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Abstract 

Effective reasoning about complex physical systems requires the use of models that 

are adequate lor the task. Constructing such adequate models is often difficult. In 

this dissertation, we address this difficulty by developing efficient techniques for auto- 

matically selecting adequate models of physical systems. We focus on the important 

task of generating parsimonious causal explanations for phenomena of interest. For- 

mally, we propose answers to the following: (a) what is a model and what is the space 

of possible models; (b) what is an adequate model; and (c) how do we find adequate 

models. 

We define a model as a set of model fragments, where a model fragment is a set 

of independent equations that partially describes some physical phenomenon. The 

space of possible models is defined implicitly by the set of applicable model fragments: 

different subsets of this set correspond to different models. An adequate model is 

defined as a simplest model that can explain the phenomenon of interest, and that 

satisfies any domain-independent and domain-dependent constraints on *Ae structure 

and behavior of the physical system. 

We show that, in general, finding an adequate model is intractable (NP-hard). 

We address this intractability, by introducing a set of restrictions, and use these 

restiictions to develop an efficient algorithm for finding adequate models. The most 

significant restriction is that all the approximation relations between model fragments 

are required to be causa/ approximations. In practice this is not a serious restriction 

because most commonly used approximations are causal approximations. 

We also develop a novel order of magnitude reasoning tecHaique, which strikes & 

balance between purely qualitative and purely quantitative methods.  The order of 
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magnitude of a parameter is defined on a logarithmic scale, and a set of rules propagate 

orders of magnitudes through equations. A novel feature of these rules is that they 

effectively handle non-linear simultaneous equations, using linear programming in 

conjunction with backtracking. 

The techniques described in this dissertation have been implemented and have 

been tested on a variety of electromechanical devices. These tests provide empirical 

evidence for the theoretical claims of the dissertation. 
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Chapter 1 

Introduction 

One of the earliest important ideas in Artificial Intelligence is that effective problem 

solving requires the use of adequate models of the domain [Amarel, 1968]. Ade- 

quate models incorporate abstractions and approximations that are well suited to 

the problem solving task. In most Artificial Intelligence research, models are hand- 

crafted by a user. The user must decide what domain phenomena are relevant, and 

must select appropriate abstractions and approximations that adequately describe 

these phenomena. In most real-world domains, constructing such models is a diffi- 

cult, error-prone, and time-consuming task. Automating the construction of adequate 

models overcomes these drawbacks and provides future intelligent programs with a 

useful modeling tool. In this thesis we investigate the problem of selecting adequate 

models in the domain of physical systems. 

1.1    Models and tasks 

Consider, for example, the schematic of a bimetallic strip temperature gauge, from 

[Macaulay, 1988], shown in Figure 1.1. This temperature gauge consists of a battery, a 

wire, a bimetallic strip, a pointer, and a thermistor. A thermistor is a semi-conductor 

device; a small increase in its temperature causes a large decrease in its resistance. A 

bimetallic strip has two strips made of different metals welded together. Temperature 

changes cause the two strips to expand by different amounts, causing the bimetallic 

1 
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S//SSS 

Battery 

Wire 

Thermistor 

Bimetallic 
strip 

Container of water 

Figure 1.1: A temperature gauge 

strip to bend. 

Consider, now, the task of explaining how the temperature gauge works, i.e., how 

the temperature of the thermistor determines the position of the pointer along the 

scale. A trained engineer is able to look at this schematic for a few moments, and 

provide the following explanation: the thermistor senses the water temperature. The 

thermistor's temperature determines the thermistor's resistance, which determine^ 

the current flowing in the circuit. This determines the amount of heat dissipated in 

the wire, which determines the temperature of the bimetallic strip. The temperature 

of the bimetallic strip determines its deflection, which determines the position of the 

pointer along the scale. 

A crucial part of how the engineer constructs the above explanation is his or 

her ability to pick out just the relevant phenomena that needed to be modeled. In 

particular, the engineer decided that the important thing to model about the wire is 

that it generates heat eis current flows through it. The explanation is not cluttered 

by references to irrelevant phenomena, such as the electromagnetic field generated by 

the current flow in the wire. 

Now, consider a slightly different task: the task of explaining how the atmospheric 

temperature affects the working of the temperature gauge, i.e., how the temperature 
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of the atmosphere affects the position of the pointer along the scale. The engineer's 

explanation would be as follows: the temperature of the atmosphere determines the 

temperature of the bimetallic strip, which determines the deflection of the bimetallic 

strip. The amount of the deflection determines the position of the pointer along the 

scale. 

In constructing the above explanation, the engineer completely disregarded the 

electrical properties of the wire, the battery, and the thermistor. Modeling these 

phenomena is not relevant to explaining how the temperature of the atmosphere 

affects the position of the pointer along the scale. 

In addition to being able to decide which phenomena must be modeled, the engi- 

neer is also able to identify just the right models for each relevant phenomena. For 

example, in modeling electrical conduction in the wire, the engineer had to choose 

between modeling it as an ideal conductor, a constant resistance resistor, or a resis- 

tor whose resistance depends on its temperature. The engineer chose the constant 

resistance resistor model because (a) no heat is dissipated by an ideal conductor, and 

hence modeling the wire's resistance is crucial to understanding how the tempera- 

ture gauge works; and (b) modeling the dependence of the wire's resistance on its 

temperature is unnecessary—assuming that the resistance is constant is adequate for 

explaining the temperature gauge's functioning. 

Of course, what is meant by "just the right model" for each relevant phenomena 

is task dependent. For example, consider the following analysis task: predict the 

position of the pointer along the scale for a particular thermistor temperature. If a 

high fidelity prediction is required, i.e., if the pointer's position must be predicted with 

high accuracy, then the engineer would model the dependence of the wire's resistance 

on its temperature. On the other hand, if a lower fidelity prediction is acceptable, the 

engineer would once again use the simpler, constant resistance model for the wire, 

thereby simplifying the prediction process. 

What makes the above modeling decisions particularly intriguing is that there is 

usually a very large space of possible models to choose from. Figure 1.2 shows part 

of the space of possible models of a wire. We can choose to model its electrical, 

electromagnetic, or thermal properties, or we can choose to model its expansion or 
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ideal-conductor 

jf constant-resistor 

resistor ^   > temperature-dependent-resistor 

elasbc-wire        thermal-resistor 

thennally-expanding-wire 

rigid-rola ting-wire 

torsion-spring 

Figure 1.2: The possible models of a wire. 

rotation. If we choose to model it as an electrical conductor, we must choose between 

modeling it as an ideal conductor, or as a resistor, in which case we must choose 

between modeling the resistance as a constant, or as dependent on the temperature. 

In addition, we can choose to model the heat generated in the wire due to current 

flow. 

All the parts of the temperature gauge have a similarly large set of possible models. 

Hence, the set of possible models of the temperature gauge, constructed by selecting 

an appropriate subset of models for each of its parts, is combinatorially large. And 

yet, an engineer, after only a little thought, is able to select an adequate model that 

is specifically tailored for each task. 

1.2    Problem statement 

This thesis is about automating the engineer's ability to select adequate models for 

specific tasks. We cast the problem of selecting adequate models as a search problem. 

To do this, we must answer the following three questions: 

• What is a model, and what is the space of possible models? (What is the search 

space?) 

• What is an adequate model? (What is the goal criterion?) 
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• How do we search the space of possible models for adequate models? (What is 

the search strategy?) 

The thesis proposes answers to each of the above questions in the domain of 

physical systems and for the task of generating parsimonious causal explanations. 

1.3    Proposed solution: An overview 

In this section we give a brief overview of our answers to the questions raised in the 

previous section. The rest of the thesis develops these ideas in detail. 

1.3.1    What is a model and what is the space of possible 

models? 

!n this thesis, we will be concerned with models of the behavior of physical systems. 

Such models are best expressed as a set of algebraic and/or differential equations, 

that describe various phenomena of interest. Hence, a model is a set of equations. 

However, rather than viewing a model as just a set of equations, we will view it as a 

set of model fragments. A model fragment is a set of equations that partially describe 

a single phenomenon, usually a single mechanism. For example, 

{Vw = iR„} 

is a model fragment describing electrical conduction in the wire. Note that it is a 

partial description of electrical conduction, since it does not include any description 

of the variation of the resistance Ru,. Figure 1.3 shows the model fragments, and as- 

sociated equations, in a possible model of the temperature gauge shown in Figure 1.1. 

Model fragments provide an appropriate level of description: (a) they are much easier 

to create than complete models; (b) unlike complete models, they axe significantly 

more reusable; and (c) not all meaningful physical phenomena can be represented by 

a single equation. 

The space of possible models is defined implicitly by the set of model fragments 

that can be composed to form models. The set of model fragments that can be so 
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Linkage(bms,ptr) 
Thermal-bms(bms) 

Heat-flow(bms,atm) 
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Constant-temperatureCatm) 
Thermal-equilibriiiin(bms) 

Thermal-equilibrium(wire) 
Resistor(wire) 

Constant-resistance(wire) 
Thermal-resistance(wire): 

Electrical-thermistor(thermistor): 
Constant-voltage-source(battery): 

Kirchhoff's laws: 
Input: 

Op-. Pointer angle ij: 
R,,,: Wire resistance Rt: 

it'- Thermistor current VJ: 
iw: Wire current Vw: 
iv: Battery current Vv: 

Tb: Bms temperature Ta: 
Tw: Wire temperature Til 
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fw: Heat generated in wire ky. 
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Thermistor voltage 
Wire voltage 
Battery voltage 
Atm temperature 
Thermistor temperature 
Heat flow (wire to bms) 
Exogenous constants 

Figure ] .3: A possible model of the temperature gauge 
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composed is defined by the structure of the physical system. The structure of the 

physical system is a description of the parts of the system, and how they are put 

together. The parts that can be used to describe a system's stnicture are drawn from 

a component library. Each component in this library is associated with a set of model 

fragments, describing different aspects of the component's behavior. For example, tte 

set of model fragments associated with a wire would include those shown in Figure 1.2. 

A model of the physical system is a subset of the model fragments associated with 

each of the components in the system. 

Hence, our answer to the first question is: 

• A model is a set of model fragments. 

• The space of possible models of the physical system are defined by the structure 

of the system and a component library. 

1.3.2    What is an adequate model? 

We define the adequacy of a model using three criteria: (a) the task; (b) domain 

dependent constraints; and (c) simplicity. 

The task 

The adequacy of a model can only be determined with respect to a task. In this 

thesis, we will be concentrating on the task of providing causal explanations for a 

phenomenon of interest. A causal explanation is an explanation in terms of the 

underlying causal mechanisms of the domain. For example, the explanations in the 

previous section were causal explanations. We have chosen this task because of its 

importance in reasoning about physical systems. Weld and de Kleer [Weld and de 

Kleer, 1990, page 612] summarize its importance as follows: 

... humans expect to be provided explanations in causal terms. ... Part 

of the motivation for developing a theory of causality is as a vehicle for a 

system to explain its conclusions. 
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Figure 1.4: Causal ordering of the parameters 

Many qualitative physics researchers have adopted the far stronger posi- 

tion that causality is fundamental and plays a central role in reasoning 

about physical systems. ... Causal explanations are important to engi- 

neers because they are an explicit representation of how a device achieves 

its behavior. This explanation itself forms the basis for subsequent rea- 

soning. In design tasks it is important to reason backward from effects to 

causes to identify what changes to make to a device to better achieve its 

specifications. In diagnosis tasks, it is important to reason backward to 

pinpoint what could have caused the symptoms. The causal explanation 

can guide subsequent quantitative analysis ... 

Hence, given a phenomenon of interest, the fundamental criterion for the ade- 

quacy of a model is whether or not it is able to provide a causal explanation of the 

phenomenon. To check whether or not a model can provide an explanation for a phe- 

nomenon, we generate the causa/ ordering [de Kleer and Brown, 1984; Forbus, 1984; 

Williams, 1984; Iwasaki and Simon, 1986b; Iwasaki, 1988] of the parameters of the 

model using the equations of the model. The causal ordering of the parameters is 

a dependency ordering of the parameters that reflects an engineers notion of causal 

dependence between the parameters. The causal ordering is used to check whether 

or not a model can provide an explanation for a phenomenon. 

For example, suppose we want to explain how the temperature gauge in Figure 1.1 

works, i.e., to explain how the temperature of the thermistor (Tt) causally determines 

the angular position of the pointer {9P). Figure 1.4 shows the causal ordering gen- 

erated from the model in Figure 1.3. Since $p is causally dependent on Tt in this 

causal ordering, the model in Figure 1.3 is adequate for the task of explaining how 
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the temperature gauge in Figure 1.1 works. 

Domain dependent constraints 

In addition to requiring that an adequate model be able to explain the phenomenon 

of interest, an engineer may want it to satisfy a set of domain dependent constraints. 

Such constraints can stem from the structure and the behavior of the physical system. 

For example, the following constraint: 

(implies 

(and (Electromagnet ?object) 

(Wire ?object) 

(coiled-around ?object ?core) 

(magnetic-material ?core)) 

(Magnet ?core)) 

requires that if the electromagnetic field generated by a wire is modeled and the wire 

is coiled around a core made of a magnetic material, then the core must be modeled 

as a magnet. The justification for this domain dependent constraint is that the core 

amplifies the magnetic field by three or four orders of magnitude, converting the core 

into a powerful magnet. Hence, under these circumstances, an engineer would not 

consider the model to be adequate unless the core were modeled as a magnet. More 

generally, an adequate model must satisfy all such domain dependent constraints. 

Simplicity 

Not all explanations of a phenomenon are parsimonious. A parsimonious causal ex- 

planation is a causal explanation with a minimum of irrelevant detail. Irrelevant detail 

is introduced into explanations because either (a) irrelevant phenomena are modeled; 

or (b) needlessly complex models of relevant phenomena are used. For example, we 

could introduce irrelevant detail into an explanation of how the temperature gauge 

in Figure 1.1 works by modeling the electromagnetic field generated by the wire. We 

could also introduce irrelevant detail into this explanation by modeling the tempera- 

ture dependence of the wire's resistance, since approximating the wire's resistance by 
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assuming that it is constant is adequate for explaining how the temperature gauge 

works. 

To minimize the amount of irrelevant detail in an explanation, the model gener- 

ating the explanation must be as simple as possible. The notion of model simplicity 

that supports the generation of parsimonious causal explanations is based on a prim- 

itive approximation relation between model fragments. The intuition underlying our 

definition of model simplicity is that modeling fewer phenomena more approximately 

leads to simpler models. An adequate model is required to be as simple as possible 

according to this ordering. 

Hence, our answer to the second question is: 

• An adequate model 

- is able to provide causal explanations for the phenomenon of interest; 

- satisfies any domain dependent constraints; and 

- is as simple as possible. 

Let us say that a model is a causa/ model, with respect to a phenomenon of interest, 

if and only if it is able to explain the phenomenon and if the domain dependent 

constraints are satisfied. Hence, an adequate model is a minimal causal model, i.e., a 

causal model such that no simpler model is a causal model. 

1.3.3    How do we find adequate models? 

Given the structure of the physical system and a component library, there is an ex- 

ponentially large space of possible models of the physical system. We will show later 

that the problem of finding an adequate model in this space of possible models is 

intractable (NP-hard). Intuitively, this means that, to find an adequate model, we 

can do little better than check each model in the exponentially large space of possible 

models. Even for small systems, this space is extremely large, so any brute force ap- 

proach is out of the question. However, this seems to contradict the observation that 

expert engineers are able to provide parsimonious causal explanations for phenomena 
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Let M be a 
causal model 

Are any 
S! M's simplification^ 

causal models? 

No 

ZM is a minimal   / 
causal model / 

Replace M by one of 
those simplifications 

Figure 1.5: Algorithm for finding a minimal causal model. 

after only a little bit of thought. This means that the world provides additional struc- 

ture, which can be exploited to develop an efficient, polynoiuial time model selection 

algorithm. 

Upward failure property 

One property that is likely to be satisfied in modeling the physical world is the 

upward failure property. The upward failure property states that if a model is not a 

causal model, then no simpler model is a causal model. Intuitively, this seems like 

a reasonable property. After all, if a model is unable to explain the phenomenon of 

interest, then there is little reason to believe that a simpler model is able to provide an 

explanation. If the upward failure property is satisfied, then, given an initial causal 

model, the algorithm shown in Figure 1.5 can be used to efficiently find an adequate 

model, i.e., a minimal causal model. In this algorithm, M is the initial causal model, 

with an immediate simplification of M being produced by either replacing a model 

fragment in M by an immediate approximation, or by dropping a model fragment. 

The algorithm works by continually replacing M by an immediate simplifica,tion that 

is a causal model, until all the immediate simplifications of M are not causal models. 

The upward failure property then tells us that M is a minimal causal model. 
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Causal approximations 

The upward failure property is useful because it leads to a polynomial time algo- 

rithm for finding an adequate model. However, checking whether or not the space of 

possible models satisfies the upward failure property is, in general, difficult. This is 

because the upward failure property is a global property. To address this shortcoming 

we have identified a set of local properties, which can be easily checked as we build 

up the component library, that entail the upward failure property. In particular, we 

have identified an important class of approximations called causal approximations. 

When all the approximations are causal approximations, replacing a model fragment 

by a more accurate model fragment results in a superset of causal relations between 

parameters. This forms the basis for proving the upward failure property, and the use 

of the algorithm shown in Figure 1.5. Causal approximations are particularly useful 

because they are common in modeling the physical world. For example, Table 1.1 

shows a number of commonly used approximations, all of which are causal approxi- 

mations. These approximations are described in greater detail in Appendix A. The 

exact definition of a causal approximation is found in Chapter 5. 

Inertialess objects Inviscid flow Rigid bodies 
Frictionless motion Elastic collisions Ideal gas law 
Zero or constant gravity Ideal heat engines 
Non-relativistic mass and motion No thermal expansion 
Ideal thermal insulators and conductors Constant thermal conductance 
Ideal electrical insulators and conductors Constant resistance and resistivity 

Table 1.1: Examples of causal approximations 

Finding an initial causal model 

The algorithm in Figure 1.5 requires us to find an initial causal model Af, from which 

to start the simplification. A natural choice for this model is the most accurate model 

describing the physical system. However, starting with the most accurate model is 

often undesirable. Hence, we introduce a heuristic method, based on the component 

interaction heuristic, that allows us to find a initial causal model. For example, one 
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component interaction heuristic is the following: 

(implies 

(and (terminals ?object ?terml) 

(voltage-terminal ?tennl) 

(connected-to ?terml ?term2)) 

(voltage-terminal ?term2)) 

which says that if any terminal of a component is modeled as a voltage terminal, 

then all terminals connected to that voltage terminal must also be modeled as voltage 

terminals. This allows the components corresponding to the connected terminals to 

interact by sharing voltages at those terminals. Note that the above constraint does 

not require all connected terminals to be modeled as voltage terminals; it only says 

that if a terminal is a voltage terminal, then terminals connected to it must also be 

voltage terminals. We use such heuristic constraints to build up a causal model, and 

then use the algorithm in Figure 1.5 to find a minimal causal model. 

In summary, the answer to the third question is as follows: 

• When all the approximations are causal approximations, an adequate model 

can be found efficiently by first identifying an initial causal model, and then 

simplifying it. 

1.4    Contributions 

The thesis makes the following important contributions: 

• It introduces a novel criterion for defining model adequacy: the criterion that 

a model must be able to provide a parsimonious causal explanation for a phe- 

nomenon of interest. 

• It presents a clear formalization of the model selection problem, making the 

problem amenable to theoretical analysis. 
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• It uses the above formalization to analyze the complexity of finding adequate 

models, and shows that the problem is intractable. This analysis yields three 

different sources of intractability, which can be summarized as follows: (a) decid- 

ing what phenomena to model; (b) deciding how to model selected phenomena; 

and (c) having to satisfy all the domain dependent constraints. 

• It introduces a new class of approximations, called causal approximations, which 

are commonly found in modeling the physical world. Causal approximations are 

important because they lead to the development of an efficient algorithm for 

finding adequate models. 

• It introduces a novel order of magnitude reasoning method which is used to 

generate the behavior of a physical system. The method strikes a balance 

between purely quantitative and purely qualitative reasoning, and is based on 

defining the order of magnitude of a quantity on a logarithmic scale. This 

makes the method applicable even in the presence of non-linear simultaneous 

equations. 

• It introduces the component interaction heuristic that is useful in finding causal 

models. 

• It describes an implemented representation methodology for representing the 

space of possible models of a physical system. 

• It describes the results of testing our implementation of the model selection 

algorithm on A variety of electromechanical devices. 

1.5    Readers guide 

The rest of the thesis presents the details of our solution to the model selection 

problem. Chapter 2 is a detailed answer to the first of our three questions. It describes 

models and model fragments, and shows how they are represented. Chapter 3 is a 

detailed answer to the second of our three questions. It describes our criteria for the 

adequacy of a model. These two chapters are central to understanding this thesis. 
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Chapter 4 presents a formalization of the model selection problem, and uses this 

formalization to analyze the complexity of finding adequate models. It shows that the 

general problem of finding adequate models in NP-hard, and identifies three different 

sources of intractability. Section 4.1, which presents the formalization, is necessary 

for understanding Chapters 5 and 6. However, readers not interested in the details 

of the proofs of intractability can skip the rest of the chapter. 

Chapter 5 contains some of the main results of this thesis. It introduces the upward 

failure property, and uses the upward failure property to develop an efficient algo- 

rithm for finding an adequate model. It then introduces a number of local properties 

of a knowledge base that ensure that the global upward failure property is satisfied. 

In particulai, this chapter introduces the class of causal approximations, and dis- 

cusses their role in ensuring that the upward failure property is satisfied. Chapter 6 

generalizes the results of Chapter 5 to models involving differential equations. 

Chapter 7 presents the novel order of magnitude reasoning method that we use 

to generate the behavior of the physical system. This behavior is used to evaluate 

some of the domain dependent constraints introduced in chapter 3. This chapter is 

self-contained, and can be read independently of the rest of the thesis. 

Finally, Chapter 8 presents the component interaction heuristic and the imple- 

mented program for model selection. It also reports on our experimental results. 

Related work is discussed in Chapter 9, and conclusions and future work are dis- 

cussed in Chapter 10. 

We conclude this introductory chapter with a brief note on short papers that 

describe different aspects of this thesis. The main results of Chapters 4 and 5 are 

presented in [Nayak, 1992a]. An overview of some aspects of Chapters 2, 3, and 8 is 

presented in [Nayak et ai, 1992]. Finally, much of Chapter 7 is reproduced in [Nayak, 

1992b]. 



Chapter 2 

Models and model fragments 

In this chapter we describe the types of models that we consider in this thesis. Fun- 

damentally, we will be considering models of the behavior of physical systems, that 

are best represented as sets of equations. Section 2.1 discusses the different types of 

equations that can be used in models of physical systems, and Section 2.2 discusses 

the need for multiple models of a single system. The next two sections introduce 

model fragments, and show how model fragments can be used to represent the space 

of possible models of a physical system. The final section of this chapter discusses 

the actual representational mechanisms that we use to implement these ideas. In 

particular, we introduce a class level description of components and model fragments, 

and show how these classes are organized. 

2.1    Models of the behavior of physical systems 

In this thesis we will be concerned with models of the behavior of physical systems, 

typically of engineered devices. (In the rest of the thesis we will use "device" as a 

synonym for "physical system.") Models of device behavior are best represented as a 

set of equations that relate a set of parameters. 

16 
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2.1.1 Parameters 

A parameter is a numerical attribute representing a physical property of the device, 

e.g., temperature of an object, voltage drop across an electrical conductor, magnetic 

field in a region. Parameters are usually functions of both time and space, e.g., the 

temperature of an object can vary with time and with location within the object. 

It is common to disregard the dependence of parameter values on space and/or 

time. A lumped parameter model disregards the dependence of parameter values on 

spatial location. Such models make the assumption that the variation of parameter 

values over a specific region of space is negligible, with the primary variation being as 

a function of time. For example, we may choose to model the temperature of an object 

as a lumped parameter, i.e., assume that the temperature is uniform throughout the 

object, though the temperature may still vary with time. 

An tquilibrium model disregards the dependence of parameter values on time. 

Such models are useful for modeling the asymptotic behavior of devices, i.e., device 

behavior after a sufficiently long time has elapsed, so that any transient behavior has 

died out. For example, consider a wall separating a heated room from the cold air 

outside. An equilibrium model can be used to model the eventual temperature profile 

in the wall. 

2.1.2 Equations 

Equations are relations between parameters. Different types of equations are used to 

represent different types of models. The most general types of equations are partial 

differential equations. Partial differential equations can model the variation of pa- 

rameter values over both time and space. For example, the well known Navier-Stokes 

equation [Welty et a/., 1984] is a partial differential equation that describes fluid flow 

as a function of both time and space. 

Ordinary differential equations can model the variation of parameter values only 

as a function of a single independent variable, such as time. Hence, ordinary differen- 

tial equations are used to represent lumped parameter device models. For example, 

Hooke's law [Halliday and Resnick, 1978] is an ordinary differential equation that 
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describes the behavior of a simple harmonic oscillator like a spring-block system. 

Algebraic equations do not contain any partial or total derivatives. Hence, they 

can be used to represent equilibrium, lumped parameter device models. For exam- 

ple, Ohm's law [Halliday and Resnick, 1978] is an algebraic equation describing the 

relationship between current flow through a resistor and the voltage drop across the 

resistor. 

Another widely used type of equation is the qualitative equation [Bobrow, 1984; 

Kuipers, 1986]. Qualitative equations do not relate the exact numerical values of pa- 

rameters. Instead, they represent functional dependencies and monotonicity relations 

between parameters. For example, if we do not know the exact functional form of the 

relation between the resistance of a wire and its temperature, we could use a qual- 

itative equation to express the fact that the resistance functionally depends on the 

temperature, and that increasing the temperature results in an increase in resistance. 

In this thesis, we will only consider lumped parameter models. However, we will 

consider both time-varying models, as well as equilibrium models. Hence, we have 

the following: 

• A device model is a set of algebraic, qualitative, and/or ordinary differential 

equations, relating a set of parameters. 

Figure 2.1 reproduces the temperature gauge introduced in the previous chapter. 

Figure 2.2 shows a set of equations that describe this temperature gauge. This set 

of equations represents an equilibrium model of the temperature gauge, since no 

differential equations are used. The equation exogenous{Q) represents the fact that 

the value of Q is determined exogenously; it can be viewed as a shorthand for the 

equation Q = c, for some constant c. The equation M-{QUQ2) is a qualitative 

equation representing the functional dependence of Qi on Q2, and the fact that if #2 

increases then Qi decreases [Kuipers, 1986]. 

2.2    Multiple models 

Any device can be modeled in many different ways, i.e., it can be described by different 

sets of equations.  Different device models differ because they give different answers 
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s/ssss 

Bimetallic 
strip 

Container of water 

Figure 2.1: A temperature gauge 

to the following two fundamental questions: 

• Whai must be modeled? Different models can diifer because they choose to 

model different physical phenomena. For example, the physical phenomena 

modeled in Figure 2.2 include the heat generated due to current flow in the wire, 

but not the electromagnetic field generated by the same current flow. Models 

can also differ because they choose different granularities, i.e., they choose a 

different set of objects to model. For example, the model in Figure 2.2 chose 

a granularity that includes the bimetallic strip as a single object. A different 

model might have chosen a different granularity, such as one that separately 

modeled the two strips of the bimetallic strip. 

• How must the chosen things be modeled? Even though models may choose to 

model the same phenomena at the same level of granularity, they may differ 

based on the specific models they choose. For example, the model in Figure 2.2 

models electrical conduction in the wire as a constant resistance resistor. How- 

ever, other models could have chosen to use different models of electrical con- 

duction, e.g., by modeling the the wire as an ideal conductor, or as a resistor 

whose resistance depends on its temperature. Similarly, the model in Figure 2.2 
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0P = kiXb 

/6a = k3{Tb - Ta) 
fwb — «4(7tü ~ Tb) 
exogenous^a) 

Jba = Jwb 

Jwb = Jw 

exogenous{Rw) 

Vt = itRt 

M-iRt,Tt) 
exogenous{Vv) 
vv = vw + vt 
ly  =::  it 

it = iw 
exogtnous{Tt) 

6P: Pointer angle zfr: 
Ru,: Wire resistance Rt: 

Thermistor current 1^: 
Wire current K 
Battery current 

Tj: Bms temperature 
Tw: Wire temperature 
fba' Heat flow (bms to atm) 
fw: Heat generated in wire 

it: 

iv: 
'w 

vv 
Ta 

Tt 
Jwb 

Bms deflection 
Thermistor resistance 
Thermistor voltage 
Wire voltage 
Battery voltage 
Atm temperature 
Thermistor temperature 
Heat flow (wire to bms) 
Exogenous constants 

Figure 2.2: A set of equations describing the temperature gauge 
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uses an equilibrium model for the temperature of the wire, while other mod- 

els might choose to use a differential equation model to model the transient 

behavior of the wire's temperature. 

2.3    Model fragments 

Since a device can be modeled in a variety of different ways, it is important that we 

be able to represent the space of possible models of the device. We represent this 

space using model fragments. 

2.3.1    What is a model fragment? 

A model fragment is a set of independent equations that partially describe some 

physical phenomena at some level of granularity. Different model fragments can 

describe different phenomena, or can be different descriptions of the same phenomena. 

For example, Figure 2.3 shows a model fragment that describes electrical conduction 

in a wire by modeling the wire as a resistor. Figure 2.4 shows a different model 

fragment that describes the same phenomena for the wire by modeling the wire as 

an ideal conductor. Finally, Figure 2.5 shows a model fragment that describes the 

temperature dependence of the wire's length, a completely different phenomena. 

In general, model fragments are only partial descriptions of phenomena. For 

example, the model fragment in Figure 2.3 only specifies the relation between the 

voltage {Vw) and the current {iw); it does not say anything about the variation of the 

resistance of the wire. Additional model fragments describing the resistor's resistance 

are necessary to complete this description. 

Model fragments can be viewed as either component model instances [de Kleer 

and Brown, 1984; Williams, 1984], or process instances [Forbus, 1984]. Component 

model instances and process instances usually have applicability conditions (e.g., op- 

erating conditions [de Kleer and Brown, 1084; Williams, 1984] or quantity condi- 

tions [Forbus, 1984]), that determine when the equations can be used. There are 

well developed techniques for handling such applicability conditions [Forbus, 1990; 
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Figure 2.3: Model fragment describing a wire as a resistor. 

{Vw = 0} 

Figure 2.4: Model fragment describing a wire as an ideal conductor. 

{L = lufiil  {-ctw{Tw - Tvo))} 

Figure 2.5: Model fragment describing the temperature dependence of the wire's 
length. 

Crawford et al., 1990; Iwasaki and Low, 1991]. Hence, in this thesis, rather than 

explicitly modeling and reasoning about these applicability conditions, we assume 

that the only model fragments under consideration are the ones whose applicability 

conditions are satisfied. 

2.3.2    Advantages of model fragments 

A device model is constructed by composing a set of model fragments, i.e., rather 

than viewing a model just as a set of equations, it is much more useful to think of it 

as a set of model fragments. Hence, we have the following alternative definition of a 

model: 

• A model is a set of model fragments that describe some set of phenomena at 

some level of detail. 

This viewpoint has a number of advantages. First, because model fragments are 

partial descriptions of a single phenomena, they usually consist of a small number of 

equations. Hence, constructing a library of model fragments is relatively easy. On the 

other hand, device models usually consist of a large number of equations, sometimes 

as many as hundreds of equations, because they are complete descriptions of a number 
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of phenomena. Hence, constructing a model is much more difficult than constructing 

a model fragment. 

Second, a set of model fragments is an implicit representation of a very large set 

of models. This is because any subset of this set of model fragments can be composed 

to form a model.1 Hence, a set of model fragments is an implicit representation of 

an exponentially large set of models. Alternate representations of this large space 

of models, by explicitly representing each model, are unrealistic. To put it another 

way, explicitly representing the space of possible models restricts us to representing 

a much smaller set of models. 

Third, model fragments are reusable, not just in different models of the same 

device, but in different models of different devices. For example, the model fragments 

shown in Figure 2.3-2.5 can be reused, not only in a number of different models of 

the temperature gauge shown in Figure 2.1, but also in models of other devices that 

use wires. This means that the effort of constructing a library of model fragments 

can be amortized over their use in a variety of different models. 

2.3.3    Composing model fragments 

The equations of a device model are created by composing the equations of the model 

fragments used to construct the model. In most cases, the composition is a straight- 

forward union of the equations in the model fragments. However, because model 

fragments are partial descriptions of phenomena, there is a need to have special types 

of expressions that provide only partial information about equations. Such partial 

descriptions have associated with them a set of composition rules that are used to 

combine different partial descriptions to create a complete equation in the model. 

Consider, for example, a bathtub partially filled with water. Suppose that a tap 

has been turned on to fill up the bathtub. Simultaneously, suppose that the drain 

plug in the bathtub has been opened to try and empty the bathtub. The net effect 

of these two water flows (i.e., from the tap into the bathtub, and out of the bathtub 

'As we shall see later, not every subset of model fragments can be viewed as a model, but the 
basic observation still holds. 
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through the drain) can be described by the equation: 

dVtub 

dt Jtap       /dram 

where VM, is the volume of water in the tub, ftap is the rate at which water enters 

the tub through the tap, and fdrain is the rate at which water leaves the tub through 

the drain. For maximum flexibility, it is useful to describe the two water flows using 

separate model fragments. What might the equations of these model fragments be? 

Intuitively, the model fragment describing the tap water flow must say that the water 

flowing through the tap tends to increase the volume of water in the bathtub. Sim- 

ilarly, the model fragment describing the drain water flow must say ^hat the water 

flowing out of the drain tends to decrease the volume of water in the bathtub. 

We can express this using the /+ and /- operators introduced by Forbus [Forbus, 

1984]. I+{qi,q2) says that 92 is a positive influence on qi, while /—(ft,ft) says that 

92 is a negative influence on ft. Given a set of influences on a parameter q, we use 

the closed world assumption that these are the only influences on q to construct an 

equation. For example, the model fragment describing the tap water flow would have 

the equation I+{Vtub,ftap), and the model fragment describing the drain water flow 

would have the equation I-{Vtub, fdrain) Combining these two model fragments, and 

assuming that these are the only influences on VJUO, we get the equation 

dVtub _ , , 
1.      — Jtap      J drain 

The use of composable operators like /+ and /— are crucial to our use of model 

fragments as partial descriptions of phenomena. Table 2.1 shows the composable 

operators that we use. Brief descriptions have been included in this table, and more 

detailed descriptions are provided in Appendix C. 

2.3.4    Relations between model fragments 

We now turn to a discussion of some important relations between model fragments: 

contradictory and approximation. We also introduce assumption classes, and the 

required assumption classes of a model fragment. 



2.3.   MODEL FRAGMENTS 25 

/+ Positive influence on derivatives 
I- Negative influence on derivatives 

sum-term Term in a sum 
sum-to-zero Quantities that add up to zero 

(Used for Kirchhoff's current law) 
same-value Quantities are equal 

(Used for Kirchhoff's voltage law) 
same-reference Quantities have a common reference (potential) 

(Used for Kirchhoff's voltage law) 
same-circuit Flows belong to the same circuit 

(Used for Kirchhoff's current law) 

Table 2.1: Composable operators 

The contradictory relation 

As mentioned earlier, different model fragments can be descriptions of different phe- 

nomena, or can be different descriptions of the same phenomena. When model frag- 

ments describe the same phenomena, they often make contradictory assumptions 

about the domain. For example Figure 2.6 shows three different model fragments 

describing electrical conduction in a wire, which make contradictory assumptions. In 

particular, the ideal conductor model fragment assumes that the resistance of the con- 

ductor i? zero, the ideal insulator model fragment assumes that the resistance of the 

conductor is infinite, while the resistor model fragment assumes that the resistance 

of the conductor is non-zero and finite. 

Ideal-conductor(wire-l) 

Ideal-insulator(wire-1) 

Resistor(wire-l) 

Vw=0 
iw = 0 

Figure 2.6: Model fragments describing electrical conduction in a wire. 

We represent the fact that model fragments make contradictory assumptions about 

the domain using the contradictory relation. If mi and m^ are model fragments, then 

contradictory {mi, m2) says that m-i and m2 make contradictory assumptions about 

the domain.  It is important to note that the contradictory relation is a primitive. 
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domain-dependent relation which cannot, in general, be derived from the equations of 

the model fragments. For example, there is nothing intrinsically contradictory about 

the equations of the ideal conductor model fragment and the ideal insulator model 

fragment, i.e., it is certainly possible that both the current through a conductor and 

the voltage drop across the conductor is zero. The contradiction between them is a 

domain fact. However, we assume that the contradictory relation is irreflexive (so 

that model fragments cannot contradict themselves), and symmetric (so that model 

fragments can only be mutually contradictory): 

-^contradictory^!,7ni) (2.1) 

contradictory{mi,m2) =$■ contradictory {m2, mi) (2.2) 

The approximation relation 

As discussed above, when two model fragments describe the same phenomenon, they 

often make contradictory assumptions about the domain. In addition to specifying 

that model fragments contradict each other, an engineer may be able to specify that 

one model fragment is a more approximate description of the phenomenon than the 

other. This means that the predictions made by the more accurate model fragment 

are "closer to reality" than the predictions made by the more approximate model 

fragment. We represent such knowledge using the approximation relation between 

model fragments. In particular, approa:ima<ion(mi,m2) says that the model fragment 

:n2 is a more approximate description of some phenomena than the model fragment 

mi. For example. Figure 2.7 shows some of the approximation relations between the 

model fragments shown in Figure 2.6. 

approa:imahon(Resistor(wire-l),Ideal-conductor(wire-l)) 
ap/)roiir7?a<ion(Resistor(wire-l),Ide'»l-insulator(wire-l)) 

Figure 2.7: Approximation relation between the electrical conduction model frag- 
ments. 

Once again, it is important to note that the approximation relation is a primitive, 

domain-dependent relation, and this relation cannot, in general, be derived from the 

equations of the model fragments. For example, there is nothing about the equations 
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of the ideal conductor model fragment that tells us that it is necessarily a more ap- 

proximate description of electrical conduction than the resistor model fragment; this 

just happens to be a domain fact discovered by scientists and engineers. However, we 

require that the approximation relation be irreflexive, anti-symmetric, and transitive 

(so that model fragments are not approximations of themselves, and approximation 

forms a partial ordering on the relative accuracy of the model fragments describing a 

phenomena): 

-*approximation{mi,mi) (2.3) 

approximation{mi,m2) =*■ -< approximation {m2, mi) (2.4) 

approximation{mi,m2) A  approximation{m2,mz) =» approximation{mi,mT,\2.b) 

Furthermore, since approximations make different, and hence contradictory, predic- 

tions ab nit the same phenomenon, we require that all approximations are also mu- 

tually contradictory: 

approximation{mi,m2) =» contradictory{mi, 1712) (2.6) 

Assumption classes 

An assumption class is a set of model fragments that make different, contradictory 

assumptions about the domain. This means that an assumption class is a set of 

mutually contradictory model fragments, i.e., if mi and m2 are model fragments, and 

A is an assumption class, we have: 

{mi,m2€ A) A mi ^ 1712 =$■ contradictory {mi, 1712) (2.7) 

One can see that the model fragments in Figure 2.6 form an assumption class describ- 

ing electrical conduction in the wire. Figure 2.8 shows two model fragments forming 

an assumption class describing the resistance of a wire. 

Recall that model fragments are partial descriptions of phenomena. Additional 

model fragments are required to complete this description. We represent the set of 

model fragments that can be used to complete a description by associating with each 

model fragment a set of required assumption classes. Let A be an assumption class 
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Constant-resistance(wire-1):   exogenouslRy,) 
Temperature-dependent-res ist ance (wire-1):   Rw = /^(l + OwiTw - 7^)) 

exogenous{Rwo) 
exogenous{aw) 
exogenouslTvo) 

Figure 2.8: Model fragments describing a wire's resistance. 

required by model fragment m (written requirts{m, A)). This means that to complete 

the description of the phenomena described by m, we must include a model fragment 

from the assumption class A. For example, to complete the description of electrical 

conduction described by the resistor model fragment, we require a description of the 

resistance, i.e., the Resistor(wire-l) model fragment requires a model fragment 

from the assumption class shown in Figure 2.8. 

2.4     Space of possible models 

In the previous section, we have argued that a set of applicable model fragments form 

a compact representation of a very large space of possible models. In this section we 

discuss the following issue: given a device description, how do we decide which model 

fragments are applicable. Our answer to this issue can be summarized as follows: 

• The set of applicable model fragments is the union of the model fragments 

associated with the components of the device. 

We now discuss this in detail. 

2.4.1    Device structure 

The structure of a device is a description of the device which specifies the compo- 

nents, or parts, of the device, physical properties of these components, and how these 

components are put together to form the device. 

The components that can be used to describe the structure of a device are drawn 

from a library of component types. For example, to define the structure of the tem- 

perature gauge shown in Figure 2.1, the component library must contain component 
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types like thermistor, wire, battery, bimetallic-^trip, and pointer. 

Components are put together to form a device description with the use of struc- 

tural relations. These relations are drawn from a library of structural relations, and 

include relations such as connected-to (indicating that two component terminals are 

connected), coiled-around (indicating that a wire is coiled around a component), 

and meshed (indicating that a pair of gears mesh with each other). Figure 2.9 shows 

a structural description of the temperature gauge in Figure 2.1. 

2.4.2    Structural abstractions 

The structure of a device specifies the basic set of components in the device. This 

basic set of components can be augmented by recognizing structural abstractions. 

Structural abstractions are components that represent a set of other components in 

specific structural configurations. For example, components of the Coil-structure 

component type represent objects corresponding to a wire coiled around another 

object. 

The component library contains rules that can be used to recognize instances of 

a structural abstraction in the structural description of a device. For example, the 

following rule is used to recognize Coil-structures: 

(implies 

(and (Wire ?object) 

(coiled-around ?object ?core)) 

(exists 

?struc Coil-structure 

(and (coil-structure-wire ?struc ?object) 

(coil-structure-core ?struc ?core)))) 

Therefore, the set of all components of a device consist of the union of the set of 

basic components specified in the structural description, and the set of all structural 

abstractions that can be recognized using the rules in the component libraxy. For 

example, applying the above rule to the device structure shown in Figure 2.9, we see 
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(defdevice bimetallic-strip-temperature-gauge 
((?V Battery) 
(?T Thermistor)  (?W Wire) 
(?B Bimetallic-strip) 
(?P Pointer) 
(?L Linkage) 
(?ATM Atmosphere) 
(?A1 Axis) 
(?A2 Axis)) 

(connected-to (battery-terminal-one ?V) 
(wire-terminal-one ?W)) 

(connected-to (battery-terminal-two ?V) 
(thermistor-terminal-one ?T)) 

(connected-to (thermistor-terminal-two ?T) 
(wire-terminal-two ?W)) 

(connected-to (bms-terminal-two ?b) 
(linkage-terminal-one ?L)) 

(connected-to (pointer-terminal-two ?P) 
(linkage-terminal-one ?L)) 

(coiled-around ?W ?B) 
(immersed-in ?B ?ATM) 
(immersed-in ?P ?ATM) 
(immersed-in ?V ?ATM) 
(immersed-in ?L ?ATM) 
(fixed-object (bms-terminal-one ?B)) 
(can-rotate ?P ?A2) 
(bms-deformation-axis ?B ?A1)) 

Figure 2.9: Structural description of the temperature gauge. 
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that an instance of the Coil-stncture is recognized, corresponding to the wire, ?W, 

being coiled around the bimetallic strip, ?B. 

2.4.3    Possible models of a component 

The space of model fragments that can be used to construct a device model is defined 

by associating with each component of the device, whether a basic component or a 

structural abstraction, a set of model fragments that can be used to describe that 

component. For example, we could associate with a wire, wire-1, the following model 

fragment describing electrical conduction in the wire: 

As discussed earlier, model fragments can be viewed either as "component models" [de 

Kleer and Brown, 1984; Williams, 1984] or "process models" [Forbus, 1984]. Hence, a 

model fragment associated with a component is a partial description of some physical 

phenomena, including som? physical process, occurring in that component. It is worth 

noting that model fragments associated with structural abstractions can be used to 

represent physical processes that take place over more than one basic component. 

For example, if csl is a structural abstraction representing the wire coiled around 

the bimetallic strip, then we could associate with it the following model fragment, 

describing heat flow from the wire to the bimetallic strip: 

{fcsl — IcsliTwi —Tbi)} 

where fcsi is the heat flow, 7cal is the thermal conductance, Twi is the temperature 

of the wire, and TM is the temperature of the bimetallic strip. 

In summary, the space of possible models of a device is represented implicitly by 

the set of applicable model fragments that can be composed to form models of the 

device. The set of applicable model fragments is the union of the model fragments 

associated with each of the components of the device. In the next section we discuss 

our representation of the space of model fragments that can be used to describe a 

component. 
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2.5    Model fragment classes 

Thus far we have been talking about components and model fragments as instance 

level descriptions, i.e., a component is a specific component used in a specific device, 

and a model fragment is the specific set of equations describing some physical phe- 

nomenon in a specific component. However, building a library of components and 

model fragments requires that we provide class level descriptions, i.e., descriptions of 

classes of components and model fragments that can be instantiated to create struc- 

tural descriptions and models for a variety of devices. To this end, we have devised 

an implemented language for specifying class level descriptions of components and 

model fragments. We now describe this language, and show how we represent the 

information described above. 

2.5.1 What are component and model fragment classes? 

Component and model fragment classes are just classes, where a class is viewed as 

a set of instances. Component classes are class level descriptions of components: 

components are just instances of the corresponding component classes. Model frag- 

ment classes are class level descriptions of phenomena. A component is modeled by 

a particular model fragment class by making the component an instance of the class. 

Following [Hayes, 1979], classes can be viewed as unary predicates that are true 

of their instances. Functions and higher arity predicates !>re implemented as slots on 

instances. For example, if s is a binary predicate, and u and v aie instances, then the 

literal s(u,v) is represented by placing the instance v on the s slot of the instance u. 

Component and model fragment classes inherit various properties to their in- 

stances. The most important property that a model fragment class inherits to its 

instances is the equations describing the phenomena. These inherited equations form 

the model fragment describing the physical phenomena for that instance. 

2.5.2 Typographic conventions 

A few notes on typographic conventions. 
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• Names of components, model fragments, component classes, and model frag- 

ment classes will be typeset in typewriter font. 

• Class names begin with an uppercase letter, while slot names and instance 

names begin with a lower case letter. 

• If M is a model fragment class, and c is a component, then M(c) denotes the 

model fragment resulting from modeling c as an instance of M. M(c) will also 

be used to represent the ground literal expressing the fact that c is an instance 

of M. It will always be clear from the context whether M(c) represents a model 

fragment or a literal. 

• Instances of component classes will often have names formed by concatenating 

the name of the component class with a number. 

• Variables names will start with the "?" character. The variable "?object" 

used in class definitions is bound to the class instance under consideration. 

To illustrate some of the above conventions, let Wire be a component class repre- 

senting the set of all wires, and let Resistor be a model fragment class representing 

the set of all resistors. Let wire-1 be an instance of Wire. To model wire-1 as a 

resistor, we would make it an instance of Resistor, with the corresponding model 

fragment being Resistor(wire-l). Note that, since wire-1 is now an instance of 

both Wire and Resistor, the literals Wire(wire-l) and Resistor(wire-l) are both 

true. 

2.5.3    Defining component and model fragment classes 

Component and model fragment classes are defined using the def model macro. Fig- 

ure 2.10 shows the definition of the Resistor model fragment class. We now discuss 

various parts of this definition. 
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(defmodel Resistor (Electrical-conductor) 
((attributes 

(resistance 
:range Resistance-parameter 
:documentation "The resistor's resistance")) 

(equations 
(=  (voltage-difference ?object) 

C* (resistance ?object) 
(current (electrical-terrainal-enc Tob-iect))))) 

(assumption-class electrical-conductor-r.lass) 
(approximations Ideal-conductor) 
(required-assumption-classes resistance-class) 
(possible-models Constant-resistance 

Temperature-dependent-resistance))) 

Figure 2.10: The Rtsistor model fragment class. 

Generalization hierarchy 

Component and model fragment classes air organized into a gener^izatiou hierarchy, 

representing the "subset-of" relation between classes. The use of a ^xieralization hier- 

archy, in conjunction with inheritance, is a very powerful tool for building knowledge 

bases because it facilitates reuse and knowledge base maintenana (a) knowledge 

represented with a class can be used, not just by direct instances Ä the class, but 

also by instances of many different classes that are subclasses (specializations) of the 

class; and (b) since knowledge needs to be represented only with the most general 

class to which the kncwledge is applicable, knowledge base maintenance is facilitated 

since most changes tend to be localized. 

The second argument to the defmodel macro specifies the list of classes that are 

immediate generalizations of the defined class. Hence, the Electrical-conductor 

class is an immediate generalization of the Resistor class. Logically this is equivalent 

to the following axiom: 

Resistor(?object) => Electrical-conductor(?object) 

From the point of view of model fragments used in a model, this mear   that any 
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model that includes the model fragment Resistor(?object), also includes the model 

fragment Electrical-conductor(?object). 

Parameters and other attributes 

Parameters are represented as instances of a subclass of the Parameter class. For 

example, parameters representing voltages are instances of the Voltage-parameter 

class, while parameters representing resistances are instances of the Resistance-pa- 

rameter class. Both Voltage-parameter and Resistance-parameter are subclasses 

of Parameter. 

Recall that parameters represent numerical attributes of a device, in particular, of 

components. The relationship between a component and a parameter that represents 

a particular attribute of the component is represented by unary functions, called 

parameter functions. For example voltage-difference is a parameter function that 

returns the instance of Voltage-parameter which represents the voltage difference 

across a component being modeled as an Electrical-conductor. 

The attributes clause in the definitions of model fragment classes defines the 

parameter functions that can be used on components being modeled by that model 

fragment class. The definition of the parameter function includes a : range specifica- 

tion, which is the class of the parameter returned by the function. For example, the 

Resistor model fragment class defines the resistance parameter function, whicn 

returns an instance of Resistance-parameter representing the resistance of compo- 

nents being modeled as Resistors. 

The attributes clause is also us' ( to define functions that return other at- 

tributes of components. For example, two important attributes of an electrical 

conductor are the two terminals of the conductor. (Conceptually, terminals are 

parts of the component that allow the component to interact with other compo- 

nents by sharing parameters [de Kleer and Brown, 1984].) Figure 2.11 shows the 

definition of the Two-tenninal-electrical-component model fragment class. The 

attributes clause in this definition defines the functions electrical-terminal-one 

and electrical-terminal-two, which return the two Electrical-terminalsof the 

electrical component. 
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(defmodel Two-terminal-electrical-component (Model-fragment) 
((attributes 

(electrical-terminal-one 
:range Electrical-terminal 
documentation "One end of the        utrical component") 

(electrical-terminal-two 
:range Electrical-terminal 
:documentation "The other end of the electrical component")) 

(equations 
(=  (current (electrical-terminal-one ?object)) 

(current (electrical-terminal-two ?object))) 
(same-circuit (current (electrical-terminal-one ?object)) 

(current (electrical-terminal-two ?object))) 
(same-reference (voltage (electrical-terminal-one ?object)) 

(voltage (electrical-terminal-two ?object)))))) 

Figure 2.11: The Two-terminal-electrical-component model fragment class. 

The attributes that a component inherits from a model fragment class are often 

related to attributes that it inherits from a component class. For example, in mod- 

eling a wire as an electrical conductor between its two ends, the two terminals of 

the electrical conductor correspond to the two ends of the wire. We enforce such 

relationships using a set of rules, which are similar to articulation axioms in [Hobbs, 

1985J. 

Equations 

The equations that a model fragment class inherits to its instances axe defined using 

the equations clause. These equations are defined using equation Schemas. Equation 

schemas are exactly like equations, except that parameters are replaced by terms like 

(resistance ?object). To instantiate such equation schemas for specific instances 

of the model fragment class, the variable a?object" is bound to the instance, and the 

terms are replaced by the parameter resulting from evaluating the term. For exam- 

ple, if resistance (wire-1) = resistance-parameter-1, then evaluating the term 

(resistance ?object) for the instance wire-1 results in resistance-parameter-1 
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Hence, if wire-1 is modeled as a Resistor, then wire-1 inherits the equation: 

(= voltage-parameter-l (* resistance-parameter-l current-parameter-l)) 

Assumption classes 

The assiunption-class clause in a model fragment class specifies the assumption 

class of the model fragments which are instances of the model fragment class. More 

precisely, let c be a component and let Ml and M2 be model fragment classes. The 

model fragments Ml (c) and M2(c) are in the same assumption class if and only if the 

assiunpt ion-class clause in both Ml and M2 specify the same assumption class. Let 

both Ml and M2 specify A in their assumption-class clause. We let the expression 

A(c) denote the assumption class of the model fragments Ml(c) and M2(c).2 Fur- 

thermore, we will sometimes say "the assumption class of Ml is A," meaning that for 

any component c, the model fragment Ml(c) is in assumption class A(c). 

For example, we can see that the assumption-class clause in Resistor's defini- 

tion specifies electrical-conductor-class. Suppose that the assumption-class 

clause in Ideal-conductor's definition also specifies electrical-conductor-class. 

This means that for a component such as wire-1, the model fragments Resis- 

tor(wire-l) and Ideal-conductor (wire-1) are in the assumption class electri- 

cal-conductor-class (wire-1). 

Approximations 

The approximations clause in a model fragment class specifies the model fragments 

that are approximations of instances of that class. More precisely, let c be a compo- 

nent and let Ml and M2 be model fragment classes. The model fragment M2(c) is an 

approximation of the model fragment Ml (c) if and only if the approximations clause 

in Ml specifies M2. For example, we can see that the approximations clause of the 

2This is a slight abuse of notation. While it is similar to our convention that Ml(c) denotes the 
model fragment resulting from modeling the component c as an instance of the Ml model fragment 
class, it certainly does not mean that A is a unary predicate so that A(c) is a literal meaning that c 
is an instance of A. To prevent any confusion, we will always refer to A(c) as "the assumption class 
A(c)." 
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Resistor model fragment class specifies Ideal-conductor. This means that for a 

component such as wire-1, the model fragment Ideal-conductor (wire-1) is an ap- 

proximation of the model fragment Resistor (wire-1). To relate this to terminology 

introduced in a previous section, we have: 

approximahon(Resistor (wire-1), Ideal-conductor (wire-1)) 

Similarly, the contradictory clause in a model fragment class specifies the model 

fragments that contradict the instances of that class. Figure 2.10 does not show a 

contradictory clause because the contradiction between Resistor and Ideal-con- 

ductor can be inferred from the approximations clause. 

Required assumption classes 

The required-assumption-classes clause in a model fragment class specifies all 

the assumption classes that are required to complete the description of model frag- 

ments that are instances of that model fragment class. More precisely, suppose that 

c is a component and M is a model fragment class. Suppose that M specifies A as a 

required-assumption-class. This means that, to complete the description spec- 

ified by the model fragment M(c), we must include a model fragment from the as- 

sumption class A(c). For example, the required-assumption-classes clause of 

the Resistor model fragment class specifies resistance-class. This means that 

for a component such as wire-1, the description specified by the model fragment 

Resistor (wire-1) must be completed by including a model fragment from the as- 

sumption class resistance-class(wire-l), i.e., by including either Constant-re- 

si stance (wire-1) or Temperature-dependent-resistance(wire-l). To relate it 

to terminology introduced earlier, we have: 

re9mre5(Resistor (wire-1), resistance-class (wire-1)) 

Possible models 

Recall that the space of device models was defined by the set of model fragments 

that can be used to describe the device. This set of model fragments was the union 
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of the model fragments that can be used to describe the components of the device. 

