


The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

ŗ

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

| REPORT DO                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CUMENTATION                                                                                                                                                                                                                                                                                                                                                 | PAGE                                                                                                                                                                                                                                                                                                  | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Public reporting burden for this collection of inform                                                                                                                                                                                                                                                                                                                                                                                                           | ation is estimated to average 1 hour per resp                                                                                                                                                                                                                                                                                                               | onse including the time for revie                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |
| collection of information including suggestions for<br>Davis Highway Suite 1204 Arlington VA 22202                                                                                                                                                                                                                                                                                                                                                              | reducing this burden, to Washington Headou<br>4302 and to the Office of Management and B                                                                                                                                                                                                                                                                    | arters Services. Directorate for I<br>sudget. Paperwork Reduction Pri                                                                                                                                                                                                                                 | nformation Operations and Reports 1215 Jefferson<br>orect (0704-0188) Washington DC 20503                                                                                                                                                                                                                                   |
| 1 AGENCY USE ONLY (Leave plank)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. REPORT DATE                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       | AND DATES COVERED                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | February 1993                                                                                                                                                                                                                                                                                                                                               | Final R                                                                                                                                                                                                                                                                                               | leport                                                                                                                                                                                                                                                                                                                      |
| •.mm.EAND SUBTIME<br>Oxidation and Hot Cor<br>and X-40 at Temperatu                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       | S. FUNDING HUMBERS                                                                                                                                                                                                                                                                                                          |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| M. Levy, J. J. Falco;                                                                                                                                                                                                                                                                                                                                                                                                                                           | and F. Pettit <sup>†</sup>                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| 7 PERFORMING ORGANIZATION NAME(S) AP                                                                                                                                                                                                                                                                                                                                                                                                                            | ND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                                                                                                                                                                                                                                 |
| U.S. Army Research Lab<br>Watertown, MA. 02172-0<br>ATTN: AMSRL-MA-MA                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       | ARL-TR-87                                                                                                                                                                                                                                                                                                                   |
| S. SPONSORING/MONITORING AGE/CY NAM                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       | 10. SPONSORING MONITORING<br>AGENCY REPORT NUMBER                                                                                                                                                                                                                                                                           |
| U.S. Army Research L<br>2800 Powder Mill Koa<br>Adelphi, MD 20783-1                                                                                                                                                                                                                                                                                                                                                                                             | d                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| <sup>11. SUPPLEMENTARY NOT'S</sup><br><sup>*Deceased</sup><br><sup>†</sup> University of Pittsb                                                                                                                                                                                                                                                                                                                                                                 | urgh, Pittsburgh, P                                                                                                                                                                                                                                                                                                                                         | A 15261                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             |
| 128. DISTRIBUTION/AVAILABILITY STATEME                                                                                                                                                                                                                                                                                                                                                                                                                          | NT                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       | 126. DISTRIBUTION CODE                                                                                                                                                                                                                                                                                                      |
| Approved for public rele                                                                                                                                                                                                                                                                                                                                                                                                                                        | ease; distribution unlimi                                                                                                                                                                                                                                                                                                                                   | ted.                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| The oxidation resistance and aluminide coating for the promade by using tube-furnace of temperatures of $1475^{\circ}F$ to 22 prior to heating to the desire. The oxidation behavior to Reperatures above $1900^{\circ}F$ . The rosion than Rene 100. Both fluxing mechanism. An alum delayed. Attack did occur wipenetrated by the Na <sub>2</sub> SO <sub>4</sub> in corrosion test has validity for products from the alloy. It, in alloys. Rene 100 is more | beection of one of the supe<br>oxidation and hot corrosion<br>200°F. For hot corrosion<br>red temperature and intro<br>ene 100 was poor compare<br>e X-40 alloy was found to<br>alloys, however, undergo<br>inide coating on Rene 100<br>hen cumulative applications<br>localized areas after expose<br>mechanisms whereby the<br>therefore, can be used to | railoys are compare<br>tests employing a<br>tests the samples w<br>ducing air at a flo<br>d to that of the X<br>be more resistant<br>attack at rates cons<br>caused the initiation<br>of Na <sub>2</sub> SO <sub>4</sub> were to<br>ure times of less to<br>degradation process<br>compare the time f | ed. The comparison is<br>Mettler TGA apparatus at<br>vere precoated with $Na_2SO_4$<br>w rate of 57 cm/min.<br>-40 alloy, especially at tem-<br>to the initiation of hot cor-<br>istent with an alloy-induced<br>on of hot corrosion to be<br>used. The coatings were<br>han 200 hours. The hot<br>is sustained by reaction |
| 14 SUBJECT TERMS<br>Superalloys, Nickel-ba                                                                                                                                                                                                                                                                                                                                                                                                                      | sa superallova Cob                                                                                                                                                                                                                                                                                                                                          | altabase supe                                                                                                                                                                                                                                                                                         | 15 NUMBER OF PAGES                                                                                                                                                                                                                                                                                                          |
| Oxidation resistance,                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                   | 18. SECURITY CLASSIFICA                                                                                                                                                                                                                                                                               | TION 20. LIMITATION OF ABSTRACT                                                                                                                                                                                                                                                                                             |
| OF REPORT<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                       | of this page<br>Unclassified                                                                                                                                                                                                                                                                                                                                | OF ABSTRACT<br>Unclassified                                                                                                                                                                                                                                                                           | UL                                                                                                                                                                                                                                                                                                                          |
| NSN 7540-01 280-5500                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       | Standard Form 299 (Rev. 2. 82)<br>Prescribed by ANSI Stal 209-18<br>Statute                                                                                                                                                                                                                                                 |

# Contents

.

·

| Pag                                           | gc |
|-----------------------------------------------|----|
| Introduction                                  | l  |
| Materials and Procedures 1                    | l  |
| Results and Discussion                        | ;  |
| Oxidation                                     | 3  |
| Hot Corrosion                                 | 1  |
| Metallographic Analyses of Degraded Specimens | )  |
| Hot Corrosion of Coated Rene 100              | 2  |
| Conclusions                                   | 5  |
| References                                    | 5  |

# Figures

| 1.  | Oxidation of X-40: Air Flow Rate = 57 cm/min,<br>Pressure = 760 Torr                                                                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | Oxidation of Rene 100:Air Flow Rate = 57 cm/.min,Pressure = 760 Torr4                                                                                            |
| 3.  | Hot corrosion versus Na <sub>2</sub> SO <sub>4</sub> concentraton on X-40 at<br>1600°F: Air Flow Rate = 57 cm/min, Pressure = 760 Torr                           |
| 4.  | Hot corrosion of X-40 with 1 mg Na <sub>2</sub> SO <sub>4</sub> /cm <sup>2</sup> : Air Flow<br>Rate = 57 cm/min, Pr <sub>4</sub> -sure = 760 Torr, Ar pretreated |
| 5.  | Hot corrosion of X-40 with 2 mg Na <sub>2</sub> SO <sub>4</sub> /cm <sup>2</sup> : Air Flow<br>Rate = 57 cm/min, $P$ -essi re = 760 Torr, No Ar pretreatment     |
| 6.  | Comparison of oxidation and hot corrosion of X-40 at elevated<br>temperatures                                                                                    |
| 7.  | Hot corrosion of Rene 00 with 1 mg Na <sub>2</sub> SO <sub>4</sub> /cm <sup>2</sup> : Air Flow<br>Rate = 57 cm/min, Pressure = 760 Torr                          |
| 8.  | Oxidation versus hot corrosion of Rene 100: Air Flow<br>Rate = 57 cm/min, Pressure = 760 Torr                                                                    |
| 9.  | As-cast condition. Mag. 100X                                                                                                                                     |
| 10. | Hot corrosion of Rene 100 after two hours. Mag. 1000X 10                                                                                                         |
| 11. | Portion of Rene 100 reaction layer at 2200°F. Particles of alloy (white) encompassed with oxide. Mag. 1000X                                                      |
| 12. | Hot corrosion of X-40 after six hours. Mag. 1000X 11                                                                                                             |
| 13. | As-coated Rene 100/CODEP B system. XRDA shows nickel<br>aluminide, NiAl nodules, and small clusters of pack powder.<br>Mag. 45X                                  |


