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ABSTRACT 

This paper is concerned with gradient estimation 
techniques for steady-state performance measures as- 
sociated with regenerative stochastic processes. The 
principal emphasis is on the discussion of conditions 
under which likelihood ratio methods and infinitesi- 
mal perturbation analysis techniques are valid. 

1 INTRODUCTION 

This paper is concerned with using simulation to esti- 
mate gradients of steady-state performance measures 
in the regenerative process setting. This turns out to 
be quite a rich class of stochastic processes from an 
applications viewpoint, encompassing all irreducible 
remnant discrete state space Markov processes as 
well as a variety of more general discrete-event sys- 
tems. In particular, a large class of generalised semi- 
Markov processes may be made regenerative by using 
"splitting" ideas from the theory of Harris recurrent 
markov chains; see, for example, Glynn (1989). 

Two different gradient estimation algorithms are 
explored in this paper; likelihood ratio gradient esti- 
mations and estimations based on infinitesimal per- 
turbation analysis (IPA). The focus, in this paper, is 
on the tools needed to rigorously verify the mathe- 
matical validity of these techniques in the regenera- 
tive setting. 

2 STEADY-STATE LIKELIHOOD 
RATIO GRADEGNT ESTIMATION 

Let W = (Wn : n > 0) be a real-valued stochas- 
tic sequence. For each 9 € A = (e,s), let P* he a 
probability distribution on the path space of W. We 
assume that there exists a non-decreasing sequence 

T = T(n) : n > 0) of random times such that 
r(0) = 0 and: 

(Al) Under distribution P#, W is a non- delayed re- 
generative sequence with respect to T, for each 0 € A. 

r„ = T(n) - T(n - 1). If Et{) is the expectation 
operator associated with P$, we require that E$Yi < 
oo and Eir\ < oo, in which case 

>=0 
(2.1) 

as n  —  oo,  where a(0)=u(0)/t(0) and u(9)   s 
E,Yltl(9) = £»n. 

Relation (2.1) implies that a(0) may be inter- 
preted as the steady-state mean of W under P#. Our 
goal is to develop an estimation methodology for 
cr'(tfo) for (fixed) 0O € A. Since a m u/t, it is clearly 
sufficient to develop estimators for u'(0o),t(0o), 
u(0o)> and l(9o). Of course, v{0o) and l(0o) can eas- 
ily be estimated via sample means formed from i.i.d. 
copies of Yi and i\ generated under Pi,. The greater 
challenge is to develop estimators for u'(tfo) and ?{0o). 

To accomplish this task, we assume that there 
exists a «--field Q for which Y\ and r\ are ^-measurable 
and such that Pi is absolutely continuous with respect 
to Pi, on Q. Consequently, for each 9 € A, we may 
represent v(0) and t(t) as 

u($) = EYlL(«) 

where £(•)=£#,(•) and L(9) is the likelihood ratio 
(Radon-Nikodym derivative) of Pi with respect to 
Pi,. Suppose that L() k P#, aj. differentiable at 
0O. U 



(A2) (Y(L(00 + h) - L(60)/h :h>0,90 + h€ A) 
and (r(I(*o + L) - L(0o))A : * > 0,0O + A € A) are 
uniformly integrable under P$0, 

then it follows that 

u'(90) = £YiI'(*o) 

^o) = EnL'tfo). 

Hence, under (A2), U'(0Q) and /'(0o) can be consis- 
tently estimated via sample means formed from i.i.d. 
copies ofY\L'($o) and nL'tfo) generated under P$9. 
This then solves the problem of estimating a'(0<>) con- 
sistently. 

The key, from a mathematical viewpoint,  is 
therefore to verify (A2). 

2.1 Harris Chains 

A large class of regenerative systems are derived from 
discrete-time Markov chains Z = (Zn : n > 0) living 
on some general state space 5. Assume that there 
exists a subset A C 5, A > 0, a positive integer m > 1, 
and a probability distribution <p such that: 

(A3) i) P,[Zn € A infinitely often \Z0 = *] = 1 for 
0€A,z€S, 

ii) P,[Zm € d*|Zo = *) > ^<p{dx) for * € A, x € 
S.» € A. 