This means that we need a representation of the set of model fragments that can be 

used to model a component. A straightforward way to represent this set of model 

fragments is to associate with each component class the set of model fragment classes 

which can be used to model instances of that component class. 

For example, some of the model fragment classes we could associate with the 

Wire component class would include Ideal-conductor, Constant-resistance, and 

Temperature-dependent-resistance. This would represent the fact that any in- 

stance of Wire can be modeled as an instance of the associated model fragment 

classes. 

While the above approach is, in principle, correct, a much better approach is to use 

a possible models hierarchy. The basic intuition underlying this approach is the ob- 

servation that model fragment classes like Ideal-conductor, Constant-resistance, 

and Temperature-dependent-resistance are all models of electrical conduction. 

Hence, it would be much better if we only had to represent the fact that an instance 

of Wire can be modeled as an Electrical-conductor, with additional electrical 

conductor models being associated with Electrical-conductor. Similarly, rather 

than associating all the electrical conductor models with Electrical-conductor, 

we would associate only Ideal-conductor and Resistor with it, and associate 

Constant-resistance and Temperature-dependent-resistance with Resistor. 

In essence, we build a hierarchy of possible models. 

The advantage of the possible models hierarchy are very similar to the advantages 

of a generalization hierarchy. First, it leads to compact representations. For example, 

one only needs to specify that instances of Wire can be modeled as Electrical-con- 

ductor, with additional ways of modeling instances of Wire being inferred from the 

hierarchy. Second, knowledge base maintenance is simplified. For example, if we want 

to add an additional model fragment class describing yet another electrical conductor 

model, e.g., the dependence of the resistance on length, then this change need only 

be made to the possible models hierarchy below Resistor; definitions of component 

classes, like Wire, need to be modified. 

The possible models of a model fragment class are defined in tb   r cssible-models 
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clause of the def model macro. F'T example, we can see that the model fragment 

classes that can be used to model instances of Resistor include Constant-resis- 

tance and Temperature-dependent-resistance. 

Note that the generalization hierarchy and the possible models hierarchy often 

overlap. For example, Resistor is both a specialization and a possible model of 

Electrical-conductor. However, the two hierarchies are not the same. For example, 

the Thermal-thermistor model fragment class, which models the dependence of a 

thermistor's resistance on its temperature, is a specialization of the Thermal-object 

model fragment class. However, it is evident that not all components being modeled as 

Thermal-objects can be modeled as Thermal-thermistors, only thermistors can be 

modeled as Thermal-thermistors. Hence, Thermal-thermistor is a specialization 

of Thermal-object, but not a possible model of it. 

2.5.4    Difference between component and model fragment 

classes 

Thus far we have been talking about component classes and model fragment classes 

as separate types of classes. But what exactly is the difference? The answer is that, 

fundamentally, there is no difference! Both model fragment classes and component 

classes are partial descriptions. For example, while the Resistor model fragment 

class is a partial description of electrical conduction, the Wire model fragment class 

is a partial description of what it means for an object to be a wire. 

The only difference between component classes and model fragment classes is their 

position in the possible models hierarchy. Component classes are the classes that are 

at the top of the possible models hierarchy, i.e., component classes are not models of 

any other class. Therefore, component classes can be viewed as primitive descriptions. 

The decision to model an object as an instance of a component class is, therefore, the 

responsibility of the human user providing the input (the structural description), and 

is outside the scope of the model selection program. 

An interesting consequence of the above observation is that a human user may 

choose to define the structure of the device in terms of model fragment classes, rather 
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than just component classes. For example, the user may use an instance of the 

Electrical-conductor model fragment class as part of a device. The ability to 

specify structural descriptions using model fragment classes provides the user with 

a valuable abstraction tool. This is useful, for example, during design, where the 

designer may know that there is an electrical conductor at some place in the device, 

without knowing what specific component implements this electrical conductor. 

2.6    Summary 

In this chapter we defined a model to be a set of model fragments, where a model 

fragment is a set of algebraic, qualitative, and/or ordinary differential equations, 

describing some phenomena at some level of detail. Viewing a model as a set of 

model fragments is useful because model fragments are easier to construct and more 

reusable than complete models. In addition, the set of applicable model fragments 

is an implicit description of an exponentially large space of possible models. The set 

of applicable model fragments is defined by the device structure and a component 

library. The component library specifies the model fragments that can be used to 

model each component of the device. 

We introduced two important relations between model fragments: contradictory 

and approximation. Model fragments related by the contradictory relation make 

contradictory assumptions about the domain. In addition to being mutually contra- 

dictory, model fragments can differ in the relative accuracy with which they model 

phenomena. The relative accuracy of model fragments is represented using the approx- 

imation relation. In addition to these two relations, we also introduced assumption 

classes, which are sets of mutually contradictory model fragments that describe the 

same phenon:.f ua. 

Finally, we concluded this chapter with a discussion of the actual representational 

mechanisms we use to implement the above ideas. In particular, we introduced a 

class level representation of components and model fragments and showed how these 

classes are organized. In this representation, a model fragment is the result of mak- 

ing a component an instance of the corresponding model fragment class. Component 
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and model fragment classes are organized into two hierarchies: a generalization hi- 

erarchy and a possible models hierarchy. These hierarchies lead to more compact 

representations, and facilitate knowledge base maintenance. 



Chapter 3 

Adequate models 

In this chapter we discuss the adequacy of device models. The adequacy of a device 

model is fundamentally determined by the task that needs to be solved. We will define 

the adequacy of a model with respect to the task of generating causal explanations 

for a phenomenon of interest. We also show that additional constraints on model 

adequacy can stem from the structure and the behavior of the device. Finally, we 

define model simplicity based on the intuition that modeling fewer phenomena, more 

approximately, leads to simpler models. An adequate model is required to be as 

simple as possible. 

3.1    Tasks and models 

The adequacy of a model is closely tied to the task for which the model is to be used. 

Simulations carried out during the final stages of the detailed design of a device require 

the use of high fidelity models that incorporate accurate, quantitative descriptions 

of all significant phenomena. For example, a high fidelity model of the temperature 

gauge shown in Figure 1.1 would include a quantitative, nonlinear equation describing 

the dependence of the thermistor's resistance on its temperature. 

On the other hand, models that support analysis during the initial, conceptual 

design of a device can be much coarser. For example, during the conceptual design 

of the temperature gauge, it is sufficient to use a qualitative model [Bobrow, 1984] of 

43 
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the thermistor, which states that the thermistor's resistance is inversely proportional 

to its temperature. 

Similarly, Hamscher [Hamscher, 1988, page ll] arg les that: 

For complex devices the model of the target device should be constructed 

with the goal of troubleshooting explicitly in mind. 

He then presents a set of representation and modeling principles that assist the effi- 

cient diagnosis of complex digital circuits [Hamscher, 1988; Hamscher, 1991]. These 

principles are an informal specification of the adequacy of a model with respect to 

the task of diagnosis. 

In this thesis, we define the adequacy of a model with respect to the task of gener- 

ating causal explanations for phenomena of interest In the next section we discuss the 

importance of this task, both as a vehicle for communication, as well as an important 

subtask for other tasks such as analysis, diagnosis, and design. 

3.2    Causal explanations 

Causation and causal reasoning a re ubiquitous in human reasoning. People are always 

asking why something happened, expecting some sort of a causal explanation in reply. 

However, while the notion of causation seems intuitively clear to everyone, providing 

a good definition for it has not been easy. Philosophers have argued about the true 

nature of causation for a long time (e.g., see [Mackie, 1974]). In this thesis we choose 

not to get mired in this debate. Instead, we take the view, common in Artificial 

Intelligence [Bobrow, 1984; Iwasaki and Simon, 1986b; Patil et al, 1981; Pople, 1982; 

Rieger and Grinberg, 1977; Shoham, 1985; Wallis and ShortlifFe, 1982; Weiss et a/., 

1978], that causal explanations are explanations of phenomena based on a set of 

underlying mechanisms, that are assumed to provide a description of how (the relevant 

aspect of) the world really works, i.e., these mechanisms are assumed to be causal 

mechanisms. (See [Nayak, 1989] for an overview of this literature.) 
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3.2.1    Importance of causal explanations 

Causal explanations play an important role in automated reasoning systems as a 

vehicle for the system to communicate with its human user. Such explanations can be 

used for instructional purposes, as in various Intelligent Computer Aided Instruction 

systems [Brown et al, 1982; Forbus and Stevens, 1981; Weld, 1983], or as a method 

for explaining the system's line of reasoning to a human user [Patil et a/., 1981; 

Weiss et a/., 1978; Wallis and Shortliffe, 1982]. 

In addition to their role in communication, causal explanations play a central role 

in focusing other forms of reasoning [Weld and de Kleer, 1990]. Causal explanations 

are used in diagnosis to focus the reasoning only on those elements that could have 

caused a particular symptom [Davis, 1984]. Causal explanations focus design and 

redesign by focusing the reasoning on just those mechanisms that can produce the 

desired behavior [Williams, 1989; Williams, 1990]. Causal explanations can also guide 

quantitative analysis by providing an overall structure for solving the problem at hand 

[de Kleer, 1977]. 

S.2.2    Types of causal explanations 

Causal explanations are generated by stringing together causal relations of the form 

"x causes y." Different types of causal explanations are generated depending on the 

particular vocabulary used for modeling these causal relations, i.e., the types of "x" 

and "y" and the meaning of the "causes" relation. In many medical diagnosis systems 

(e.g., CASNET [Weiss et ai, 1978], CADUCEUS/INTERNIST [Pople, 1982], ABEL [Patil 

et a/., 1981]) the causal relation relates different possible states of a patient, while the 

causal relation itself represents the likelihood of observing the effect given the cause. 

A similar approach is used in Bayesian networks, where the causal relation repre- 

sents conditional probabilities between random variables [Pearl, 1988]. Reiger and 

Grinberg, in their work on understanding physical mechanisms [Rieger and Grinberg, 

1977], identify 10 different types of causal relations that relate events like actions, 

tendencies, states, and statechanges. Shoham's logical account of causation [Shoham, 
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1988] relates temporal propositions, with the causal relation being an INUS condi- 

tion [Mackie, 1974], i.e., the cause is an Insufficient but Necessary condition of an 

Unnecessary but Sufficient condition for the effect. 

In this thesis we adopt the representation of the causal relation widely used in 

the literature on qualitative reasoning about physical systems [Weld and de Kleer, 

1990]. In this representation, the causal relation relates parameters used to model the 

physical system, and the causal relation itself representj a dependence of the value 

of the "effect parameter" on the "cause parameter." We discuss this in detail in the 

next section. 

3.3    Causal ordering 

The causal relation between the parameters, introduced above, is a transitive relation 

that induces an ordering on the parameters called a causal ordering. The dependency 

of the "effect parameter" on the "cause parameter" in such a causal ordering takes 

one of two forms: functional dependency and integration. 

The functional dependency of a parameter pi on a parameter p2 corresponds to 

a causal mechanism that "instantaneously" determines the value of pa as a function 

of the value of p2 (and, possibly, some other parameters). We have quoted the word 

"instantaneously" to emphasize that what counts as "instantaneously" is a modeling 

decision related to the time scale öf interest [Iwasaki, 1988; Kuipers, 1987]. For 

example, at a time scale of minutes, a thermistor's resistance is functionally dependent 

on its temperature; a change in the temperature can be viewed as instantly causing 

a change in the resistance. However, at a much smaller time scale one can actually 

observe a delay in the change in resistance due to the change in temperature. Causal 

relations as functional dependencies have been studied in [de Kleer and Brown, 1984; 

Williams, 1984; Iwasaki and Simon, 1986b] and in [Forbus, 1984], where they are 

called indirect influences. 

The other type of causal relations between parameters is the integration relation 

between a parameter and its derivative. In contrast to functional dependencies that 

act instantaneously, the integration relation acts over a period of time. For example. 
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the total amount of charge stored in a capacitor depends on the net flow of current 

into the capacitor over a period of time; the amount of stored charge is calculated by 

integrating the current flow over that period of time. Causal relations as integration 

have been studied in [Iwasaki, 1988] and in [Forbus, 1984], where they are called direct 

influences. 

3.3.1 Loops in the causal ordering 

As mentioned above, the causal relation between parameters is transitive. However, 

we do not insist that the causal relation be anti-symmetric, i.e., a parameter pi 

can simultaneously causally depend on, and can causally determine, a parameter p2- 

Such loops in the causal ordering are manifestations of feedback in the behavior of 

the physical system. The proper handling of such feedback, and the resulting loops in 

the causal ordering, is the focus of much debate ard ongoing research [Bobrow, 1984; 

Iwasaki and Simon, 1986b; de Kleer and Brown, 1986; Iwasaki and Simon, 1986a; 

Rose and Kramer, 1991]. In this thesis we adopt the (somewhat neutral) viewpoint, 

advanced in [Iwasaki and Simon, 1986b], of merely viewing such feedback as a set of 

interdependent parameters. 

3.3.2 Equations 

The causal ordering of a set of parameters used to model a physical system is derived 

from a set of algebraic, qualitative, and/or differential equations describing the phys- 

icil system. Equations, as such, -an be viewed as acausal representations of domain 

mechanisms. For example, the equation V = iR (Ohm's law) is an acausal repre- 

sentation of a mechanism for electrical conduction. It merely states that the voltage 

across an electrical conductor, V, is proportional to the current through the conduc- 

tor, i, with the resistance of the conductor, R, being the proportionality constant. 

However, it makes no causal claims like "the voltage depends on the current." 

To have a causal import, equations must be causally oriented. A causally ori- 

ented equation represents the fact that one of the parameters of the equation is 

directly causally dependent on the other parameters of the equation. The dependent 
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parameter is said to be causally determined by the equation. For example, the acausal 

equation V = iR can be causally oriented so that it causally determines V, making 

V causally dependent on i and R. 

The causal orientation of an equation can be fixed a priori [Forbus, 1984], or it 

can be inferred from the equations comprising a model of the system [de Kleer and 

Brown, 1984; Williams, 1984; Iwasaki and Simon, 1986b; Iwasaki, 1988]. Fixing the 

causal orientation of each equation ö priori is overly restrictive, since different causal 

orientations are often possible. However, not all causal orientations fit our intuitions 

about causality. For example, the equation V = iR can be causally oriented in one 

of two ways: either V can be causally dependent on i and /?, or i can be causally 

dependent on V and R. However, the third possibility, R being causally dependent 

on V and i, makes no sense because, in an ordinary electrical conductor, there is no 

way that changing V and/or i can cause a change in R. 

The set of allowed causal orientations of an equation, e, can be represented by the 

set, jPc(e), of parameters that can be causally determined by e. As a typographical 

aid, parameters that can be causally determined by an equation will be typeset in 

boldface, e.g., V = iR says that this equation can causally determine V and i but 

not A. We extend the function Pc to a set E of equations in the natural way: 

PciE) = U ^(e) (3.1) 

Similarly, we extend Pc to a model M as follows (recall that a model fragment m € M 

is just a set of equations): 

^(Af) =  U ^(m) (3.2) 

In addition, let P{e) be the set of all parameters in equation e. Extend P to a set E 

of parameters, and to a model M, as follows: 

P{E)   =    [jP{e) (3.3) 
e€E 

P{M)   =    U  Pi™) (3.4) 
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3.3.3    Computing the causal ordering 

As mentioned earlier, the causal ordering of a set of parameters is derived from the 

set of equations representing a model of the system under consideration. Iwasaki and 

Simon provide an algorithm for computing the causal ordering [iwasaki and Simon, 

1986b; Iwasaki, 1988]. However, that algorithm is a worst-case exponential time 

algorithm. In this section we describe an efficient algorithm for computing the causal 

ordering based on the work of Serrano and Gossard [Serrano and Gossard, 1987]. 

Serrano and Gossard make the key observation that, given a set of equations, the 

causal ordering of the parameters can be generated by (a) causally orienting each 

equation such that each parameter is causally determined by exactly one equation; 

and (b) taking the transitive closure of the direct causal dependency links entailed 

by the causal orientations.1 

Causal mappings 

We formalize Serrano and Gossard's observation by first defining a causal mapping: 

Definition 3.1 (Causal «.apping) Let E be a set of equations. A function F : 

E —♦ P{E) is said to be a causal mapping if and only if (a) F is 1-1; and (b) for each 

e e E, F{e) € Pde)- F is an onto causal mapping if for each parameter p € P{E), 

there is an equation e £ E, such that F{e) = p. 

Hence, a causal mapping causally orients each equation such that each parameter is 

causally determined by at most one equation, while an onto causal mapping causally 

determines every parameter. A causal mapping is said to be partial if it is not defined 

on every equation.2 

Note that the co-domain of F in the above definition is P{E) and not Pc{E), 

even though condition (b) guarantees that the range of F is a subset of Pc{E). We 

1Serrano and Cossard do not actually talk about causal ordering or causal orientations. They are 
interested in efficiently evaluating a set of constraints. However, the parameter dependencies that 
they generate are identical to the causal ordering, and their algorithm can be viewed as causally 
orienting each equation. Hence, we attribute the above observation to them. 

-Hence, causal mappings as defined in Definition 3.1 are more precisely named total causal 
mappings. However, for simplicity, we shall assume that all causal mappings are total, unless we 
explicitly mention them to be partial. 
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have chosen P{E) as the co-domain of F to ensure that when F is onto then each 

parameter in P{E) is causally determined by an equation in E. 

Properties of causal mappings 

Let £ be a set of equations and \ei F : E -* P{E) be a (possibly partial) causal 

mapping. The direct causal dependencies entailed by F is denoted by Cp, and is 

defined as follows: 

CF = {(pi,P2) : (3c € E) F(e) = p2 A p1 e P{e)} (3.5) 

In other words, (pi,p2) € CF if and only if pj directly causally depends on pi in the 

causal orientations defined by F. Denote the transitive closure of Cp by <c(C/r). The 

following lemma states that the transitive closure of different onto causal mappings of 

E are identical. (We will soon discuss conditions under which onto causal mappings 

exist.) 

Lemma 3.1 Let E be a set of independent equations, and let Fi : E -* P{E) and 

F2: E —y P{E) he onto causal mappings.  Then fc(CFi):= ^
C
(CF2)- 

Proof: To show that *c(CFl) = tc(CF2) we need to show that ^(C/rJ C fc(02) 

and tc{CF2) Q *C(CFJ). We prove the first containment, with the second containment 

following by a symmetric argument. To show that te(C>,) Q <C(CF2), it suffices to 

show that CF, Q tc{CFi), since tc{tc{CF2)) = <C(CF2). 

Let {q,p) € CFJ, and let e € F such that F^e) = p, and hence q € F(e). We show 

that {q,p) € <C(CF2). There are two cases: 

1. If F2(e) = p, then {q,p) € CF2, and hence {q,p) € tc{CF2). 

2. If F2(c) 7^ p, construct the sequence po,Pi,-■-»Pm such that (a) po = p; (b) 

Pi = F2(Ff (pi-i)), for 1 < i < m; (c) pm is the first repetition in the sequence, 

i.e., p,: ^Pj,0 <i,j <{m- 1), i 7^ j, and pm = p.-, for some i, 0 < i < (m - 1). 

Such a sequence must exist because Fi and F2 are onto causal mappings, and 

because there are a finite number of parameters.   In addition, observe that 
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m > 2, since if m = 1, it follows that p0 = i^Ff^po)), which leads to a 

contradiction its follows: 

P   =   Po 

=   F2{e) 

which contradicts the assumption that i^Ce) ^ p. 

We now show that pm = po. Suppose not, so that pm = pi for some i, I < 

i<{m- 1). Hence, it follows that p,,.., = Fl{Fi\pm)) = F^F^Pi)) = p.-x, 

which contradicts condition (c) above. Hence, pm = po- 

Next, let c.- = Ff ^p,.!), for 1 < i < m. Hence, p,_i € P(e,) and p.- = ^(e.). 

Hence, it follows that (p.-^pj) € CF2- Hence, by transitivity, it follows that 

{PuPm) € fc(CF2), and since pm = po = p, it follows that (pi,p) € <c(02). 

Now there are two cases: (a) if p! = q, then it follows that (g,p) € ^(CFJ; or 

(b) if px ^ q, then since pi = F?ie) and q € P{e), it follows that {q,pi) € CF3, 

and hence by transitivity {qfp) e tc{CF2). In either case, (g,p) € <c(CFa), ^^ 

we are done. 

D 

Intuitively, the above proof shows that if Fi and F2 differ on the parameter to 

which an equation e is mapped, then the parameters i'i(e) and ^(e) are causally 

dependent on each other. For example, consider the set of equations, and two different 

onto causal mappings Fj and F2, shown in Figure 3.1. 

Note that Fi and F2 agree on the parameters assigned to the first two equations, 

while they differ on the parameters assigned to the last two equations. However, 

under Fi, u causally depends on v from the mapping of the third equation while v 

causally depends on u from the mapping of the fourth equation, i.e., u and v axe 

interdependent. Similarly, under F2, u causally depends on v from the mapping of 

the fourth equation while v causally depends on u from the mapping of the third 

equation; once again, u and x) are interdependent. 
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Equations F, E2 
exogenous{x) X X 

x =y y y 
u + v = y u V 

u -v = 0 V u 

Figure 3.1: A set of equations with two onto causal mappings 

Causal ordering definition 

Using causal mappings and the above lemma, we now define the causal ordering of 

a set of parameters generated from a set of equations. Before we do this, we first 

introduce the integration completion of a set of equations. Recall that the integration 

relation between a parameter and its derivative constitutes a causal dependency from 

the derivative to the parameter. We represent this relation with the int equation: 

™t{P\,P2) says that p2 is the derivative of pj. Note that int{pl,p2) can be causally 

oriented in only one way, to causally determine pi by integrating the value of p2 over 

time. Given a set E of equations the integration completion of E makes explicit all 

such integration links among the parameters of E: 

Definition 3.2 (Integration completion) Let E be a set of equations. The inte- 

gration completion of E, denoted ic{E), is defined as follows: 

ic{E) = EU {intiq,dq/dt) : dq/dt € P(E)} 

i.e., whenever P(E) contains a derivative, the integration completion of E contains an 

int equation expressing the integration relation. Note that if E contains no differential 

equations, then E = ic{E). 

We now define the causal ordering generated from a set of equations as the tran- 

sitive closure of direct causal dependencies generated by any onto causal mapping of 

the integration completion of the set of equations: 

Definition 3.3 (Causal order) Let E be a set of independent equations, and let 

F : ic{E) -» P{E) be an onto causal mapping. The causal order of the parameters of 
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E, denoted C{E), is the transitive closure ofCp: 

C{E) = tc{CF) 

The causal ordering is well defined because Lemma 3.1 assures us that the transitive 

closures of all onto causal mappings of a set of equations are identical. This allows 

us to define the causal ordering of a set of equations as the transitive closure of any 

onto causal mapping. The use of ic{E), instead of E, in the above definition ensures 

that causal dependencies due to integration links are included in the causal ordering. 

Next, we investigate conditions under which the causal ordering exists, i.e., con- 

ditions under which an onto causal mapping exists. 

Existence of onto causal mappings 

We start by defining what it means for a set of equations to be complete, overcon- 

strained, and incomplete. Informally, a set of equations is (a) complete if it has as 

many equations as parameters, and no subset of equations has fewer parameters than 

equations; (b) overconstrained if some subset of equations has more equations than 

parameters; and (c) incomplete if some subset of equations, that has no parameters in 

common with its complement, has more parameters than equations. More precisely, 

we have the following definitions: 

Definition 3.4 Let E be a set of independent equations.6 

• E is said to be complete if and only if (a) \ic{E)\ = |Pc(ic(£'))| = \P{E)\; and 

(b) for every S C ic{E), \S\ < |FC(5)|. 

• E is said to be overconstrained if and only if there exists S C ic{E) svch that 

\S\ > \PciS)\. 

• E is said to be incomplete if and only if there exists S C ic{E) such that either 

(a) Pe{S)nPe{ic{E)\S) = 0 and \S\ < \PC{S)\; or (b) P{S)nP{ic{E)\S) = 0 

and \S\ < \P{S)\. 

3 «|     I» | • |" returns the cardinality of a set. "\" is the set difference operator. 
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We now show that an onto causal mapping exists if and only if the set of equations 

is complete. This means that when a set of equations is complete, all the parameters 

in the equations can be causally determined. 

Lemma 3.2 Let E be a set of independent equations. Then there exists an onto 

causal mapping F : ic{E) -* P{E) if and only if E is complete. 

Proof: To prove this lemma, we start by defining a bipartite graph representing the 

set of equations E. 

Definition 3.5 Let E he a set of independent equations. Let G = (X, V, R) he a 

hipartite graph such that X UY is the set of nodes, R is the set of edges, and each 

edge connects a node in X to a node inY. G is said to represent E if and only if4 

1. X = ic{E), i.e., there is a node in X for each equation, including the integration 

equations; 

2. Y = P(E), i.e., there is a node in Y for each parameter; and 

3. (x,y) € R if and only if x e X{= ic{E)), y € K(= P{E)), and y € Pc{x), i.e., 

an equation is connected to a parameter if and only if the equation can causally 

determine the parameter. 

For exampL the bipartite graph representing the equations shown in Figure 3.1 

is shown in Figure 3.2. 

A matching in a bipartite graph is a set of edges such that no two edges in the 

matching share a common node. A matching is said to be complete if and only if each 

node in the graph is covered by an edge in the matching, i.e., each node has an edge 

in the matching incident upon it. For example, a complete matching in the bipartite 

graph of Figure 3.2 consists of the following edges: 

{{exogenous{x), x), (a = y,y), {u + v = y,u),{u - v = 0, v)} 

4This representation of the set of equations is due to Serrano and Gossard [Serrano and Gossard, 
1987]. 
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exogenous{x) •- 

x = y 

u + v = y 

u — v = 0 

Figure 3.2: Graph representing a set of equations 

From the above definitions, it follows that an onto causal mapping F : ic{E) —► 

P{E) corresponds to a complete matching in the bipartite graph representing E, and 

vice versa. In particular, the complete matching corresponding to an onto causal 

mapping F : ic{E) —► P{E) is the following set of edges: 

{{e,F{e)):eeic{E)} 

Hence, it follows that an onto causal mapping F : ic{E) —* P{E) exists if and 

only if a complete matching exists for the bipartite graph representing E. How- 

ever, Hall's theorem [Even, 1979, pages 137-138] tells us that a bipartite graph 

G = {X, Y, R) contains a complete matching if and only if (a) \X\ = \Y\\ and (b) for 

every A C X, \A\ < \R{A)\, where R{A) denotes the set of nodes connected to the 

nodes in A by edges in R. However, from Definition 3.5, condition (a) is equivalent 

to saying \ic{E)\ = \P{E)\, and condition (b) is equivalent to saying that for every 

S C ic{E), \S\ < \PC{S)\. But, from Definition 3.4, this is equivalent to saying that 

£ is a complete set of equations. Hence, it follows that there exists an onto causal 

mapping F : ic{E) —> P{E) if and only if E is complete. D 

Causal ordering algorithm 

The proof of the above lemma leads directly to the efficient causal ordering algorithm 

based on Serrano and Gossard's work [Serrano and Gossard, 1987]. This algorithm 

is shown in Figure 3.3. 

In this algorithm, step 1 uses Definition 3.5 to construct the bipartite graph rep- 

resenting E.   Step 2 constructs a maximum matching in this graph.   A maximum 
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function find-causal-order[E) 
1. Using Definition 3.5 construct G, the 

bipartite graph representing E; 
2. Construct a maximum matching for G; 
3. if the above matching is complete then 

a. Let F be the corresponding onto causal mapping; 
b. return the transitive closure of the direct causal 

dependencies entailed by F 
else 

c. return nil /* No onto causal mapping exists */ 
endif 

end 

Figure 3.3: Causal ordering algorithm 

matching is a matching with maximum cardinality. If n is the number of nodes, and 

e the number of edges, in a bipartite graph, a maximum matching in the graph can be 

constructed in 0{s/ne) using algorithms for finding maximum flow in networks, e.g., 

see [Even, 1979, pages 135-138]. Appendix D gives a brief overview of this algorithm. 

Step 3 checks whether or not this matching is complete. Note that if a complete 

matching exists then it is a maximum matching. Conversely, if a complete match- 

ing exists then any maximum matching is a complete matching. If the matching is 

complete, it constructs the corresponding causal mapping and returns its transitive 

closure. If the matching is not complete, then no complete matching exists, and the 

set of equations is not complete. Hence, the causal ordering is not well defined, and 

the above algorithm returns nil. 

We now illustrate the above algorithm with an example. Figure 3.4 shows a 

set of equations describing the temperature gauge shown in Figure 1.1. This set of 

equations is exactly the same as the ones shown in Figure 1.3, except that here we 

have included knowledge of allowed causal orientations of each equation. Figure 3.5 

shows the bipartite graph representing this set of equations. This figure also shows 

a maximum matching consisting of the thick edges with arrow heads at each end. 

One can see that this set of edges forms a complete matching. Figure 3.6 shows a 
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Linkage(bms-l,ptr-l) 
Thennal-bms(bms-1) 

Heat-flow(bms-l,atm-l) 
Heat-flow(wire-l,bms-l) 

Constant-temperature(atm-1) 

Thermal-equilibrium (bms-1) 

Thermal-equilibrium(wire-l) 

Resistor(wire-1) 

Constant-resistance(wire-l) 
Thermal-resistance(wire-1) 

Electrical-thermistor(thermistor-1) 
Constant-voltage-source(battery-l) 

Kirchhoff s laws 
Input 

6P: Pointer angle 
Rw: Wire resistance 

it: Thermistor current 
iw: Wire current 
iv: Battery current 
Tb'. Bms temperature 

Ti^: Wire temperature 
/to,: Heat flow (bms to atm) 
fw: Heat generated in wire 

Xb 

Rt 
Vt 

K, 
Vv 

Ta 

Tt 

fwb 
kj 

6p = kiXb 

xb = k2Tb 

fba = k3{Tb - Ta) 
fwb = hiTv — Tf,) 
exogenous{Ta) 
Jba = Juib 

Twb := Jw 

ext>genous(Rw) 

Vt = itRt-   Rt^htW 
txogenous{Vv) 
K = V«; H- V«;   iv = it;   it = iw 

exogenous{Tt) 

Bms deflection 
Thermistor resistance 
Thermistor voltage 
Wire voltage 
Battery voltage 
Atm temperature 
Thermistor temperature 
Heat flow (wire to bms) 
Exogenous constants 

Figure 5.4: A possible model of the temperature gauge 

graphical representation of the direct causal dependencies generated from the causal 

mapping corresponding to the above complete matching. Note, in particular, the 

cycle of dependencies between it,iw, Vw, and Vt. 

Miscellaneous observations 

In practice, we modify step 3b of function find-causal-order to return CF, the graph 

of direct causal dependencies generated by the causal mapping F generated in step 

3a, rather than its transitive closure, C{E). For example, the function would then 

return graphs like the one shown in Figure 3.6. This has two important advantages: 
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6P = kiXi 

fba = h{Tb - r«) 

fwb = ^(Tu, — Tb) 

exogenous{Ta) 

Jba == Jwb 

Jwb =: Jw 

exogenous{Rw) 

Vt = itRt 

Rt = k5e^
T' 

exogenous{Vv) 

vv = vw + vt 

iv = it 

»t = iw 

exogenous{Tt) 

Figure 3.5: Bipartite graph representing the equations in Figure 3.4. The set of thick 
edges with arrow heads at each end form a complete matching. 

It —»-Rt —* tt       Vw—*/«,—>~fwb—>-fba—► Tb —>■ xb —^ $ 

\1\ f 
K /iu 

Figure 3.6: The direct causal dependencies generated by the causal mapping corre- 
sponding to the complete matching shown in Figure 3.5. 



3.3.   CAUSAL ORDERING 59 

1. Paths in this graph provide a causal explanation for how one parameter causally 

depends 011 another. For example, while the transitive closure of the graph 

shown in Figure 3.6 can tell us that 6P causally depends on Ti, it is unable to 

say that this causal dependence is not a direct causal dependence, i.e., is not due 

to a single causal mechanism. On the other hand, the graph in Figure 3.6 can 

be used to give a detailed explanation for how 6p depends on Tt by identifying 

the different causal mechanisms that mediate this dependence. 

2. We can use this graph to easily identify the minimal sets of causally inter- 

dependent parameters, without incurring the cost of generating the transitive 

closure.5 The minimal sets of causally interdependent parameters are precisely 

the strongly connected components of the graph. A strongly connected com- 

ponent of a directed graph is a maximal set of nodes in the graph such that 

there exists a directed path from each node in the set to every other node in the 

set. An efficient algorithr. for generating the strongly connected components 

of a directed graph is founi in [Even, 1979, pages 64-66]. For example, the set 

{it,iw, K,, Vt} form a strongly connected component of the graph in Figure 3.6, 

and hence these parameters are causally interdependent. 

If step 2 results in a maxiiuum matching that is not complete, then the set of 

equations is either overconstrained, 01 incomplete, or both. Following [Serrano and 

Gossard, 1987]. w« state the following without proof: 

1. If the maximum matching found in step 2 is such that a node corresponding to 

one of the equations in ic{E) is not covered by an edge in the matching, then 

the set of equations is overconstrained. 

2. If the maximum matching found in step 2 is such that a node corresponding to 

one of the parameters in P{E) is not covered by an edge in the matching, then 

the set of equations is incomplete. 

The proofs of the above statements are similar to the proof of Lemma 3.2. 

50ne can easily show that these minimal sets of causally interdependent parameters are the 
minimal complete subsets identified by the causal ordering algorithm in [iwasaki and Simon, 1986b]. 
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This concludes our discussion of causal explanations and how they are generated 

from a model, i.e., from a set of equations. We now proceed to define the criteria 

that we use for model adequacy. The next section introduces the consistency and 

completeness of a model; adequate models are required to be consistent and com- 

plete. Section 3.5 introduces our representation for the phenomenon of interest; an 

adequate model must be able to provide a causal explanation for the phenomenon 

of interest. Sections 3.6 and 3.7 introduce constraints stemming from the structural 

and behavioral contexts of a physical system, that must be satisfied by an adequate 

model. Finally, Section 3.8 will introduce a simplicity ordering on the set of models, 

with an adequate model being a simplest model that satisfies all the above criteria. 

3.4    Consistency and completeness of models 

In this section we define the two notions of model consistency and model completeness. 

Recall from Chapter 2, that a model can be viewed in one of two ways: (a) as a set 

of model fragments (Section 2.3.2); and (b) as a set of equations (Section 2.1.2). Our 

definitions of model consistency and model completeness will be based on knowledge 

stemming from both these viewpoints. 

3.4.1    Model consistency 

Recall that when two model fragments make contradictory assumptions about the 

domain they are related by the contradictory relation (Section 2.3.4). Therefore, 

the use of contradictory model fragments in a model is undesirable. Similarly, in 

Definition 3.4 we defined the notion of an overconstrained set of equations. If a set 

of independent equations is overconstrained, then the equations have no solutions,6 

leading to a contradiction. 

The above observations lead directly to our definition of a consistent model: 

Definition 3.6 (Consistent model) A model M is said to be consistent if and only 

if the following two conditions are satisfied: 

'Being independent, the possibility of the equations being merely redundant is ruled out. 
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1. Vmi,m2 € M -'contradictory{mi, 1712), i.e., the model does not contain mutually 

contradictory model fragments; 

2. The set of equations of M is not overconstrained. 

An immediate consequence of the above definition is that a consistent model can 

have at most one model fragment from each assumption class. Consistency is the 

first important property of an adequate model; a model that makes contradictory 

assumptions about the domain, or whose equations are inconsistent, is undesirable. 

Hence, we have: 

• An adequate model must be consistent. 

For example, any consistent model of the temperature gauge in Figure 1.1 can- 

not simultaneously model the wire both as an Ideal-conductor and as a Resistor 

be-ause these two model fragment classes contradict each other. Similarly, no con- 

sistent model of the temperature gauge will model both the wire and the thermistor 

as Ideal-conductors and the battery as a Constant-voltage-source. This is be- 

cause this set of modeling choices would lead to the following overconstrained set of 

equations: 

Vr = 0 

vt = o 
exogenous{Vv) 

vv = vr + vt 

3.4.2    Model completeness 

Recall that model fragments are partial descriptions of phenomena. Additional model 

fragments, drawn from the set of required assumption classes, are required to com- 

plete this description (Section 2.3.4). A complete model must include complete de- 

scriptions of all phenomena that are being modeled. Hence, a complete model must 

include model fragments from all required assumption classes. In addition, we will 

require that the equations of a complete model be able to causally determine all the 
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parameters of the model. From Lemma 3.2 we know that when a set of equations is 

complete then all the parameters can be causally determined, and the causal ordering 

is well defined. These observations lead directly to our definition of a complete model: 

Definition 3.7 (Complete model) A model M is said to be complete if and only 

if the following two conditions are satisfied: 

1. (Vm € M) requires{m. A) =^ (Bm' € i4) m' € M, i.e., the model contains a 

model fragment from each required assumption class; and 

2. The set of equations of M is complete. 

Completeness is the second important property of an adequate model; an ad- 

equate model must include complete descriptions of all phenomena that are being 

modeled, and the model's equations must be complete so that we can generate causal 

explanations for phenomena of interest. Hence, we have: 

• An adequate model must be complete. 

For example, the model shown in Figure 3.4 is complete.7 

3.5    Representing the phenomenon of interest 

Toward the end of Section 3.1 we stated that, in this thesis, we will define the adequacy 

of a model with respect to the task of generating causal explanations for a phenomenon 

of interest. Hence, the phenomenon of interest is a crucial input that focuses model 

selection. We call the phenomenon of interest the expected behavior. The expected 

behavior of a device is an abstract description of what the system does (but not how 

it does it). The causal explanation generated by a model is a description of how the 

expected behavior is achieved. 

The expected behavior captures, in part, what is commonly referred to as the 

function of a device.  For example, stating that the device in Figure 1.1 is a tem- 

perature gauge indicates that the device model must explain how the temperature of 

7Though we haven't shown the requires constraints, in fact they are all satisfied in this model. 
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the thermistor determines the angular position of the pointer. Expected behaviors 

can also provide abstract descriptions of device behaviors that would not normally 

be considered the device's primary function. Such knowledge of the expected behav- 

ior is commonplace and almost always available either directly from the user, from 

the description of the problem to be solved, or from the context in which the device 

operates. 

For example, a student wanting to understand how a device works can provide an 

intelligent tutoring system a description of the expected behavior that he or she wants 

explained. Or, for example, an automated diagnosis program that diagnoses faults in 

a device, must first be provided with a description of the what the correctly working 

device is supposed to do. Finally, device names, such as light bulb, vacuum cleaner, 

and disk drive are widely used and all are associated with expected behaviors. The 

most common expected behavior descriptions are input/output descriptions of device 

behavior. 

Following our discussion of causal ordering in Section 3.3, we specify expected 

behaviors as a query that requests a causal explanation for how one parameter causally 

depends on another. For example, the expected behavior of the temperature gauge 

shown in Figure 1.1, representing its primary function, is: 

cause${Tt,6p) 

where Tt is the temperature of the thermistor and $p is the angular position of the 

pointer. This expected behavior requests a causal explanation for how the tempera- 

ture of the thermistor causally determines the angular position of the pointer. 

The expected behavior provides us with our most important criterion for model 

adequacy: 

• An adequate model must explain the expected behavior, i.e., a model is adequate 

with respect to an expected behavior, cawses(pi,p2), if it is able to provide a 

causal explanation for how p2 causally depends on pi. 

Given such an expected behavior, one can use the procedures described in Sec- 

tion 3.3 to check whether or not a device model is able to provide a explanation for 
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how the second parameter causdiiy depends on the first parameter. This procedure 

is briefly summarized in Figure 3.7. 

function check-expected-behavior(M, pi, &) 
/* Af is a model, assumed to be consistent and complete */ 
/* causes{pi,p2) is the expected behavior */ 
1. Let E be the equations of M 

I* Section 2.3.3 describes how to do this */ 
2. Compute C{E), the causal ordering generated from E 

I* Section 3.3 describes how to do this */ 
3- if(pi,P2)€C(E)then 

/* The expected behavior is satisfied */ 
return true 
I* The causal explanation can also be returned (Section 3.3) */ 

else 
/* The expected behavior is not satisfied */ 
return false 

endif 
end 

Figure 3.7: Algorithm for checking whether a model can explain the expected behav- 
ior. 

For example, the model in Figure 3.4 is able to explain the expected behavior 

causes[Tt,6p) 

since 6P causally depends on Tt in the causal ordering generated from this model, 

shown in Figure 3.6. 

It must be noted that our language for expressing the expected behaviors is ex- 

tremely simple; it only allows us to ask for explanations for causal dependencies 

between parameters. More expressive languages are, of course, desirable. We might 

want to include information about the directions of change, e.g., we might want to 

say that increasing Tt causes 6p to increase. Or we might want to include more in- 

formation about the actual functional relationship, e.g., we might want to say that 

there is a linear relationship between Tt and 6P. 
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However, the price we must pay for using more expressive languages for the ex- 

pected behavior is that checking whether or not the expec -ed behavior is satisfied 

becomes very expensive, and can often even be impossible. For example, deciding 

whether an increase in Tt causes an increase or a decrease in 0P with purely quali- 

tative information is not possible when there are competing influences. Additional 

information about the relative magnitudes of these influences is necessary, which may 

or may not be available. Hence, we have chosen a simple, though useful, language 

for expressing the expected behavior, leading to an efficient algorithm for deciding 

whether or not a model satisfies the expected behavior. 

Thus far we have said that an adequate model must be consistent and complete, 

and must be able to explain the expected behavior. In addition to these constraints, a 

domain expert might want to place additional domain-dependent constraints on model 

adequacy. We now investigate two important classes of such constraints, stemming 

from the structural and behavioral contexts of the device. These constraints are 

expressed using a first-order constraint language, and an adequate model must satisfy 

all such constraints. Symbols in these constraints that begin with "?" are variables. 

Constraints are all evaluated with respect to a component of interest, with the variable 

"?object" being bound to that component. All other variables in the constraints are 

assumed to be existentially quantified. 

3.6    Constraints from the structural context 

In this section we discuss the structural context, an important source of constraints 

on model adequacy. We will then discuss different types of constraints that stem from 

the structural context. 

3.6.1     Structural context 

The structural context of a device consists of the different aspects of the structure of 

the device. Informally, the structure of a device is a description of how the device is 

physically put together.  It includes the components in the the device, the physical 
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and structural properties of these components, and the structural relations between 

these components that describe how they are put together to form the device. 

Components 

The components that can be used to describe the structure of a device are drawn from 

a library of component types, like the one described in Section 2.5. The particular 

choice of components in a component library must reflect (a) the domain of inter- 

est; and (b) the most detailed level of granularity that needs to be reasoned about. 

(Section 2.4.2 shows how components at a coarser level of detail can be recognized au- 

tomatically.) For example, the components used to describe electronic devices would 

differ from the components used to describe chemical plants. Similarly, electronic 

devices can be described at multiple levels of detail, ranging from logic gates down 

to layers in semiconductor wafers. 

Physical and structural properties 

In addition to the types of the components in the device, the structure of the device 

can also specify various properties of these components. These properties can be 

broadly classified as physical and structural properties, and include properties such as 

shape, dimensions, mass, and material composition. As with the choice of component 

types, the choice of physical and structural properties of components depends on the 

domain and how it is conceptualized. 

Structural relations 

Structural relations are relations between components that describe how components 

are put together. The most commonly used structural relation is the connected-to 

relation, that says that two component terminals are connected to each other [de Kleer 

and Brown, 1984]. Other structural relations that we use include coiled-around (in- 

dicating that a wire is coiled around a component), meshed (indicating that a pair of 

gears mesh with each other), and immersed-in (indicating that a component is im- 

mersed in a fluid). As with components and their physical and structural properties, 
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the set of structural relations is crucially dependent upon the domain, and how we 

choose to conceptualize it. 

Structural predicates 

Predicates that can be used to describe the structure of a device will be called struc- 

tural predicates. In particular, component types will be unary structural predicates, 

structural and physical properties of components will be binary structural predicates 

(in fact, they will be unary functions), and structural relations will be general n-ary 

structural predicates. As discussed above, deciding which predicates are structural 

predicates is dependent upon the domain and how it is conceptualized. 

Miscellaneous observations 

The device structure provides an important bias for model selection. In particular, 

we have seen in Chapter 2 that the components specified in the device structure, 

in conjunction with a component library, defines the basic space of possible device 

models. The structural relations specified in the device structure constrains the space 

of component interactions. Hence, the bias provided by the device structure aids the 

search for device models by specifying the space of possible component models and 

the space of possible component interactions. 

An alternate, though consistent, viewpoint is as follows: the description of device 

structure is already a model of the device which embodies some set of modeling 

decisions. Hence, the model selection algorithms discussed in this thesis can be viewed 

as making additional modeling decisions, given the modeling decisions made above. In 

other words, certain aspects of modeling have been automated, while other parts are 

still the purview of human experts. This division of labor is particularly useful since 

rudimentary structural models of devices are automatically available when human 

designers use CAD tools. 

Finally, note that the structural context of a device is not fixed, but can change, 

even during the normal operation of the device: the components in a device can change 

as new components are created and old ones are destroyed (e.g., boiling water creates 

steam); the physical and structural properties of components can change (e.g., the 
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magnetic strip on your credit card can get demagnetized); and the structural relations 

between components can change (e.g., the contact between the hammer and the dome 

of an electric bell constantly changes during the normal operation of the bell). 

3.6.2    Constraints 

Domain-dependent constraints that stem from the structural context are called struc- 

tural constraints. Structural constraints are evaluated with respect to a structural 

context and a device model. Hence, as the structural context changes, different device 

models may be necessary to ensure that all the structural constraints are satisfied. 

We distinguish two types of structural constraints: preconditions and coherence con- 

straints. 

Structural preconditions 

Structural preconditions are first-order constraints associated with model fragment 

classes which use only structural predicates. The structural preconditions associated 

with a model fragment class are constraints on the structural context that must be 

satisfied if a component is to be modeled by that model fragment class. For example, 

assuming that composition and metal are structural predicates, the precondition:8 

(and (composition ?object ?material) 

(metal ?material)) 

in the Electrical-conductor model fragment class indicates that a component must 

be metallic for it to be modeled as an Electrical-conductor. 

Structural preconditions are similar to process preconditions in QP theory [For- 

bus, 1984]. However, process preconditions are sufficient conditions, i.e., a process 

instance is created whenever the process preconditions are satisfied. On the other 

hand, structural preconditions are necessary conditions. Hence, the above constraint 

does not require that every metallic object be modeled as an Electrical-conductor. 

It only says that a component can be modeled as an Electrical-conductor only 
8Recall that the variable "?object" is bound to the component of interest, i.e., to the component 

that we want to model as an instance of this model fragment class. 
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if it is metallic. We can express this precisely by rewriting the above constraint as 

follows: 

(implies 

(Electrical-conductor ?object) 

(and (composition ?object ?material) 

(metal ?material))) 

More generally, if C is a structural precondition associated with model fragment class 

M, then this is equivalent to the constraint A/(?object) => C. 

Structural coherence constraints 

Structural coherence constraints are additional first-order constraints on the model 

fragment classes used to model one or more components. The predicates used in 

structural coherence constraints are either structural predicates or model fragment 

classes (which are unary predicates). As with structural preconditions, each struc- 

tural coherence constraint is associated with a model fragment class, expressing the 

constraint that a component can be modeled by that model fragment class only if the 

corresponding constraint is satisfied. 

For example, the following structural coherence constraint: 

(implies 

(and (Wire ?object) 

(coiled-around ?object ?core) 

(magnetic-material ?core)) 

(Magnet ?core)) 

associated with the Electromagnet model fragment class, requires that a wire coiled 

around a core made of magnetic material can be modeled as an electromagnet only 

if the core is modeled as a magnet. The justification for this domain dependent 

constraint is that such a core amplifies the wire's magnetic field by three or four 

orders of magnitude, converting the core into a powerful magnet. Hence, under these 

circumstances, an engineer would not consider the model to be adequate unless the 

core were modeled as a magnet. 
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Note that, like structural preconditions, structural coherence constraints are also 

associated with model fragment classes. Hence, the above constraint is more precisely 

written as: 

(implies 

(and (Electromagnet ?object) 

(Wire ?object) 

(coiled-around ?object ?core) 

(magnetic-materia?  ?core)) 

(Magnet ?core)) 

where we have used the fact that A =*» (D =^ C) is equivalent to (A A D) =^ C). 

In summary, an adequate model must satisfy all applicable structural constraints: 

• A model fragment M(c) can be part of an adequate model only if all the struc- 

tural preconditions and structural coherence constraints associated with model 

fragment class M are satisfied, with the variable ?object bound to c. 

3.7    Constraints from the behavioral context 

In this section we discuss the behavioral context, another important source of con- 

straints on model adequacy. We will then discuss different types of constraints that 

stem from the behavioral context. 

3.7.1     Behavioral context 

The behavioral context of a device is its behavior at a particular time. The behavior 

of a device at a particular time is just the values, at that time, of the parameters 

that can be used to model the device. Note that the behavioral context of a device 

is dependent upon the time at which the behavior snapshot is taken. Hence, the 

behavioral context changes with time, as the values of the parameters change. For 

example, the behavioral context of the temperature gauge in Figure 1.1 would include 

values for the current flowing in the circuit, the temperature of the bimetallic strip, 
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and the magnetic field generated by the wire.   As the values of these parameters 

change, the behavioral context also changes. 

Ideally, we would like the behavioral context to refer to the actual behavior of the 

device, e.g., the values of the parameters are obtained by actual measurements on a 

physical prototype. However, the actual behavior of a device is usually unavailable. 

Rather, the behavior must be computed using the equations of a device model. Hence, 

the behavioral context can be computed only after a device model has been selected. 

Of course, different device models can predict different behaviors, each introducing 

different errors. Hence, it is essential that the behavior be computed with a device 

model that introduces an acceptably low error. 

A component's behavioral context can provide modeling information not explicitly 

available in the structural context. This is because behavior generation explicates 

information that is implicit in equations. Consider modeling an air gap: if the voltage 

drop across it is large enough (as in a properly functioning spark plug), then it should 

be modeled as an electrical conductor; if the voltage drop across it is not large enough 

(as in a common electrical switch), it should be modeled as an electrical insulator. 

The value of the voltage drop across the air gap (a behavioral property) determines 

the appropriate model for it. 

3.7.2    Constraints 

Domain-dependent constraints that stem from the behavioral context are called be- 

havioral constraints. Behavioral constraints are evaluated with respect to a behavioral 

context, a structural context, and a device model. Hence, as the behavioral context 

changes over time, different device models may be necessary to ensure that all the 

behavioral constraints are satisfied (assuming that the structural context remains 

the same). As with structural constraints, we distinguish two types of behavioral 

constraints: preconditions and coherence constraints. 
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Behavioral preconditions 

Behavioral preconditions are first-order constraints associated with model fragment 

classes which use only structural predicates and order relations between parameter 

values, i.e., they do not use model fragment classes. The behavioral preconditions 

associated with a model fragment class are constraints that must be satisfied if a 

component is to be modeled by that model fragment class. For example, the precon- 

dition: 

(<  (voltage-difference ?object) 

(voltage-difference-threshold ?object)) 

associated with the Ideal-conductor model fragment class indicates that a compo- 

nent can be modeled as an Idaal-conductor only if the voltage drop across it is 

lös than some threshold. As with structural preconditions, behavioral preconditions 

are necessary conditions on the use of model fragment classes. Hence, the above 

constraint is more precisely written as: 

(implies 

(Ideal-conductor ?object) 

(< (voltage-difference ?object) 

(voltage-difference-threshold ?object))) 

Behavioral preconditions look superficially similar to quantity conditions in processes 

[Forbus, 1984] However, behavioral preconditions are used to decide which model 

fragment classes n an assumption class can be used to model a component. In 

contrast quantity conditions in processes only control the activity of a process, but 

not the existence of Ihf pTC-rer.:, In essence, b^ivioral preconditions are modeling 

constraints, while quantity conditions ate &^ut the physics of the situation. 

Behavioral coherence comtraints 

Behavioral coherence constraints are aorli-'mia 'u.st-order constraints on the model 

fragment classes used to model oae or ffi&rö components. The predicates used in be- 

havioral coherence constraints are either relations between parameter values, struc- 

tural predicates, or model fragment classes (which are unary predicates).   As with 
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behavioral preconditions, each behavioral coherence constraint is associated with a 

model fragment class, expressing the constraint that a component can be modeled by 

that model fragment class only if the corresponding constraint is satisfied. 

For example, the following behavioral coherence constraint: 

(implies 

(>= (♦ (voltage-difference ?object) 

(current (electrical-terminal-one ?object))) 

(electrical-power-threshold ?obj ect)) 

(Thermal-resistor ?object)) 

in the Resistor model fragment class states that when a component is being modeled 

as a resistor, and if the dissipated power exceeds a threshold, then this dissipation 

must be explicitly modeled by modeling the component as a Thermal-res ist or. 

Note that, like behavioral preconditions, behavioral coherence constraints are also 

associated with model fragment classes. Hence, the above constraint is more precisely 

written as: 

(implies 

(and (Resistor ?object) 

(>= (* (voltage-difference ?object) 

(current (electrical-terminal-one ?object))) 

(electrical-power-tI:reshold ?object))) 

(Thermal-resistor Tobject)) 

In summary, an adequate model must satisfy all applicable behavioral constraints: 

• A model fragment M(c) can be part of an adequate model orly »f all *te behav- 

ioral preconditions and behavioral coherence constraints ft^sodat^l with model 

fragment class M are satisfied, with the variable ?object boun«-- «o c. 

3.7.3    Thresholds in behavioral constrali?tj 

Behavioral constraints can be viewed as deciding whethe* or no'. p.i,rtk«.j«x phe*.. .a 

are significant, and hence worth modeling.   Behavioial consti&irns dec-ide on   ..f 
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significance of phenomena by checking whether the values of certain parameters are 

high enough or low enough. Appropriately set thresholds decide whether or not the 

parameters values are high enough or low enough. 

For example, the behavioral precondition shown above says that a component 

can be modeled as an Ideal-conductor only if the voltage-difference across 

the component is insignificant, i.e. small enough. This is checked by comparing 

the voltage-difference with the voltage-difference-threshold. Similarly, the 

behavioral coherence constraint shown above requires a Resistor to be modeled as 

a Thermal-resistor if the heat generated in the Resistor is significant, i.e., large 

enough. This is checked by comparing the actual amount of heat generated against 

the electrical-power-threshold. 

Since the thresholds determine the significance of various phenomena, different 

threshold settings lead to models of differing accuracy, i.e., to models that include 

different sets of significant phenomena. Thresholds can be either preset or computed 

dynamically. A widely used preset threshold in the domain of fluid mechanics is a 

threshold of 2300 for Reynolds number, that distinguishes laminar fluid flow from 

turbulent fluid flow. Thresholds can also be preset by an engineer from common 

practice. For example, in the domain of power distribution systems, where normal 

voltages are in the range of tens of thousands of volts, a voltage difference of up to 10 

volts may be considered insignificant. On the other hand, in the domain of electronic 

circuits, voltages of only up to .01 volts may be considered insignificant. 