| 14. | Hot corrosion of Rene 10C/CODEP B system after two applications<br>of Na <sub>2</sub> SO <sub>4</sub> for 50 hours at 1600°F. Coating failure in localized<br>areas. Mag. 7X | 13 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 15. | Hot corrosion of Rene 100/CODEP B system after 900 hours<br>at 1600°F. Large amounts of substrate corrosion products.<br>Mag. 7X                                             | 13 |
| 16. | Hot corrosion of Rene 100/CODEP B system at 1800 <sup>o</sup> F.<br>Mag. 2X                                                                                                  | 14 |
| 17. | Hot corrosion of Rene 100/CODEP B system after 35 hours<br>at 2200°F. Single application of Na <sub>2</sub> SO <sub>4</sub> . Mag. 7X                                        | 14 |

•

.

UTIC QUALITY INSFECTED 8

.



.

## Introduction

The subject of hot corrosion (deposit-modified, gaseous corrosion) of both nickel and cobalt alloys has received considerable attention in recent years because of the deleterious effects this form of degradation can produce on alloys exposed to combustion gases; e.g., gas turbines, fireside corrosion of boiler tubes, incinerators, etc. Most investigators in the field are in agreement that deposition of alkali sulfates; e.g., Na<sub>2</sub>SO<sub>4</sub>, which results from salt ingestion into the engine, alkali metals in the fuel, and sulfur gases from combustion of fuels is a normal precursor to hot corrosion. This problem appears to be more serious in marine environments due to the large amount of salts that are ingested with the intake air. Von Doering and Bergman [1], as well as Bornstein and DeCrescente [2], concluded that Na<sub>2</sub>SO<sub>4</sub> is formed in turbine engines operating in such environments according to the following reactions:

$$2NaCl + SO_2 = 1/2 O_2 + H_2O = Na_2SO_4 + 2HCl$$
(1)

$$2NaCl + SO_3 + H_2O = Na_2SO_4 + 2 HCl$$
 (2)

It has been established that hot corrosion may take place in the temperature range between approximately  $1200^{\circ}F$  and  $1900^{\circ}F$ . It is not considered to be a problem above  $1900^{\circ}F$  where deposits of sulfates are not significant, nor below about  $1200^{\circ}F$  where the deposits usually are solid. At temperatures between  $1200^{\circ}F$  and  $1500^{\circ}F$  a form of degradation called low-temperature hot corrosion is often observed where SO<sub>3</sub> in the gas is required to maintain this attack. Reaction rates far in excess of oxidation rates have been noted in hot corrosion environments at elevated temperatures, however, and salt deposition at lower temperatures, as well as certain phases formed in alloys at the lower temperatures, can affect the high temperature oxidation behavior.

A variety of techniques can be used to study hot corrosion attack of alloys. Three widely used approaches are: (1) laboratory tests in which samples are precoated with Na<sub>2</sub>SO<sub>4</sub> and exposed to gases with controlled compositions [3,4], (2) laboratory tests in which samples are immersed in molten salts such as Na<sub>2</sub>SO<sub>4</sub> and NaCl (crucible tests) [5], and (3) dynamic rig testing which attempts to establish an environment similar to that existing in gas turbine engines [4,6]. The laboratory tests using deposits must be used with care since these conditions are different from use conditions. Nevertheless, such tests do have comparative value when hot corrosion attack is observed since alloy behavior can be compared and microstructural features documented for defined conditions. The purpose of this investigation was to compare the oxidation and hot corrosion of two superalloys and demonstrate the efficacy of a laboratory test that employed specimens precoated with Na<sub>2</sub>NO<sub>4</sub>. Also, the hot corrosion resistance of an aluminide coating for the protection of one of the superalloys was assessed.

## Materials and Procedures

The superalloys selected were Rene 100 (nickel-base) and X-40 (cobalt-base) which were cast by Howmet Corporation\* into bars approximately 152.4 mm long by

<sup>\*</sup>Howmet Corporation, Austenat Microcast Division, Roy Street, Dover, NJ

12.7 mm in diameter. These alloys were used since both had compositions; e.g., refractory metal concentrations, which could make them susceptible to hot corrosion attack. The chemical compositions of the alloys in weight percent are shown below.

|          | Cr    | w    | NI    | С    | Fe   | S     | Zr   | Р     |
|----------|-------|------|-------|------|------|-------|------|-------|
| X-40     | 25.10 | 7.70 | 10.40 | 0.5  | 0.27 | 0.003 | 0 02 | 0.01  |
| Rene 100 | 9 60  |      | Bal   | 0.17 | 0.15 | 0.001 | 0.06 |       |
|          | Mn    | Si   | Co    | Мо   | Ті   | AI    | v    | В     |
| X-40     | 0.10  | 0.10 | Bal   |      |      |       |      |       |
| Rene 100 | 0.01  | 0.04 | 14.98 | 3.00 | 4 32 | 5.50  | 1 08 | 0.013 |

The protective coating selected for study was CODEP B, a proprietary coating formulated by General Electric Company (contains aluminum, titanium, and carbon) and applied by Walbar Laboratories, Peabody, MA.

Specimens were machined from these bars in the form of discs, 3.18 mm thick by 12.7 mm in diameter, polished through 0/2 emery, rinsed in ethanol, and weighed. Specimens in this condition were used for oxidation studies, whereas specimens used for hot corrosion and coating studies were further prepared as follows: specimens were placed on a hot plate at  $480^{\circ}$ F and sprayed with a saturated solution of Na<sub>2</sub>SO<sub>4</sub> until the desired amount per unit area of 1 mg/cm<sup>2</sup> was obtained. The thin coating of Na<sub>2</sub>SO<sub>4</sub> produced in this manner showed good adherence and appeared uniform in thickness.

