,096/68 1,090/67 80/05
PHOENIX 30 3,298/77 3,236/75 3,239/75 110/03
EA6B 2,939/99 1,334/45 26/01 27/01
DEC 1,328/61 736/34 726/33 421/19
AMMO 4H 6,686/46 3,153/22 13/00 14/00
BUSCH 4 840/67 481/39 5/00 8/01
BAR 4,687/63 3,250/44 1,895/25 1,450/19

Not all constraints are binding at optimality. The first column lists the number
of binding explicit constraints and expresses this as a percentage of all constraints;
the following columns display the number of binding explicit constraiw..s and their
corresponding percentages under the alternate factorizations.

A distinguishing feature of dynamic factorization is the ability to limit attention to binding
constraints, handling binding factored constraints with great, efficiency, and working with a
relatively small number of binding explicit constraints. Explicit binding constraints on the
order of a few thousand, or less, are quite manageable. This is well beyond the size of previously
reported implementations.

30

10 Conclusions

Previous research by others generally suggests that specialized algorithms such a.; thlose i)re-
sented here are useful only when the factored structure completely dominates. There are (,ven
reports of algorithms for solving problems having a single unfactored (explicit) constraint (1tultz
and Klingman [1978], Klingnian and Russell [1978]). When implementations have been re-

ported, problem suites have been limited to instances having a very small number of explicit
constraints, typically in the range from one to twenty (Chen and Saigal [1977,, Glover, Karney,

Klingman and Russell [1978], Glover and Klingman [1981]). The consensus seems to be that
such algorithms are quite delicate, and deserve to be viewed as specialized algorithms, useful
only for solving very special problem instances.

We refute this view. Dynamic factorization is competitive with commercial-quality oplti-
mization systems on every model instance we have tested.

The development here stresses the similarities among the algorithms and the nal ural exte(n-
sions leading from one to the next. This is in contrast to the development reported for similar.
non-dynamic algorithms (e.g., Dantzig and Van Slyke [1967], Klingman and Russell [197k].
and Hultz and Klingman [1978]) in which the specifics of the individual algorithm obscure the
generality of the approach. The conceptual difference between our algorithms is seen to be
largely isolated to the structure of a single algebraic entity, the factored kernel. By abstracting
the structure of the factored kernel and concentrating on the general algorilhm design. t he
versatility and flexibility of this approach is clarified.

The algorithmic development leads directly to an implementation. The resulting software
suite exhibits a "single system image". The modularity of the algorithm allows the definition
of an "abstract data type" (see, e.g., Aho, Hopcroft and Ullman [19741) which iso)lates the data

structures and update procedures for the factored kernel from the rest of the implementation.
Each factorization is seamlessly integrated within the system design.

The early 1980s produced a great. deal of research on automatic identification of special
structure in LP models (see, e.g., Cunawardane and Schrage [19771, (;lover 119R0, Schrage

[1981], Brown, McBride and Wood [1985], and Bixby and Fourer [1986]). We have incorporated
the most useful of these ideas into our implementation, and we have what we believe to be the
first complete implementation which supports automatic identification of factored row sets. This

capability may be used to identify new factored structure or to validate or augment a modeler-
provided recommendation. When faced with the choice of either solving an unfactored model
instance or automatically identifying a factored structure and then using the corresponding
solver, our results show that the latter is nearly always to be preferred. Modelers have conducted
extensive additional computational experimentation with the X-Systeni not reported in this
paper. These results suggest that in addition to the quantity of factored rows, the quality of
these rows influences the performance of factorization algorithms. While not well understood.
it is clear that the myopic approach of our heuristics is no substitute for the modeler's guidance
in identifying factored structure.

Processing networks (Koene [1982]) are network models which allow proportional flow re-
strictions on the arcs entering or leaving some nodes. One formulation of such a model rpsults
in a pure or generalized network structure with a set of complicating columns. ('hen and En-
gquist [1986] propose a primal partitioning algorithm for solving processing network problems.
An alternate formulation yields a pure or generalized network structure with complicat ing rows:
this is precisely the structure dealt with here.