While thresholds can be preset, a more interesting and robust method of setting 

the thresholds is to set them dynamically, based on knowledge of acceptable error 

tolerances on some parameters. These error tolerances can be propagated to set 

other thresholds. This propagation can be done using either propagation rules, or the 

equations of a device model. In this thesis, we do not explore this interesting line of 

work any further. See [Shirley and Falkenhainer, 1990; Nayak, 1991] for some initial 

work in this area. 
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3.8     Simplicity of models 

Thus far, we have said that an adequate model must be consistent and complete, must 

be able to explain the expected behavior, and must satisfy all the domain-dependent 

constraints stemming from the structural and behavioral contexts. Typically a very 

large number of device models satisfy these criteria. Most of these models introduce 

irrelevant detail into the causal explanations they generate, either by modeling irrel- 

evant phenomena, or by including needlessly complex models of relevant phenomena. 

For example, assume that the model in Figure 3.4 satisfies all the above criteria. 

Other models that augment this model by modeling additional phenomena, such as 

the electromagnetic field generated by the wire, would also satisfy the above criteria. 

Similarly, models that use more accurate descriptions of phenomena that are already 

modeled, e.g., by modeling the wire as a temperature dependent resistor rather than a 

constant resistance resistor, would also satisfy the above criteria. Such models intro- 

duce irrelevant detail into the causal explanation of how the thermistor's temperature 

affects the pointer's angular position. 

To address this problem we need a simplicity ordering on the models. Given such 

a simplicity ordering, we will say that an adequate model is a simplest model that 

satisfies all the above criteria, i.e., no simpler model satisfies the above criteria. The 

simplicity ordering we consider is a partial ordering of the models, and is based on 

the approximation relation between model fragments. This definition of simplicity 

is based on the following two intuitions: (a) a model is simpler if it models fewer 

phenomena; and (b) approximate descriptions are simpler than more accurate ones. 

Definition 3.8 (Simplicity of models) A model M2 is simpler than a model Mi 

(written M2 < Mi) if for each model fragment 7713 € M2 either (a) m2 € Mi; or 

(h) there is a model fragment mi € Mi such that 7712 is an approximation of mi, 

i.e., approximation{mi,m2).  M2 is strictly simpler than Mi (written M? < Mi) if 

M2 < Mi and Mi ^ M2. 

For example, a model simpler than the one shown in Figure 3.4 is one that re- 

moves the model fragment Thermal-resistor(wire-l).   A more complex model 
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resuHs from replacing the model fragment Constant-resistance(wire-l) by the 

model fragment Temperature-dependent-resistor(wire-l). A model that is in- 

comparable to the one in Figure 3.4 is the one in which we both remove the model 

fragment Thennal-resistor(wire-l) and replace Constant-resistance(wire-l) 

by Temperature-dependent-resistor(wire-l). 

It is important to note that this definition of model simplicity is based purely 

on the intuitions mentioned above. In particular, the definition does not guarantee 

that a simpler model is more efficient. Nor does it guarantee that simpler models 

lead to simpler causal explanations of the expected behavior. However, while there 

are no such guarantees, we believe that the above definition of simplicity provides a 

good heuristic for identifying more efficient models, and for generating simpler causal 

explanations. In particular, it is common engineering practice to simplify models by 

disregarding irrelevant phenomena and by using all applicable approximations. In 

addition, in Chapter 5 we shall introduce a special class of approximations, called 

causa/ approximations, which will ensure that the above definition of simplicity will, 

in fact, lead to simpler causal explanations. 

We will require that adequate models be as simple as possible, provided the rest 

of the criteria discussed in this chapter are satisfied: 

• An adequate model is a simplest model that meets all the criteria discussed in 

this chapter. 

3.9    Summary 

The adequacy of models is closely linked to the task for which the model is to be 

used. In this thesis, we consider the adequacy of models with respect to the task 

of generating causal explanations for phenomena of interest. Causal explanations 

play an important role in reasoning about physical systems, not only as a vehicle 

for communicating with human users, but also to focus other tasks such as diagnosis, 

design, and simulation. A widely used class of causal explanations are based on causal 

dependencies between parameters. These causal dependencies between parameters. 
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also called the causal ordering of the parameters, are derived from the equations 

comprising a device model. 

Our definition of model adequacy is based on the following inputs: 

1. The component library, described in Chapter 2, which is a description of the 

components, their possible models, and various relations between the possible 

models. 

2. The expected behavior, which is the phenomenon for which the causal explana- 

tion is desired. The expected behavior is represented as a query, causes{pi,p2), 

requesting a causal explanation for how one parameter, p*, causally depends on 

another, pj. 

3. The structural context, which includes the different aspects of the structure of 

the device. The structural context defines the basic space of possible device 

models. 

4. The behavioral context, which includes the values of parameters that can be 

used to model the device. 

5. The structural constraints, which are a set of domain-dependent constraints 

that can be evaluated using the structural context and the device model. 

6. The behavioral constraints, which are a set of domain-dependent constraints 

that can be evaluated using the behavioral context, the structural context, and 

the device model. 

Given the above set of inputs, the adequacy of a device model is defined as follows: 

1. An adequate model must be consistent, i.e., its equations must not be overde- 

termined and it must not include contradictory model fragments. 

2. An adequate model must be complete, i.e., its equations must be complete and 

it must include model fragments from every required assumption class. 
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3. An adequate model must be able to explain the expected behavior, i.e., the 

causal ordering generated from the model's equations must subsume the causal 

dependency for which an explanation is requested. 

4. An adequate model must satisfy all domain-dependent structural and behavioral 
constraints. 

5. An adequate model is a simplest model that satisfies the above four conditions. 



Chapter 4 

Complexity of model selection 

In this chapter we analyze the complexity of the problem of finding adequate device 

models, in particular, we will show that this problem is NP-hard. We will provide 

three different proofs of this result, with each proof being based on a special case of 

the general problem. These special cases help to identify three different sources of the 

intractability of the problem of finding adequate device models. Informally, the three 

sources of intractability are: (a) deciding what phenomena to model; (b) deciding 

how to model the selected phenomena; and (c) ensuring that all domain-dependent 

constraints are satisfied. 

In Section 4.1 we present a formalization of the problem of finding adequate mod- 

els. In particular, we show how the elements of this formalization are derived from the 

inputs to the model selection problem discussed in the previous chapter. Section 4.2 

contains the complexity analysis of the different special cases of the general problem 

of finding adequate models. In Section 4.3 we briefly discuss the complexity of some 

related problems. In particular, we show that the problem of finding just a consis- 

tent and complete model is intractable, and that finding adequate models remains 

intractable even if each equation can have exactly one causal orientation 

79 
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4.1    Formalizing the problem 

In this section we develop a formal statement of the problem of finding an adequate 

device model. We start by formalizing the input to the model selection problem, and 

then give a formal statement of the problem. 

4.1.1    Formalizing the input 

In the previous chapter we saw that the inputs to our definition of model adequacy are 

the following: the component library, the expected behavior, the structural context, 

the behavioral context, the structural constraints, and the behavical constraints. 

The formaliz „tion we develop here will include representations of the first two and 

the last two of these inputs. However, the formalization will not include an explicit 

representation of the structural and behavioral contexts. Rather, we assume that 

these are given, and we use them implicitly in formalizing the other inputs. This 

means that the complexity results of this chapter, and the algorithms developed in 

the next chapter, will have nothing to say about how the structural and behavioral 

contexts are computed. Chapters 7 and 8 will discuss this issue in more detail. 

We formalize the input to the model selection problem as a tuple I: 

J = (Af, contradictory, approximation, A, C, p, q) (4.1) 

where M is the set of all applicable model fragments, contradictory and approximation 

are binary relations on model fragments as discussed in Chapter 2, A is the set of all 

applicable assumption classes, C is a set of propositional coherence constraints, and p 

and q are parameters representing the fact that causes{p, q) is the expected behavior. 

We now discuss each of these, focusing in particular on how the component library, 

the structural constraints, and the behavioral constraints axe translated into elements 

of the above tuple. As a typographic convention, we will typeset all elements of the 

input using typewriter iont, and all elements of our formalization using italics or 

calligraphic letters. 
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Propositional coherence constraints 

We start by introducing propositional coherence constraints. A propositional coher- 

ence constraint is just a propositional formula in which the propositions are mod» 

fragments. A propositional coherence constraint is satisfied with respect to a set A/ 

of model fragments just in case the corresponding propositional formula is satisfied 

by the interpretation that assigns true to a proposition if and only if the proposition 

is in M, and false otherwise. For example, the propositional coherence constraint 

(mi V m-i) => ma 

is satisfied by the set {mi,7713} of model fragments.   It is also satisfied by the set 

{m2,m3}, ard by the empty set. 

As a convenient shorthand, we allow the use of assumption classes in proposi- 

tional coherence constraints. Recall that an assumption class is a set of mutually 

contradictory model fragments. Hence, we use an assumption class as a shorthand 

for a disjunction of the model fragments in the acsumption class. For example, if the 

assumption class A contains the model fragments mi and m2, then the propositional 

coherence constraint 

mz=$- A 

is equivalent to the propositional coherence constraint 

ms => (mi V 7712) 

Recall that a model is just a set of model fragments. C is the set of propositional 

coherence constraints that must be satisfied by any adequate model. As we shall 

see, the propositional coherence constraints in C will be defined using the structural 

and behavioral coherence constraints, and the required assumption classes of model 

fragments. 

The component library 

We formalize the component library as a set M' of all model fragments    (Later, 

when we discuss the structural and behavioral preconditions, we will iiaroduce the 
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set M C M', which is the set of all applicable model fragments.) The model fragments 

in M' are constructed from the structural context, which specifies the components 

used in the device, and the component library, which specifies the possible models of 

each component class. M' contains a model fragment for each of the possible ways 

in which each component of the device can be modeled, i.e., if c-1 is a component 

of the device, and if c-1 is an instance of component class C, and if M is a model 

fragment class that is a possible model of C, then M' contains the model fragment 

M(c-l). The possible models of a component class is just the transitive closure of the 

possible-models of the class. 

M    =   {M(c-l) : c-1 is a component of the device 

A c-1 is an instance of component class C (4.2) 

A M is a possible model of C} 

Note that the device components used in defining M' include the structural abstrac- 

tions discussed in Section 2.4.2. 

The component library also defines a number of important relations: contra- 

dictory, approximation, assumption-class, required-assumption-classes, and 

generalization. As discussed in Chapter 2, we use contradictory and approximation 

to define the contradictory and approximation relations between model fragments, 

respectively. In particular, if model fragment class Ml specifies model fragment class 

M2 as a contradictory class, and if c is a component such that Ml (c) ind M2(c) are 

model fragments in M', then we include the literal 

contradictory {m(.c),ll2(c)) 

in our formalization. Similarly, if model fragment class Ml specifies model fragment 

class M2 as an approximation, and if c is a component such that Ml(c) and M2(c) 

are model fragments in M', then we include the literal 

ap^roiimatam (M1 ( c ), M2 ( c)) 

in our formalization. The properties of contradictory and approximation are discussed 

in detail in Chapter 2. For convenience, we restate their most important propert les 
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here: 

-> contradictory [mi, mi) (4.3) 

contradictory{mi,m2) => contradictory{m2,mi) (4.4) 

-i approximation (mi, mj) (4.5) 

approximation{mi,m2) => -'approximation{m2,Tn1) (4.6) 

approxiTnation{mi,m2) A approximation{m2,m3) => approximafion(mi,m3)(4.7) 

approximation{m1,m2) =^ contradictory {mi, 7712) (4.8) 

We use the assumption-classes of model fragment classes to define the set A' of 

all assumption classes. In particular, if c is a component, and M is a model fragment 

class that specifies A as its assumption-class, and if M(c) is a model fragment in 

M', then we say that A(c) is an assumption class in A' that contains the model 

fragment M(c). 

We formalize the required-assumption-classes of model fragment classes using 

prepositional coherence constraints. In particular, if a model fragment class M specifies 

A as a required-assumption-class, and if c is a component such that M(c) is a 

model fragment in M', then we add the propositional coherence constraint 

M(c)=^A(c) 

to the set C of propositional coherence constraints. Since an adequate model must 

satisfy each constraint in C, it follows that every adequate model will include a model 

fragment irom each required assumption class. 

Finally, we represent the generalization relation between model fragment classes 

using propositional coherence constraints. In particular, if a model fragment class Ml 

is a generalization of a model fragment class M2, and if Ml(c) and M2(c) are model 

fragments in M', then we add the propositional coherence constraint 

M2(c)=^Ml(c) 

to the set C of propositional coherence constraints. This ensures that every adequate 

model that models c as an instance of M2 also models it as an instance of Ml. 
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Structural and behavioral preconditions 

The structural and behavioral preconditions associated with a model fragment class 

are necessary conditions for a component to be modeled by that class. Recall that 

structural and behavioral preconditions are constraints that use only structural pred- 

icates and order relations between parameters, i.e., they do not use model fragment 

classes. Hence, these preconditions are not evaluated with respect to a device model, 

but rather can be evaluated using only the structural and behavioral contexts of the 

device. 

We use the structural and behavioral preconditions to define the set M C M' oi 

applicable model fragments, i.e., the set of model fragments for which the structural 

and behavioral preconditions are satisfied. More precisely, let M be a model fragment 

class and let c be a component such that M(c) is a model fragment in M'. M(c) is 

in M if and only if all the structural and behavioral preconditions associated with 

model fragment class M are satisfied when the variable "?obj ect" is bound to c. For 

example, the model fragment Electrical-conductor(wire-l) is in M only if the 

structural precondition 

(and (composition ?object Tmaterial) 

(metal TmateriaZ)) 

is satisfied when "?object" is bound to wire-1. Recall that the other variables in 

this constraint, like "?material," are existentially quantified. 

Hence, from the structural and behavioral preconditions, the structural and be- 

havioral contexts, and the the set M' of all model fragments, we define the set M of 

all applicable model fragments. Using M and the set A' of all assumption classes, it 

is straightforward to define the set A of all applicable assumption classes. Informally, 

A is the set of assumption classes that results from restricting the assumption classes 

in A' to contain only applicable model fragments. More precisely, if A' € A' is an 

assumption class, then let applicable{A') be the maximal subset of A' that contains 

only applicable model fragments, i.e., model fragments from M. Hence, we have: 

A={A:A = applicahk{A') A A' £ A' A 4^0} (4.9) 
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Structural and behavioral coherence constraints 

The structural and behavioral coherence constraints associated with model fragment 

classes are constraints that use structural predicates, order relations between param- 

eters, and unary predicates representing model fragment classes. Hence, these coher- 

ence constraints are evaluated with respect to the structural context, the behavioral 

context, and a device model. We can remove the dependence of these coherence con- 

straints on the structural and behavioral contexts by converting each of them into a 

set of propositional coherence constraints. Conceptually, this is achieved by instanti- 

ating each coherence constraint in all possible ways over the universe of all objects in 

the knowledge base.1 Each resulting instantiated constraint can be converted into a 

propositional coherence constraint by replacing each ground literal in the constraint 

by true, false, or a model fragment, according to the following rules: 

1. If the literal involves a structural predicate, use the structural context to decide 

whether the literal is true or false. 

2. If the literal is an order relation between parameters, use the behavioral context 

to decide whether the literal is true or false. 

3. If the literal involves a unary predicate representing a model fragment class, 

then check whether or not the corresponding model fragment is in .M. (The 

model fragment corresponding to the ground literal (M c) is, of course, M(c).) 

If the corresponding model fragment is in ,M, replace the literal by the model 

fragment, else replace the literal by false. 

Using the above procedure, each instantiated coherence constraint can be converted 

into a propositional coherence constraint. All such propositional coherence con- 

straints, except the ones that are vacuously fme, are added to C as constraints that 

must be satisfied by any adequate model.2 

For example, consider the following structural coherence constraint: 

^he universe of all objects in the knowledge base would include, among others, the components 
in the device, the components terminals, and the parameters. 

2If there axe any vacuously false propositional coherence constraints then that means that the 
corresponding coherence constraint can never be satisfied, and hence there is no adequate model. 
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(implies 

(and (Electromagnet ?object) 

(Wire ?object) 

(coiled-around ?object ?core) 

(Magnetic-material ?core)) 

(Magnet ?core)) 

One way to instantiate <ie above constraint is to bind "Tobject" to wire-1, and to 

bind "Tcore" to bms-1 to get the following ground constraint: 

(implies 

(and (Electromagnet wire-1) 

(Hire wire-1) 

(coiled-around wire-1 bms-1) 

(Magnetic-material bms-1)) 

(Magnet bms-1)) 

To convert the above ground constraint into a prepositional coherence constraint, 

let us assume that the structural context says that wire-1 is a Wire, and that it 

is coiled-around bms-1, which is made of Magnetic-material. Hence, the above 

constraint reduces to the following prepositional coherence constraint: 

Electromagnet (wire-1) =*■ Magnet (bms-1) 

On the other hand, if we bind "?core" to ptr-1, then we get the following ground 

constraint: 

(implies 

(and (Electromagnet wire-1) 

(Wire wire-1) 

(coiled-around wire-1 ptr-1) 

(Magnetic-material ptr-1)) 

(Magnet ptr-1)) 
Since wire-1 is not coiled-around ptr-1, the third conjunct in the antecedent of 

the above constraint gets replaced by false, and hence the propositional coherence 

constraint corresponding to the above ground constraint is vacuously true. 
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In summary, given the structural and behavioral contexts, the structural and 

behavioral coherence constraints can be converted into a set of propositional coherence 

constraints. Note that the above discussion does not imply that it is a good idea to 

convert all the structural and behavioral coherence constraints into propositional 

coherence constraints, or that the above is the best way to do it. The point of 

the discussion is to show that, given the structural and behavioral contexts, the 

structural and behavioral coherence constraints can be viewed as a set of propositional 

coherence constraints. This will simplify the complexity analysis of this chapter, and 

the development of efficient algorithms in the next chapter. 

4.1.2    Problem statement 

Given the formalization of the input to the problem of finding an adequate model as 

the following tuple: 

I = {M, contradictory, approximation, A,C,p, q) 

we are in a position to give a precise statement of the problem itself. Before we do 

this we define three important types of models: coherent models, causal models, and 

adequate models. 

Coherent, causal, and adequate models 

Recall that a model is a set of model fragments. We will require that the model 

fragments in a model must be in M, i.e., we will only consider models consisting of 

applicable model fragments. A coherent model is a complete, consistent model, that 

satisfies all the propositional coherence constraints in C: 

Definition 4.1 (Coherent models) A model M C M is said to be a coherent 

model if and only if the following conditions are satisfied: 

1. M contains no mutually contradictory model fragments. 

2. The equations of M are complete (Definition 3.4)- 
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3. All the constraints in C are satisfied by M. 

Conditions 1 and 2 together ensure that coherent models are consistent (Defini- 

tion 3.6), since if the equations of M are complete then the equations are not over- 

constrained. Conditions 2 and 3 together ensure that coherent models are complete 

(Definition 3.7), since C contains constraints that ensure that coherent models contain 

model fragments from all required assumption classes. 

A causa/ model is a coherent model that also explains the expected behavior. 

Definition 4.2 (Causal model) A model M C M is a causal model, with respect 

to the expected behavior causes{p,q), if and only if (a) M is a coherent model; and 

(b) q causally depends on p in the causal ordering generated from the equations of M, 

i.e.){p,q)€C{E{M)). 

Finally, an adequate model is just a minimal causal model. 

Definition 4.3 (Adequate model) A model M C M is an adequate model if and 

only if M is a causal model and no coherent model strictly simpler than M is a causal 

model, i.e., for all coherent models M', such that M' < M, M' is not a causal model. 

(Model simplicity is defined as in Definition 3.8.) 

The minimal causal model problem 

We now give a formal statement of the problem of finding an adequate model. We 

call this problem the MINIMAL CAUSAL MODEL problem. 

Definition 4.4 (MINIMAL CAUSAL MODEL) Let the input to the problem of finding 

an adequate model be the tuple X: 

X = [M, contradictory, approximation, A, C,p, q) 

where the elements of the tuple are as in Equation 4.1. Find an adequate model with 

respect to X, i.e., find a minimal, causal model with respect to X. 
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To help in analyzing the complexity of the MINIMAL CAUSAL MODEL problem, we 

introduce the CAUSAL MODFL problem, which is the decision problem corresponding 

to the MINIMAL CAUSAL MODEL problem. The CAUSAL MODEL problem asks whether 

or not there exists a causal model, without requiring this causal model to be minimal. 

Definition 4.5 (     USAL MODEL) Let tke input to the problem of finding an ade- 

quate model be ihe ..::ple T: 

X = (A^, contradictory, approximation, A,C,p,q) 

where the elements of the tuple are as in Equation 4-1-   Does there exist a causal 

model with respect to I? 

4.2    Complexity analysis 

In this section we analyze the complexity of the CAUSAL MODEL problem and the 

MINIMAL CAUSAL MODEL problem. In particular, we will show that the CAUSAL 

MODEL problem is NP-complete. An immediate corollary of this is that the MINIMAL 

CAUSAL MODEL problem is NP-hard. Since it is strongly believed that P ^ NP, 

these results imply that, in general, the problem of finding adequate device models 

is intractable, i.e., there is no polynomial time algorithm for finding adequate device 

models. 

We prove that the CAUSAL MODEL problem is NP-complete by first showing that 

it is in NP, and then showing that three of its special cases are NP-hard. The three 

special cases will identify three sources for the intractability of the CAUSAL MODEL 

problem. Informally, the three sources are: (a) deciding what phenomena to model, 

i.e., deciding which assumption classes to use; (b) deciding how to model the chosen 

phenomena, i.e., selecting model fragments from chosen assumption classes; and (c) 

ensuring that causal models satisfy all the prepositional coherence constraints. In 

the next chapter, we will use this knowledge to design special cases of the MINIMAL 

CAUSAL MODEL problem that can be solved in polynomial time. 
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4.2.1     Problem size 

Before we start the complexil, analysis, we define the size of the input to the CAUSAL 

MODEL and MINIMAL CAUSAL MODEL problems. The input to these problems is as 

defined in Equation 4.1, reproduced here for ease of reference: 

J = {M, contradictory, approximation, A, C, p, q) 

We define the size of the input as the sum of: 

1. \M\, the number of model fragments in M; 

2. \C\, the number of constraints in C; 

3. \E{M)\, the number of equations in the model fragments in M; and 

4. \P{M)\, the number of parameters used in the equations of the model fragments 

in M. 

It is easy to see that the amount of space occupied by any reasonable encoding of I 

must be a polynomial function of the size of J.3 In particular, the number of tuples in 

the contradictory and approximation relations is bounded by a quadratic function of 

\M\, and the number of assumption classes in A is bounded by \M\. The complexity 

analyses in this chapter and the next chapter are with respect to the above definition 

of the size of a problem instance. In particular, the phrase "runs in polynomial time" 

will often be used to mean "runs in time polynomial in the size of J," where the 

instance I will be clear from the context. 

4.2.2    Preliminaries 

We start the analysis by showing that the CAUSAL MODEL problem is in NP. 

Lemma 4.1  The CAUSAL MODEL problem is in NP. 

3Note that we have made the (reasonable) assumption that the amount of space used in encoding 
each equation is bounded by a polynomial function of the number of parameters used in the equation. 
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Proof: To show that the CAUSAL MODEL problem is in NP, we need to show that a 

nondeterministic algorithm can find a causal model in (nondeterrnk;-«tic) polynomial 

time. Since there are a finite number of models, each of which can be generated in 

polynomial time, it suffices to show that checking whether or not a model is a causal 

model can be done in time polynomial in the size of J. 

Given Af C .M, it is easy to cneck in polynomial time whether or not M contains 

mutually contradictory model fragments, and whether or not M satisfies all the con- 

straints in C. From the algorithms given in the previous chapter, it is also possible to 

check in polynomial whether or not the equations of M are complete, and whether 

or not q causally depends on p in the causal ordering generated from the equations 

of M. Hence, the CAUSAL MODEL problem is in NP. D 

We now show that the CAUSAL MODEL problem is NP-hard. We will give three 

different proofs of this result. In each proof, we will introduce a subclass of the 

instances of the CAUSAL MODEL problem, and show that even if we restrict ourselves 

to solving just the problem instances in that subclass, the CAUSAL MODEL problem 

is NP-hard. This will allow us to identify three different sources of intractability. 

The NP-hardness of the general CAUSAL MODEL problem is, of course, an immediate 

consequence of the NP-hardness of any of the three subclasses. 

In each of the subclasses of the CAUSAL MODEL problem we will restrict the 

contradictory relation to be a relation that partitions the set of model fragments into 

the set of assumption classes, i.e., two model fragments are in the same assumption 

class if and only if they are mutually contradictory: 

(Vmi,m2 € M) mi ^ mi =$■ {contradictory(mi,m^) = (BA € -4) mi,m2 € A) 

(4.10) 

A consequence of the above restriction is that we can conceptually view the problem 

of finding a causal model as one involving the following two steps: (a) selecting a set 

of assumption classes; and (b) selecting a single model fragment from each selected 

assumption class. Intuitively, this corresponds to deciding which phenomena to model 

(step (a)), and then deciding how to model the chosen phenomena (step (b)). 
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4.2.3    The SELECT MODEL FRAGMENTS problem 

The first special case of the CAUSAL MODEL problem consists of those instances of 

the problem that satisfy the following two conditions: (a) the instance has no propo- 

sitional coherence constraints; and (b) every causal model of the instance includes 

a model fragment from each assumption class. Hence, this special case allows us to 

identify the first source of intractability: choosing a model fragment from each as- 

sumption class in a set of selected assumption classes is intractable. More abstractly, 

even if we knew exactly which phenomena we wanted to model, deciding how to model 

the chosen phenomena is intractable. 

Definition 4.6 (SELECT MODEL FRAGMENTS) This problem is the special case of 

the CAUSAL MODEL problem which includes exactly those instances of the CAUSAL 

MODEL problem in which (a) the contradictory relation partitions the set M of model 

fragvaents into the set A of assumption ch,sses; (b) C = 0; and (c) every causal model 

of the instance includes a model fragment from each assumption class, i.e., if M C M 

is a causal model and A^ A is an assumption class, then M D A ^ 0. 

We now show that the above special case is NP-hard. The proof of this lemma is 

based on a reduction from the ONE-IN-THREE 3SAT problem, a variation of the more 

common 3SAT problem in which an acceptable truth assignment must satisfy exactly 

one literal in each clause. Briefly, the reduction introduces a model fragment for each 

literal in an instance of ONE-IN-THREE 3SAT, with model fragments corresponding 

to complementary literals being placed in the same assumption class. The mapping 

between truth assignments and models is straightforward: a literal is true if and only 

if the corresponding model fragment is in the model. Equations are assigned to model 

fragments to ensure that a model is a causal model if and only if the corresponding 

truth assignment assigns exactly one true literal to each clause. 

Lemma 4.2  The SELECT MODEL FRAGMENTS problem is NP-hard. 

Proof: To show that the SELECT MODEL FRAGMENTS problem is NP-hard, we reduce 

an arbitrary instance of the ONE-IN-THREE 3SAT problem to an instance of the SELECT 
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MODEL FRAGMENTS problem. An instance of the ONE-IN-THREE 3SAT problem is 

defined as follows: 

Definition 4.7 (ONE-IN-THREE 3SAT) Let U = {«!,...,un} be a set of n boolean 

variables, and C — {ci,...,^} a set of m clauses over U, such that each clause 

c,' € C, 1 < « < m, has |c,-| = 3. Is there a truth assignment for U such that each 

clause in C has exactly one true literal? 

The ONE-IN-THREE 3SAT problem is shown to be NP-complete in [Schaefer, 1978]. 

We now reduce an arbitrary instance 

Ii={U,C) 

of the ONE-IN-THREE 3SAT problem to an instance 

I2 = {M, contradictory, approximation, A, 0,p, q) 

of the SELECT MODEL FRAGMENTS problem as follows. 

Introduce a model fragment m; for each literal /in Ji, and a model fragment m: 

M = {mu, : 1 < i < n} U {m*, : 1 < i < n} U {m} 

Let mi and mf be contradictory, where / and / are complementary literals: 

contradictory{rriu^m^), for 1 < t < n 

Note that contradictory partitions M into a set of mutually consistent assumption 

classes, with m being in its own assumption class. This defines A, the set of assump- 

tion classes: 

A = {{m^m,,-,} : 1 < i < n} U {{m}} 

Let approximation be the empty relation, so that no model fragment is an approxi- 

mation of any other model fragment, let C = 0. 

Introduce the set "P of (m -f n + 3) parameters: 

^ = {■» 0) °1» • • •»■Pm+n+2 } 
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We let p = PQ and q = Pm+n+2-   Next, we introduce the set E of (3m + 2n + 3) 

equations:4 

£ = ( U   ^)u( U ^)UG 
l<j<m l<»<n 

where Ej contains an equation for each literal in clause c,, F, contains an equation 

for literals u, and u,-, and G contains three equations, as follows: 

Ej   =   {tji : / is a literal in clause c,} 

G  =   {91,92,93} 

The parameters of the equations in E are defined as follows: 

{PjiPj+i} Ife€^l<;<m 

{^m+i, Pm+,+i} If e € Fi, 1 < i < n 

{Po} lie = g1 

{Po,Pi} Ifc = <72 

,   {-fm+n+i, Pm+n+2 }     If C = ^3 

If e € F, then P(e) = - 

For each e E E, let Pc(e) = P{e). The equations in the model fragments of M are 

defined as follows: 

E{mi)   =   {eji: literal / is in clause Cj} U {/;} 

E{m)   =   {91,92,93} 

That completes the reduction. Clearly, the reduction can be done in polynomial 

time. We now show that Ja is, indeed, m instance of the SELECT MODEL FRAGMENTS 

problem. Since C = 0 in I2, we need only show that every causal model of J2 contains 

a model fragment from each assumption class. 

Let M be any causal model of Jj. We first show that P{M) = P. If P{M) ^ V, 

then there exists some parameter Pk e V, I < k < {m + n + 1), with Pk & P{M) 

{Po and Pm+„+2 must, of course, be in P{M)). Since each equation in E, except gi, 

4The equations that we introduce in this proof, and in all the other proofs in this chapter, will 
not contain any differential equations. Hence, E = ic{E). 
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relates two parameters whose subscripts differ by 1, it follows that no equation relates 

parameters with subscripts less than k to parameters with subscripts greater than k. 

Hence, no parameter with subscript less than k can be related to any parameter with 

subscript greater than k, and hence Po and Pm+n+2 are unrelated, contradicting the 

fact that M is a causal model. Hence P{M) = V. 

Next, we show that E{M) contains exactly one equation from each Ej,l <j <m, 

exactly one equation from each Ft, 1 < t < n, and the three equations in G. First, we 

show that E{M) must contain at least one equation from .£>, 1 < ; < m. If E{M) 

contains no equation from Ej for some j, 1 < j < m, then .E(M) contains no equation 

that relates a parameter with subscript less than or equal to j to a parameter with 

subscript greater than or equal to j +1. This follows from the facts that all equations, 

except gi, relate two parameters whose subscripts differ by 1, and the only equations 

that relate P, to Pj+1 are found in Ej. Hence, PQ and Pm+n+a are unrelated, violating 

the fact that M is a causal model. Hence, .E'(M) contains at least one equation from 

each Ej, I < j < m. A similar argument shows that E{M) contains at least one 

equation from each F,, 1 < t < n, and that E{M) must contain #2 and ^3 (and hence 

gi). Hence E{M) contains at least (m + n + 3) equations. But since M is complete, 

\E{M)\ = \P{M)\ = (m + n + 3), and hence E{M) contains exactly one equation 

from each Ej, I < j < m, exactly one equation from each Ft, 1 < t < n, and the 

three equations in G. 

Recall that the assumption classes of J2 are the following: 

A=   [J {mu.,mu-}u{m} 
l<i<n 

Since M contains the three equations in G, M contains the model fragment m. Now 

we show that M contains a model fragment from each of the other assumption classes, 

i.e., for each t, 1 < t < n, M contains u. or mff.. Since M is consistent, at 

most one of mUi and ma, is in M. Sine ontains an equation from F,, at least 

one of mUi and m^ is in Af. Hence, exactly one of mu. and mu-. is in M. Hence, I2 

is indeed an instance of the SELECT MODEL FRAGMENTS problem. 

We now show that Ii has an acceptable truth assignment if and only if I2 has a 

causal model. 
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(=») Suppose that Ji has an acceptable truth assignment on U.  Let M be the 

following model: 

M = {mUi : Ui is true} U {mu- : u, is false} U {m} 

We claim that A/ is a causal model. First, M contains no mutually contradictory 

model fragments, because if M did contain mutually contradictory model fragments, 

then for some i, 1 < t < n, we have mu.,mu- € M. But this means that u, is both 

true and false, which is impossible. 

!> show that the set of equations of M is complete, it suffices to show, by 

Lemma 3.2, that there is an onto causal mapping from E{M) to P{M). We start 

by claiming that E{M) contains exactly (m + n + 3) equations, one from each 

Eji 1 < J < m, one from each F„ 1 < i < n, and the three equations in G. Since 

m € Af, it follows that gu92,93 € E{M). Since u,-, 1 < i < n, is either true or false, 

M contains exactly one of mu, or mu-., and hence E{M) contains exactly one of fUx 

or /„-.. Hence, E{M) contains exactly one equation from each Fi, 1 < « < n. Finally, 

let lj be the single true literal in clause Cj, 1 < ; < m. This means that m^ € M and 

hence e^ € E{M). Note that if /} is a literal in c, that is not true, it follows that 

mVj $ M and hence c^-jj ^ E{M). Hence, E{M) contains exactly one equation ^om 

each Ej, 1 < j < m. Hence, E{M) contains exactly (m + n + 3) equations. 

We now create a 1-1 mapping from the (m + n + 3) equations of E{M) to the 

parameters of P. Note that if such a mapping is possible, |P(Af)| = (m + n -f 3), 

and hence P{M) = V, in which case the mapping must be an onto mapping, and we 

are done. Map ^ to PQ, ^2 to Px, and gz to Pm+„+2. Map the representative of Ej 

to Pj+1, 1 < ; < m. Map the representative of F. to Pm+.+i, 1 < » < n. It is easy 

to verify ihat this mapping is a valid 1-1 mapping. Figure 4.1 shows this matching. 

Hence, M is complete. 

Finally, we show that M satisfies the expected behavior. The mapping in Fig- 

ure 4.1 shows that (a) Pj depends on PQ because Pi is matched to ^2 and p2 uses 

PQ\ (b) for each j, 1 < ; < m, P,+1 depends on Pj because Pj+1 is mapped to e^ 

which uses Pf, (c) for each i, 1 < t < n, /,
r„+.+1 depends on Pm+. because /„,+.+! is 

mapped to fri which uses Pm+,; and (d) Pm+n+2 depends on Pm+ri+1 because Pm+n+2 
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Po     Pi      P2      ...     Pm+i     Pm+2     . . .     Pm+n+1     Pm+n+2 

ill II II 
^1    92   Ci/, em/m      /ri /,.„ ^3 

lj is the t ue literal in clause Cj,! < j <m 
r,- is Ui if Ui is true, and ü, otherwise, 1 < t < n 

Figure 4.1: Mapping of parameters to equations 

is matched to ^3 which uses Pm+n+i ■ We can put all these dependency links together 

to infer that Pm+n+2 (= q) causally depends on PQ (= p), and hence M satisfies the 

expected behavior. Hence, we have proved that M is ? causal model. 

(■£=) We now prove that if a causal model exists in J2, then there is an acceptable 

truth assignment in Ii. Let M be any causal model of I2. We use M to construct 

an acceptable truth assignment for 1^ as follows: for each Ui eU,l <i <n, let u, be 

true if mUl € M, and u, be false if mu- € M. This truth assignment assigns a unique 

truth value to each u,- € C^, 1 < t < n, since we saw earlier that M contains exactly 

one of mUi and mtf■. 

Next, we prove that each clause Cj € C, 1 < ; < m, has exactly one true literal. 

To prove this, we prove that a literal / in clause c, is true if and only if equation 

eji € E{M). If eji € E{M), it follows that m; € M, and hence / is true. On the 

other hand, if / is true, then m/ € M, and hence eji € E{M). However, we know that 

E{M) contains exactly one equation from Ej, and hence exactly one literal in Cj is 

true. Hence, the truth assignment is acceptable. 

Hence, we have shown that Ii has an acceptable truth assignment if and only if 

I2 has a causal model. Hence, the SELECT MODEL FRAGMENTS problem is NP-hard. 
D 

4.2.4    The SELECT ASSUMPTION CLASSES problem 

The second special case of the CAUSAL MODEL problem consists of those instances 

of the problem that satisfy the following two conditions: (a) the instance still has no 

propositional coherence constraints; and (b) each assumption class has exactly one 
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model fragment. Since each assumption class contains exactly one model fragment, 

any causal model can be viewed as merely selecting a set of assumption classes. Hence, 

this special case identifies the second source of intractability: deciding which assump- 

tion classes to select is intractable. More abstractly, deciding which phenomena we 

want to model is itself intractable. 

Definition 4.8 (SELECT ASSUMPTION CLASSES) This problem is the special case of 

the CAUSAL MODEL problem which includes exactly those instances of the CAUSAL 

MODEL problem in which (a) the contradictory relation partitions the set M of model 

fragments into the set A of assumption classes; (b) C = 0; and (c) every assumption 

class in A contains exactly one model fragment, i.e., the contradictory relation is the 

empty relation. 

We now show that the SELECT ASSUMPTION CLASSES problem is NP-hard. The 

proof is a minor variation of the proof of Lemma 4.2. 

Lemma 4.2 The SELECT ASSUMPTION CLASSES problem is NP-hard. 

Proof: The proof of this lemma is a minor variation of the proof of Lemma 4.2. In 

the proof of Lemma 4.2, we reduced an arbitrary instance Ij of the ONE-IN-THREE 

3SAT problem to an instance It of the SELECT MODEL FRAGMENTS problem. Here 

we reduce Ij to an instance T2 of the SELECT ASSUMPTION CLASSES problem. J'2 is 

the same as J2, except for the following differences. 

In J2, model fragments corresponding to complementary literals were made mutu- 

ally contradictory. In contrast, in T2, we make the contradictory relation the empty 

relation, i.e., there are no mutually contradictory model fragments. Hence, each 

assumption class in J^ contains exactly one model fragment. 

The second difference is that, in T2, we add an equation to each model fragment 

as follows. In particular, we introduce n new parameters: 

Q = {9l,92,...,9n} 

and 2n new equations: 

/f = {Äi, Äs,..., hn} U {^1,^2,..., hn} 
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The parameters of the equations in H are defined as follows: 

P{hi) = Pe(hi) = P{Ki) = Pcihi) = {9.}, for 1 < i < n 

i.e., both hi and hi use only the parameter qi. 

We add the equation hi to model fragment mu., and the equation hi to model 

fragment m^, for 1 < » < n. As a consequence, no consistent model of T2 can 

include both mu. and m«.. This is because the equations of a model that includes 

both mUt and m^ would include equations hi and hi, and the equations would be 

overconstrained (see Definition 3.4 with 5 = {hi, hi}.) 

Hence, effectively, model fragments mUi and mtf. behave as though they were 

contradictory. Hence, I2 and I'2 have the same causal models. Hence, Ji has an 

acceptable truth assignment if and only if T2 has a causal model. Hence, the SELECT 

ASSUMPTION CLASSES problem is NP-hard. D 

Another view of the results of Lemmas 4.2 and 4.3 is that the fundamental source 

of intractability is that a causal model must choose at most one of the model fragments 

mUi and m^.: in Lemma 4.2, the choice is enforced by making mu- and m^ mutually 

contradictory; in Lemma 4.3, the choice is enforced by assigning equations to mUi and 

m^ such that a model that contains both of them becomes overconstrained. This 

suggests that other ways of enforcing such a choice would also lead to intractability. 

In particular, if C contained constraints of the form 

-'mUi V -im^ (4.11) 

then any coherent model would have to choose at most one of mu. and m^, leading 

to intractability. Hence, allowing propositional coherence constraints of the above 

form (also called negative clauses) is yet another source of intractability. In the next 

section, we show that other very simple types of propositional coherence constraints 

can lead to intractability. 

4.2.5    The SATISFY CONSTRAINTS problem 

The third special case of the CAUSAL MODEL problem consists of those instances of 

the problem that satisfy the following two conditions: (a) as in the first case, every 
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causal model of the instance includes a model fragment from each assumption class; 

(b) model fragments in the same assumption class have the same sets of equations; 

and (c) C contains only definite horn clauses (a definite horn clause is a disjunction 

of literals with exactly one positive literal). Conditions (a) and (b) ensure that, if C 

were empty, then finding a causal model would be trivial: a causal model exists if and 

only if selecting an arbitrary model fragment from each assumption class leads to a 

causal model. Heace, the intractability of this problem stems from the causal model 

having to satisfy ehe constraints in C, even when the constraints are restricted to be 

definite horn clauses. 

Definition 4.9 (SATISFY CONSTRAINTS) This problem is the special case of the 

CAUSAL MODEL problem which includes exactly those instances of the CAUSAL MODEL 

problem in which (a) the contradictor < relation partitions the set M of model frag- 

ments into the set A of assumption classes; (b) every causal model of the instance 

includes a model fragment from each assumption class; (c) model fragments in the 

same assumption class have the same sets of equations; and (d) C contains only def- 

inite horn clauses. 

We now show that the SATISFY CONSTRAINTS problem is NP-hard. 

Lemma 4.4  The SATISFY CONSTRAINTS problem is NP-hard. 

Proof: Once again the proof is based on a reduction from the ONE-IN-THREE ?SAT 

problem, i.e., we will reduce an arbitrary instance 

Ii = {U,C) 

of the ONE-IN-THREE 3SAT problem (see Definition 4.7) to an instance 

T2 = {M, contradictory, approximation, A,C,P,9) 

of the SATISFY CONSTRAINTS problem.   Introduce a model fragment m, for each 

literal / in Ji: 

M = {mUi : 1 < i < n} U {m*. : 1 < i < n} 
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Let m; and mj- be contradictory, where / and / are complementary literals: 

con<racftdorj/(mu.,müi),for 1 < i < n 

Note that contradictory partitions M into a set A of assumption classes: 

A = {{m^m*,} : 1 < » < n} 

Let approximation be the empty relation. Introduce the set T5 of (n -f 1) parameters: 

V={Po,Pu...,Pn} 

Let p = PQ, and q = Pn. Next, introduce the set i? of n + 1 equations: 

E = {eo,ei,e2,...,en} 

The parameters of these equations are defined as follows: 

^(eo) = {Po} 

P(e.) = Pe(e,) = {Pi-uPi]   for 1 < i < n 

i.e., each equation (except eo) relates a pair of consecutively numbered parameters. 

Assign the equations to the model fragments as follows: 

E{mUl) = E{m^) = {ecCj} 

E{mUi) = E{mül) = {e,}      for 2 < i < n 

Note that model fragments in the same assumption class are assigned the same set of 

equations. Finally, we introduce the set C of 3m propositional coherence constraints. 

C will contain 3 constraints from each clause in C. Let us assume that the three 

literals in clause c, are named /_,!, /j2, and IJZ, 1 < j < m. The 3m constraints in C 

are defined as follows: 

C=   [j  { (m,-1Am^)sm,i8, (4.12) 

(m,^ A mz-J = m/;2, 

(m/;2 
Ami-3) = mi}1 } 
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where the literal / is the complement of the literal /, i.e., if / is ü,- then 1 is u, and vice 

versa. Note that a constraint of the form 

(mi A 7712) = ms 

is equivalent to the following three definite horn clauses: 

->mi V ->m2 V ma 

->m3 V mi 

-'mz V m2 

That completes the reduction. Clearly, the reduction can be done in polynomial time. 

We now show that I2 is, in fact, an instance of the SATISFY CONSTRAINTS prob- 

lem. Conditions (a), (c), and (d) in Definition 4.9 are straightforward to verify. Hence, 

we only need to show that every causal model of I2 contains a model fragment from 

each assumption class in A. Let M C .M be a causal model IV 

First, we show that P{M) = V, i.e., the equations of M contain all the parameters 

in V. Since M is a causal model, P{M) must contain PQ (= p) and Pn (= q). Suppose 

P{M) does not contain P,, 0 < i < n. Since equations in the model fragments of M 

relate only consecutively numbered parameters (except eo which contains only one 

parameter), it follows that no equation relates parameters numbered less than i to 

parameters numbered greater than i. Hence, Po and Pn are unrelated, and hence M 

is not a causal model. Hence, P{M) contains all the parameters in V. 

Since P{M) = "P, it follows that |P(M)| = (M 1). Since M is complete, it 

follows that \E{M)\ = (n + 1). However, note that each model fragment has exactly 

one equation, except mU] and m,,-, which have two. Since m«, and m^ are in the 

same assumption class, it follows that the only way E{M) can have (n + 1) equations 

is if M contains a model fragment from each assumption class. Hence, every causal 

model of J2 contains a model fragment from each assumption class. Hence, J2 is an 

instance of the SATISFY CONSTRAINTS problem problem. 

Now we show that Ji has an acceptable truth assignment if and only if J2 has a 

causal model. 
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(=») Suppose that Ii has an acceptable truth assignment on U. Let M be the 

following model: 

M = {mUt : Ui is true) U {m^. : <i, is false} 

We claim that M is a causal model. First, M contains no mutually contradictory 

model fragments, because if M did contain mutually contradictory model fragments, 

then for some t, 1 < i < n, we have mUi,m^ € M. But this means that u,- is both 

trut and false, which is impossible. 

Next, we show that M contains a model fragment from each assumption class. 

This is a direct consequence of the fact that each u^, 1 < i < n, is either true or false. 

Hence, either mUi or mu- is in M. Hence, M contains a model fragment from each 

assumption class. 

Since M contains a model fragment from each assumption class, it follows that 

E{M) = E. It is easy to verify that £ is a complete set of equations, and that Pn 

causally depends on Po in the causal ordering generated from E. 

Finally, we show that all the constraints in C are satisfied. Since, for any literal /, 

mi and mj are contradictory, it is easy to see that the constraints in C axe satisfied by 

M if only if M contains exactly one model fragment from each of the following sets: 

where /ji, /j2, and IJZ are the three literals in clause Cj. For example, if M does not 

contain m/^ and m/j2, for some \ < j <m, then the constraint 

(m^ Am,-,) sm;^ 

is satisfied if and only if mi}3 € M. Similarly, if M contains mii3 then the above 

constraint is satisfied if and only M does not contain m/^ and mij7. Since we started 

with an acceptable truth assignment, it follows that exactly one of the literals in 

for each 1 < j < m, is true. Hence, for each I <j <m, exactly one model fragment 

in 
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is in Af. Hence, all the constraints in C are satisfied. Hence, M is a causal model. 

(«=) We now prove that if J2 has a causal model, then there is an acceptable truth 

assignment for Jj. Let M be a causal model of Jj. We use M to construct a truth 

assignment for Jj as follows: for each u. E U,l < i < n, let u, be true if mUi € M, 

and Ui be false if mu- € A/. We now prove that this is an acceptable truth assignment 
for Ii. 

First, we note that the truth assignment assigns exactly one truth value to every 

variable in U. This is a direct consequence of the fact that M contains a model 

fragment from each assumption class in A (shown earlier). Hence, M contains exactly 

one of mu. and m*,, for every 1 < e < n. Hence, «.- is assigned either true or false for 

each Ui € U. 

Next, we show that the truth assignment is such that each clause c, € C has 

exactly one true literal. Let Cj = {lju lj2, lj3}, 1 < j < m. We have already seen that 

the constraints in C have been constructed to ensure that every causal model selects 

exactly one model fragment from the set 

{ml}1,mij2,mii3} 

for each 1 < ; < m.   Hence, the corresponding truth assignment assigns true to 

exactly one literal in each 

VjiJi2,lj3} 

fc* 1 < .7 < "i-   Hence, the truth assignment is an acceptable truth assignment. 

Hence, if I2 contains a causal model, Ii contains an acceptable truth assignment. 

Hence, Ii contains an acceptable truth assignment if and only if I2 contains a 

causal model. Hence, the SATISFY CONSTRAINTS problem is NP-hard. D 

4.2.6    The intractability of finding causal models 

An immediate consequence of the above three lemmas is the intractability of the 

CAUSAL MODEL problem. 

Theorem 4.1  The CAUSAL MODEL problem is NP-complete. 



4.3.   OTHER COMPLEXITY RESULTS 105 

Proof: Since the SELECT MODEL FRAGMENTS problem, the SELECT ASSUMPTION 

CLASSES problem, and the SATISFY CONSTRAINTS problem are all special cases of 

the CAUSAL MODEL problem, an immediate corollary of any one of the above three 

lemmas (Lemmas 4.2, 4.3, 4.4) is that the CAUSAL MODEL problem is NP-hard. In 

conjunction with Lemma 4.1, we can immediately infer that the CAUSAL MODEL 

problem is NP-complete. ü 

An immediate consequence of the above theorem is that finding an adequate model 

is NP-hard. 

Theorem 4.2  The MINIMAL CAUSAL MODEL problem is NP-hard. 

Proof: Since the set of all models is finite, it follows that a minimal causal model 

exists if and only if a causal model exists. Hence, an algorithm for finding a minimal 

causal model can be used to decide whether or not there exists a causal model. 

Hence, the CAUSAL MODEL problem is Turing-reducible5 to the MINIMAL CAUSAL 

MODEL problem. Since the CAUSAL MODEL problem is NP-complete, it follows that 

the MINIMAL CAUSAL MODEL problem is NP-hard. 0 

4.3    Other complexity results 

In the previous section, we investigated the complexity of finding causal models. In 

this section we will briefly investigate the complexity of two other cases. The first case 

is a restriction of the CAUSAL MODEL problem in which each equation has exactly 

one causal orientation. This is an interesting case because it is the same restriction 

as the one used in QP Theory [Forbus, 1984] and its derivatives. The second case is a 

variation of the CAUSAL MODEL problem in which we do not require that models be 

able to explain the expected behavior, i.e., we look for coherent models, rather than 

causal models. This is interesting because, while we may not always be interested in 

causal models, we will certainly insist that device models be coherent. 

informally, a problem 11! is Turing-reducible to a problem 112 if there exists an algorithm Ai 
that solves Ili using a hypothesized algorithm A2 for solving 112, such that Ai is a polynomial time 
algorithm if and only if ^ is a polynomial time algorithm (Carey and Johnson, 1979]. 
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We will show that both the above cases are intractable. Our proofs are based on 

on the proof of Lemma 4.2, but the proofs could also have been based on the proofs 

of Lemmas 4.3 and 4.4. 

4.3.1    Fixed causal orientations 

We now show that, even if each equation is restricted to have a single causal orienta- 

tion, the problem of finding a causal model remains intractable. 

Definition 4.10 (FIXED ORIENTATION)  This problem is the special case of the 

CAUSAL MODEL problem in which each equation has a fixed causal orientation: 

VeeE{M) \Pc{e)\ = l 

Lemma 4.5  The FIXED ORIENTATION problem is NP-complete 

Proof: The proof of this lemma is a minor variation of the proof of Lemma 4.2. In 

the proof of Lemma 4.2, we reduced an arbitrary irstance Jj of the ONE-IN-THREE 

3SAT problem to an instance I2 of the SELECT MODEL FRAGMENTS problem. Here 

we reduce Ix to an instance T2 of the FIXED ORIENTATION problem. T2 is the same 

as J2, except that we modify the definition of Pc as follows. 

In the proof to Lemma 4.2, we had made Pc{t) = P{e), i.e., each equation could 

causally determine any parameter in that equation. Here we restrict Pc{e) as follows: 

{Pj+i}     UeeE^lKjKm 

{Pm+,+J}   If ee/^l <t<n 

{Po}       Ue = g1 

[Pi]       lie = g2 

{^m+n+2}   If e = <fc 

i.e., each equation has exactly one causal orientation. 

We now show that J2 and T2 have the same causal models. It is easy to see that 

any causal model of I'2 is also a causal model of I2. Hence, we need only show that 

a causal model of 12 is also a causal model of T2. 

In the proof of Lemma 4.2, we made the following claim about all the causal 

models of I2: 

If c € £, then Pc{e) = 
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... and hence E{M) contains exactly one equation from each Ej,l <j < 

m, exactly one equation from each -F,, 1 < t < n, and the three equations 

in G. 

Furthermore, when a model is of the above form, we constructed a causal mapping 

as follows: 

... Map gi to PQ, 52 to Pi, and g3 to Pm+n+2- Map the representative of Ej 
to Pj+i, l <j <m- Map the representative of F, to Pm+i+i, 1 <i <n. 

It is easy to see that the above mapping can still be done when we restrict Pc as 

shown above. Hence, any causal model in the original proof, remains a causal model 

even with the restriction on Pc. Hence, every causal model of I2 is a causal model of 
T 

Since Ji has an acceptable truth assignment if md only if I2 has a causal model, 

it follows that Ji has an acceptable truth assignment if and only if T7 has a causal 

model. Hence, the FIXED ORIENTATION problem is NP-hard. 

The FIXED ORIENTATION problem is in NP because the CAUSAL MODEL problem 

is in NP. Hence, the FIXED ORIENTATION problem is NP-complete. D 

The above lemma shows that the problem of finding adequate device models re- 

mains intractable even when each equation is restricted to have a single causal orien- 

tation. Since the above proof is based on the proof of Lemma 4.2, it means that, even 

with the restriction on the causal orientations of equations, selecting model fragments 

from selected assumption classes remains intractable. A similar proof, based on the 

proof of Lemma 4.3, shows that, even with the restriction on the causal orientations 

of the equations, selecting a set of assumption classes remains intractable. 

4.3.2    Finding coherent models 

We now show that deciding whether or not there exists a coherent model, rather than 

a causal model, is also NP-complete. 
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Definition 4.11 (COHERENT MODEL) Let the input to the COHERENT MODEL prob- 

lem be the tuple X: 

X = {M., contradictory, approximation. A, C) 

where the elements of the tuple are as in Equation 4-1 • Does there exist a non-empty 

coherent model with respect to X? 

Lemma 4.6 The COHERENT MODEL problem is NP-complete. 

Proof: The proof of this lemma is a variation of the proof of Lemma 4.2. In the 

proof of Lemma 4.2, we reduced an arbitrary instance Xi of the ONE-IN-THREE 3SAT 

problem to an instance J2 of the SELECT MODEL FRAGMENTS problem. Here we 

reduce Jj to an instance X'2 of the COHERENT MODEL problem. X'2 is the same as 

I2, except for some modifications. The net result of these modifications will be that 

every coherent model of X'^ will be a causal model of J2, and vice versa. Hence, Ji 

will have an acceptable truth assignment if and only if T2 has a coherent model. 

The modifications we make are as follows. We introduce the set Q of m parame- 

ters: 

^ = {9i,92,...,9m} 

We also introduce the set H of 3m equations: 

H = {hji : I \s a. literal in clause Cj) 

i.e., there is a new equation corresponding to each literal in each clause. The param- 

eters of the equations are defined as follows: 

P{hjl) = Pc{hil) = {qj},l<i<m 

i.e., the equations corresponding to thuse c, can determine qj. We assign these new 

equations to the model fragments in the same way that we assigned the equations in 

E. In particular, we add equation hji to model fragment m/. Hence, the equations of 

model fragment mi are: 

E{mi) = {eji : literal / is in clause c,} U {//} U {hji : literal / is in clause Cj} 
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That concludes the modifications to be made to I2 to get Jj.  We now show that 

every coherent model of T2 is a causal model of J2, and vice versa. 

First, we show that every coherent model of T2 contains at most one equation 

from Ej,l < j < m, and at most one equation from Fi,l < i <n. 