Etchants used for metallurgical examination of the superalloys were:

Rene 100: 80 cc  $H_2O$ , 20 cc HCl, 20 cc  $H_2O_2$  (30%)

X-40: 50 cc H<sub>2</sub>O, 50 cc HCl, 20 cc H<sub>2</sub>O<sub>2</sub> (3%)

The Mettler TGA apparatus was used for both oxidation and hot corrosion kinetic studies. Two procedures were utilized. In the first, the furnace chamber containing the specimen was evacuated to  $5 \times 10^{-5}$  torr prior to flushing with argon and then re-evacuated. Argon was next introduced into the system until a pressure slightly greater than atmospheric was obtained and the furnace heated to the desired temperature at a heating rate of 77°F per minute. When at temperature, air was introduced into the system at a flow rate of 57 cm/min and the weight change automatically and continuously recorded. A more detailed explanation of this procedure, together with the type of apparatus employed, has been described elsewhere [7,8]. The specimen is thus subjected to an argon preheat treatment in this procedure. In the second procedure, the furnace, after being heated to the desired temperature, was lowered over a quartz furnace chamber containing the specimen as air was introduced at a flow rate of 57 cm/min and the weight change recorded automatically and continuously. Specimens used in this procedure were not exposed to an argon preheat treatment. In both procedures the reaction was terminated by replacing the air with argon. The first procedure was used for the oxidation and hot corrosion of both superalloys, whereas the second was followed for the hot corrosion tests only

## **Results and Discussion**

#### Oxidation

The data obtained for X-40 are presented in Figure 1 where weight changes as a function of time are presented for a number of temperatures between  $1475^{\circ}F$  to  $2200^{\circ}F$ . These data, with the exception of the  $2200^{\circ}F$  test, approximate a parabolic rate law with rate constants in reasonable agreement with those for growth of  $Cr_2O_3$  scales on alloys [9]. Parabolic kinetics are also followed at  $2200^{\circ}F$ , but the rate constant is significantly less than that for growth of  $Cr_2O_3$  and this may result from the formation of volatile products; i.e.,  $CrO_3$ , at this temperature.

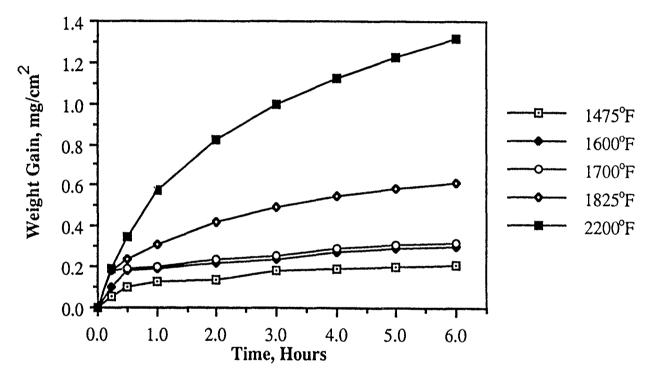



Figure 1. Oxidation of X-40: Air Flow Rat 3 = 57 cm/min, Pressure = 760 Torr.

The oxidation behavior of Rene 100 (see Figure 2) was poor compared to that for X-40; this was especially the case at the higher temperatures. Examination of Figure 2 shows that the weight gains for Rene 100 after two hours were almost always greater than those for X-40 exposed to the same temperature for six hours. Moreover, the weight change/time plots for Rene 100 had shapes for  $2100^{\circ}$ F and  $2200^{\circ}$ F that indicated the oxide scales were cracking at the temperature of oxidation. These data conformed to a parabolic rate law; however, rate constants greater than those for the growth of nickel oxide scales were obtained. For example, at  $2200^{\circ}$ F a rate constant of  $10^{-8}$  ( $g^2/m^4$ -s) was obtained for Rene 100. Inspection of the composition of Rene 100 suggest that Al<sub>2</sub>O<sub>3</sub> scales could be formed on this alloy but probably only after extensive amounts of transient oxidation during which oxides such as NiO, Cr<sub>2</sub>O<sub>3</sub>, CoO, and TiO<sub>2</sub> are formed. The data which has been obtained indicates Al<sub>2</sub>O<sub>3</sub> scales may begin to develop but that cracking must render this process ineffective. The alloy, therefore, has poor oxidation resistance compared to X-40, especially at temperatures above 1900°F.

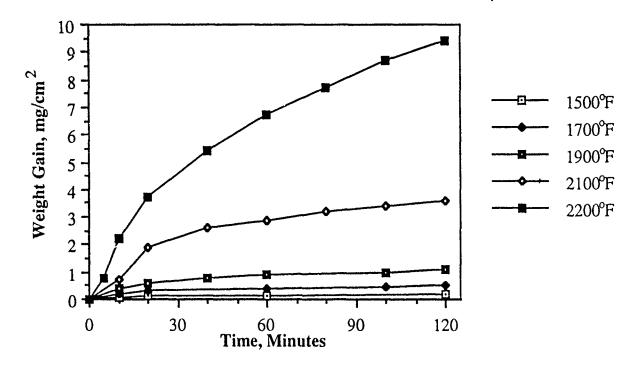



Figure 2. Oxidation of Rene 100: Air Flow Rate = 57 cm/min, Pressure = 760 Torr.

Cyclic oxidation tests were not performed because it was apparent from the isothermal results that Rene 100 would oxidize rapidly and that X-40 was a chromia-former.

## Hot Corrosion

The weight change data for hot corrosion experiments must always be examined with care since gaseous products can be formed in addition to condensed phases at the surfaces of specimens. The weight change versus time curves for hot corrosion of X-40 always exhibited an initial rapid increase followed by a long period of very small weight changes (see Figure 3). The weight changes were always significantly larger than those for oxidation, as can be seen by comparing the data presented in Figures 1 and 3. Furthermore, the initial rapid increase in weight due to the presence of Na<sub>2</sub>SO<sub>4</sub> became greater as the amount of Na<sub>2</sub>SO<sub>4</sub> was increased (see Figure 3).

In Figures 4 and 5 weight change data for X-40 are presented for the two different procedures used in the hot corrosion tests. In the experiments involving the pretreatment with argon,  $SO_2$  was identified (by a starch-iodate test) as an effluent which indicates that the Na<sub>2</sub>SO<sub>4</sub> may be decomposing according to the reaction.

$$Na_2SO_4 = Na_2O + SO_2 1/2 O_2$$

(3)

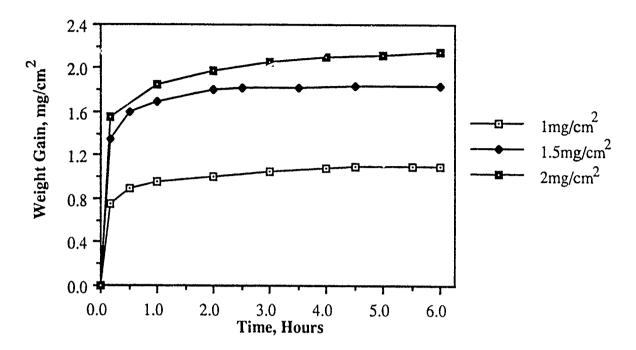



Figure 3. Hot corrosion versus  $Na_2SO_4$  concentration on X-40 at  $1600^{\circ}F$ . Air Flow Rate = 57 cm/min, Pressure = 760 Torr.

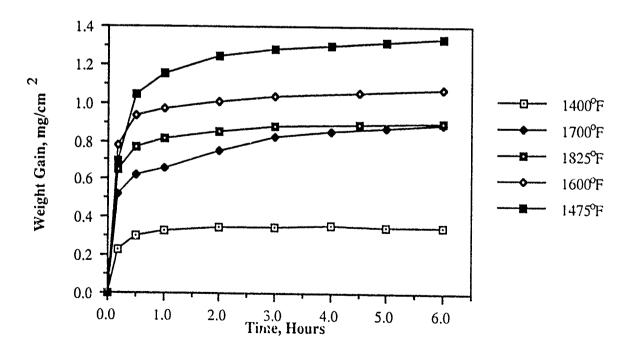



Figure 4. Hot corrosion of X 40 with 1 mg Na<sub>2</sub>SO<sub>4</sub>/cm<sup>2</sup> Air Flow Rate = 57 cm/min, Pressure = 760 Torr, Ar pretreated.

