
AD-A263 986

Reactive Integration
for Traditional Programming Languages

David Garlan Curtis Scott

December 1992
CMU-CS-92-217

School of Computer Science DTIC
Carnegie Mellon University ELECTE

Pittsburgh, PA 15213 MAY1 1 1993 D
S E

A version of this paper to appear as "Adding Implicit Invocation to
Traditional Programming Languages" in Proceedings of the Fifteenth

International Conference on Software Engineering (May 1993).

CLEARED
FOR OPEN PtBUCATW

APR 2 2 1993 3
D)IRECTORATE FOH Ff*EOOM OF VNFORIMATIO,

AND SECURITY REVIEW (OASD-PA)
DEPARTMEN'T OF DEFENSE

This research was sponsored by the National Science Foundation under Grant Number CCR-9112880, the
Defense Advanced Research Projects Agency under Grant MDA 972-92-1-1002, and by a grant from Siemens
Corporate Research.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of Siemens, NSF, DARPA or the U.S. government. /

93-09971
9 3 5 0 6 07 4 IlI 1lNll 1IllJlNi lIi ¶

I., - .)i

Keywords: Reactive Integration, Implicit Invocation, Event Systems, Ada, Software
Architecture, Language Design

Abstract

Reactive integration based on event broadcast is an increasingly important technique for
developing systems. However, the use of this technique has largely been confined to tool
integration systems - in which tools exist as independent processes - and special-purpose
languages - in which specialized forms of event broadcast are designed into the language
from the start. This paper broadens the class of systems that can benefit from this ap-
proach by showing how to augment general-purpose programming languages with facilities
for implicit invocation. We illustrate the approach in the context of the Ada language, and
highlight the important design considerations that arise in extending such languages with
facilities for reactive integration.

Accesion For

NTIS CRA&I
DTIC IAB
U,,amiounced L)
JUstificationl••n.,

By
Dist, ibution I

Availabihty Codes

"Avail andIor
Dist Speciat

.4

1 Introduction

Systems have traditionally been constructed out of modules that interact with each other
by explicitly invoking procedures provided in their interfaces. However, recently there has
been considerable interest in an alternative integration technique, variously referred to as
implicit invocation, reactive integration, and selective broadcast. The idea behind implicit
invocation is that instead of invoking a procedure directly, a module can announce (or
broadcast) one or more events. Other modules in the system can register an interest in an
event by associating a procedure with the event. When the event is announced the system
itself invokes all of the procedures that have been registered for the event. Thus an event
announcement "implicitly" causes the invocation of procedures in other modules.

There are numerous advantages to implicit invocation. One important benefit is that it
provides strong support for reuse. Since modules need not explicitly name other modules it is
possible to integrate a collection of modules simply by registering their interest in the events
of the system. A second important benefit is that it eases system evolution [Sullivan 92].
New modules may be added to an existing system by registering their interest in events.
Similarly, one module may be replaced another without affecting the interfaces of modules
that implicitly depend on it. In contrast, in a system based on explicit invocation, whenever
the identity of a module that provides some system function is changed, all other modules
that import that module must also be changed.

Because of these desirable properties many systems now use implicit invocation as
their primary means of composition. While applications of the technique span many ap-
plication domains, these systems can be broadly grouped into two categories. The first
category is tool integration frameworks. Systems in this category are typically config-
ured as a collection of tools running as separate processes. Event broadcast is handled
by a separate dispatcher process that communicates with the tools through communica-
tion channels provided by the host oRerating system (such as sockets in Unix). Exam-
ples include Field, Forest, Softbench and several other commercial tool integration frame-
works [Reiss 90, Garlan & Dias 91, Gerety 89].

The second category is implicit-invocation systems based on special-purpose languages
and application frameworks. In these systems implicit invocation becomes accessible through
specialized notations and run time support. For example, many database systems now pro-
vide notations for defining active data triggers to database applications [Hewitt 69]. Exam-
ples include APPL/A for Arcadia, daemons for Gandalf, relational constraints for AP5, and
"when-updated" methods of some object oriented languages [Sutton, Heimbigner & Osterweil 90,
Habermann 91, Krasner & Pope 88, Cohen 891. Other specialized applications that can be
viewed as exploiting the paradigm include incremental attribute reevaluation, spreadsheet
updating, and some blackboard systems [Garlan et al. 92a].