Because of the equations that we added to T2, if literals /j and I2 are in the same 

clause, say Cj, then it means that model fragments m^ and m;2 cannot be used in the 

same consistent model. This follows from the fact that, if they are used in the same 

model, then the model's equations would include both h^ and hji2. But it is easy to 

verify that {hji^hj^} is an overconstrained set of equations. Hence, the model is not 

consistent. An immediate consequence of this observation is that a consistent model 

can contain at most one equation from each Ej, 1 < j < m. 

Similarly, recall that the two equations in each Fi, 1 < t < n, are assigned to 

contradictory model fragments. Hence, it follows that that any consistent model can 

contain at most one equation from each Fi, I < i < n. 

Now we show that any coherent model of T2 must contain exactly one equation 

from each Ej, 1 < j < m, exactly one equation from each F,, 1 < i < n, and the 

equations 51,52,03• Let M be any coherent model o{T2. Consider the following causal 

mapping (based on the mapping shown in Figure 4.1). If ^ € E{M), then map gi to 

Po; If 02 € E{M), then map g^ to A; If ^ e E{M), then map g3 to Pm+„+2; if E{M) 

contains an equation from Fj, 1 < ; < m, then map that equation to Pj+1; if E{M) 

contains an equation from F^, 1 < i < n, then map that equation to Pm+i+i. The last 

two are possible because we know that any consistent model can contain at most one 

equation from each Ej and at most one equation from each F,. If each parameter in 

V is matched to an equation by the above mapping, then this is the same mapping 

as the one shown in Figure 4.1, and the coherent model is also a causal model of I2. 

If, on the other hand, some parameter is not matched by the above mapping, 

then we show that M is not complete, i.e., there is a parameter in E{M) that is 

not matched. Let F, be the parameter with the largest subscript such that F, is not 

matched but Fj+1 is matched. Such a F, must exist, for if Fm+n+2 is the unmatched 

parameter with the largest subscript, then Fi must also be unmatched (since ^2 and 

#3 belong to the same model fragment).  Hence, either none of the parameters are 



HO CHAPTER 4.   COMPLEXITY OF MODEL SELECTION 

matched (in which case the model is empty), or there is a parameter between Pi and 

■'m+n+2 which is matched, and hence the required Pi must exist. 

Given such a P., it is easy to check that Pi+1 must be matched to an equation, 

e, with parameters P{e) = {^,PI+1}. Since e € £(M), it follows that P.- € P{M). 

Hence, since Pi is unmatched, it follows that E{M) is incomplete. Hence, we have 

shown that if M is coherent, then all the parameters in V are matched, and hence 

the coherent model of T2 is also a causal model of J2. 

It is easy to see that every causal model of I2 is also a coherent model of T2. 

Hence, a model is a causal model of J2 if and only if it is also a coherent model of T2. 

Since Ji contains an acceptable truth assignment if and only if I2 contains a causal 

model, it follows that I-! contains an acceptable truth assignment if and only if T2 

contains a coherent model. Hence, the COHERENT MODEL problem is NP-hard. 

The COHERENT MODEL problem is clearly in NP (the proof is similar to the proof 

that the CAUSAL MODEL problem is in NP). Hence, it follows that the COHERENT 

MODEL problem is NP-complete. Ü 

Since the above proof is based on the proof of Lemma 4.2, it identifies a source 

of intractability of the COHERENT MODEL problem: even if we are interested only 

in coherent models, choosing model fragments from selected assumption classes is 

intractable. Similar proofs, based on the proofs to Lemmas 4.3 and 4.4, can be used 

to identify the other sources of intractability of the COHERENT MODEL problem. 

4.4    Summary 

In this chapter we analyzed the complexity of the problem of finding adequate de- 

vice models. We started by developing a formal statement of the problem. This 

development showed how the component library, consisting of model fragment classes 

and first-order constraints, can be converted into a set of model fragments, a set of 

relations between model fragments, and a set of prepositional coherence constraints. 

This conversion is done with the help of the structural and behavioral contexts. 

We then showed that the problem of finding adequate device models is intractable. 

We gave three different proofs for this result, which helped us identify three different 
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sources of the intractability. Informally, intractability arises in (a) deciding what phe- 

nomena to model; (b) deciding how to model selected phenomena; and (c) satisfying 

any domain-dependent constraints. 

We then showed that certain related problems are also intractable. We first showed 

that, even if equations are restricted to have fixed causal orientations, the problem of 

finding adequate device models remains intractable. We also showed that the problem 

of finding coherent models, rather than causal models, is also intractable. 



Chapter 5 

Causal approximations 

In the previous chapter we showed that the problem of finding adequate device mo dels 

(the MINIMAL CAUSAL MODEL problem) is intractable. This means that there is no 

efficient, polynomial time algorithm for finding adequate models—any algorithm for 

finding such models will, in the worst case, take an exponential amount of time. To 

put it another way, any algorithm for finding adequate models will be forced to search 

a significant portion of the exponentially large space of possible device models. Unfor- 

tunately, even for fairly simple devices, the space of of possible models is prohibitively 

large. Searching any significant portion of such a huge space is unthinkable. 

However, the apparent intractability of finding adequate models seems to directly 

contradict the informal observation that trained engineers are remarkably good at 

providing parsimonious causal explanations for phenomena. One way to resolve this 

apparent contradiction is to assume that trained engineers are not solving the general 

MINIMAL CAUSAL MODEL problem. Rather, the problem instances that they normally 

encounter are drawn from a subclass of the MINIMAL CAUSAL MODEL problem which 

can, in fact, be solved efficiently. In this chapter, we identify such an efficiently 

solvable subclass. We believe that commonly encountered instances of the MINIMAL 

CAUSAL MODEL problem are, in fact, drawn from this subclass. 

Since this chapter is quite long, we give a detailed road map of its sections. Sec- 

tion 5.1 introduces the basic idea underlying the efficiently solvable subclass of the 

MINIMAL CAUSAL MODEL problem.  It introduces the upward failure property, and 
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shows that if an instance of the MINIMAL CAUSAL MODEL problem satisfies the up- 

ward failure property, and if the immediate simplifications of a coherent model can 

be generated in polynomial time, then a minimal causal model can be found in poly- 

nomial time. Unfortunately, in general, it is difficult to decide whether or not the 

upward failure property is satisfied, and whether or not coherent models have a poly- 

nomial number of immediate simplifications. Hence, the rest of the chapter focuses 

on finding efficient characterizations of these properties. 

Section 5.2 introduces a set of preliminary restrictions on the MINIMAL CAUSAL 

MODEL problem. Sections 5.3 and 5.4 introduce a set of restrictions on the MINIMAL 

CAUSAL MODEL problem that ensure that the upward failure property is satisfied. 

Section 5.3 introduces a special class of approximations, called causal approximations, 

and shows that when all the approximations axe causal approximations, the causal 

relations entailed by a model decrease monotonically as model fragments are replaced 

by their approximations. Section 5.4 generalizes these results to the case in which 

models are also simplified by dropping model fragments. 

Section 5.5 and 5.6 focus on the problem of efficiently generating the immediate 

simplifications of a coherent model. Section 5.5 shows that the model fragments of a 

coherent model can be approximated one at a time. Section 5.6 introduces a syntactic 

restriction on the expressive power of the propositional coherence constraints in C. 

This restriction ensures that models can be efficiently simplified. 

Finally, Section 5.7 puts all the restrictions together, and presents an efficient 

algorithm for finding a minimal causal model. Throughout the chapter, we will also 

discuss the reasonableness of ihe restrictions. 

The discussion in this chapter is restricted to models that do not contain differ- 

ential equations. Differential equations are discussed in Chapter 6. In the rest of this 

chapter, we follow the terminology introduced in the previous chapter and let the 

tuple 

J = {M, contradictory, approximation, A,C,p, q) (5.1) 

be an arbitrary instance of the MINIMAL CAUSAL MODEL problem, where the elements 

of the tuple are as in Equation 4.1. 
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5.1    Upward failure property 

Intuitively, the reason that the MINIMAL CAUSAL MODEL problem is intractable seems 

to be that knowing whether a particular model is, or is not, a causal model tells us 

very little about which other models are, or are not, causal models. This means that 

there is no "clever" way to organize the search for adequate models, that allows us to 

rule out "large" parts of the search space by explicitly checking only a "small" part 

of the search space. With this intuition in mind, we introduce the upward failure 

property. 

The upward failure property is based on the intuition that if a model is unable 

to explain the phenomenon of interest, there is little reason to believe that a simpler 

model will be able to explain that phenomenon. We make this precise with the 

following definition, which is similar in spirit to the one given in [Weld and Addanki, 

1991]: 

Definition 5.1 (Upward failure property) An instance I of the MINIMAL CAUS- 

AL MODEL problem is said to satisfy the upward failure property if and only if for all 

coherent models M C M, if M is not a causal model, then no strictly simpler model 

is a causal model, i.e., no model M' C M and M' < M is a causal model. 

In essence, the upward failure property property says that the simpler the model, the 

less it can explain. Of course, it is by no means obvious that simpler models explain 

fewer phenomena. However, it does seem to be standard engineering practice that 

models that account for more phenomena are more complex by our definition, i.e., 

modeling more phenomena more accurately leads to models that can explain more. 

This is, of course, not an argument for claiming that the upward failure property 

is satisfied by all commonly encountered instances of the MINIMAL CAUSAL MODEL 

problem. Rather, it merely provides a motivation for our definition of the upward 

failure property. 
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5.1.1    Efficient model selection algorithm 

Earlier we said that the reason that the MINIMAL CAUSAL MODEL problem is in- 

tractable seems to be that knowing whether a particular model is, or is not, a causal 

model tells us very little about which other models are, or are not, causal models. 

The upward failure property addresses exactly this problem: knowing that a coherent 

model is not a causal model allows us to rule out all simpler models as possibly ade- 

quate models. Hence, we can exploit this property to develop an efficient, polynomial 

time algorithm for solving instances of the MINIMAL CAUSAL MODEL problem that 

satisfy the upward failure property. The algorithm we develop has two parts: (a) 

finding an initial causal model; and (b) finding an adequate model by simplifying the 

initial causal model. We start by discussing how a causal model can be simplified, 

and then discuss how we find an initial causal model. 

Simplifying a model 

A causal model can be simplified to a minimal causal model using the function find- 

minimal-causal-model shown in Figure 5.1. This function takes two arguments: (a) 

J, an instance of MINIMAL CAUSAL MODEL; and (b) a coherent model M. It returns 

an adequate model (i.e., a minimal causal model) that is simpler than M. If there is 

more than one such adequate model, it returns the first one it finds. If no such model 

exists, it returns nil. 

The simplifications function, used in find-minimal-causal-model, when applied to 

a coherent model M, returns the set of coherent models that are immediate simplifi- 

cations of M. A coherent model M' is an immediate simplification of M if and only 

\i M' < M and there does not exist a coherent model M" such that M' < M" < M. 

simplifications{M,I) = 

{M':   M' is coherent wrt I (5.2) 

AM' <M 

A (VM") M' < M" < M => M" is not coherent wrt 1} 

Find-minimal-causal-model{M,I) works by systematically searching the immediate 

simplifications of M, until it finds a causal model M' such that all the immediate 
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functi on find-miniTnal-causal-model{M, X) 
/* I Is assumed to satisfy the upward failure property */ 
/* M is assumed to be coherent */ 
if M is not a causal model then 

/* Since no simpler model can be a causal model */ 
return nil 

else 
for each M' € simplifications{M,I) do 

result := find-minimal-causal-modd{M',I) 
if rtsult ^ nil then 

/* A simpler causal model has been found */ 
return result 

endif 
endfor 
/* No simplification is a causal model, but M is */ 
return M 

endif 
end 

Figure 5.1: function find-minimal-causal-model 

simplifications of M' are not causal models. The upward failure property then assures 

us that M' is a minima? causal model. 

The following two lemmas establish the correctness and efficiency of this function. 

The proofs will be by induction. This is possible because every recursive call made 

by find-minimal-causal-model{M,I) replaces M by a model that is strictly simpler 

than M. Since there are a finite number of models, the recursive calls are guaranteed 

to bottom out, and hence we can use induction in our proofs. We first prove the 

correctness of find-minimal-causal-model. 

Lemma 5,1 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies the upward failure property, and let M C M be a coherent model. Then 

find-minimal-causal-model{M,I) returns an adequate model (i.e., a minimal causal 

model) of I that is simpler than M, if it exists, and nil otherwise. 

Proof: We prove this lemma by induction. There are two base cases: 
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1. First, M is not a causal model. Since, I satisfies the upward failure pojwty, 

it follows that there is no causal model simpler than M, and hence no adeq-^te 

model simpler than M. Since M is not a causal model, the condition of tiv irst 

if statement succeeds, find. find-minimal-causal-rnodel{M,1) returns nit Hence, 

the lemma is true for this base case. 

2. Second, M is a causal model, but it has no immediate simplifications. Hence. M 

is an adequate model. In this case, find-minimal-causal-model{M,I) enters the 

else clause, does not enter the for loop, and immediately returns M. Hence, 

the lemma is also true for this base case. 

Now, for the inductive step, assume that M is a causal model with immed* ^ 

simplifications. There are two cases: 

1. For every A/' € simplifications{M,I), find-minimal-causal-model{M',1) returns- 

nil. By induction, this means that there is no adequate model that is simpler 

than any of the immediate simplifications of M. But every coheveut model that 

is strictly simpler than M is simpler than some immediate simplification of M. 

Hence, it follows that there is no adequate model that is strictly simpler than \{. 

Since M is a causal model, it follows that M is an adequate model. When every 

M' € simplifications{M,I) is such that find-minimal-causal-model{M',I) re- 

turns nil, find-minimal-causal-model{M, I) exits the for, and returns M. Hence, 

the lemma is satisfied for this case of the inductive step. 

2. M' € simplifications{M,J) is such that find-minimal causal-modtl{M',I) re- 

turns a non-nil value. Let M' be the first such model encountered in the 

for loop. Hence, find-minimal-causal-model{M,I) can be seen to return find- 

minimal-causal-model{M' ,1). By induction, the value returned by find-mini- 

mal-causal-model{M',1) is an adequate model that is simpler than M'. Since 

M' < M, it follows that this model is also an adequate model simpler than M. 

Hence, the lemma is satisfied for this case of the inductive step. 

Hence, if Mis a coherent model, then find-minimal-causal-model{M ,1) returns 

an adequate model of I that is simpler than M, if it exists, and nil otherwise. □ 
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Next, we show that if the immediate simplifications of a coherent model can be 

computed in polynomial time, then find-minimal-causal-mo del also runs in polynomial 
time. 

Lemma 5.2 Let I be an instance of the MINIMAL CAUSAL MODEL problem, and let 

M CM be a coherent model. If the immediate simplifications of every coherent model 

of I can be computed in time polynomial in the size of I, then find-minimal-causal- 

model{M,I) terminates in time polynomial in the size of I. 

Proof: We prove this lemma b ■ induction. There are two base cases: (a) M is not a 

causal model; and (b) M is a causal model with no immediate simplifications. In both 

case, one can see that the only significant work that find-minimal-causal-model{M, I) 

does is to check whether or not M is a causal model. But from Lemma 4.1, we know 

that this can be done in polynomial time, and hence this lemma is true in the base 

cases. 

For the inductive step, assume that M is a causal model with immediate simpli- 

fications. In this case, find-minimal-causal-model{M,J) does the following: 

1. Check whether or not M is a causal model. This can be done in polynomial 

time. 

2. Generates the immediate simplifications of M, and makes recursive calls to 

find-minimal-causal-model for some or all of the immediate simplifications. By 

assumption, the immediate simplifications of M can be generated in polyno- 

mial time. Hence, it follows that AT has a polynomial number of immediate 

simplifications. By the inductive assumption, each of these calls terminates in 

polynomial time. Hence, the process of generating the immediate simplifications 

and making the recursive calls to find-minimal-causal-model takes polynomial 
time. 

Hence, the lemma iü true for the inductive step, i.e., find-minimal-causal-model{M,1) 

terminates in polynomial time even when Af is a causal model with immediate sim- 

plifications. 
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Hence, if A/ is a coherent model, and if the immediate simplifications of ev- 

ery coherent model can be generated in time polynomial in the size of J, then 

find-minimal-causal-model{M,I) terminates in time polynomial in the size of J. D 

Finding an initial causal model 

Given any causal model Af, the find-minimal-causal-model function can be used to 

find a minimal causal model that is simpler than M. Hence, to find a minimal causal 

model of J, we must first find some causal model of J. In Chapter 8, we will discuss 

a heuristic method for finding such an initial causal model. Here, however, we discuss 

an alternate method of finding an initial causal model, that does not rely on heuristics. 

Let us introduce a fictitious model Mr, representing a model that is more accurate 

than every model of J.1 Hence, the immediate simplifications of Mr are just those 

models of J that are not strictly simpler than any other models of T. 

simplifications{MT,I) = 

{M :   M is coherent wrt X (5.3) 

A -i(3M') M' is coherent wrt I 

A M < M'} 

We can then use find-minimal-causal-model to find an adequate model of J by as- 

suming that Mj is, by fiat, a causal model. In that case, 

find-minimal-causal-model{Mj, I) 

returns an adequate model of J, if it exists, or returns Mj if J has no causal models. 

Note that, to find an adequate model of J in polynomial time, using the above 

function call, we will require that simplifications{MT,I) return in polynomial time, 

i.e., I must have a polynomial number of most accurate models, all of which can be 

generated in polynomial time. Hence, we have the following theorem: 

^ote that MT isn't really a set of model fragments. It is just a fictitious model that is assumed 
to be more accurate than every model. 
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Theorem 5.1 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies the upward failure property. If the most accurate models of I can be gener- 

ated in time polynomial in the size of 2, and if the immediate simplifications of any 

coherent model of I can be generated in time polynomial in the size ofl, then an 

adequate model ofX can be found in time polynomial in the size ofX. 

Proof: Immediate consequence of Lemmas 5.1 and 5.2 and the above discussion. Ü 

5.1.2    Discussion 

We have seen that the upward failure property is useful because it leads to an efficient 

algorithm for finding an adequate model. However, it has a major drawback: it is very 

difficult to decide whether or not a particular instance of the MINIMAL CAUSAL MODEL 

problem satisfies the upward failure property. For example, a straightforward use of 

Definition 5.1 requires us to check every model in the space of possible models. Since 

the space of possible models is exponentially large, any such check is unthinkable. In 

fact, the upward failure property was suggested as a way around having to check the 

whole space of possible models. Unfortunately, it does not seem to have succeeded in 

helping us to circumvent this problem. 

This drawback of the upward failure property stems from the fact that it is a 

global proper^'", i.e., a property of the whole space of possible models. What we want 

is a local propcity that entails the upward failure property, i.e., a property of the 

encoding of J that can be checked efficiently, that will ensure that J satisfies the 

upward failure property. 

In the next few sections we present some local properties of J that ensure that J 

satisfies the upward failure property. In particular, we will go back to the sources of 

intractability identified in the previous chapter, and place appropriate restrictions on 

J that will make the MINIMAL CAUSAL MODEL problem tractable: (a) we will intro- 

duce a new class of approximations, called causa/ approximations, that will address 

the problem of selecting model fragments from selected assumption classes; (b) we 

will add additional constraints to C, called ownership constraints, that will address 

the problem of selecting assumption classes; and (c) we will restrict the expressive 
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power of constraints in C. 

5.2    Preliminary restrictions 

In this section we introduce three preliminary restrictions on I. First, we assume 

that the contradictory relation partitions the set of model fragments into the set of 

assumption classes, i.e., model fragments are in the same assumption class if and only 

if they are mutually contradictory (see Definition 4.10). Recall that an assumption 

class is a set of different descriptions of the same phenomena, i.e., a set of mutually 

contradictory model fragments describing the same phenomena. Hence, the above 

assumption is based on the intuition that there is little reason for descriptions of 

different phenomena to be mutually contradictory. 

Second, we assume that each assumption class has a single, most accurate model 

fragment: 

(Vi4 € .4)(3m e ;4)(Vm' € A) m ^ m' => apprcximation{m, m') (5.4) 

In other words, we assume that each phenomena has a single best description. This is 

a reasonable assumption as long as we only model fairly well understood phenomena, 

i.e., where there is broad consensus amongst the domain experts about how best to 

model the phenomena. 

Note that the above restriction appears to be a problem when a given phenomena 

can be modeled with multiple ontologies. In such cases, it may not be possible to say 

that one ontology is more accurate than the other, leading to multiple most accurate 

model fragments in an assumption class. However, this does not pose a problem if the 

different ontologies are not mutually contradictory, so that model fragments that use 

different ontologies are in different assumption classes. This is often the case, since 

different ontologies are often used for different purposes. 

For example, magnetism can be modeled either as magnetic fields [Halliday and 

Resnick, 1978], cr as magnetic circuits [Coren, 1989]. However, these different on- 

tologies are used for different purposes. In particular, the magnetic field ontology 

is suitable for reasoning about the interactions of magnets with externally applied 
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magnetic fields, e.g., in generators and motors. On the other hand, the magnetic 

circuits ontology is useful for reasoning about the interactions of magnets with mag- 

netic materials, e.g., in electric relays and door bells. Hence, it is perfectly acceptable 

for a model to include both ontologies. Hence, we can meet the requirement that 

each assumption class has a single most accurate model fragment by placing model 

fragments using the different ontologies in different assumption classes. 

An important consequence of the above restriction is that it leads to I having 

a single most accurate model: the most accurate model of I is just the set of most 

accurate model fragments of the assurrotion classes of I. This brings us to our 

third assumption: we assume that the most accurate model of I is coherent, i.e., 

we assume that the most accurate model is complete and that it satisfies all the 

domain-dependent structural and behavioral coherence constraints. 

The second and third assumptions together imply that the immediate simplifica- 

tions of MT contains exactly one model: the most accurate model of J. It is easy to 

see that the most accurate model of J can be constructed very easily (in polynomial 

time), and hence the immediate simplifications of Mj can be computed in polynomial 

time. 

In summary, the preliminary restrictions that we place on I are the following: 

• The contradictory relation partitions the set of model fragments in M into the 

set A of assumption classes. 

• Each assumption class in A contains a single most accurate model fragment. 

• The most accurate model of J, which is the set of most accurate model fragments 

of the assumption classes in A, is coherent. 

5.3    Causal Approximations 

We now introduce an important class of approximations, called causal approxima- 

tions, that are commonly found in modeling the physical world.   The basic idea 
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underlying the definition of causal approximations is that more approximate descrip- 

tions often tend to involve fewer parameters. Furthermore, more accurate descriptions 

tend to explain more about a phenomenon than more approximate descriptions. 

For example, Figure 2.6 shows different descriptions of electrical conduction in a 

wire. Figure 2.7 shows the approximation relation between these descriptions. Note 

that the parameters in the equations of the more approximate descriptions (V^ = 0 

and iw = 0) are a subset of the parameters in the equations of the more accurate 

description {Vw = i^Äu,). Furthermore, only Resistor(wire-l) is able to explain 

the relationship between Vw, iw, and H^. 

In this section, we make the above idea precise, and investigate its consequences. 

As mentioned earlier, we restrict our discussion to models that do not include differ- 

ential equations. Differential equations will be discussed in Chapter 6. 

5.3.1    Definitions 

We start by defining local parameters. A local parameter is a parameter that can 

be causally determined only by equations of model fragments in a single assumption 

class. 

Definition 5.2 (Local parameters) A parameter p is said to be local to a model 

fragment m e M if and only if p can he causally determined by the equations ofm, 

but not by the equations of any model fragment that does not contradict m: 

p e Pc{m) A (Vm' e M) m^m' Ape Pc{m') -± contradictory {m, m') 

A parameter is said to be shared if it is not local to any model fragment. 

Using the above definition, we now define causal approximations. The idea un- 

derlying this definition is that if m2 is a causal approximation of mi, then any causal 

orientation of the equations of m2 can be extended to a causal orientation of the 

equations of mi, such that the latter causal orientation entails a superset of causal 

relations, i.e., mi can explain more than 1712'. 

Definition 5.3 (Causal approximations) A model fragment m2 is said to be a 

causal approximation of a model fragment mi if and only if: 



124 CHAPTERS.   CAUSAL APPROXIMATIONS 

1. mj is an approximation ofm-i; 

2. There exists a 1-1 mapping G : m^ -* mi such that for each e € m2, P{e) C 

■P(^(e))> and -Pc(e) C Pc{G{e)). G is called a correspondence mapping, and e 

and G{e) are said to be corresponding equations; and 

3. Lit E* denote the equations of mi that have no corresponding equations in ma, 

and let P* denote the set of parameters that are local to mi, hut not local to 

m2. Then there exists an onto causal mapping L : E' —+ P'. L is called a local 

causal mapping with respect to correspondence mapping G. 

Condition 1 ensmes that causal approximations are approximations. Condition 2 

ensures that for any causal orientation of an equation e e m^, there exists a causal 

orientation of G{e) € mi which entails a superset of causal relations. Condition 3 

ensures that additional equations in mi can be oriented to causally determine newly 

introduced local parameters. 

Ideal-conductor(wire-l):   V^ = 0 
Resistor(wire-l) :   V^ = t^/^ 

approxtmahon(Resistor(wire-l),Ideal-conductor(wire-l)) 

Figure 5.2: Model fragments describing electrical conduction in wire-1 

For example, the approximation relation between Resistor(wire-l) and Ide- 

al-conductor (wire-1) shown in Figure 5.2 is a causal approximation. In particular, 

K, = 0 and V^ = i^J?^ are corresponding equations with: 

P{Vw = 0)   C   PCV^U^) 

^(^ = 0)   C   PciVw = iwRw) 

Similarly, the approximation relation between Temperature-dependent-resis- 

tance(wire-l) and Constant-resistance(wire-l) shown in Figure 5.3 is a causal 

approximation if we assume that fi^o, aw, and T^ are local parameters of Tempera- 

ture-dependent-resistance (wire-1). 
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Constant-resistance (wir s-1) :   exogtnous{Rw) 
Temperature-dependent-resistance(wire-l) :   R» = i2uKj(l + aw{Tw - T^)) 

exog€nous{Rwo) 
exogenous{aw) 
exogenous {Two) 

approa:zmahon(Temperature-dependent-resistance(wire-l), 
Constant-resistance(wire-l)) 

Figure 5.3: Model fragments describing a wire's resistance. 

In particular, exogenous (A*) and R^ = R^il + aw{Tw - T^o)) are corresponding 

equations with: 

PiexogenousiRv))   C   ^(Ä«, =/^(l + o«^ - T^o))) 

PciexogenoueiRv))   C   PdR,, = 1^(1 + aw{Tw - T^))) 

and the local causal mapping, I, with respect to this correspondence mapping is: 

L{exogenous{Rwo))   =   R^ 

L{exogenous{aw))   =   aw 

L{exogenous{Two))   =   T^ 

One can show that the causal approximation relation between model fragments is 

transitive. Hence, to check that all the approximations are causal approximations, it 

is sufficient to check that the immediate approximations of each model fragment are 

causal approximations. 

It is worth noting that the restriction that local parameters in a model fragment 

cannot be causally determined by equations of model fragments in other assumption 

classes is not a serious one. It is easy to convert a local parameter into a shared 

parameter by defining a new assumption class. For example, to convert aw (Fig- 

ure 5.3) into a shared parameter, we would (a) define a new assumption class with 

one model fragment m = {exogenous{ocw)}; and (b) remove exogenous{aw) from the 

equations of Temperature-dependent-resistance (wire-l). After this conversion, 

aw is not necessarily local to any assumption class, and hence can be used in multiple 

assumption classes. 
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5.3.2    Causal approximations and the upward failure prop- 
erty 

Causal approximations plays a key role in ensuring that the upward failure property 

is satisfied. In particular, we will show that when all the approximations are causal 

approximations, the causal relations entailed by a model decrease monotonically as 

we simplify models without dropping assumption classes. This means that if a model 

does not explain the expected behavior, then a simpler model that uses the same 

assumption classes also does not explain the expected behavior. It is easy to see that 

this is just a restricted version of the upward failure property. 

To prove the above important result, we first introduce local and global extensions 

of causal mappings. We will then use the properties of these extensions to show 

that a causal mapping of a simpler model can be extended to a causal mapping of a 

more accurate model, such that the latter causal mapping entails a superset of causal 

relations. 

Local extensions 

A local extension of a causal mapping H2, defined on a model fragment ma, is a 

causal mapping Hi, defined on a more accurate model fragment mi, that orients 

corresponding equations in the same way. 

Definition 5.4 (Local extension) Let mi,m2 € M be model fragments such that 

m2 is a causal approximation of mi. Let Hi : mj —* P{mi) and H2 : m2 —* Pimi) 

be causal mappings, and let G : m2 —* mi be a correspondence mapping. Hi is said 

to be a local extension of H2 if and only if for each equation e € mi; 

1. ifG{e') = e, for some e' € m2, then Hi{e) = /^(e')/ 

2. otherwise Hi{e) is local to mi, but not local to mj. 

In other words, Hi and H2 orient corresponding equations in the same way, and Hi 

orients the remaining equations in mj to causally determine parameters local to mi 
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but not in m2. An immediate consequence of this is that the range of Hi contains 

only parameters that are either in the range of H2 or that are local to nix. 

The following lemma tells us that the local extension of a causal mapping like H2 

always exists: 

Lemma 5.3 (Existence of local extension) Let mi,1112 e M be model fragments 

such that m2 is a causal approximation of mi. Let H2 : m2 -> P{m2) be a causal 

mapping. Then there exists a causal mapping Hi : mi -* P{mi) such that Hi is a 

local extension of H2. 

Proof: Let G : 7712 -+ m! be a correspondence mapping, and let Z be a local causal 

mapping with respect to G. G and L must exist because m2 is a causal approximation 

of mi. We define Hi as follows. For each e € mi, if there exists e' € m2 such that 

C7(e') = e, then let Hi{e) = ^(e'). This is possible because G is a correspondence 

mapping and hence Pc(e') C Pc(c). Otherwise, let ^i(e) = 1(c). 

Hi is well defined because the range of L contains only parameters that are not 

local to 7712, and hence not in the range of H2. Hi is a causal mapping because both 

Hi and L are causal mappings. Finally, Hi is a local extension of |f3 because Hi and 

H2 agree on corresponding equations, and on the remaining equations Hi agrees with 

L, and hence maps these equations to parameters local to mi but not local to m2. O 

Global extensions 

Global extensions are similar to local extensions, except that instead of considering 

causal mappings of the equations of model fragments, we consider causal mappings 

of the equations of models. 

Definition 5.5 (Global extension) Let I be an instance of the MINIMAL CAUSAL 

MODEL problem such that all the approximation relations are causal approximations. 

Let Mi, M2 C .M be models, such that Mi and M2 are not overconstrained, Mi &.nd 

M2 have model fragments from the same assumption classes, and M2 < Mi. Let 

Hi : E{Mi) -4 P(Afi) and H2 : ü^Mj) -» P(M2) be causal mappings. Hi is said to 

be a global extension of H2 if for each m2 € M2: 
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1. //m2 € Mi, then for each e € m2, ^(e) = ^(e). 

2. If m2 $. Mi, then let mi € Mi be such that approximation{mum2).  Then, H\ 

restricted to m\ is a local extension of I    restricted to m2. 

Hence, as with local extensions, H\ is a global extension of H% if both Hi and H2 

causally orient corresponding equations in the same way. It is also easy to check that 

the range of H\ contains only parameters that are in the range of H% or that are local 

to the model fragments in M\. Finally, global extensions are guaranteed to exist: 

Lemma 5.4 (Existence of global extension) Let I he an instance of the MINI- 

MAL CAUSAL MODEL problem such that all the approximation relations are causal 

approximations, and the contradictory relation partitions the set M. of model frag- 

ments into the set A of assumption classes. Let Mi,M2 C M be models such that 

Mi and M2 are not overconstrained. Mi and M2 have model fragments from the same 

assumption classes, and M2 < Mi. Let H2 : E{M2) -* P{M2) be a causal mapping. 

Then there exists a causal mapping Hi : E{Mi) —► P{Mi) such that Hi is a global 

extension of H2. 

Proof: For the equations of each model fragment m 6 Mi, define Hi as follows: 

1. If m € M2, then define Hi to be identical to H2 for each equation in i?(m); 

2. Otherwise, there exists a unique m' 6 M2 such that m' is a causal approximation 

of m. Define Hi on m to be the local extension of H3 on m'. This is always 

possible because Lemma 5.3 tells us that such a local extension must exist. In 

addition, parameters in the range of Hi restricted to m are either in the range 

of H2 restricted to m', or are local to m. Hence, this extension does not overlap 

with the definition of Hi on other model fragments. 

It is easy to verify that Hi is, in fact, a global extension oi H2. ü 

The importance of global extensions stems from the fact that if Hi is a global 

extension of H2, then the direct causal dependencies entailed by H2 are a subset of 

the direct causal dependencies entailed by Hi, i.e., C/f2 C CHl: 
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Lemma 5.5 Let I be an instance of the MINIMAL CAUSAL MODEL problem such that 

all the approximation relations are causal approximations. Let Mi, M2 C M be mod- 

els such that Mi and M2 are not overconstrained, Mi and M2 have model fragments 

from the same assumption classes, and M2 < Mi. Let Hi : E{Mi) -> P{Mi) and 

H2 : £(M2) -4 P{M2) be causal mappings such that Hi is a global extension of H3. 

ThenC„2CCHl. 

Proof: Let (pi,P2) € CWj. From Equation 3.5, this means that there is an equation 

e € E{Mi) such that ^(e) = P2 and pi € P(e). Let m € M2 be the model fragment 

such that e € m. Now there are two cases: 

1. If m € Mx, then since Hi is a global extension of H2, #i(e) = ^(e), and hence 

(Pl,P2)€C//1. 

2. Otherwise, there is a model fragment m' € Mi such that m is a caus^J approxi- 

mation of m'. Let G : m -♦ m' be the correspondence mapping. Let e' = G{e). 

Since H\ is a global extension of H2, it follows that Hi restricted to m' is a 

local extension of H2 restricted to m. Hence, ^i(e') = ^(e) = P2- Since G is a 

correspondence mapping, it follows that P{e) C P{e'). Hence, since pi € P(e), 

it follows that pi € P(e'). Hence, it follows that (pi,p2) € C^. 

Hence, in either case, if (pi,p2) € CH2, then (puPi) € C^. Hence, it follows that 

CH.QCH,. ü 

Monotonicity of causal relations 

The main theorem of this section is an immediate consequence of the above lemma: 

if we simplify a model without dropping any assumption classes, then the entailed 

causal relations decrease monotonically. 

Theorem 5.2 Let I be an instance of MINIMAL CAUSAL MODEL such that all the 

approximation relations are causal approximations, and the contradictory relation 

partitions the set M of model fragments into the set A of assumption classes. Let 

Mi,M2C M be complete models such that Mi and M2 contain model fragments from 
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the same assumption classes, and M2 < Mi. The causal relations entailed by the 

equations of M2 are a subset of the causal relations entailed by the equations of Mi, 

i.e.,C{E{M2))CC{E{M1)). 

Proof: Let H2 '. E{M2) —> P{M2) be an onto causal mapping. Such an onto causal 

mapping must exist because M2 is complete. Let Hi : E{Mi) —* P{Mi) be the global 

extension of H2. Since Mi is complete, and hence not overconstrained, Lemma 5.4 

tells us that such a global extension must exist. Since Hi k ^fined on each equation 

in ^(^fi), and Mi is complete, it follows that Hi is an onto causal mapping. 

Lemma 5.5 tells us that CH2 Q CH^- Hence, tc{CH2) Q ^(C/y,), and hence 

C{E{M2)) C C(£'fMi)), i.e., the causal relations entailed by the equations of M2 are 

a subset of the causal relations entailed by the equations of Afi. □ 

Hence, if a coherent model does not explain the expected behavior, it follows that 

no simpler coherent model that uses the same set of assumption classes can explain 

the expected behavior. Hence, when all the approximations are causal approxima- 

tions, a restricted version of the upward failure property is SKt'sRed. Note that, unlike 

the upward f tilure property, it is easy to decide whether or urt all the approximations 

are causal approximations. In particular, one can easily check whether a particular 

approximation is a causal approximation, and the transitivity of the caused approxi- 

mation relation tells us that we need only check that all the immediate approximations 

of a model fragment are causal approximations. 

5.3.3    Causal approximations are common 

Causal approximations are particularly useful, because they are commonly found 

in modeling the physical world. The following is a partial list of commonly used 

approximations that are causal approximations. 

1. Disregarding the translational and rotational inertia of an object 

2. Disregarding relativistic effects 

3. Rigid bodies 
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4. Frictionless motion 

5. Zero or uniform gravitational fields 

6. Elastic collisions 

7. Ide?,l gas law 

3. Ideal thermal conductors and insulators 

9. Constant thermal conductance 

10. Ideal electrical conductors and insulators 

11. Constant electrical resistance and resistivity 

12. Ideal heat engine 

13. Inviscid flow 

14. Disregarding thermal expansion 

The details of the above causal approximations, including the actual equations 

uaed, can be found in Appendix A. The ubiquity of causal approximations suggests 

that we have identified an important property of commonly occurring instances of 

the MINIMAL CAUSAL MODi»!  problem. 

In summary, we have shown that when all the approximation relations are causal 

approximations, if we restrict ourselves to models that select a model fragment from 

each assumption class in a fixed set of assumption classes, then the upward failure 

property is satisfied. Hence, the basic restriction that we place on the instance I of 

the MINIMAL CAUSAL MODEL problem is: 

• All the approximation relations between model fragments are causal approxi- 

mations. 
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5.4    Selecting assumption classes 

In the previous section, we investigated the case where all models were required to 

have a model fragment from each assumption class in some fixed set of assumption 

classes. We showed that when all the ap? imation relations were causal approxima- 

tions, then the causal relations entailed j simpler model were a subset of the causal 

relations entailed by a more complex model. In this section we extend this result to 

all models, i.e., where models can also be simplified by dropping model fragments. 

5.4.1     Causal approximations are not enough 

A simple example illustrates that causal approximations alone are not sufficient. Let 
Ai = {mn,mi2} and A? = {1712} be assumption classes, and let the equations of 

model fragments mn, m^, and 1712 be defined as follows: 

mn    =   {x = y,y = z} 

mu   =   {x = y, exogenous{y)} 

mj   =   {exogenous{x)} 

Furthermore, let m^ be an approximation of mn: 

approximation{mn, mw) 

It is easy to verify that m^ is a causal approximation of mn. Let Mx = {m^r^} 

and M2 = {mu} be two models. Assuming that there are no prepositional coherence 

constraints, it is easy to verify that both Mi and M2 are coherent models, and that 

M2 < Mi. 

■*-  V  *-  z y -*■ x 

(a) Causal ordering from Mi (b) Causal ordering from M2 

Figure 5.4: Causal orderings generated from Afi and M2 

Figure 5.4 shows the causal orderings generated from these two models. In par- 

ticular, y causally depends on x in the causal ordering generated from Mu while x 
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causally depends on y in the causal ordering generated from M?. Hence, in simpli- 

fying Mi to M2, the causal relations have not decreased monotonically. This means 

that the upward failure property is not satisfied. 

On the other hand, if we replace 1712 with m'2, where: 

m'2 = {exogenous{z)} 

then the causal ordering generated using M[ = {mn,m'2} is shown in Figure 5.5. In 

this case, it is easy to verify that the causal relations have decreased monotonically 

in going from M[ to M?. 

Figure 5.5: Causal ordering generated from M[ 

Intuitively, the difference between the two cases can be summarized as follows. 

In the first case, M2 did not include all phenomena that were possibly "relevant" 

to its parameters. In particular, M2 used the parameter x, but did not include m2, 

even though an equation in m2 could causally determine x. On the other hand, in the 

second case, M2 included models of all phenomena relevant to 1 and y—the equations 

of m'2 can only determine z. 

We can use the above intuition to ensure that the causal relations entailed by 

coherent models decrease monotonically as models become simpler, even when as- 

sumption classes can be dropped. We formalize this intuition by first introducing the 

ownership of parameters by assumption classes, and then introducing a set of owner- 

ship constraints that will ensure that coherent models include all possibly "relevant" 

phenomena. 

5.4.2    Parameter ownership 

The parameters owned by an assumption class are the parameters that can be causally 

determined by some equation of some model fragment in the assumption class. 



134 CHAPTERS.   CAUSAL APPROXIMATIONS 

Definition 5.6 (Parameter ownership) The parameters owned by an assumption 

class A, denoted by ownsiA), are the parameters that can be causally determined by 

the equations of model fragments of A: 

owns{A) =  (J Pc{m) 

One can view an assumption class as being possibly "relevant" to the parameters 

that it owns. For example, the Electrical-conductor(wire-l) assumption class, 

shown in Figure 5.6, owns Vw and iw, but not i^. Hence, model fragments from this 

assumption class are possibly "relevant" to causally determining Vw and iw, but not 

Ideal-conductor(wire-l) 
Ideal-insulator(wire-1) 

Resistor(wire-l) 

K = 0 

Figure 5.6:   Model fragments in the Electrical-conductor(wire-l) assumption 
class 

5.4.3    Ownership constraints 

We can ensure that coherent models will contain model fragments from all possibly 

"relevant" assumption classes, by adding constraints of the form 

m => A 

to the set C of propositional coherence constraints, whenever assumption class A 

owns a parameter that can be causally determined by an equation in m, i.e., when 

Pc{m) D owns{A) is not empty. This will ensure that whenever a coherent model 

contains model fragment m, it will also contain a model fragment from A. We call 

the above set of constraints ownership constraints: 

Definition 5.7 (Ownership constraints) Let I be an instance of the MINIMAL 

CAUSAL MODEI problem. The set O of ownership constraints of I are defined as 

follows: 

0 = {m=> A:meM A  AeA A Pc{m) fl owns{A) / 0} 
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5.4.4    Monotonicity of causal relations 

When C contains all the ownership constraints, so that coherent models contain model 

fragments from all possibly "relevant" assumption classes, we can extend Theorem 5.2 

to all coherent models. We start with a lemma that states that if Ei and E2 are 

complete sets of equations such that C^) Q C{Ei), then removing the same set of 

exogenous equations from both Ei and E2 preserves this property. 

Lemma 5.6 Let E\ and E2 be complete sets of equations. Let Q = {9!,...,qn} be 

a set of parameters, and let D = öq€Qexogenous{q) be a set of equations such that 

D C Ex and D C E2. Let H[ : E^ -> P{El) and H'2 : E2 -* P{E3) be onto causal 

mappings. Let Hi be H[ restricted to the equations in Ei \ D, and let H2 be H'2 

restricted to the equations in £2 \ D. //fc(C^) C tc{CH(), then <c(C//2) C ^(C^rJ. 

Proof: We first show that tc{CH[) = MCj/J. For any equation exogenous{qi) in 

D, H'l{exogenous{qi)) = Qi- Hence, there is no parameter p such that (p,9,) € CH>- 

Hence, there is no parameter p such that (p,?,) € tc{CH[). Hence, if {p,q) £ <c(C/r), 

it follows that there is no parameter $ € £? such that (p,g,) € tc{CH>) and {qi,q) e 

tc{CH{)- Hence, any causal path from p to g using H[ does not involve any equation 

in D. Hence, this causal path must exist in the causal Oidering using Hi. Hence, it 

follows that tefCty) = <c(CW]). Similarly, ic(C^) = «c(Cffa). Hence, if tc{CH^) C 

tc(CH>), it follows that <c(C//2) C fc(CWl). D 

Using the above lemma we can generalize Theorem 5.2 to all coherent models. 

Theorem 5.3 Let I be an instance of MINIMAL CAUSAL MODEL such that all the 

approximation relations are causal approximations, and the contradictory relation 

partitions the set M of model fragments into the set A of assumption classes. LetC 

contain all the ownership constraints of I. Let Mi,M2 C .M be coherent models such 

that M2 < Mi. The causal relations entailed by the equations of M2 are a subset of 

the causal relations entailed by the equations of Mi, i.e., C(E{M2)) C C{E{Mi)). 

Proof: Let Hi : E{Mi) -* P{M1) and H2 : £(A/2) -♦ P(M2) be onto causal 

mappings. Hi and Äj must exist because Mi and M2 are ^herent models. We will 
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now use Hi and H2 to construct an onto causal mapping H : E{Mi) —♦ P{Mi) such 

that CH2 C fc(Cw). 

Let us partition Mi into two mutually disjoint sets Mn and Mu such that Mu and 

Af2 have model fragments from the same assumption classes, and M12 and M2 have 

no model fragments from the same assumption classes. Let Hu : E{Mii) —♦ P{Mu) 

be Hi restricted to the the equations in E{Mii), and let H12 : EiMu) -* P{Mi2) be 

//^i restricted to the equations in E{Mi2). 

Let P12 be the parameters in the range of H12. From the definition of Hu and 

Hu, it is easy to see that they have mutually disjoint ranges. Hence, no parameter 

in P12 is in the range of Hu. In addition, since M2 is a coherent model, it follows 

that all the ownership constraints are satisfied. Hence, since M2 contains no model 

fragments from the assumption classes used in Afi2, it follows that no parameter in 

P{M2) is owned by an assumption class used in M12. Hence, no parameter in the 

range of H* is in P^. 

Let m be a new model fragment consisting of the following equations: 

m = {exogenous{p) : p € P12} 

i.e., m makes each parameter in Pi2 exogenous. One can see that the equations of m 

are complete. 

Since there is no overlap between P12 and P(M2), and since M2 is complete, it 

follows that Mj = M2 U {m} is a complete model. Let H? : -H^A/j) —> PiM^) be an 

onto causal mapping, such that H'2 restricted to E{M2) is the same as H2- 

Now consider the set M^ -~ Mn U {m}. We show that M^ is complete by defining 

a causal mapping H'u : E{M[l) —► P{M'n). Let H^ restricted to E(Mii) be identical 

to Hu. For any equation exogenous{p) in m, let H'u{exoyenous{p)) = p. This is 

possible because the range of Hu and the parameters in P12 do not overlap. Clearly, 

H'n is defined on each equation in EiM^). 

Finally, H'n is complete because every parameter in P{M{1) is either in P(Mii) 

or in Pio. Every parameter in P(Mn) is either in the range of Hu or in the range 

of Hu- Hence, every parameter in P(Af1
/
1) is either in the range of Hu or in P12. 

Hence, every parameter in P{M[1) is in the range of H'u.   Hence, H'n is an onto 
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causal mapping and hence M^ is complete. 

But Mjj and Mj have model fragments from the same set of assumption classes 

(assuming that m is in an assumption class by itself), and both these models are 

complete. In addition, since M2 < Mi, it follows tnat Afj < M^. Hence, Theorem 5.2 

tells us that CiE{Mß) C C{E{M{t)). Hence, ic(C^) C ^(C/y^). 

Applying Lemma 5.6, with D = m and Q = Pu, we have tc{CH2) C tc(Cjyn). 

But Hn is just JSTi restricted to E{Mn). Hence, it follows that tc{CH2) Q t^C^). 

Hence, C(£(M2)) C CC^MO). □ 

In summary, to ensure that the upward failure property property is satisfied, even 

when models can be simplified by dropping model fragments, we must place the 

following restriction on J: 

• The set C of propositional coherence constraints of J must contain all the own- 

ership constraints of J, as defined in Definition 5.7. 

5.4.5    Discussion 

The above theorem tells us that, with the addition of the ownership constraints, the 

causal relations entailed by models decrease monotonically as models become simpler. 

But how reasonable are the ownership constraints? On the face of it, they seem quite 

restrictive. However, under certain circumstances, we get the ownership constraints 

for free. In particular, consider the situation in which each equation can causally 

determine exactly one parameter. This situation is found in QP Theory [Forbus, 

1984] and its derivatives, e.g., [Falkenhainer and Forbus, 1991]. When each equation 

can causally determine exactly one parameter, one can see that dll the parameters 

are local to some assumption class. This means that no model fragment can causally 

determine a parameter owned by a different assumption class. Hence, under this 

situation, there are no ownership constraints! 

However, as we have argued earlier, the constraint that each equation can causally 

determine exactly one parameter is also restrictive. In the absence of this constraint, 

the ownership constraints appear to be necessary to guarantee that the upward fail- 

ure property is satisfied. However, in practice, we have found that the upward failure 
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property is satisfied even in the absence of the ownership constraints. In other words, 

the pathological cases, like the one shown at the beginning of this section, do not 

appear to occur naturally. We conjecture that the reason for this is that most equa- 

tions describing the physical world do seem to have a natural causal orientation (as 

required in QP Theory), and the few equations that do allow multiple causal orien- 

tations do not lead to pathological situations. Hence, in the modeling program that 

we describe in Chapter 8, no ownership constraints are included. 

5.5    Individually approximating model fragments 

The last two sections introduced two local properties of J, causal approximations 

and ownership constraints, that ensure that the global upward failure property is 

satisfied. In this section, and in the next section, we turn to the other important 

element of the efficient model selection algorithm: the efficient generation of the 

immediate simplifications of coherent models. 

A coherent model M can be simplified by (a) replacing one or more model fri?f- 

ments in M by their approximations; and/or (b) dropping one or more model frag- 

ments from M. In this section we prove a very important property of the simplifica- 

tions of M which states that the model fragments in M can be approximated one at a 

time. More precisely, let m € Af be any model fragment, and let m' be any immediate 

approximation of m. We show that if the model resulting from replacing m by m' is 

not complete, then no coherent model simpler than M can contain m' or any of its 

approximations. Hence, if the model fragrr^nts of M cannot be approximated one at 

a time, there is no point approximating them two or more at a time. This property 

will be exploited in Section 5.7 to efficiently simplify a causal model. 

Theorem 5.4 Let I be an instance of the MINIMAL CAUSAL MODEL problem such 

that all the approximations are causal approximations andC contains all the ownership 

constraints. Let M C M be a coherent model. Letm £ M be any model fragment, and 

let m' € M be an immediate approximation ofm. Let M' be the result of replacing 

m by m' in M, i.e., M' = {M \ {m}) U {m'}. Let m" e M be any model fragment 
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such that either m" = m' orm" is one of the approximations of m'. If E{M') is not 

complete, then every model M" < M, such that m" 6 M", is not coherent. 

Proof: The proof is by contradiction. Assume that there exists M" < M such that 

m" € M" and M" is coherent. We will now show that .E(M') is complete by showing 

that there exists an onto causal mapping F': E{M') —> P{M'). 

Let F : E{M) - P{M) and F" : E{M") - P{M") be onto causal mappings. F 

and F" must exist because M and M" are coherent. We use F and F" to define F' 

as follows. 

Partition M' into two sets M[ and M'2, such that M[ contains all the model 

fragments in M' that are in the same assumption class as a model fragment in M", 

and M'2 contains all the model fragments in M' that are not in the same assumption 

class as any model fragment in M". Hence, m' € M[, and M'2 C M. 

We define F' by first defining it on equations in ^(A/i), and then on equations in 

E{M'2). 

Let m\ be a model fragment in Af,', and let m" be the model fragment in M" that 

is in the same assumption class as m\. It is easy to see that m" is either identical to 

mi, or is an approximation of mi- If m" is identical to mi, then define F' on each 

equation in mi to be identical to F". If m" is an approximation of mi, then use 

Lemma 5.3 to define F' restricted to mi to be the local extension of F" restricted to 

m". In either case, every parameter in the range of F', when restricted to mi, is either 

in the range of F" restricted to m'', or is local to m'v Hence, F' maps equations in 

different model fragments in M[ to düTerent parameters. Hence, the above mapping 

maps each equation in E{M[) to a unique parameter. 

Define F' on equations in E{M'2) to be identical to F. This is possible because 

each model fragment in M2 is also in M. In addition, since M" is coherent, it satisfies 

all the ownership constraints. Hence, it follows that PC{M") and Pc{M'2) have no 

parameters in common. Hence, the range of F" and the range of F restricted to M'2 

are disjoint. Hence, the above extension of F' to equations in E{M2) is well defined. 

The above definition of F' maps each equation in E{M') to a parameter in P{M''). 

Hence, \E{M')\ < \P(M')\. However, in going from M' to M, we replace m' by m, 

which introduces at least as many new local parameters as equations.  Since M is 
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coherent, it follows that \E{M)\ = |P(M)|, and hence ^(M')! = \P{M% Hence, F 

is an onto causal mapping, and hence M' is complete, which is a contradiction. Ü 

5.6    Expressivity of constraints 

Using the above theorem, it is possible to show that the immediate simplifications 

of any coherent model can be generated in polynomial time, as long as the only 

constraints in C axe the ownership constraints. The complexity of generating the im- 

mediate simplifications of a coherent model in the presence of additional constraints 

is critically dependent upon the expressive power of these constraints. In particu- 

lar, in Chapter 4, we showed that the MINIMAL CAUSAL MODEL problem becomes 

intractable if C has (a) negative clauses, i.e., clauses with all negative literals; or 

(b) definite horn clauses, i.e., clauses with exactly one positive literal. Hence, al- 

lowing such constraints will defeat any hopes of efficiently generating the immediate 

simplifications of a coherent model. 

Fortunately, there is a class of constraints, only slightly different from horn clauses, 

that does not lead to intractability. In particular, we will allow constraints of the form: 

rrj] A m2 A ... A m^ =► A (55) 

where mi, m2,..., mn are model fragraeats, ior so/iie H > u,' and A is an assuraptio-c 

class. Recall that using an ass amption class in a prepositional coherence constraint is 

just a shorthand for the disjunction of the model fragments in that assumption class. 

Hence, the consequents of constraints that have the above form are restricted to be 

the disjunction of all model fragments in an assumption class. 

In practice, the restricted expressivity of the propositional coherence constraints 

has not proved to be a limitation. This is because our focus on the task of generating 

parsimonious causal explanations has made the expected behavior a central criterion 

for defining model adequacy. This has decreased the importance of the propositional 

coherence constraints in defining model adequacy, and hence the restricted expressive 

power has not proved to be problematic. 
2When n = 0, there are no model fragments in the antecedent of the constraint, and the an- 

tecedent is assumed to be <nie. 
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It is worth noting that the ownership constraints, introduced above, and the re- 

quires constraints, introduced in Chapter 2, are special cases of the above type of 

constraint with n = 1. However, it is also worth roting that this restriction limits 

the set of model fragment classes that can have specializations: only model fragment 

classes that do not contradict any model fragment class (so that they are the only 

members of their assumption class) can have specializations. 

In the rest of this chapter, we assume that all the constraints in C have the above 

forn. That is, we place the following restriction on the instance J of the MINIMAL 

CAUSAL MODEL problem: 

• The form of each constraint in C is required to be as shown in Equation 5.5. 

In the next section we show that restricting the expressivity of constraints in this 

way does not lead to intractability. 

5.7    Efficiently simplifying a coherent model 

In this section we use the restrictions discussed thus far to develop an efficient al- 

gorithm for finding an adequate model. To summarize these restrictions, we assume 

thai ;iie instance 

J = {M, contradictory, approximation, A,C,p, q) 

of the MINIMAL CAUSAL MODEL problem satisfies the following restrictions: 

Definition 5.8 (Restrictions on J) The list of restrictions on Jintroduced in this 

chapter are as follows: 

1. The contradictory relation partitions the set of model fragments in M into the 

set A of assumption classes. 

2. Each assumption class in A contains a single most accurate model fragment. 

3. The most accurate model of I is coherent. 
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4- All the approximation relations are causal approximations. 