Condition (A3) guarantees that for Z is a Harris re- 
current Markov chain under Pt tot each 8 € A. It 
is well known that (A3) can be exploited to obtain 
regenerative structure for Z. Suppose that 2o has 
distribution <p. Now, observe that the minorixation 
condition (A3) ii) guarantees that for * € A we can 
write 

P,[Zm(Zdz\Zo = x] 

*jkrf*)+U-A)g(M,*) 
where Q(8, x, •) is a probability distribution on 5 for 
each 0 6 A and « 6 A. Hence, each time £ visits 
A, there is a probability A > 0 that the chain will be 
distributed according to tp m time units later, thereby 
constituting a regeneration. More precisely, we can 
introduce a sequence (ifo : n > 0) of "coin flip" r.v.'s 
such that % = 0 whenever 21* £ A, and »*, = 1(0) 
whenever Zn € A and a "successful" ("unsuccessful") 
coin flip occurs. Then, the regeneration time rt can 
be defined as rt = m/{n > m : %_„, = 1}. 

For a given function / : 5 — K, let W„ = f(Xn). 
Then, it is evident that if Etr\ < oo and £#fi < oo, 

iV»7-*o<#)iliyl/£,n   ft «•*•      (2.3) 
"ft 

as n -»oo. To calculate the derivative a'(0o). we have 
already shown that (A2) is the key. 

To obtain a likelihood ratio estimator, we will 
assume that there exist "densities'' p(0, x, y), q(8, z, y) 
such that: 

(A4)   i) For x I A,y € S,0 6 \,P(6,x,dy) = 
p(0,x,y)P(0o,x,dy) 

ii) For x € A,y 6 S,tf € A,g(0,z,<fy) = 
«(*,*. y)Q(h,*,dv) 

Assumptions (A3) ii) and (A4) together guar- 
antee that there exist densities pn(9,x,y) such that 
P,[Zn 6 dx\Z0 = i] = p*(*,x,.r)P#0[Zn € dz\Z0 € x] 
for0€A,z,z€S. 

To obtain a likelihood ratio for the path of the 
sequence Xn = (Zn,ifo) up to time n, we decompose 
the path according to appropriately spaced visits to 
the set A. Specifically, let So s= -m and set 5» = 
in/{n > 5»-i + m : Z„ € A}, and let ß = in/{« > 
1 : i75fc = 1}. Then, the likelihood ratio L(8) on the 
<r-neld Q = e(Zn : 0 < n < n) of /»# with respect to 
P«, can be written in the form 

0 
L(0)=Y[L>(8) 

where 

!»(*) 

?(*.^5».2'5»+m) -     II   pi8,Zj,ZHl) 
) 

for k < ß and 

LßV) 
Sß+m-l 

S        II     K'i 2},Zj+i)  =  
y 

Assume that the functionspn(-, z, y) and q{-, x, y) 
are continuously differentiabk on A for n > 1 and 
x,y € S. To verify (A2), note that y"(I(*o + A) - 
I(fo))/A = yi'(() fix some { € [80, So + A). But 

L\9) 

\i»o k-l / 

where 



for k < 0 and 

/ '9) = 
Pm(9,Zs,,Zs,+m) 

We have used here the fact that Pn(9,x,y) > 
0{q(6,*,y) > 0) whenever ]/„($,x,y) ± 0fY(s\x,y) # 
0). For c> 0, set 

p(*,y)=   sup   \p{9,x,y)\ 
l»-«ol<« 

&(x,y)=    sup    \p'(0,x,y)\ 
|#-#,)<t 

h-   sup   |4(0)| 

4=    sup   |4(tf)|, 

and observe that by continuity p(x, y) and lk will typ- 
ically be close to 1. Then, 

\YL'(t)\<(nm*xMZk)\) 

■ (n omaxri tfft,Z4+l)| + /?onua |&Q 

■ sup   £(0). 
l«-«ol<« 

To establish (A2) requires proving that the dominat- 
ing r.v. just denned is integrable. But its expectation 
is bounded by 