However, despite the successes of systems in these two categories, and despite the fact
that the techniques are generally applicable to any modularizable system, widespread use
of implicit invocation has been relatively limited. In particular, few applications can afford
the overhead of separate processes used by tool integration frameworks, and special-purpose

languages are limited by their very nature.
In this paper we show how to make implicit invocation more broadly available to the

software engineering community through the incorporation of implicit invocation in existing,
general-purpose programming languages. The technique is quite simple: module interfaces
of a procedure-oriented language are annotated to permit event declarations, announce-
ments, and event-procedure bindings. The annotations are then preprocessed and compiled
using traditional techniques. Dispatching of events is handled by a system-generated mod-
ule, transparently to other modules, which can simply announce events as part of their
normpl code.

We begin by outlining the basic mechanism and illustrate its use in the context of the
Ada programming language. While the ideas are straightforward, as we will see, attempts
to add implicit invocation to standard languages raise a number of design decisions that
can have a significant impact on the properties of the mechanism and on its usability. This
paper highlights these design considerations so that any similar attempt to add implicit
invocation to a strongly-typed, procedure-oriented programming language can benefit from
this work.

2 Adding Implicit Invocation to Ada

While there are many ways to implement an implicit invocation mechanism, all are based
on two fundamental concepts. The first is that in addition to defining procedures that
may be invoked in the usual way, a module is permitted to announce events. The second
is that a module may register to receive announced events. This is done by associating a
procedure of that module with each event of interest. When one of those events is announced
the implicit invocation mechanism is responsible for calling the procedures that have been
registered with the event.'

Thus implicit invocation supplements, rather than supplants, explicit invocation. Mod-
ules may interact either explicitly or implicitly, depending on which mechanism is most ap-
propriate. This feature makes it possible to view implicit invocation as a natural add-on to
an existing explicit invocation system, such as one provided by a standard module-oriented
programming language. What is required is a way to make it possible for traditional mod-
ules to announce their own events and to register for the events of other modules.

Let us now see how this can be done in the context of the Ada language.

2.1 Overview of the Implementation

In Ada the basic unit of modularization is the package (Ada83]. Packages have interfaces,
which define (among other things) a set of exported procedures. We developed a small
specification language to augment package interfaces. This language allows users to identify

'When multiple procedures have registered for the same event, the order of invocation is typically not
specified. Thus users of implicit invocation must write their applications in a way that correctness does not
depend the existence or ordering of event registrations.

2

events they want the system to support, and to specify which Ada procedures (in which
package specifications) should be invoked on announcing the event. Figure I illustrates its
use.

for Package-1
declare Event-1

X: Integer; Y: Package-E.RyType;
declare Event_2
when Event_3 => Nethod-j B

end for Package.1
for Package.2

declare Event_3 A,B: Integer;
when Event_2 => Method_4
when Event-I => Method_2 I

end for Package_2
for Package_3

when Event_2 => Method_3
when EventI => Method_4 Y

end for Package_3

Figure 1: Event Specification Language Example

In the specification language, for clauses identify the package under discussion. The
declare clauses specify the events that this package will announce and the parameters
associated with each event (if any). Each parameter has a type: this may be any legal

Ada type. For example, Package-A declares two events. The first event, Event-1, has two
parameters, X of type Integer and Y of type My.Type defined in PackageN.

The when clauses indicate which procedures in the package are to be invoked when an
event is announced, and what event parameters are to be passed to the procedure. Any of
the parameters may be listed and in any order. This list indicates which parameters are to

be passed to each procedure. For instance, in Figure 1, Package.1 declares its "interest"
in Event_3. When Event_3 is announced (by Package_2), Metbod_1 should be invoked,
passing only the second parameter, B.

Before compiling the Ada program the user invokes a preprocessor that translates the
specifications into an Ada package interface and body for a package called Event.Manager.
(Although not illustrated in the figures of this paper, the preprocessor assumes that the
event specification statements are delimited by the special comment mark "--!" so that
they can easily be separated from normal Ada code.)

The generated interface of Event-Manager is illustrated in Figure 2. It provides the list
of declared events as an Ada enumerated type, along with a record with a variant part that
specifies the parameters for each event. In addition, the generated specification contains the
signature of the Announce-Event procedure, which allows components to announce events.

The generated body of Event-Manager contains the implementation of Announce-Event.

