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A Diffusion Approximation for a Network of Reservoirs with Power Law Release 

Rule 

by 

John E Glynn1 and Peter W. Glynn2 

26 November 1992 

Abstract 
A diffusion approximation for a network of continuous time reservoirs with power law release rules is examined. 

Under a mild assumption on the inflow processes, we show that for physically reasonable values of the power law 
constants, the system of processes converges to a multi-dimensional Gaussian diffusion process. We also illustrate how 
the limiting Gaussian process may be used to compute approximations to the original system of processes. In addition, 
we study the quality of our approximations by comparing them to results obtained by simulations of the original watershed 
model. The simulations offer support for the use of the approximation developed here. 

1. Introduction 
The linear reservoir plays a central role in hydrology (Nash, 1957,1959). Although this 

model has been successfully used for many applications, a more general system of reservoirs 
with a power law storage-runoff relation can more accurately represent the physical 
characteristics of a natural storage system. The nonlinear reservoir has been examined by 
Laurensen (1964), Mein et al (1974), KlemeS (1978), Hughes and Murrei (1986), and Glynn 
(1989)) among others. The natural extension of this model to a nonlinear cascade of reservoirs 
has also been investigated (Kleines* et al. (1975,1985)). Unfortunately closed form formulae for 
the statistical properties of these reservoirs are only available for special cases (e.g. the linear 
reservoir, the fixed release reservoir, the power law release with special inflow distribution and 
exponent less than one). 

Two approaches have generally been used to model the continuous time reservoir. In the 
first case, the inflows are directly modeled as diffusion processes and the problem requires 
solving nonlinear stochastic differential equations (Unny (1984), Unny and Karmeshu (1984)). 
Such models have also been used to study optimal control problems associated with reservoirs 
(Harrison and Taylor (1978), Pliska (1975)). The second approach assumes that inflows follow 
a compound Poisson process. The linear cascade with general additive homogeneous inflows has 
been investigated by Moran (1967). Exact solutions for the single reservoir with a power law 
release rule are available for the case of compound Poisson inflows where the power is less than 
one (Harrison and Resnick (1976)). Approximate solutions for general inflows have been 
obtained by Smith and Yeo (1981) using methods based on Hermite polynomial expansions. 

1 Geological Survey of Canada, 601 Booth St, Ottawa, Ontario, K1A OE8 

2 Department of Operations Research, Stanford University, Stanford, CA 94305 



In this paper, we adopt a different approach to the analysis of complex reservoir models. 
Based on a careful mathematical analysis of the underlying non-linear reservoir model, we show 
that our watershed model can be approximated by a certain diffusion process. Such diffusion 
approximations have been successfully applied to biology, physics, computer science, and 
many other areas (see, for example, Karlin and Taylor (1981)). In particular, such 
approximations have been used by Yamada (1983, 1984) to study a single continuous time non- 
linear finite capacity reservoir with Poisson inflows. In a similar spirit, Harrison and Shepp 
(1984) develop a diffusion approximation for a cascade of two discrete time reservoirs. 

Our diffusion approximation starts from a watershed network of continuous time nonlinear 
reservoirs with general (possibly correlated) inflows and power law release rules. This work 
differs from that of Yamada, Harrison, and Shepp both because we study an entire watershed 
of reservoirs (rather than a single reservoir) and because the power law release rule used here 
does not fit into their mathematical framework. (In particular, their diffusion limits apply to 
reservoirs in which the mean inflow rate is close to that of the maximal outflow rate, which is 
assumed to be finite.) Our approach leads to a diffusion limit that is especially tractable from 
a computational viewpoint, primarily because the approximating diffusion process turns out to 
be Gaussian. In addition, the mathematical conditions under which our approximation is valid 
appears to coincide with a physically reasonable subset of the parameter space that defines the 
family of power law release rules. Consequently, we believe that this approach offers a 
comprehensive means of developing approximations to large-scale watersheds. 