II  «iP iWflPfflnlktl max |/(Z*)III» 

•Oln||,.0maxJ?(Zt,z4+l)|||,, 

+ llflU"lleggMillU 

when pi.pi p% > 0 and Pi*l+fcl + ' •+*!l Ä *• 
But 

lom« \f(Z>)\\\, < E'» (£H; 
the other maximum terms can be similarly bounded 
by sums. These expectations, as well as ||TJ||,( can 
be bounded by standard Lyapunov function methods; 
see Chapter 15 of Meyn and Tweedie (1992). (Note 
that ß is geometric so ||£||, is trivially finite.) 

The greater difficulty is posed by the term 
ll«ttP„-,.i<.I(0)||r. Let 

ai(z) = E[ sup   Ll(e)r\ß>l,Z0 = z) 

o,(x) = E(   sup    Li(0f\ßm 1,2« s. *J. 

By successively conditioning and using the strong 
Markov property at the times S0,Si S>_lt it fol- 
lows that 

II    »up    L(6)\\r 
l'-'ol<« 

ß-l 

= E IJ qi(Z5i+m)q2(ZSl_l+m). 
;=o 

Hence, establishing (A2) requires getting a handle on 
the functions qi and 93. In many applications, the set 
A is compact. Continuity arguments then permit one 
to control p^l(e,ZSk,ZSk+m) and q(0,ZSk,Zs>+m)/ 
Pm(0,Zsh,Zsk+m) are bounded. Furthermore, 

re-1 

HjUZ^Zj+tYiZo** 
i-9 

is typically bounded over z 6 A. Consequently, the 
key to bounding 91 and 93 is to get a handle on 

h{z)=E 
St-l 

J[p\ZhZj+xY\Z« = z 

for z € A*. We complete this discussion of the verifi- 
cation of (A2) by providing a Lyapunov function crite- 
rion for bounding h. Let K(x,dz) = p\x, z)rPu[Zi € 
dz\Z0 - x] and set »(*) = K(x,A). A standard ar- 
gument establishes that if we can find a non-negative 
function f satisfying 

L K(x,dz)r(z)<r{x)-eg(x) 

for x 6 A* and e > 0, the bound h(x) < f(x)/c for 
* € A* follows. 
2.2    Stochastic Recursions 

A large class of Markov chains Z satisfy stochastic 
recursions of the form 

*M.i««X*"G») 

where 4 - S x S1 — 5 and tf a (tfn : n > 0) is 
a sequence of S'-valued r.v.'s that is U.d. under Pi 
tot each 0 6 A. In order to guarantee that Z be 
regenerative, we require the existence of a subset B 
and a family <p(0, •) of probability distributions such 
that: 

(AS) i) P$[Zn € B infinitely often \Z0 ~ z] = 1 for 
x€S,*€A, 



ii) Pt[Z\ 6 dz\ZQ = x] = <p(0, iz) for x 6 5, z € 
S. 
Clearly, 7^ = inf{n > 1: Zn-\ € B) is a regeneration 
time for Z. (In fact, Z satisfies (A3) with A = 1.) 
Suppose that: 

(A6) Pt[U0 fc Ju] = p(9,u)P,t[U0 6 du] 

for some density p(0, u) that is continuously differen- 
tiable on A. Then, the likelihood ratio of P$ with 
respect to P#0 on T — a(Un : 0 < n < n) is simply 
given by 

n-i 
Z(<?)= n^.^)- 

To verify (A2) for 1(9) in this setting is much simpler 
than the verification of the previous section for Harris 
chains. In particular, since (2.5) continues to hold, 
the key is to show that 

E   sup    L(9)T < 00 (2.6) 

for some c > 0. But 

E   sup   L(9Y 
l»-»tl<« 

<f;£"/J   sup   p(6,Uo)2rPU3[n = n). 