The multicommodity capacitated transshipment problem (MCTP) has been the subject of

much research over the years, and a number of specialized algorithms have been proposed it)

:31

solve it (see, e.g., Assad [19781 or Kennington [1978]). The usual MCTI' formulation is a pure

network which each commodity uses independently in its own flow model, but with side ron-
straints on the total common flow of all commodities over some of the network arcs. The side
constraints form a CUB row set, while the rest of MCTTP forms a pure network: either view
might be preferred depending upon size of the common network, the number of side const raints.
and the number of commodities. In our experience, the network fax-torization usually dormi-
nates the GUB factorization, and the pure network factorization presented here is a powerful
technique for solving MCTPs. As an experiment, we customized our (PN) iniplene,itation for
MCTP to exploit the special structure of the explicit side constraints. This highly-specializti
implementation performed no better on AMMO 411, and we now believe that this would be
true for most MCTPs.

There are problems which would exhibit a large factored row structure if not for a set of
complicating columns (e.g., see Brown, McBride and Wood [1985]). One would exp)ect th,
structure of the factored kernel to be dominated by that of the predominant row strucjture.
with only occasional complications due to the exceptional columns. One might allow for this
exceptional structure in the factored kernel by identifying it "on-the-fly" as the algorithm
progresses, and preserving the sanctity of the core factorization. Though conceptually simple.
some iterations of this algorithm would border on the spectacular. This approach riay Ivh
thought of as a hybrid between the dynamic factorization developed here and dynamic basis
triangulation methods (see, e.g., Hellerman and Rarick [19711 and [1972]. Saunders [19761 and
McBride [1980]).

Dynamic extrinsic factorization is subsumed by the algorithms presented in this paper if
we activate functions in the update analogous to the secondary exchanges now employed. Es-
sentially all that has to be done is ensure that successive factored components retain their
stipulated special structure. We speculate that this will work best in cases where mnodel struc-
ture is amenable, and quite likely will require some model-specific customization to perform
well on difficult models. We have limited our experimentation to those static extrinsic cases
which we believe to be most generally useful.

"32

11 References

Aho, A. V., Hopcroft, J. E. and Ujllman, J. D. 1974, The Design and Analysis of ('ornpattr
Algorithms, Addison-Wesley Publishing Co., Menlo Park, California.

Assad, A. 1978, "Multicommodity Network Flows--A Survey," Networks, 8, pp. 37-91.

Avery, W., Brown, G. G.. Rosenkranz, J. A. and Wood, R. K. 1992. "Optimization of Piurcha.,e.
Storage and Transmission Contracts for Natural (;as Utilities," Operations Research.
40-3 pp. 446-462.

Balinski, M. L. and Gomory, R. L. 1963, "A Mutual Primal-Dual Simplex Method," Recent
Advances in Mathematical Programming, McGraw-Hill Book Co.. Inc., New York.

Benders, J. F. 1962, "Partitioning Procedure for Solving Mixed-Variables Programming Prob-
lems," Nurmerische Mathematik, 4, pp. 23:-252.

Bixby, R. E. and Fourer, R. 1986, Finding Embedded Network Rows in Linear Pm-ograt.ý, 1:
Extraction Heuristics, Bonn University, Oekonometrie und Operations Research. Report
No. 86437-OR, July.

Bradley, G. H. 1986, "Optimization of Capital Portfolios," Proceedings of the .Vtioual

Communications Forum 86, pp. 11-17.

Bradley, C. H., Brown, G. G. and Craves, C. W. 1977, "Design and Implementation of Large-
Scale Primal Transshipment Algorithms," Management Science, 24-1. pp. 1-34.

Brearley, A. L., Mitra, G. and Williams, H. P. 1978, "Analysis of Mathematical Programning
Problems Prior to Applying the Simplex Algorithm," Mlathematical Programming. 8,
pp. 54-83.