This paper is organized as follows. In Section 2, we describe the basic watershed model, 
followed by a description of the diffusion approximation in Section 3. The diffusion 
approximation requires that the user supply some mean and covariance information for the 
exogenous inflow processes to the reservoirs in the watershed. Section 4 provides some 
background on how to calculate these model parameters. In Section 5, we discuss the numerical 
computation of the transient and steady-state distributions of the approximating diffusion process. 
Because the process is Gaussian, this reduces to calculating the mean and covariance of the 
corresponding Gaussian random variables. We show how these quantities can be calculated by 
solving a certain deterministic system of linear differential equations, the dimension of which 
equals the number, d, of reservoirs being studied. Section 6 illustrates a different type of 
computation, namely that associated with developing an approximation for the expected time 
required for a reservoir to exceed a given level. Here, one needs to solve a (deterministic) linear 
partial differential equation in at most d + 1 variables. In Section 7, we specialize our 
discussion to that of a watershed consisting of a single reservoir. In this simpler setting, closed- 
form formulae are available for several quantities of interest Section 8 offers some numerical 
evidence which support the quality of our approximations, and Section 9 describes our 
conclusions. 

2. Description of the Model 

The drainage network model will consist of d reservoirs.   In addition, the following 
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notational conventions will be used: 

P(j)     - the collection of reservoirs flowing directly into reservoir ; 

R(j)    - the reservoirs that receive inflow water from reservoir j (1 s j s d) (It is assumed 
throughout this paper that j R(j) | « 1), 

I ft)     - the cumulative exogenous inflow into reservoir; (1 sjsd), and 

Sft)    - the storage content of reservoir ; at time t. 

We will assume that the storage levels follow "power law" release rules. The continuity 
equation then states that 

Sß) » s. ♦ 7/0 ♦ £ fV4(«M - fnV/u-)*^  1 * j * *>        (*> 

where 5,, att bt, s2, a2, b2,..., sd, a4,b4, are positive (deterministic) constants.. 

We further assume that the input processes are well-behaved,   in the sense that the 
following limits exist and are finite-valued: 

|i. » lim —Eilt) (1 s ; s d),   and 
*—  ' (2) 

C.k - lim icov(//0. W)    (1 *J>  ***)  • 

Any input process with asymptotically stationary increments would typically satisfy (2). 

An example of such a network of reservoirs is given in Figure 1. In this case the system 
of equations given by Equation (1) takes the following form: 

Sx(i) - *t ♦ 1,0) - fa^du , 

S£) ~s2* IJt) - ('ajjjtf'du ,  and (3) 

5,(0 - *, ♦ /,(/) ♦ I'aW'du ♦ J'%SyMhfc- faiut'du. 

3. The Diffusion Approximation 

The application of the diffusion approximation is quite straightforward and follows a 
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sequence of steps which will be described in this section. A basic assumption of the 

approximation is that the a,■ (1 s i s d) appearing in (1) are small in a certain sense. To 
calculate the approximations then requires applying the following steps: 

A-l. Calculate E„ where 

e, = max ak 

Our approximation requires that e. should be "small". Storage-runoff models assuming a small 

value of a (and hence small e,) have been cited in the literature (see, for example Laurenson, 

(1964, p. 145) where the release rule, r(x), is given by r(x) = 0.0445xlSJ and 0.128*u7) 
indicating that this model may be a reasonable approximation in some realistic situations. In any 
case, the storage continuity equations (1) can then be written in the form 

Sfft = s. ♦ Iffy * £ t'ajt'tSILupdu - f cpis/nM (4) 

for 1 s j s d,  where (^ » akt,',  (c^ * 1, 1 s k % d). 

A-2. Let  x. - E . s.,   1 s ;'s d. Solve the following system of ordinary differential equations: 

*/0 - M» + E «WO** - <y#A   l* /* 4 
*öW (5) 

and such that x(0) = x.,   lsjsd. 

A-3. Solve the following system of stochastic differential equations: 

**jW " E <M&**&* - appftf'ZjW * dBfi),     (lsj*d)        (6) 

(where (Bj(r), Ä^r), -., BJj)) is a d- dimensional Brownian motion process with zero drift and 

covariance matrix C • (Cy : 1 % i, /* * d)). 

We note that since (6) comprises a linear system of stochastic differential equations, it 

follows that the solution (Zft), - , Zjfy) is a Gaussian process. Such processes possess the 
convenient property that they are completely characterised by their (time-dependent) mean and 
covariance functions. 