Since Eanp^t_t^<tp(9,Uo)ir can typically be made 
arbitrarily close to 1 for e small enough, it is evident 
that (2.6) holds if £,exp(Ar1) < 00 for |A| sufficiently 
small and positive. However, this can be verified eas- 
ily by using suitable Lyapunov functions. (In fact, 
the Lyapunov function r of the previous section can 
be suitably specialized.) By verifying (2.6), this per- 
mits us to establish that u'(90) and t(9o) can be es- 
timated via sample means of Y\L'(9Q) and TiL'(90) 
respectively. 

However, if the density p{9, x, y) of Z can easily 
be calculated, the derivative L'(9Q) of the previous 
section is a competing estimator. Note that 

where Q = <r(Zn : 0 < n < n). If ((£(*<> + /») - 
L(9o))/h : 0 < h < c) is P#, uniformly integrable, 
then (l(90 + A) - l(9o)/h - l'(90) in Ll(Pu) so 
(I'(P,.+»-I(*o))/n - E[L'(9o)\G)iBLl(Pu). It fol- 
lows that the difference quotients (L(90+h)-L(90))/h 
are uniformly integrable as demanded by (A2) and 

L'(9o) = E[l'(90)\Q]. 

By the principle of conditional Monte Carlo, the r.v. 
YiL'(90) has smaller variance then YlL'(90). So, us- 
ing L'(90) is statistically desirable. 

However, our discussion also shows that for sys- 
tems satisfying stochastic recursions, the easiest way 
to establish (A2) for L(9) may be to instead estab- 
lish (A2) for 1(6). Hence, introducing 1(9) can be a 
useful theoretical tool. 

3 STEADY-STATE 1PA 

We now turn to steady-state derivative estimation us- 
ing IPA, focusing on discrete-time problems. Here, 
too, regenerative structure plays a key role in the con- 
vergence and consistency of the derivative estimates. 

We begin with some background on IPA, then 
give conditions for the derivative estimates to be re- 
generative, and finally use regenerative structure to 
prove strong consistency. 

3.1 IPA Estimate« 

Many discrete-time sequences studied through simu- 
lation satisfy recursions of the general form 

W»+i = *(W».£/n), n>0, (1) 

where {Un,n > 0} are inputs to the simulation and 
{Wn,n > 0} are the outputs of interest. We allow 
the Wn'a to be d-vectors and the J7n's to be /-vectors. 
With this generality, (1) is by no means restrictive; 
but to use IPA, we will need to put further conditions 
on 4. 

A familiar example of (1) is the Lindley equation 
for the waiting times in a single-server queue: 

Wn+i = [Wn+Sn-An]+, n>0, (2) 

where S„ is the n-th service time and An is the time 
between the n-th and (n + l)-st arrivals. In this ex- 
ample, d - 1, / = 2, and Un = (An, 5„); <* is defined 
by (2). 

Suppose now that each Un is a (random) function 
of a parameter 9 ranging over an interval [a, 6]; then 
each Wn, n > 1, depends on 9, and we may also 
assume that W0 depends on 9. We want to compute 
derivatives with respect to this parameter. Let {/„., 
and W„i denote the i-th components of Un and Wn. 
Formally differentiating (1), we get 



t s l,...,d, where the partial derivatives of the i- 
th component of 6 are with respect to the indicated 
components of its arguments and are ail evaluated 
at (Wn(9),tfn(9)). This is another recursion, map- 
ping (Wn, Wn, Un, U'n) to Wn+l. Combined with (1), 
it gives a mapping from (Wn,W^) to (Wn+l, Wn+1) 
with input {Un,U'n). Equation (3), when vahd, de- 
fines an IPA algorithm for computing {W„, n > 1}. 

Returning to the Lindley equation (2), we find 
that the 4 implicitly defined there is not a differen- 
tiate function: differentiability fails where Wn+Sn — 
A„ = 0. For the queue, this event corresponds to 
one busy period ending at exactly the same time the 
next one begins. This phenomenon is typical of many 
discrete-event systems: differentiability may fail when 
two events occur simultaneously, and these are often 
the only points of non-differentiability. So, justifica- 
tion of (3) requires some care. Fortunately, this is 
more of a theoretical than a practical concern; dif- 
ferentiability is often assured by conditions implying 
that events occur singly with probability one. 

