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Abstract 

The broad and continuous tunability of the if linac-driven free-electron laser (FEL), 

coupled with its high power picosecond time structure, has greatly enhanced the research 

capabilities in the field of infrared spectroscopy. However, the duration of the optical puls- 

es is often too long to probe ultrafast processes that occur on time scales of a few tens to a 

few hundreds of femtoseconds, and the spectral structure of the optical beam, with closely 

spaced longitudinal modes in a bandwidth determined by the Fourier transform of the short 

pulses, poses a significant limitation for experiments requiring high spectral resolution. 

The temporal resolution can be improved by operating the FEL with electron pulses 

whose energy varies linearly with time; the resulting optical pulses possess substantial fre- 

quency chirps and are susceptible to pulse compression in an external dispersive delay line. 

The spectral resolution can be enhanced by using an intracavity Michelson interferometer to 

couple successive optical pulses so that they build up from noise with a definite phase rela- 

tionship; the longitudinal modes in the output beam are then separated by the if frequency 

of the linac and can be individually filtered for applications in high resolution spectroscopy. 

In this dissertation, I develop small signal analyses for each of these modes of oper- 

\ ation, and report the results of numerical pulse propagation simulations whose parameters 

were chosen to guide the design of feasible experiments on the Mark IE FEL. Chirped- 

pulse simulations using modest energy chirps have demonstrated a xlS compression ratio 
at saturated power levels for 3.4 ps optical pulses at 3.35 Jim, and coupled pulse simula- 

tions have indicated substantial longitudinal mode reduction on microsecond time scales. I 

also develop a simplified derivation of the FEL coupled mode equations using conventional 

mode locked laser theory, and solve them numerically in the frequency domain to describe 

the detuning properties of the Michelson resonator FEL Finally, I report the first operation 

of a Michelson mirror resonator on the Mark HI FEL, and present indirect evidence for 

phase locked operation using a beamsplitter reflectance of only 1.4 %. 
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taüon: 

A NOTE ON SIGN CONVENTIONS 

The following sign conventions are observed consistently throughout this disser- 

1. The carrier phase of the optical electric field is written exp[i(kz-cot)]. 

Consequently, for example, (0 s - dfy^, 

2. Positive energy (frequency) chirps are defined as energies (frequen- 

cies) that increase towards the trailing edge of the electron (optical) 

pulse. The converse is true for negative chirps. 

3. Positive cavity detunings refer to cavity lengths that arc shorter than 

the synchronous cavity length. The converse is true for negative cav- 

ity detunings. (This sign convention is an artifact of the pulse prop- 

agation code; it reflects the fact that positive detunings push the optical 

pulse forward in time.) 

These sign conventions are noted at appropriate points throughout the dissertation. 



Chapter 1 

Introduction 

The broad and continuous tunability of the rf linac-driven free-electron laser (EEL), 

coupled with its high power picosecond time structure, has greatly enhanced the research 

capabilities in the field of infrared (JR.) spectroscopy. For example, the access of the Mark 

HI FEL [l]-[3] to the mid-IR band from 2 ^im to 10 p.m presently allows the fundamental 

study on picosecond time scales of the vibrational modes of molecules [4], the dynamics 

[5] and spectroscopy [6] of advanced and high speed materials for electronics, and the dy- 

namics of important biochemical and photochemical phenomena [7]. However, the duration 

of the optical pulses is often too long to probe ultrafast processes that occur on time scales 

of a few tens to a few hundreds of femtoseconds, and the spectral structure of the optical 

beam, with closely spaced longitudinal modes in a bandwidth determined by the Fourier 

transform of the short pulses, poses a significant limitation for experiments requiring high 

spectral resolution. The availability of a mid-IR source with pulse durations on the order of 

hundreds of femtoseconds and increased peak powers would greatly enhance the study of 

ultrafast molecular dynamics and nonlinear spectroscopy [8], and a powerful infrared laser 

with a narrow spectral resolution would fill an important gap in the capabilities of present 

infrared sources [9]. 

Fortuitously, the rf linac-driven FEL possesses unique temporal properties that are 

amenable to improvements in both the temporal and spectral resolution of the optical beam. 

The temporal resolution can be improved by operating the FEL with electron pulses whose 

energy varies linearly with time [10]-[12]; the resulting optical pulses possess substantial 

frequency chirps and are susceptible to pulse compression in an external dispersive delay 



line. The spectral resolution can be enhanced by using an intracavity interferometer to cou- 

ple successive optical pulses so that they build up from noise with a definite phase relation- 

ship [13]-[15]; the axial mode spacing is increased from the round trip frequency to the rf 

frequency, and the modes can be individually filtered for applications in high resolution spec- 

troscopy. The chirped-pulse and phase locked enhancements on the rf linac-drivenFEL, and 

a brief history of their conceptual development, are described below in Section m. 

The purpose of this dissertation is to study the implementation of these enhancements 

in configurations appropriate to high resolution spectroscopy, and to establish a theoretical 

framework for future applications. In the present work, I develop small signal descriptions 

for both the chirped-pulse and phase locked FELs, and report the results of extensive nu- 

merical simulations which support the theoretical predictions and indicate the feasibility of 

realizing each of these enhancements on conventional rf linac-driven systems. Simulation 

parameters are chosen to guide the design of feasible experiments on the Mark III FEL, 

whose configuration provides a valuable test bed for experimental studies of botn energy 

chirping and phase locking, and practical designs for such experiments are described. 

Despite the noted application in recent years to many important experiments in infra- 

red spectroscopy, the infrared free-electron laser is barely if ever mentioned in almost any 

review of the present status of that field. However, current trends are changing, and the 

stability and reliability of infrared FELs have been demonstrated at several laboratories of- 

fering dedicated user programs in infrared applications [16]. The high resolution enhance- 

ments described in this dissertation promise to contribute significantly to further advances 

in the field. 

n. THE MARK m FREE-ELECTRON LASER 

A free-electron laser consists of a high brightness source of ultrarelativistic electrons, 

an electron beam transport system, a spatially periodic magnetic field (the wiggler field), and 

an optical resonator co-linear with the axis of the wiggler. The configuration of a typical rf 

linac-driven FEL with Brewster plate output coupling, such as the Mark IE FEL, is shown 

in Fig. 1.1. The laser action is provided by the coupling of the transverse motion of the elec- 

trons in the wiggler field to the transverse electric field of the co-propagating optical wave 

stored in the resonator, and the continuous tunability is provided by continuous changes in 

either the wiggler magnetic field or the electron energy [17]. 

The Mark DI FEL is i^iven by a 2.857 GHz pulsed rf linac using electrons from a 

synchronized microwave gun and a thermionic cathode source. The linac energy can be set 

continuously from 45 MeV to 25 MeV, for which the 2.3 cm period of the wiggler magnet 

yields optical wavelengths from 2 urn to 10 ^tm. At any given energy, the strength of the 
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Fig. 1.1    An rflinac-driven free-electron laser with Brewster plate output coupling. 
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wiggler B-field can also be varied to yield more than an octave of tuning. The 30 MW rf 

source is pulsed at a repetition rate of 1 Hz to 30 Hz and yields electron macropulses with a 

duration of 1 p.s to 8 u.s. Each macropulse consists of a train of picosecond micropulses 

delivered at the rf frequency of 2.857 GHz, which repetition rate is the result of thermionic 

emission in die microwave gun which fills every bucket of the rf wave. An important con- 

sequence of this driving frequency is that the 1.837 m optical cavity contains 35 circulating 

optical micropulses that can be successively phase locked to yield spectral modes separated 

in frequency by 2.857 GHz. 

The macropulse and micropulse structures of the optical beam are essentially the 

same as those of the electron beam and are illustrated in Fig. 1.2. In the absence of any 

mechanism to couple successive optical pulses, the latter build up independently from noise 
_C — 

and the spectral modes are separated by the ^ round trip frequency. These optical pulses 

have durations of several picoseconds and peak output powers of several megaWatts, from 

4 A A — A i IA • • jbT>(several * 
350 ps 

Fig. 1.2   Temporal structure of the optical beam from the Mark m FEL. 



which all of the pulse energy (several microJoules) is available for external pulse compres- 

sion in the chirped-pulse mode. The optical cavity is constructed of metal mirrors, and 

Brcwster plate output coupling appropriate to the horizontally polarized radiation, to exploit 

the full tuning range of the laser. 

m. HIGH RESOLUTION ENHANCEMENTS 

3 

The chirped-pulse EEL uses electron pulses with a linear temporal energy depen- 

dence to drive the formation of optical pulses with a linear temporal frequency dependence.1 

Electron pulses with such an energy dependence can be produced in an rf linac by accelerat- 

ing the pulses off the peak of the rf wave at phases where the field gradient is large [10]. 

Conceptually, the easiest way to visualize the chirped-pulse EEL is to imagine an electron 

pulse consisting of a continuous succession of much smaller electron pulses, each possess- 

ing its own discrete energy. In the description of the EEL interaction as the stimulated scat- 

tering of virtual photons from the wiggler field into real photons in the laser field [18], each 

small section of the electron pulse will scatter photons of different frequencies, because the 

photon frequency varies as the square of the electron energy [17]. This conceptual picture 

is illustrated in Fig. 1.3. In principle, the chirped-pulse EEL can operate at any wavelength 

to which the laser can be tuned. 

Moore was the first to propose the concept of energy chirping in an rf linac-driven 

EEL [10], and suggested that negatively chirped electron pulses (in which the energy de- 

creases towards the trailing edge) would increase the extraction efficiency in an analogous 

v.^ 
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Fig. 1.3   Energy chirping in a free-electron laser. 

The laser frequency actually varies as the square of the electron energy. However, a linear temporal ap- 
proximation is valid for the short pulses considered in the present study. 
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manner to the tapered wiggler EEL [19]. He developed a theoretical description of such a 

device in the highly saturated, large signal regime, and derived [10] and applied [11] the 

appropriate equations of motion in a simulation code to study the behavior of the laser from 

spontaneous radiation to full saturation. Although enhanced efficiencies were observed in 

some instances, they were not in accord with the theoretical predictions. At the time of this 

writing, the operation of a chirped-pulse FEL for the purpose of high energy extraction or 

external pulse compression has not been reported. Hartemann et al [20] do describe the 

operation of an FEL amplifier at 10 GHz (30 mm) in which a frequency chirped microwave 

pulse was actively compressed in the interaction region. However, that scheme was entire- 

ly different from the one proposed by Moore; the electron energy was not chirped, and pulse 

narrowing was achieved only via the amplification of those microwave frequency compo- 

nents that were resonant with the FEL interaction. Therefore, the scheme is more appropri- 

ately described as a selective amplification (in which most of the input pulse energy does 

not appear in the short output pulse), rather than as a true pulse compression (where all of 

the energy in a chirped output pulse is compressed in an external dispersive delay line). 