A-4. The approximation is then given by the formula 

Sft) - lxß.t) * _Lz/e.l) (7) 

D 
( - denotes " has approximately the same distribution as the process") 

It is clear that the right hand side of (7) inherits the Gaussian structure of the Z(r)'s. 
Furthermore the approximating process appearing in (7) must necessarily be a Markovian 
diffusion process, since the solution to the stochastic differential equation (6) is Markovian. 

4. Calculating the Mean and Covariance Structure of the Exogenous Inflow Process 

We now develop two theorectical models in which the mean vector y. * (n-: 1 s; s d) 

and covariance matrix C - (C- : 1 s i, j % d) can be calculated directly in terms of the 
underlying "building block" data. We shall need to develop some notation in order to precisely 
specify our models. 

Let Tk. be Jie time at which the Ar'th rainfall event occurs in the/'th reservoir. (These 
events correspond to rainfall occurring directly into the /th reservoir and exclude rainfall in 
upstream reservoirs.) We then set T0j * 0 and xk. ■ Tk. - 7*4_u. If we let Nf(t) be the number 
of events to occur by time / in the ;'th reservoir, it follows that 
Nj[t) ■ max {n 2 0 : Taj s /}. Let Xk. be the amount of rainfall deposited into the y'th 
reservoir that propogates into the reservoir; and we assume for simplicity that propogation is 
immediate.  Then the cumulative exogenous inflow into reservoir ; up to time t is given by 

Model 1; Assume that each of the d inter-event time sequences (xk.: k 2 1) and d rainfall 

magnitude sequences (Xtj : k % 1) are independent and identically distributed (i.i.d.), and 
further assume that the 2d seqeunces are independent of one another. One implication of this 
assumption is that the rainfall patterns in each of the d subwatersheds are statistically independent 
of one another. This is clearly only reasonable for a reservoir system covering a large geographic 
area and, even in that case, only in a very approximate sense. Let 
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X. = 1/Ex4. 

Note that E[lj(t) \ N0\ = N}(t)v.. Since iv^(f) is a so-called renewal process, it follows 

that Nft) ~ X.t (See Karlin and Taylor (1975)) and hence EZ/O/f -»XjV. as t -*«. For the 

covariances, note that the reservoir independence discussed earlier implies that Ck « 0 for 

;' »* A:. As for C.., we use the variance identity 

var(/;(0) « E[var(//r)|^<0)] ♦ var(E(//0|JV,<0)). 

(see, for example, Bratley, Fox, and Schräge (1987)). Since vai(Ij(t)\Nj(t)) - tf/Oif, it is 

evident that var(/;.(/)) » T^EAT//) + v*vai(N{t)). Again, standard renewal theory implies that 

var(NJ(t)) - tfaft as / -» « (see p. 208, Karlin and Taylor (1975)X and consequently, 

C/j - »,[>»' * »<v?cft (8) 

Model 2. In this model we will permit correlation between the exogenous inflows into each of 
the d reservoirs. In fact, we will assume that a common sequence of rainfall events affects all 
d reservoirs. More precisely, we will suppose that Tk. * Tkl for all 1 * ; s d, k * 1. Of 
course, in this setting, it is no longer reasonable to assume that the rainfall amounts 
Xk. (1 s k s d) are independent of one another. Let xk * xkV 

We shall require that (xt: k» 1) is an i.i.d. sequence independent of 

{(Xk.: 1 * k & d), ] ± 1}, which is itself assumed to be an i.i.d. sequence (of ^-vectors). Let 

X « 1/Ex4 

o2 ■ va^tj) 

Then the mean and the covariance for the Gaussian inflow process are given by 

M,-*vi§   and w 

C.k - Xfy, ♦ Xv.v4o>]   . 



We conclude this section with a brief discussion of how the mean vector \i and the 
covariance matrix C may be statistically estimated directly from actual measured exogenous 
inflow data. The statistical discussion assumes no model structure such as that associated with 
Models 1 and 2.   (If we want to exploit such a model structure a more efficient statistical 
estimator for C could be developed.) Suppose that (/(f) : 0 s t s T, 1 s ;' s d) is observed. 