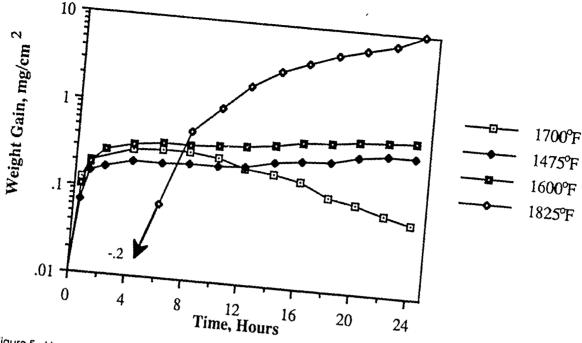



Figure 5. Hot correction of X-40 with 2 mg Na<sub>2</sub>SO<sub>4</sub>/cm<sup>2</sup>. Air Flow Rate = 57 cm/min, Pressure = 760 Torr, No Ar pretreatment.

The presence of Na<sub>2</sub>O was also determined by a basicity test (Na<sub>2</sub>O makes Na<sub>2</sub>SO<sub>4</sub> basic in aqueous solutions). All of the weight change data are greater than those for oxidation in the absence of  $Na_2SO_4$  and the deposit, therefore, affected the corrosion process. In the case of the argon pretreatment the acceleration is restricted to the very early stages. The effect of temperature is maximum in the range of 1475°F to 1600°F. These results indicate that during the argon pretreatment some sulfide phases are formed at the surfaces of the X-40 specimens. This probably varies with temperature and becomes less at the higher temperatures due to higher losses of SO<sub>2</sub> via decomposition of the  $Na_2SO_4$ . The increased oxidation, therefore, would be caused by the oxidation of the sulfides which subsides as the sulfides are converted to oxides. It is important to emphasize that while the  $Na_2SO_4$ has caused increased attack, this attack is very small compared to what will be observed when alloy induced acidic fluxing begins to become important.

The weight change data obtained for the samples heated in air (see Figure 5) are influenced by the gradual increase in temperature of the specimen (the specimen was found to reach the test temperature after approximately 10 minutes), weight losses due to  $SO_2$  evolution from the  $Na_2SO_4$ , and the formation of corrosion products on the surfaces of the specimens. At temperatures between 1475°F to 1700°F the results are not much different from the argon pretreatments exhibiting an initial

larger increase in weight followed by a leveling off of the corrosion rates. These data are believed to be less reliable than those obtained with the argon pretreated samples since, in the latter, the weight losses resulting from decomposition of Na<sub>2</sub>SO<sub>4</sub> occurred prior to the beginning of the weight change measurements. The results obtained with the X-40 specimen exposed to air and heated to 1825°F, however, show that very severe attack has occurred. In view of the relatively large

amount of tungsten in this alloy, it appears that oxides of tungsten must have been formed and reacted with the  $Na_2SO_4$  to produce an acidic melt that causes alloy-induced acidic fluxing to take place [5,9]. Such attack does not occur with the argon pretreatment since the  $Na_2SO_4$  decomposes and is not present during that part of the experiment where air is present.

The hot corrosion of X-40 became more severe at temperatures of  $2100^{\circ}$ F and  $2200^{\circ}$ F, as shown in Figure 6. Attack was evident after a few minutes of exposure. The amount of degradation was much more than the amount of Na<sub>2</sub>SO<sub>4</sub>. Such results show that oxidation products must be sustaining the rapid degradation. This is consistent with alloy-induced acidic fluxing.

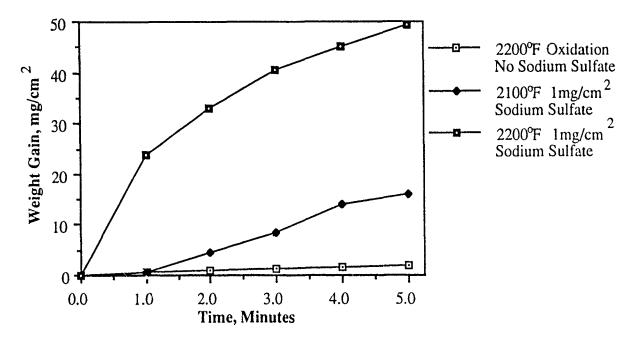
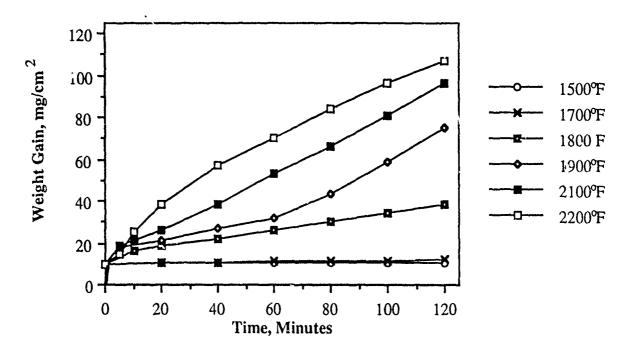
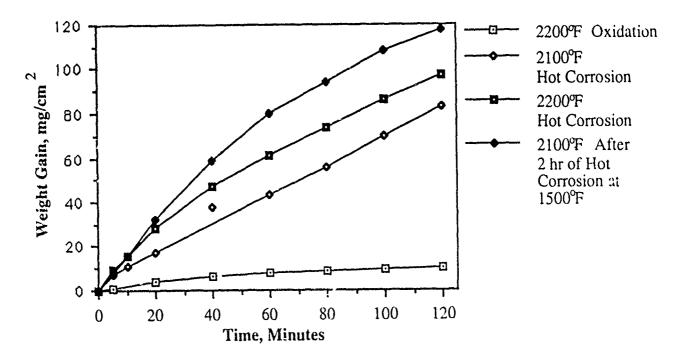
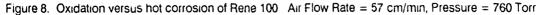
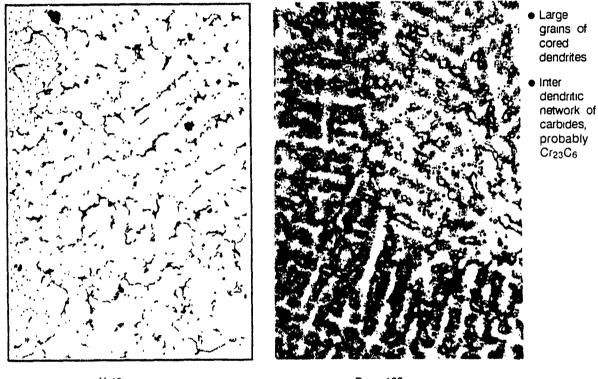



Figure 6. Comparison of oxidation and hot corrosion of X-40 at elevated temperatures

Results obtained from hot corrosion tests with Rene 100 are presented in Figure 7. Very severe attack is obvious upon comparison of the hot corrosion data with that for oxidation. The effects are especially severe at temperatures of  $1800^{\circ}$ F and above where the data again suggest degradation via an alloy-induced acidic fluxing process originating from the molybdenum and vanadium in Rene 100. Experiments were also performed where Na<sub>2</sub>SO<sub>4</sub>-coated specimens were exposed at  $1500^{\circ}$ F for two hours and then re-exposed at  $2100^{\circ}$ F without further addition of Na<sub>2</sub>SO<sub>4</sub>. The results are compared to hot corrosion and oxidation data obtained at  $2200^{\circ}$ F in Figure 8. It is evident that the exposure at  $1500^{\circ}$ F has caused the hot corrosion at  $2100^{\circ}$ F to be more severe. This probably has occurred by decreasing the time required to initiate the alloy-induced acidic fluxing at  $2100^{\circ}$ F and, hence, weight changes even greater than hot corrosion at  $2200^{\circ}$ F are observed.