The phase locked FEL is actually a variation on an old theme. In such an FEL, an 

intracavity interferometer is used to couple successive optical pulses so that they build up 

from noise with a definite phase relationship. The most convenient configurations employ 

multiple mirror resonators such as the Michelson mirror resonator [21] (studied in this dis- 

sertation) or the Fox-Smith resonator [22]. However, other schemes have also been pro- 

posed, such as multiple intracavity diffraction gratings [13] in which the various diffraction 

orders undergo different round trip delays with respect to the incoming electron pulses. 

The use of an intracavity interferometer for phase locking is most easily understood 

in the frequency domain. To clarify the picture, we first distinguish between supermodes 

and hypermodes. Supermodes are self-similar sets of longitudinal laser modes that repeat 

identically from pass to pass, allowing multiplication by a complex constant; the Fourier 

transform of the dominant supermode yields the shape of the stable circulating optical pulse. 

Hypermodes are sets of longitudinal laser modes that arc coupled together by the action of 

an intracavity loss or gain modulation; if the modulation frequency is some integral multiple 

N of the round trip frequency (the so-called harmonic mode locking [23]), then every N* 

mode will be coupled together, and there will be N circulating optical pulses per round trip. 

For example, N = 35 in the Mark III FEL. In the absence of any coupling between the hy- 

permodes, which is the case for the linear, small signal regime of the FEL, each hypermode 

will evolve independently and will possess its own complete set of supermodes. 

Intracavity interferometers can be used to filter individual supermodes and increase 

the duration of the corresponding optical pulses. This application is illustrated in Fig. 1.4(a) 
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Fig. 1.4    Intracavity filtering of laser longitudinal modes: (a) filtering of individual supermodes; 
(b) filtering of individual hypermodes. 

and has been employed in storage ring FELs [24]. For line selection in cw lasers, the nar- 

row axial modes of a multiple mirror resonator can in some cases be used to select a single 

laser mode in the gain spectrum and suppress all the others, thereby achieving single mode 

operation. This application is more conventional and is described in several review articles 

[25]. In phase locking applications, the narrow axial modes of the multiple mirror resona- 

tor do not select a single laser mode, but they do filter a given hypermode. The filter can be 

tuned so that the stable supermode is unaffected by the interferometer, but in the presence 

of homogeneous laser saturation only a single hypermode will dominate the laser spectrum. 

This application is illustrated in Fig. 1.4(b), and yields a train of phase locked optical pulses. 

i.e. pulses possessing identical envelopes and phases, separated by the modulation period. 

The history of mode selection and modulation using passive intracavity filters is as 

old as *' - laser literature. However, the application of multiple mirror resonators for the 

selection of individual hypermodes in an harmonically mode locked laser appears to be 

novel, and particular to the rf linac-driven FEL. The reason for this is most likely due to 



the fact that, while harmonic mode locking has been demonstrated in conventional lasers 

using active intracavity modulation [26], harmonic numbers were usually relatively small 

(N < 5). Therefore, no great advantage in terms of mode separation would be obtained from 

hypermode suppression. On the other hand, rf linacs typically operate at several GHz, and 

due to engineering constraints most rf linac-driven FELs can only operate with harmonic 

numbers at least on the order of several tens. Consequently, a considerable advantage in 

terms of mode separation can be obtained from hypermode suppression. The idea for phase 

locking appears to have surfaced at several EEL laboratories independently [13]-[15]. How- 

ever, the presentjjissertation contains the only complete theoretical description of the opera- 

tion of such devices known to the author, and also describes the first operation of a phase 

locked FEL. 

IV. FEL SPECTROSCOPY 

A summary of potential applications of the chirped-pulse and phase locked FELs 

would span the entire field of infrared spectroscopy, and the limited space in this Introduc- 

tion precludes any attempt to present such a summary. However, these devices do possess 

several unique properties which should be noted. 

_ As previously observed, a stable infrared source with femtosecond time resolution 

^J or ultrahigh spectral resolution would greatly extend the research capabilities in infrared 

spectroscopy. The main advantages of the proposed FEL enhancements over conventional 

infrared sources are that they do not rely on nonlinear optical processes in crystals (so that 

they can be very stable), and they can be implemented at any wavelength to which the FEL 

can be continuously tuned. They are also intrinsically of very high power: compressed op- 

tical pulses at 3.35 |im with durations of 220 fs and peak powers of 30 MW are feasible, 

and a single mode from a 4 jis, 60 mJ macropulse of phase locked, 3.5 ps optical pulses 

would yield 150 W of cw power. The spectral resolution of one of these modes is in prin- 

ciple limited only by the duration of the macropulse; a 4 jis macropulse at 3 ^tm would yield 

a fractional line width of AXA - 10. 

An important and unique property of chirped-pulse and phase locked FELs, which 

evidently has not been previously considered in any other device, is the potential capability 

to implement both of these enhancements simultaneously. This does not violate the Fourier 

uncertainty principle; each of the fast-time and high spectral resolution components, while 

present in the same optical beam, would necessarily act on different properties of the physi- 

cal system under study. In such a configuration, it may be possible to study the competing 

effects of induced fast dynamical processes, such as collisional energy transfer from select- 

ed excited states, on the narrow spectral features of long-lived atomic or molecular states. 



For example, it may be possible to use the ultrafast pulses to pump excited vibrational states 

and to simultaneously use the filtered beam to probe the collisional energy transfer to select- 

ed rotational states. 

Further applications of high resolution optical beams include experiments in high 

power, high resolution, Dopplcr-free, coherent two-photon spectroscopy. If 0) is the fre- 

quency of the centermost mode coincident with the sample response curve, then that mode 

plus each pair of surrounding modes all contribute a high resolution two-photon excitation 

of 2ax All of the macropulse power could then be utilized to excite the sample response. 

V. OUTLINE OF THE DISSERTATION 

This dissertation is organized into two Parts. Part I is concerned with the chirped- 

pulse FEL and is comprised of Chapters 2 and 3 and Appendix A. Chapter 2 describes the 

small signal theory of the chirped-pulse FEL and the pulse propagation code used in the 

numerical simulations, and Chapter 3 describes the results of those simulations. Appendix 

A describes the design of a pulse compression experiment on the Mark in FEL based on 

the simulation results from Chapter 3. 

Part II is concerned with the Michelson resonator FEL and is comprised of Chapters 

4 through 6 and Appendix B. Chapter 4 contains a theoretical and numerical description of 

the passive mode structure and mode decay in a Michelson resonator FEL, and Chapter 5 

contains a theoretical and numerical description of the supermode structure and mirror de- 

tuning effects. Chapter 6 describes the first operation of a Michelson mirror resonator on 

the Mark ITJ FEL, and Appendix B presents a more appropriate design of the resonator and 

diagnostics for applications in high resolution spectroscopy. 

Finally, Chapter 7 presents some conclusions and summarizes the important results 

from this dissertation. 
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Chapter 2 

The chirped-pulse free-electron 
laser 

The generation of optical radiation in a free-electron laser (FEL) can be considered 
as the stimulated scattering of a spatially periodic, coherent magnetic field (the wiggler 
field) by a beam of ultra-relativistic electrons [1]. The laser builds up from spontaneous 
radiation with a wavelength A detennined primarily by the Doppler upshift condition [2] 

A = h[1 + ( eBA. } 2] a h [1 +K2] (2.1) 
2f 27tmc2 2f 

where A.w is the pericxi pf the magnetic field. B is the nns magnetic field strength, e is the 
electron charge (cgs units), and ymc2 is the electron energy. To maintain resonance with 
the electrons, the optical field must slip ahead of the electrons by one optical wavelength as 

the electrons traverse one period of the wiggler magnet [3]. Thetefore, in the stimulated 
emission process, the interaction of the light with the electrons occurs only within a slip
page distance equal toN .. times the optical wavelength, where Nw is the number of wiggler 
periods. For electron pulses which are much longer than the slippage distance, it is possi
ble to have radiation generated by one section of the electron pulse that never communicates 
with the electrons far ahead in the pulse; in principle, such electrons can even possess dif
ferent energies, and generate different optical wavelengths as detennined by th:: Doppler 
upshift (or resonance) condition (2.1). 

The chirped-pulse FEL has been proposed as a means to increase the extraction 
efficiency of untapered. rf linac-driven FELs via the production of highly chirped. coherent 

10 
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optical pulses [4], [5]. In such an FEL, the injected electron energy varies linearly with 

position within the micropulse, and the resulting optical pulses exhibit a linear frequency 

chirp of the same sign. An enhanced extraction efficiency is predicted for electron micro- 

pulses in which the energy decreases towards the trailing edge, because electrons trapped in 

the ponderomotive potential wells are slowed down as they slip behind the optical field and 

experience a continuous and adiabatic decrease in the optical frequency. Such an energy 

extraction mechanism is analogous to the operation of a tapered wiggler FEL [6], in which 

electrons trapped in the ponderomotive potential wells are slowed down by an adiabatic 

decrease of the wiggler parameter K, or alternately the wiggler period Xw, as they traverse 

the undulator. 

Apart from the predicted capability to increase the extraction efficiency, the chirped- 

pulse FEL delivers chirped optical pulses which are susceptible to pulse compression in an 

external dispersive delay line, in contrast to the tapered wiggler FEL. As a means of pro- 

ducing highly chirped output pulses, the FEL does not suffer from the material constraints 

encountered with fiber techniques, such as optical damage, nonlinear scattering losses, or 

limited dispersion [7]. The chirped-pulse FEL can operate at almost any wavelength to 

which the laser can be tuned, and can yield optical chirps of either sign with a magnitude 

determined by the phase offset of the electron micropmses in the rf linac [4]. 

j A simple calculation shows that substantial compression ratios can be expected even 

with modest energy chirps. For example, consider a 4 ps electron pulse with a full width 

energy chirp of "Y/y = + 2 %, with energies increasing towards the trailing edge. If we 

assume that the optical pulse at saturation is of the same duration, and that the FEL resonance 

condition (2.1) determines the lasing frequency at all points along the pulse, then the corre- 

sponding linear frequency chirp is °®/a> = 2 "Y/y = +4 %. This pulse can be compressed 

by a factor roughly equal to the ratio of the bandwidth of the chirped pulse to the bandwidth 

of in unchirped pulse of the same duration [8]. If the mean wavelength is 3 ^im, then this 

ratio is approximately (0.04)-(-nc/3 timVC A* Ps) = 16, so that the 4 ps pulse should be 

compressible to roughly 250 fs. At 3 pn, this is only 25 optical cycles. In principle, much 

larger energy chirps than 2 % should be feasible in some rf linac systems. 

In this chapter, I derive some analytical results concerning the FEL interaction in the 

presence of chirped electron pulses, such as the gain reduction and the shift in the gain 

curve, and I describe the numerical simulations used to model the optical pulse formation. 