3

with Package._;
package Event-Manager is

type Event is
(Event_1, Event_2,Event_3);

type Argument (TheEvent: Event) is

record
case The-Event is

when Event.1 =>
Event-1-I: Integer;
Event1-_Y: PackageJ. MyType;

when Event-2 =>
null;

when Event.3 =>
Event-3-A: Integer;

Evant_3_B: Integer;
when others =>

null;
end case;

end record;
procedure AnnounceEvent (TheData: Argument);

end Event-.Manager;

F-gure 2: Generated Specification for Event-Manager

As illustrated in Figure 3, the procedure is structured as a case statement, with one case

for every declared event. When a component wishes to announce a,, event, it invokes

Announce.Event, as illustrated in Figure 4.

2.2 Key Design Questions

This simple implementation provides many characteristics of more complex implicit invoca-

tion systems. However, it embodies a set of design choices whose consequences are important
to understand, both to see how to use an implicit invocation system, and to observe the

limitations of the implementation. The design decisions can be grouped into the following

six categories:

1. Event definition

2. Event structure

3. Event bindings

4. Event announcement

5. Concurrency

4

with Package_1;
with Package_2;
with Package_3;
package body Event-Manager is
procedure Announce.*Event (The-Data: Argument) is

begin
case TheData.TheEvent is

when Eventj f>
Package_2.Method_ 2(TheData.Event_.l.X);
Package_ 3. Method_4 (TheDa a. Event 1_¥) ;

when Event_2 =>
Package_2. Method_4;
Package_3. Method_3;

when Event_3 =>
Package_1 .Method_.. (TheData. Event_3_B);

when others =>
null;

end case;

end Announce-Event;
end Event_Manager;

Figure 3: Generated Body for Event-Manager

knnounce_*Event(Argument' (Event- 1, X.Arg, Y.Arg));

Figure 4: Event Announcement

6. Delivery policy

We now examine each of these in turn.

2.2.1 Event Definition

The first design issue concerns how events are to be defined. There are several related issues.
Is the vocabulary of events extensible? If so, are events explicitly declared? If events are
declared, where are they declared?

We considered three approaches to event extensibility and declaration.

Fixed Event Vocabulary A fixed set of events is built into the implicit invocation system:
the user is not be allowed to declare new events.

Static Event Declaration The user can introduce new events, but this set is fixed at
compile time.

5

Dynamic Event Declaration New events can be declared dynamically at run time, and
thus there is no fixed set of events.

No Event Declarations Events are not declared at all; any component can announce
arbitrary events.

An example of a system with a fixed event vocabulary is Smalltalk-80, which provides a
single changed event. 2 Active databases often have a fixed event vocabulary, where events
are associated with primitive database operations, such as inserting, removing, or replacing
an element in the database. At the other extreme, tool iutegration frameworks, such as
Field and Softbench [Reiss 90, Gerety 89], have no explicit event declarations at all. A
tool can announce an arbitrary string, although tool builders typically describe the event
vocabulary of each tool as externaly documented conventions.

All four approaches can be implemented in Ada. In the first and second cases, events
are naturally represented as enumerated types. In the third and fourth cases events are
often represented as strings.

We rejected the first alternative as too restrictive. When it came to selecting among
the other approaches, there were arguments on each side. Static event declaration has an
efficient implementation basis as an Ada enumerated type, and allows compile-time type
checking of event declarations and uses. On the other hand, dynamic event declarations
provide more flexibility, since they allow run time reconfiguration. Moreover, since dynamic
event systems do not use recompilation to maintain consistency between announcements

and event bindings, a dynamic event system could be used to reduce recompilation overhead.
A similar case can be made for non-existent event declarations.

In the end, predictability through static checking won out. In particular, we felt that

static interface declarations more naturally meshed with the spirit of Ada, led to more
comprehensible programs, and better supported large-scale systems development, which
require predicatable behavior of the components.

Once we had decided on using static events, we were faced with the question of where
the declaration of events should reside. In particular, since the events represent information
shared between (at least) the announcing component and the event system, it is unclear
which component "owns" the event, and thus where events should be declared. There were
two obvious choices:

Central Declaration of Events Events are declared at a central point and then used
throughout the system.

Distributed Declaration of Events Events are declared by each module, where each
module declares the events it expects to announce.

21By convention, this "event" is announced by invoking the changed method on self. This causes the

update method to be invoked on each dependent of the changed object. Other events could similarly be
introduced by new methods that had a similar effect, but this is generally not done.