5. C contains all the ownership constraints ofX. 

6. The form of each constraint in C is as shovm in Equation 5.5. 

The algorithm for efficiently finding an adequate model is a two step procedure. In 

the first step, the most accurate model is simplified using the function find-minimal- 

causal-model, shown in Figure 5.1, with the simplifications function being restricted 

to simplifying a model by approximating it, i.e., by replacing a model fragment by one 

of its immediate approximations. In the second step, the resulting model is simplified 

by dropping all unnecessary model fragments. We will show that the resulting model 

is, indeed, a minimal causal model. 

5.7.1    Simplifying a model by approximating 

The first step of simplification simplifies the most accurate model by replacing model 

fragments with their immediate approximations. Simplifying a model by replacing a 

model fragment with an immediate approximation is called simplifying by approxi- 

mating: 

Definition 5-9 (Simplifying by approximating) Let M C M be a coherent 

model, and let m G M by any model fragment. Let m' be an immediate approximation 

of m.  Let M' = {M \ {m}) U {m'}, i.e., M' io the result of replacing m by m' in 

M.   If M' is coherent, then M' is said to be an immediate simplification of M by 

approximating. 

Properties of immediate simplifications by approximating 

The following four lemmas state the important properties of immediate simplifications 

by approximating. The first two lemmas show that the only immediate simplifications 

of a coherent model that do not drop any assumption classes are the immediate 

simplifications by approximating. The next two lemmas show that the immediate 

simplifications by approximating can be generated in polynomial time. 
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It is easy to see that if M' is an immediate simplification of M by approximating, 

then M' is one of M's immediate simplifications: 

Lemma 5.7 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies the restrictions in Definition 5.8, and let M,M' CM. be coherent models 

such that M' is an immediate simplification of M by approximating. Then M' € 

simplifications{M, J). 

Proof: From the definition of model simplicity, it is easy to see that there is no model 

tnat is strictly between M and M' in the simplicity partial ordering. Ü 

We now show that the only immediate simplifications of M that do not drop any 

assumption classes are the immediate simplifications of M by approximating. This is 

a straightforward consequence of Theorem 5.4. 

Lemma 5.8 Let I be an instance of the MINIMAL CAUSAL MODEL problem that sat- 

isfies all the restrictions in Definition 5.8, and let M C M be a coherent model that 

contains a model fragment from every assumption class in A. Let M' be an immedi- 

ate simplification of M, i.e., M' € simplifications{M), and let M and M' have model 

fragments from the same assumption class. Then M' is an immediate simplification 

of M by approximating. 

Proof: The proof is by contradiction. Assume that M' is not an immediate sim- 

plification by approximating. Let m' € M' be a model fragment that is not in M. 

Since M and M' have model fragments from the same assumption classes, ai:d since 

M' < M, let m € M b^ such that m' is an approximation of m. Let m" be a model 

fragment such that rrt" is an immediate approximation of m, and m' is either identical 

to m" or m' is an approximation of m". Let M" = {M\{m})ö{m"}. Since M' < M, 

it is easy to see that M' < M". There are now three cases: 

1. If M' is the same as M", then M1 is an immediate simplification of M by 

approximating, which is a contradiction. 

2. If A/' < M", and M" is coherent, then M' is not an immediate simplification 

of M, which is a contradiction. 
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3. If AT < Af", and M" is not coherent, then the equations of M" are not complete. 

This follows from the fact that M, and hence M", contains a model fragment 

from each assumption class, and hence every constraint in C must be satisfied. 

Hence, the only reason that M" is not coherent is because the equations of M" 

are not complete. But since M' contains a model fragment, m', that is either 

identical to m" or is an approximation of m", Theorem 5.4 tells us that M' is 

not coherent, which is a contradiction. 

Hence, in all three cases, we encounter a contradiction. Hence, all the immediate 

simplifications of M, that use a model fragment from each assumption class in M, 

are immediate simplifications by approximating. O 

function simp-hy-approximating{M, J) 
/* Returns the immediate simplifications of M by approximating */ 
result *— nil 
for every m € M do 

for every m' that is an immediate approximation of m do 

M'4-(M\{m})U{m'} 
if M' is coherent then 

/* M' is an immediate simplification of M by approximating */ 
Add M' to result 

endif 
endfor 

endfor 
return result 

end 

Figure 5.7: The function simp-by-approximating. 

Figure 5.7 shows the simp-by-approximating function, which returns the immedi- 

ate simplifications of a model by approximating. It is easy to see that this function 

returns all the immediate simplifications of M by approximating. 

Lemma 5.9  The simp-by-approximating function returns all the immediate simpli- 

fications of a model by approximating. 
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Proof: Immediate from the definition of immediate simplification by approximating. 

D 

In addition, one can see that the immediate simplifications of M by approximating 

can be computed in polynomial time. 

Lemma 5.10 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies all the restrictions in Definition 5.8, and let M C M be a coherent model. 

Then simp-by-approximating{M,T) terminates in time polynomial in the size of I. 

Proof: Lemma 4.1 tells us that checking whether or not M' is coherent can be done in 

polynomial time. The number of times this check has to be made is equal to the num- 

ber of immediate approximations of the model fragments in M. Since the model frag- 

ments in M are in different assumption classes, it follows that this number is bounded 

by the number of model fragments in M. Hence, simp-by-approximating{M,I) ter- 

minates in time polynomial in the size of I. O 

Finding a simplest causal model by approximating 

The above leir.in is, in conjunction with a modified version of the find-minimal-cau- 

sal-model function in Section 5.1, allow us to efficiently find a simplest causal model 

by approximating. A simplest causal model by approximating is a causal model that 

contains a model fragment from each assumption class, such that no causal model 

that contains a model fragment from e^ :h assumption class is strictly simpler than 

it. 

Definition 5.10 (Simplest causal model by approximating) Let I be an in- 

stance of the MINIMAL CAUSAL MODEL problem and let M C M be a causal model. 

M is said to be a simplest causal model by approximating if and only if (a) M contains 

a model fragment from each assumption class in A; and (b) if M' is a causal model 

of I that contains a model fragment from each assumption class in A, then M < M'. 

Intuitively, a simplest causal model by approximating models each phenomena as 

approximately as possible. A simplest causal model by approximating can be identi- 

fied using a modified version of the find-minimal-causal-model function, in which the 
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call to the simplifications function is replaced by a call to the simp-by-approximating 

function. The correctness of this modified function follows from 

1. Lemma 5.8, which tells us that the only immediate simplifications of a model 

that do not drop any assumption classes are the immediate simplifications of 

the model by approximating; 

2. Lemma 5.9, which tells us that the simp-by-approximating function returns all 

the immediate simplifications of a model by approximating; 

3. Theorem 5.3, which tells us that I satisfies the upward failure property;3 

4. Lemma 5.1, which proves the correctness of the find-minimal-causal-modtl func- 

tion. 

In addition, this modified function finds a simplest causal model by approximating 

in polynomial time. This follows from: 

1. Lemma 5.10, which tells us that the immediate simplifications of a model by 

approximating can be computed in polynomial time; and 

2. Lemma 5.2, which tells us that find-minimal-causal-model terminates in poly- 

nomial time if the immediate simplifications can be computed in polynomial 

time. 

Hence, we have the following lemma: 

Lemma 5.11 Let I be an instance of the MINIMAL CAUSAL MODEL problem that sat- 

isfies all the restrictions in Definition 5.8. A simplest causal model by approximating 

ofX can be found in time polynomial in the size of I. 

Proof: Immediate from the above discussion, ü 

Actually, Theorem 5.2 is sufficient, since we are only simplifyiug by approximating. 
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5.7.2    Simplifying a model by dropping model fragments 

We now consider the second step of the model simplification procedure, that involves 

simplifying a model by dropping model fragments. We start by showing the second 

important consequence of Theorem 5.4. In particular, we show that if Af is a simplest 

causal model by approximating, then a minimal causal model simpler than M is a 

subset of M. 

Lemma 5.12 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies all the restrictions in Definition 5.8, and let M C. M be a simplest causal 

model by approximating. Let M' C M be a minimal causal model of I such that 

M'<M. Then M'CM. 

Proof: Since M is a simplest causal model by approximating, it follows that replacing 

any model fragment in M by an immediate approximation results in a model that is 

not complete. Hence, Theorem 5.4 tells us that no coherent model that is simpler 

than M can have a model fragment that is an approximation of one of the model 

fragments in M. Hence, rfnce M' < M, it follows that M' CM. Ü 

Let M be any simplest causal model by approximating. We will now construct a 

set H of propositional horn constraints that must be satisfied by any causal model 

that is simpler than M. H will allow us to construct a minimal causal model that is 

simpler than M. 

Definition 5.11 Letl be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies all the restrictions in Definition 5.8, and let causes{p,q) be the expected 

behavior. Let M C M be any simplest causal model by approximating, and let F : 

E{M) —» P{M) be any onto causal mapping. Let H be a set of propositional horn 

constraints defined as follows: 

1. For each constraint of the form 

77»! A 7712 A ... A mn =*• i4 
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in C, where each m,- €M,l<i<n,n contains the horn constraint 

mi A mj A ... A mn =► m 

where m = AOM, i.e., m is the model fragment that is both in A and M; 

2. Let pi,pj € P{M) be parameters and let eue2 ^ E{M) be equations such that 

F{ei) = pi and Ffa) = ft. Let mum2 e M be model fragments such that 

ej € mi and e2 € m2. Ifpi € ^(62), so that & directly causally depends on pi, 

then 7i contains the constraint 

1712 => mi 

3. Let e, € E{M) be an equation such that F{eq) = q, and let m,, e M be a model 

fragment such that e, € m,. Then H contains the constraint 

mq 

We now show that any subset of M is a causal model if and only if it satisfies all 

the constraints in 7i. 

Lemma 5.13 Lei M, F, H, p, q, eq, and mq be as in Definition 5.11. Let M' CM 

be any model Then M' is a causal model if and only if M' satisfies all the constraints 
in H. 

Proof: (=») First, let us assume that M' is a causal model. We show that M' satisfies 

all the constraints in H. 

Since AT is a causal model, it must satisfy all the constraints in C. Hence, since 

M' C Af, it follows that M' must satisfy all the constraints in Ti defined under point 1 

of Definition 5.11. 

Since M' C M, it follows that E{M') C E{M). Hence, let F': E{M') -♦ P(M') 

be the restriction of F to the equations in E{M'). Since M' is a causal model, it 

follows that F' is an onto causal mapping. 

Let Pi, P2, Ci, 63, mj, and m2 be as in point 2 of Definition 5.11. If m2 € M', 

then it follows that 63 € E{M'). Hence, since pi € P(e2), it follows that pi € P{M'). 
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Since F' is an onto causal mapping, and since F' is a restriction of F, it follows that 

ei € E{M'), with F'(ei) = pi. Hence, it follows that mi € M'. Hence, the constraint 
m2 =^ mi in "H is satisfied. Hence, the constraints in H, defined under point 2 of 

Definition 5.11, are satisfied. 

Since M' is a causal model, q € P{M'). Since F' is an onto causal mapping, 

and since F' is a restriction of F, it follows that e, € E{M'). Hence, it follows that 

m, € M'. Hence, the constraint in H, defined under point 3 of Definition 5.11, is 

satisfied. 

Hence, M' satisfies all the constraints in H. 

("^) Let us now assume that M' satisfies all the constraints in H. We now show 

that M' is a causal model. 

Since M' satisfies all the constraints in Ti defined under point 1, it follows that 

M' satisfies all the constraints in C. 

We now show that the equations of M' are complete. Since M' C M, it follows 

that E(M') C E{M). Hence, let the causal mapping F' : E{M') -* P{M') be the 

restriction of F to the equations in E{M'). We now show that F' is an onto causal 

mapping. 

Let pi € P{M') be a parameter. We show that there is an equation ei € E{M'), 

such that F'^a) = pi. Let ea € E{M') be an equation such that pi € F(e2), and let 

m2 € M' be a model fragment such that e2 € m2. Since M' C M, it follows that 

62 € E{M), and m2 € M. Since F is an onto mapping, let ei € E{M) be an equation 

such that F(ei) = pi, and let mi € M be a model fragment such that ei € mj. 

Hence, from point 2 in Definition 5.11, H contains the constraint m2 => mi. Since 

M' satisfies all the constraints in 7i, and since m2 € M', it follows that mi € M'. 

Hence, ei € E{M') with F'(ei) = pi. Hence, M' is a complete roidel. 

It is easy to see from the above discussion that if p2 directly causally depends 

on pi according to F, i.e., (pi,p2) € Op, and if P2 € F(M'), then pi € P{M') and 

(Pi5P2) € Cf. We use this observation to show that M' is a causal model, i.e., 

{p,q)€C{E{M')). 

Since Af is a causal model, it follows that (p, g) € C{E{M)). Hence, there exists 

a sequence of parameters po,pi,...,pn € P{M) such that Po = P, Pn = 9, and 
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(PiiPi+i) € OF, 0 < i < {n — 1). Since M' satisfies the constraint under point 3 

of Definition 5.11, it means that m, € M', and hence q € P{M'). Hence, from 

the observations in the previous paragraph, a simple inductive argument shows that 

(PnPi+i) € CF', 0 < t < (n - 1). Hence, by transitivity, {p,q) € C{E{M')). 

Hence, M' is a causal model. Hence, M' is a causal model if and only if M' 

satisfies all the constraints in H. O 

In conjunction with Lemma 5.12, the above lemma tells us that, if M is a simplest 

causal model by approximating, then a minimal causal model that is simpler than 

M is just a smallest subset of M that satisfies all the constraints in H. Since all 

the constraints in H are horn clauses, it is easy to show that there is exactly one 

such minimal causal model.4 Given the set 7i of prepositional horn constraints, 

the minimal causal model can be computed using a procedure that is completely 

analogous to boolean constraint propagation (BCP) [McAllester, 1980]. Figure 5.8 

describes an algorithm, based on BCP, for finding a minimal causal model that is 

simpler M. 

function simplify-by-dropping{M, I) 
/* M is assumed to be a simplest causal model by approximating */ 
Construct H from M and J as described in Definition 5.11 
result *— nil 
while there exists a constraint h ZU such that 

the model fragments in the antecedent of h are in result and 
the model fragment in the consequent of h is not in result do 

Add the model fragment in the consequent of h to result 
endwhile 
return result 

end 

Figure 5.8: Simplifying a model by dropping model fragments. 

4This result is just a special case of the more general result from logic programming, that a 
consistent set of horn clauses has a unique minimal Herbrand model [van Emden and Kowalski, 
1976]. 
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BCP is known to run in time linear in the number of constraints [McAUester, 

1980]. Hence, we have the following: 

Lemma 5.14 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies all the restrictions in Definition 5.8, and let M C M be a simplest causal 

model by approximating. Then simplify-by-dropping(M,l) returns a minimal causal 

model of I in time polynomial in the size ofl. 

Proof; It is easy to see that simplify-by-dropping{M,I) returns a model that satisfies 

all the constraints in H. Hence, it returns a causal model. It is also easy to see that 

the returned model is a minimal causal model, because a model fragment is added to 

result if and only if it has to be added to satisfy some constraint in 7i. 

From the definition of Ti (Definition 5.11), it is easy to see that H can be computed 

from M and J in time polynomial in the size of I. The while loop in simplify-by- 

dropping is identical to BCP, and hence terminates in time linear in the number 

of constraints in 7{ [McAUester, 1980]. Hence, simplify-by-dropping{M,I) returns a 

minimal causal model of J in time polynomial in the size of I. □ 

Hence, we can efficiently identify a minimal causal model by first finding a simplest 

causal modely by approximating, as described in Section 5.7.1, and then finding a 

minimal causal model using simplify-by-dropping. 

Theorem 5.5 Let I be an instance of the MINIMAL CAUSAL MODEL problem that 

satisfies all the restrictions in Definition 5.8. A minimal causal model ofl can be 

found in time polynomial in the size ofX. 

Proof: Lemma 5.11 tells us that a simplest causal model by approximating can be 

found in polynomial time. Lemma 5.14 tells us that this simplest causal model by 

approximating can be used to find a minimal causal model in polynomial time. Hence, 

a minimal causal model of J can be found in time polynomial in the size of J. Ü 
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5.8    Summary 

In this chapter we identified a special case of the MINIMAL CAUSAL MODEL problem for 

which a minimal causal model could be found efficiently. We started, in Section 5.1, 

by introducing the upward failure property, which states that if a coherent model 

is not a causal model, then no simpler model is a causal model. We showed that 

if (a) the upward failure property is satisfied; and (b) the immediate simplifications 

of a coherent model can be generated in polynomial time; then a minimal causal 

model can be found in polynomial time using the function find-minimal-causal-model 

shown in Figure 5.1. Unfortunately, in general, it is difficult to decide whether or 

not the upward failure property is satisfied, and whether or not coherent models have 

a polynomial number of immediate simplifications. Hence, the rest of the chapter 

focuses on finding efficient characterizations of these properties. 

Section 5.3 introduced a new class of approximations, called causal approxima- 

tions, that are commonly found in modeling the physical world. When all the approx- 

imations are causal approximations, the causal relations entailed by a model decrease 

monotonically as model fragments are replaced by their approximations. Hence, if 

a model does not explain the expected behavior, the simpler model, with a subset 

of causal relations, also does not explain the expected behavior. In addition, causal 

approximations are particularly useful because they are commonly found in modeling 

the physical world. Appendix A gives a list of commonly used approximations, all of 

which axe causal approximations. 

Section 5.4 introduced the ownership constraints. These constraints ensure that 

coherent models have model fragments from all possibly relevant assumption classes. 

The ownership constraints, in conjunction with causal approximations, are sufficient 

to ensure that the upward failure property is satisfied. Section 5.5 then showed that if 

the model fragments of a coherent model cannot be individually approximated, then 

there is no point approximating them two or more at a time. 

Section 5.6 introduced a syntactic restriction on the expressive power of the propo- 

sitional coherence constraints in C. The constraints are restricted to have the form 

specified in Equation 5.5. 



5.8.  SUMMARY J53 

Finally, Section 5.7 put all the restrictions together, and presented an efficient 

algorithm for finding a minimal causal model. Definition 5.8 summarizes all the 

restrictions introduced in this chapter. The efficient algorithm for finding a minimal 

causal model is a two step procedure. First, a simplest model is found by simplifying 

the most accurate model as much as possible, without dropping any assumption 

classes. Second, a minimal causal model is found by dropping all unnecessary model 

fragments from the model identified in the first step. 



Chapter 6 

Differential equations 

In this chapter we generalize the results of the previous chapter to include models 

involving differential equations. The complication introduced by the use of diiferential 

equations is that the causal ordering is not generated from the set E of equations, 

but rather from the set ic{E), the integration completion of E. The results of the 

previous chapter do not take into account the additional int equations in ic{E). We 

remedy that situation in this chapter. 

The central result of the previous chapter was the efficient model selection al- 

gorithm developed in Section 5.7 A careful analysis of the proofs of the theorems 

and lemmas of Section 5.7 reveals that their correctness is based on the results of 

Section 5.1, Theorem 5.3, and Theorem 5.4. Of these results, only Theorems 5.3 

and 5.4 were based on the assumption that the models did not involve differential 

equations. (The former proves that the upward failure property is satisfied, while the 

latter proves that model fragments can be individually approximated.) 

A further analysis of the proofs of these theorems reveals that Theorem 5.3 de- 

pends on Theorem 5.2, which proves the restricted version of the upward failure 

property, and Theorem 5.4 depends on Lemma 5.3; which guarantees the existence 

of a local extension. Furthermore, the assumption that the models do not involve 

differential equations is restricted to these two results. Hence, in this chapter, we will 

generalize Theorem 5.2 and Lemma 5.3, so that the efficient model selection algorithm 

developed in Section 5.7 can be used for models involving differential equations. 

154 
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Section 6.1 introduces a canonical form for differential equations, and discusses its 

consequences. This canonical form is similar to the one commonly used in numerical 

integration. Section 6.2 discusses the different ways of approximating a differential 

equation: exogenizing and equilibrating. These two approximation methods are dis- 

cussed in detail in Sections 6.3 and 6.4, respectively. The latter section concludes 

with an updated definition of a causal approximation. Section 6.5 uses this updated 

causal approximation definition to generalize Theorem 5.2 to models with differential 

equations. 

Finally, Section 6.6 generalizes Lemma 5.3. It first shows that, in general, a 

coherent model can have an exponential number of immediate simplifications that 

use model fragments from the same assumption classes. It then introduces locally 

self-regulating parameters, and shows that when all the parameters are locally self- 

regulating, Lemma 5.3 can be generalized to model fragments with differential equa- 

tions. 

6.1    Canonical form 

For many purposes, e.g., numerical integration [Dahlquist et al, 1974] and causal 

ordering a.- defined in [Iwasaki, 1988], sets of differential equations are required to 

be in canonical form \ set of first-order differential equations is in canonical form 

if earh riarivsiive occurs in exactly one equation. For our purposes, we weaken this 

condition slightly. We shall say that a set of first-order differential equations is in 

canonical form if each derivative can be causally determined by exactly one equation. 

Hence, we allow a derivative to occur in more than one equation, though exactly one 

equation can causally determine it. To ensure that the equations of all device models 

are in canonical form, we assume that the set of model fragments under consideration 

are in canonical form: 

Definition 6.1 (Canonical form) A set of model fragments is said to be in canon- 

ical form if and only if the following conditions are satisfied: 

1. All derivatives are local parameters; and 
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2. If derivative dp/dt is local to model fragment m, then dp/dt can be causally 

determined by exactly one equation in m. 

Condition 1 ensures that derivatives can be determined by the equations of model 

fragments in exactly one assumption class, while condition 2 ensures that exactly one 

equation in each such model fragment can determine it. Hence, the above restrictions 

ensure that the equations of all device models are in canonical form. Hence, we place 

the following restriction on J: 

• The set of model fragments in M are in canonical form. 

An important consequence of the above restriction is as follows. Let dp/dt be a 

derivative that is local to model fragment m, and let c be the equation of m that can 

causally determine dp/dt. The integration completion of any set of equations that 

includes e will introduce the equation int{p, dp/dt). Since dp/dt is local to m, this is 

exactly equivalent to augmenting the equations of m with the equation int{-p, dp/dt). 

In fact, if we do this for all derivatives in all model fragments, there is no need 

to explicitly apply the integration completion operator to a set of equations—the 

model fragments would already include the equations introduced by the integration 

completion. 

The advantage of the above viewpoint is as follows. Let mj and m2 be model 

fragments such that mi is a causal approximation of mi, as in Definition 5.3. Suppose 

that every derivative that is local to mj is also local to m2. If we were to augment the 

equations of mi and m^ with the int equations, as above, it is easy to see that the 

same set of equations are added to both mi and m2. Hence, it is straightforward to 

extend the correspondence mapping between the equations of mi and mj, to include 

these additional equations: if dp/dt is a derivative local to both mi and m2, the 

correspondence mapping is extended to map the equation int{p, dp/dt) in m2 to the 

equation int{p, dp/dt) in m^ It is easy to see that this extension satisfies all the 

conditions of a correspondence mapping. Hence, if the equations of mi and m2 are 

augmented as above, m2 is still a causal approximation of mi. 

In summary, if the same set of derivatives are local to mi and m2, whenever m2 

is a causal approximation of mi, then m2 remains a causal approximation of mi even 
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after we augment the equations of all model fragments as above. This means that 

all the results that we have proved in the previous chapter remain true, even if we 

include differential equations! 

However, it may not always be the case that the same set of derivatives are local 

to mi and m2. We now discuss this important case. 

6.2    Approximating differential equations 

Let mj and m2 be model fragments such that m2 is an approximation of mi. Let 

dp/dt be a derivative that is local to mi, but not local to mj. Intuitively, mi describes 

a phenomenon using a dynamic model, i.e., a model involving differential equations, 

while m2 approximates this description by describing the phenomena using a static, 

or equilibrium, model. We will now consider two types of approximations, called 

exogenizing and equilibrating, that convert a dynamic description of a phenomenon 

into an equilibrium description. These two types of approximations were identified 

by Iwasaki in [Iwasaki, 1988]. 

The basic idea behind these approximation techniques is that, when viewed at the 

right time-scale, a dynamic system can appear to he in equilibrium. Iwasaki considers 

two cases: 

1. The dynamic behavior of a system is slow compared to the time-scale of interest. 

For example, car brakes wear out over a period of years, while the time-scale of 

interest may be only a matter of hours or days. Hence, at this time scale, the 

thickness of the brake pads can be assumed to be constant. Assuming that a 

parameter does not change, because its dynamic behavior is much slower than 

the time-scale of interest, is called exogenizing. 

2. The dynamic behavior of a system is fast compared to the time-scale of inter- 

est. For example, the dynamic behavior of the temperature of a small object 

lasts only a few minutes, after which it reaches thermal equilibrium with its 

environment. Hence, at a time-scale of hours, the object's temperature can be 

assumed to "instantaneously" track the environment's temperature. Assuming 
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that a parameter is always in equilibrium, because its dynamic behavior is much 

faster than the time-scale of interest, is called equilibrating. 

Let us now consider the effect that exogenizing and equilibrating have on the 

differential equations describing a dynamic phenomenon. Let 

%=m (6.i) 

be a differential equation, where / is some function of the set P of parameters, such 

that P does not contain dp/dt. Exogenizing the equation involves assuming that, at 

the time scale of interest, the value of p does not change significantly. Hence, the 

above equation is replaced by 

exogepous{p) 

Equilibrating Equation 6.1 involves assuming that p "quickly" reaches equilibrium, 

and hence dp/dt is always 0. Hence, we replace Equation 6.1 by 

0 = f{P) 

More generally, we have the following definitions of exogenizing and equilibrating: 

Definition 6.2 (Exogenizing and equilibrating) Let e be a differential equation 

that can causally determine the derivative dp/dt, i.e., dp/dt € Pc{e)- 

• Exogenizing e involves replacing it with the equation exogenous{p). 

• Equilibrating e involves replacing it with an equation e' such that (a) dp/dt £ 

P(e'); (b) Pie') C P{e); and (c) Pc{e') C Pc(e). 

Note that, in both exogenizing and equilibrating, the resulting equation does not 

contain dp/dt. Note, also, the slight generalization in our definition of equilibration— 

we do not require e' to be the result of modifying c by replacing dp/dt with 0. 

For example, the equation describing the dynamic behavior of the temperature of 

dm object is: 

f = CF (6.2) 
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where T is the object's temperature, C is its heat capacity, and F is the net heat flow 

into the object. Exogenizing this equation results in: 

exogenous{T) 

which states that the temperature is constant. Equilibrating that equation results in: 

F = 0 

which states that the object's temperature always changes to ensure that the net heat 

flow into the object is 0. 

We now investigate the effect that these types of approximations have on the 

results of the previous chapter. 

6.3    Exogenizing differential equations 

Let mi and m2 be model fragments such that m^ is an approximation of mi. Let 

dp/dt be a derivative that is local to mi, but not local to m2. Let e € mi be the 

equation that can causally determine dp/dt. Assume that e has been exogenized in 

m2, i.e., e has been replaced by exogenous{p) in m2. 

Now, let us assume that, if mi had not contained e and m2 had not contained 

exogenous{p), then m2 would have been a causal approximation of mi according to 

Definition 5.3. Let G be the correspondence mapping of this hypothetical causal 

approximation, and let L be the local causal mapping with respect to G. 

We now claim that m2 (with €xogenous{p)) is a causal approximation of mi (with 

e), if we augment the equations of mi to include the equation int{p, dp/dt). In 

particular, the correspondence mapping G can be extended to map exogenous{p) in 

m2 to int{p,dp/dt) in mi, and the local causal mapping L can be extended to map 

the equation e to the parameter dp/dt which is local to mi, but not local to m2. But 

we have already seen that mi can be viewed as containing the equation int{p, dp/dt). 

Hence, m2 is a causal approximation of mi. 

More generally, we can modify Definition 5.3 so that the domain and range of the 

correspondence mapping are not the equations of the model fragments, but the inte- 

gration completion of the equations of the model fragments. With this modifications. 
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it is easy to see from the above argument that, exogenizing of differential equations 

is a causal approximation   Hence, all the results of the previous chapter continue to 

hold, even when we allow difierential equations to be approximated by exogenizing. 

In the next section, where we discuss equilibration, we will give an updated defi- 

nition of a causal approximation that incorporates the above change. 

6.4    Equilibrating differential equations 

Let mi and m2 be model fragments such that mj is an approximation of mi. Let 

dp/dt be a derivative that is local to mi, but not local to 1712. Let ei € mi be the 

equation that can causally determine dp/dt. Assume that ei has been equilibrated in 

ma, and let 62 be the equilibrated version of ei. 

Let us now assume that, if mi had not contained ei and m2 had not contained 62, 

then m2 would have been a causal approximation of mi according to Definition 5.3. 

Let G be the correspondence mapping of this hypothetical causal approximation, and 

let L be the local causal mapping with respect to G. 

It is now tempting to proceed as we did in the case of exogenizing. In particular, 

we can argue that, when mi does contain ei (and hence implicitly int{p, dp/dt)) and 

m2 does contain 62, we can extend G by mapping 62 to ci. Similarly, we can extend 

L by mapping int{p, dp/dt) to p. 

But L can map int{p, dp/dt) to p only if p is local to mi, but not local to m2. 

This means that p cannot be determined by equilibrium equations—p can only be 

determined by an int equation, or p can be constant as a result of exogenizing equa- 

tions like e. This is an undesirable state of affairs. For example, the equilibrium 

temperature of an object cannot be determined by equilibrating Equation 6.2. 

Hence, we do not take the above approach. Rather, we show that even if we do 

not extend L to map int{p,dp/dt) to p, but we do extend G to map 62 to Ci, then 

Theorem 5.2 continues to remain true. Before we do this, we update the definition of 

a causal approximation, incorporating the various changes that we have discussed. 

Definition 6.3 (Causal approximation with differential equations) A model 

fragment m^ is said to he a causal approximation of a model fragment mi if and only 
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if: 

1. m2 w an approximation ofm\; 

2. ifdp/dt is a derivative that is local to mi but not local to m2, then the equation 

that can causally determine dp/dt in mj is either exogenized or equilibrated in 

1712/ 

3. There exists a 1-1 mapping G : ic(m2) -» ic(mi) that satisfies the following 

properties: 

(a) for each e € ic(m3), P{e) C P{G{e)), and Pc{e) C Pe{G{e)); 

(b) if mi contains a differential equation e that can causally determine deriva- 

tive dp/dt. ana if exogenous{p) € m2 is the exogenized version of e, then 

G{exogenous{p)) = int{p,dp/dt); and 

(c) if mi contains a differential equation e that can causally determine deriva- 

tive dp/dt, and if e' € m2 is the equilibrated version of e, then G{e') = e. 

G is called a correspondence mapping, and e and G{e) are called corresponding 

equations. 

4- Let E* be the set of equations in mi that have no corresponding equations ac- 

cording to G. Let P' denote the set of parameters such that q € P' if and only 

if 

(a) q is local to mi; 

(b) q is not local to m2; and 

(c) if p is a parameter, dp/dt is its derivative, and the equation that can 

causally determine dp/dt in mi has been equilibrated in m2, then q is nei- 

ther p nor dp/dt. 

Then there exists an onto causal mapping L : E* —* P*.   L is called a local 

causal mapping with respect to G. 
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It is easy to verify that when m! and m2 have no differential equations, the above 

definition reduces to Definition 5.3. The changes are as follows. Condition 2 ensures 

that the only way differential equations can be approximated is by either exogenizing 

them or equilibrating them. Condition 3b incorporates the change to G discussed in 

Section 6.3, while Condition 3c incorporates the restriction to G discussed earlier in 

this section. 

Condition 4 ensures that the "tempting" extension to L, discussed earlier in this 

section, is disallowed. In particular, note that E* contains only equations in mi. 

Hence, equations of the form tnt{p,dp/dt) are not in the domain of L. 

Condition 4c ensures that parameter p and derivative dp/dt, where the equation 

e that can causally determine dp/dt has been equilibrated in m2, are not in the co- 

domain of L. This is necessary because e is the only equation in m] that can causally 

determine dp/dt, and G already matches e to its equilibrated version. Hence, no 

equation in the domain of L can causally determine dp/dt. Similarly, if p were local 

to mi, but not local to m2, then it would be okay to be "tempted" as discussed earlier, 

and extend L to map int{p, dp/dt) to p. However, since int{p, dp/dt) is not in the 

domain of Z,, it makes sense to leave p out of the co-domain of L. 

6.5    Monotonicity of causal relations 

In this section we show that Theorem 5.2 remains true with the above updated 

definition of a causal approximation. We start by proving a number of subsidiary 

lemmas. 

Recall that a causal mapping H : E -> P is said to be partial if and only if H is 

not defined for each equation in E. In the next two lemmas, we define a condition 

under which a partial causal mapping can be extended to a causal mapping defined 

over more equations, such that the resulting causal mapping entails a superset of 

causal relations. We will first motivate these two lemmas with an example. 

Let £ be a set of equations: 

E = {du/dt = r, dv/dt = u, dw/dt = w} (6.3) 
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and let H : ic{E) -4 P{E) and H' : ic(E) -* P{E) be partial causal mappings as 

defined in Figure 6.1. 

H{du/dt = v) = v 
H{dv/dt = «) = u 
H{dw/dt = w) = w 

H'idu/dt = v) = du/dt 
H'{dv/dt = u) = dv/dt 
H'{dw/dt = w) = w 
H'{int{u,du/dt)) = u 
H'{int{v,dv/dt)) = v 

Figure 6.1: Partial causal mappings H and H'. 

Note that H' is defined over more equations than H. Figure 6.2 shows the bipaxtite 

graphs representing E, and the two causal mappings H and H'. The bold lines with 

arrowheads at each end represent the two causal mappings. 

dv/dt = u ^ »y u 

du/dt = v 

int{u,du/dt) 

int{v,dv/dt) 

dw/dt = w 

int{w,dw/dt) 

w 

dw/dt 

(a) Causal mapping H 

dv/dt = u 

du/dt = v 

int{u, du/dt) 

int{v, dv/dt) 

dw/dt = w 

int{w, dw/dt) 

(b) Causal mapping H' 

Figure 6.2: A motivating example 

Now consider 5, an alternating sequence of equations and parameters, defined as 

follows: 

S = {int{v,dv/dt), v,du/dt = v,du/dt, int{u,du/dt),u,dv/dt = u,dv/dt}    (6.4) 

One can verify that the partial causal mapping H' can be derived from the partial 

causal mapping H using 5 as follows: 

• If equation e is followed by parameter p in the sequence 5, then H\e) = p. For 

example, int{v, dv/dt) is followed by v, and hence H'{int{v, dv/dt)) = v. 
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• If equation e is not in the sequence 5, and if H is defined for e, then H'{e) = 

H{e). 

i.e., if we view 5 as a path in Figure 6.2a, then Figure 6.2b is a result of the following 

operations: (a) if an edge m 5 is bold with arrows, then convert it into a light edge 

without arrows; and (b) if an edge in S is light without arrows, then convert it into 

a bold edge with arrows. 

One can also verify the following two properties: (a) according to the partial 

causal mapping H', the parameters appearing in the sequence S (i.e., v, dujdt, u, and 

dv/dt) are causally dependent upon each other; and (b) the direct causal dependencies 

entailed by H are a subset of all the causal dependencies entailed by H', i.e., CH Q 

fc(C//'). In the next two lemmas, we give a general characterization of such partial 

causal mappings H and H', and sequence 5, and show that the above two properties 

hold. These lemmas will provide us with a mechanism to extend a partial causal 

mapping like H. 

Lemma 6.1 Let E be a complete set of equations, and let H : ic{E) —* P{E) be a 

partial causal mapping. Let S be an alternating sequence of equations and parameters: 

S = {ei,pi,C2,P2,...,eTl,pn}, for some n > 1 

such that 

1. No equation or parameter is repeated in S; 

2. Pi € Pciti), for l<i< n; 

3. H is undefined for Ci/ 

4- pn is not in the range of H, i.e., there is no e & ic{E) such that H is defined 

for e and H{e) = pn; 

5. for each e,, 2 < i < n, if H is defined for e,, then H{ti) = pi-\.  If H is not 

defined for e,, then p,_i € P{^i)', and 

6. pn € Plea). 
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Let H' : ic{E) -» P{E) be a partial causal mapping defined as follows: 

H'ie) = < 
Pi ife is ti, \ <i <n 

H{e) ife is not e,, for any I <i<n, and H is defined for e 

undefined   otherwise 

Then, according to H', each parameter in S is causally dependent on every other 

parameter in S, i.e., for every p^pj, 1 < i,j < n, (p,-,^) € tc{CH>). 

Proof: Let pk, pk+1,1 < k <n—l,he any two consecutive parameters in the sequence 

S. We first show that 

(Pit,pjt+i) € CH», for 1 < fc < n - 1 (6.5) 

i.e., according to H', pfc+1 directly causally depends on pjfc. From the definition of H', 

we know that H'{ek+i) = pk+i- Hence, we need only show that p* € P{ek+i). 

Condition 5 in the statement of the lemma tells us that if H is defined for ejt+i, 

then H{ek+i) = pfc. Since H is & causal mapping, it follows that pk € P{ek+i)- If H 

is not defined for ek+i, then condition 5 tells us that pk € P(efc+i). Hence, in either 

casep* € P{ek+i). Hence, (pfc,pjt+i) € Cw 

Now, condition 6 in the statement of the lemma tells us that pn € /J(e1). Since 

H'{ei) = p,, it follows that (p„,pi) € CH'- Hence, using transitivity and the result 

shown in Equation 6.5, we can conclude that for every p,,Pj, 1 < i,j < n, (pi,Pj) € 

tc{C„>). D 

Lemma 6.2 Let E, S, H, and H' he as in Lemma 6.1. Then CH £ tc{CH>), i.e., 

the direct causal dependencies entailed by H are a subset of the transitive closure of 

the direct causal dependencies entailed by H'. 

Proof: Let (91,92) € CH- TO prove this lemma, we need only show that (91,92) € 

tc{CH'). 

Since (91,92) 6 CH, it follows that there is an equation e € ic{E), such that 

■^(e) ::= 92 and 91 € Pie). If e is not an equation in the sequence 5, then by the 

definition of H', it follows that H'{e) = H{e) = 92. Therefore, (91,92) € CH-, and 

hence (91,92) € HCH-). 
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On the other hand, if e is an equation in the sequence 5, then let H'{e) = p, 

where p is some parameter in the sequence 5'. Since H is defined for e, and H{e) = 92, 

condition 5 of Lemma 6.1 (and hence of this lemma) tells us that q^ is also a parameter 

in the sequence S. Hence, Lemma 6.1 tells us that, according to H', p and ^ axe 

causally interdependent. In particular, we have 

(p,92)€*c(CW0 (6.6) 

Now, since qi € /'(e), we have two cases: cither p is qi, or p is not ft. If p is ft, 

then Equation 6.6 directly tells us that (ft,ft) € tc{CH'). If p is not ft, then since 

ft € P{e), and i/'(e) = p, it follows that (ft,p) € Cw- Hence, in conjunction with 

Equation 6.6, we have (ft,ft) € tc{CH')- 

Hence, in every case, we have (91,92) € «c(Cw«). Hence, it follows that CH C 

HCH')- D 

The above two lemmas show that, under certain conditions, a partial causal map- 

ping H, and an alternating sequence of equations and parameters 5, can be used 

to extend H to & causal mapping H' that entails a superset of causal dependencies. 

We now investigate conditions on H which ensure that that a sequence like 5 exists, 

so that H can be extended to H'. In particular, we introduce augmentable causal 

mappings: 

Definition 6.4 (Augmentable causal mapping) Let E be a complete set of equa- 

tions, and let H : ic{E) —► P{E) be a partial causal mapping. H is said to be 

augmentable with respect to E if and only if 

1. every equation e € ic{E), for which H is not defined, is of the form int{q,dq/dt), 

for some q; and 

2. every parameter p € P{E) not in the range of H, is of the form dq/dt, such 

that int{q, dq/dt) € ic{E) and H is not defined for int{q, dq/dt). 

i.e., H is not defined for some int equations, and the corresponding derivatives are 

the only parameters not in the range of H. 
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Hence, an augmentable causal mapping H is undefined only for equations of the 

form int{q,dq/dt), and the corresponding derivatives are the only parameters not in 

the range of H. One can verify that both the causal mappings H and H' shown 

in Figure 6.2 are augmentable causal mappings. We now show that if /f is an aug- 

mentable causal mapping, then there exists a sequence S satisfying the conditions of 

the above two lemmas. This will ensure that H can be extended to H', as discussed 

earlier. 

Lemma 6.3 Let E be a complete set of equations, and let H : ic(i?) —> P{E) be 

an augmentable causal mapping with respect to E. Then there exists an alternating 

sequence of equations and parameters: 

S = {ei,pi,e2,P2,---,en,Pn}, for some n > 1 

that satisfies conditions 1-6 in the statement of Lemma 6.1, with respect to the causal 

mapping H. In addition, let int{q,dq/dt) be any equation in ic{E) for which H is 

not defined. Then int{q,dq/dt) occurs in the sequence S if and only if the parameter 

dq/dt occurs in the sequence S. 

Proof: The proof of this lemma is based on an understanding of the algorithm for 

finding maximum matchings in bipartite graphs described in Appendix D. 

Let Ei C tc(.E) be the set of equations for which H is defined, and let Pi be the 

range of H. Let £2 = ic{E) \ Ex and let P2 = P{E) \ P^ Since H is augmentable, 

it follows that E2 and P2 are not empty, and have the following form (where m = 

1^1 = 1^1): 

£2   =      U   {intiq^dqildt)] 
l<«<m 

P2   =      U   {dqildt) 
l<«<m 

Let G = (A", Y, R) be the bipartite graph representing the equations in ic{E) (see 

Definition 3.5). Since E is complete, it follows that any maximum matching in G is 

complete. Let C/ be a matching in G defined using H: 

U = {(e,#(c)) : e € ic{E) A H{e) is defined} 
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U is clearly not complete because H is defined only on the equations in Ei, and not 

on the equations in E2. In addition, since the range of H contains no paxameters in 

P2, it follows that no edge in U is incident on any equation in E2 or any parameter 

in P2. In particular, no edge in U is incident on the equation intfa^dqi/dt) and on 

the parameter dqi/dt. 

For example, the set U corresponding to the causal mapping H defined in Fig- 

ure 6.1 is the set 

{{dv/dt = it, u), {du/dt = v, v), (dw/dt = to, w)} 

This is shown graphically in Figure 6.2a, where U is the set of bold edges with arrows 

at both ends. 

Define a second bipartite graph G' = {X, Y, R') that is exactly like G, except that 

G' contains the following additional set of edges: 

W=    U   {(intiq^dqi/dt^dqi/dt)} 
2<i<m 

i.e., the edges in W connect int equations for which H is undefined to the correspond- 

ing derivatives, but W does not connect intiq^dqt/dt) to dqx/dt. Since G' has more 

«dges than G, but is otherwise identical to G, it follows that any matching of G is 

also a matching of G". Hence, since G contains a complete matching, it follows that 

G' contsirjs & complete matching. 

For exampk, Figure 6.3 shows the graph G' corresponding to the graph shown in 

Figure 6.2a, with % being the parameter v. The bold edges with arrows correspond 

to the set U, while iht bold edges withov     rows correspond to the set W. 

Let V be the union of U and W. Since no edge m U is incident on an equation in 

E2 or a parameter in 1%. it is easy to verify that l^ is a matching in G'. However, V 

is not a complete matching. In fact, the only two nodes in G' that V does not match 

are the nodes corresponding toeqrc.v, n ■;ns:{.q1,dq1/dt) and parameter dqi/dt. Since 

G' contains a complete matching, it foüows that there is an augmenting path in G', 

with respect to V (augmenting paths are defined in Definition D.3). This is a direct 

consequence of Lemma D.2. 
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dv/dt = u ^ ^ u 

du/dt = v 

int{u,du/dt) 

int{v,dv/dt) 

dw/dt = w ■^~ -^ w 

int{w,dw/dt) •*— —^ dw/dt 

Figure 6.3: Example of the graph G' 

For example, the following sequence is an augmenting path in the graph shown in 

Figure 6.3: 

{int{v,dv/dt),v, du/dt - v, du/dt, int{u,du/dt),u,dv/dt = u, dv/dt}       (6.7) 

This sequence is the same as the one shown in Equation 6.4. 

In general, let 

S = (ei,p1,C2,P2,---,en,Pn),for somen > 1 

be such an augmenting path, where each e, is (an equation) in X and each p, is (a 

parameter) in Y. We claim that S satisfies conditions 1-6 in Lemma 6.1: 

1. Since S is an augmenting path, no node is repeated in 5. Hence, no equation 

or parameter is repeated in 5. 

2. Since 5" is an augmenting path, it follows that (ej,p,), I < i < n, b sai P\gt 

in R', such that (et-,pi) is not in V. Since W is ib" set ^f «fp^s m R' tkai «re 

not in R, and W C V, it follows that (ej,pj) I* AU eaf: in H. Hence uring 

Definition 3.5, we conclude that pi € Pc{ii)' for I < t :{ n. 

3. Since S is an augmenting path, no edge in V h i^clffeüt r/n €$* Henca, H is 

undefined for ei. 

4. Since 5 is an augmenting path, no edge la V h incitlenl on pn. i 'pn is not 

in the range of H. 
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5. Since S is an augmenting path, it follows that (c,,pj_i), 2 < i < n, is an edge 

in V. Hence, either i/(et) = p.-.j, or {e^p^) € W. If (e.,?,-!) € W, then F 

is not defined for c,. Hence, e,- is of the form int{q,dq/dt) for some q, and p,.! 

is dq/dt. Hence, p,.! € Piei). 

Hence, for each et, 2 < t < n, if i/ is defined for a, then ^(e,) = p,^. If H is 

not defined for c,, then p,_i € -P(e,). 

6. Since int{q1,dqi/dt) and «f^i/rff are the only two nodes on which an edge in 

V is not incident, it follows that ei is int{q1,dqTl/dt) and pn is dqi/dt. Hence, 

Pn e P{el). 

Hence, the augmenting path S is an alternating sequence of equations and parameters 

that satisfies conditions 1-6 in Lemma 6.1. 

Now we show that for any equation int{q,dq/dt) for which H is not defined, the 

equation int{q, dq/dt) occurs in S if and only li dq/dt occurs in 5. This clearly holds 

for q = qi, since int{q1,dqi/dt) and dq^/dt are both in 5. Now suppose that the 

equation intfa, dqi/dt), 2 < i < m, occurs in 5, and let it be the equation tj, for 

some 2 < j <n. Since 5 is an augmenting path, it follows that {e^pj^) € V. But 

this is only possible if Pj-i is dqi/dt, since no edge in U is incident on int{qi, dqi/dt). 

Hence dqi/dt occurs in S. A symmetric argument shows that if dqi/dt occurs in S 

then int{qi, dqi/dt) occurs in S. Hence, if H is not defined for int{q,dq/dt), then 

int{q, dq/dt) occurs in S if and only if dq/dt occurs in 5. □ 

The above lemma shows that if H is augmentable, then a sequence S, with the 

right properties, exists such that H can be extended. The next lemma shows that 

the resulting causal mapping is either complete or is itself augmentable. 

Lemma 6.4 Let E be a complete set of equations, and let H : ic{E) —> P{E) be an 

augmentable causal mapping. Then there exists a causal mapping H' : ic{E) —» P{E) 

such that 

1. H' is defined on more equations in ic{E) than H; 

2. CH C tciCw); and 
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5- either H' is complete, or H' is augmentable with respect to E. 

H' is called an augmentation of H. 

Proof: For any augmentable causal mapping H, Lemma 6.3 tells us that there exists 

an alternating sequence of equations and parameters 

S = {ci,Pi,e2,P2,---,en,pn} 

that satisfies conditions 1-6 of Lemma 6.1. Let H' be defined from H and 5 in the 

same way that it was in the statement of Lemma 6.1: 

H'{e) = 

Pi if e is c,, 1 < i < n 

//(e) if e is not e„ for any 1 < t < n, and H is defined for e 

undefmed   otherwise 

Lemma 6.2 tells us that CH Q tc{CH')- 

One can check from the above definition that H' is defined on every equation on 

which H is defined, on every equation that occurs in 5, and no other. Similarly, 

one can check that every parameter in the range of H is in the range of H', every 

parameter that occurs in S is in the range of i/', and no other parameters are in the 

range of H'. 

In addition to E' being defined on every equation that H is defined, H' is also 

defined on tx, but H is not. Hence, H' is defined on more equations in ic{E) than H. 

Since H' is defined on every equation on which H is defined, and H is augmentable, 

it follows that the only equations on which H' may not be defined are of the form 

int{q,dq/dt). Lemma 6.3 tells us int{q,dq/dt) occurs in S if and only if dq/dt occurs 

in 5. Hence, H' is df lined on int{q, dq/dt) if and only if dq/dt is in the range of H'. 

Hence, if H' is not defined on some equation, it follows that H' is augmentable with 

respect to E. Otherwise, H' is a complete causal mapping, d 

For example, augmenting the causal mapping H shown in Figure 6.2a using the se- 

quence shown in Equation 6.7, results in the causal mapping H' shown in Figure 6.2b. 

One can easily verify that H' is augmentable. 
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We can now recursively apply the above lemma to H1, until we are left with an 

onto causal mapping. For example, applying the above lemma to the causal mapping 

H' of Figure 6.2b results in the onto causal mapping H" shown in Figure 6.4. 

dv/dt = U ^ y u 

du/dt=v 

int{u,du/dt) 

int{v, dv/dt) 

dw/dt = w 1^- —jr w 

int{w,dw/dt) ^      ^*-dw/di 

Figure 6.4: The resulting onto causal mapping H" 

The following lemma merely formalizes the above recursive procedure. 

Lemma 6.5 Let E be a complete set of equations and let H : ic{E) -+ P{E) be an 

augmentable causal mapping with respect to E. Then there exists an onto causal map- 

ping H' : ic{E) -» P{E) such that CH C td^CH'), i-e-, the direct causal dependencies 

entailed by H are a subset of the transitive closure of the direct causal dependencies 

entailed by H'. 

Proof: To prove this lemma., we construct a finite sequence of partial causal mappings 

Hi: ic{E) -> P(£), 1 < i < ifc, such that: 

Hk = H' 

Hi+i is an augmentation of i/,   1 < i < A; — 1 

This sequence is well defined because Lemma 6.4 tells us that for every augment- 

able causal mapping, there exists an augmentation which is either complete or aug- 

mentable. Furthermore, Lemma 6.4 also tells us that if i/.+j is an augmentation of 

Hi, then Hi+i is defined on more equations than Hi. Hence, H.+i is undefined on 

fewer equations than Hi. Hence, the above sequence must be finite, as the number 
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of equations on which the augmentations are undefined decreases monotonically to 0, 

at which point the augmentation is complete. 

Finally, Lemma 6.4 also tells us that if Hi+i is an augmentation of Hi, then Cjy. C 

MCtfi+i). Hence, by transitivity, it follows that CH = CWi Q *c(CwJ = tc{Cjj')- D 

We are now in a position to prove a version of Theorem 5.2 that includes differ- 

ential equations. Given complete models My and M2, such that M. < M\, the idea 

is to use an onto causal mapping on ic{E{Mi)) to construct an augmentable causal 

mapping on ic{E{Mi)). The above lemma is then invoked to construct an onto causal 

mapping on ic{E{M\)). 

Theorem 6.1 Let 1 he an instance of the MINIMAL CAUSAL MODEL problem such 

that all the approximation relations are causal approximations (as in Definition 6.3), 

and the contradictory relation partitions the set M of model fragments into the set 

A of assumption classes. Let Mj, M2 Q M be complete models such that Mi and 

A/2 contain model fragments from the same assumption classes, and M2 < Mi. The 

causal relations entailed by the equations of M2 are a subset of the causal relations 

entailed by the equations of Mi, i.e., C{E{M2)) Q C(E{Mi)). 

Proof: Let H2 : tc{E{M2)) —* P{M2) be an onto causal mapping. H2 must exist 

because M2 is complete. We now use H2 to construct an onto causal mapping Hi : 

ic{E{Mi)) -» P{Mi), such that CH2 Q HCm)' 

Let same-ac{m, M) denote the model fragment m' € M such that m and r?» are 

in the same assumption class. Since Mi and M2 have model fragments from the same 

assumption class, it follows that for any mi € Mi and m2 € M2, the expressions 

same-ac{Tni,M2) and same-ac{m2,Mi) are well defined. 

For any model fragment mi € Mi, let not-equil{mi) denote the set of equations 

in mi that are not equilibrated in same-ac(mi, M2), and let not-equil{Mi) denote the 

union of the not-equil equations in the model fragments of Mi. Similarly, for any 

model fragment m2 € M2, let not-equil{m2) denote the set of equations in m2 that 

are not equilibrated versions of equations in 5ame-ac(m2, A/i), and let not-equil{M2) 

denote the anion of the not-equil equations in the model fragments of M2. 
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Let m! € Mi be any model fragment, and let m2 € A/2 be such that m2 = 

same-ac(mi, A/2). If mi and m2 are not identical, then it follows that m2 is a causal 

approximation of mi. Suppose that mi and m2 are not identical, and hence 7712 is a 

causal approximation of mi. From the discussion at the end of Sections 6.1 and 6.3, 

it follows that, if we let the equations of mi be ic{not-equil{mi)), and the equations 

of m2 be ic{not-equil{m2)), then m2 is a causal approximation of mi according to 

Definition 5.3. Hence, it follows that, if we let the equations of each model fragment 

m € AfiUAf2 be ic{noi-equil{m)), then Lemma5.4 applies, i.e., any causal orientation 

of the equations in ic{not-equil{M2)) can be globally extended to a causal orientation 

of the equations in ic{not-equil{M\)). 

Using the above observation, we define a partial causal mapping H : ic{E{Mi)) —► 

P{Mi) as follows. Let H restricted to the equations in ic{not-equil{Mi)) be the 

global extension of H2 restricted to the equations in ic{not-equil{M2)). Lemma 5.5 

tells us that the direct causal dependencies entailed by H restricted to the equations 

in ic{not-equtl{Mi)) is a superset of the direct causal deper Jencies entailed by H2 

restricted to the equations in ic{not-equil{M2)). 

Now, consider any equation 62 that is in ic{E{M~)) but not in ic{not-equil{M2)). 

One can see that, by definition, 62 is an equilibrated version of some equation ei that 

is in E{Mi) but not in ic{not-equil{Mi)). Hence, we can extend H to ei by letting 

H{ei) = ^2(62). Since 62 is an equilibrated version of ei, this extension preserves the 

fact that the direct causal dependencies entailed by H axe a superset of the direct 

causal dependencies entailed by H2. Since we have extended the causal orientation 

of each of the equations in ic{E{M2)), it follows that CH2 Q CH- 

We will now construct the onto causal mapping Hi from H. If H is an onto 

causal mapping, then we make Hi identical to H, and hence CH3 Q C//,, and hence 

On the other hand, suppose that i/ is a partial causal mapping. We now show that 

H is an augmentable causal mapping with respect to E{Mi) (see Definition 6.4). First, 

note that the equations in ic{E{Mi)) can be partitioned into three subsets: (a) the 

integration completion of the equations that are not equilibrated; (b) the equations 

that are equilibrated; and (c) the int equations corresponding to the equations that 
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are equilibrated. It is easy to verify that H is undefined only on the equations listed 

under (c), i.e., H is undefined only on the rrt equations corresponding to the equations 

that are equilibrated. 

Second, if H is undefined for int{q, dq/dt), then dq/dt cannot be in the range of 

H. This follows from the following facts. Let e be the equation that can causally 

determine dq/dt in E{Mi). From (c) above, we know that e has been equilibrated 

in E{M2). Let the equilibrated version of e be c', so that H{e) = ^(e')- Since e' is 

the equilibrated version of e, it follows that /^(e') ^ dq/dt, and hence H{e) ^ dq/dt. 