In the following chapter, I present the results of these numerical simulations with particular 

emphasis on designing a feasible pulse compression experiment/on the Mark III FEL, and 

in Appendix A, I describe the design of such an experiment using a dispersive delay line 

consisting of four minimum deviation, Brewster angle sapphire prisms. 
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II. FEL PULSE PROPAGATION 

The interaction between the electrons and optical wave in a planar undulator is de- 

scribed self consistently by the dimensionless Maxwell-Lorentz equations of motion, which 

for CW electron and optical beams are usually written without regard to microtemporal 

position as [9] 

^> = |a(x)|cosfe(x) + tXx))       , (2.2) 

^ = -r(exp(^(x))>^0   , (2.3) 

where x = ct / L is the dimensionless time, £(x(t)) = (k + k^zft) - cot is the phase of the 

electron in the ponderomotive potential, v(x(t)) = d£(x)/dx = L [(k + kw)ßz(t) - k] is the 

phase velocity or energy detuning parameter, 

<m u 47cNw^eK(Jo-Ji)Xw£(T(t))eM(x(t)) (24) 

^mc2 

is the din^nsionless form of the slowly varying part of the (plane-wave) optical electric 

field E(z,t) = VI E(x(t)) exp [i (kz - cot + tXx(t)))] (A indicating rms values), and 

3 r = sii|i(uf£i(Jo.Jl)3nc 
mc 2 rf Xw 

(2.5) 

is the dimensionless current density. The parameters appearing in these quantities are de- 

fined in Table 2.1 (Section V). Equation (2.2) is the pendulum equation describing the 

phase space evolution of the electrons in the presence of the optical wave. Equation (2.3) 

is the reduced wave equation written in the slowly varying envelope approximation, and is 

driven by transverse electron currents averaged over initial phases ^ = £(0); in the present 

analysis we assume an instantaneously mono-energetic electron beam, for which a further 

average over initial energy detunings v0 = v(0) is excluded. For a constant value of r char- 

acterizing a continuous electron beam, the quantities ^(x), v(x), and a(x) are functions only 

of the time x since the entrance to the undulator. 

If the electron beam possesses non-CW properties (for example, if it consists of 

short pulses or chirped energies), then the above equations, which remain valid on a micro- 

scopic scale, must be modified to include the global evolution of the microbunches due to 

slippage between the electron ai.d optical pulses. This is accomplished by introducing an 

extra variable dependence on the microtemporal position z = z - ct for each of the quanti- 

ties a = a(z,x), \ = £(z,x), v = v(z,x), r = r(z), and including the slippage s explicitly as 

follows [9]: 
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<Mz/o m aj^o = |a(5.st/c)|cos(^>x) + ^.stt)) t    (26) 
8x       ax2 

^- = -r(z + sx) (exp (-il;(z + sx.x)) fo     . (2.7) 
9x 

Here, s = NWX is the slippage between the optical and election pulses which obtains as x 

varies from 0 to 1 along the undulator. It is important to keep in mind that z and x are 

independent variables, and that z refers to a position in the optical pulse at which the 

optical wave appears stationary for all x. The same is true of the electron beam quantities. 

Equations (2.6,7) may be reduced to a single integral equation for the optical pulse 

evolution by eliminating the electron beam quantities. Integrating (2.6) twice and expand- 

ing to lowest order in the optical field I a I (the small signal regime) yields 

£(z,x) = £o + v0(z)x +     dp I   dq | a(z - sq,q) | cos feo + Vo(z) q + fl(z - sq,q)) + 0( | a \2) 

Jo    k 
■   (2.8) 

Upon evaluating £(z,x) at z -*■ z + sx, substituting into (2.7), and averaging over initial 

electron phases ^> e [0, 2K] in the lowest order terms in I a I, we obtain after some algebra 

gafet) Birg + sT)      dpj   ^a(i + s(t_q)rq)e^(_iVo(Z + sx)(t_q))  . (2.9) 

* Jo    Jo 
A final integration then yields 

f a(i,x) = a(z,0) + £     dx' r(z + st') I   dq (x'-q) a(z + s(x'-q),q) exp (-iv0(z + sx') (x'-q)) 

0 3o 

(2.10) 

where one of the integrals has been evaluated explicitly upon changing the order of the inner- 

most integrations. The surviving dependence of Vo on I + sx' allows for the possibility that 

the electron beam may possess chirped energies, in which case the resonance parameter will 

change as the optical pulse slips over the electron pulse in one pass through the wiggler. 

m. GAIN SHIFT AND GAIN REDUCTION IN THE CHIRPED-PULSE FEL 

If the energy chirp is sufficiently small, then the small signal properties of the laser 

should be similar to those of the unchirped laser, except for the possibility that the spectral 

width of the resulting optical pulse may be much larger man the transform limit if the pulse 
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is very long. Specifically, the small signal gain should be unaffected by an energy chirp in 

which the energy changes by no more than the gain bandwidth along one slippage length. 

However, energy chirps much greater than this limit should yield appreciable gain reduction, 

because in that case the lasing elections cannot maintain resonance with the optical field in 

one complete pass through the wiggler. In practical applications of the chirped-pulse EEL 

utilizing highly chirped pulses, it is therefore important to know the gain reduction as a 

function of the energy chirp. 

The small signal gain is obtained by integrating (2.10) for a specific dependence of 

the energy detuning Vo(z) on the microscopic position within the electron beam. However, 

we should first clarify the difference between the energy detuning parameter Vo, defined in 

Section II as 
v0 = L[(k + MWk], (2.11) 

and the resonance parameter, which has the same form in the absence of energy chirping 

and assumes a value of vo = 2.606 in a CW plane-wave FEL. We note that vo depends on 

the frequency o) via k s co/c, and that, in general, the frequency depends on the time deriv- 

ative of the slowly varying optical phase $. The difference between the energy detuning 

parameter and the resonance parameter is that the energy detuning does not include the 

derivative of thr optical phase t> in the definition of co; the resonance parameter does. This 

.J distinction is important because vo appearing in (2.10) is the energy detuning (2.11), result- 

ing from the fact that the Maxwell-Lorentz equations of motion assume an optical phase of 

the form exp[i(kz - cot + •&)], in which CO is a constant carrier frequency independent of $. 

It is this co that appears in the definition of vo, and any temporal dependence of the slowly 

varying phase d does not enter. Consequently, the z-dependence of VQ comes only from 

the z-dependence of ß^o (via the chirped energy). We assume a linear energy chirp of the 

form _ _ 
v0(z) = vo + vi-z      , (2.12) 

sothat V0(Z + ST') = v0 + vr(z + sx') = v0(z) + vrsx'   , (2.13) 

where Vo is the -nergy detuning at z = 0 in some reference frame fixed with respect to the 

electron pulse. The connection between the z-dependences of Vo(z) and the dimensionless 

optical field a(z) is clarified by imagining a reference frame z attached to each of the electron 

and optical pulses; these frames are coincident at the beginning of the undulator, but at the 

end of the undulator the optical reference frame is shifted ahead of the electron reference 

frame by the slippage distance. 

Upon introducing the small gain condition a(z + s(t'-q).q) -* a(z + s(x'-q),0) and 

substituting (2.13) into (2.10), we obtain after some variable substitutions 
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Äa(z) = a(z,l) - a(z,0) (2.14) 

dyya(i + y)e-ivoy/s|     ^ ^ e-ivlZy/S      ^ (2 J5) 

0 /z+y 

where Vo is independent of z. In the absence of energy chirping (Vj = 0), this is the same 

result obtained from the small gain supermode theory [10], [11]. For a chirped electron 

beam with constant current, we may set r(z) = r = constant and integrate (2.15) to obtain 

Aa(z) = T_     dy .a(5 + y) e^oOWs (e-iviy. e-iviy2/s) (2 16) 

2s2vij0 

where we have reinserted vo(z) = vo + Vj- z . To complete the integration, we assume a 

chirped optical field of the form 

a(z) = a.ei[<t>o2 + <Piz23    , (2.17) 

in which 'a' is independent of z (reflecting the assumption that the FEL interaction yields 
the same growth at all points along the optical beam). The connection between §\ and Vi is 

then established from symmetry by requiring that the initial resonance parameter be the 

same at all points along the optical beam, because it is this condition which determines the 
*> absolute optical frequency for which the FEL interaction will experience maximum gain. 

The energy detuning vo(z) and the frequency detuning co(z) now both enter into the defini- 

.   tion of the resonance parameter n(z), where 

°® = "^ = " df" f = +c(*o + 2^) (2-18) 

(the last equality resulting from the variable substitution t = - 17c). For the difference in the 

resonance parameter between two points ?i and zi, 

Zj -Zi 

Au I H4T:NW—, - il^Acol =0     ,       (2.19) 
I h ■ zi y    7,. 7,       c \^-z} 

or Av0|_    _ - §Aco|_    _ = 0    , (2.20) 
Z2 - Zi I Z2 - Zi 

equations (2.18) and (2.12) then immediately yield the result 

♦l - +^    . (2.21) 

Furthermore, we may set <J>o = 0, which merely incorporates any-uniform frequency detun- 

ing implicidy into the value of Vo. Finally, substitution into (2.16) of a(z) from (2.17) and 

v0(z) from (2.12) with the above values of <|>o and ty\ yields the complex small signal gain 
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rl 

^U.JiL      dxc^h + TlSinf^xCx-Dl 
a(z)        V! s L 2 '\ 

(2.22) 

The maximum |value| of the argument of the sine function is |Vis/S|, so by introducing the 
small chirp condition I Vi s I 

Ig"! * (2-23) 

we may integrate (2.22) in closed form to yield 

(2.24) 

This is exactly the small signal gain for the usual (unchirped) FEL [12], except that the opti- 
mum value of the resonance parameter VQ is shifted to 

Vo0Pl = 2.606-^-    , 

which is analogous to the gain shift in the tapered wiggler FEL [9], [13]. 
The power gain G is related to the real part of the complex gain (2.22): 

G(a,5)-2Rc(^U-2t( dx- 
I a® I 8 Jo 

sin[ccx]-sin fx(x-l) 

(2.25) 

(2.26) 
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Fig. 2.1    The analytical small signal gain (assuming a plane-wave interaction), and the corresponding val- 
ue of a0?1 m vo0!* + 8/2, for arbitrary values of the resonance shift 5 * vjs. Here, vo0?' is 
the optimum resonance parameter ai the beginning of the undulator. The current r = 1. 
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0.03 

Resonance parameter v0 

Fig. 2.2   The small signal gain as a function of VQ, for a resonance shift of 8 = lOxc and a current of r = 1. 