We now give a set of conditions from Glasser- 
man (1992ab) justifying (3) and further implying that 
E\W'n(*)] - E\Wn($)]'. These conditions will also be 
useful in our analysis of steady-state derivative esti- 
mation. 

Recall that a function f : S — R4, S C £" is 
Lipsckitz if there exists a constant kj, called a mod- 
ulus, such that 

ll/(*)-/(y)ll<*/lk-y||,*.y€5. 
Lipschits functions are differentiable almost every- 
where. A Lipschits function of a scalar is absolutely 
continuous and is therefore the indefinite integral of 
its (almost-everywhere defined) derivative. The class 
of Lipschits functions is just broad enough to include 
min, max, and similar functions arising in discrete- 
event systems, and just smooth enough to be com- 
patible with IPA. 

We call a random function X = {X($)J € [a,»]} 
almost-surely Lipschits if its sample paths are Lips- 
chits with probability one. If X is Lipschits, let Kx 
be a (random) modulus for X. 

We now proceed with the conditions. Our first 
assumption puts minim*! smoothness conditions on 
the inputs and on the initial state: 

(Al) Wo and {£/», n > 0} are aj. Lipschits functions 
on fa,*]. For each 9 € [a,6], W0 and {Un,n > 0} are 
a j. differentiable at 9, taking one-sided derivatives at 
the end points. 

The first part of (Al) restricts dependence on 9 
for a fixed sample path; the second part fixes 9 and 
varies the sample path. Both types of conditions are 
needed. We also assume 

(A2) <t> is Lipschits. 

By itself, (A2) implies that the partial derivatives 
of 4> exist almost everywhere. But this is not quite 
enough for (3), since it is possible for {(Wn, Un), n > 
0} to return infinitely often to the null set of nou- 
differentiabk points of 0, with positive probability. 
To rule this out, define 

C+ = {z 6 R* x Ä* : 0 is differentiable at *), 

and require 

(A3) P((Wn(9),UH(9)) 6 C,) = 1, for all n > 0, for 
all*€[a,t]. 

This is not a primitive condition, in the sense 
that the distributions of {(Wn(9), Un{9)), n > 0} are 
generally unknown. Nevertheless, (A3) is often easy 
to verify in practice. For example, in the Lindley re- 
cursion (2), C* is the complement in R x R3 of the 
set {(w,s,a) : w + s-o = 0}. If, say, {S»,n > 
0} and {An.n > 0} are ij.d. and mutually inde- 
pendent, and if either An or 50 has a density, then 
{(W»,Ä,,A»),n > 0) never leaves C#, a-s. 

We now combine these conditions to validate IPA 
estimates for (1): 

Lemma 3.1. Suppose (A1)-(A3) hold. Then each 
W-, r. > 0, is a«. Lipschits on [«,»]. If W0 and {U„, 
n > 0} have integrable moduli Kw, and {Ku%, n > 
0), then at every 9 € («,*) for which Wn(9) is inte- 
grable, EflVn(9)Y exists and equals E{Wn{9)]. 

Proof. The Lipschits property is preserved by compo- 
sition, so under (Al) and (A2), Wn is a-s. Lipschits. 
Under (Al) and (A3), Wn is also differentiable, a.»., 
at each 9. Let i*,i and i*,j be moduli for ^ as a func- 
tion of its first and second arguments, respectively, for 
all values of its other argument. (For example, take 
**.» - *«>« - 1,2, the modulus guaranteed by (A2).) 
Simple induction shows that 

\mm\<Kw^kilKW.+Y<kZ'K«,> <«> 

and Kw. is an integrable modulus for (each compo- 
nent of) Wn. Then, by dominated convergence, 

]imh-lE{Wmii(9 + k)-Wn>i(9)) 



exists and equal« E\W^(9)], i = 1,...,d. a 

3.2 Regeneration 

Suppose, now, that for each 9, 

r»-l 

i=0 
(5) 

for some deterministic function u>(). Lemma 3.1 mo- 
tivates «m examination of whether similar conditions 
imply 

n-l 

n-l,£w!(O)^w'(0), a*. (6) 
i=0 

There are two considerations in (6) — whether the 
limit exists and, if it does, whether it equals u/(0). 
Regenerative structure is particularly useful in ad- 
dressing the first question. 