Then,   for ls/sd,    ji. = J(7)/r is an appropriate estimator for \i..   To estimate the 

covariance matrix C, let ///) be the measured rate at which the exogenous inflow into the ;'th 
reservoir occurs at time f.   It is often reasonable to assume that the ^-dimensional process 

((/j, ... jjt)) : / se 0) is stationary. In this case, 

C 
j* 

= fcantfftoJjm * j"coy(tk(0)jjit))dt. 

We note that  C k is related to the cross-spectral density of the two processes 

(/(/) : t :» 0 ) and (jk(t) : t a 0 ) evaluated at the frequency 0. Consequently, estimators from 

the theory of spectral density estimation can be used to calculate Cjk for 1 s j, k s d.  (See 
Brillinger (1981) for details.) One class of such estimators takes the form 

d» ' JoV) cöy(ifQ)Jk(t))dt * f'wtf ctotfjtoJjLWt, (io) 

where wft) is an appropriately chosen weighting function having the properties thatwfi) -* 0 

as t ~* oo and w^t) -» 1 as T -* oo, and where 

cov(//0)^(0) - •£;£"<!& - WftM - W*. 

5. Distributional Characterization of the Approximation 

As noted in Section 3,   the diffusion approximation for the vector storage process 

(S(t) : t 2 0) is a Gaussian process, and so it follows that 

S(0-tf(m(0,K(0) 

where m(t) and K(t) are (respectively) the mean and the covariance of the ^-dimensional normal 
random variable that approximates S(t). We will now describe, in a step-by-step fashion, how 
to calculate the functions m(t) and A3(f), thereby completing the characterization of the 
approximation. (For additional detail, we refer the reader to Chapter 8 of Arnold (1974).) 
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Let A(t) « (Afi) : 1 s i, j s d) be the dxd matrix with elements given by 

\(Q * • 

qto(Ov\ if * e /XO, 

-ajbjX0>~1, if*-/, and 
0, else, 

where (jCj(f), ». ^t/f))' is me solution of the system (5) of ordinary differential equations. 

The rows of the matrix A are numbered in such a way that the further upstream the 
reservoir, the lower its number, in other words we require that k € P(j) =» k < j for 1 s ; * d. 
This numbering convention will be used throughout the remainder of the paper. 

Our procedure is to: 

B-l.    Solve the following deterministic matrix-valued differential equation for $(f) : 

<fr(0 -A(0*(0 
such that 4(0) » I. 

B-2.    Calculate 

nco«*(0 ['<t>(uyxc(Q(uyxydu<b(ty 

where A' denotes the transpose of A. 

The matrix T\t) can alternatively be calculated by solving the matrix-valued differential 
equation 

t\t) - A«)nt) + T(t)A(ty *C (U) 

such that T\0) * 0. 

B-3.    Then, 

m(0 *±x(i.t) 
* • 

ACO-JLiTf.o. 

-8- 
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Of particular interest is the steady-state distribution of the storage. It is easily seen that m(t) -» m 
as t -» oo, where m = (m. : 1 s ; s d) is the stable solution of the differential equation (5) and 
is given by 

(        T^       *. Mj +  E CVW* 
m.= 

\»> 

tefl» 

^ 

(13) 

We note that the above system can be solved recursively in closed-form by solving first 
for the furthest upstream reservoirs and then working one's way downstream. 

It is clear that A{t) -* A as t -* », where 

A» * j -apm*r\ if* «;, and 

0, else   . 

It is then reasonable (see (11)) to expect that 11(0 -» F as f -* oe, where T solves 

0 -Ar + W *C. (14) 

Since A is lower triangular (due to the numbering system adopted at the beginning of this 
section), and has negative diagonal elements, it therefore has strictly negative eigenvalues and 
is hence stable. Consequently a unique solution to the above matrix equation is guaranteed (see 
Arnold (1974)). 

If 5(oo) is the (/-dimensional random variable representing the steady-state vector storage 
of the system, the above discussion then suggests using the approximation 

S(oo)-tf(m/E„r/E.). (15) 

6. An Approximation for the Expected Time for a Reservoir to Exceed a Given Level 

In this section, we exploit the fact that our approximating process is a diffusion. (This 
is in contrast to Section S, where our analysis relied on the Gaussian character of the 
approximation.) The Markov structure of a diffusion process permits one to develop 
(deterministic) partial differential equations (P.D.E's) that describe a variety of different 
quantitative characteristics of the process.   We shall illustrate the power of this property by 



applying this idea to a specific calculation, namely the development of an approximation for the 
expected time for a reservoir to exceed a given level. Specifically, we shall be interested in 
calculating the expected time required for reservoir <f s content to exceed level ß. (We note that 
any other reservoir can be viewed as the furthest downstream reservoir to the reservoirs that feed 
into it. Consequently, if one is interested in reservoir j (j * d), one can replace the original 
system by the appropriate smaller system of reservoirs. Thus, our assumption is without loss 
of generality.) 