> 

where a = Vo + Vi s/2 and 6 = Vi s. The maximum value of G and the optimum value of 

a are plotted in Fig. 2.1 as functions of 8, the resonance shift along the slippage length. We 

note that the small signal gain drops only slightly for values of 8 approaching the gain band- 

width of 2K. However, the gain drops rapidly beyond this point, and the optimum reso- 

nance parameter shifts to smaller values corresponding to shorter wavelengths at the entrance 

to the wiggler. The gain reduction in this regime results from the fact that resonance can be 

maintained only over a small fraction of the wiggler length, which reduces the effective num- 

ber of wiggler periods and broadens the spectrum. The spectral distortion is accompanied 

by fluctuations in the gain function due to the rapid oscillation of the resonance parameter at 

other positions in the undulator, which fluctuations are illustrated in Fig. 2.2 for the case of 

8 = 10K, and lead to the discontinuities in Fig. 2.1. Similar behavior is observed in tapered 

wiggler FELs [13], [14], for which the gau function has the same form as (2.26).1 Never- 

theless, in practical applications of the chirped-pulse FEL in pulse compression experiments, 

This is most easily seen by solving the Maxwell-Lorenu equations for the case of a tapered wiggler FEL, 
which take the form [9]        dv(i/t)     ,  i  ~        \     i. -        -        v 

' - 5+| a(z - n,*.) | cos U(Z,T) + «<z - rc/c)) 

Mit) 
dx 

The analogous equation to (2.10) is 

-rü + tt) < exp (-i*(z" + $vt)) >&, 

KM) Xl0) + J- 
2 

dpi(z- sp)    dq(p-q)^(I + fO>-q)^)exp[-ivo(p-q)+■^(P,-<l,))     , 

which upon setting r, a, and v„ all independent of z yields precisely the result (2.22) with 8 «-♦ \x s. 
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it is possible to achieve extremely broad band optical pulses with energy chirps substantially 

smaller than the gain bandwidth divided by the slippage distance. Therefore, the problems 

of gain reduction and spectral distortion can be avoided in almost all cases of interest 

In deriving the above results for large energy chirps, it is necessary to justify some 

approximations. In particular, the dimensionless electric field 'a' and current density V 

defined in (2.4) and (2.5) are scaled by the electron energy y, which by assumption is a 

function of the microscopic position z within the pulse and leads to the z-dependence of Vo. 

We have treated y as a constant in those scaling relations. However, we are really only 

interested in the interaction of the electrons with the radiation inside a distance no longer 

than the slippage length (corresponding to a single pass through the undulator), and for the 

case of Nw » 1, the relation 8 = 4KNW ^Yw/y yields a large variation in the energy detun- 

ing parameter 8 even for modest changes in y over the slippage length. For the Mark in 

FEL with Nw = 47, the example of Fig. 2.2 with 8 = IOTC yields Ay(z)/Y = 5.3 %, which is 

accurately described by the dimensionless equations of motion with constant scaling. An 

analogous conclusion [9] holds for the tapered wiggler FEL with Nw » 1, in which case a 

large 8 can be achieved with small variations in AXw(x) or AK(x) along the undulator, so 

that the dimensionless equations with constant scaling are also appropriate. 

IV. NUMERICAL SIMULATIONS OF THE CHERPED-PULSE FEL 

The equations used to model the FEL interaction are based on the Maxwell-Lorentz 

equations of motion for electrons responding to the multiple transverse modes of an optical 

resonator [15], and assume the slowly varying envelope approximation for the optical 

pulse. This approximation will still be valid for the frequency chirps encountered in the 

present simulations. The radial dependence is factored out of the equations of motion by 

assuming that the electrons remain on rigid sheets whose spatial and temporal features are 

independent of the initial phase and velocity of the electrons [16]. With this approximation, 

a filling factor can be calculated for each of the cavity modes to account for the transverse 

coupling with the electron beam. We decompose the optical field acting on the electrons as 

Eti.r.OePG.™) = £ cji,.)yr1.)e
iWr,') (2.27) 

m 

where E„,(r,t), Ym(r,t) are the amplitude and phase of the m* normalized Gauss-Laguerre 

cavity mode evaluated at the electron position corresponding to radius r and time t since the 

entrance into the wiggler, and cm(z,t) = |Cn,(z,t)| expftq^fct)] is -the projection of the field 

onto the m* mode which depends on both the time t and position z relative to the center of 

the optical pulse. 
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In terms of the dimensionless current density r and electric field am, defined as 

mc2 \Y/ Xw 

and ajz.t) = **^fft-W«Ui.t)  , (2.29) 

where the dimensionless time x = (c/L)t, the equations used to model the interaction can 
then be written as follows [17]: 

dvfcx) 

dt m 

ggg£c) 
ax 

= £ | aj[z,x)|RA|C(x)| cosfez,x) + vJfrt)- arg(fm(x))j (2.30) 
m 

= v(z,x) (2.31) 

^=M = -i(2)fin(x)(pmici(Uvo)exp[-i^o.Vo)])^fVo        . (2.32) 

Equations (2.30) and (2.31) comprise the pendulum equation for the phase £ and 
_ velocity v of the electrons. Equation (2.32) is the modified wave equation written in the 
.jF slowly varying envelope approximation. The quantity fm(x) is a complex filling factor 

calculated for the m* transverse mode evaluated at the electron position corresponding to 
time x, and RA is the ratio of the area of the optical mode to that of the electron beam; these 
filling factors are calculated from the weighted averages of the phase and amplitude of the 
optical modes over the radial electron distribution assuming paraboloidal charge sheets. The 
longitudinal charge distribution ne(z) is taken to be a tophat pulse, but a density fluctuation 
Pmicr is included in the wave equation to incorporate the effects of shot noise. 

To integrate the equations of motion, the longitudinal electron pulse distribution is 
divided into several hundred bins in the z coordinate, each bin containing ten samples of the 
local electron density for which the position % and velocity v are allowed to evolve. For 
each time step 5x along the wiggler, the pendulum equations are integrated for each sample 
via a second order Runge-Kutta using the optical fields coincident with the corresponding 
bins at time x, and the resulting contributions to the fields at each bin are then calculated 
from the wave equation. Optical pulse slippage is included in each time step by linear inter- 
polation between the bins, and the integration continues in this fashion from pass to pass to 
a point usually just short of full saturation (to prevent distortion of the optical amplitude and 
phase by the sideband instability.) Cavity length detuning is also included on each pass by 

v linear interpolation of the magnitude and phase between the optical bins, where the phase is 



20 

first smoothed by adding or subtracting multiples of 2K at each bin. Only the lowest order 

TEMoo mode is included in the present simulations, consistent with the measured Strehl 

ratio (> 0.8) for the optical beam delivered by the Mark HI EEL.2 Conclusions regarding the 

formation of chirped optical pulses should remain generally valid, since chirping primarily 

affects only the longitudinal mode structure, not the transverse structure. 

The number of bins in z is determined by the sampling rate required to accommo- 

date the large spectral widths of the chirped optical pulses. The most sensitive diagnostic 

for this criterion is evidently a numerical check on the conservation of energy, which is 

performed by comparing the total energy gained by the optical pulse to the energy lost by 

all of the electron samples in the electron pulse. For simulations using the energy chirps 

reported in Chapter 3, it was usually necessary to at least quadruple the number of bins that 

were used in simulations of the unchirped laser. (In contrast, the resulting optical pulse 

formation, as well as any deviations from energy conservation, were insensitive to the 

number of electron samples per bin in the range of ten to forty samples.) Energy conser- 

vation was then usually satisfied to within deviations smaller than 1 or 2 %, which was 

typical in simulations of the unchirped laser. 

To simulate the injected electron pulses, the samples within any given bin are initial- 

ized with a constant velocity Vo and are distributed uniformly over 2rc radians of optical 

\ phase £o. A constant Vo is appropriate for the instantaneous energy spreads which occur in 

the Mark HI FEL, for which an inhomogeneous gain reduction factor [18] is used to scale 

the current Classical shot noise is included by random modulations of the sampled elec- 

tron beam density according to a thermal distribution [19]. The chirped electron energies 

are prepared by assigning a velocity Vo = vn(z) which depends linearly on the position with- 

in the micropulse, and the optical pulse is then allowed to evolve under the effects of the 

FEL interaction, optical pulse slippage, and cavity detuning in the manner described above. 

No assumption is made regarding the time dependence of the optical phase; it evolves 

naturally from the FEL interaction as the laser turns on from noise. 

Parameters which otherwise depend on the energy and wavelength are held constant 

along the micropulses. In particular, the scaling relations which define the current density 

r(z) and electric field &m(i,x) use the mean y, and the complex filling factor fm(x) uses the 

mean X. For full width energy chirps of "Y/y < 5 %, the application of these approximations 

along the entire pulse length is consistent with the previous justification of constant scaling 

along one slippage length. Finally, the duration of the chirped electron pulses is assumed 

to remain constant along the wiggler, which approximation is accurate in the present 

2 
Experimentally, mode selection is enforced in the Mark III FEL by the long and slender vacuum chamber 

which must fit in the 7 mm gap between the jaws of the wiggler magnet 
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simulations to within, for example, 0.5 % for a 4 ps electron pulse with a 2 % energy chirp.3 

The simulation parameters are appropriate to the Mark m FEL and are listed in Table 2.1. 

V. NUMERICAL BENCH MARKS 

For unchiiped electron pulses, the FEL pulse propagation code has been accurately 

bench marked both analytically [17] and experimentally [20], [21] with respect to the longi- 

tudinal structure of the resulting optical pulses. However, the chirped-pulse code predicts 

novel phenomena, and it is therefore prudent to check the numerical simulations with readi- 

ly calculated quantities particular to the chirped-pulse FEL. One possible candidate is the 

gain reduction predicted in Section m to occur for large energy chirps. Unfortunately, the 

finite spectral width of the numerical window in the present code limits the chirped-pulse 

bandwidth of the simulated optical pulses, and in order to observe any gain reduction for 

energy chirps much larger than the gain bandwidth divided by the slippage distance, it is 

necessary to limit the pulse length to the order of the slippage length. This introduces 

appreciable lethargy and other short-pulse supermode effects which were not included in 

the quasi-CW analysis of Section HI, but which can also be expected to affect the small 

signal gain [22]. On the other hand, the gain shift predicted from (2.25) is linear in the 

energy chirp for any magnitude of chirp, and this gain shift is therefore suitable as a second 

candidate for bench marking the code. In contrast to the gain reduction, the gain shift should 