Since e is the only equation in E{Mi) that can causally determine dq/dt, it follows 

that dq/dt is not in the range of H. Hence, whenever H is undefined for int{q, dq/dt), 

it follows that dq/dt is not in the range of H. Finally, since E{Mi) is complete and 

hence \ic{E{Mi))\ = |P(Mi)|, it follows that every other paxameter in P{M\) is in 

the range of H. 

Hence, from the above observations, and from Definition 6.4, it follows that H is 

augmentable with respect to E{Mi). But Lemma 6.5 tells us that there exists an onto 

causal mapping Hi : ic{E{Mi)) —► P(Mi) such that CH ^ ^(Cjy,). Since C#2 C CJJ, 

it follows that CH2 Q ^(CH,). 

Hence, whether or not H is onto, it follows that Ciy2 C ^(C//,), and hence 

C(£(M2)) C C(£(Mi)). D 

Hence, we have succeeded in generalizing Theorem 5.2 to models containing dif- 

ferential equations. This generalization required an updated definition of causal ap- 

proximations. Hence, we require the following restriction on J: 

• All the approximation relations are causal approximations as in Definition 6.3. 

6.6    Efficiently equilibrating differential equations 

In the previous section, we introduced an updated definition of a causal approxi- 

mation, and used this definition to generalize Theorem 5.2 to models that involve 

differential equations. Unfortunately, even with this updated definition, a coherent 

model M can have an exponential number of immediate simplifications, all of which 
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use model fragments from the same assumption classes as M. In Section 6.6.1, we 

illustrate this with an example, and show that the source of the problem is that we 

have placed no restrictions on the equilibrations of differential equations. We then 

address this problem hy introducing locally self-regulating parameters, and show that 

when all the parameters are locally self-regulating. Lemma 5.3 can be generalized to 

model fragments involving differential equations. This allows us to generalize The- 

orem 5.4, ensuring that model fragments of a coherent model can be approximated 

one at a time. 

6.6.1    Equilibrating differential equations can be hard 

Consider the two assumption classes Ai and A2, and the six model fragments mi, 

mu, mi2, m2, m2i, and m22, shown in Figure 6.5. Note that all the approximation 

relations are causal approximations. 

Ai   =   {m^miijm«} 
A-2   -   {m2,m2i,m22} 

mx   =   {dy/dt = x) m2   =   {dx/dt = y} 
mu   =   {eio^enous(a;)} m2i   =   {exogenous{y)} 
mu   =   {exogenous{x)} m22   =   {exogenous{y)} 

approximation{mi, "in) approximation{m2, "I21) 
approximation{mi,mi-2) approximation{m2,17122} 

Figure 6.5: Assumption classes and model fragments 

Consider the model M = {mi,m2}. Assuming that there are no propositional 

coherence constraints, it is easy to see that M is complete, and hence coherent. Now 

consider the immediate simplifications of M. Replacing mi by either of its immediate 

approximations leads to an over constrained model. For example, the model Mi = 

{mii,m2} isoverconstrained because ic{E{Mi)) contains the equations int{x,dx/dt) 

from the integration completion of m2, and exogenous{x) from mn. This is clearly 

overconstrained. Similarly, replacing m2 by either, of its immediate approximations 

leads to an overconstrained model. 
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The only way to get a coherent simplification is to replace both mi and m^ by 

one of their immediate approximations. For example, M2 = {mn,m2i} is a coherent 

model that is one of the immediate simplifications of M. Since both mi and ma have 

two immediate approximations, it follows that simplifications{M) has four models. 

This example can be trivially generalized to have n assumption classes, so that the 

number of models in the immediate simplifications of the most accurate model is 

2n, i.e., if we allow arbitrary differential equations to be equilibrated, then coherent 

models can have an exponential number of immediate simplifications. 

The fundamental problem underlying the above example is that equations cannot, 

in general, be equilibrated individually, i.e., to ensure that the resulting model is 

coherent, a set of differential equations may have to be equilibrated simultaneously. 

Hence, if each equation ihat has to be equilibrated has multiple equilibrations, it 

follows that there will be an exponential number of immediate simplifications. 

In addition, it is not clear how we can efficiently identify a minimal set of dif- 

ferential equations, such that simultaneously equilibrating each equation in that set 

results in a coherent model.1 Hence, even if each differential equation has just one 

equilibration, we would still be unable to generate the immediate simplifications of a 

coherent model efficiently. 

6.6.2    Self-regulating parameter 

We can circumvent the above problem if we restrict ourselves to OTily those differential 

equations that can be equilibrated if and only if they can be equilibrated individually. 

Hence, at most one differential equation needs to be equilibrated in any immediate 

simplification of a model, and the problem discussed above disappears. 

Let us now understand how we can enforce this restriction. We start by defining 

a self-regulating parameter: 

Definitior 6.5 (Self-regulating parameter) A parameter p is said to be self-reg- 

ulating with respect to a coherent model M if and only if dvjdt causally depends on 

p in the causal ordering of the equations of M, i.e., (p^dpfdt) € C{E{M)). 
1'Wt suspect that the problem of identifying such a minimal set of differential ec-.iaticus i* in- 

tractable. However, we do not, as yet, have a proof of this hypothesis. 
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Since dp/dt determines p by integration, it follows that a self-regulating parameter 

regulates its own variation over time. We now prove an easy consequence of the 

lemmas in Section 6.5. In particular, we show that a differential equation can be 

equilibrated only if the corresponding parameter is self-regulating. 

Lemma 6.6 Let M be a coherent model, and let e € E{M) be a differential equation 

that can causally determine derivative dp/dt. Let M' < M be a coherent model such 

that e has been equilibrated in M'. Then p is self-regulating with respect to M. 

Proof: We provide only a sketch of this proof. Recall from the proof of Theorem 6.1 

that an onto causal mapping F': ic{E{M')) -► P^') is extended to an onto causal 

mapping F : ic{E{M)) -> P(M) using the following steps:2 

1. First, F is defined as the global extension of F'. One can check that, at this 

stage, dp/dt is not in the range of F. 

*. Then F is successively augmented, using the alternating sequence of equations 

and parameters defined in Lemma 6.3. dp/dt is introduced into the range of F 

when dp/dt occurs in such a sequence. 

However, Lemma 6.3 tells us that mf(p, dp/dt) occurs in the sequence if and only 

if dp/dt occurs in the sequence. But if int{p, dp/dt) occurs in the sequence, it is easy 

to see that p must occur in the sequence (using condition 2 of Lemma 6.1). Hence, 

both p and dp/dt occur in some sequence during the augmentation. Hence, using 

Lemma 6.1, we can infer that p and dp/dt are causally dependent upon each other. 

Hence, p is self-regulating with respect to M. □ 

Intuitively, the causal ordering from the equations of M has a causal path from p 

to dp/dt, and back to p via integration, like the following: 

p-* Pi -> > pn-> dp/dt A p 

2This assumes that M and M' have model fragments fron, the same assumption classes. However, 
this proof can be generalized straightforwardly, using the prool of Theorem 5.3. 
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Equilibrating the equation that causally determines dp/dt can be viewed as removing 

the last edge in this path, and making the rest of the edges point in the opposite 

direction: 

P*-Pi< ^Pn 

Of course, this is only possible if the path can be inverted in the simpler model. This 

is not always possible. For example, if one of the edges is an integration link: 

p-> ► p* -► dq/dt -V 9 -> ypn-* dp/dt A p 

then the integration link from dq/dt to q cannot be inverted. The only way to equi- 

librate the equation with this path is to also equilibrate the equation that causally 

determines dq/dt: 

P* ■'- Pfc 

q* *-Pn 

The above observations provide us with the condition necessary to ensure that dif- 

ferential equations can be individually equilibrated. In particular, if there is a causal 

path from p to dp/dt that can be inverted, and that contains no integration links, then 

the equation that causally determines dp/dt can be individually equilibrated. Let us 

say that a parameter p is statically self-regulating, with respect to a coherent model 

M, if there exists an invertible causal path from p to dp/dt that contains no integra- 

tion links. Hence, if in every coherent model, every self-regulating parameter is also 

statically palf-regulating, then differential equations can be individually equilibrated. 

Unfortunately, we have no efficient method of ensuring that in every coherent 

model, every self-regulating parameter is also statically self-regulating. Instead, we 

restrict ourselves to locally self-regulating parameters. Informally, p is locally self- 

regulating if all the parameters in the causal path from p to dp/dt are local to a 

model fragment. More precisely, we have the following definition: 

Definition 6.6 (Locally self-regulating parameter) Let p be a parameter, and 

let m be any model fragment that contains an equation e that can causally determine 

dp/dt, and that has a causal approximation that equilibrates e. p is said to be locally 
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self-regulating if and only if every such model fragment m has a subset R C m of 

equations, called the self-regulating subset of m with respect to p, such that 

Lee R; 

2. \ic{R)\ = \Pc{ic{R))\; 

3. ifp' is any other locally self-regulating parameter, and if R' is the self-regulating 

subset ofm with respect to p', then R and R! are disjoint, i.e., ROR' = $. 

Condition 2 assures us that if a coherent model contains m, then the pre-image of 

every parameter in Pc{ic{R)), under any onto causal mapping, will be an equation in 

ic{R). Hence, every parameter in PC{R) behaves as if it were local to m. In conjunc- 

tion with condition 3, this also means that Pc{ic(R)) and Pc{ic{R')) are disjoint. 

For example. Figure 6.6 shows a model fragment that describes the velocity of 

a falling raindrop [Halliday and Resnick, 1978, page 95]. Figure 6.7 shows a causal 

approximation of this model fragment, which equilibrates the first equation, and hence 

describes the raindrop's terminal velocity. 

mrdvr/dt   =   mTg — dr 

dr   =   kvT 

vrir 

9 
dT 

k 

Velocity of the raindrop 
Mass of the raindrop 
Acceleration due to gravity 
Drag 
Coefficient of drag 

Figure 6.6: Model fragment describing the velocity of a falling raindrop 

0   =   TnTg — dr 

dr   =   kvr 

Figure 6.7: Model fragment describing the raindrop's terminal velocity 
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It is easy to verify that ür is locally self-regulating with respect to this set of model 

fragments. In particular, we can use 

R = {mTdvr/dt = mrg — dr,^ = kvr} 

to verify the conditions in Definition 6.6. 

Note that, in Definition 6.6, there is no guarantee that the parameter p is self- 

regulating with respect to every model that contains m. However, we can show that 

if the equation e can be successfully equilibrated, then dp/dt causally depends on p in 

any coherent model that includes m. In such cases, the causal dependence of dp/dt 

on p is mediated by parameters in Pc{ic{R)). (e, m, and R are as in Definition 6.6). 

Instead of proving the above claim, we show that Lemma 5.3 can be generalized to 

model fragments involving differential equations. This will ensure that Theorem 5.4 

will apply to models involving differential equations, so that the efficient model se- 

lection algorithm developed in Section 5.7 can be used. We start by proving some 

preliminary properties of the above definition. 

Lemma 6.7 Let p, m, e, and R be as in Definition 6.6. Let m' he a causal approxi- 

mation of m, and let G : ic(m') —* ic{m) he a correspondence mapping, and let L be 

the local causal mapping with respect to G. Let R C m! he the pre-image of R under 

G 

R! = {t': G{e') € R} 

Then we have the following: 

1. \ic{R')\ = \Pc{ic{R'))\; 

2. parameters in Pc{ic{R)) are either in Pc(?c(Ä/)), or they are local to m; and 

3. if ei is an equation in the domain of L, but e/ ^ ic{R), then L{ei) £ Pc{ic[R)) 

Proof: First, we show that \ic{R')\ = \Pc{ic{R'))\. Let |tc(Ä)| - \ic{R')\ = ke and 

let fcg, be the number of equations in R that are equilibrated in ft.3 This means 

that ic{R) contains A;e, int equations that are not found in ic(R'). However, this also 

3ln fact, condition 3 in Definition 6.6 allows us to show that ke<l = 1. 
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means that Pc{ic{R)) contains keg derivatives that are not in Pc{ic{I?)) (since they 

have been equilibrated). 

Let ki = ke — keq. Hence, fcj is the number of equations in R that have no 

corresponding equations in R'. Since m' is a causal approximation of m, it follows 

that there exists a local causal mapping that maps these ki equations to it; parameters 

that are local to m but not local to m'. Hence, these ibj local parameters must be in 

Pe{R), but not in PC{R'). Hen'3, |Pe(Ä)| - \PC{R')\ > k,. 

Hence, from the above two paragraphs, we have the following: 

\iciR)\ - \ic{R')\   =   k^ + k, 

\PciiciR))\ - \Pciic{R'))\   >   k^ + k 

Since \ic{R)\ = \Pc{ic{R))\, it follows that 

\ic{R')\ > \Pc{ic{R'))\ 

But \ic{R')\ cannot be greater than |Pc(ic(/?'))|, for otherwise m' would be overcon- 

strained. Hence, \ic{R')\ = \Pc{ic{R'))\. 

We now show that parameters in Pc{ic{R)) are either in Pc{ic{R')), or they are 

local to m. From the above argument, we can see that the parameters in Pc{ic{R)) 

can be partitioned into three sets: (a) ke derivatives; (b) ifc/ local parameters; and (c) 

parameters that are in Pc{ic{R')). Since the derivatives are local to m, it follows that 

every parameter in Pc{ic{R)) is either in Pc{ic{R')), or local to m. 

Finally, we show that if cj is an equation in the domain of L, but e; g ie{R), 

then L{ei) £ Pc{ic{R)). As argued above, Pc{ic{R)) contains ki parameters that are 

local to m but not local to m', and that ic{R) contains, ki equations that are not 

in the range of G. Hence, it follows that L must map these ifc/ equations to the ib/ 

parameters. Since L is 1-1, it follows that if c/ £ tc(fi), I(c/) £ Pc{ic{R)). 0 

The above properties can be used to guarantee the existence of local extensions, 

i.e., we prove an extended version of Lemma 5.3. 

Lemma 6.8 Let J be an instance of the MINIMAL CAUSAL MODEL problem in which 

all the approximation relations are causal approximations, and all the parameters 
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are locally self-regulating. Let m, m' € M be model fragments and let m' be an 

approximation ofm. Let F' : ic(m') —» ^(^(m')) be a causal mapping. Then there 

exists a causal mapping F : ic{m) —♦ P(ic(m)) such that every parameter in the range 

of F is either in the range of F' or is local to m. 

Proof: Let ei, C2,..., en € m, for some n > 0, be the differential equations that 

can be equilibrated by some approximation of m (if n = 0 then no equations can 

be equilibrated). Let equation et-, 1 < » < n, causally determine derivative dpi/dt. 

Since all the parameters are locally self-regulating, let fii, 1 < i < n, be the self- 

regulating subset of m with respect to p,-. We know that these self-regulating subsets 

are mutually disjoint, i.e.. A,- fl .fij = 0, for 1 <i,j<n and i ^ j. 

Partition the equations in m into (n + l) subsets i?o, i?i,..., A,,, where Ro contains 

all the equations in m that are not in any of the other subsets. 

Let G : ic(m') —* ic{m) be a correspondence mapping, and let L be the local causal 

mapping with respect to G. Using G and the above partition of tc(m), partition the 

set m' into the (n + l) subsets R^, Äj,..., iJJ, as follows: 

tfi = {e : G{e) € Ri}^ < i < n 

i.e., R'i contains the pre-image of Ä, under G. 

Let F" : ic{m) —> P{ic{m)) be any causal mapping. We now use F' and F" to 

construct the desired causal mapping F. 

For each equation in ic{Ri), 1 < t < n, let F be identical to F". As shown in 

Lemma 6.7, every parameter in Pt..(ic(/2t)) is either in Pc(tc(/?-)), or is local to m. In 

addition, Lemma 6.7 also showed that |ic(/?J)| = |Pc(tc(fiJ))|, so that every element 

in P<:(JC(/?J)) is in the range of F' restricted to ic(Äj). Hence, every element in the 

range of F, when restricted to ic(i?,), is either in the range of F' restricted to ic(i?J), 

or is local to m. 

That only leaves equations in ü^ÄQ). The equations in Ro have no differential 

equations that can be equilibrated. Hence, if we restrict the equations of m to ic(J?o) 

and the equations of m' to ic{R^), it follows that m' is a causal approximation of 

m according to Definition 5.3. Hence, the results of the previous chapter apply to 

ic{Ro) and ic{R^). In particular, Lemma 5.3 tells us that any causal mapping of the 
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equations of ic{E^) can be locally extended to a caused mapping of the equations of 

»c(fio). 

Define F on tc(i?o) to be the local extension of F' on tc(i^). Hence, the param- 

eters in the range of this extension are either in the range of F' restricted to ic^), 

or are local to m. From Lemma 6.7, the local parameters used in the range of this 

extension are not in Pc(tc(Ä-)), 1 < i < n. Hence, this extension of F is well defined. 

Hence, we have defined the causal mapping F such that the parameters in the 

range of F are either in the range of F', or are local to m. Ü 

The above generalization of Lemma 5.3 allows us to generalize Theorem 5.4 to 

models with differential equations. Hence, the efficient model selection algorithms of 

Section 5.7 can be used when all the parameters are locally self-regulating. Hence, 

we have the following restriction on I: 

• All the parameters of I must be locally self-regulating as defined in Defini- 

tion 6.6. 

6.6.3    Discussion 

Iwasaki defines a closely related notion of a self-regulating equation [Iwasaki, 1988]. 

In her definition, a differential equation tha* can causally determine dp/dt is self- 

regulating if the equation can also causally determine p. It is easy to verify that this 

is just a special case of p being locally self-regulating. In particular, the causal path 

from p to dp/dt is not mediated by any additional parameters, local or otherwise.4 

Not all parameters that are encountered in modeling the physical world are locally 

self-regulating. For example, consider the case of two objects connected by a heat 

path. Figure 6.8 shows the three assumption classes that describe this situation. 

Figure 6.9a shows the causal ordering generated from the most accurate model of this 

situation. Note that both dT^dt = Cif and dT^/dt = -C2/ can be individually 

equilibrated. For example, Figure 6.9b shows the causal ordering resulting from 

replacing the first equation by / = 0. 

4Hence, one can call this direct self-regulation. 
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Thermal object 1 

eio^enous{Cj)} 

1 

rhermal object 2 

(f1 = -ft/.' 
exogenous{C3)} 

i 

Heat path between 
objects 1 and 2 

{/ = 7i2(r3-r1), 
exogenous^^)} 

i 
{r, = r3} 

Figure 6.8: Assumption classes, and their model fragments, describing the temper- 
ature of objects 1 and 2, and the heat path between them. The arrows denote the 
approximation relation between the model fragments. 

(a) Before equilibrating (b) After equilibrating 

Figure 6.9: Causal ordering before and after equilibration 

It is easy to verify from Figure 6.9£ that, even though both Ti and T2 are self- 

regulating with respect to this model, neither of them is locally self-regulating (/ is not 

local to any assumption class). However, note that both Ti and To are statically self- 

regulating with respect to the most accurate model, so that individual equilibration 

is guaranteed. In practice, the differential equations that we have encountered can be 

individually equilibrated. Hence, even though our efficient model selection algorithm 

is based on the restriction that all the parameters are locally self-regulating, the 

program described in Chapter 8 does not place this restriction. Instead, it implicitly 

assumes that all the parameters are statically self-regulating, and hence assumes that 

they can be equilibrated if and only if they can be individually equilibrated. 
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6.T    Summary 

Ic this chapter, we generalized the results of Chapter 5 to models with differential 

equations. We started by requiring that all model fragments be in canonical form. 

This means that all derivatives were required to be local to some model fragment. We 

then discussed two important methods of approximating differential equations: exoge- 

nizing and equilibrating. Exogenizing a differential equation is equivalent to assuming 

that the dynamic behavior is much slower than the time-scale of interest. Equilibrat- 

ing a differential equation is equivalent to assuming that the dynamic behavior is 

much faster than the time-scale of interest. We introduced an updated definition of 

a causal approximation, and used this definition to generalize Theorem 5.2 to models 

with differential equations. 

We then showed that, in the worst case, a coherent model with differential equa- 

tions can have an exponential number of immediate simplifications. The root of this 

problem was traced to the lack of any restrictions on how differential equations could 

be equilibrated. We addressed this problem by introducing locally self-regulating pa- 

rameters. We then showed that when all the parameters are locally self-regulating, 

a generalized version of Lemma 5.3 can be proved. This generalizes Theorem 5.4, 

ensuring that model fragments can be approximated if and only if they can be indi- 

vidually approximated. Together with the generalization of Theorem 5.2, this means 

that the efficient model selection techniques developed in Section 5.7 can be used for 

models with differential equations. 



Chapter 7 

Order of magnitude reasoning 

In Chapter 3 we said that the behavioral context of a device is its behavior at a 

particular time, i.e., the values, at that time, of the parameters used to model the 

device. Ideally, we would like the behavioral context to refer to the actual behavior 

of the device, e.g., the values of the parameters obtained by actual measurements on 

a physical prototype. However, since the actual behavior is usually unavailable, we 

content ourselves with computing the behavior from the equations of a device model. 

Different techniques can be used to generate the behavior from the equations of a 

device model. At one extreme, purely numerical techniques can be used to solve a set 

of equations [Press et al, 1989]. The advantage of such techniques is that predictions 

can be made with high precision. The primary disadvantage is that such techniques 

require exact numerical values for exogenous parameters. Exact numerical values 

are not always available, specially during conceptual design, making such methods 

largely inapplicable. At the other extreme, purely qualitative techniques can be used 

for behavior generation [Bobrow, 1984; Weld and de Kleer, 1990]. The advantage of 

such techniques is that they work with weak qualitative information, e.g., signs of pa- 

rameters, and qualitative functional relationships. However, a primary disadvantage 

is that the predictions lack the precision of numerical techniques. 

In this chapter we discuss a novel order of magnitude reasoning technique for 

generating the behavior from the equations of a device model. In this technique, the 

order of magnitude of a parameter is defined on a logarithmic scale, and a set of 

187 
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rules are used to propagate orders of magnitude through equations. A novel feature 

of the set of propagation rules is that they allow us to effectively handle non-linear 

simultaneous equations, using linear programming in conjunction with backtracking. 

This technique has been implemented in a program called NAPIER.1 

The order of magnitude technique embodied in NAPIER is at the right level of 

detail. On the one hand, it does not require exact numerical values for exogenous 

parameters; a more qualitative order of magnitude is enough. On the other hand, 

unlike purely qualitative techniques, it provides valuable numerical information. 

Section 7.1 presents a motivating example that has been used by others working 

on order of magnitude reasoning. Section 7.2 presents the basic order of magnitude 

reasoning technique, and Section 7.3 analyzes its complexity. Since we show that 

order of magnitude reasoning is, in general, intractable. Section 7.4 develops and 

empirically evaluates an approximate reasoning technique for order of magnitude 

reasoning. Finally, Section 7.5 estimates the erroi introduced by some of the order of 

magnitude rules introduced in Section 7.2, and Section 7.6 discusses related work. 

7.1    Motivating example 

Consider the following example, previously discussed in [Bennett, 1987; Raiman, 

1991], from the domain of acid-base chemistry. An important task in this domain 

is to find the concentration of H+ ions in a solution. The concentration of ions in 

solution depends on the dynamic equilibrium resulting from competing chemical re- 

actions. Consider dissolving an acid, AH, in water. The two reversible reactions that 

occur, corresponding to the ionization of AH and fyO, are shown in Figure 7.1. 

AH   **   H+ + A- 

H20   P*   H+ + OH- 

Figure 7.1: Ionization reactions that occur on dissolving AH in water 

^ohn Napier (1550-1617), a Scottish nobleman, is credited with the first discovery of logarithms. 
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The equilibrium concentrations of the three ions {H+,OH~,A~) and the acid 

(AH) are determined by the equations shown in Figure 7.2. Square brackets denote 

concentrations; C0 is the initial concentration of the acid; Kw is the ion product of 

water; and Ka is the ionization constant of the acid. 

Charge balance: [H+] = [A'] + [O/T] (7.1) 

Mass balance: Ca = [/T] + [AH] (7.2) 

Acid ionization equilibrium: Ka[AH] = [/!""][i/+] (7.3) 

Water ionization equilibrium: Kw = [0^~][^+] (7.4) 

Figure 7.2: Equilibrium equations for the ionization reactions. 

As bas been pointed out in [Bennett, 1987; Raiman, 1991], solving this set of 

equations analytically for [H+] results in a cubic equation which is difficult to solve. 

In fact, in problems involving polyprotic acids, i.e., acids that can yield more than 

one H+ ion, the closed form solution for [//+] can involve equations of degree five or 

higher, making the solution significantly harder. 

An alternative to the above approach is to approximate the equations, and hence 

simplify them. For example, a chemist might guess that the acid is strong, so that 

[A"] » [OH~] and [A'] > [AH]. This justifies reducing the first equation to [H+] = 

[A~] and the second equation to Ca - [A-], leading to a straightforward solution. 

The reasoning following the assumptions that [A'] > [OH~] and [A~] > [AH] is 

very nicely formalized in [Raiman, 1991]. But how are these assumptions justified? 

In [Bennett, 1987], Bennett suggests that such assumptions are justified by domain 

specific inference rules. A much better, domain-independent method for justifying 

such assumptions is embodied in NAPIER. NAPIER can propagate the order of mag- 

nitude of exogenous parameters like Ca,Kw, and Ka through a set of equations like 

Equations 7.1-7.4 to compute orders of magnitudes of the remaining parameters like 

[#+], [OH-], [A-], and [AH]. The computed orders of magnitude of [A'],[OH-]t 

and [AH] can be used to justify the above assumptions and simplify the equations. 

We now describe the order of magnitude reasoning technique embodied in NAPIER. 
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7.2    Order of magnitude reasoning in NAPIER 

Order of magnitude reasoning in NAPIER is a form of interval reasoning. The order 

of magnitude of a parameter q (denoted OTn{q)) is defined as follows: 

om{q) = [logj |g|J (7.5) 

where the base, 6, of the logarithm is chosen to be the smallest number that can be 

considered to be "much larger" than 1. The choice of b is clearly domain and task 

dependcnc. Here we assume that 6 = 10. Note that the order of magnitude of a 

parameter is an integer, with om{q) = n being equivalent to: 

bn < \q\ < bn+1 

Similarly, ni < om{q) < nj is equivalent to 

6ni < \q\ < bn2+1 

Note also that the order of magnitude of a parameter is independent of its sign, and 

hence 0771(9) = om{—q). In what follows, we assume that the signs of all parameters 

have been determined, to the extent possible, prior to any reasoning about orders of 

magnitude using standard constraint satisfaction techniques.2 

7.2.1    Inference rules in NAPIER 

Given the orders of magnitude of qi and 92, NAPIER computes bounds on the orders 

of magnitude of arithmetic expressions involving qi and 92? using the rules shown in 

Figure 7.3. The rules for {qi + 92) and {qi - q7) assume that qi and q? have the same 

sign, so that the magnitudes of qi and 92 ai i actually being added or subtracted, 

respectively. The rule for (qi ± 92) is applicable to a sum or difference of qi and 92 

when the sign at least one of qi and 92 is unknown. 

The rules for {qi*q2) and (91/92) (rules 1 and 2) follow directly from Equation 7.5 

and the rules of interval arithmetic [Moore, 1979]. For example, if om{qi) = «i and 

2This assumption is unnecessarily strong. For example, if a and 6 are positive, constraint satis- 
faction alone is unable to deduce the sign of a - 6. However, if om(a) > om{b), then a — b can be 
deduced to be positive. 
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1. om(<7i) + omfa) < om{qi * 92) < om{qi) + omfa) + 1 

2. 001(91) — omfa) — 1 < omfai/qz) < om{qi) — omfa) 

a 
3.   b) 

L)   om(gi) < om(9i + 93) < om(gi) + 1   if om{qi) = om(92) 
o) om(9i + (fe) = om{gi) if om{qi) > 0771(92) 
c) om(gi + 92) = 0771(92) if om{qi) < 0771(92) 

a) om 
b) om 
c) om 

»(91 - 92) = om(92)   if om(9i) < 0771(92) 

1(91 ± 92) < om(9i) + 1 if om(9i) = om(92) 
)m(91 ± 92) = om(9i) if om(91) > 0771(92) 
?m(9i ± 92) = 0771(92)      if om(9i) < 0771(92) 

Figure 7.3: Rules for order of magnitude reasoning. In rules 3 and 4, 91 and 92 are 
assumed to have the same sign. Rule 5 assumes that the sign of at least one of 91 or 
92 is unknown. 

0777(92) = 712, it follows that 6ni < I91I < 6n,+1 and 6n2 < I92I < bn3+1. Using interval 

arithmetic, we get bn,+n2 < \qi * 92I < 6ni+n2+2, and hence ri! + 712 < 0777(91 * 92) < 

"1 + 772 + 1- 

Like rules 1 and 2, rules 3a and 4a are also based on Equation 7.5 and interval 

arithmetic. Note, however, that these rules predict larger intervals for (9! + 92) and 

(91 — 92) than interval arithmetic predicts under the same restrictions on 91 and 92. 

For example, if 0777(91) = 0777(92) = n, then interval arithmetic predicts that (91 ■+• 92) 

is bounded by 26n and 2bn+\ while NAPIER predicts the bounds bn and 6n+2. This is 

a consequence of NAPIER being able to represent only intervals whose end points are 

integer powers of the chosen base. Further at rules 3a and 4a are correct only 

if the base is greater than 2. This is reas en our heuristic for selecting the 

base (viz., 2 is unlikely to be considered to L.     much larger" than 1). 

Unlike the rules discussed thus far, rules 3b, 3c, 4b, and 4c are not guaranteed to 

be correct, but are heuristic rules. They are all based on the intuition that adding 

or subtracting a "small" parameter from a "large" parameter does not significantly 
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affect the larger parameter. Since the base in Equation 7.5 is chosen as the small- 

est number that can be considered to be "much larger" than 1, the above intuition 

justifies these rules; the order of magnitude of a parameter is not affected by adding 

or subtracting parameters of a smaller order of magnitude. The inclusion of these 

heuristic order of magnitude rules differentiates NAPIER from standard interval rea- 

soners. In section 7.5, we estimate the error introduced by the use of these heuristic 

rules. 

Finally, rule set 5 merely encompasses both rule sets 3 and 4. It is used to infer 

the order of magnitude of a sum or difference of two parameters when the signs of at 

least one of the two parameters is not known. To determine the order of magnitude of 

a sum or difference of two parameters, NAPIER selects the appropriate rule set from 

rule sets 3, 4, and 5, depending on the operation (sum or difference) and the signs of 

the two parameters. For example, consider the equation q3 = q1 + q2. If ^ ard qi 

have the same sign, then rule set 3 is used to infer 0771(93); if q^ and 92 have opposite 

signs, then rule set 4 is used to infer 0771(93), since then the magnitude of 93 is really 

the difference of the magnitudes of qx and 92; and if the signs of at least one of qy and 

92 is unknown, then rule set 5 is used to infer 0771(93). 

7.2.2    S et of simultaneous equations 

Until now, we have focussed exclusively on how NAPIER uses a single equation to 

propagate orders of magnitudes, i.e., how 0771(9! 0^92) is computed from 0771(9!) 

and 0771(92). However, the rules in Figure 7.3 can also be used to compute orders 

of magnitudes of parameters related by a set of (possibly non-linear) simultaneous 

equations. NAPIER uses these rules to convert a set of simultaneous equations into a 

set of constraints, where each constraint is a disjunction of a set of linear inequalities. 

Each equation in the set of simultaneous equations contributes a constraint as follows: 

1. Product and quotient terms contribute a single set of linear inequalities accord- 

ing to rules 1 and 2, respectively.  For example, 93 = 91 * 92 contributes the 
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following set: 

{om^i) -|- omiqi) < om{q3), 

om{q3) < omiqi) + omfa) + 1} 

2. Sum and difference terms contribute a disjunction of three sets of linear inequal- 

ities, using rule sets 3, 4, or 5, as applicable. Each disjunct corresponds to one 

of the rules (a, b, or c) in the applicable rule set. For example, assuming that 

<7i and 92 have the same sign, the equation qs — qi — 92 contributes the following 

disjunction:3 

{om{q3) < omiq^^omiqi) = 001(92)} 

V 

{om{q3) = om{qi),om{qi) > om^) + 1} 

V 

{oTn{q3) = 001(92), om(gi) < 070(92) - 1} 

corresponding to rules 4a, 4b, and 4c, respectively. 

NAPIER uses this set of constraints to compute bounds on the orders of magnitudes 

of the parameters. Since all the inequalities in the constraints are linear inequalities, 

NAPIER uses linear programming [Hillier and Lieberman, 1980], in conjunction with 

backtracking, to compute order of magnitude bounds. Backtracking is necessary to 

handle the disjunctions. We describe this algorithm next. 

7.2.3    Backtracking algorithm 

Let E denote the set of simultaneous equations being processed. NAPIER's backtrack- 

ing procedure is best visualized as a depth-first traversal of a backtrack tree. Each 

level in the tree (except the root level) corresponds to one of the sum or difference 

terms in E. The root level corresponds to all the product and quotient terms in 

E.   Each internal node has three children, corresponding to the three disjuncts in 

3Since the order of magnitudes are integral, om{qi) > omfa) is equivalent to om{qi) > 0771(92) + 
1. 
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int = Ka[AH] 
int = [A-][H+] 
Kw = [OH-][H+] 

[H*] = [A-] + [0H-] 

Ca = [A-] + [AH] 

Figure 7.4: A backtrack tree. 

the constraint contributed by the sum or difference term at the level of the node's 

children. Each node in the tree has an associated set of linear inequalities defined as 

follows: 

1. The set of inequalities at the root node consists of the union of the sets of 

inequalities contributed by each product and quotient term in E. 

2. The set of inequalities at each non-root node consists of the union of (a) the 

inequalities at the node's parent; and (b) the inequalities in the disjunct asso- 

ciated with that node. 

Starting at the root node, NAPIER traverses the backtrack tree in a depth-first 

manner. At each node it checks the consistency of the inequalities at that node. If 

the set is inconsistent, it immediatel}' backtracks to the node's parent. If the set is 

consistent and it is a non-leaf node, it continues its depth-first traversal. If the set 

is consistent and it is a leaf node, it uses the inequalities to find the maximum and 

minimum values of the order of magnitude of each parameter. The bounds computed 

at each of the consistent leaf nodes are combined so that the lower bound of each 

parameter is the least lower bound and the upper bound is the greatest upper bound. 

Since the inequalities at each node are linear, NAPIER uses the Simplex linear pro- 

gramming algorithm [Hillier and Lieberman, 1980; Press et a/., 1989] to check their 

consistency, and to compute the order of magnitude bounds at leaf nodes. However, 

from Equation 7.5 it follows that the order of magnitude of a parameter is integral. 
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Hence, instead of using linear programming, NAPIER should use integer programming 

[Hillier and Lieberman, 1980]. Unfortunately, integer programming is known to be 

intractable [Karp, 1972], which leads to severe restrictions on the number of equa- 

tions and the size of the backtrack tree that can be handled. Hence, to avoid such 

restrictions, NAPIER uses linear programming. 

It is important to note that, while bounds computed by linear programming axe 

not guaranteed to be tight,4 they are guaranteed to be correct: upper bounds will be 

greater than or equal to integer programming upper bounds, and lower bounds will 

be less than or equal integer programming lower bounds. In addition, we have found 

that, in practice, linear programming bounds are usually integral, in which case there 

is no loss of solution quality. 

7.2.4    Example 

We now illustrate the above procedure using Equations 7.1-7.4. Let us assume 

that the exogenous orders of magnitude are as follows: om(Ä'u,) = —14, om^,,) = 

—2, om(Ca) = —5. This corresponds to a moderately strong solution of a strong 

acid. The backtrack tree resulting from these equations is shown in Figure 7.4. The 

equations associated with each level are shown on the left of the tree. Note that 

Equation 7.3 had to be split into two product terms, with the introduction of an in- 

termediate variable int. The rules associated with each non-root node axe displayed 

near each node. Nodes that are filled in are the inconsistent nodes. For example, the 

left most leaf node can be seen to be inconsistent using the following line of reasoning. 

Applying rule 3a to Equations 7.1 and 7.2, we get 

om{[OH-]) = om{[A-]) = om{[AH]) 

om{[A']) < om{Ca) < om{[A-]) + 1 

om{[A-]) < om{[H+]) < om{[A~]) + 1 

Since om(Co) = —5, it follows that the least value of om([A~]) is -6. Hence the 

least values of om{[OH~]) and om([i/+]) are also —6, and hence the least value of 

4 A bound bi, interpreted as an interval, is said to be tight with respect to a bound 62 if *i and 
62 are identical. 61 is looser than 62 if ^i contains ^2- 
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om{[OH-][H+]) is -12. But rule 1 applied to Equation 7.4 requires that: 

om{[OH-][H+]) = om{Kw) = -14 

which leads to a contradiction. 

Of course, NAPIER doesn't need the above line of reasoning to infer inconsistencies; 

it reaches the same conclusion using linear programming. 

The only consistent set of inequalities at the leaf nodes is the middle most leaf 

node, corresponding to assuming that om([i4~]) > om([OR"]) and om([A"]) > 

om{[AH]). The parameter bounds calculated at this node are as follows:5 

om{[H+]) = -5; om{[OH-]) = (-10, -9); om{[AH]) = (-9, -7); om{[A-]) = -5 

Since [A~] is at least two orders of magnitude greater than [AH], and at least four 

orders of magnitude greater than [OH~], a chemist is justified in making the assump- 

tions that [A~] > [OH~] and [A~] > [AH]. These assumptions can then be used to 

simplify the equations, as discussed earlier. 

A slight variation of the above example illustrates the importance of having such 

justifications. Suppose that, instead of having om(Ca) = -5, we had om(Ca) = -8. 

This corresponds to a weak solution of the same strong acid. Using this new value 

for om(C0), NAPIER predicts the following bounds on the orders of magnitude: 

om{[H+]) = -7; om{[OH']) = (-8, -7); om{[AH]) = (-14, -12); (m{[A']) = -8 

These values justify the assumption that [A-] » [AH], but the other assumption, 

[A~] > [OH~], is seen to be completely unjustified. This means that only Equa- 

tion 7.2 can be simplified. Hence, NAPIER is a useful tool in justifying the order of 

magnitude assumptions that scientists and engineers make in simplifying equations. 

In addition to its role in justifying order of magnitude assumptions, NAPIER's 

predictions can also be used directly. For example, if all the chemist is interested in is 

the approximate pH of the solution,6 then NAPIER's predictions can be used directly: 

in the first case, the pH is between 5 and 4; in the second case, the pH is between 
som(g) = (/,«) represents the fact that / < om{q) < u 
6The pH of a solution is defined to be - logjJ/T"*"]. 
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7 and 6. Note that NAPIER was able to make these predictions using approximate 

values of Ca, Kw, and Ka- This feature makes it particularly useful during conceptual 

design. 

7.3    Order of magnitude reasoning is intractable 

The backtracking algorithm described in the previous section, generates a tree whose 

worst case size is exponential in the number of sum and difference expressions. In 

this section we show that order of magnitude reasoning using the rules in Figure 7.3 

is intractable. Clearly, one source of intractability is that the order of magnitude of 

a parameter is integral, so that consistency checks and bounds computations require 

integer programming. However, we now show that order of magnitude reasoning 

remains intractable even if orders of magnitude are not required to be integral. An 

immediate consequence of this result is that NAPIER can do little better than generate 

a backtrack tree whose worst case size is exponential. 

We start by defining the decision problem corresponding to finding the maximum 

order of magnitude of a parameter: 

Definition 7.1 ("ORDER OF MAGNITUDE REASONINGj Let E be a set of equations, 

and let V be the set of parameters used in E. Let X C V be the set of exogenous 

parameters, with known orders of magnitude. Let q E V be a parameter and let B 

be an integer. Let s : V —> {+, —, unknoum} be a function that assigns signs to 

the parameters in V. (Parameters with unknown signs art assigned "unknown.") 

Assuming that the order of magnitude of a parameter is not required to be integral, 

is the maximum value of om{q), derived using the rules in Figure 7.3 on the set E, 

greater than or equal to B? 

We now show that the above problem is NP-complete. The proof of this theorem 

is based on a reduction from an arbitrary instance of 3SAT. Briefly, the reduction 

introduces a parameter for each literal in the instance of 3SAT. Equations are added 

to ensure that parameters corresponding tc complementary literals have the property 

that the order of magnitude of one of them must be 0 and the order of magnitude 
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of the other one must be 1. The mapping between truth assignments and orders of 

magnitudes is straightforward: a literal is true if and only if the corresponding param- 

eter's order of magnitude is 1. Additional equations involving the above parameters 

and the special parameter q are then introduced, and the bound B is defined to ensure 

that the maximum value of om{q) is greater than or equal to B if and only if all the 

clauses are satisfied. The details of this proof are as follows: 

Theorem 7.1  The ORDER OF MAGNITUDE REASONING problem is NP-complete. 

Proof: It is easy to see that the ORDER OF MAGNITUDE REASONING problem is in 

NP since a non-deterministic algorithm can proceed by (a) for each sum and difference 

term in E, guessing a rule (a, b, or c) from rule sets 3, 4, or 5, as applicable; and 

(b) use linear programming on the resulting set of inequalities to see if the maximum 

value of OTn{q) exceeds B. Since linear programming is known to be in P [Khachian, 

1979], it follows that the ORDER OF MAGNITUDE REASONING problem is in NP. 

To show that the ORDER OF MAGNITUDE REASONING problem is NP-hard, we 

reduce an arbitrary instance of 3SAT to an instance of the ORDER OF MAGNITUDE 

REASONING problem. Let Jx be an arbitrary instance of 3SAT consisting of a set [/ = 

{ui,..., un} of boolean variables, and a set C = {ca,...,cj of three literal clauses. 

We now reduce It to an instance, J2, of the ORDER OF MAGNITUDE REASONING 

problem. 

For each boolean variable ut- eU,l <i <n, add the following 6 equations to E, 

and the corresponding parameters to V: 

Vi = xn * Xi2 (7.6) 

iJi = X'H * x'a (7.7) 

yn = Vi*Vi (7.8) 

Vi = yn + y.2 (7.9) 

Zi = Vi-iJi (7.10) 

2i     =     (2.1 + 2.2) * Zi3 (7.11) 

Add Xii,Xi2,x~ii,x~i2,yi,Zii, and z^ to the set X of exogenous parameters. Define the 
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orders of magnitudes of these parameters as follows: 

om{xii) = om(x,-2) = om(z~1) = om^) - om^o) = 0 (7.12) 

om{yi) = omizii) = 1 (7.13) 

For eich clause Cj € C, 1 < j < m, with literals /,i, lj2, and lj3, add the equation 

(((ft + /ii) + /ia) + /i8)*^ (7.14) 

where the parameter fa is u,- if /jfc is u<, and ü, if /jit is ü,, for some 1 < t < n. Add 

gj and Aj to V. Add gj to X, and define its order of magnitude as follows: 

om(^) = 1 (7.15) 

Add the following equation to E: 

hi* hi* ...* hm = q (7.16) 

Let 5 be such that aM the parameters in V, except Zi and ^,-3 (1 < i < n), are 

positive, and let ihs signs of 2, and 2,3 be unknown. Let B be 3m — 1. 

That completes the reduction. Clearly, it can be done in polynomial time. We 

now show that any assignment of orders of magnitudes to the parameters of I2 that 

satisfies Equations 7.6-7.13, according to the rules in Figure 7.3, assigns the order of 

magnitude 1 to exactly one of u, and ri, for each 1 < t < n, and 0 to the other. 

From rule 1 applied to Equation 7.6 we have: 

om(:tii) + om(x,-2) < om(uj) < om(x,i) + om(xt-2) + 1 (7.17) 

Substituting the orders of magnitudes of x,i and x.-j (Equation 7.12) into the above 

equation, we have 

0 < om(v,) < 1 (7.18) 

In a similar way, rule 1 applied to Equation 7.7 implies that: 

0 < om(«i) < 1 (7.19) 
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Hence, om(t;i) and om(t;,) are either 0 or 1. Applying rule 1 to Equation 7.8 leads to: 

om{vi) + om{vi) < omfyn) < om{vi) + om(vt) + 1 (7.20) 

Equation 7.9 implies that om(j/,) > om(j/,1)- This fact follows from the observation 

that in rule 3: 

om(9i+92)   >   9l (7.21) 

om{qi + 92)   >   ?2 (7.22) 

under all three conditions. Since om{yi) = I (Equation 7.13), it follows that 

om(y,i) < 1 (7.23) 

Hence, from Equations 7.20 and 7.23 it follows that: 

om(t;,) + om(üj) < 1 (7.24) 

Hence, om(v,) and om(ü,) cannot both be 1. 

Now, since 0171(2^) = 1 (Equation 7.13), it follows from Equation 7.21 that 

om(z,i + zi2) > 1 (7.25) 

Rule 1 applied to Equation 7.11 leads to: 

0771(2.! + za) + OTn{zi3) < om(2,) (7.26) 

Hence, from Equations 7.25 and 7.12, it follows that: 

0771(2.) > 1 (7.27) 

Now, rule 4 implies that 

OTn{qi — 92) < maximum{0771(9!), 0771(92)} (7.28) 

Hence, from Equations 7.10, 7.18, 7.19, and 7.28, it follows that at least one of om(t;.) 

and om(ü,) must be 1. But earlier we had inferred that at most one of om(i;.) and 
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om(vi) can be 1. Hence, exactly one of om(u,) and om(ü,) can be 1, with the other 

being 0. 

We now show that Ji has a satisfying truth assignment if and only if I2 is such 

that the maximum value of om{q) is greater than or equal to B. 

(=»•) Let Ji have a satisfying truth assignment. We now assign order of magnitudes 

to the parameters of I2 such that Equations 7.6-7.16 are satisfied according to the 

rules of Figure 7.3. For 1 < i < n, if u, is true, then let om(u,) be 1 and om(ü,) 

be 0; otherwise let om(ri) be 0 and om(v,) be 1. Since exactly one of om{vi) and 

om{vi) is 1 and the other is 0, this assignment of orders of magnitude will satisfy 

Equations 7.6-7.13. 

Since the truth assignment satisfies every clause Cj = {/ji,^,^}, 1 < j < m, 

it follows that at least one of /ji,/j2, or IJS is true. Hence, at least one of fjuffa 

or fjz has an order of magnitude of 1. Since om{gj) = 1 (Equation 7.15), it follows 

from Equation 7.14 and rule 3 that the maximum value of om{hj) is 2. Hence, from 

Equation 7.16 and rule 1, it follows that the maximum value of g is 3m — 1 (2m from 

each of the om{hj), and m — 1 from the product of m factors). Hence, the maximum 

value of OTn{q) is greater than or equal to B. 

(<=) Let us now assume that the maximum value of om{q) is greater than or equal 

to B. Consider the assignment of order of magnitudes to parameters that supports 

om{q) taking on its maximum value. For each variable i^, 1 < i < n, let Ui be true if 

and only the order of magnitude of parameter r, is 1 in the above assignment. This 

gives us a well defined truth assignment since we have already shown that exactly one 

of om{vi) and om(üf) is 1. To show that this truth assignment satisfies very clause, 

we proceed as follows. 

Since each /#(! < j < m, 1 < /: < 3) is either u, or v,, for some i, Equations 7.18 

and 7.19 tell us that the maximum value of om{fjk) is 1. Hence, using Equation 7.14 

and rule 3, the maximum value of om{hj) can be 2. However, for the maximum value 

of om{q) to be greater than or equal to B{= 3m - 1), it follows that om{hj) must 

be 2. Hence, at least one of the /,> must have an order of magnitude of 1. Hence, at 

least one of the (,* will be true, and hence the truth assignment constructed above 

will satisfy each clause. 
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Hence, we have shown that Jj has a satisfying truth assignment if and only if I2 

is such that the maximum value of om{q) is greater than or equal to B. Hence, the 

ORDER OF MAGNITUDE REASONING problem is NP-hard. D 

The intractability of the ORDER OF MAGNITUDE REASONING problem tells us 

that, in the worst case, NAPIER will have to generate a backtrack tree whose size is 

exponential in the number of sum and difference terms. Unfortunately, the exponen- 

tial blow up does occur in practice. Table 7.1 summarizes NAPIER's performance on 

models of ten different devices (these devices axe described in Appendix B). 

Device 
Total 
#of 

equations 

#of 

+/- 
terms 

Time (sec) 
All 

equations 
With causal 

ordering 
Bimetallic strip temperature gauge 28 11 2733 2.0 

Bimetallic strip thermostat 31 11 2435 1.0 
Flexible link temperature gauge 45 14 - 2.9 

Electromagnetic relay thermostat 60 24 - 2.7 
Galvanometer temperature gauge 80 25 - 37.2 

Electric bell 110 32 - 35.9 
Magnetic sizing device 111 32 - 94.6 
Carbon pile regulator 119 35 - 20.4 

Tachometer 145 43 - 45.2 
Car distributor system 163 50 - 21.0 

Table 7.1: NAPIER's run times on an Explorer II, with and without causal ordering. 

The second column in this table shows the total number of equations in each 

example, while the third column '? ows the the total number of sum and difference 

terms. The fourth column shows the time it took NAPIER to run its backtracking 

algorithm on the complete set of equations. (The fifth column will be discussed in 

the next section.) NAPIER was given a maximum of one hour to solve each example; 

a "-" entry in column four denotes that NAPIER could not solve the example in an 

hour. As is clear from the table, only the two smallest examples could be solved in 

under an hour, each taking over 40 minutes. Hence, NAPIER appears to be quite 

impractical, except for the smallest examples. To make it practical, we now develop 

an approximate reasoning scheme for NAPIER that trades off accuracy for speed. 
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7.4    Approximation algorithms in NAPIER 

The backtrack tree developed by NAPIER is, in the worst case, exponential in the 

number of sum and difference terms in the set of equations under consideration. 

Hence, to make NAPIER practically useful, it is important to decrease the number of 

sum and difference terms that are handled at any one time. We now discuss a method 

for doing this, based on a dependency ordering of the equations. 

7.4.1    Ordering the equations 

The dependency ordering of equations that we consider is the causal ordering, de- 

scribed in Chapter 3. The causal ordering specifies the order in which equations are 

to be solved, and identifies minimal sets of equations that must be solved simultane- 

ously. The causal ordering can be viewed as a directed acyclic graph. Each node in 

the graph consists of a minimal set of equations that must be solved simultaneously. 

There is an edge from node ni to node n2 if the equations at n2 use a parameter 

whose value is determined by the equations at ni. 

NAPIER processes the equation sets in the order specified by the causal ordering: 

equation sets earlier in the ordering are processed first. NAPIER bounds the orders 

of magnitudes of the parameters used in an equation set, and uses these bounds as 

exogenous bounds for equation sets later in the ordering. 

The use of the above dependency ordering has a significant computational ad- 

vantage. A large set of equations, with many sum and difference terms, can often 

be broken down into many small sets of equations, with each equation set having 

very few sum and difference terms. Hence, NAPIER can process each equation set in 

the dependency ordering very fast. Column five in Table 7.1 shows the time it took 

NAPIER to solve the ten examples using causal ordering. It takes NAPIER from a few 

seconds to under two minutes to solve each of these examples, showing that causal 

ordering has made NAPIER practical for large sets of equations. 
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7.4.2    Loss of accuracy 

The drawback of using the dependency ordering is that global constraints can be 

lost, leading to excessively loose bounds on the orders of magnitudes. Consider, for 

example, the set {yi = Xj * X2,y2 = X3/yi,y3 = yi * 2/2}, and let xi,X2, and X3 be 

exogenous with orders of magnitude 0. The dependency ordering generated from this 

set of equations is: 

{y2 = X3/yi} 

/ \ 

{yi = x1* X2} —► {yz = yi * yz} 

Using this dependency ordering, NAPIER computes the order of magnitude of ya as 

follows: from the first equation it computes om{yi) to be between 0 and 1; from 

the second equation, and the calculated bound on om(yi), it computes omfa) to be 

between —2 and 0; and from the third equation and the calculated bounds on OTn(yi) 

and om(y2), it computes om(y3) to be between -2 and 2. However, if all three 

equations were considered simultaneously, NAPIER computes om(y3) to be between 

—1 and 1. 

The reason for the looser bound in the first case stems from not enforcing some 

global constraints. For example, the lower bound of om(y3) can be - 2 only when 

om(y1) = 0 and om(y2) = -2. However, when om{y1) is 0, the second equation 

dictates that the lowest that om(y2) can be is -1. This fact is lost when the third 

equation is processed by itself. 

More generally, the above problem occurs when a parameter, like ya, depends 

on two or more parameters, like yi and y2, whose values have been determined by 

equations that are earlier in the causal ordering. In using these previously determined 

values, NAPIER disregards any additional constraints that might hold between those 

values. Hence, bounds computed based on th *e values may not be as tight as possible. 

NAPIER can partially address this problem by combining adjacent sets of equations 

in the dependency ordering. This allows more equations to be handled simultaneously, 

so that more global constraints can be incorporated. However, combining adjacent 

sets of equations can lead to an increase in the number of sum and difference terms 

that must be handled simultaneously. Hence, adjacent sets are combined only when 
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the number of sum and difference terms in the resulting set does not increase beyond 

a threshold (call this threshold A). 

Device t^max 

Bimetallic strip temperature gauge 11 
Bimetallic strip thermostat 11 

Flexible link temperature gauge 10 
Electromagnetic relay thermostat 9 
Galvanometer temperature gauge 9 

Electric bell 12 
Magnetic sizing device 7 
Carbon pile regulator 9 

Tachometer 7 
Car distributor system 9 

Table 7.2: Maximum value of A for each example. 

Combining adjacent sets of equations, as described above, also allows us to par- 

tially empirically evaluate the effect of causal ordering on accuracy. We ran NAPIER 

a number of times on each of our examples, using increasing values of A, allowing a 

maximum of one hour per run. Table 7.2 shows the maximum value of A used for 

each example. We then compared the bounds that were computed without combining 

adjacent sets with the bounds that were computed with the maximum setting of A. 

Interestingly, we found that there was no loss of accuracy—the bounds computed 

with and without combining adjacent sets were identical. 

To understand the reason for this somewhat surprising result, we now analyze the 

source of the additional constraints on previously determined values. Let us assume 

that om(p3) is computed using previously computed values of om(pi) aud om(p2)- 

Additional constraints on the values of om(pi) and om(p2) stem from one of two 

sources: (a) om(pi) and 07n(p2) are determined simultaneously; and (b) the value 

of om(p1) is used in computing the value of omfa), i.e., the values of one of these 

parameters depends on the value of the other. Point (a) manifests itself as a node in 

the causal ordering which contains more than one equation. Point (b) manifests itself 

as multiple paths between two nodes in the causal ordering. 
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Hence, if the causal ordering, viewed as a graph, satisfies the following two prop- 

erties: 

1. each node contains exactly one equation; and 

2. there is at most one path between any two nodes; 

then we can show that there will be no additional constraints between previously 

determined values. Hence, there is no loss of accuracy in using the causal ordering. 