6

Our implementation is neutral on this issue. Since the declarations are embedded within
Ada comments, it is possible to declare events in the individual packages. However, an
implementor can also place event declarations in a separate file.

2.2.2 Event Structure

The next design issue is how events should be structured. We wanted a model of events
that would make it easy to use them in system construction and easy to understand the
interactions between components. The choices we considered were:

Simple N ames Events are simple names without any parameter information.

Fixed Parameter Lists All events have a name and the same fixed list of parameters.

Parameters by Event Type Each event has a fixed list of parameters, but the type and
number of parameters can be different for different events.

Parameters by Announcement Whenever a component announces an event, it can
specify any list of parameters. For example, the same event name could be announced
with no parameters one time and with ten parameters the next.

The use of simple names is found in systems that use events as a kind of interrupt
mechanism. In these systems there is typically only a small number of causes for events to
be raised. Fixed parameter lists are often used in combination with a fixed set of system-
defined events. For example, in an active database events might require as a parameter the
identity of the data that is being modified. At the other extreme, systems that use strings
as events often allow arbitrary parameters: it becomes the job of the receivei to decode the
string and extract parameters at run time.

We quickly settled on allowing parameters to vary by event type. We considered the
first two approaches as being unnecessarily restrictive. We also felt that letting parameters
vary for each announcement could lead to undisciplined and unpredictable systems. Allow-
ing parameters to vary by event type over a static list of events also solves a problem of
parameter passing: with static events and static parameter lists, a record with a variant
part becomes a natural way to represent parameters.

2.2.3 Event Bindings

Event bindings determine which procedures (in which modules) will be called when an event
is announced. There are two important questions to resolve. First, when are events bound
to the procedures? Second, how are the parameters of the event passed to these procedures?

With respect to the first issue, we considered two approaches to event binding:

Static Event Bindings Events are bound to procedures statically when a program is
compiled.

7

Dynamic Event Bindings Event bindings can be created dynamically. Components reg-
ister for events at run time when they wish to receive them, and deregister for events
when they are no longer interested.

The decision to use static event bindings was largely forced on us by Ada. Ada provides
no convenient mechanism for keeping a "pointer" or other reference to a subprogram. It
would have been possible to provide an enumerated type representing all procedures that
might be bound to any event. Events could be bound to elements of this enumerated type
dynamically. Procedures would then be invoked through a large case statement. However,
this conflicted with the desire to have a flexible parameter passing mechanism (as described
earlier), since the parameters would either have had to be fixed or encoded in the enumerated
type.

However, even if Ada would have supported dynamic event binding, it is not clear that
it would be the right alternative. As with dynamic event declarations, dynamic event
bindings decrease the predictability of a system. In particular, the behavior of a system is
not apparent from its declaration. Moreover, dynamic event bindings can introduce race
conditions at run time. This is because a newly registered binding may or may not catch an
existing announced event, depending on the timing of the event and dynamic registration.

Having decided on static event bindings, we were faced with the question of how the
parameters from the event would be translated into the parameters for the invocation. The
choices we considered were:

All Parameters The invocation passes exactly the same parameters (in number, type and
order) as are specified for the event.

Selectable Parameters As part of the event binding, the implementor can specify which
parameters of the event are passed in the invocation, and in which order.

Parameter Expressions The invocation passes the results of expressions computed over
the parameters of the announced event.

The transmission of all parameters to each procedure bound to an event requires some
conspiracy between the designer of the procedure to be invoked and the designer of the
events. We could easily imagine situations in which only some of the information in an
event announcement would be useful to a component, and it seemed unnecessary to require
the component to accept a dummy parameter just for that reason, or, conversely, to require
two events to be announced--one with and one without the unneeded data.

We opted to provide selectable parameters, as this provided a balance between flexibility
and ease of implementation. Selectable parameters allows more freedom in matching events
to procedures, thereby promoting reusability. Moreover, it is straightforward to build the
argument list from the event binding declaration.

Although we did not implement it this way, we believe that allowing non-side-affecting
expressions as parameters to an event system could provide a significant and useful amount
of increased flexibility. Sometimes a procedure's parameters do not match those of an

8

event, but some of the procedure's parameters can be made constant to "customize" the
procedure invocation to the context of the event. With the ability to construct expressions
as part of an event binding, it becomes easier to tailor a procedure to an event without
modifying either the announcer or the recipient. The implementation becomes considerably
more complex, however. In particular, it is necessary to make sure that operators used in
parameter expressions are in scope and have the right type.