Brown, C. G., Clemence, R. D. Jr., Teufert, W. R. and Wood, R. K. 1990, "An Optimization
Model for Modernizing the Army's Helicopter Fleet," Interfaces, 21-4, pp. 39-52.

Brown, G. C., Drake, D. A., Marsh, A. B., and Washburn, A. 1990, "Mathematical Meth-
ods Applied to Managing a System of Direction-Finding Receivers," Military Operations
Research Society, Annapolis, Maryland (June).

Brown, G. G. and Craves, C. W. 1975, "Elastic Programming: A New Approach to Large-Scale
Mixed-Integer Optimization", presented at ORSA/TIMS meeting, Las Vegas. Nevada.

November.

Brown, G. C., (;raves, C. W. and Ronen, D. 1987, "Scheduling Ocean Transportation of Crude
Oil," Management Science, 33-3, pp. 335-346.

Brown, CG.., Mamer, J.W., McBride, R.D., and Wood, R.K. (1992), "Solving a Large-Scale
Generalized Multi-Commodity Flow Problem," ORSA/TIMS, San Francisco, California

(November).

Brown, C. C. and McBride, R. D. 1984, "Solving Generalized Networks," Managemenit Sci-
ence, 30-12, pp. 1497-1523.

Brown, G. G., McBride, R. D. and Wood, R. K. 1985, "Extracting Embedded (eneralized
Networks from Linear Programming Problems," Mathematical Progranmiming Study, 32.
pp. 11-31.

Brown, C. C. and Thomen, D. 1980, "Automatic Identification of Generalized Upper Hounds
in Large-Scale Optimization Models," Management Science, No. 26-11, pp. 1166-11S.1.

Brown, G. (. and Wright., W. 1984, "Automatic Identification of Embedded Netv .rk Rows
in Large-Scale Optimization Models," MI athernatical Progra mrniig, plp. -1 -56ý

33

Charnes, A. and Lemke, C. E. 1952, Computational Theory of Linear Programming, 1: The
Bounded Variables Problem, ONR Research Memorandum 10, Graduate School of
Industrial Administration, Carnegie Institute of Technology, Pittsburgh, Pennsylvania.

Chen, C. and Engquist, M. 1986, "A Primal Simplex Approach to Pure Processing Networks,"
Management Science, 32-12, pp. 1582-1598.

Chen, S. and Saigal, R. 1977, "A Primal Algorithm for Solving a Capacitated Network Flow
Problem with Additional Linear Constraints," Networks, 7, pp. 59-79.

Clemence, R. D. Jr., Teufert, W. R., Brown, G. C. and Wood, R. K. 1988, "Phoenix: l)evel-
oping and Evaluating Army Aviation Modernization Policies Using Mixed Integer Linear
Programming," 27th U. S. Army Operations Research Symposium, Fort Lee-, Virginia.
October 12-13.

CPLEX Optimization, Inc. [19901, "Using the CPLEX(TM) Linear Optimizer (Version 1.2)."

Incline Village, Nevada.

CPLEX Optimization, Inc. [1992], "Using the CPLEX(TM) Linear Optimizer and CPLEX(TM)
Mixed Integer Optimizer (Version 2.0)," Incline Village, Nevada.

Dantzig, G. B. 1954, Notes on Linear Programming: Parts VIII, IX, X-Upper Bounds, Sec-
ondary Constraints, and Block Triangularity in Linear Programming, Research Menlo-
randum RM-1367, The Rand Corporation, Santa Monica, California, October.

Dantzig, C. B. 1963, Linear Programming and Extensions, Princeton University Press.
Princeton, New Jersey.

Dantzig, G. B. and Van Slyke, R. M. 1967, "Generalized Upper Bounding Techniques," .]our-

nal of Computer and System Sciences, 1, pp. 213-226.

Dantzig, G. B. and Wolfe, P. 1960, "Decomposition Principal for Linear Programming," Op-
erations Research, 8-1, pp. 101-111.