3 
It is interesting to consider more closely the description of the FEL interaction in the presence of energy 

chirping. As noted, a chirped electron pulse with higher energies at the trailing edge will be compressed in 
one transit through the wiggler, an electron pulse with lower energies at the trailing edge will be broadened. 
Does this mean, for example, that we have to track changes in the peak current along the wiggler? Well, 
consider a section of the electron pulse which is one optical wavelength long. The difference in velocity 
between the leading and trailing edges is 

dvusPicdW 

where d-y« « yf"** • Yil"** . In one transit through the wiggler, the change in length of this small section is 

i&UtHm = At.dvi = NjL^dv,*2N.XdY/v , 

where we have substituted the resonance condition X ■ X»/(2 yu2). Now, if the pulse has higher energies at 
the trailing edge, then decreasing wavelengths will be overtaking it as it becomes compressed; if the pulse 
has lower energies at the trailing edge, then increasing wavelengths will be overtaking it as it broadens. 
Indeed, it turns out that the total change in optical wavelength that slips ova the pulse in one pass through 
the wiggler is 

(dX/xUpp.,,» 2 (d V/YU wvetaja (Nw wavelengths) . 

or (dX^upp«!« = 2 N, X dy/Y. so that (dX^ptg. = (dW^ufcr • Consequently, electrons which are distributed 
within one optical period at the beginning of the wiggler remain distributed within exactly one period at the 
end of the wiggler. and the gain can be calculated as the total energy lost by these dec irons to (he coincident 
optical wave. In our chirped-pulse simulations, we assume that the electron bins remain fixed in one pass 
through the wiggler, but we also assume that the optical frequency to is fixed. Chirping is then described 
only by changes in the phase d, and so the simulations remain consistent with the above picture. 
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Parameter Definition Simulation value 

Optical beam parameters 

3 

Yc 

Lc 

Resonant optical wavelength 

Extraneous cavity losses 
Rayleigh range 
Cavity length 

Electron beam parameters 

Y 

8Y/Y 

h 
I 

Vrf 

Ex 

ßx 

Wiggler parameters 
Nw 

I-w 

K 
B 

(h-h)2 

Electron beam energy / mc2 

Full width linear energy chirp 

Duration of tophat electron pulse 
Peak electron current (including gain reduction) 

RF frequency 

Normalized horizontal emittance (1/e) 

Normalized vertical emittance (1/e) 

Horizontal focussing parameter 

Number of wiggler periods 
Wiggler length 

Wiggler period 

RMS wiggler field 
Bessel function factor 

3.35 um 

7.3% 
53.23 cm 
1.837 m 

83.19 

2% 

4ps 
18.8A 

2.857 GHz 

8ic mm-mrad 

4s mm-mrad 

45 cm 

47 
108.1 cm 

2.3 cm 

4.7kGauss 
0.738 

Tablell Mark HI parameters used in the simulations of the chirped-pulse FEL. 

be manifest even for long electron pulses with small energy chirps, and so it can be accu- 

rately checked with the present code. 

Figure 2.3 shows the simulated optical pulse formation after 100 passes in a laser 

driven by electron pulses with a full width energy chirp of + 2 % over a duration of 4 ps 

(positive chirps indicating energies which increase towards the trailing edge.) The slippage 

parameter has the value N**7cTp = 0.131 for the parameters listed in Table 2.1. We see 

that the optical phase indeed exhibits the quadratic time dependence indicative of a linear fre- 

quency chirp with higher frequencies towards the trailing edge (recall that CD ■ - ^/dt in 

the present formalism.) This time dependence is quantified by fitting a least-squares poly- 

nomial of third degree to the optical phase within the FWHM region of the optical pulse, 

and is written 

<M*) = Oo - ü)o(t - to) - b(t - to)2 - c(t - to)3 (2.33) 
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Time (ps) 

Fig. 2.3 The simulated optical envelope and phase after 100 passes in a chirped-pulse FEL, for a 4 ps 
tophat electron micropulse with a full width linear energy chirp of +2 %. Other simulation 
parameters are listed in Table 2.1. 

3 

so that Co opi fl = -SSgfi = coo + 2b(t-to)-f3a(t-:o)2 (2.34) 

where coo is the frequency at the center of the optical pulse, b is the optical chirp parameter 

[8], and a is the third order fitting constant 

To bench mark the pulse propagation code, die optical pulse formation is simulated 

in an oscillator configuration using electron pulses with various energy chirps. The opti- 

mum value of the resonance parameter then evolves naturally from the gain interaction as 

the laser turns on from noise, and is determined by the temporal dependence of the optical 

phase after the final pass through the oscillator. These simulations are performed at the 

synchronous cavity length, as required by the implicit assumption in Section in that the z 

reference frames attached to each of the electron and optical pulses are coincident at the 

beginning of the undulator. The synchronous length is the only choice of cavity detuning 

that maintains this relationship between the electron and optical pulses from pass to pass. 

The resonance parameter \L at the beginning of the undulator is men calculated as an average 

along the electron pulse from the midpoint to the trailing edge (which region avoids the ero- 

sion due to lethargy at the front end of the optical pulse) according to the definition 

|i"\vo©-^tt©)-     . (2.35) 

where VQ(Z) is the injected electron energy detuning and CD© is calculated from (2.34) as a 

function of z(t). Figure 2.4 shows the simulated resonance parameter as a function of the 
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Fig. 2.4 The value of the resonance parameter yielding the maximum gain in a chirped-pulse FEL, as a 
function of the fiiHwidth energy chirp along a 4 ps tophat election pulse. The squares are the 
values calculated from the simulations, and the solid line is the corresponding least squares fit 
Simulation parameters are listed in Table 2.1. The dotted line is the predicted shift from (225). 

energy chirp, in which the dotted line is the predicted shift from eq. (2.25).4 The error bars 

at each value of the energy detuning represent the standard deviations for eight simulations 

in which only the numerical seed for the electron shot noise was varied. The agreement 

between the slopes of the numerical and theoretical curves is seen to be well within error. 

The resonance parameter at zero energy chirp is approximately 4.6 instead of 2.6, because 

the Guoy phase shift of the lowest order Gauss-Laguerre resonator mode manifests itself as 

an additional frequency shift to the relativistic electrons; the magnitude of the corresponding 

shift in the resonance parameter is roughly given by [23] 

V Guoy 

ZR 
(2.36) 

which has a value of + 2.03 for the parameters listed in Table 2.1. 

In Chapter 3,1 report the results of extensive simulations of the chirped-pulse FEL using 

the pulse propagation code described above. Particular emphasis is placed on study mg the 

bandwidth and stability of chirped optical pulses for the purposes of pulse compression. 

However, we will also find, even in moderately saturated interactions, that an enhanced 

extraction efficiency can be achieved with either sign of the energy chirp (in which caue the 

In this chapter and the next, we define positively chirped pulses to have energies which increase towards 
the trailing edge. Therefore, we see from (2.12) that the corresponding vi is negative. Conversely, vi is 
positive for negatively chirped pulses. 
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energy extraction mechanism is not related to the adiabatic deceleration of trapped electrons.) 

The design of a feasible pulse compression experiment on the Mark HI EEL is described in 

Appendix A. 
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In this chapter, I report the results of numerical simulations on the optical pulse 

formation in chirped-pulse FELs using the pulse propagation code described in Chapter 2. 

In contrast to the goal of demonstrating enhanced extraction efficiencies, particular empha- 

sis will bt placed on studying the bandwidth and stability of chirped optical pulses, and the 

effects of T 'lacavity dispersion, for the purposes of pulse compression. Nevertheless, we 

will find ever in moderately saturated interactions that an enhanced extraction efficiency can 

be achiever .vith either sign of the energy chirp (in which case the energy extraction mecha- 

nism is not a 'ated to the adiabatic deceleration of trapped electrons.) Furthermore, we will 

demonstrate he presence of an intrinsic frequency chirp which occurs even in simulations 

of the unchirped FEL and can significantly affect the bandwidth of the optical pulses from 

the chirped-pulse FEL. The simulations reported in this chapter are the extension of previ- 

ous investigations [13] and were chosen in part to guide the design of feasible pulse com- 

pression experiments on the Mark HI FEL; the appropriate simulation parameters are listed 

in Chapter 2, Table 2.1. The design of the pulse compressor and optical diagnostics for an 

experiment using positively chirped electron and optical pulses is described in Appendix A. 

n. GENERAL SIMULATION RESULTS 

In this section, I present general simulation results for FELs operating with modest 

energy chirps, i.e. "Y/y < 5 % over the duration of the electron micropulses. As noted in the 

previous chapter, the dimensionless Maxwell-Lorentz equations of motion are appropriate 

for describing energy chirps of this magnitude. To properly simulate larger energy chirps, 

and especially large changes in the electron energy at saturation, the more general set of 

equations developed by Moore [2], [3] is required in which the electron energy is tracked 

via 7(t) instead of the dimensionless energy detuning v(x). In contrast, the present simula- 

tions are allowed to evolve only into the early stages of saturation in order to mimic actual 

pulse compression experiments in an FEL. Although several reasons for this restriction will 

be noted below, the foremost is to prevent the formation of the sideband instability from 

distorting the optical envelope and phase prior to compression in a dispersive delay line. 

A. General features of chirped optical pulses 

Figure 3.1 shows typical results for the optical pulse formation at 3.35 ^m in a 

chirped-pulse FEL with a cavity length detuning of +1.3 \im (shorter than synchronous) 

after 100 passes through the oscillator. Graphs (a), (b), and (c) display the optical envelope 

and phase for energy chirps of -2 % (energies decreasing towards the trailing edge), 0 %, 

and +2 % respectively across a tophat electron pulse situated between 0 ps and 4 ps on the 

abscissa. The corresponding power spectra are shown in Fig. 3.2. 
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Fig. 32    (a) Power spectrum for the negatively chirped optical pulse in Fig. 3.1(a); (b) power spectrum 
for the unchirped optical pulse in Fig. 3.1(b); (c) power spectrum for the positively chirped 
optical pulse in Fig. 3.1(c). 

We see from Fig. 3.1 that the phase of each of the chirped optical pulses exhibits 

the quadratic dme dependence indicative of a linear frequency chirp, and that the chirped- 

pulse spectra from Fig. 3.2 show substantial broadening over the unchirped spectrum by 

more than a factor of ten. For ideal phase compensation, this ratio roughly gives the order 

by which the chirped optical pulses can be compressed [14]. Several other features are also 

immediately evident from these figures. 
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First, the average optical power appears to increase roughly linearly from positive 

chirps to negative chirps, with all other simulation parameters remaining the same; the larg- 

er power in the negatively chirped pulse has led to the onset of the sideband instability, 

producing spikes in the optical envelope and a slight distortion in the optical phase at the 

front end of the pulse. The dependence of the power on the energy chirp will be shown 

below to be present only for finite cavity length detunings. 

Second, the optical pulses are slightly shorter than the electron pulses, even though 

the cavity length detuning is finite. This is due to the effect of laser lethargy [15], which 

for cavity detunings near the synchronous length yields a group velocity for the optical puls- 

es which is less than that of the electron pulses, and leads to an erosion at the front end of 

the optical pulses. This effect has practical consequences for pulse compression experi- 

ments on the chirped-pulse PEL, because the reduced optical pulse widths yield slightly 

reduced bandwidths, thereby limiting the ultimate optical pulse compression ratios. 