If T is the time required for reservoir d's level to exceed ß, then T can be defined as 
T = inf{r 2 0 : Sß) 2 ß}.. Using the approximation (7), we conclude that 

T   -inf{l*0:xj(E/)/fe.+Zj(e^^E7*ß} 

= ±inf{u 2 0 : xJWt. * ZJiu)ffi~ 2 ß} 

= -Linf{u 2 0 : WJM) 2 ß} 
E. 

where W(u) ■ (Wx(u), -. ,WJjt)) : u 2 0) is the diffusion process with i'th component given by 

Wfu) = lx/iu) ♦ -LZ/«). 
fi7 

Let Tt * inf{« 2 0 : Wjfu * t) 2 ß} be the elapsed time for reservoir d's level to 

exceed ß, taken relative to a re-defined time origin at t. Then, we can set 

u(w,t) - E[Tt I W(t) = w] for / 2 0, w 6 R*. The diffusion W(-) has infinitesimal generator 
L given by the linear partial differential operator 

«■1 

+ ^ oM^r\ . <jM?F\ m + y aft"** 
e.       MM        £~ fr j 

du A 2 y^ C<;   52u 
8*.      2 £t e. dw.aw. 

The theory of diffusion processes (see Karlin and Taylor (1981)) establishes that u 
satisfies the P.D.E. given by 

 u + Lu » -1 
8/ 

(16) 
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subject to u(w,t) = 0 for wd 2 ß. Hence, we can calculate an approximation to the expected 

time E(7) required for reservoir d's level to exceed ß by following the procedure: 

C4.    Solve the (deterministic) P.D.E. 

lm + j, «pfifft*'1»* _ «M^V — + ly* c,v g2"  = -1 
aw.      2-£i E. dw.dw. 

for w(w,f) in the domain w G H**, r a 0, subject to u(w,t) = 0 for wrf 2 ß. 

C-2. Then  E(7) - -L^, ~. ^ 0). (17) 
E_ 

7. The Single Reservoir Case. 

The mass balance equation for a single reservoir is given by the following relation 

5(0 =50 +/(f) - J['aS(«)kdu 

where s0, a, 6 > 0, and /(/) is a non-decreasing process that represents the cumulative input 

to time t.   As required by assumption (2),   we assume that the limits \i - lim E/(r)/r and 
l—m 

C - lim var/(f)/f exist. 

Following the procedure outlined in Section 3, it is first necessary to solve the ordinary 
differential equation given by 

JC(0 = \i - ax(ff,  with 

where x0 - aUhsQ   and a = 1.  The solution to the differential equation is then given by 

x(t) = <p~l(t),  where 

«CO -)-% • 
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In particular, if b = 1, then 

tfx) » log 
/ \ 

(A -* 

and so the solution of the differential equation becomes x(t) * \i - e "* (ji - xj. The next step 
in the procedure is to solve the stochastic differential equation for the diffusion approximation 

which is given by dZ(t) » -bxttf'1 Z(t) dt + dB(t) where £(-) is a Brownian motion having a 
variance parameter C. Then, in the linear case, we can apply (11) to obtain the result 
T(r) » C(l - exp(-2r))/2. Since e. ■ a, the transient approximation (7) becomes 

5(0 - N(fa - e-(n - V))/a, C(l - e-*y2a) (18) 

In the case where b is not equal to one, we can easily supply a closed-form solution for 

the steady-state storage 5(»). In particular,  (14) takes the form T ■ Cn(1"*>*/2&. Then (15) 
yields 

(19) 

8. Numerical Examples 

We now consider two numerical examples. In the first case we will compare the diffusion 
approximation to exact known results from Harrison and Resnick (1976), and in the second case 
we will compare the diffusion approximation to simulations for a cascade of two reservoirs. 