Figure 7. Hot corrosion of Rene 100 with 1 mg Na<sub>2</sub>SO<sub>4</sub>/cm<sup>2</sup>: Air Flow Rate = 57 cm/min, Pressure = 760 Torr





#### Metallographic Analyses of Degraded Specimens

Kesults obtained from metallographic examination of specimens exposed to the hot corrosion tests were consistent with the weight change data. The microstructural features of the as-fabricated alloys are presented in Figure 9. Both alloys exhibit large grains composed of cored dendrites which are more readily seen in the nickelbase alloy. Carbides were evident as an interdendritic network distributed throughout both alloys. The major carbide in this network is believed to be  $Cr_{23}C_6$  in X-40 [10], and also probably in Rene 100 also.



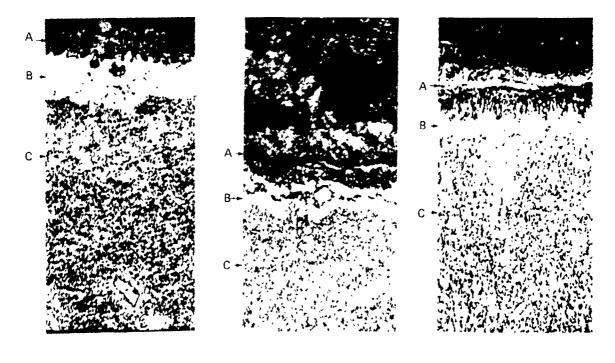

X-40



Figure 9. As-cast condition. Mag. 100X

Photomicrographs showing features associated with hot corrosion of Rene 100 are presented in Figures 10 and 11. At all temperatures (see Figure 10) two zones were evident. The outermost layer (A) was found to consist chiefly of oxides. The major phase in this zone appeared to be NiO; however, the proportions of NiCr<sub>2</sub>O<sub>4</sub> and NiMoO<sub>4</sub> increased as the second zone (B) was approached. This latter zone consisted of the substrate depleted of chromium (white) and a grey sulfide phase. This sulfide phase is presumed to be mainly chromium sulfides based upon results obtained by Seybolt [11] and Hamilton [12] on nickel-base alloys with similar compositions. Chromium has a large affinity for sulfur, and when sulfur is present in the environment, chromium sulfides are usually formed in the depleted zone which develops due to oxidation as well as the formation of the chromium sulfides. Very often preferential oxidation of the sulfide is evident at  $1700^{\circ}F$  and  $1900^{\circ}F$  (see Figure 10)

At 2100°F and 2200°F oxidation of the depleted zone occurs by a rather uniform frontal attack where particles of alloy (white) are encompassed with oxide (see Figures 10 and 11). Such morphologies are consistent with alloy-induced acidic fluxing caused by oxidation of the molybdenum and vanadium in the Rene 100.



1700°F

1900<sup>o</sup>F

2100<sup>o</sup>F

Figure 10. Hot corrosion of Rene 100 after two hours Mag. 1000X

#### Leaend

- A. NIO, NIO4 Cr2O3, NIMOO4
- B. Chromium depleted zone (white) containing Cr sulfides (grey)
- C. Substrate

Microstructures developed during the hot corrosion of X-40 at  $1700^{\circ}$ F and  $1825^{\circ}$ F are presented in Figure 12. An external oxide scale (A) is evident. X-ray diffraction analysis of this zone indicated the outermost portion to be composed of NiO and cobalt oxides. The inner portion of this zone also contained these oxides, as well as large amounts of spinel phases; namely, NiCr<sub>2</sub>O<sub>4</sub> and CoCr<sub>2</sub>O<sub>4</sub>. Preferential oxidation of the X-40 was also evident. This appeared to occur at alloy grain boundaries where sulfides had been formed in the alloy (see Figure 12). No positive identification of sulfides in the oxide scale was obtained by X-ray analyses. This is consistent with the sulfides in the substrate becoming oxidized [13]. Sulfide formation followed by oxidation is a common feature for some forms of hot corrosion. This type of preferential attack causes increased oxidation and can eventually result in the onset of alloy-induced acidic fluxing, whereby tungsten in the X-40 becomes oxidized and combines with the Na<sub>2</sub>SO<sub>4</sub> to form an acidic deposit.

The limited coating test results show that penetration of the coating occurs after exposure periods of less than 200 hours at temperatures of  $1600^{\circ}$ F and above. Therefore, the Rene 100/CODEP B system is not suitable for application where conditions that cause hot corrosion attack are present.

## Conclusions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40 alloy, especially at temperatures above  $1900^{\circ}$ F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot corrosion than Rene 100. Both alloys, however, eventually undergo attack at rates consistent with the alloy-induced acidic fluxing mechanism.

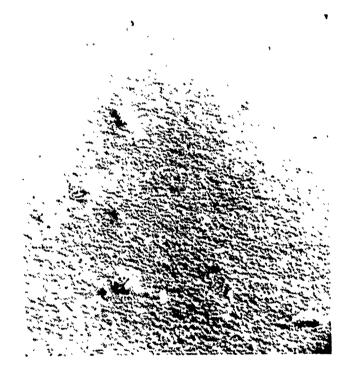
1

3. Both alloys degrade by similar mechanisms. During the initiation stage, sulfides are formed within the alloys which eventually become preferentially oxidized. Such preferential oxidation of sulfide results in more rapid oxidation, and also in the formation of refractory metal oxides involving the elements tungsten, molybdenum, and vanadium. Reaction of the refractory metal oxides with  $Na_2SO_4$  leads to the development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure  $\pm t$  temperatures as low as  $1500^{\circ}$ F shortened the initiation stage at higher temperatures. Sulfides were formed at the lower temperature and they rapidly oxidized at the higher temperatures.

5. Repeated applications of  $Na_2SO_4$  resulted in the initiation of hot corrosion attack after shorter exposure times than for single applications.

6. An aluminide coating, CODEP B, on Rene 100 caused the initiation of hot corrosion to be delayed. Attack did occur, however, when cumulative applications of  $Na_2SO_4$  were used. The coatings were penetrated by the  $Na_2SO_4$  in localized areas after exposure times of less than 200 hours.