Device Equations per node # of extra 
edges Maximum Average 

Bimetallic strip temperature gauge 7 1.27 1 
Bimetallic strip thermostat 7 1.24 0 

Flexible link temperature gauge 7 1.15 1 
Electromagnetic relay thermostat 1 1.00 0 
Galvanometer temperature gauge 12 1.29 1 

Electric bell 18 1.29 2 
Magnetic sizing device 17 1.26 6 
Carbon pile regulator 9 1.25 2 

Tachometer 18 1.21 3 
Car distributor system 16 1.10 0 

Table 7.3: Properties of the causal ordering graph 

Table 7.3 shows how closely the causal orderings generated from our examples 

match the above two properties. The second and third columns of this table show 

the maximum and average number of equations per node, respectively. One can see 

that, in all cases, the average number of equations per node is very close to 1. The 

fourth column shows the minimum number of edges that must be removed from the 

causal ordering to ensure that there is at most one path between any two nodes. One 

can see that, in most cases these numbers are very small. Hence, the above analysis 

provides us with insight into the reasons underlying the fact that, in our examples, 

the bounds computed with and without combining adjacent sets axe identical. 
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7.5    Error estimation 

In this section, we estimate the error introduced by the use of the heuristic rules 

introduced in section 7.2.1. We then analyze some alternate order of magnitude rules, 

that seem intuitively plausible, and show that these rules introduce unacceptably large 

errors. The analysis is done using probability theory and is based on interpreting each 

parameter as a random variable.7 The analysis also uses two assumptions, and we 

conclude with a discussion of the validity of these assumptions. 

7.5.1    Estimating the error of heuristic rules 

In this section we analyze the error introduced by the heuristic order of magnitude 

rules 3b, and 4b. (Rules 3c and 4c are similar to rules 3b and 4b, respectively, and 

are not discussed.) The remaining rules do not introduce errors in the sense that the 

bounds predicted by them are guaranteed to be conservative, i.e., correct though not 

necessarily tight. 

We start by analyzing rule 3b. Let Q,Qi, and Q2 be parameters such that 

Q = Qi + Qi- Let /QJ and /Q2 be the probability density functions of Qi and 

Q2, respectively, and let /(j,,g2 be their joint probability density function. (Briefly, 

/Qi(9i) is th6 probability that Qi lies between qi and qi+dqi, and /Q! ,(3,(91,92) is the 

probability that Qi lies between qi and qi+dqi, and Q2 lies between 92 and 92 + ^92-) 

Since Q = Qi + Q2, it follows that the probability that Q lies between / and u, for 

any values / and u, is: 

Prob{l <Q<u}=  T  r91 fQuQi{quq2)dq2dq1 (7.29) 
J—oo Jl~qi 

Let us now assume that om{Qi) = ni and om{Q2) = nj, with ni > n2. Under these 

conditions, rule 3b states that om{Q) = «j, i.e., bni < Q < bni+1. To estimate the 

error, c(Rule 3b), in rule 3b, we must calculate the probability that Q lies outside the 

region from 6ni to fcni+1: 

e(Rule 3b)   =   1 - Prob{bni <Q< 6ni+1} (7.30) 

7See [Davenport, 1970] for an introduction to probability theory and random variables. 
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=   l~ L fQuQiiQuridqidq! (7.31) 
J-00 Jbnl -gi 

To evaluate this integral, we make the following assumptions: 

Assumption 1: Q] and Q2 are independent random variables. Hence, the joint 

probability density of Qi and Q2 is just the product of the individual probability 

densities: 

fQuQAQiito) = /bi(«i)/<fc(93) (7.32) 

Assumption 2: Qi and Q2 are uniformly distributed on the intervals [bni, 6ni+1) and 

[6',9,5W8+1), respectively: 

< 6n>+1 

[ 0 otherwise 

0 otherwise 

Hence, from Equations 7.31 and 7.32, we get: 

/ /Qitoi)/«,(ft)<Mfc (7.33) 
•00 J6ni -?! 

We now use Assumption 2 to split the above integral into two integrals, such that the 

integrand in both integrals is a non-zero constant throughout the region of integration: 

e(Rule3b)   -   1-/^ ^     ____<i,2(i,1 

/.6"i+i_6"2      /■6ni+1-71 1 

" i.1 + 1.fc„2+1 A«, 6n1+n2(6_1)2^^l (7-34) 
,fc'»i+>_6'>2+i     512+1 _ jnj 

1~yfc»1 bn>+n*{b-iyd91 

'Int + i.^ >1+n2(6_1)2   ^ (7-35) 

6+1 
26"'-^ (6_i) (7-36) 

Hence, under Assumptions 1 and 2, the error in rule 3b is maximum when {ni — nj) 

is minimum, i.e., (ni — n2) = 1, which occurs when parameters of consecutive orders 
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of magnitude are being added. When b = 10, the maximum error is 6.11%. For 

larger values of (ni - 712), the errors are even smaller. For example, with b = 10, and 

(ni — na) = 2 (i.e., adding a parameter that is two orders of magnitude smaller) the 

estimated error is only 0.61%. 

The error in rule 4b can also be shown to be (i+ l)/2bni~n2{b— 1) in a similar 

way. In particular, ii Q = Qi - Q2, om{Qi) = ni, omfäi) = na, and ni > n2, then 

rule 4b predicts that om{Q) = ni. Using Assumptions 1 and 2, c(Rule 4b) can be 

calculated as follows: 

e(Rule 4b)   =   1 - Prob{bni <Q< 6ni+1} (7.37) 

=   l~ T f1 M. +1 /<3iÄa(9i»9a)rff^i (7.38) 
J-00 J9j-6ni+1 

/so     /■?i-6n> 
/   ,n+1/«1 (91)/«. (92)^2^1 (7.39) 

•00 ./?1-tni+1 

,6ni+6n2+1    rqi-bni 1 
=     1 

-L+bn^U      bn1+n.{b.ir
d92dqi (7.40) 

-.fc"!+6-2 + 1   ft  _fcni   _ftn2 

~A"l+6"2        6n1+n2(5_ jp   ? 

-i 
fc-i+fr^     6"!+^ (6-1)2 Hl 

6"!+» Jn2+1 _ jn2 

'6",+fc"2+i 6n1+n2(6_1)2^1 (7.41) 

(7-42) 
2l)n>-n»(6-l) 

Hence, under Assumptions 1 and 2, the maximum error in the heuristic rules of 

section 7.2.1 is 6.11%. 

7.5.2    Alternate order of magnitude rules 

The above error estimation techniques can also be used to analyze alternate rules 

for order of magnitude reasoning. In particular, we analyze the three inference rules 

shown in Figure 7.5. These rules were our first attempt at modeling an engineers 

order of magnitude reasoning.  Rule 1' and 2' were meant to model reasoning like: 
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1' OTn{qi * 92) = om{qi) + 0171(92) 

2' om{qi/q2) = om(g1) - 0771(92) 

Sa' om(9i -f 92) = 07n(9i) if 0771(91) = 0771(92) 

Figure 7.5: Alternate rules for order of magnitude reasoning. 

"If the resistance, R, is about lO-1 ohms, and the current, i, is about 10~2 amps, 

then the voltage drop, V (= iR), is about 10~3 volts." The idea was that the order 

of magnitude of a product or quotient was the sum or difference, respectively, of the 

orders of magnitudes of the arguments. Rule 3a' was meant to model the intuition 

that adding parameters of the same order of magnitude results in a parameter of the 

same order of magnitude. However, we now show that, while these rules may appear 

intuitively appealing, they are also unacceptably error-prone. 

We start by estimating th,' error in rule 1'. Let om{Qi) = rii, 0771(^2) = "2, and 

Q = Qi * Q2. Rule 1' predicts that om{Q) = ni + 712. Using Assumptions 1 and 2, 

e(Rule 1') can be calculated as follows: 

c(Rule 1')   =   1 - Pro6{6ni+nj <Q< bn^n3+1] (7.43) 

=   1 - /_    /tn1+4      /<?..<?* (91'92)<M9i (7.44) 
-OO   c 

«1 
(.ni-Hij-M 

=   i-T L-«;      fQMfQM<k2<ki (7-45) 

- ^^frF2 (7-48) 

Substituting fc = 10 in Equation 7.48, the error in rule 1', under Assumptions 1 and 2, 

is 82.68%. 

Next, we estimate the error in rule 2'.   Let om{Qi) = nj, om{Q2) = 712, and 

Q = Q1/Q2. Rule 2' predicts that om{Q) = «i - 712. Using Assumptions 1 and 2, 
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e(Rule 2') can be calculated as follows: 

e(Rule2')   = - Prob{bni-n2 <Q< b"*-"**1} 
/oo      f -     j,    ■ 

/    -.       /Oi ,«2 (9i. <l2)dq2dql 

00     ^nj—nj + I 

/6ni+1     0 1 

(7.49) 

(7.50) 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

Hence, under Assumptions 1 and 2, the error in rule 2' is 50^ 

Finally, we estimate the error in rule 3a'. Let om{Ql) = omfä) = n, and 

Q = Qi + Q2- Rule 3^ predicts that om{Q) = n. Using Assumptions 1 and 2, 
e(Rule 3a') can be calculated as follows: 

c(Rule3a')   = -Prob{bn <Q<bn+1} 
too     fbn+1-qi 

~ /      L fQuQÄquK^dqi 
J-oo Jbn-qi 

too    /•6n+1-9, 

~ /      L foMfoMdqidq! 
J-oo Jbn-qi 

-.j,n+l_&n     -fcn+l-,, j 

" L L h*{b-\Ydq2dqi 

fb^-b"bn+l_qi_bn 

- Jbn tSZTt     ...   dq. b^{b-lf 
{b-2f 

(7.55) 

(7.56) 

(7.57) 

(7.58) 

(7.59) 

(7.60) 2(6-1)2 

Substituting 6 = 10 into Equation 7.60, the error in rule 3a', under Assumptions 1 
and 2, is 60.49%. 

Hence, we have shown that, under Assumptions 1 and 2, the error introduced by 

the alternate rules shown in Figure 7.5 are greater than or equal to 50%. We believe 

that these errors are unacceptably large, and hence have chosen not to include these 
rules in NAPIER. 
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7.5.3    Discussion 

The error estimadon results presented above depend crucially on Assumptions 1 

and 2. We now discuss the validity and scope of these assumptions. 

Assumption 1 assumes that the two parameters being combined, Qi and Q2, 

are independent random variables. This assumption is reasonable if Qx and Q2 axe 

exogenous parameters. It is also reasonable if the set of exogenous parameters used to 

calculate the order of magnitude of Qi is disjoint from the set of exogenous parameters 

used to calculate the order of magnitude of Q2. However, if the orders of magnitudes 

of Qi and Q2 depend on the order of magnitude of a common exogenous parameter, 

then Qi and Q2 are not independent. 

Assumption 2 assumes that the two parameters being combined, Qi and Q2, are 

uniformly distributed random variables. In the absence of any additional information, 

this assumption is reasonable for exogenous parameters. However, it breaks down for 

derived parameters. For example, if Qx and Q2 are uniformly distributed random 

variables, and if Q = Qi op Q2 (where op is one of +,-,♦,or/), then Q is not 

uniformly distributed. Hence, when +he order of magnitude of Q is used to calculate 

the orders of magnitudes of other parameters. Assumption 2 is not valid. 

The above discussion implies that our error estimation technique has limited ap- 

plicability. In particular, the ?rrors estimated in this section cannot be directly used 

to estimate the error introduced in predictions based on a set of equations. Nonethe- 

less, these techniques have proved useful in helping us select a reasonable set of order 

of magnitude reasoning rules, while alerting us to the possibility of large errors intro- 

duced by alternate rules. 

7.6    Related work 

Order of magnitude reasoning has been widely studied in AI. Murthy [Murthy, 1988] 

was the first to propose the use of a logarithmic scale for the order of magnitude of 

a parameter. In that paper, he also provides rules of inference t( infer new orders 

of magnitude from old ones. Some of these rules are similar to ours. For example, 

he includes rules 3b, 3c, 4b, and 4c.   However, instead of 1, he proposes the rule 
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om{qi * 92) = om{q1) + omfa) (which is rule 1'), and instead of ruk 3a, he proposes 

the rule om{qi + 92) = omfo) when om{qi) = 001(92) (which is rule 3a'). As we m» 

in section 7.5.2, the estimated error in these rules is too largo, and hence we hn-V« 

chosen not to include them in NAPIER. Unlike our work, Murthy provides no analysis 

of how his inference rules can be used to find the order of magnitudes of parameters 

related by sets of simultaneous equations. In addition, we also analyze the complexity 

of order of magnitude inference, and present an approximate reasoning technique that 

works well in practice. 

Raiman [Raiman, 1991; Raiman, 1986] explores the foundations of symbolic order 

of magnitude reasoning. He defines a variety of order of magnitude scales, such as 

C7ose and Comparable, built out of the basic order of magnitude granularities. 5ma// 

and Rough. He introduces ESTIMATES, a system to solve order of magnitude equa- 

tions. The primary difference between NAPIER and ESTIMATES is one of emphasis: 

NAPIER can be viewed as providing justifications for making order of magnitude as- 

sumptions; ESTIMATES can be viewed as a formalization of the use of such order of 

magnitude assumptions to symbolically manipulate and simplify equations. 

Order of magnitude reasoning in the 0(M) formalism [Mavrovouniotis and Ste- 

phanopolous, 1187] uses a parameter c to represent the largest parameter that can 

be considered to be "much smaller" than 1. This is analogous to the parameter 6 in 

NAPIER (i.e., b = 1/e). However, there are a number of differences between 0(M) and 

NAPIER. First, the 0(M) formalism is based on order of magnitude relations between 

parameters. Hence, it works best when equations involve only links (links are ratios of 

parameters). NAPIER, on the other hand, is based on the order of magnitudes of the 

parameters themselves, and hence works with any algebraic equations. This is advan- 

tageous because it is not always possible to convert equations into equations involving 

only li.,ks. Second, 0(M) requires equations to be converted into assignments, which 

allow a new relation or range to be inferred from already known relations. This is a 

serious restriction since equations can be converted to assignments only in the absence 

of simultaneous equations. As we have see;., NAPIER does not have this restriction. 

NAPIER is also related to interval reasoning discussed in [Moore, 1979; Simmons, 

1986; Sacks, 1987).   NAPIER can be viewed as interval reasoning in which the end 
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points of the interval are restricted to a particular set of points of the form 6n, with 

specified base b, and any integer n. The drawback of this restriction is that under 

certain conditions, compared to interval reasoning, the bounds inferred by NAPIER are 

unnecessarily loose (e.g., see the discussion of rule 3a in section 7.2.1). The advantage 

of this restriction is that, unlike traditional interval reasoners, NAPIER is able to use 

sets of non-linear simultaneous equations to infer parameter bounds. In addition, the 

ability to simultaneously process all the equations in a set allows NAPIER to exploit 

global constraints to compute tighter bounds (see section 7.4). Another distinguishing 

characteristic of NAPIER, which classifiet it as an order of magnitude reasoning system 

rather than just an interval reasoner, is the use of heuristic rules (e.g, rule 3b). 

7.7    Summary 

In this chapter we described an implemented order of magnitude reasoning system 

called NAPIER. NAPIER defines the order of magnitude of a parameter on a logarithmic 

scale and uses a set of rules to propagate order of magnitudes through equations. A 

novel feature of NAPIER is its handling of non-linear simultaneous equations. Since the 

order of magnitude reasoning rules are all disjunctions of linear inequalities, NAPIER 

is able to use linear programming, in conjunction with backtracking, to find bounds 

on the order of magnitudes of parameters related by sets of non-lineax simultaneous 

equations. 

We also showed that order of magnitude reasoning using NAPIER's rules is in- 

tractable. Hence, NAPIER uses an approximate reasoning technique, based on causal 

ordering, leading to a practically useful system. This approximate reasoning tech- 

nique trades off accuracy for speed, though in practice there does not appear to be 

any loss of accuracy. 

Some of NAPIER's rules are heuristic rules, and we have estimated the error in- 

troduced by the use of these rules. We have also shown that intuitively appealing 

alternate heuristic rules lead to large estimated errors. 



Chapter 8 

Model selection program and 

results 

In this chapter we describe an implemented model selection program based on the 

algorithms developed in the previous two chapters. The program assumes that the 

knowledge base of component and model fragment daises satisfies all the restrictions 

introduced in Chapters 5 and 6. However, the actual knowledge base that we have 

constructed does not satisfy two of the restrictions: (a) the knowledge base does not 

include all the ownership constraints (justified in Section 5.4.5); and (b) parameters 

are not required to be locally self-regulating (justified in Section 6.6.3). 

In addition to the knowledge base of component and model fragment classes, the 

program has the following inputs: 

1. The structure of the device, which includes a description of the components of 

the device, the physical and structural properties of these components, and the 

structural relations between these components. As discussed in Section 3.6.1, 

this is the structural context of the device. 

2. The expected behavior of the device. 

3. Orders of magnitudes of initial values and exogenous values of parameters, which 

are used in generating the behavioral context of the device. Initial values are 

used when a parameter is determined by integration, while exogenous values 

215 
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are used when a parameter is assumed to be exogenous. Section 8.1.2 discusses 
this in detail. 

4. Orders of magnitudes of the thresholds used in behavioral constraints.   This 

allows us to check the behavioral constraints. 

The program produces an adequate model by first finding an initial causal model 

and then simplifying this causal model using the variant o{ find-minimal-causal-mo- 

del discussed in Section 5.7. Section 8.1 discusses a heuristic method for finding an 

initial causal model that is simpler than the most accurate model, and demonstrates 

this method on the temperature gauge shown in Figure 1.1. Section 8.2 illustrates 

the simplification procedure of Section 5.7 on the initial causal model of the above 

temperature gauge. Finally, Section 8.3 describes the results of running '.his model 

selection program on a variety of electromechanical devices. 

8.1    Finding an initial causal model 

The model selection algorithm developed in Section 5.1.2 was based on the fact that 

a causal model exists if and only if the most accurate model of the device is a causal 

model. Hence, a minimal causal model can be found by simplifying the most accurate 

model of the device. However, this is often undesirable be:ause the most accurate 

device model can be . necessarily complex, so that simplifying it can take a long 

time. In this section we introduce a heuristic technique for finding an initial causal 

model. This initial causal model is a subset of, and hence simpler than, the most 

accurate model. The heuristic technique is applicable only if the knowledge base 

satisfies the following restriction: 

• If a model satisfies all the structural and behavioral coherence constraints, then 

any simpler consistent and complete model that uses model fragments from the 

same assumption classes also satisfies all the structural and behavioral coherence 

constraints. 

This restrictions ensures that any causal model, not just the most accurate model, 

can be simplified using the techniques developed in Chapter 5. We assume that our 
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knowledge base satisfies the above restriction. 

The heuristic technique for finding an initial causal model is based on the compo- 

nent interaction heuristic. Section 8.1.1 introduces this heuristic, and Section 8.1.2 

describes the heuristic technique. 

8.1.1     Component interaction heuristic 

A device model can be viewed as having two major parts: (a) models of individ- 

ual components; and (b) models of interactions between components. Components 

can interact with each other only when appropriate structural relations hold between 

them. For example, in our knowledge base, the connected-to relation between ter- 

minals supports electrical interactions between the connected terminals. Hence, two 

components can electrically interact with each other if a terminal of one compo- 

nent is connected-to a terminal of the other component. As another example, the 

coiled-around relation between wires and physical objects supports thermal inter- 

actions between the wire and the physical object that it is coiled-around. 

In addition to requiring appropriate structural relations, components can interact 

only when the component models are compatible with the type of interaction under 

consideration. For example, a wire can electrically interact with a battery if one of 

the wire's terminals is connected-to one of the battery's terminals. However, this 

interaction can take place only if both the wire and the battery are being modeled 

as electrical components, e.g., modeling the wire as an electrical conductor, and the 

battery as a voltage source is compatible with the electrical interaction. 

Hence, components can interact with each other if the following conditions are 

satisfied: (a) the components are related by the structural relations that support 

the interaction; and (b) the component models are compatible with the interaction. 

The component interaction heuristic is based directly on the above observations. It 

states that if a set of components are related by one or more structural relations 

that support an interaction, and if one of the component models is compatible with 

this interaction, then the remaining component models must be augmented to be 

compatible with this interaction. This allows the components in the set to interact 

with each other via that interaction. Note that if none of the component models is 
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compatible with the interaction, then no augmentations are necessary. 

The component interaction heuristic is implemented as a set of heuristic coherence 

constraints. Each such constraint is a version of the component interaction heuristic 

that is specialized for a particular type of interaction and a particular set of struc- 

tural relations. Heuristic coherence constraints are expressed as horn rules, and like 

structural and behavioral constraints, are associated with model fragment classes. 

For example, the following heuristic coherence constraint 

(implies 

(and (terminals ?object ?terml) 

(voltage-terminal ?terml) 

(connected-to ?terml ?term2) 

(terminal-of ?term2 ?comp2)) 

(electrical-component ?comp2)) 

in the electrical-component model fragment class1 says that if a component is 

being modeled as an electrical-component, and one of the component's voltage 

terminals is connected to a terminal of another component, then the other component 

must also be modeled as an electrical-component. This allows the two components 

to interact by sharing voltages at the connected terminals. 

As another example, a heuristic coherence constraint associated with the ther- 

mal-object model fragment class is the following: 

(implies 

(and (wire ?object) 

(coiled-around ?object ?core)) 

(thermal-object ?core)) 

which implements the component interaction heuristic for the thermal interaction 

between a wire and an object around which it is coiled. 

We will require that the initial causal model must satisfy all applicable heuristic 

coherence constraints. We now show how these constraints are used to find an initial 

causal model. 
1 Hence, "?object" is bound to a component being modeled as an electrical-coBponeat. 
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(     Input     J 

1. Include expected 
behavior parameters 

I 
2. Enforce heuristic k structural 

coherence constraints 

3. Generate behavior 

4. Enforce behavioral 
coherence constraints 

/Initial causal^ 
V     model 

5. Augment 
device model 

1  

Figure 8.1: Algorithm for finding an initial causal model 
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8.1.2    Finding an initial causal model 

Figure 8.1 shows a flowchart describing our algorithm for finding an initial causal 

model. The input to the algorithm is as described earlier: (a) the structure of the 

device; (b) the expected behavior of the device; (c) orders of magnitudes of initial val- 

ues and exogenous values of parameters; and (d) orders of magnitudes of thresholds. 

In addition, each component can have a set of model fragment classes preselected for 

it—these correspond to modeling decisions made by the user. 

There are five major steps in this algorithm, numbered 1-5 in the rectangular 

boxes of Figure 8.1. Each step, except step 3 entitled "Generate behavior," can 

modify the device model by adding one or more model fragments to it. Whenever 

a step adds a model fragment to the device model, it also adds the most accurate 

model fragment from every assumption class required by the model fragment. Hence, 

at the end of every step, all the requires constraints are satisfied. 

We now describe the details of the five steps, and the flow of control between 

them. We will illustrate the algorithm on the temperature gauge in Figure 1.1. 

Figure 8.2 shows some, though not all, of the components in the temperature gauge, 

together with their component classes. Note, in particular, the last four components, 

which correspond to structural abstractions that are automatically created from the 

device description (see Section 2.4.2). bms-wire is an abstraction representing wire-1 

coiled-around bms-3, while the remaining three abstractions represent pointer-2, 

bms-3, and battery-5, respectively, immersed-in atin-6. 

Component Component classes 

thermistor-1 Thermistor 
pointer-2 Pointer 
bms-3 Bimetallic-strip 
oire-4 Wire 
battery-5 Battery 
atm-6 Atmosphere 
bms-wire Coil-structure 
atm-pointer Immer s ion-stmctnre 
atn-bns Immer s ion-stmctur e 
atm-battery Immersion-structure 

Figure 8.2: Components and their initial models. 
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Include expected behavior parameters 

In the first step, the device model is augmented to ensure that it contains all the 

parameters in the expected behavior. This is a good place to start because every 

causal model must contain every parameter in the expected behavior. 

Recall that a parameter represents a numerical attribute of some component. The 

relationship between a component and a parameter representing one of its numerical 

attributes is mediated by parameter functions: applying the parameter function to 

the component returns the parameter. In Chapter 2 we saw that the the attributes 

clause in the definition of a model fragment class defines the parameter functions that 

can be used on instances of that class. Hence, a device model contains a parameter 

if and only if the component corresponding to the parameter is an instance of the 

model fragment class that defines the corresponding parameter function. 

More precisely, if p is a parameter, let Cp denote the component of which p is a 

numerical attribute, let fp denote the parameter function such that fp{cp) = p, and 

let Mp be the model fragment class that defines fp. A device model contains the 

parameter p if and only if Cp is modeled as an instance of Mp. 

If the expected behavior contains a parameter p such that the device model does 

not contain p, then it means that Cp is not being modeled as an instance of Mp. This 

situation can be rectified by modeling Cp as an instance of some model fragment class 

M such that: 

1. M is a specialization of Afp; 

2. M is in the transitive closure of the possible-models of the component class 

of Cp-, and 

3. M(cp) is the most accurate applicable model fragment in its assumption class. 

The first condition ensures that Cp is an instance of Mp, so that p becomes part of the 

device model. The second condition ensures that M is a possible way of modeling Cp. 

The third condition ensures that we only consider model fragments that are parts of 

the most accurate model of the device, so that the initial causal model that we create 

will be a subset of the most accurate device model. 
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Note that M{cp) must be an applicable model fragment so that all the structural 

and behavioral preconditions of M must be satisfied with ?object bound to Cp. How- 

ever, since the device's behavior has not yet been generated, behavioral preconditions 

cannot be evaluated. Hence, any model fragment classes with behavioral precon- 

ditions are inapplicable. This is not a serious problem because almost none of the 

most accurate model fragment classes in our library have behavioral preconditions— 

behavioral preconditions primarily control the use of approximations. In addition, we 

assume that if a most accurate model fragment class has behavioral preconditions, 

then all the other model fragment classes in that assumption class also have behav- 

ioral preconditions, so that none of them are applicable at this stage. This ensures 

that we only consider most accurate model fragment classes at this stage. Most ac- 

curate model fragment classes with behavioral preconditions will be considered in the 

fourth step, after the behavior is generated. 

In general, for any parameter p and component Cp, there can be more than one 

model fragment class that satisfies the above three conditions. Let Afi and M2 be 

model fragment classes that satisfy the above three conditions, and let M2 be a 

specialization of Mi. Hence, modeling Cp as an instance of M2 will also model it as 

an instance of Mi. However, modeling Cp as an instance of Mi will not model it as 

an instance of M*. Hence, to keep the initial causal model as simple as possible, we 

make Cp an instance of the most general model fragment class that satisfies the above 

three conditions. The use of the other model fragment classes that satisfy the above 

three conditions will be discussed later. 

Let us illustrate this step on the temperature gauge in Figure 1.1. Let us assume 

that the expected behavior of this temperature gauge is: 

(causes (temperature thermistor-l) 

(angular-position pointer-2)) 

This means that the parameters representing the temperature of thermistor-l 

and the angular position of pointer-2 must be part of the device model. The tem- 

perature parameter function is defined in the Temperature-model model fragment 

class. A search of the possible-models of Thermistor reveals that Thermal-object 
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and Thermal-thermistor are the most accurate model fragment classes that are 

specializations of Temperature-model. However, Thermal-object is a generalization 

of Thermal-thermistor. Hence, we model thermistor-1 as a Thermal-object, i.e., 

the device model is augmented with the model fragment Thermal-object (thermis- 

tor-1). Similarly, pointer-2 is modeled as an instance of Rotating-object. 

In addition, as discussed earlier, the first step is not complete until all the re- 

quires constraints are satisfied. In particular, if the device model contains a model 

fragment M(c), where M is a model fragment class and c is a component, and if the 

required-assumption-classes of M specifies assumption class A, then the device 

model must contain a model fragment from assumption class A{c). Once again, to 

ensure that the resulting model is a subset of the most accurate device model, we 

augment the device model with the most accurate applicable model fragment in /1(c), 

i.e., if MA is the most accurate model fragment class of i4, we augment the device 

model with model fragment MA{C). {MA is assumed to be a possible-model of the 

component class of c.) 

In the current e cample. Thermal-object specifies Thermal-model-class as one 

of its required-assumption-classes. The most accurate model Lagment class of 

Thermal-model-class is Dynamic-thermal-model (see Equation 6.2). Hence, to 

satisfy this requires constraint, thermistor-1 is made an instance of Dynamic-ther- 

mal-model. The resulting device model is shown in Figure 8.3. 

Component Model 

thennistor-1 Thermal-object 
Dynaaic-thennal-nodel 

pointer-2 Rotating-object 
bms-3 
Hire-4 
battery-5 
atm-6 
bins-Hire 
atm-pointer 
atm-bms 
atm-battery 

Figure 8.3:  Component models after the expected behavior parameters have been 
included. 



224 CHAPTER 8.   MODEL SELECTION PROGRAM AND RESULTS 

Enforcing heuristic and structural coherence constraints 

Once the device model contains all the parameters in the expected behavior, the 

algorithm checks all applicable structural and he ristic coherence constraints. If 

all these constraints are satisfied, the algorithm merely proceeds to the next step. 

However, if a constraint is not satisfied, it augments the device model as described 

below. 

Recall that a structural coherence constraint is like a horn rule, except that the 

consequent of the rule is a disjunction of all the model fragments in an assumption 

class. Hence, if a structural coherence constraint is not satisfied, it means that the 

current device model does not include a model fragment from that assumption class. 

This situation is exactly analogous to the case where one of the requires constraints 

is not satisfied. Hence, it is rectified in the same way: the device model is augmented 

with the most accurate applicable model fragment in the assumption class. Once 

again, by choosing the most accurate model fragment, we ensure that the resulting 

device model continues to be a subset of the most accurate device model. 

Heuristic coherence constraints, on the other hand, are just horn rules, i.e., the 

consequent of the rule is of the form M(c), where M is a model fragment class and c 

is a component. Hence, if a heuristic coherence constraint is not satisfied, it means 

that the current device model does not include the model fragment in the consequent 

of the rule, i.e., c is not an instance of M. This situation is exactly analogous to 

the case, discussed earlier, where Cp had to be an instance of Mp to ensure that 

the device model contained parameter p. Hence, it is rectified in exactly the same 

way, i.e., by making c an instance of the most general specialization of M that is a 

possible-Eodel of the component class of c. 

For example, pointer-2 was modeled as a Rotating-object in the first step. Be- 

cause of the linkage connecting pointer-2 to the free end of bimetallic strip bms-3, a 

heuristic coherence constraint requires a kinematic interaction between pointer-2 

and bms-3. This constraint can be satisfied by modeling bms-S as an instance 

of Thermal-bimetallic-strip, which models the deflection of the free end of the 

bimetallic strip as a function of its temperature. 

As in the first step, all requires constraints are also enforced.   In particular. 
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Thermal-bimetallic-strip is a specialization of Thermal-object, which requires 

the use of a model fragment class in the Thermal-model-class assumption class. 

As before, the most accurate model fragment is used, so that the device model is 

augmented with Dynamic-thermal-model(bms-3). 

If there are any changes to the device model in this step, the step is repeated 

to check whether additional structural or heuristic coherence constraints have been 

violated. This repetition continues until all such constraints axe satisfied, at which 

point the algorithm proceeds to the next step. 

For example, we just modeled bms-3 as an instance of Thermal-object. Since 

bms-3 is immersed-in atm-6, a thermal interaction is possible between them. Hence, 

a heuristic coherence constraint requires that atm-6 should be modeled as a Ther- 

mal-object and atm-bms should be modeled as a Thermal-conductor. Similarly, 

since wire-4 is coiled-aroundbms-3, a thermal interaction is possible between them, 

and hence a heuristic coherence constraint requires that wire-4 should be modeled 

as a Thermal-object and wire-bms as a Thermal-conductor. Resistive-ther- 

mal-conductor is the most general specialization of Thermal-conductor that is 

also a possible-model of both Immer si on-structure and Coil-structure. Hence, 

atm-bms and bms-vire are both made instances of Resistive-thermal-conductor. 

Modeling the atmosphere as a Thermal-object means that a thermal interac- 

tion is possible with all components immersed-in it. Hence, a heuristic coherence 

constraint requires that both pointer-2 ard battery-5, which are immersed-in 

the atmosphere, must be modeled as Thermal-objects, and the corresponding Im- 

mersion-structures are modeled as Thermal-conductors. Finally, to satisfy all 

the requires constraints, all the Thermal-objects axe also modeled as instances of 

Dynamic-thermal-model. Once this is done, all the structural and heuristic coher- 

ence constraints are satisfied, and the algorithm continues to the next step. The 

resulting model is shown in Figure 8.4. 

Generating the behavior 

In the third step, the algorithm uses the device model constructed in the previous 

steps to generate the behavior.  This involves calculating the orders of magnitudes 



226 CHAPTER 8.  MODEL SELECTION PROGRAM AND RESULTS 

Component Model 

thermistor-1 Thermal-object 
Dynamic-thermal-nodel 

pointer-2 hotating-object 
Thermal-object 
Dynamic-thermal-model 

bas-3 Thermal-bimatallic-strip 
Dynami c-thermal-mod «1 

Bire-4 Thermal-object 
Dynamic-theraal-iBiodttl 

battery-5 Thermal-object 
Dynamic-thermal-nodel 

atm-6 Thermal-object 
Dynamic-thexmal-model 

bms-Hire Resistive-thermal-conductor 
atm-pointer Res ist ive-thermal-conductor 
atm-bms Resistive-thermal-conductor 
atm-battery Resistive-thermal-conductor 

Figure 8.4: Component models after the heuristic coherence constraints have been 
repeatedly satisfied. 

of all the parameters, using the techniques developed in Chapter 7. The order of 

magnitude of parameters assumed to be exogenous in the device model axe found in 

the input to the algorithm. Hence, the input must specify an exc, enous value for 

every parameter that can be assumed to be exogenous in some device model. 

Recall that the techniques of Chapter 7 were applicable c-uly to sets of algebraic 

equations. However, the device model constructed above contains differentia] equa- 

tions. We address this mismatch by only computing the behavior at a particular 

point in time. The particular point in time is defined by the values of the parameters 

being integrated. One can think of these values as being analogous to initial vaJues 

specified for numerical integration. These initial values are specified in the input to 

the algorithm, and hence the input must specify an initial value for every parameter 

that can be integrated in some device model. 

Consider the following subset of the equations of the device model in Figure 8.4. 

This subset corresponds to the thermal interaction between battery-5 anu atin-6: 
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dTb/dt = CbU 
dTJdt = Cafa 

fab = fabiTa - Tfr) 

txog€nous{Ci,) 

exogenous(Ca) 

exogenoxisifah) 

where the parameters have the following denotations: 

Tfc-Temperature of battery-5 

Ct:Heat capacity of battery-B 

Ta:Temperature of atm-6 

Ca:Heat capacity of atm-6 

/oiiHeat flow from atm-6 to battery-5 

/„iNet heat flowing into atm-6 

7ai,:Thermal conductance of atm-battery 

Since Co, Cb, and f^ are assumed to be exogenous in this model, the program looks up 

their exogenous values from the input. Since Ta and Tt are determined by integrating 

dTa/dt and dTb/dt, respectively, the program looks up their initial vaJues from the 

input. Then, using the exogenous value of 7ai, and the initial values of Ta and Tj,, 

the program calculates the order of magnitude of /„j, using the techniques developed 

in Chapter 7. Similarly, the program calculates the orders of magnitudes of all the 

parameters in the device model. 

Enforcing behavioral coherence constraints 

In the fourth step, the algorithm uses the behavior generated above to enforce all the 

behavioral coherence constraints. This step is exactly analogous to the way structural 

coherence constraints were enforced in the second step. If there are any changes 

to the device model, the algorithm loops back to the second step, to ensure that 

all the structural and heuristic coherence constraints continue to be satisfied. The 

algorithm loops through steps two, three, and four, until all the heuristic, structural, 
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and behavioral coherence constraints are satisfied. Once this happens, the algorithm 

proceeds to check whether the current device model satisfies the expected behavior. If 

the expected behavior is satisfied, we have an initial causal model, and the algorithm 

terminates. However, if the expected behavior is r"* tisfied, the algorithm proceeds 

to the fifth step. 

The device model constructed above satisfies all the behavioral coherence con- 

straints, but does not satisfy the expected behavior. Hence, the algorithm proceeds 

to the fifth step with that model. 

Augmenting the device model 

In the fifth step, the algorithm augments the device model as follows. Recall that 

in the first step, to ensure that the device model contained the parameter p, the 

algorithm had to make Cp an instance of Mp. To do this it chose the most general 

specialization of Mp that was also a possible-model of the component class of Cp. 

However, other more specific model fragment classes could also have been used to 

satisfy this constraint. Similarly, the algorithm chose the most general way to satisfy 

the heuristic coherence constraints in the second step. Once again, more specific 

model fragment classes could have been used to satisfy these constraints. 

In the fifth step, the algorithm augments the device model with one of the more 

specific ways of satisfying the constraints in the first and second step. The algorithm 

then loops back to the second step, and continues looping through steps two, three, 

four, and five, until a causal model is found. 

If no causal model is found, and there are no additional ways of satisfying the 

constraints in the first and second step, then the algorithm terminates with failure, 

reporting that there is no causal model. This is justified because the component 

interaction heuristic guarantees that the component models used in the final device 

model cannot interact with any other components, and hence no augmentation of the 

device model can lead to a causal model. 

For example, the first step satisfied the constraint that thermistor-l be modeled 

as an instance of Temperature-model by modeling thermistor-l as an instance 

of Thermal-object.  A more specific way of satisfying this constraint is to model 
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thermistor-l as a Thermal-thermistor. Since the device model constructed until 

now is not a causal model, the fifth step augments the device model with the Ther- 

mal-thermistor (thermistor-l) model fragment, and loops back to the second step. 

Since Thermal-thermistors are also Electrical-components, a heuristic coher- 

ence constraint requires that all components connected-to any of thermistor-1's 

voltage terminals must be modeled as Electrical-components. Hence, wire-4 and 

battery-5 should be modeled as Electrical-components. This is achieved by mod- 

eling wire-4 as an Electrical-conductor, and battery-5 as a Voltage-source. 

To complete the description of electrical conduction (i.e., to satisfy the requires 

constraint associated with Electrical-conductor), wire-4 is modeled as an in- 

stance of Resistor, and to complete the description of resistance wire-4 is further 

modeled as a Temperature-dependent-resistance. Similarly, to complete the de- 

scription of a voltage source, battery-5 is modeled as a Voltage-source-with-in- 

ternal-resistance. 

Using this model, the order of magnitude behavior is generated, and the behavioral 

coherence constraints are checked. Assuming that the heat generated in wire-4 is 

greater than the electrical-power-threshold, a behavioral coherence constraint 

requires that wire-4 be modeled as a Thermal-resistor. The resulting model, 

shown in Figure 8.5, satisfies all the heuristic, structural, and behavioral coherence 

constraints. One can show that this model satisfies the expected behavior, and hence 

it is the initial causal model generated by the algorithm. 

8.2    Simplifying the model 

The initial causal model identified above is then simplified in two stages using the 

techniques developed in Section 5.7. The behavior generated using this initial causal 

model is used to evaluate all behavioral preconditions and behavioral coherence con- 

straints. We now illustrate the simplification procedure on the model in Figure 8.5. 

In the first stage of simplification, model fragments are replaced by their approx- 

imations, until no more simplification by approximation is possible. Dynamic-ther- 

mal-model has two immediate approximations: Const ant-temperature-model and 
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Component                                       Model 

thennistor-l Thermal-object 
Dynamic-themml-model 
Thermal-thenaistor 

pointer-2 Rotating-object 
Thermal-object 
Dynamic-thermal-model 

bms-3 Thermal-bimetallic-strip 
Dynamic-thermal-model 

Bire-4 Thermal-object 
Dynamic-thermal-model 
Electrical-conductor 
Resistor 
Temperature-dependant-resistance 
Thermal-resistor 

battery-5 Thermal-obj ect 
Dynamic-thermal-model 
Voltage-source 
Voltage-source-with-internal-resistance 

atB-6 Thermal-object 
Dynamic-thermal-model 

bms-wire Resistive-thermal-conductor 
atm-pointer Resistive-thermal-conductor 
atm-bBS Resistive-thermal-conductor 
atm-battery Resistive-thermal-conductor 

Figure 8.5: The initial causal model. 
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Component Simplest causal model 
by approximating 

Minimal causal 
model 

thennistor-1 Thermal-object Thermal-obj ect 
Constant-teaperature-model 
Thermal-thermistor 

Constant-tenperature-model 
Thennal-thenuistor 

pointer-2 Rotating-object 
Thermal-obj ect 

Rotating-object 

Equilibritun-thermal-model 

bins-3 Thermal-bimetallic-strip Thermal-bimetallic-strip 
Equilibrium-thermal-model Eqailibriun-thezmal-model 

wire-4 Thermal-object Thermal-obj ect 
Equilibrium-thermal-model 
Electrical-conductor 
Resistor 
Constant-resistance 
Thermal-resistor 

Equilibrium-themal-model 
Electrical-conductor 
Resistor 
Constant-resistance 

Thermal-res istor 
battery-6 Thermal-obj ect 

Voltage-source 
Constant-voltage-source 

Equilibr inm-thermal-model 
Voltage-source 
Constant-voltage-source 

atm-6 Thermal-object Thermal-obj ect 
Constant-temperature-model Constant-temperature-model 

bms-wire Res i stive-thermal-conductor Resistive-thermal-conductor 
atm-pointer Ideal-thermal-conductor 
ata-bms Resistive-thermal-conductor Resistive-thermal-conductor 
atm-battery Ideal-theimal-conductor 

Figure 8.6: The two stages of simplifying the initial causal model. The boxed model 
fragments in the second column are the approximate model fragments that have 
replaced more accurate model fragments in the initial causal model. 

Equilibrium-thermal-model. These correspond to exogenizing and equilibrating 

the differential equation in Dynamic-thermal-model. Constant-resistance is the 

only approximation of Temperature-dependent -resistance, Constant-voltage- 

source is the only approximation of Voltage-source-with-internal-resistance, 

and Ideal-thermal-conductor and Ideal-thermal-insulator axe the two approx- 

imations of Resistive-thermal-conductor. 

The second column in Figure 8.6 shows one possible result of approximating the 

initial causal model's model fragments as much as possible, while 'etaining the causal 
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model property (Section 5.7.1 called this the "simplest causal model by approximat- 

ing"). In fact, in this case, the behavioral preconditions dictate that this is the only 

such causal model, ^or example, Resistive-thennal-conductorCatm-battery) 

cannot be approximated by Ideal-thermal-insulator(atm-battery) because the 

thermal resistance of atm-battery is not large enough. In addition, model frag- 

ments like Res i stive-thermal-conduct or (bms-wire) cannot be approximated be- 

cause then the model ceases to be a causal model. 

The above simplest causal model by approximating is then simplified further by 

retaining only the relevant model fragments (as described in Section 5.7.2). The 

resulting minimal causa1 model is shown in the third column of Figure 8.6. Irrelevant 

model fragments describing the thermal properties of pointer-2 and battery-5 have 

been dropped, as have the model fragments describing the heat conduction properties 

of atm-pointer and atm-battery. 

8.3    Implementation and results 

We have implemented the above model selection algorithm in Common Lisp, and 

tested it on a variety of electromechanical devices. We now give an overview of this 

implementation. 

8.3.1    Overview of the knowledge base 

We have constructed a library of 20 different types of components including wires, 

bimetallic strips, springs, and permanent magnets. The library of model fragment 

classes consists of approximately 150 different types of model fragment classes in- 

cluding descriptions of electricity, magnetism, heat, elasticity, and the kinematics 

and dynamics of CTiC-dimensional motion (including both rotation and translation). 

Each component class has an average of 30 model fragment classes describing different 

aspects of its behavior. 
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8.3.2    Overview of the devices 

The model selection program has been tested on ten electromechanical devices drawn 

from [Artobolevsky, 1980; Macaulay, 1988; van Amerongen, 1967]. Table 8.1 shows 

the names of these ten devices, and the number of components in each of them. The 

number of components in each device is the sum of the number of components in the 

original device description and the number of structural abstractions identified by the 

system (see Section 2.4.2). One can see that the devices range in complexity from 

only 10 components in the bimetallic strip thermostat, to 54 components in the car 

distributor system. 

Some of these devices can operate in more than one operating region. Each oper- 

ating region corresponds to a different set of inputs to the model selection program. 

Hence, diiferent operating regions can have different device structures, expected be- 

haviors, initial and exogenous values, and thresholds. Table 8.1 shows the number of 

operating regions of each device that our model selection program was run on. 

Device name Number of 
components 

Number of 
operating regions 

Bimetallic strip temperature gauge 12 1 
Bimetallic strip thermostat 10 2 

Flexible wire temperature gauge 13 
Galvanometer temperature gauge 19 

Electric bell 22 
Magnetic sizing device 22 
Carbon pile regulator 26 

Electromagnetic relay thermostat 30 
Tachometer 34 

Car distributor system 54 

Tabk 8.1: Number of components and operating regions used in each device. 

We now give a brief description of each of these devices, highlighting their most 

important aspects from the modeling perspective. Detailed descriptions of these 

devices can be found in Appendix B. These devices have been selected primarily to 

demonstrate the fact that similar components in different devices can be modeled 

differently. In addition, device descriptions also include irrelevant information. In all 
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cases, our model selection program correctly identifies the right component models, 

and disregards irrelevant information. 

Bimetallic strip temperature gauge: This is just the temperature gauge in Fig- 

ure 1.1. To understand how it works, one must model the heat generated in 

the wire due to current flow, and the deflection of the bimetallic strip due to 

temperature changes. 

Bimetallic strip thermostat: This device contains a bimetallic strip which regu- 

lates the temperature of a room by turning on a heater when the room becomes 

too cold. To understand how it works, one must model both the deflection of 

the bimetallic strip due to temperature changes and the electrical conductivity 

of the bimetallic strip. 

Flexible wire temperature gauge: This temperature gauge is very similar to the 

one in Figure 1.1, except that the pointer's angular position is determined by 

the length of a wire, rather than the deflection of a bimetallic strip. Since the 

wire's length depends on its temperature, it follows that to understand how this 

temperature gauge works, we must model not only the heat generated in the 

wire due to current flow, but also the dependence of the wire's length on its 

temperature. 

Galvanometer temperature gauge: This temperature gauge is also similar to the 

one if Figure 1.1, except that the current in the circuit is measured using a 

galvanometer, rather than measuring the deflection of the bimetallic strip. A 

galvanometer works by measuring the magnetic field generated by the current 

flowing in a coil of wire. Hence, to understand how this temperature gauge 

works, we must model the magnetic field generated by the coil of wire, but need 

not model the heat generated in the wire. 

Electric bell: This device consists of a hammer and a bell. The device goes through 

two major operating regions. In the first operating region, an electric circuit 

is completed through the hammer, activating an electromagnet which attracts 

the hammer, causing the hammer to strike the bell. Hence, to understand the 



8.3.   IMPLEMENTATION AND RESULTS 235 

electric bell's operation in this operating region, we must model the electric and 

magnetic properties of the bell. When the hammer strikes the bell, it breaks the 

electric circuit, thereby deactivating the electromagnet, and hence allowing the 

hammer to return to its originel position. To understand why this happens, we 

must model the hammer as a spring that restores the hammer's position when 

the external electromagnetic force is removed. 

Magnetic sizing device: This device is used to measure the size of workpieces in a 

factory. It works on the principle that the magnetic flux in a magnetic circuit is 

dependent on the length of the air gaps in the circuit. The device is constructed 

to make the length of the air gaps proportional to the size of the workpiece. The 

important point to note here is that, unlike in a galvanometer, to understand 

how this device works, we must model magnetism using a magnetic circuit 

ontology (see the discussion in Section 5.2). In addition, the an gaps must be 

modeled as magnetic flux conductors. 

Carbon pile regulator: This device allows manual regulation of the voltage sup- 

plied to another device. The principle of its operation is that the resistance of 

a carbon pile is proportional to the compressive force acting on it. Hence, to 

understand its operation, we must model the dependence of the carbon pile's 

resistance on the compressive force. 

Electromagnetic relay thermostat, ^his thermostat is similax to the bimetallic 

sirip thermostat. The primary difference is that in the bimetallic strip thermo- 

stat the bimetallic strip directly turned on the heater, while in this device the 

bimetallic strip turns on an electromagnetic relay which turns on the heater. 

Understanding the operation of the electromagnetic relay requires the magnetic 

circuit ontology mentioned above. 

Tachometer: This device, which measures angular speed, is very interesting because 

it consists of two similar structures, each of which consists of a coil of wire wound 

around an iron core and embedded in an external magnetic field. The interesting 

part is that, though these structures are very similar, they are modeled very 



236 CHAPTER 8.   MODEL SELECTION PROGRAM AND RESULTS 

differently. The first behaves as an electric generator: the rotation of the coil 

in the magnetic field causes an induced voltage. The second behaves as a 

galvanometer: the current flowing in the coil causes the coil to deflect in the 

external field. 

Car distributor system: This is just a description of the distributor system in a 

car, including the spark plugs. The interesting part of this device is the air gaps 

in the spark plugs which are modeled as electric conductors because of the high 

voltage drops across them. 

8.3.3    Results 

Table 8.2 shows a summary of our experimental results on the devices described 

above. As mentioned above, the model selection program was run on more than one 

operating region for some of the devices. In such cases, the numbers in this table 

correspond to the totals over all the runs for that device. 

Device name Estimated 
space 

Generated 
space 

Time (sec) 
on Explorer II 

Bimetallic strip temperature gauge a.seie 46 
* 86 " 

50 „ 

Bimetallic strip thermostat 5.4el2 Wi 
Flexible wire temperature gauge 2.6e20 78 59.9 
Galvanometer temperature gaug; C.leSl 120 149.8 

Electric bell 6.6e40 117 262.4 
Magnetic sizing device 2.1e51 117 456.0 
Carbon pile regulator 1.5e49 115 262.5 

Electromagnetic relay thermostat 8.7e49 293 472.7 
Tachometer 6.8e58 195 503.6 

Car distributor system 9.9e72 160 352.6 

Table 8.2: Summary of experimental results 

The second column displays the total number of models that (a) have at most 

one model fragment from each assumption class; and (b) have a model fragment from 

each required assumption class. This number is easy to calculate from the knowledge 

base, and it provides a rough estimate of the total number of consistent and complete 
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models of each device.2 As one can see, these numbers are very large, ranging from 

about 1012 to over 1072. This means that any sort of brute-force search for adequate 

models, that searches any significant fraction of this space, is completely hopeless. 

The third column shows the total number of models actually examined by the pro- 

gram. This is the sum of the number of models examined during the first phase, when 

the program constructs an initial causal model, and the number of models examined 

during the second phase, when the program simplifies the model. These numbers 

range from a minimum of 46 to a maximum of 293. As one can see, these numbers 

are orders of magnitude smaller than the numbers in the second column, making 

model selection practical. This clearly demonstrates the utility of the restrictions 

introduced in Chapters 5 and 6, including the use of causal approximations. 

The fourth column shows the actual run time on an Explorer II. These times 

range from a little less than half a minute for the bimetallic strip temperature gauge 

to a little over eight minutes for the tachometer. Significantly faster runs have been 

observed on different machines using different Lisp implementations. For example, 

the tachometer example has been run in a little over a minute and a half on a Sparc 

Station 2 under Lucid Lisp version 4.1 [Jon L White, personal communication]. 

Table 8.3 shows ihe number of model fragments in the most accurate model, 

thü initia; causal model, and the minimal causal model of each device. The initial 

causal model and the minimal causal model are, of course, the ones constructed by 

the program using the methods described above. Multiple entries for a single device 

correspond to running the program on the different operating regions of that device. 

One can see from this table that the number of model fragments in the initial 

causal model is significantly less than the number in the most accurate model. In 

fact, on the average, the ratio of the number of model fragments in the initial causal 

model to the number in the most accurate model is 0.52. This shows that the heuristic 

method is effective in finding an initial causal model that is significantly simpler than 

the most accurate model. 

The table also shows that, in most cases, the minimal causal mode! is significantly 

2Of course, calculating the exact number of (a) consistent and complete models; (b) coherent 
models; or (c) causal models, of each device can only be done by explicitly checking all the models— 
a completely impractical task. 
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Device name 
Number of model fragments 

Most accurate 
model 

Initial causal 
model 

Minimal causal 
model 

Bimetallic strip temperature gauge 75 36 27 
Bimetallic strip thermostat 54 

54 
38 
39 

14 
31 

Flexible link temperature gauge 94 60 25 
Galvanometer temperature gauge 154 98 28 

Electric bell 177 
177 

7 
108 

6 
45 

Magnetic sizing device 202 122 43 
Carbon pile regulator 211 122 51 

Electromagnetic relay thermostat 211 
211 
211 

117 
119 
74 

31 
36 
14 

Tachometer 285 170 44 
Car distributor system 348 178 28 

Table 8.3: Number of model fragments in the most accurate model, the initial causal 
model, and the minimal causal model constructed by the program. 

simpler than the initial causal model. In fact, on the average, the ratio of the number 

of model fragments in the minimal causal model to the number in the initial causal 

model is 0.33. This shows that the heuristic method of finding an initial causal model 

is not, by itself, sufficient to find a minimal causal model, or even a model that is 

close to being a minimal causal model: the techniques developed in Chapter 5 are 

still necessary. 

Finally, Table 8.4 shows the number of model fragments that were dropped and 

approximated in simplifying the initial causal model to get the minimal causal model. 

Note that the number in the third column corresponds only to the model fragments 

that wero approximated in the first phase of simplification, but were not dropped in 

the second phase of simplification. The number in the second column corresponds 

to the total number of model fragments that were dropped in the second phase of 

simplification. 
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Device name 
Simplifications to the 
initial causal model 

Dropped Approximated 
Bimetallic strip temperature gauge 9 7 

Bimetallic strip thermostat 24 
8 

3 
9 

Flexible link temperature gauge 35 5 
Galvanometer temperature gauge 70 6 

Electric bell 1 
63 

0 
10 

Magnetic sizing device 79 6 
Carbon pile regulator 71 12 

Electromagnetic relay thermostat 86 
83 
60 

10 
5 
4 

Tachometer 126 9 
Car distributor system 150 9 

Table 8.4: Number of model fragments that were dropped and approximated in sim- 
plifying the initial causal model. 

8.4    Summary 

In this chapter we described our implemented model selection program, and presented 

some experimental results. The model selection program takes four inputs: (a) the 

structure of the device; (b) the expected behavior; (c) initial values and exogenous 

values; and (d) threshold val ses. Using this input, the program first finds an initial 

causal model using a heuristic technique based on the component interaction heuristic. 

The component interaction heuristic states that if a set of components are related 

by one or more structural relations that support an interaction, and if one of the 

component models is compatible with this interaction, then the remaining component 

models must be augmented to be compatible with this interaction. This allows the 

components in the set to interact with each other via that interaction. The component 

interaction heuristic is implemented as a set of heuristic coherence constraints. The 

initial causal model is required to satisfy all such heuristic coherence constraints. 
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The algorithm for finding the initial causal model essentially enforces the follow- 

ing constraints: (a) the device model must include all parameters in the expected 

behavior; (b) structural coherence constraints; (c) heuristic coherence constraints; 

and (d) behavioral coherence constraints. If the device model resulting from enforc- 

ing these constraints is not a causal model, the algorithm augments the device model 

in a focussed manner, until a causal model is found. 

Finally, the initial causal model is simplified using the techniques developed in 

Section 5.7. 

The model selection program has been tested on ten different electromechanical 

devices. These devices have been selected primarily to demonstrate that similar com- 

ponents in different devices are modeled differently. The results of our experiments 

show that 

1. brute-force search is indeed hopeless—the space of possible device models is just 

too large; 

2. the restrictions introduced in Chapters 5 and 6 allow the :nodel selection pro- 

gram to explore a tiny fraction of the enormous search space, making model 

selection practical; 

3. the heuristic technique for finding an initial causal model does result in causal 

models that are significantly simpler than the most accurate model; and 

4. the heuristic technique is insufficient for finding adequate models—the initial 

causal model still needs to be significantly simplified to find a minimal causal 

model. 