Example 1. The behaviour of the system for a single reservoir with Poisson inflows and 
exponentially distributed jump sizes will first be examined. The statistics of the inflow process 
can then be calculated as in Section (4). This case has been solved in closed form by Harrison 
and Resnick in the special case where the storage system empties in finite time i.e. for the case 
where b < 1. In this case define two functions p(x) and K(x) by the formulae 

p(x) « \/(yax *X   and 

K(x).vp(x)exp(^*(l -&))*)  . 

where X and v are defined as in Model 1 of Section 4. 
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The steady-state density, ft(x), of the storage process is then given by the formula 

ft(x) = K(xy(l * £K(t)dt) (20) 

Similarly   the   density  of  the  runoff  process  fr(x)   is  given  by  the  lV -mula 

fr(x) = abxb'1ft(axb). It is clear from these formulae and from the fact that the storage is 
depleted in finite time that the distributions of the storage and runoff processes have atoms at 0. 
A comparison of the densities of storage for the diffusion process and for the exact solution of 
the storage process for various values of a is shown in Figure 2. 

Example 2. Consider a cascade of two storage systems fed by a single exogenous inflow process 
/j(-) into the first storage system. In this case the matrix A (see Section 5) takes the form 

-Ojfyni' 0 
(21) 

We can calculate the steady-state variance of the storage process by solving Equation (14) 
for r, which results in the following formula 

/ 

-Cu 

1 

'a 

1 

An+A72   A2^AU*A2^ 

(22) 

where Cu * lim var/,(f)/f and the Aiy's are the corresponding elements of the matrix A defined 

in (21). The steady-state distribution of this non-linear cascade can then be approximated as in 
(15). 

The diffusion approximation for the cascade was compared with simulation runs for the 
process. The simulation model was based on approximating the continuous time model given 
by equation (1) with the following approximate discrete time model 

SjOi+1) - Sfit) - /,(A/) - axLtSx(n+lf 

Sj(n+1) - S^n) - ajAfS^*!)*' - OjA/S^»*!)*'  . 
(23) 

where {5,(/:) : n * 0} and {SJn) : n 2 0} are the storages of the first and second system 
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respectively. Such a discretization is necessary in order to solve the system of integral equations 
(1) numerically. The inflow process {/„(Ar) : n 2 0} was simulated using the formula 

AT(A.) 

'„(*') • £ % (24) 

where the GH. are independent and identically distributed Gamma random variables and the 

NJAt) are independent and identically distributed Poisson random variables with mean XAf. 

In our cascade example, the parameter X for the Poisson process {N(At) : j 2 0} was 

assumed to be one, as was the mean, v, and the standard deviation, r\, of the gamma deviates, 
Nmj.   In this case,   Cu is equal to two,   and C1T  C21,  and C22 are all zero.   The time 

parameter At was put equal to 0.1 and the storage process simulation was run for 10000 time 
steps (to t = 1000). Examples of the resulting sample paths for runoff from the two storage 
systems are shown in Figures 3 and 4, and the results of simulations are provided in Figure 5. 
Confidence intervals for the estimated parameters were calculated using an assumed t distribution 
based on ten replications of each simulation. The justification for this confidence interval 
methodology is given in Law and Kelton (1981). 

9. Conclusions 

In this paper, we have developed a diffusion approximation for a watershed consisting 
of d reservoirs with non-linear power law release rules. Our simulation experiments suggest that 
it works reasonably well for some values of the release rule parameters which are physically 
plausible. Of course, the assumptions guaranteeing the validity of our approximation are not 
universally applicable, and further research is therefore necessary to fully delineate its domain 
of applicability. 
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Appendix • Justification for the Diffusion Approximation 

We wish to show that when the parameter e. is small, then the diffusion approximation 
is reasonable. To formulate this problem mathematically, let 

Sfit, 0 - S/e, 0) ♦ 7/0 ♦ £ [V% 4>du - fV'S/E, uf'du,    l*jsd, 

(25) 

be the storage contents processes associated with the parameter £. We need to show that 
S;.(E, t) can be approximated as in (A-4) when z j 0. 