Third, we see from Fig. 3.2 that the spectrum of the positively chirped pulse is broad- 

er than that of the negatively chirped pulse, even though the energy chirps have the same 

magnitude (2 % over 4 ps). This discrepancy in the spectral widths is not due to differenc- 

es in the pulse duration (3.27 ps vs. 3.38 ps for the negatively vs. positively chirped puls- 

es), but is instead due to differences in the frequency chirp (-3.45 % vs. 44.60 % over 4 ps 

for the negatively vs. positively chirped pulses). This difference in the magnitude of the 

frequency chirps is manifest in all simulations of negatively vs. positively chirped pulses, 

and substantially affects the pulse compression ratio. Figure 3.3 compares the optimally 
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compressed pulses for each of the two cases assuming only quadratic phase compensation. 

The positively chirped pulse can be compressed to 230 fs, compared to only 300 fs for the 

negatively chirped pulse (the greater peak power in the latter case is due to the larger energy 

content of the original optical pulse.) In the following two paragraphs, we will examine 

more closely the discrepancies in both the optical frequency chirps and the average optical 

powers for negatively and positively chirped pulses. 

B. Dependence of frequency chirp on energy chirp 

If one assumes that the FEL resonance condition determines the lasing wavelength 

at all points along the optical pulse, then for small chirps the time dependent frequency can 

be written in terms of the time dependent energy as 

Ida = 2_dY 
(0 dt      y dt 

The chirp parameter 'b' from eq. (2.34) of Chapter 2 can be written as 

b(X) = 22TC. 1*T (3 2) 

X   Y* 

where X is the optical wavelength. 

Figure 3.4 shows the frequency chirp Aco/^ at 3.35 ^m (extrapolated to the dura- 

tion of the electron pulses), as function of the electron pulse width, for full width energy 

chirps of +2 % and -2 %. The error bars represent the standard deviations for eight simula- 

tions in which only the numerical seed for the electron shot noise was varied. The dashed 

lines are the frequency chirps predicted from the resonance condition (3.1). We see that for 

pulse widths xp > 2 ps (^w^/cxp < 0.3), the frequency chirps exhibit a definite, positive 

offset which is larger in most cases than the statistical errors and range in magnitude from 

^°tyü)loffset - 0.3 % to A(ü/o)l0ffset ~ 0-9 %• This apparently intrinsic frequency chirp oc- 

curs even in simulations of the unchirped laser, for which the extrapolated frequency chirp 

Propagation through a dispersive delay line is accomplished by taking the Fourier transform of the opti- 
cal electric field. 

E(co) = E(t)eMU,,dt 

multiplying by a frequency dependent quadratic phase factor, 

exp -i-1—(Cü-ü)O)
2 

[   b-K 

and taking the inverse Fourier transform to obtain the compressed optical pulse. Here, b is the chirp para- 
meter from eq. (2.34) of Chapter 2, and the parameter K is varied in order to obtain the optimum compres- 
sion ratio (defined in all cases as yielding the maximum compressed peak power, not the minimum FWHM 
pulse duration.) The optimum value of K was usually found to be in the range of 4.3 to 4.4, and would have 
been almost exactly 4 for linearly chirped Gaussian pulses [14]. 
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v. 

was found to be Aö/Q = (0.5 ± 0.4) % in a series of thirty simulations using unchirped elec- 

tron pulses with a duration of 4 ps. This offset is substantial compared to the energy chirps 

being considered for pulse compression. 

From symmetry, one can argue that for very long electron pulses (or small slippage 

parameters), the resonance conditions (3.1) and (3.2) would have to determine the frequen- 

cy chirp at all points along the pulse. Therefore, the most likely sources of the discrepancy 

are the end effects accompanying pulses of finite duration. There are two such end effects 

that can contribute to the intrinsic frequency chirp with the observed sign. 

The first contribution results from the effects of saturation and slippage, and origi- 

nates from the fact that electrons at the trailing edge of the electron pulse interact with a lower 

average intensity in one pass through the wiggler due to optical slippage in the forward di- 

rection. The gain curve for these electrons is not shifted as far towards long wavelengths as 

for the electrons on the leading edge [16], yielding an optical pulse chirped towards increas- 

ing frequencies. A related effect also occurs at the leading edge of the optical pulse, which 

usually exhibits some erosion due to lethargy. For electrons located within one slippage 

distance in front of the leading edge, the effective number of wiggler periods in the laser 

interaction is reduced because the optical pulse does not overtake them until some distance 

along the undulator. This leads to an increased extraction efficiency for those electrons and 

the formation of a superradiant spike [17]; the corresponding enhanced degree of saturation 

forces the optical frequency to longer wavelengths at the leading edge. Figure 3.5 compares 

the simulated phase space trajectories of electrons at the leading edge, the center, and at the 
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Fig. 3.5    Phase space trajectories on the 100th pass in a simulation using unchirped electron pulses with a 
duration of 4 ps. (a) electrons located within one half of the slippage distance in front of the op- 
tical pulse at the beginning of the undulator, (b) electrons at the center of the electron pulse; (c) 
electrons at the end of the electron pulse. 

3 

trailing edge of an unchirped electron pulse on the 100th pass of the optical pulse. We see 

that the center electrons execute more than one half of one revolution in the phase space 

buckets, but that the electrons at the trailing edge do not evolve as deeply into saturation. 

Conversely, the electrons at the leading edge execute much deeper orbits. Note that the 

superradiant spike is manifest in each of Figs. 3.1(a),(b),(c), and that the optical phase in 

the unchirped pulse exhibits a slight, overall, positive frequency chirp, especially near the 

ends of the optical pulse. 

The second contribution to the intrinsic frequency chirp results from the Guoy phase 

shift of the TEMoo transverse resonator mode. This phase shift is manifest as an additional 

frequency shift to the relativistic electrons as they traverse the undulator [18]. However, 

since it is also nonlinear (being related to the arctangent of the displacement along the undu- 

lator), it can lead to nonlinear frequency effects in the optical wave as the latter slips over 

the electrons. Figure 3.6 shows the optical phase in simulations (without noise) using un- 

chirped electron pulses and different Rayleigh ranges in resonators set to the synchronous 

length. In order to eliminate any saturation effects, the optical powers were renormalized to 

small signal levels after every four passes. We see that the optical phase again exhibits a 

positive frequency chirp, and ±at the chirp parameter increases with decreasing Rayleigh 

range. The corresponding frequency chirps, extrapolated to a 4 ps duration, are 0.31 %, 

0.36 %, and 0.44 %. These chirps are reduced for cavity lengths" shorter than the synchro- 

nous length, suggesting that the nonlinear effects responsible for chirping become smeared 

out as the optical pulse is pushed forward from pass to pass. 
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Fig. 3.6    Optical phase after 200 passes, in simulations using unchirped electron pulses with no noise. 
The optical powers were reset to small signal levels after every 4 passes, (a) Rayleigh range ZR = 
103.5 cm. chirp parameter b = 0.220024) s"2; (b) Rayleigh range ZR ■ 73.1 cm, chirp parameter 
b = O^IO24) s'2; (c) Rayleigh range ZR = 532 cm, chirp parameter b = 0.3K1024) s"2. 

O 

Finally, we should note from Fig. 3.4 that there is apparently no correlation between 

the frequency chirp and energy chirp for pulse widths Xp < 2 ps. This result may be due to 

the onset of the superradiant interaction [17] for electron pulse lengths on the order of the 

slippage length, which would dominate the effects of energy chirping, or it may be due to 

the random effects of noise on the optical pulse formation for short pulses oscillating near 

the synchronous cavity length. 

C. Dependence of optical power on energy chirp 

In order to check the prediction by Moore of enhanced extraction efficiencies for 

negatively chirped pulses, I performed several series of simulations with the present code 

by varying the energy' chirps over the 4 ps duration of the electron pulses. For each value 

of the energy chirp, eight simulations were performed in which only the numerical seed for 

the electron shot noise was varied. The results for cavity detunings of 0 ^im and +1 (im 

(shorter than synchronous) are summarized in Fig. 3.7. 

We see that for oscillation at the synchronous length, there is no statistically signifi- 

cant dependence on the energy chirp in any of the small signal gain, the macropulse power 

prior to the onset of saturation (pass 30), or the macropulse power at saturation (pass 100). 

These results are not surprising; the theoretical efficiency enhancement for small chirps is 

simply the slippage parameter times the full width energy chirp of the pulse [1], 

v.- ex« I Y 
(3.3) 
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and even for an energy chirp of - 4 % over 4 ps the enhancement is only 0.53 %. This is 

substantially smaller than the V2NW efficiency of the Mark III FEL, so that no significant 

advantage is to be expected from energy chirps of this magnitude. Furthermore, eq. (3.3) 

assumes that all of the electrons become trapped at the beginning of the undulator, whereas 

the present simulations are only weakly saturated at pass 100. 

For oscillation at a cavity detuning 1 um shorter than synchronous, there is again no 

statistically significant dependence on the energy chirp in either the small signal gain or the 

macropulse power prior to the onset of saturation. However, the saturated macropulse 

powers show a large and unexpected dependence on the energy chirp. Figure 3.8 displays 

similar results in terms of the electron energy extraction efficiency. This enhanced energy 

extraction can be understood by recalling that, as the laser saturates, the optical wavelength 

continually increases as the peak of the gain curve shifts to larger values of the resonance 

parameter [16]. In an unchirped FEL, this shift in wavelength occurs adiabatically under the 

influence of pumping and cavity losses, because the old radiation takes time to decay away. 

However, in an FEL operating with a negative energy chirp, the effect of finite cavity detun- 

ings is to discretely shift the resonance parameter to larger values on each pass, so that opti- 

mum resonance can be maintained throughout saturation. The electrons continually under- 

go expanding orbits in the phase space buckets, which deepen in response to the accelerated 

j growth in laser power (this is illustrated in Fig. 3.10(c).)   A similar argument by Moore [3] 

also suggested that finite detunings would enhance the extraction efficiency of negatively 

chirped pulses: the optical pulse would be pushed below resonance on each pass, so that the 

injected electrons would fall a greater distance in the ponderomotive buckets. 

Finally, if this argument is valid, then precisely the same reasoning should predict 

an enhanced extraction efficiency for electron pulses with & positive energy chirp operating 

with cavity detunings longer than the synchronous length. Figures 3.9, 3.10, and 3.11 

display the phase space trajectories on pass 100 for cavity detunings of 0 u.m, +1.3 Jim 

(shorter than synchronous), and -1.3 u.m Conger than synchronous), respectively. Each 

figure plots the trajectories for energy chirps of (a) +2 %, (b) 0 %, and (c) - 2 %. The asser- 

tion of an enhanced efficiency for positive chirps is illustrated dramatically in Fig. 3.11. 