Chapter 9 

Related work 

In this chapter we compare our work to other work in automated modeling. Chapter 7 

includes a comparison of our work on order of magnitude reasoning to other work in 

that area, and hence we will not repeat it here. 

One of the earliest discussions of the importance of selecting adequate models 

for efficient problem solving is found in [Amarel, 1968]. Much work in planning 

with abstractions, starting with [Sacerdoti, 1974], has shown how the use of multiple 

abstractions can speed up planning. Patil et al. show how medical diagnosis can be 

done with multiple models of a patient [Patil et a/., 1981], and Sussman and Steele 

show how multiple views of an electronic circuit, called slices, can lead to tractable 

reasoning [Sussman and Steele Jr., 1980). A growirg body of literature is also focussed 

on creating new representations and abstractions from existing representations, e.g., 

see [Korf, 1980; Subramanian and Genesereth, 1987; Van Baalen and Davis, 1988; 

Unruh and Rosenbloom, 1989; Christensen, 1990; Knoblock, 1991] and the articles in 

[Ellman, 1990; Ellman, 1992). 

Instead of reviewing this large body of work, we will instead focus on the work 

related to automatically selecting an adequate model from a space of possible models. 

This is in contrast to (a) manual selection of adequate models, e.g., [Sussman and 

Steele Jr., 1980]; (b) the work on creating new representations and abstractions; and 

(c) cases where all, or most, of the models are used synergistically in problem solving, 

e.g., much of the work on abstraction planning. Much of this review will focus on the 

241 
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work in the domain of physical systems. This is the topic of Section 9.1. Section 9.2 

reviews some recent work in logical approaches to the same problem. 

9.1    Automated modeling of physical systems 

In this section we will review the recent work on automated modeling of physical 

systems. 

9.1.1     Compositional modeling 

The work most similar to ours is the work on compositional modeling [Falkenhainer 

and Forbus, 1991; Falkenhainer and Forbus, 1988]. In this work, as in ours, device 

models are constructed by composing a set of model fragments. Each model fragment 

is conditioned on a set of modeling assumptions which explicate the approximations, 

perspectives, granularity, and operating assumptions underlying the model fragment. 

Mutually contradictory assumptions are organized into assumption classes, and a set 

of domain-independent and domain-dependent constraints are used to govern the use 

of modeling assumptions. A user query focuses the selection of adequate device models 

by requiring that every adequate model must contain the terms mentioned in the 

query. Hence, an adequate device model is a simplest model that contains all the terms 

mentioned in the query, and uses only model fragments that are entailed by a set of 

mutually consistent assumptions satisfying all the domain-independent and domain- 

dependent constraints. An adequate model is constructed using a variant of constraint 

satisfaction called dynamic constraint satisfaction [Mittal and Falkenhainer, 1990], 

and then validated using either qualitative or numerical simulation. If the validation 

discovers any inconsistencies, the process is repeated with this additional information. 

There are many similarities between our work and theirs. First, our use of struc- 

tural and behavioral preconditions and coherence constraints is very similar to their 

use of assumptions and constraints on the use of assumptions. Second, the first step 

of our heuristic algorithm for finding an initial causal model (see Figure 8.1) is similar 

to their requirement that an adequate model must contain the terms in the query. 
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Third, our loop between the second, third, and fourth steps in the algorithm for find- 

ing an initial causaJ model (see Figure 8.1) is similar to their loop between finding a 

model and validating it with behavior generation. 

However, there are a number of differences. The most important difference is in the 

definition of model adequacy: they have no counterpart of the expected behavior. Our 

focus on the task of causal explanation Las allowed us to use the expected behavior as a 

central constraint on model adequacy, thereby decreasing the importance of structural 

and behavioral coherence constraints. Furthermore, because of the importance of 

causal explanations to other tasks (see Section 3.2.1), the expected behavior can also 

provide important constraints on model adequacy for other tasks. On the other hand, 

in compositional modeling, the constraints on the use of assumptions play a central 

role in defining model adequacy, and any task focus has to be embedded in these 

constraints. Embedding such a task focus is, in general, not easy. For example, it is 

not clear how the expected behavior of a device can be expressed as a set of declarative 

constraints. 

A second difference is that we exploit the restrictions introduced in Chapter 5, es- 

pecially the use of causal apptox inations, to develop a polynomial time algorithm for 

finding adequate models. Note that the abovementioned decrease in the importance 

of coherence constraints means that the restriction on their expressive power (see Sec- 

tion 5.6) has not proved to be serious. On the other hand, the constraints on the use 

of assumptions play a central role in compositional modeling, so no such restriction 

in expressive power is possible. Hence, their model selection algorithm is based on 

dynamic constraint satisfaction, which can, in the worst case, take exponential time. 

A third difference is that, while their system uses either qualitative simulation or 

numerical simulation for behavior generation, ours uses order of magnitude reason- 

ing. At the beginning of Chapter 7 we discussed the advantages of order of magnitude 

reasoning over purely qualitative or purely numerical methods. The primary disad- 

vantage of using our order of magnitude reasoning technique, compared to qualitative 

or numerical simulation, is that it is currently restricted to generating the behavior 

at a fixed point in time. 

A fourth difference lies in the handling of multiple operating regions of a device. 
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While they generate a single model for all operating regions of a device, we can 

generate different models for each operating region. However, both techniques have 

their drawbacks. The drawback with their technique is that the single model may 

not be the most appropriate model in all operating regions. The drawback with our 

technique is that we need a new set of inputs for each new operating region. 

9.1.2    Graphs of models 

The work on graphs of models [Addanki et ai, 1991] discusses a technique for selecting 

models of acceptable accuracy. A graph of models is a graph in which the nodes are 

models and the edges are assumptions that have to be changed in moving from one 

model to another. A model in this graph has acceptable accuracy if its predictions 

are free of conflicts. Conflicts are detected either empirically or interally. Empirical 

conflicts are detected by experimentally verifying a model's predictions, while internal 

conflicts are detected by checking the model's predictions against a set of consistency 

rules that capture the model's assumptions. When a conflict is detected, a set of 

domain-dependent parameter change rules help to select a more accurate model, and 

the above process is repeated. Analysis begins with the simplest model in the graph 

of models, and terminates when an accurate enough model has been found. 

An important difference between their work and ours is the representation of 

the space of models. They use an explicit representation of this space as a graph 

of models, while we have an implicit representation as a set of model fragments 

that can be combined in different ways to produce an exponentially large number of 

device models. Our approach leads to greater flexibility in tailoring models to specific 

situations. To get comparable flexibility in the graphs of models approach requires 

an explicit representation of an exponentially large space of device models, which is 

quite impractical. An advantage of their approach is that each model in the graph 

can have a specialized problem solver, while we must have a general purpose problem 

solver that is applicable to all models. 

The consistency rules used to verify a model's predictions are similar to our behav- 

ioral preconditions and coherence constraints. However, we do not validate a model's 
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predictions empirically, and we have not explicitly addressed the problem of switch- 

ing to a more accurate model in light of a conflict. Our techniques axe best viewed 

as providing an intelligent method for selecting an initial model. Since they always 

start the analysis with the simplest model, making no effort to identify a better start- 

ing model, our techniques are complementary to theirs: select an initial model using 

our technique, and do model switching using theirs (but see the next section for an 

alternative model switching technique). 

9.1.3 ^Fitting approximations 

In [Weld, 1990], Weld introduces an interesting class of approximations called fitting 

approximations. Informally, a model M2 is a fitting approximation of a model Mi 

if Mi contains an exogenous parameter, called a fitting parameter, such that the 

predictions using Mi approach the predictions using M2, as the fitting paiameter 

approaches a limit. Weld shows that when all the approximations are fitting ap- 

proximations, the domain-dependent parameter change rules discussed above can be 

replaced by a domain-independent technique for model switching. 

Fitting approximations and causal approximations are fundamentally incompara- 

ble because the former talks about behavior differences, while the latter talks about 

causal dependencies. However, in practice, it appears that fitting approximations 

axe also causal approximations. For example, all the fitting approximations given in 

[Weld, 1991] are also causal approximations. This means that his domain-independent 

technique for model switching can be easily incorporated into our system. 

9.1.4 Critical abstractions 

In [Williams, 1991a], Williams introduces the notion of a critical abstraction, which 

is a parsimonious description of a device relative to a set of questions. Given a device 

model, he constructs a critical abstraction in three steps: (a) eliminating superfluous 

interactions; (b) aggregating interactions that are local to a single mechanism using 

symbolic algebra; and (c) further abstracting the aggregated interactions. 



246 CHAPTERS.   RELATED WORK 

His motivations for creating critical abstractions are very similar to our motiva- 

tions for finding minimal causal models—we are both striving to find paxsimonious 

descriptions of how a device works. Furthermore, his abstraction process is similar to 

our model simplification procedure. In fact, the first step of his abstraction process, 

which eliminates superfluous interactions, is similar to the last step of our simplifica- 

tion procedure, which drops all irrelevant model fragments. The primary difference 

between our approaches is one of emphasis: we have focussed on the problem of se- 

lecting approximations from a prespecified space of possible approximations, while he 

has focussed on finding techniques for automatically abstracting a base model. 

9.1.5    Model-based diagnosis with multiple models 

One of the original inspirations for the work described in this thesis was Davis's work 

on model-based diagnosis [Davis, 1984]. In that work, Davis presents a diagnostic 

method based on tracing paths of causal interactions. He argues that the power of 

the approach stems not from the specific diagnostic method, but from the model which 

specifies the allowed paths of causal interaction. He shows that efficient diagnosis, 

while retaining completeness, can be obtained by initially considering models with 

only a few paths of interactions, and adding in additional paths when the model fails 

to account for the symptoms. He also introduces the notion of adjacency: components 

are adjacent to each other if they can interact with each other by some means. 

While we have not focussed on the task of diagnosis, one can see that our simplicity 

ordering on models lends itself to the above diagnosis technique: diagnosis starts with 

the minimal causal model, with successively more complex models being used if a 

model is unable to account for the symptoms. The restrictions in Chapter 5 ensure 

that using more complex models will add new paths of causal interaction. In addition, 

the component interaction heuristic introduced in Chapter 8 is closely related to the 

notion of adjacency: adjacent components must have compatible models. 
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9.1.6    Reasoning about model accuracy 

Accuracy is a very important characteristic of an adequate device model: a model 

must be sufficiently accurate to be useful. In this thesis we have not developed 

any sophisticated techniques for reasoning about model accuracy. In particular, a 

model is deemed to be accurate enough if it satisfies all the behavioral preconditions 

and coherence constraints, with different levels of accuracy corresponding to different 

settings of the thresholds. However, our system does not reason about the settings 

of the thresholds; the threshold values are part of the input. In this section we give 

a brief overview of some ongoing work by various authors on the topic of reasoning 

about model accuracy. 

In [Nayak, 1991], we present a domain-independent method for validating ap- 

proximate equilibrium models against more accurate models. The method makes 

predictions based on the approximate model, and estimates the error in these pre- 

dictions, with respect to the more accurate model. We also derive conditions under 

which the estimated error is guaranteed to be an upper bound on the actual error. 

Shirley and Falkenhainer develop a framework for reasoning about model accuracy, 

and show how approximate models involving differential equations can be validated 

against a base modei, using known accuracy requirements on certain parameters 

[Shirley and Falkenhainer, 1990]. Error estimation is done by computing a linear 

approximation of an error function, and numerically integrating it over the interval 

of interest. The validity of this method is based on the assumption that the linear 

terms in the error function dominate the higher order terms. 

Falkenhainer extends the above techniques in two ways. In [Falkenhainer, 1992b], 

he shows how accuracy measures obtained from earlier problem solving episodes can 

be used to predict accuracy bounds for models in new settings. In [Falkenhainer, 

1992a], he shows how idealizations can be constructed using two common idealization 

assumptions. He also develops an error estimation technique, based on sampling the 

error's behavior and fitting a polynomial to it, and uses it to define the applicability 

region of a model. 

An alternate method for constructing idealizations and their applicability regions 

is presented in [Raiman and Williams, 1992]. This method proceeds by first finding 
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ordinal relations between terms using MINIMA [Williams, 1991b], and then exagger- 

ating these ordinal relations, e.g., replacing ">" by ">." Using the resulting order 

of magnitude relations, the equations are simplified, and the applicability region of 

each simplified equation is determined, by ESTIMATES [Raiman, 1991]. 

Finally, Weld and Addanki introduce the help/hinder heuristic—a query-directed 

technique for the automatic generation of an approximate device model [Weld and 

Addanki, 1991]. The help/hinder heuristic generates an approximate model by sys- 

tematically introducing overestimates and underestimates in component models so 

that the predictions of the approximate model are guaranteed to be sound. 

9.1.7    Microscopic ontologies 

While much of the research in qualitative reasoning about physical systems has fo- 

cused on macroscopic theories of the domain, some researchers have proposed the use 

of both macroscopic and microscopic domain theories: Hayes gives the macroscopic 

contained stuff ontology and the microscopic piece of stuff ontology for reasoning 

about liquids [Hayes, 1985]; Collins and Forbus develop a specialization of the above 

"piece of stuff" ontology, called the molecular collection ontology, and present tech- 

niques for generating and reasoning with fluids as "pieces of stuff" [Collins and Forbus, 

1987]; Rajamoney and Koo present a qualitative representation for microscopic theo- 

ries and describe a method for obtaining the macroscopic behavior from such theories 

[Rajamoney and Koo, 1990]. 

However, most of the work in this area has not focused on the problem of selecting 

an appropriate ontology. A notable exception is [Liu and Farley, 1990], in which they 

present a query-driven method for selecting and shifting between macroscopic and 

microscopic domain theories. The selection and shift of ontologies is driven by a set 

of ontological choice rules. However, the generality and scope of these rules is not 

clear. 

While we have not actually developed any microscopic domain theories, the dis- 

cussion in Section 5.2 applies in a straightforward manner: if the macroscopic and 

microscopic domain theories are mutually consistent, then the techniques developed 

in this thesis provide a general method for selecting the appropriate ontology. This 
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seems likely because the macroscopic and microscopic are usually used for different 

purposes, e.g., in [Collins and Forbus, 1987], the macroscopic "contained stuff" on- 

tology is used to establish global properties like temperature and pressure gradients, 

while the microscopic "molecular collection" ontology is used to determine how a 

molecular collection moves through the system. Furthermore, the "molecular collec- 

tion" ontology is parasitic (i.e., dependent) upon the "contained stuff" ontology, and 

hence the two ontologies are mutually consistent. 

9.2    Logical approaches 

Logical approaches to dealing with multiple domain theories have been proposed by 

Hobbs and by McCarthy. Hobbs outlines a framework for a theory of granularity, 

which is a means of constructing simpler theories out of more complex ones using the 

notion of indistinguishability with respect to a set of relevant predicates [Hobbs, 1985]. 

He proposes the use of a set of articulation axioms to link the different granularities, 

and to allow shifts of perspective during problem-solving. McCarthy introduces the 

notion of context, which captures the implicit assumptions underlying any axioma- 

tization [McCarthy, 1987]. He proposes that all axioms make assertions about some 

context, and a set of nonmonotonic rules allow inheritance to more general and more 

specific contexts. 

However, both the above proposals lack detail. In his thesis [Guha, 1991], Guha 

works out some of the details of McCarthy's proposal and demonstrates the use of 

contexts in CYC.1 He develops a syntax, semantics, and proof theory of a language for 

expressing the contextual dependence of axioms. He introduces lifting axioms, which 

allow a formula in one context to be converted into an equivalent formula in another 

context. He also introduces a set of default lifting axioms, which he says takes caxe 

of a majority of the lifting. 

Guha's work is certainly more ambitious in scope than ours, since it attempts to 

^YC is a large, multi-domain, common sense knowledge base, described in [Lenat and Guha, 
1990]. 
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deal with general first-order theories, rather than equation models of physical sys- 

tems. However, when restricted to modeling physical systems, his approach seems 

very similar to Falkenhainer and Forbus's work on compositional modeling [Falken- 

hainer and Forbus, 1991]. In particular, modeling is primarily driven by the terms 

mentioned in the query and the set of lifting axioms. Furthermore, it is not at all clear 

that his default lifting axioms will be of much help in selecting appropriate approx- 

imations. This is in contrast with our work, where the modeling is primarily driven 

by the expected behavior. Hence, the difference between our work and compositional 

modeling can be reiterated here (specifically the first two differences). 



Chapter 10 

Conclusions 

In this thesis we investigated the problem of automatically selecting adequate models 

for physical systems. We wiH now present a summary of the techniques developed 

in this thesis, reiterating the main contributions. We will then suggest directions for 

future work. 

10.1    Summary and contributions 

We formulated the problem of selecting adequate models as a search problem, requir- 

ing answers to the following three questions: 

• What is a model, and what is the space of possible models? 

• What is an adequate model? 

• How do we search the space of possible models for adequate models? 

We defined a model as a set of model fragments, where a model fragment is a 

set of independent algebraic, qualitative, and/or differential equations that partially 

describes some physical phenomena. The space of possible models was defined im- 

plicitly by the set of applicable model fragments: different subsets of this set of 

applicable model fragments correspond to different models.   The set of applicable 
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model fragments was defined by (a) the structure of the pl^sical system, which spec- 

ifies the system's components; and (b) a component library, which specifies the types 

of model fragments that can be used to model each type of component. 

We gave a clear definition of model adequacy, which was tuned to the task of 

generating parsimonious causal explanations. An adequate model was defined as a 

consistent and complete model that could explain the phenomenon of interest. In 

addition, an adequate model was required to satisfy any domain-independent and 

domain-dependent constraints on the structure and the behavior of the physical sys- 

tem. Finally, an adequate model was required to be be as simple as possible, with 

model simplicity being based on the intuition that modeling fewer phenomena more 

approximately leads to simpler models. 

We then developed a formal statement of the problem of finding adequate models, 

and showed that, in general, the problem is intractable (NP-hard). We also identified 

three different sources of intractability: (a) deciding what phenomena to model, i.e., 

deciding which assumption classes to select; (b) deciding how to model selected phe- 

nomena, i.e., deciding which model fragment to use from each selected assumption 

class; and (c) having to satisfy all the domain-independent and domain-dependent 

constraints. We also showed that some related problems are also intractable, e.g., the 

problem of finding coherent models is intractable. 

The intractability of the problem of finding adequate models means that, in gen- 

eral, we can't do much better than search the whole space of possible models. Un- 

fortunately, even for simple devices, the space of possible models is extremely large, 

making any sort of brute force search completely impractical. To address this prob- 

lem, we introduced a set of restrictions on the space of possible models, and used 

these restrictions to develop an efficient algorithm for finding adequate models. The 

most significant such restriction was that all the approximation relations between 

model fragments were required to be causal approximations. However, this does not 

appear to be a serious restriction since most of the commonly used approximations 

are causal approximations. 

Our definition of model adequacy requires us to generate the behavior of a device. 

To this end, we developed a novel order of magnitude reasoning technique which 
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strikes a balance between purely qualitative and purely quantitative methods. In this 

technique, the order of magnitude of a parameter is defined on a logarithmic scale, 

and a set of rules are used to propagate orders of magnitudes through equations, A 

novel feature of the set of propagation rules is that they effectively handle non-linear 

simultaneous equations, using linear programming in conjunction with backtracking. 

We showed that order of magnitude reasoning using this technique is intractable, and 

developed an approximate reasoning scheme that works well in practice. 

Finally, we described an implemented model selection program based on the above 

techniques. This program includes a heuristic method, based on the component 

interaction heuristic, for finding an initial causal model. The model selection program 

was tested on a variety of electromechanical devices. These tests provided empirical 

evidence for the theoretical claims made in the rest of the thesis. 

10.2    Future work 

The work described in this thesis can be extended in a number of different ways. We 

now discuss four specific directions for future work. 

Expressivity of the expected behavior 

In this thesis we represented the expected behavior as a caused relation between 

parameters. While this representation has proved to be useful, it is clearly not very 

expressive. More expressive languages will allow us to represent a wider range of 

expected behaviors. For example, in addition to causal relations between parameters, 

we may want to include information about the relative directions of change (increasing 

Tt causes 6P to decrease), we may want to include information about specific functional 

relationships between parameters {Tt and Op are linearly related), or we may want 

languages for expressing the device's function (e.g., see the papers on functional 

reasoning in [Chandrasekaran, 1991]). 

While developing more expressive languages is in itself not difficult, the real chal- 

lenge is to develop more expressive tractable languages. This is important because 

a central goal of selecting adequate models is to aid effective problem solving. This 
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goal is compromised if the model selection method resulting from using an expressive 

language for the expected behavior is itself intractable. Hence, an important direction 

of future research is the development of more expressive languages for expressing the 

expected behavior that still allow efficient model selection algorithms. 

Reasoning about model accuracy 

In comparing our work to the work on compositional modeling (see Section 9.1.1), 

we noted that expressing the expected behavior as a set of declarative constraints 

is difficult. A similar comment applies to our work with respect to reasoning about 

model accuracy. 

Accuracy is a very important characteristic of adequate device models: a model 

must be sufficiently accurate to be useful. In our work, a model is deemed to be 

accurate enough if all the behavioral preconditions and coherence constraints are 

satisfied, with the level of accuracy being determined by the settings of the thresholds. 

However, we do no reasoning about the settings of these thresholds: they are part of 

the input. This places a heavy burden on the user: it is not easy to craft a set of 

behavioral constraints, with appropriately set thresholds, that ensure that adequate 

models are accurate enough, while also ensuring that models are not required to be 

too accurate. 

A much better approach is to allow the user to specify the desired accuracy of 

the model much more easily, e.g., by specifying tolerances on certain parameters. We 

then need to develop techniques for finding models that guarantee that predictions 

will lie within the specified tolerances. In Section 9.1.6 we discussed some initial work 

along these lines, but much still needs to be done. 

Multiple operating regions 

Many devices go through multiple operating regions during the course of their normal 

operations. Different operating regions can have different characteristics, requiring 

the use of different models. In this thesis, multiple operating regions are handled by 

requiring a new set of inputs for each region, thereby allowing us to tailor a model 

for each operating region. However, this requires that the user be aware of each of 
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the device's operating regions. While this may be reasonable in the context of design, 

e.g., see [Iwasaki and Chandrasekaran, 1992], it seems undesirable in most situations. 

The abov; shortcoming can be addressed as follows. First, behavior generation 

must include some form of simulation, so that the different operating regions can 

be discovered automatically. While both qualitative and numerical simulation can be 

used, an interesting alternative is to develop a generalization of our order of magnitude 

reasoning technique that allows simulation. 

Second, we need to develop techniques for inferring the expected behavior of each 

operating region, given the overall expected behavior of the device. For example, 

the expected behavior of the ignition system in an automobile can be expressed as 

follows: "turning the ignition key causes the engine to start." The ignition system 

goes through a series of operating regions to achieve this expected behavior (see 

[Macaulay, 1988] for details). Rather than specifying the expected behavior of each 

operating region, it is desirable to have them automatically inferred. We believe 

that techniques for doing such inference will be tightly integrated with the simulation 

technique used to generate the operating regions. 

Other tasks 

The model selection techniques developed in this thesis have been focussed on the task 

of generating parsimonious causal explanations. This suggests a natural direction for 

future work—developing model selection techniques for other tasks. A particularly 

promising task appears to be diagnosis, where there is an emerging understanding 

of what it means for a model to be adequate for diagnosis [Davis, 1984; Hamscher, 

1991]. Furthermore, as the discussion in Section 9.1.5 suggests, we believe that the 

techniques developed in this thesis will prove valuable in developing methods for 

selecting adequate models for diagnosis. 



Appendix A 

Examples of causal 

approximations 

In this appendix we present a list of commonly used approximations that can be ex- 

pressed as causal approximations. Most of these approximations have been borrowed 

from the fitting approximations listed in [Weld, 1991], though most of the actual 

equations have been adapted from [Halliday and Resnick, 1978]. 

Each of the items in this list correspond to a single assumption class. We provide 

a brief description of the various ways of modeling each phenomena. The equations of 

these different model fragments are then presented in a tabular form, with a horizontal 

line separating the different model fragments. Model fragments lower in the table are 

approximations of model fragments higher in the table, while model fragments at 

the same level are not approximations of each other. It is easy to verify that all the 

approximations listed here arc causal approximations. 

1. Translational inertia 

Newton's second law of motion predicts that the acceleration, a, of a body of 

mass, m, is proportional to the net force, F, acting on the body. It is common 

to approximate this law by assuming that the mass, and hence the net force, is 

zero. 
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Newton's second law 

No translational inertia 

F = ma 

F = 0 

2. Rotational inertia 

This is similar to translational inertia. Newton's second law of motion predicts 

that the angular acceleration, a, of a body of moment of inertia, /, is propor- 

tional to the net torque, T, acting on the body. It is common to approximate 

this law by assuming that the moment of inertia, and hence the net torque, is 

zero. 

Newton's second law 

No rotational inertia 

la 

r = 0 

3. Relativistic mass 

Einstein's special theory of relativity predicts that the mass, m, of an object 

increases as its velocity, u, increases. The mass at zero velocity is called the rest 

mass, mo. However, this effect is noticeable only at velocities approaching the 

speed of light, c. At more ordinary velocities, it is common to assume that the 

mass is constant. 

Special theory of relativity 

Non-relativistic mass 

mo 
m = 

yi-Wc)* 
exo<7enous(m) 

4. Relativistic motion 

Let S and 5' be observers such that 5' is moving at velocity t; with respect to 

S. Let 5 and S' observe the same event. Let 5 record the time and position 

of the event as t and i, and let S' record the time and position of the event 

as t' and x'. The relationship between x, i', <, and t' is given by the Lorentz 

transformation. However, at velocities much smaller than the speed of light, c, 

it is common to use the simpler Galilean transformations. 
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Lorentz transformation 

Galilean transformation 

x — vt 
x = 

t' = 
V/1 " (v/c)2 

t-{vl(?)x 

Vl - [vie)2 

x' = x —vt 

t' = t 

5. Deformable bodies 

When elastic bodies are acted upon by a force, F, they deform by an amount, 

x. Th<; deformation is proportional to the force (A; is the constant of proportion- 

ality), and the relationship between the two is given by Hooke's law. However, 

it is common to assume that bodies are rigid, so that there is no deformation 

caused by an applied force. 

Hooke's law 

Rigid bodies 

F = -kx 

6. Friction 

When two bodies move against each other a frictional force, /, impedes the 

motion. The frictional force is proportional to the force, N, acting normal to 

the direction of motion, and the constant proportionality is called the coefficient 

of frictic; ji. However, when motion involves smooth surface, it is common to 

disregard the frictional force. 

Motion with friction 

Frictionless motion 

f = nN 

/ = 0 

7. Gravitational fields 

Newton's law of gravitation predicts that the acceleration due to gravity, g, at a 

distance r from an object of mass M is proportional to the mass and is inversely 

proportional to the square of the distance (the constant of proportionality is 

the Gravitational constant, G). When the variation in r is small compared the 
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magnitude of r, it is common to assume that the acceleration due to gravity 

is essentially constant. This can be further approximated, when r becomes 

sufficiently large, by assuming that the acceleration due to gravity is essentially 

zero. 

Newton's law of gravity 

Constant gravity 

Zero gravity 

g = GM/r2 

exogenous{g) 

9 = 0 

8. Collisions 

Collisions between objects are typically inelastic. If an object approaches a 

stationary wall at velocity u,, then the velocity after the collision vj is attenuated 

by the coefficient of restitution, a. This is often approximated by assuming 

that the collision is elastic, so that the initial and final velocities are equal in 

magnitude. 

Inelastic collision 

Elastic collision 

vj = — ar,- 

Vj = -Vi 

9. Gas laws 

The ideal gas law provides a relationship between the pressure, P, the volume, 

V, and the temperature, T, of a mole of gas. A more accurate gas law is the Van 

der Waals equation of state, that accounts for the non-zero size of gas molecules, 

and that gas molecules repel each other at short distances. In these equations, 

R is the universal gas constant, and a and b are experimental constants. 

Van der Waals gas 

Ideal gas law 

iP + ^-2){V-b) = RT 

PV = RT 

10. Thermal conduction 

The rate of heat flow, /, across a thermal conductor is proportional to the 

difference in temperature at the two ends of the conductor (Ti and T? are the two 
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temperatures). The constant of proportionality is the thermal conductance, 7. 

There are two different ways of approximating this model. First, we can assume 

that the conductor is an ideal thermal insulator, so that there is no heat flow. 

Second, we can assume that the conductor is an ideal thermal conductor, so 

that there is never a difference between the two temperatures. 

Thermal conduction 

Ideal thermal insulator 

11. Thermal conductance 

/ = 0 
/ = 7(r3-rl) 

Ideal thermal conductor T^T, 

The thermal conductance, 7, of a thermal conductor is dependent on the length, 

/, the cross-sectional area. A, and the thermal conductivity, k, of the conductor. 

When the dependence of 7 on these factors is unnecessary, one can merely 

assume that it is constant. 

Dependent thermal conductance 

Constant thermal conductance 

7 = kA/l 

exogenous^) 

12. Electrical conduction 

The current flow, i, across an electrical conductor is proportional to the voltage 

drop, V, across the conductor. The constant of proportionality is the resis- 

tance, R, and the relationship is Ohm's law. There are two different ways of 

approximating this model. First, we can assume that the conductor is an ideal 

electrical insulator, so that there is no current flow. Second, we can assume 

that the conductor is an ideal electrical conductor, so that the voltage drop is 

always zero. 

Ohm's law 

Ideal electrical insulator 

13. Electrical resistance 

i = 0 

V = iR 

Ideal electrical conductor    V = 0 

The electrical resistance, R, of an electrical conductor is dependent on the 

length, /, the cross-sectional area, A, and the resistivity, p, of the conductor. 
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When the dependence of R on these factors is unnecessary, one can merely 

assume that it is constant. 

Dependent resistance R = pi IA 

Constant resistance      cio^cnous(i2) 

14. Resistivity 

The resistivity, />, of an electrical conductor is a function of the temperature, T, 

of the conductor, po is the resistivity at temperature To, and a is the coefficient 

of resistivity. However, this dependence is often neglected, and the resistivity 

is assumed to be constant. 

Temperature dependent resistivity p = ^o(l + a(r-ro)) 
Constant resistivity exogenous{p) 

15. Heat engine 

A heat engine can be thought of as a cyclic process that extracts heat from a 

high temperature source, converts part of this heat into work, and discharges 

the rest of the heat to a low temperature sink. The efficiency, e, of a heat engine 

is the fraction of extracted heat that is converted into work. Carnot showed that 

the efficiency of an ideal heat engine is a function of the source temperature, 

Ti, and sink temperature, Ta, and that the efficiency of a real heat engine is less 

than or equal to the ideal efficiency by an efficiency factor, 7. 

Real heat engine 6 = 7(1-^) 

Ideal heat engine   e = (1 - T3/T1) 

16. Laminar flow in horizontal pipes 

The rate, V, of laminar flow of a fluid in a pipe is a proportional to the difference 

between the pressure at one end of the pipe. Pi, and the pressure at the other end 

of the pipe, P?. The pressure drop in the pipe is due to the viscous resistance, 

R, of the fluid. This model is often approximated to disregard the viscous 

resistance, so that there is no pressure drop across the pipe. 
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Viscous flow    P1 - Pa = RV 

Inviscid flow P.=P, 

17. Thermal expansion 

When objects are heated, they expand. The amount of expansion, 6, is a 

function of the object's temperature, T, and the coefficient of thermal expansion, 

a. 6 is assumed to be zero when the size of the object is IQ at temperature TQ. 

This expansion is often quite small, and can be disregarded for many purposes. 

Thermal expansion 6 = alo{T - To) 

No thermal expansion 6 = 0 

18. Exogenizing and equilibrating differential equations 

Chapter 6 shows that exogenizing and equilibrating differential equations can 

be considered to be causal approximations. For example, the rate of change 

of the temperature, T, of an object is a function of the net heat, F, flowing 

into the object and the object's heat capacity, C. This differential equation 

can be exogenized by assuming that the the temperature is constant. It can be 

equilibrated by assuming that the temperature quickly adjusts itself to ensure 

that the net heat flow is zero. 

Dynamic thermal model 
dT 

_dL. 
= CF 

Constant temperature   ca:o^cnous(T) Equilibrium temperature F = 0 

It is interesting to ask whether there are commonly used approximations that are 

not causal approximations. We have identified such a class of such approximations 

that do not exactly fit our definition of causal approximations, but are close. The 

problem is that the more approximate model fragments contain parameters not found 

in the more accurate model fragments. Here are some examples: 

1. Viscosity of gases 
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The viscosity, /i, of a gas is a function of its temperature, T, and mass, m, 

(equivalently, its molecular weight, M). There axe at least two models of this 

dependence. An approximate model assumes that the gas molecules are hard 

balls of diameter d. A more accurate model models the gas molecule as a force 

field, and uses the Lennard Jones potential energy function. These models have 

been taken from [Welty et ai, 1984]. 

Force field model M = 2.6693 xlO"6"^ 

Rigid sphere model 
2    Vm/cT 

^ "" 3x3/2    d? 

Note that the force field model does not contain parameters like d that are 

found in the rigid sphere model. 

2. Linearizations 

Complicated equations are often approximated by linearizing them. Such lin- 

earizations introduce additional parameters, such as the slope of the line. These 

parameters are clearly not part of the original equation. 

While the above two approximations do not fit our definition of a causal approx- 

imation, one can see that th^v almost do. In particular, in the first case, if we are 

only interested in the dependence of fi on T, then the approximation behaves like a 

causal approximation. Similarly, in the second case, if we are not interested in the 

dependence of any parameter on the additional parameters like the slope, then the 

linearization behaves like a causal approximation. 

Hence, we can generalize our definition of causal approximations by allowing more 

approximate model fragments to have parameters not in the more accurate model 

fragment, but add the restriction that such parameters be local to the more approx- 

imate model fragment. Furthermore, we must also require that we are not interested 

in the dependence of any parameter on such parameters. Both these restrictions seem 

reasonable in the above cases. 



Appendix B 

Example devices 

In this appendix we describe the electromechanical devices that our model selection 

program was tested on. 

B.l    Bimetallic strip temperature gauge 

The bimetallic »trip temperature gauge is shown in Figure B.l. It is based on a 

similar temperature gauge descril>ftd in [Macaulay, 1988, page 290]. A thermistor is a 

semi-conductor device; i traall increase in its temperature causes a large decrease in 

its resistance. A bimetallic feirip consists of tw rips made of different metals that 

are joined together. Tempeiature changes cause the two sirips to expand by different 

amounts, causing the bimetailsc strip to bend. 

It works as follows: the thermistor senses lie water temperature. The thermistor's 

temperature determines its resistance, v.* ih dfteimines the current flowing in the 

circuit. This determines the amount of heat dissipated in the wire, which determines 

the temperature of the bimetallic strip. The temperature of the bimetallic strip 

determines its deflection, which determines the position of the pointer along the scale. 
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s/s/ss 

Bimetallic 
strip 

Container of water 

Figure B.l: Bimetallic strip temperature gauge 

B.2    Bimetallic strip thermostat 

The bimetallic strip thermostat is shown in Figure B.2. It is based on thermostats 

described in [Macaulay, 1988, page 162]. Its operation is very straightforward: the 

bimetallic strip senses the temperature of its emironment. The bimetallic strip's 

temperature determines its deflection. If the temperature is too high, the bimetallic 

strip bends enough to lose connection with the contact, which breaks the electrical 

circuit and turns the heater off. Otherwise, the bimetallic strip does not bend enough 

to lose its connection with the contact, so that the electrical circuit is completed, and 

the heater is turned on. 

vdf 

Heater 

BJMSCW 

Binri^lHc 
^   snrp 

Contact 

Figure B.2: Bimetallic strip tk?mj08t»t 
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B.3    Flexible link temperature gauge 

The flexible link temperature gauge is shown in Figure B.3. It is adapted from a 

flexible link resistance box mechanism described in [Artobolevsky, 1980, page 451]. 

Its operation is based on the principle that the length of a wire is dependent on its 

temperature. 

Pointer 

Wire 

Thermistor 
Scale 

Battery 

Figure B.3: Flexible link temperature gauge 

It works as follows: the thermistor senses the water temperature. The thermistor's 

temperature determines its resistance, which determines the current flowing in the 

circuit. The current in the circuit determines the amount of heat generated in the 

wire, which determines the wire's temperature. The wire's temperature determines 

the wire's length. Since the wire is fixed at its two ends, the length of the wire 

determines the deflection of the spring, and hence the position of the pointer along 

the scale. 
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B.4    Galvanometer temperature gauge 

The galvanometer temperature gauge is shown in Figure B.4. The galvanometer 

shown in this figure has been adapted from [Halliday and Resnick, 1978, page 726]. 

Its operation is based on the interaction between the field of a permanent magnet 

and the magnetic field generated by an electric current. 

Spring 

Battery 

Container of water 

Figure B.4: Galvanometer temperature gauge 

It works as follows: the thermistor senses the water temperature. The thermistor's 

temperature determines its resistance, which determines the current flowing in the 

circuit. The current flowing in the wire generates a magnetic field, which is magnified 

by the iron core. This magnetic field interacts with the magnetic field generated by 

the permanent magnet, producing a torque on the iron core. This causes the iron 

core, and hence the pointer, to deflect. The spring provides a restoring torque, so 

that the deflection of the pointer is proportional to the strength of the torque. 
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B.5    Electric bell 

The electric bell is shown in Figure B.5. It has been adapted from [Artobolevsky, 

1980, page 129]. It works as follows: when the switch is pressed, the electric circuit is 

dosed. This energizes the winding of the electromagnet, attracting the armature so 

that the clapper can strike the bell. This also breaks the circuit at the contact, and 

hence deactivates the electromagnet. The armature returns to its original position 

due to the flat spring, closing the circuit and repeating the above cycle. 

Switch 

Electromagnet 

Figure B.5: Electric bell 

B.6    Magnetic sizing device 

The magnetic sizing device is shown in Figure B.6. It has been adapted from [Arto- 

bolevsky, 1980, page 57]. It is used to ensure that the size of the workpiece is within 
desired limits. 
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Figure B.6: Magnetic sizing device 

Workpiece 

It works as follows: the position of the measuring spindle is determined by the size 

of the workpiece. This determines the position of the armature with respect to the 

two cores, and hence determines the width of the four air gaps between the ends of 

the armature and the ends of the cores. The current flowing in the circuit generates 

a magnetic flux in the cores and the air gaps. The strength of the magnetic flux is 

determined by the width of the air gaps. Hence, the strength of the magnetic flux 

can be used as a measure of the size of the workpiece. 

B.7    Carbon pile regulator 

The carbon pile regulator is shown in Figure B.7. This device is adapted from [Arto- 

bolevsky, 1980, page 108]. Its operation is based on the fact that the resistance of a 

carbon pile is dependent on the compressive force acting on it. 

The carbon pile regulator works as follows: the position of the rheostat determines 

the resistance of the top circuit. This determines the current flowing in that circuit, 

which determines the strength of the magnetic field generated by the electromagnet. 
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Battery 
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Figure B.7: Carbon pile regulator 

The electromagnet attracts the armature, with the leaf spring providing a restoring 

force. The force on the armature decreases the compreosive force on the carbon pile, 

thereby changing its resistance. Hence, the resistance at the output leads is a function 
of the position of the rheostat. 

B.8    Electromagnetic relay thermostat 

The electromagnetic relay thermostat is shown in Figure B.8. This device is similar 

to the bimetallic strip thermostat. The primary difference is that, in this device, the 

bimetallic strip turns on an electromagnetic relay which turns on the heater, rather 

than the bimetallic strip turning on the relay directly. 

The operation of the electromagnetic relay thermostat is similar to the bimetallic 

strip thermostat. When the environment becomes too cold, the bimetallic strip de- 

flects less and hence closes the contact. The resulting current flow creates a magnetic 

field in the winding around the core, which attracts the armature.   The armature 
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Figure B.8: Electromagnetic relay thermostat 

moves downwards and closes the contacts, turning on the heater. When the room 

is too hot, the bimetallic strip breaks its connection with the contact, and current 

stops flowing in the lower circuit. This causes the armature to return to its original 

position due to the restoring spring, thereby turning the heater off. 

B.9    Tachometer 

The tachometer is shown in Figure B.9. This device has been adapted from [Arto- 

bolevsky, 1980, page 90]. The tachometer measures the angular velocity of the core 

of tne windings at the top of the figure. 

The tachometer consists of a generator and a galvanometer. The generator consists 

of the windings and permanent magnet at the top of the figure, while the galvanometer 

consists of the windings, permanent magnet, and pointer assembly at the bottom 

of the figure. The tachometer works as follows: the rotation of the windings of the 

generator within the magnetic field of the permanent magnet induces an electromotive 
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Figure B.9: Tachometer 

force. This induced electromotive force drives current in the circuit, generating an 

electromagnetic field in the windings of the galvanometer. This electromagnetic field 

interacts with the magnetic field of the permanent magnet, causing the pointer to 

deflect along the scale (the restoring spring is not shown). 

B.10    Car distributor system 

A schematic of the car distributor system is shown in Figure B.10. This system 

has been adapted from [van Amerongen, 1967, pages 482-483]. The function of the 

distributor system in a car is to ensure that the spark plugs fire at appropriate times. 

The distributor system works as follows: as the cam rotates, it opens the contact 

breaker. This causes the current in '.he primary windings to drop rapidly (the con- 

denser prevents a spark from jumping across the contact breaker). The rapid change 
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Primary 
winding 

Condenser 

Figure B.10: Car distributor system 

in current in the primary winding causes a large induced electrr n .otive force in the 

secondary winding. At the same time, the distributor rotor connects the secondary 

winding to one of the spark plugs (the rightmost spark plug in the figure). The large 

induced electromotive force causes a spark to jump across the spark plug. 
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Composable operators 

In this appendix we describe the composable operators shown in Table 2.1. All the 

composable operators share two characteristics: (a) they are all converted into an 

equivalent set of algebraic equations; and (b) they all use a form of the closed world 

assumpt- -». In particular, a set C of compositional operators is converted into an 

equivalent set E of algebraic equations, using the closed world assumption that the 

only elements in C are the ones that are known to be in C. 

C.l    Influences 

The /+ and /- operators are the same as in [Forbus, 1984]. /+(9i,92) states that gj is 

a positive influence on (ft, while /-(gi,92) states that q2 is a negative influence on gj. 

Given a set of /+ and /- statements, we can collect together all the positive and neg- 

ative influences on each parameter. For each parameter we do the following: (a) form 

the term resulting from the difference of the sum of the all the po; rtive influences and 

the sum of all the negative influences; and (b) make the derivative of the parameter 

be equal to this term. For example, from the set {/+(9i,93),/-(9i,93),/+(91,94)} 

we would produce the equation: 

dqjdt = 93-93 + 94 

274 
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Note how we controlled the parameters that could be determined by the resulting 

equation. However, the left hand side parameter (dqi/dt) can always be determined 

by the equation. 

The sum-term operator is exactly like the /+ operator, except that step (b) above 

is modified by making the parameter itself equal to the constructed term. For exam- 

ple, from the set {sum-term{q1,qa),sum-term{q1,—q3),sum-term{q1,q4)} we would 

produce the equation: 

9i = «a - 93 + 94 

C.2    Kirchhofes laws 

The sum-to-zero, same-value, same-reference, and same-circuit operators are primar- 

ily used to implement KirchhofF's laws, though they can be used for other purposes 

also. Kirchhoff's laws are necessary when modeling generalized flows in networks. We 

will discuss these laws in the context of electrical circuits, but the discussion is equally 

applicable to other types of circuits, including fluid, thermal, and magnetic circuits. 

We will also restrict our discussion to electrical components with two terminals; the 

generalization to components with three or more terminals is straightforward. 

An electrical network is formed by connecting terminals of electrical components. 

Each component terminal has two important attributes: (a) the voltage of the termi- 

nal; and (b) the current flow into the component at that terminal. Hence, a network 

with n nodes and c edges has 2c currents and 2e voltages. Hence, 4« independent 

equations are needed to determine all the currents and voltages. Kirchhoff's laws and 

network theory tell us the source of these 4e independent equations: 

1. Each component in the network has a component equation. For example, Ohm's 

law for a resistor is a component equation. Since each component is an edge in 

the network, there are c independent component equations. 

2. Kirchhoff's current law tells us that the net current flow into each component is 

zero. Hence, the sum of the two currents flowing into each component is zero. 

There are e such independent equations. 
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3. KirckhofF's current law tells us that the net current flowing into any node in 

the network is zero. Hence, there are n equations stating Kirchhoff's current 

law for each of the n nodes in the network. However, network theory tells us 

that for a connected network with n nodes, only (n — 1) of these equations are 

independent equations (though any (n — 1) of the«e equations will do). 

4. Kirchhofes voltage law tells us that the voltages of connected terminals axe 

equal. Hence, at a node where k terminals are connected, there axe k — 1 

independent equations stating the equality of the k voltages. One can verify 

that there are a total of 2e — n such independent equations. 

5. The terminal voltages are measured with respect to a reference voltage. Hence, 

for a connected network with n nodes, any one voltage can be arbitrarily selected 

as the reference voltage, and this voltage can be set to zero. This provides one 

equation. 

Adding up all the equations, we see that there axe 4e independent equations that can 

be used to determine values for the 4e voltages and currents. 

One can easily associate the 2e equations under points 1 and 2 with the corre- 

sponding components, and hence those equations are easy to generate. 

Given a network, one can write a program to generate the remaining 2c indepen- 

dent equations. Indeed, we started by doing precisely that. However, the program 

turned out to be very difficult to understand, maintain, and generalize. In particu- 

lar, we needed the following two generalizations: (a) since our initial implementation 

dealt only with electrical circuits, we wanted to generalize it to other types of cir- 

cuits; and (b) we wanted to handle disconnected networks. Disconnected networks 

need special handling. Each connected component needs its own reference voltage, 

and each connected component has one dependent Kirchhoff's current law equation. 

To facilitate these generalizations, we discarded the above procedural method of 

generating the 2e equations, and instead developed a more declarative method. This 

method is based on the use of the same-value, same-reference, sum-to-zero, and 

same-circuit operators. 
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The same-value operator is a binary operator that states that its two arguments 

are equal. Given a set of same-value statements, it is easy to partition the set of 

parameters into equivalence classes such that two parameters are in the same equiv- 

alence class if and only if the set of same-value constraints require them to be equal. 

Then, for an equivalence class with k parameteis, one can then generate (k - 1) inde- 

pendent equality constraints that ensure that all the parameters in that assumption 

class are equal. 

We use the same-value operator to generate the (2e - n) equality constraints 

discussed in point 4 above. In particular, if ti and <2 are any two connected elec- 

trical terminals, then we assert same-value(voltagt(ti), voltagefa)), i.e., we have the 

following rule: 

connected-to(ti,t2) =*■ same-value (voltage (ti), voltagefa)) 

This allows us to generate the required equality constraints. 

The same-reference operator is a binary operator that states that its two argr- 

ments share a common reference voltage. Given a set of same-reference statements, it 

is easy to partition the set of voltages into equivalence classes such that two voltages 

are in the same equivalence class if and only if they share the same voltage. It is then 

easy to pick an arbitrary member from each such equivalence class and set it to zero. 

We use the same-reference operator to generate the equation discussed under 

point 5 above. We enforce this by ensuring that voltages of connected terminals have 

the same reference, and voltages of terminals belonging to the same component have 

the same reference. This is equivalent to the following rules: 

connected-to(ti,t2) ^ same-reference (voltage (ti), voltagefa)) 

same-component(t\,t2) => same-reference (voltage (ti), voltagefa)) 

This ensure*' that every connected network has a single reference voltage. 

The advantage of the declarative method can be clearly demonstrated with a 

slight variation of the second rule above. In particular, if ti and h are terminals of 

an electrical switch that is off, then it is incorrect to say that their corresponding 

voltages necessarily have the same reference. Using our declarative method, it is easy 

to modify the above rule to exclude this case. 
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The sum-to-zero operator is a binary operator that identifies parameters that will 

be terms in a sum that will be zero. Like same-value and same-reference, sum-to- 

zero is an equivalence relation. Hence, given a set of sum-to-zero statements, we can 

partition the set of parameters into a set of equivalence classes. The sum-to-zero 

operator is interpreted as stating that the parameters in each equivalence class sum 

up to zero. 

We use the sum-to-zero operator *o generate the n equations under point 3 above.1 

We do this by stating that the currents corresponding to connected terminals sum to 

zero. In particular, we have the following rule: 

connected-to(t-i,ti) a^ sum-to-zero(current(ti), current^)) 

This ensures that the currents flowing out of every node sum to zero, as required by 

KirchhofF's current law. 

Finally, same-circuit is a binary relation on currents that states that its two 

arguments are part of the same circuit. Given a set of same-circuit statements, 

we can partition the set of currents into a set of equivalence classes such that two 

currents are in the same equivalence class if and only if they are part of the same 

circuit. Currents are in the same circuit if (a) they belong to connected terminals; 

or (b) they belong to terminals of the same component. In particular, we have the 

following rules: 

connected-to(ti,t2) =$■ same-reference(current(t\), current^)) 

same-component(ti,t2) => same-reference(current(ti), current^)) 

The identification of currents that are in the same circuit allows us to generate 

exactly (n — 1) independent equations, as required by point 3 above. In particular, 

the sum-to-zero equivalence classes generated above, are further clustered into classes, 

such that two sum-to-zero equivalence classes are in the same class if and only if a 

parameter in one sum-to-zero equivalence class is in the same circuit as a parameter 

in the other sum-to-zero equivalence class. The sum-to-zero equivalence classes in the 

^he fact that only (n - 1) of these equations will be independent is handled when we discuss 
samc-circait. 
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same class correspond to the n equations of a connected network discussed in point 3 

above. To get the (n — 1) independent equations, we merely discard any one of the 

sum-to-zero equivalence classes from each class, and use the remaining sum-to-zero 

equivalence classes as above. 

C.3    Other methods 

It is worth noting that the same-value and sum-to-zero operators are necessary only 

because of our representation of the connected-to relation, i.e., because connected- 

to directly relates terminals of components. A different representation would make 

same-value and sum-to-zero unnecessary. In particular, we can (a) introduce new 

entities called nodes, one for each node in the network; and (b) require that terminals 

can only be connected to nodes, and not to other terminals. (This representation has 

been used by others, e.g., [Williams, 1989].) 

Using this representation, we can associate a voltage with each node, and a net 

current flow into each node. We can easily make the voltages of all terminals connected 

to a node equal to the node voltage, and we can use the sum-term operator to state 

that the net current flow into a node is equal to the sum of the current in the terminals 

connected to that node. We can further state that the net current flow into a node 

is zero. 

While the above representation removes the need for same-value and sum-to-zero, 

it does not remove the need for same-reference and same-circuit. These latter two 

operators are still necessary to ensure that exactly one reference voltage is selected for 

every connected network, and an independent set of Kirchhoff's current law equations 

are generated. 
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Matchings in bipartite graphs 

In this appendix we discuss an algorithm, based on network flow techniques, for 

finding maximum matchings in bipartite graphs. The relationship of this algorithm 

to network flow is discussed in textbooks such as [Gormen et a/., 1990; Even, 1979]. 

We present the algorithm here since some of the proofs in Chapter 6 depend on an 

understanding of it. 

Definition D.l (Bipartite graph) A bipartite graph G = {X,Y,E), where X UY 

is the set of nodes and E is the set of edges, is a graph whose nodes can be partitioned 

into two sets, X and Y, such that all edges in E connect a node in X to a node in 

Y. 

Definition D.2 (Matching) A matching in a bipartite graph is a subset of the edges 

of the graph such that no two edges in the matching share a common node. A maxi- 

mum matching in a bipartite graph is a matching of maximum cardinality. 

Definition D.3 (Augmenting path) Let G = (X, V, ü?) be a bipartite graph, and 

let U C E be a matching. An augmenting path in G, with respect to U, is a sequence 

of nodes such that: 

1. no node is repeated in the sequence; 

2. alternate nodes in the sequence are in X, with the first node being in X; 
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3. alternate nodes in the sequence are in Y, with the last node being in Y; 

4- ifxeX and y eY are consecutive nodes in the sequence, with x before y, then 

there is an edge ee E such that e is incident on both x and y, and e is not in 

U, i.e., the augmenting path goes from nodes in X to nodes in Y via edges not 

in the matching. 

5. ifyQY and x £ X are crnsecutivc nodes in the sequence, with y before x, then 

there is an edge e € E such that e is incident on both x and y, and e is in U, 

i.e., the augmenting path goes from nodes in Y to nodes in X via edges in the 

matching; 

The edges of an augmenting path are the edges that connect consecutive nodes in the 

augmenting path. 

(a) A matching (b) A maximum matching 

Figure D.l: Matchings in a bipartite graph 

For example, Figure D.la shows a bipartite graph.  The bold edges with arrows 

4 at each end form a matching. One can easily verify that the sequence 

{x4,y2,X2,y3,x3,yi,xuy4) (D.l) 

is an augmenting path.   Note that any augmenting path has one less edge in the 

matching than not in the matching. Hence, augmenting paths can be used to increase 
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the cardinality of a matching by replacing the edges of the matching that are in the 

augmenting path by edges in the augn. nting path that are not in the matching. 

Hence, we have the following: 

Lemma D.l (Increasing a matching) Let G = {X,Y,E) he a bipartite graph, 

and let U C E be a matching. Let P be an augmenting path in G, with respect 

to U, and let Ep be the edges of P. Let U' C E be the union of the set of edges in U 

but not in Ep and the set of edges in Ep but not in U: 

U' = {U\EP)U{EP\U) 

Then U' is a matching in G, and \U'\> \U\. 

For example, the augmenting path in Equation D.l can be used to increase the 

matching shown in Figure D.la, by replacing each bold edge in the path with a light 

edge, and each light edge L ;he path with a bold edge. The resulting matching, of a 

higher cardinality, is shown in Figure D.lb. 

The above lemma shows how we can increase the cardinality of a matching U by 

first idertifying an augmenting path with respect to U. The next lemma tells us that 

if no such augmenting path exists, then the matching is of maximum cardinality, i.e., 

it is a maximum matching. 

Lemma D.2 Let G = {X, Y, E) be a bipartite graph, and let U C E be a matching 

in G such that there is no augmenting path with respect to U. Then U is a maximum 

matching. 

The above lemma is a special case of a similar result of network flow algorithms. 

The interested reader is referred to any textbook on network flow algorithms, e.g., 

[Gormen et a/., 1990; Even, 1979], for the details. 

Lemmas D.l and D.2 give us the following algorithm for finding a maximum 

matching in a bipartite graph G = (A', Y, E): 

The initial matching U can be any matching, including the empty set. The com- 

plexity of the above algorithm depends on the algorithm used to find augmenting 

paths. For practical purposes, we have found that a straightforward depth first search 
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function find-maximum-matching{G) 
Let U be any matching in G 
while there is an augmenting path P, wrt U 

Use P to increase the cardinality of U 
return U 

end 

Figure D.2: Algorithm for finding a maximum matching 

gives adequate results, though faster algorithms are possible, e.g., Dinic's network flow 

algorithm described in [Even, 1979]. If we use Dinic's algorithm for finding augment- 

ing paths, the complexity of the above algorithm is OdV^'lJBI), where V = XliY 

is the set of nodes and E is the set of edges in 0 (see [Even, 1979] for the details). 
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