To study the behaviour of {Sfz, t) : 1 s j; s d, t a» 0} as 8 j 0, we need to strengthen 
the hypothesis (2) on the inflow processes somewhat. (In particular, we need to say something 
about the distribution of the inflow processes.) In addition, since our approximation requires 
a re-scaling of the spatial co-ordinates, our initial condition for S(e, 0) ought to reflect this. 
Our precise mathematical requirement is: 

e-w[eSl(e,0) - xv ..., e5j(e,0) - xd, zlt(t/t) - n,/, - , tljfr) - \ij] 

(26) 

as E I 0, where *» denotes convergence in distribution and the process (2^(0,-, 2?j(0) is 
assumed to be a Brownian motion with zero mean and covariance matrix C. From a practical 
standpoint, the stengthening of (2) to the above distributional requirement is quite mild. 
Virtually all stochastic processes that exhibit the behaviour (2) also exhibit the Brownian 
behaviour assumed above (Ethier and Kurtz (1986)). 

Under the assumption (26), we can now proceed to analyze S(e, •) as e | 0. Note that 
(25) can be re-written as 

tSfitjfr) - eS/e,0) ♦ tlltlt) ♦ £ ['afcSJtjt/tyf'du - f a(eS.(E,«/e))\to  . 

By assumption, we have tlftlz) ** \i.t as e J 0, and so assuming in addition that the limit 
process 

xfß) -limeS/cr/e) (27) 
«jo 
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exists for 1 s ;' a d, the limit must satisfy the integral equation 

xfi) = x. ♦ iy ♦ £ fV*(»)*'^ - Voffuf'du,   Ujsi 

Expressed as a differential equation, the above result becomes 

*ß " H, + £ V*(0H - <?fi)\   1 */ * d,  and 

*/()) -xy,   1 sj sd. 

In order to establish the existence of the limit, one needs to prove the relative 
compactness of the family of processes U Sj(z, f/e) : e * 0). This can be done by appealing 
to standard tools from, for example, Ethier and Kurtz (1986). We can view (27) as a law of 
large numbers for Sfe, •). To develop a "Central Limit Theorem11 we re-write (25) as 

e-*[eS/e,*/e) -xft)] « e"w[ES/e,0) - x) * f^zl/t/i) - \ifl 

* E fV"1/2[(^(e,«/t))*'-xt(«)V 

- jy*[(eS/e,i</e))»' - x/iftfc 

A Taylor series expansion to one term then establishes that 

e-*[(e S4(e,«/E))*' -x/iifi -^(e^^e-^eS^e^c) - xk(u))) 

where ^e,u) lies between xk(u) and e SJfcju/i) and hence tends to X4(M) as e J 0. 

Assume, for the moment, that we can establish the existence of the limit 

r^Me) - x^-.eSjMe) - x/i)) - (Z^-^jCO) • 

Since   e 'w [e S,(e ,0) - xlt - ,e S/t ,0) - xJ ■* [2,(0), - 7j(0)],   the   limit   process 
(Z,(/), -. ,Zj(f)) must then satisfy the following stochastic differential equation 

2/0 -2/0) ♦*//) ♦ £ ['aJ>?k(uf--lZJiuydu - ['appfrf'tfiiy*  . 

As before, the existence of the limit may be justified by using a relative compactness 
argument (Ethier and Kurtz (1986)). 
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0.30- 

a • 0.7 • exact solution 

a • 0.7 • diffusion approximation 

a ■ 0.6 - exact solution 

a a 0.6 ■ diffusion approximation 

a • 0.5 ■ exact solution 

a • 0.5 - diffusion approximation 

Figure 1. A storage system consisting of 
three reservoirs where reservoirs one and 
two feed into reservoir three. 

Figure 2. A Comparison of the exact 
solution and the diffusion approximation for 
a single reservoir (b = 0.5, X = 1.0, v = 1.0) 
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Figure 3. Sample path of first reservoir fed by 
compound Poisson inflows (rate 1.0) with 
gamma distributed jumps (mean jump size 2.0) 
and with A/ ■ 0.1, ax = 0.5, bx = 1.5. 

Figure 4. Sample path of second reservoir with 
same parameters as first reservoir (see Figure 3> 
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Figure 5. Exceedence probabilities for 
runoff from second reservoir with a, = a^ « 
0.3; Solid line represents diffusion and error 
bars represent 95% CJ. for simulation. 
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