While convergence in (5) is also often based on 
(possibly implicit) regenerative properties, it turns 
out that a somewhat stronger regenerative structure 
is usually needed for the convergence in (6). Indeed, it 
is possible to have all the sequences W(9) - 
{Wn(9),n > 0}, 9 € [a,b] regenerate simultaneously 
infinitely often and yet for {W'Jß),n > 0} to fail to 
be regenerative for all 9, at the following example il- 
lustrates: 

Example 3.1 For i = 1,2, let r«> - {ß\n > 1} 
be the points of two independent, unit-rate Poisson 
processes. The sequence {9ri7\n > 0} is the set of 
points of a rate-(l/0) Poisson process if 9 > 0. Let 
T(9) be the superposition of these points and rW. Let 
X„ be 1 or 2 depending on whether the n-th point of 
r(9) is from r<l> or 9T™. Then 

<(*) ={;: («),   *„ = 2; 

Now let W(9) be the sequence of spacings, Wn(9) = 
rn(9) - rn.i{9), H > 1. For each 9, W(9) is an 
i.i.d. sequence (of exponentially distributed random 
variables with mean 9/(9 + 1)). Thus, the sequences 
{W{9), 9 > 0} trivially regenerate simultaneously be- 
cause each regenerates i.t every n. However, the cor- 
responding derivatives are given by 

K(') = 
WH(9),        Xn.l = 2,Zn=2; 
0, **-i = l,Z,, = l; 
«•(•), X.-x-l.Z. =2; 

The first two cases pose no problem, but all four cases 
occur infinitely often, and the last two show that there 
can be no N for which the distribution of W'N(d) is 
independent N. 

When {W^(0), n > 0} is in fact regenerative, it is 
often because of the structure present in the following 
example: 

Example 3.2. Consider, again, the Lindley recur- 
sion (2). Suppose service requirements and inter ar- 
rival times are each i.i.d. and mutually independent 
of each other. The server works at rate 1/9, with 
0 < 9 < E[Ai]/E[Si\. If the 0-th customer finds the 
queue empty, then Wo(9) = 0 and subsequent waiting 
times obey 

Wn+l(9) = [Wn(9) + 9Sn-An)+. 

It follows that 

K+iV) "10, 
(*) + $,,   dWn(9) + 9Sn>An; 

otherwise, 

with W0(9) s 0. Thus, {W^(9), n > 0} returns to 
zero wheneirer {W„(9),n > 0} does; the state (0,0) is 
recunent for the Markov chain {(Wn(9),W^{9)),n > 
Oh 

The regeneration in Example 3.2 can be ex- 
plained in rough terms as foUows.The process { Wn (6), 
n > 0} returns to sero infinitely often because many 
states are mapped to sero by 4(-,SH,A„), for given 
(Sn.An). In particular, if 4{Wn{9),Sn,An) = 0, then 
the same is true throughout a neighborhood of Wn{9), 
aj. Similarly, Wn+l(9) remains sero under a suf- 
ficiently small change in 9. But if Wn+l{9) = 0 
throughout a neighborhood of 9, then fv^+1(0) = 0. 
Thus, the fact that the waiting times couple from dif- 
ferent initial states forces the derivatives to equal sero 
infinitely often. In this sense, regeneration at sero has 
special significance for derivatives. 

To formalise these ideas, we return to (3). To 
write this recursion more compactly, let Dw# and 
Dm4 be, respectively, dxd and d x / matrices of par- 
tial derivatives of 4 with respect to the corresponding 
arguments. Then (3) simplifies to 

K+iV) =[D.HWMUn{9)))KW 
+ [Dm+(Wn(9),Un(9))]UW).    (7) 

This, in turn, can be re-written as 

K+ie)*Xn(9)Wn(i) + Y.(t), (8) 



where {X„(9), n > 0} are matrices and {Yn(9), n > 0} 
are vectors. 