2.2.4 Event Announcement

Although announcing an event is a straightforward concept, there are several ways in which
it can be incorporated.

Single Announcement Procedure Provide a single procedure that would announce any
event. Pass it a record with a variant part containing the event type and arguments.

Multiple Announcement Procedures Provide one announcement procedure per event
name. For example, to announce the Changed event a component might call Announce_-Changed.
The procedure accepts exactly the same parameters (in number, type, order, and
name) as the event.

Language Extension Provide an announce statement as a new kind of primitive to Ada
and use a language preprocessor to conceal the actual Ada implementation.

Implicit Announcement Permit events to be announced as a side effect of calling a given
procedure. For example, each time procedure Proc is invoked, announce event Event.

We decided on the "single announcement" approach for a number of reasons. First, in
comparison to the multiple procedure approach, it is simple: all event announcements look
similar. Second, with respect to the third option, our users were fairly proficient with Ada,
and we wanted to stay as close to "pure" Ada as possible. This discouraged us from modify-
ing the language. We also wanted to avoid the extra complexity of a preprocessor that would
have to process the full Ada language (and not just specially delimited annotations). Finally,
we realized that instead of requiring the user to construct an Event _Manager. Argument
record as a local variable and pass the variable to the procedure, the user could simply
pass a record aggrega t e containing the desired information. This brought the syntax close
enough to an announce statement to satisfy our desire for promoting events as first-class,
without requiring any modification to Ada syntax.

The fourth approach, implicit announcement, has been used as a triggering mechanism
for databases [Dayal 90] and some programming environments [Habermann 91]. It is at-
tractive because it permits events to be announced without changing the module that is
causing the announcement to happen. Although we could have additionally supported this
form of announcement, we chose not to, largely because it would have required the prepro-
cessor to transform procedures so that they announce the relevant events. As noted above,
we wanted to avoid having to process the full Ada language itself. However, this would be
a reasonable extension in a future version of the system.

9

2.2 5 Concurrency

Thus far our enumeration of design decisions has left open the question of exactly what a
component is. In our design, we considered three options.

Package A component is a package, and an invocation is a call on a procedure in the
package interface.

Packaged Task A component is a task (with an interface in a package specification), and
an invocation is a call on an entry in the task interface.

Free Task A component is a task. An invocation is a call on an entry in the task interface.
However, rather than providing an enclosing package, the task is built inside the
Event.Manager package.

The first choice leads to a non-concurrent event system: events are executed using a
single thread of control. The second and third choices would permit concurrent handling
of events. While we do not forbid tasks inside of packages, our implementation adopts the
first approach.

Our decision was based primarily on the fact that, given the current understanding of
event systems, it is much easier to develop correct systems using a single thread of control.
For example, if we had adopted a concurrent approach, it would have either been necessary
to require all recipients of. an event to be re-entrant, or for the Event.Manager task to
provide its own internal synchronizing task to ensure that invocations occurred only one
at a time. Should a receiving task have attempted to announce another event while in its
rendezvous, this could cause a deadlock.

2.2.6 Delivery Policy

In most event systems, when an event is announced all procedures bound to it are invoked.
However, in some event systems this is not guaranteed. While delivery policy was not a
major question in our development, there is enough variation in the way this is done in
other systems to explore the design options. The ones we considered are:

Full Delivery An announced event causes invocation of all procedures bound to it.

Single Delivery An event is handled by only one of a set of event handlers. For example,
this allows such events as "File Ready for Printing" to be announced, with the first
free print server receiving the event. This delivery policy provides a form of "indirect
invocation", as opposed to "implicit invocation".

Parameter-Based Selection This approach uses the event announcement's parameters
to decide whether a specific invocation should be performed. This is similar to the
pattern matching features of Field [Reiss 90] in that a single event can cause differing
sets of subprograms to be invoked depending upon exactly what data is transferred
with the event.

10

State-based Policy Some systems (notably Forest [Garlan & flias 91]), associate a "pol-
icy" with each event binding. Given an event of interest, the policy determines the
actual effect of it. In particular, the policy can choose to ignore the event, generate
new events, or call an appropriate procedure. Policies can provide much of the power
of a dynamic system without incurring the complexities of a dynamic system.