7. The test which has been used induces degradation for a specific set of conditions and, therefore, care must be exercised in extrapolating the results to other conditions. This test has validity for hot corrosion mechanisms whereby the degradation process is sustained by reaction products from the alloy. It, therefore, can be used to compare the time to establish such conditions in alloys. Rene 100 is more susceptible to this condition than X-40. When alloys do not undergo alloy-induced acidic fluxing, gas composition, deposit composition, and amount of the deposit play very important roles in the amount and type of degradation that occurs. The hot corrosion test used in this report would not be appropriate under those conditions.

The alloy X-40 is more resistant to hot corrosion than Rene 100, probably due to its higher chromium concentration and the cracking of the oxide scale on the Rene 100 alloy. Both alloys, however, exhibit features that show the propagation mode of hot corrosion has been reached after relatively short initiation stages; this is especially the case at temperatures above 1800°F. It is, therefore, apparent that these alloys should not be used uncoated under conditions where hot corrosion attack can be expected.

## Hot Corrosion of Coated Rene 100

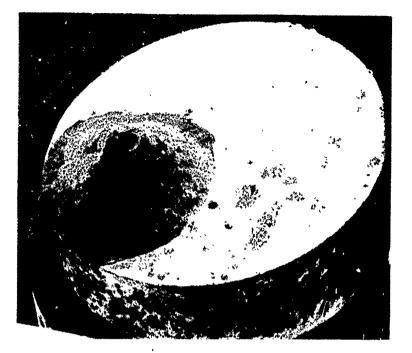

Since Rene 100 was so susceptible to hot corrosion, specimens of Rene 100 were aluminized by using the CODEP B process. A scanning electron photomicrograph of the surface of a coated specimen is presented in Figure 13. Several nodules are evident above the surface of the coating. These nodules appear to be small clusters of pack powder. X-ray diffraction analysis confirmed this coating to be nickel-aluminide (NiAl).

Figure 13. As-coated Rene 100/CODEP B system. XRDA shows nickel aluminide, NiAl nodules, and small clusters of pack powder. Mag. 45X



Hot corrosion of CODEP B-coated Rene 100 was examined at  $1600^{\circ}$ F and  $1800^{\circ}$ F using single, as well as multiple, additions of Na<sub>2</sub>SO<sub>4</sub> and the second procedure for heating the specimens. Only single applications of Na<sub>2</sub>SO<sub>4</sub> were used at  $2200^{\circ}$ F.

At  $1600^{\circ}$ F both single and multiple additions of Na<sub>2</sub>SO<sub>4</sub> resulted in visible coating failure after 50 hours at temperature. The attack usually was such that the coating was penetrated in localized areas (see Figure 14). After penetration of the coating substrate attack became evident as indicated by large amounts of corrosion products (see Figure 15).



)

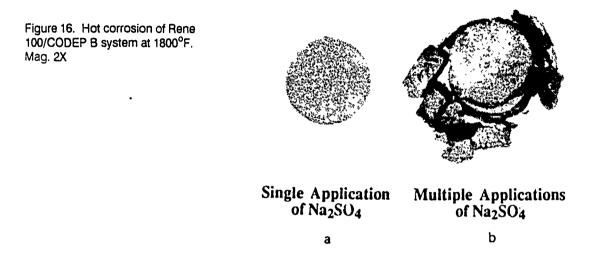

١

Figure 14. Hot corrosion of Rene 100/CODEP B system after two applications of Na<sub>2</sub>SO<sub>4</sub> for 50 hours at 1600°F. Coating failure in localized areas. Mag. 7X

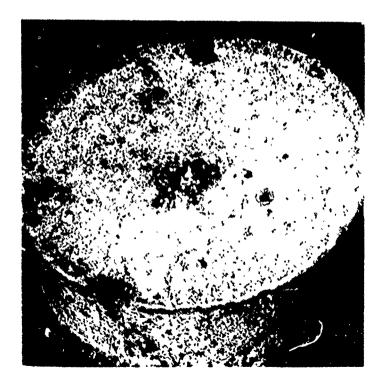



Figure 15. Hot corrosion of Rene 100/CODEP B system after 900 hours at 1600°F Large amounts of substrate corrosion products. Mag 7X

At  $1800^{\circ}$ F the coated specimen with one application of  $Na_2SO_4$  was terminated after 250 hours. No visual evidence of failure was apparent and only a small weight gain was observed (2.4 mg/cm<sup>2</sup>). When cumulative additions of  $Na_2SO_4$  were used at 25-hour intervals, visual evidence of penetration of the coating became apparent after 175 hours. The localized nature of the attack was not as obvious as at  $1600^{\circ}$ F. Total failure of the coating occurred after 200 hours of exposure. Photographs comparing the degradation of coated Rene 100 in tests using single and multiple applications of Na<sub>2</sub>SO<sub>4</sub> are presented in Figures 16a and 16b, respectively.



At  $2200^{\circ}$ F, the coated system was exposed for 35 hours with one application of Na<sub>2</sub>SO<sub>4</sub>. The nodules observed in the as-coated condition became covered with a dark blue product (see Figure 17). It appeared that coating failure was initiating at these sites.



, igure 17 Hot corrosion of Rene 100/CODEP B system after 35 hours at 2200°F Single application of Na\_2SO\_4 Mag 7X

The limited coating test results show that penetration of the coating occurs after exposure periods of less than 200 hours at temperatures of  $1600^{\circ}$ F and above. Therefore, the Rene 100/CODEP B system is not suitable for application where conditions that cause hot corrosion attack are present.

## Conclusions

1. The oxidation behavior of Rene 100 was poor compared to that of the X-40 alloy, especially at temperatures above  $1900^{\circ}$ F.

2. The superalloy X-40 was found to be more resistant to the initiation of hot corrosion than Rene 100. Both alloys, however, eventually undergo attack at rates consistent with the alloy-induced acidic fluxing mechanism.

)

3. Both alloys degrade by similar mechanisms. During the initiation stage, sulfides are formed within the alloys which eventually become preferentially oxidized. Such preferential oxidation of sulfide results in more rapid oxidation, and also in the formation of refractory metal oxides involving the elements tungsten, molybdenum, and vanadium. Reaction of the refractory metal oxides with  $Na_2SO_4$  leads to the development of acidic melts that cause catastrophic degradation of these two alloys.

4. Exposure  $\pm t$  temperatures as low as  $1500^{\circ}$ F shortened the initiation stage at higher temperatures. Sulfides were formed at the lower temperature and they rapidly oxidized at the higher temperatures.

5. Repeated applications of  $Na_2SO_4$  resulted in the initiation of hot corrosion attack after shorter exposure times than for single applications.

6. An aluminide coating, CODEP B, on Rene 100 caused the initiation of hot corrosion to be delayed. Attack did occur, however, when cumulative applications of Na<sub>2</sub>SO<sub>4</sub> were used. The coatings were penetrated by the Na<sub>2</sub>SO<sub>4</sub> in localized areas after exposure times of less than 200 hours.

7. The test which has been used induces degradation for a specific set of conditions and, therefore, care must be exercised in extrapolating the results to other conditions. This test has validity for hot corrosion mechanisms whereby the degradation process is sustained by reaction products from the alloy. It, therefore, can be used to compare the time to establish such conditions in alloys. Rene 100 is more susceptible to this condition than X-40. When alloys do not undergo alloy-induced acidic fluxing, gas composition, deposit composition, and amount of the deposit play very important roles in the amount and type of degradation that occurs. The hot corrosion test used in this report would not be appropriate under those conditions.