Geoffrion, A. M. and Graves, G. W. 1974, "Multicommodity Distribution System Design by
Benders Decomposition," Management Science, 29-5, January, pp. 822-844.

Glover, F. 1980, "Transformations Enlarging the Network Portion of a Class of LP/Embedded
Generalized Networks," MSRS 80-1, University of Colorado, Boulder, Colorado, April.

G;lover, F., Hultz, J., Klingman, D. and Stutz, J. 1978, "Generalized Networks: A Fundamental
Computer-Based Planning Tool," Management Science, 24-12, pp. 1209-1220.

Glover, F., Karney, D., Klingman, D. and Russell, R. 1978, "Solving Singly Constrained

Transshipment Problems," Transportation Science, 12-4, pp. 277-297.

Glover, F. and Klingman, D. 1981., "The Simplex SON Algorithm for LP/Embedded Network
Problems," Mathematical Programming Study, 15, pp. 148-176.

Golub, C. H. and Van Loan, C. F. 1983, Matrix Computations, The Johns Hopkins University
Press, Baltimore, Maryland.

Craves, C. W. 1965, "A Complete Constructive Algorithm for the General Mixed Linear
Programming Problem," Naval Research Logistics Quarterly, 12-1, pp. 1-14.

Craves, C. W. and McBride, R. D. 1976, "The Factorization Approach to Large-Scale Linear
Programming." Mathematical Programming, 10, pp. 91-110.

Greenberg, H. J. and Rarick, D. C. 1974, "Determining CU1TB Sets Via a Invert Agenda Algo-
rithm," Mathematical Programming, 7, pp. 240-244.

34

Gunawardane, G. and Schrage, L. 1977, "Identification of Special Structure Constraints in

Linear Programs," University of Chicago, Chicago, Illinois.,

Harrison, T. P., Bradley, G. H. and Brown, G. G. 1989, "Capital Allocation and Project

Selection Via Decomposition," presented at CORS/TIMS/ORSA meeting, Vancouver.
British Columbia, Canada, May.

Harrison, T. P., Arntzen, B. C., and Brown, G. G. 1992, "Global Manufacturing Strategy

Analysis," presented at ORSA/TIMS meeting, Orlando, Florida, April.

Harrison, T. P. 1992, Private Communication.

Hartman, J. K. and Lasdon, L. S. 1970, "A Generalized Upper Bounding Method for Doubly
Coupled Linear Programs," Technical Memorandum No. 140, June.

Hartman, J. K. and Lasdon, L. S. 1972, "A Generalized Upper Bounding Algorithm for Mul-
ticommodity Network Flow Problems," Networks, 1, pp. 33335-1.

Helgason, R. V. and Kennington, J. L. 1977, "A Product Form Representation of the Inverse

of a Multicommodity Cycle Matrix," Networks, 7, pp. 297-322.

Hellerman, E. and Rarick, D. 1971, "Reinversion and the Preassigned Pivot Procedure," Math-

ematical Programmineg, 1, pp. 195-216.

Hellerman, E. and Rarick, D. 1972, "The Partitioned Preassigned Pivot Procedure (P 4),"

in: Rose, D. J. and Willoughby, P. A., eds., Sparse Matrices and their Applications,

Plenum Press, New York, New York, pp. 67-76.

Hultz, J, and Klingman, D. 1976, " Solving Constrained Generalized Network Problems."

Research Report CC'S 257, Center for Cybernetic Studies, University of Texas at Austin.
Austin, Texas.

Hultz, J. and Klingman, D. 1978, "Solving Singularly Constrained Generalized Network Prob-

lems," Applied Mathematics and Optimization, 4, pp. 103-119.

IBM Corporation 1991, Optimization Subroutine Library Guide and Reference Release

2, Kingston, New York.