The single delivery model did not match our interest in supporting implicit invocation,
and so was quickly discarded. Although we considered the parameter-based policy model,
we eventually decided on the full delivery model, since it allowed the most straightforward
analysis by our users. In a future implementation we would certainly consider adding
policies as an additional form of flexibility.

3 Evaluation

The system described in previous sections was initially developed for use in a masters-level
software engineering course [Garlan et al. 92B]. The students had an average of five years
of industrial experience. Most were familiar with Ada. This early use of the system has
resulted in both praise and criticism.

On the positive side, users of the system have had virtually no conceptual problems
transferring their abstract understanding of implicit invocation to the use of our imple-
mentation. The declarative nature of events apparently fit well with their abstract model.
In addition, experienced Ada users found little difficulty adapting their programs to an
implicit-invocation style. Our attempts to remain close to Ada syntax certainly contributed
to this.

On the negative side, there appeared to be two limitations. The first was the com-
mon problem of debugging preprocessed source code. Since compiler errors are produced
with respect to the preprocessed source, users have to translate between the output of
the preprocessor and their initial source input. However, this problem was mitigated by
the relative orthogonality of the language extensions since the event-oriented extensions are
largely isolated from normal code. The second was the absence of dynamic event declaration
and binding. While Ada programmers are used to strongly typed, static system designs,
our users were also aware that other implicit invocation systems are more dynamic. (For
example, some of them had used Softbench [Gerety 89].)

To these drawbacks we would add our own concern with the lack of concurrency sup-
ported by our design. As indicated earlier, we believe that it should be possible to exploit
the tasking model of Ada, and see this as an opportunity for future work.

4 Related work

A large number of systems have adopted implicit invocation as an integration mechanism.
As discussed earlier, most of these tend to fall into the categories of process-oriented tool
invocation mechanisms and special-purpose languages. Here we have attempted to broaden

11

the base of applicability by showing how to provide similar functions for standard program-
ming languages.

This work is strongly motivated by others research, which has demonstrated that im-
plicit invocation is an important new integration mechanism. In particular, Field [Reiss 90],
showed how implicit invocation could be applied to tool integration. More recently Sullivan
and Notkin [Sullivan 921 have shown how implicit invocation can be used to ease system
evolution without compromising properties of integration. In their work, integration rela-
tionships are encapsulated in separate entities, called mediators, which depend on implicit
invocation to decouple the maintenance of system invariants from the components that
modify and store system state. They also outline techniques for adding implicit invocation
to a C++, providing another (quite different) choice of implementation.

In a similar spirit is the use of implicit invocation in the setting of some object-
oriented systems. One of these is the change propagation mechanism used to support
the Model/View/Controller paradigm in Smalltalk-80 [Krasner & Pope 88]. In this system,
any object can register as a dependent of another object. When an object "announces" a
changed event an update method is called on each of the dependent objects. While this use
of implicit invocation is limited by the fixed nature of the mechanism (i.e. the events and
methods are wired into the Smailtalk environment design), the approach raises the issue of
using inheritance to handle implicit invocation.

We see two significant disadvantages to that approach. First, it forces the event an-
nouncer to be aware of the mechanism by which events are being handled. For example,
change announcement is actually done by the procedure call "self changed". An alternative
would be to perform the announcement on some external entity, as in "disperher announce
...": both suffer from the same problem that the announcer must think of the announcement
as a procedure call on a specific entity, But a second, and more serious problem, is that
one would really like to think of the events that are to be announced by an object as being
part of its interface. Just as procedures determine the functionality of a module (or class)
in traditional systems, so, too, are events an integral part of that module's functionality.

A primary focus of this paper is better understanding of the design space associated with
implicit invocation mechanisms. In that regard it is related to work in formalizing implicit
invocation models [Garlan & Notkin 91]. Such efforts are complementary: a formal model
makes clear what are the fundamental abstractions necessary to understand implicit invo-
cation, while our concrete application relates these abstractions to the constraints imposed
by the real world.

Finally, this work is related to other uses of language extension as a means for enhanc-
ing the expressiveness of existing programming languages. For example, Anna augments
Ada with specifications [Luckham 85]. The primary difference between that kind of work
and ours is that we are attempting to change the fundamental mechanisms of interaction
in module-oriented languages. That is to say, events are not just additional annotations
to permit some tool to perform additional checks, but become an essential part of the
computational model for the modules that use them.