This representation of the IPA estimates is use- 
ful in establishing regenerative properties. We first 
give a result in the setting of Harris ergodic Markov 
chains, then specialize to classical regeneration. For 
background on Harris chains, see Asmussen (1987). 
Since we consider just one value of 9 at a time, we 
suppress the argument. 

Theorem 3.2. Suppose {{WntUn>U'n),n > 0} is a 
Harris ergodic Markov chain and let (W0, Üa, ÜQ) have 
the invariant distribution of this chain. If 

P(D„4(W0,Uo) = 0)>0, (9) 

then {(Wn,W^,Un,Un)<n > 0} is a Harris ergodic 
Markov chain. 

Proof. That {(Wn,W^,Un,U^), 
n > 0} is Markov follows from (7) and the hypothe- 
sis'that {(Wn,Un,Uk),n > 0} is Markov. Let Xn - 
D*4tWn, Ün) and let Yn = Du*(Wn, Un)U'n. By Har- 
ris ergodicity, {{Wn,U«,UU, 
n > 0} couples with its stationary version at a fi- 
nite time N\, ax Subsequently, (Xn,Yn) coincides 
with (Xn,Yn); i.e., 

K+i = XnK+YH, n>ATx. 

Condition (9) implies that Xs-, — 0 for some finite 
N3>NU a.s. Then Wftt+l s YNt, regardless of W^; 
i.e., the derivatives couple in finite time, for all initial 
states. 

As shown in Glaaserman (1992b), condition (9) 
implies that {W'n, n > 0} has a unique stationary dis- 
tribution, giving a stationary distribution for 
{{Wn,W^Un,U'H),n > 0}. But any Markov chain 
that admit« coupling and ha« a stationary distribu- 
tion is Harris ergodic. o 

Similarly, for classical regeneration we have 

Theorem 3.3. Suppose, now, that {{Un,U'n),n > 
0} are i.i.d., thai {Wm,n > 0} returns to the origin 
infinitely often, a-s, and thai 

With either the Harris ergodicity of Theorem 3.2 
or the classical regeneraiion in Theorem 3.3, we have 
convergence in distribution of {W'n,n > 0} to the 
stationary distribution W'0. If W^ is integrable, then 

n-l 

-•T"? (ii) 
1=0 

converges almost surely, and this is half of what we 
need for (6). 

3.3 Consistency 

Once we have ax convergence of time-averages of 
{Kn(0)>n > 0}, the question of consistency reduces 
to one of interchanging a limit and a derivative. We 
will give two sets of sufficient conditions for this in- 
terchange. 

For (6) to hold, we need conditions on the depen- 
dence of the input« across different values of 9. The 
simplest assumption is 

(A4) {Un,n > 0} are i.i.d. functions on [a,b]. 

Naturally, (A4) implies thai {U'n,n> 0} are also 
i.i.d. functions. More generally, we could require that 
{{Wn,Un,U'n),n > 0} be a Harris ergodic function- 
valued Markov chain. 

Our fat strong consistency result is based on 
the method of Hu (1992). Hu shows that limit and 
derivative can be interchanged under convexity con- 
dition«. 

Theorem 3.4. Suppose the conditions of Theorem 
3.3 hold with (A4) replacing the iS.d. condition given 
there. Suppose thai (Al) holds with "Lipscbitz" re- 
placed by "convex." Suppose further that 4 is in- 
creasing and convex If £[|Wb(0)O < oo for all 9 
and £[1(^(0)1] < oo, then (6) holds at almost every 
*€[o,»]. 

Proof. The composition of an increasing convex func- 
tion with a convex function is convex; thus, every 
W«(-) is ax convex. A convex function on a closed 
interval is Lipschits, hence absolutely continuous, so 
we have 

P(DmH0, Uo) = o, A,*H0, tr*Wi m o) > o.   (io) W»(M = W*M + Jtx *W>*• "- 

Then {{Wn, W'n), n > 0} is regenerative with W = 0 
at the regeneraiion times. 