Jackson, J. A. 1989, A Taxonomy of Advanced Linear Programming Techniques and the

Theater Attack Model, Master's Thesis, Air Force Institute of Technology, Air Univer-
sity, Wright-Patterson Air Force Base, Ohio.

Kennington, J. L. 1977, "Solving Multicommodity Transportation Problems Using a Primal

Partitioning Simplex Technique," Naval Research Logistics Quarterly, 24-2, pp. 309-

325.

Kennington, J. L. 1978, "A Survey of Linear Cost Multicommodity Network Flows," Opera-
tions Research, 26, pp. 209-236.

Klingmran, D. and Russell, R. 1975, "On Solving Constrained Transportation Problems," Op-

erations Research, 23-1, pp. 91-107.

Klingman, D. and Russell, R. 1978, "A Streamlined Simplex Approach to the Singly Con-
strained Transportation Problem," Naval Research Logistics Quarterly, 25-4, pp. 681-

696.

Koene, .1. 1982, Minimal Cost Flow in Processing Networks, a Primal Approach. Ph.D).
Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

McBride, R. D. 1972, "Factorization in Large-Scale Linear Programming," Working Paper

No. 22, University of California, Los Angeles, California.

35

McBride, R. D. 1980, "A Bump Triangular Dynamic Factorization Algorithm for the simplex
method," Mathematical Programming, 18, pp. 49-61.

McBride, R. D. 1985, "Solving Embedded Generalized Network Problems," European JowIn(l

of Operational Research, 21, pp. 82-92.

McBride, R. D. 1989, Private Communication.

Might, R. J. 1987, "Decision Support for Aircraft and Munitions Procurement," Interfaces,
17-5, September-October, pp. 55-63.

Murtagh, B. A. and Saunders, M. A. 1977, "MINOS User's Guide," Technical Report SOL

77-9, Systems Optimization Laboratory, Department of Operations Research, Stanford

University, Stanford, California.

Olson, M. P. 1989, Dynamic Factorization in Large-Scale Optimization, Doctoral Disser-
tation, Naval Postgraduate School, Monterey, California.

Powell, S. 1975, "A Development of the Product Form Algorithm for the Simplex Method

Using Reduced Transformation Vectors," Mathematical Programming, 9, pp.9 3-10 7 .

Rosen, J. B. 1964, "Primal Partition Programming for Block Diagonal Matrices," Numerical
Mathematics, 6, pp. 250-260.

Saunders, M. A. 1976, "A Fast, Stable Implementation of the Simplex Method Using Bartels-

Golub Updating," in: Bunch, J. R. and Rose, D. J., eds., Sparse Matrix Computations,

Academic Press, New York, New York, pp. 213-226.

Schrage, L. 1975, "Implicit Representation of Variable Upper Bounds in Linear Programming,"

Mathematical Programming, 4, pp. 118-132.

Schrage, L. 1978, "Implicit Representation of Generalized Variable Upper Bounds in Linear

Programming," Mathematical Programming, 14, pp. 11-20.

Schrage, L. 1981, "Some Commerts on Hidden Structure in Linear Programs," in: Greenberg,

H. J. and Maybee, I., eds., Computer-assisted Analysis and Model Simplification.,
Academic Press, New York, New York, pp. 389-395.

Staniec, C. J. 1984, Design and Soltion of an Ammunition Distribution Model by a

Resource-Directive Multicommodity Network Flow Algorithm, Master's Thesis, Naval

Postgraduate School, Monterey, California.

Sterling, J. 1990, An EA-6B Transmitter Loading and Assignment Model, Master's Thesis,

Naval Postgraduate School, Monterey, California.

Todd, M. J. 1983, "Large-scale Linear Programming: Geometry, Working Bases and Factor-

ization," Mathematical Programming, 26-1, pp. 1-20.

Wood, R. K. 1989, Private Communication.

Zoutendijk, G. 1970, "A Product-Form Algorithm Using Contracted Transformation Vectors,"

in: Abadic, J., ed., Integer and Nonlinear Programming, North Holland, Amsterdam.

36