12

* *S

5 Conclusion

The contributions of this work are twofold. First, we have shown by example how to add
implicit invocation to a statically typed, module-oriented programming language, such as
Ada. While some of the design decisions were constrained by the properties of Ada itself,
many of those constraints are similar to those found in other programming languages (for
example, strong typing). Second, we have elaborated the design space for this approach and
shown how the decisions in this space are affected by the constraints of the programming
language that is being enhanced. Ultimately this is the most important thing, since it serves
as a checklist for those attempting to apply these techniques to other languages.

Acknowledgments

The implementation of implicit invocation in Ada was carried out in the context of the
course "Architectures for Software Systems" in Spring, 1992. We gratefully acknowledge
the advice and help of those involved in the design of that course: Mary Shaw, Chris
Okasaki, and Roy Swonger. We would also like to thank the students and colleagues who
have used the system and given us feedback on its effectiveness. David Notkin and William
Griswold provided insightful comments on earlier drafts. Finally, we thank David Notkin,
Kevin Sullivan, and Robert Allen for their collaborative efforts in developing a scientific
basis for using implicit invocation.

References

[Ada83] Reference Manual for the Ada Programming Language. United States Department
of Defense. (January 1983).

(Balzer 861 R.M. Balzer. Living in the Next Generation Operating System. Proxeedings of
the Fourth World Computer Conference. (September, 1986).

[Cohen 891 DY Cohen. Compiling Complex Transition Database Triggers. Proceedings of the
1989 ACM SIGMOD. (1989).

[Dayal 901 U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with Trig-
gers and Transactions. In Proceedings of the 1990 ACM SIGMOD. (June 1990)

[Garlan et al. 92a] David Garlan, Gail E. Kaiser, and David Notkin. Using Tool Alktraction

to Compose Systems. IEEE Computer. (June, 1992).

[Garlan et al. 92B] David Garlan, Mary Shaw, Chris Okasaki, Curtis Scott, a.'d Roy
Swonger. Experience with a Course on Architectures for Software Systems. Pro eedings
of the SEI Conference on Software Engineering Education. (October 1992).

13

[Garlan & Notkin 91] David Garlan and David Notkin. Formalizing Design Spaces: Implicit
Invocation Mechanisms. Proceedings of VDM'91: Formal Software Development Methods.
Springer-Verlag, LNCS 551 (October, 1991).

[Garlan & Rias 91] David Garlan and Ehsan hias. Low-cost, Adaptable Tool Integration
Policies for Integrated Environments. Proceedings of SIGSOFT '90: Fourth Symposium
on Software Development Environments. Irvine, CA (December 1990).

[Gerety 891 Colin Gerety. HP SoftBench: A New Generation of Software Development
Tools. Technical Report SESD-89-25, Hewlett-Packard Software Engineering Systems Di-
vision, Fort Collins, Colorado (November 1989).

[Habermann 91] A.N. Habermann, D. Gar!a~n and D. Notkin. Generation of Integrated
Task-Specific Software Environments. In CMU Computer Science: A 25th Commemora-
tive. ACM Press (1990).

[Hewitt 69] Carl Hewitt. PLANNER: A Language for Proving Theorems in Robots. Pro-
ceedings of the First International Joint Conference in Artificial Intelligence., Washington
DC (1969).

[Krasner & Pope 88] G.E. Kra.sner and S.T. Pope. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. Journal of Object Oriented Program-
ming 1,3 (August/September 1988), pp. 26-49.

[Luckham 85] D. Luckham and F.W. von Henke. An Overview of Anna, a Specification
Language for Ada. IEEE Software (March, 1985).

[Reiss 90] S.P. Reiss. Connecting Tools using Message Passing in the Field Environment.
IEEE Software 7,4 (July 1990).

[Sullivan 92] K.J. Sullivan and D. Notkin. Reconciling Environment Integration and Soft-
ware Evolution. ACM Transactions on Software Engineering and Methodology 1,3 (July
1992).

[Sutton, Heimbigner & Osterweil 90] S.M. Sutton, Jr., D. Heimbigner, & L.J. Osterweil.
Language Constructs for Managing Change in Process-Centered Environments. Proceed-
ings of ACM SIGSOFT9O: Fourth Symposium on Software Development Environments,
pp. 206-217 (December 1990).

14