Proof. If Wn = 0, then with the strictly positive prob- 
ability in (10), Wn+t = 0 and (W„+1. WH^) becoraa 
independent of {(Wk, W'k),k < n). a 

for all n and 9\,9j. Now take time averages of both 
sides and let the time horizon increase to infinity. The 
result is 

£[*(#i)] = £fjfr(#i)] + hm /V1 £*:(#)*. 
""« isO 



By convexity, W'Jfi) < W^(b), a.s. By dominated 
convergence, ve may therefore interchange limit and 
integral to get 

E[W0(97)] = E\Wo(9i)) + / 'E[WM)]d0, 
J*x 

for ail 9lt93. With w(9) = E[W0(9)}, this proves that, 
a.e. on [a, b], w'(0) exists and equals E[W^(9)]. a 

The function max is convex, so Theorem 3.4 can 
be applied to the Lindley recursion and its general- 
izations. 

Our next result drops the convexity requirement 
by putting a stronger condition on the Lipschits prop- 
erty. As in (4), let k+j be a modulus for <j> as a 
function of its second argument for any value of its 
first argument. In the setting of Theorem 3.3, let 
{■Ht.k > 0} be the renewal process of returns to the 
origin. 

Theorem 3.5. Assume the conditions of Theorem 
3.3 and (A4). Suppose (A1)-(A3) hold with integrable 
moduli in (Al). Suppose W0 and WJ are integrable. 
If k4ii < I and sup« E[i\(9) - M9)] < °°> tnen (6) 
holds at almost every 9 € [a, b). 

Proof. Consider, for simplicity, the non-delayed case 
To = 0. If Tj < n < r;+1, then it follows from (4) and 
the fact that W'T. = 0 that 

•at-,+1 

Hence, if k^j < 1, taking expectations we get 
£0ra')l0 < B\TX{9) - r*V)\E[KVll By the last 
hypothesis in the theorem, £[||WJ(tf)l|] » therefore 
bounded uniformly in n and 9. Arguing much as in 
Theorem 3.4 (but taking expectations first), this al- 
lows us to interchange limit and integral to get 

E\Wo(9,)) - £|Wo(»i)l 

= fim f\-^E\Wl{9))4» 

= I   E\Wi(9))<U, 

since the limit of (11) is also the limit of its expec- 
tation. This implies that v>{9) £ E\WQ(8)] is differ- 
entiable at almost every 9, with v/(9) = E\W'(9)\. 
a 

3.4 Remarks on Continuous Time 

Though we have only considered consistency of IPA 
for discrete-time processes, similar techniques are use- 
ful in continuous time. We briefly outline how. 

Let X = {X%, t > 0} have a countable state space 
and suppose X changes state at times {rn,n > 0). 
Suppose X depends on 9. Assuming, say, 

rlJnX.{9))dM-*m(e), (12) 

the question is whether 

%Klj**f(X.m)>t»}-*m'(9),       (13) 

for some {tn,n> 0} increasing to infinity. 
A first step in showing (13) is arguing that 

^ p f(X.(9)) <U = £ fiYnWi+i - ft 
0 »sO 

where Yn is the state just after the n-tb transition. 
Techniques from Section 3.1 are useful here because 
this finite-horison derivative estimator will typically 
be unbiased only if the state-transition times are Lip- 
schits functions of 9. 

For many discrete-event systems, it is possible to 
supplement the system state with the time remaining 
for scheduled events to obtain an augmented process 
{(Y„,C),n > 0} that is Markov. Regeneration of 
this process is useful in establishing (12). To ana- 
lyse IPA estimators, it is convenient to consider a fur- 
ther augmented process {(Y,»,C„, A«),n > 0), where 
A records information about dtnwttvcs of scheduled 
event times. One way for {(Yn,Cn),n > 0} to re- 
generate is for Y to visit a state in which an entirely 
new set of events is scheduled; often, this corresponds 
to a system returning to an empty state. When new 
events are scheduled, new derivatives are generated, 
so {(Y*,Cn,A„),n > 0) also regenerates, and this is 
an important step in verifying (13). As in Section 3.2, 
we see here a connection between a strong form of re- 
generation for the original process and regeneration 
at sero for the derivatives. A detailed treatment of 
the continuous-time setting is given in Glasserman et 
al. (1991). 
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