## References

- 1. VON DOERING, H., and BERGMAN, P. Construction and Operation of a Hot Corrosion Test Facility. Materials Research and Standards, September 1965, p. 35-39.
- 2. DECRESCENTE, M, and BOR NSTEIN, N. Formation and Reactivity Thermodynamics of Sodium Sulfate with Gas Turbine Alloys Corrosion-NACE, v. 24, no. 5, May 1968, p. 127-132.
- 3. GAMBINO, J. R. The Role of Sodium Sulfate in the Accelerated Oxidation of Nickel. Final Report of Hot Corrosion Mechanism Studies by Research and Development Center, General Electric Company, Schenectady, NY, Contract No. N-(600) (61533)-63219 with U. S. Naval Marine Engineering Laboratory, Revised 1966, p. A1-A40.
- 4. LEVY, M., HUIE, R. M., VETTIT, F. Oxidation and Hot Corrosion of Some Advanced Superalloys at 1300°F to 2000°F (740°C to 1093°C). CORR()SION, v. 5, no. 8, 1989, p. 661-674.
- 5. SEYBOLT, A. V., and EELTRAN, A. High Temperature Sulfur-Oxygen Corrosion of Nickel and Cobalt. American Society of Testing Materials, Special Technical Publication No. 421, 1967, p. 21-37.
- 6. RENTZ, W. A., WALTERS, J. J., and FREEMAN, W. R., JR. A Dynamic Hot-Corrosion Rig Testing Procedure. Journal of Mater., JMLSA, v. 4, no. 3, September 1969, p. 520-539.
- 7. FALCO, J. J., and LEVY, M. Alleviation of the Silicide Pest in a Coating for the Protection of Refractory Metals Against High-Temperature Oxidation. Journal Less Common Metals, v. 20, 1970, p. 291-297.
- 8. LEVY, M., FARRELL, P., PETTIT, F. Oxidation of Some Advanced Single Crystal Nickel-Base Superalloys in Air at 2000<sup>o</sup>F (1093<sup>o</sup>C). CORROSION, v. 42, no. 12, 1986, p. 708-717.
- 9. PETTIT, F. S., and GOWARD, G. W. Oxidation-Corrosion-Erosion Mechanisms of Environmental Degradation of High Temperature Materials. Coatings for High Temperature Applications, E. Lang, ed., Applied Science Publishers, New York, NY, 1983, p. 1-32.
- 10. MOORE, V. S., BRENTALL, W. D., and STETSON, A. R. Evaluation of Cobalt and Nickel-Base Superalloys. NASA Lewis Research Center, Contract 140. NAS 3-9401, January 1969.
- SEYBOLT, A. U. Final Report of Hot Corrosion Mechanism Study Phase II, Part A, by Research and Development Center, General Electric Company, Schenectady, NY, Contract No. N-600 (61533)-65595 with U.S. Naval Marine Engineering Laboratory, October 1967, p. 1-22.
- 12. HAMILTON, P.E., RYAN, K. H., and NICHOLES, E. S. Nickel Base Alloys and Their Relationship to Hot Corrosive Environments. ASTM STP 421, American Society of Testing Materials, 1967, p. 188-205.
- SEYBOLT, A. U. Observations of the High Temperature Sulfur-Oxygen Corrosion of Nickel. Final Report of Hot Corrosion Mechanism Studies by Research and Development Center, General Electric Company, Schenectady, NY, Contract No. N-(600) (61533)-63219 with U. S. Naval Marine Engineering Laboratory, February 1966, p. B1-B17.

## DISTRIBUTION LIST

•

)

)

يل ا

| No. a<br>Copie |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
|                |                                                                                                             |
| 1              | Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, DC 20301   |
|                | Commander, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197                     |
| 1              | ATTN: AMSRL-OP-CI-AD, Technical Publishing Branch                                                           |
| 1              | AMSRL-OP-CI-AD, Records Management Administrator                                                            |
|                | Commander, Defense Technical Information Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, |
|                | VA 22304-6145                                                                                               |
| 2              | ATTN: DTIC-FDAC                                                                                             |
| 1              | MIAC/CINDAS, Purdue University, 2595 Yeager Road, West Lafayette, IN 47905                                  |
|                | Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709-2211                      |
| 1              | ATTN: Information Processing Office                                                                         |
|                | Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue, Alexandria, VA 22333                         |
| 1              |                                                                                                             |
|                | Commander, U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD 21005                  |
| 1              |                                                                                                             |
|                | Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35809                                            |
| 1              | ATTN: AMSMI-RD-CS-R/Doc                                                                                     |
| 1              | AMSMI-CS, R. B. Clem                                                                                        |
|                | Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 07801                              |
| 2              | ATTN: Technical Library                                                                                     |
|                | Commander, U.S. Army Tank-Automotive Command, Warren, MI 48397-5000                                         |
| 1              | ATTN: AMSTA-ZSK                                                                                             |
| 1              | AMSTA-TSL, Technical Library                                                                                |
| 1              | AMSTA-RCK                                                                                                   |
| 1              | PEO-ASM, PM-Bradley, SFAE-ASM-BV-SC                                                                         |
| 1              | PEO-ASM, PM-Abrams, SFAE-ASM-AB-S                                                                           |
|                | Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005                        |
| 1              | ATTN: SLCBR-TSB-S (STINFO)                                                                                  |
|                | Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, MD 20783                             |
| 1              | ATTN: Technical Information Office                                                                          |
|                | Director, Benet Weapons Laboratory, LCWSL, USA AMMCOM, Watervliet, NY 12189                                 |
| 1              | ATTN: AMSMC-LCB-TL                                                                                          |
| 1              | AMSMC-LCB-R                                                                                                 |
| 1              | AMSMC-LCB-RM                                                                                                |
| 1              | AMSMC-LCB-RP                                                                                                |
|                | Office of the Project Manager, Tank Main Armament Systems, Picatinny Arsenal, NJ 07806-5000                 |
|                | ATTN: AMCPM-TMA                                                                                             |

Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, VA 22901

3 ATTN: AIFRTC, Applied Technologies Branch, Gerald Schlesinger

| ofTo                                                                                                 |
|------------------------------------------------------------------------------------------------------|
|                                                                                                      |
| Commander, U.S. Army Aviation Systems Command, Aviation Research and Technology Activity,            |
| Aviation Applied Technology Directorate, Fort Eustis, VA 23604 -5577                                 |
| SAVDL-EU-TAP                                                                                         |
| U.S. Army Aviation Systems Training Library, Fort Rucker, AL 36360                                   |
| ATTN: Building 5906-5907                                                                             |
| Commander, U.S. Army Aviation Systems Command, 4300 Goodfellow Boulevard, St. Louis, MO 63166        |
| ATTN: AMSAV-GTD                                                                                      |
| AMSAV-E                                                                                              |
| AMCPEO-AV                                                                                            |
| Dr. K. Bhansali                                                                                      |
| Naval Research Laboratory, Washington, DC 20375                                                      |
| ATTN: Code 5830                                                                                      |
| Code 2627                                                                                            |
|                                                                                                      |
| Chief of Naval Research, Arlington, VA 22217                                                         |
| ATTN: Code 471                                                                                       |
| Commander, U.S. All Force Wright R&D Center, Wright-Patterson Air Force Base, OH 45433-6523          |
| ATTN: WRDC/MLLP, D. M. Forney, Jr.                                                                   |
| WRDC/MLBC, Mr. Stanley Schulman                                                                      |
| WRDC/MLXE, A. Olevitch                                                                               |
| NASA - Marshall Space Flight Center, MSFC, AL 35812                                                  |
| ATTN: Mr. Paul Schuerer/EH01                                                                         |
| Chief of Naval Research, Washington, DC 20350                                                        |
| ATTN: OP-987, Director                                                                               |
| Aeronautical Systems Division (AFSC), Wright-Patterson Air Force Base, OH 45433-6503                 |
| ATTN: ASD/ENFEF, D. C. Wight                                                                         |
| ASD/ENFTV, D. J. Wallick                                                                             |
| ASD/XRM, G. B. Bennett                                                                               |
|                                                                                                      |
| Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, OH 45433                      |
| ATTN: AFFDL/FIES, J. Sparks                                                                          |
| NASA - Ames Research Center, Army Air Mobility Research and Development Laboratory, Mail Stop 207 5, |
| Moffet Field, CA 94035                                                                               |
| ATTN: SAVDL-AS-X, F H. Immen                                                                         |
| NASA - Johnson Spacecraft Center, Houston, TX 77058                                                  |
| ATTN: JM6                                                                                            |
| ES-5                                                                                                 |
| Naval Air Systems Command, Department of the Navy, Washington, DC 20360                              |
| ATTN: AIR-03PAF                                                                                      |
| AIR-5203                                                                                             |
| AIR-5164J                                                                                            |
| AIR-530313                                                                                           |
| Naval Post Graduate School, Monterey, CA 93948                                                       |
|                                                                                                      |

· .

• •

.

<sup>1</sup> ATTN: Code 57BP, R E. Ball

| No. o<br>Copie |                                                                                                                                                         |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, VA 22448<br>ATTN: Code G-54, Mr. J. Hall<br>Code G-54, Dr. B. Smith                        |
| 1              | Commander, Rock Island Arsenal, Rock Island, IL 61299<br>ATTN: SMCRI-SEM-T                                                                              |
| 1              | Armament Systems, Inc., 326 W. Katella Avenue, 4-K, Orange, CA 92667<br>ATTN: J. Musch                                                                  |
| 1              | Beech Aircraft Corporation, 9709 E. Central Avenue, Wichita, KS 67206<br>ATTN: Engineering Library                                                      |
| 1              | Bell Helicopter Company, A Textron Company, P.O. Box 482, Fort Worth, TX 76101<br>ATTN: J. R. Johnson                                                   |
| 1              | Boeing Helicopters, P.O. Box 16858, Philadelphia, PA 19142-0858<br>ATTN: N. Caravasos, M/S P30-27                                                       |
| 1              | Cessna Military, P.O. Box 7704, Wichita, KS 67277-7704                                                                                                  |
| 1              | Fairchild Industries, Inc., Fairchild Republic Company, Conklin Street, Farmingdale, Long Island, NY 11735<br>ATTN: Engineering Library, G. A. Mauter   |
| 1              | FMC Corporation, Central Engineering Labs, 1185 Coleman Avenue, Box 80, Santa Clara, CA 95052<br>ATTN: Gary L. Boerman                                  |
| 1              | Gruman Aerospace Corporation, South Oyster Bay Road, Bethpage, NY 11714<br>ATTN: Technical Information Center, J. Davis                                 |
| 1<br>1         | McDonnell Douglas Helicopter Co., 5000 East McDowell Road, Mesa, AZ 85205-9797<br>ATTN: Library<br>Mr. A. Hirko                                         |
| 1              | IIT Research Institute, 10 West 35th Street, Chicago, IL 60616<br>ATTN: K. McKee                                                                        |
| 1              | Kaman Aerospace Corporation, Old Winsor Road, Bloomfield, CT 06002<br>ATTN: H. E. Showalter                                                             |
| 1              | Lockheed-California Company, A Division of Lockheed Aircraft Corporation, Burbank, CA 91503<br>ATTN: Technological Information Center, 84-40, U-35, A-1 |
| 1              | Vought Corporation, P.O. Box 3907, Dallas, TX 75232<br>ATTN: D. M. Reedy, 2-30110                                                                       |
| 1              | Martin Marietta Corporation, Orlando Division, P.O. Box 5837, Orlando, FL 32805<br>ATTN: Library, M. C. Griffith                                        |
| 1              | McDonnell Douglas Corporation, 3855 Lakewood Boulevard, Long Beach, CA 90846<br>ATTN: Technical Library, C1 290/36-84                                   |
| 1              | Northrop Corporation, Aircraft Division, 3901 W. Broadway, Hawthorne, CA 90250<br>ATTN: Mgr. Library Services, H. W. Jones                              |
| 1              | Parker Hannifin, 14300 Alton Pkwy., Irvine, CA 92718-1814<br>ATTN: C. Beneker                                                                           |
| 1              | Sikorsky Aircraft, A Division of United Aircraft Corporation, Main Street, Stratford, CT 06601<br>ATTN: Mel Schwartz, Chief of Metals                   |

•

1 ATTN: Mel Schwartz. Chief of Metals

.

٠

)

)

,

| lo. (<br>opi |                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Teledyne CAE, 1330 Laskey Road, Toledo. OH 43697<br>ATTN: Librarian                                                                |
| 1            | Georgia Institute of Technology, School of Mechanical Engineering, Atlanta, GA 30332<br>ATTN: Mechanical Engineering Library       |
| 1            | Lukens Steel Company, Coatesville, PA 19320<br>ATTN: Dr. E. Hamburg                                                                |
| 1            | Republic Steel Corporation, 410 Oberlin Avenue SW, Massillon, OH 44646<br>ATTN: Mr. R. Sweeney<br>Mr. W. H. Brechtel               |
| 1            | Mr. T. M. Costello                                                                                                                 |
| 1            | Ingersoll Rand Oilfield Products Division, P.O. Box 1101, Pampa, TX 79065<br>ATTN: Mr. W. L. Hallerberg                            |
| 1            | SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025<br>ATTN: Dr. D. Shockey                                             |
| 1            | Illinois Institute of Technology, Metallurgical and Materials Engineering Department, Chicago, IL 60616<br>ATTN: Dr. Norman Breyer |
| 1            | Corpus Christi Army Depot, Corpus Christi, TX 78419<br>ATTN: SDSCC-QLS                                                             |
| 1            | Naval Air Warfare Center, Warminster, PA 18974-5000<br>ATTN: Dr. Uinod S. Agarwala (Code 6062)                                     |
| 1            | Ohio State University, Department of Metallurgical Engineering, Columbus, OH 43212<br>ATTN: Dr. B. Wilde                           |
| 1            | LRA Laboratories Inc., 18195A East McDurmott, Irvine, CA 92714<br>ATTN: Dr. Lou Raymond                                            |
| 1            | McDonnell-Douglas Helicopter Co., Mesa, AZ 85205<br>ATTN: J. Hawkins                                                               |
| 2<br>15      | U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001<br>ATTN: AMSRL-OP-CI-D, Technical Library<br>Authors           |

(

(

(