^ 

2 
The independence of the small signal gain on the energy chirp for a detuning of 1 um can be explained by 

noting that, for a 4 % energy chirp over 4 ps, the shift in the resonance parameter on each pass is only 0.63 
% of the gain bandwidth, and after 14 passes (corresponding to the cavity decay time for a round trip loss of 
7.3 %), the resonance shift is still only 8.8 % of the gain bandwidth. 
i 

Crudely, for a 4 % energy chirp over 4 ps, a detuning of 1 urn yields a shift in the resonance parameter of 
Au. ■ 0.039; the corresponding energy shift is AY/v = 0.007 %. If this energy is released to the optical 
field on each pass during saturation beyond roughly pass number 60 (as indicated by the simulations), then 
at pass 100 the energy yield (assuming optimum bucket growth) is (AT/Y)SI1 - 40 (0.007 %) = 0.3 *. This 
is roughly the order of the enhanced efficiency observed in Fig. 3.8 for an energy chirp of -4 %. 
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Fig. 3.9    Phase space trajectories on the 100th pass of the optical pulse for electrons near the center of a 4 
ps electron pulse. The cavity length is at the synchronous length. The figures depict the trajec- 
tories for full width energy chirps of: (a) +2 %; (b) 0 %; (c) -2 %. There is little qualitative dif- 
ference among the extraction efficiencies. 
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Fig. 3.10  Same as in Fig. 3.9, except that the cavity length is 1.3 \m shorter than synchronous. The 
figures depict the trajectories for full width energy chims of: (a) +2 %; (b) 0 %; (c) -2 %. The 
-2 % chirp shows substantially greater energy extraction than the +2 % chirp. 
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Fig. 3.11   Same as in Fig. 3.9, except thai the cavity length is 1.3 \ua longer than synchronous. The 
figures depict the trajectories for full width energy chirps of: (a) +2 %; (b) 0 %; (c) -2 %. Here, 
the +2 % chirp shows substantially greater energy extraction than the -2 % chirp. 
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m. ENERGY CHIRPING ON THE MARK IIIFEL; DESIGN PARAMETERS 

In this section, I suggest a feasible configuration for operating the Mark HI FEL in 

the chirped-pulse mode, and present the appropriate simulation results for designing a pulse 

compression experiment near 3 \im. Practical operating parameters such as the shape of the 

cavity detuning curve and the stability of the compressed optical pulses will be addressed. 

The simulations assume that chirped electron pulses with the desired properties can be deliv- 

ered to the laser. Energy chirping can be accomplished in an rf linac simply by dephasing 

the electrons from the gun with respect to the peak rf voltage of the traveling wave in the 

linac [1], and simple relations are invoked to determine the appropriate phase offset and the 

resulting energy spread. The chosen parameters are somewhat modest for the Mark TR 

linac, and the confidence for achieving them is based partly on the early operation of the 

Mark III FEL. At any rate, a complete and rigorous investigation of the generation and 

transport of chirped electron pulses from the gun and linac would require extensive particle 

simulations which are beyond the scope of the present study. 

A. Proposed configuration 

As noted above, electron micropulses with a linear energy dependence on time can 

^ be produced at the rf linac by accelerating the pulses off the peak voltage of the traveling 

-J wave at phases where the field gradient is large. In principle, energy chirps of either sign 

are possible. However, the electron micropulses must be compatible with the downstream 

transport, which is a primary constraint on any chirped-pulse system. Moore has suggest- 

ed a magnetic compression system for negatively chirped pulses that is appropriate for use 

on the Los Alamos FEL [1]. In the case of the Mark HI FEL, dispersion in the chicane 

path preceding the wiggler complicates the use of negatively chirped pulses by increasing 

the pulse width and lowering the current, and therefore the available gain. Accordingly, the 

present experiments are designed for positively chirped pulses. The Mark III chicane path 

is shown in Fig. 3.12. 

The energy chirp induced in the linac, and the subsequent dispersion in the chicane 

path preceding the wiggler, are given by simple expressions if the electron pulses are much 

shorter than the rf period and the energy chirps are on the order of a few percent [20]. The 

full width energy chirp induced in the linac at a phase offset of \|/ is given by 

4 
The original momentum filter for the alpha magnet in the Mark III gun was not optimally designed, and 

the electrons were not properly bunched at the entrance to the linac. The gun current was also limited, and 
in order to generate the peak currents required to achieve lasing, the gun had to be dephased relative to the 
linac so that the resulting chirped electron pulses could be compressed in the chicane path preceding the 
wiggler. Based on these experiences, it has been suggested that phase offsets as large as IS0 can be achieved 
with the present design [19]. 
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Fig. 3.12 The Mad: in chicane path used to bend the electron beam around the cavity mirror, tc = 36.7 cm 
and ß= 11^5°. 

S 

yj    =XpCörftanY (3.4) 

where Xp is the pulse duration in the linac and (Drf = 27CVrf is the angular rf frequency (Vrf = 

2.857 GHz). The temporal dispersion in the chicane path is given by 

A
*P = -^TT     ßtanß (3.5) 

V. 

where Cc and ß are shown in Fig. 3.12 for the Maic HI FEL. 

As suggested by the simulations in Section n, substantial optical pulse compression 

ratios can be achieved by driving the laser with electron pulses having a +2 % energy chirp 

over 4 ps, and this is chosen to be the nominal operating configuration for the Mark III FEL 

experiments. From (3.4), a 6 ps electron pulse in the linac, which is a feasible pulse width 

from the gun, will exhibit an energy chirp of +2 % at a phase offset of Y = 10.5°, which is 

a modest phase offset for the Mark HI linac. From (3.5), the resulting dispersion in the chi- 

cane path will then be AXp = -1.92 ps, so that the 6 ps electron pulse should be compressed 

to just over 4 ps prior to injection into the laser. Note that the 6 ps electron pulse in the linac 

spans phase angles between y = 7.4° and y = 13.6°, so that the energy chirp is not exactly 

linear. However, simulations using the corresponding nonlinear energy distribution yielded 

no observable effect on either the formation or compression of the resulting optical pulses. 

B. Numerical simulations in the proposed configuration 

Figure 3.13 shows typical results for the optical pulse formation at 3.35 n.m in a 

chirped-pulse FEL after 100 passes through the oscillator and various cavity length detun- 

ings. The corresponding power spectra are shown in Fig. 3.14. Several important features 

are evident from these figures. First, the average powers during the optical micropulses 
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Fig. 3.13  Optical envelope and phase after 100 passes for electron pulses with a full width energy chirp of 
+2 % over 4 ps and various cavity detunings. (a) Detuning = 1.3 \tm longer than synchronous 
(the corresponding optical chirp is + 3.99 % over 4 ps; the FWHM pulse width is 2.42 ps); 
(b) Detuning = 0 um (the corresponding optical chirp is + 4.S6 % over 4 ps; the FWHM pulse 
width is 2.84 ps); (c) Detuning = 13 um shorter than synchronous (the corresponding optical 
chirp is + 4.60 % over 4 ps; the FWHM pulse width is 338 ps). 
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Fig. 3.14  (a) Power spectrum for the optical pulse in Fig. 3.13(a); (b) power spectrum for the optical 
pulse in Fig. 3.13(b); (c) power spectrum for the optical pulse in Fig. 3.13(c). 

decrease dramatically as the cavity detuning is changed from longer-than-synchronous to 

shoner-than-synchronous values. This change in optical power is due to the dependence of 

the extraction efficiency on cavity detuning which was previously predicted to occur for 

positively chirped pulses. Second, laser lethargy more greatly erodes the front end of the 

optical pulses at longer cavity lengths. As a result, the total energy content does not change 

as greatly as the optical powers would indicate. Third, the spectral widths displayed in Fig. 
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3.14 are narrower for optical pulses oscillating at longer cavity lengths, but the frequency 

chirps are roughly independent of cavity detuning. This variation in spectral width is due 

directly to the effect of lethargy on the final pulse widths; pulses experiencing a greater ero- 

sion will be shorter and will yield reduced bandwidths for a given frequency chirp. (Note 

that this variation in the spectral width occurs in contrast to Figs. 3.1 and 3.2, in which the 

pulse widths were roughly the same but the frequency chirps were different) 

An important consequence of the reduced bandwidth is that the pulse compression 

ratio will be limited for longer cavity lengths. Figure 3.15 displays the compressed optical 

pulses for cavity detunings 1.3 \im longer and 1.3 pm shorter than the synchronous length. 

In figure (a), eight simulations were performed using different numerical seeds for the elec- 

tron shot noise, and the resulting optical pulses were compressed in the same optimum dis- 

persive delay line. The same is true of figure (b), except that the corresponding delay line 

was optimized for that case. We see that the pulses from the longer cavity can only be com- 

pressed to 301 ± 10 fs, compared to 222 ± 3 fs for the pulses from the shorter cavity. The 

large fluctuations in pulse width in the former case arc due to the fact that the laser is largely 

driven by noise at cavity lengths longer than the synchronous length [21], resulting in un- 

stable frequency chirps across the short pulses. The presence of noise also yields a much 

greater intrinsic timing jitter (± 90 fs for the longer cavity, compared to only ± 22 fs for the 

shorter cavity), because the average laser frequency also exhibits greater fluctuations, and 

different frequencies will yield different absolute group delays in a given dispersive delay 

it 
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Fig. 3.1S   Optimum quadratic compression of eight optical pulses in which only the numerical seed for the 
electron shot noise was varied, (a) cavity detuning = -13 um (longer than synchronous); the 
compressed pulse widths are 301 ± 10 fs and the intrinsic timing jiuer is ± 90 fs. (b) cavity 
detuning = +13 um (shorter than synchronous); the compressed pulse widths are 222 ± 3 fs and 
the intrinsic timing jitter is ± 22 fs. The energy chirp is +2 % over 4 ps in each case. 
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line [14]. Since the compressed optical power is only slightly higher for the longer cavity 

than for the shorter cavity, any benefits to nonlinear spectroscopy would be effectively 

eliminated by the increased pulse widths and large temporal fluctuations. On the contrary, 

pulse widths of 222 ± 3 fs would be appropriate for most studies of ultrafast processes in 

the infrared, and a 10 % timing jitter would be sufficiently small to allow accurate cross- 

correlation experiments using different pulses in the pulse train. Not least, a compressed 

peak power of 30 MW would be appropriate for studying many nonlinear interactions, for 

which the diffraction-limited optical beam at 3.35 urn could easily be focused to intensities 

greater than 2(1013) W/cm2. 

For the purpose of designing an appropriate dispersive delay line for the compressed 

pulses in Fig. 3.15(b), we note that the average chirp parameter of the uncompressed pulses 

is <b> = +3.3 (1024) s"2, and the optimum compensation factor K (see Footnote 1) is found 

to be K = 4.3. Accordingly, the optimum delay line uses a fixed second order dispersion 

constant of V<b>K = +7.0 (10"26) s2. These pulses can be compressed from Tp = 3.4 ps 

to tp = 220 fs. For extending the design to other wavelengths, it is useful to assume that 

the frequency chirp is determined by the resonance condition, so that the chirp parameter 'b' 

is inversely proportional to the wavelength for a given pulse width, as indicated by (3.2). 

Figure 3.16 displays this result for various wavelengths using electron pulses with a +2 % 

energy chirp over 6 ps. The linearity is very good, and the slope of the graph differs only 

slightly from the theoretical slope due to the intrinsic frequency chirps indicated in Fig. 3.4. 

The design of a dispersive delay line using sapphire prisms is described in Appendix A. 

«lops « 7.00 
intrcpl • 0.059 
R - 0.B9B3 

—   Resonance condition    — 
slope - C28 

0.0     0.1     0.2     0.3    0.4     0.5     0.6     0.7     0.8     0.9 
Wavenumber {p.m~ ) 

Fig. 3.16  Frequency chirp as a function of wavenumber for electron pulses with a +2 % energy chirp over 
6 ps, indicating that the frequency chirp is inversely proportional to the wavelength. The slope 
of the simulated points differs slightly from the theoretical slope because of the intrinsic frequen- 
cy chirp indicated in Fig. 3.4. 
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C. Effects ofintracavity dispersion 

The Mark HI FEL uses metal cavity mirrors and Brewster plate output coupling to 

exploit the wide tunability of the device. Apart from a slight inconvenience in the geometry 

of the outcoupled beams, the insertion of an intracavity Brewster plate poses no problems 

to the operation of the unchirped laser (of course, the potential for optical damage [22] is 

absent in methods such as hole coupling [23].) Indeed, the dependence of the dispersion 

on wavelength has proven to be extremely useful for the operation of the laser on higher 

harmonics [24]. However, in the chirped-pulse FEL, a significant amount of intracavity 

dispersion can be expected to have detrimental effects on the optical pulse structure. 

The most important complication of dispersion arises from the potential to distort 

the chirped optical pulses as the laser builds up to saturation. The effect of group velocity 

dispersion is to impose a wavelength dependent group delay on the different spectral com- 

ponents in the pulse, and since these components arc localized temporally via the frequency 

chirp, the pulse will be temporally distorted. This is essentially how a pulse compressor 

works [14], except that the compression (or broadening) now occurs inside the cavity. In 

the chirped-pulse FEL, a severe temporal distortion of the spectral components from pass 

to pass can eventually preclude the optical pulse from maintaining resonance with the in- 

coming electron pulses over the entire pulse duration. 

The effect of dispersion can be estimated by assuming that the optical pulses have a 

Gaussian profile and a linear chirp, which pulses are characterized by Siegman [14] in terms 

of a chirp parameter 'b' and a pulse width parameter 'a' via the definitions 

co(t) = coo + (2b)t and        a = 21oge2 

x1 (3.6) 

Here, a>(t) is the time-dependent optical frequency and Xp is the FWHM pulse duration. If 

a Gaussian optical pulse with initial parameters Zq and b0 propagates through a dispersive 

medium over a distance z, Siegman has shown that the resulting pulse parameters are then 

bo(l+2ß"zbo) + 2ß"zao2     _A   _,_x ap  
b(z) = —^ r~—^ £—2L.    and   a(z) =  

(l+2ß"zbo)2 + (2ß"zao)2 (l+2ß"zbo)2 + (2ß"zao)2 

(3.7) 

where ß" = (^2/3o)2) [" n       is the second order dispersion of the medium and n(co) is the 

refractive index. In the chirped-pulse FEL, an appropriate distance z is roughly twice the 

thickness of the Brewster plate times the number of passes corresponding to the decay time 

of the resonator. For a 2 mm thick Brewster plate with a total round trip loss of 7.3 %, the 

radiation decay time is roughly 15 passes, and z ~ 60 mm. For calcium fluoride or sapphire 
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Brewster plates, the second order dispersions at 3.35 urn can be found from the published 

Sellmeier data [25] to be ß"CaF2 = -1-6(10_25) s2/m and ß'^pphirc = -8-2 (10"25) s2/m. 

We may now estimate the effects of the dispersion on the circulating optical pulses. 

For the uncompressed optical pulses from paragraph B, we take bo = +3.3 (1024) s"2 and 

ao = +1.20(1023) s*2 (corresponding to xp = 3.4 ps.) For the calcium fluoride Brewster 

plate, eqs. (3.7) then yield b(60 mm) = +3.5 (1024) s"2 and a(60 mm) = +1.37Q023) s'2 

(corresponding to xp = 3.2 ps.) The pulse is compressed by only 6 % over the repeated 

round trips, and the chirp parameter is only slightly altered by the dispersion. However, 

the situation is different for the sapphire plate, for which eqs. (3.7) yield b(60 mm) = +4.9 

(1024) s"2 and a(60 mm) = +2.63(1023) s*2 (corresponding to Xp = 2.3 ps.) The chirp para- 

meter is significantly increased by the dispersion, and the optical pulse shows substantial 

compression by more than 32 %. Even in the absence of any other distortions, this com- 

pression will significantly reduce the optical bandwidth and, consequently, the external 

pulse compression ratio. 

I have performed simulations of the chirped-pulse FEL to investigate the effects of 

dispersion in the Brewster plate. The FEL pulse propagation code is the same as in previ- 

ous simulations, except that the optical pulse is transmitted through the Brewster plate on 

each pass by taking the Fourier transform of the optical field, multiplying by a frequency 

J dependent phase factor of the form 

exp 
R"2* 

+ i^—(CO-CUQ)2 (3.8) 

where 2t is twice the thickness of the Brewster plate, and taking the inverse Fourier trans- 

form to obtain the transmitted optical pulse. Figures 3.17(a,b) compare the simulated opti- 

cal envelope and phase after 100 passes in a chirped-pulse FEL using calcium fluoride and 

sapphire Brewster plates. The energy chirp is +2 % over 4 ps and the cavity detuning is 

+1.3 |im; these figures can be compared with Fig. 3.13(c) in which no Brewster plate was 

present. 

We see that the dispersion from the calcium fluoride plate has little effect on either 

the optical envelope or phase. The chirp parameter is b =+3.4 (1024) s'2, and the pulse 

width is 2.90 ps, which is 14 % shorter than the width of the optical pulse from Fig. 3.13(c). 

Evidently, the pulse shortening due to dispersion is slightly underestimated in the previous 

analysis. However, that analysis is still instructive given the crude assumptions and the 

neglect of the FEL interaction. This optical pulse can be compressed to 255 fs. 

On the other hand, dispersion in the sapphire Brewster plate yields a considerable 

distortion in both the envelope and phase of the circulating optical pulse. The final pulse 

width is only 1.95 ps, which is 42 % shorter than the optical pulse width from Fig. 3.13(c). 



45 

: b   T r 
...... 

■ 1 
■ \        ,e- I \ 

\ / V 
A    / VW 12- 

1 
• 

1 
•■ 1 

• *' / u          • 
/ 1 II                  ■ ' 

i - i . . * 
-4-2   0    2    4    6    8 

Time (ps) 

10 -4 -2   0    2    4    6    8    10 

Time (ps) 

Fig. 3.17 Optical envelope and phase after 100 passes at 3.35 urn for electron pulses with a full width 
energy chirp of +2 % over 4 ps including dispersion in: (a) a 2 mm calcium fluoride Brewster 
plate, (b) a 2 mm sapphire Brewster plate, and (c) a 2 mm zinc selenide Brewster plate. 
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The reduced optical bandwidth and pulse energy are too small to yield a useful compressed 
optical pulse. Consequently, in the chirped-pulse operation of the Mark IE EEL near 3 u\m, 

sapphire Brewster plates cannot be used. However, the effects of dispersion e /en in the 

calcium fluoride Brewster plate can be reduced considerably by using a 1 mm thickness in- 

stead of a 2 mm thickness. Alternately, one can employ a different material. For example, 

zinc selenide has a dispersion at 3.35 ^m of ß'znSe = +1.3(10'25) s2/m. A ZnSe Brewster 

plate will therefore broaden the circulating optical pulse, thereby increasing the total optical 

bandwidth and yielding a larger external pulse compression ratio. This is illustrated for a 2 

mm ZnSe Brewster plate by the optical pulse in Fig. 3.17(c), which has a duration of 3.90 

ps and can be compressed to 211 fs. Finally, one can insert an extraneous Brewster plate 

into the cavity which has a dispersion opposite to that of the output coupler. The appropri- 

ate thickness can then be chosen to yield a zero net round trip dispersion. 

D. Simulated cavity detuning curves 

One of the most important and basic diagnostics of laser performance is the shape 

and width of the cavity detuning curve. Accordingly, I have performed a series of simula- 

tions to study the effects of energy chirping on the detuning properties of the FEL. Several 

effects of cavity length detuning have already been established in previous paragraphs, such 

as the enhanced energy extraction efficiency for energy chirps of either sign, and the effect 

of lethargy on the erosion of the leading edge of the optical pulse" which decreases the opti- 

cal bandwidth. 

Figure 3.18 compares the cavity power detuning curves for unchirped 4 ps electron 
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Fig. 3.18  Cavity power detuning curves for (a) unchirped 4 ps electron pulses, and (b) electron pulses with 
an energy chirp of +2 % over 4 ps. Positive detunings refer to shorter cavities. 

pulses, and electron pulses with an energy chirp of +2 % over 4 ps. We see that the detun- 

ing curve for the chirped laser shows significant erosion on the short-cavity side compared 

to the unchirped laser, and that the former shows an increased power at a dtiuning of 5L ~ 

-1 p.m on the long-cavity side. Otherwise, the optical power on the long-cavity side is 

extinguished at a detuning of 8L ~ -5 um in both cases. The erosion on the short-cavity 

side can be explained by noting that, for large detunings, the chirped optical pulse is pushed 

ahead of the incoming electrons too quickly for resonance to be maintained over a suffi- 

ciently large number of passes. This effect was first noted by Moore [2]. The origin of the 

erosion of the detuning cuive is illustrated in Fig. 3.19, which shows the small signal super- 

mode evolution for both the unchirped and chirped lasers at a cavity detuning of +10 um. 

These simulations were performed with no noise starting from a tophat seed pulse, and the 

optical powers were renormalized to small signal levels after every four passes (the onset of 

saturation would have occurred at roughly pass number sixty if the optical powers were not 

renormalized.) We see that the unchirped supermode evolves monotonically towards a 

stable pulse located roughly near the center of the electron pulse. However, the chirped 

laser decays markedly during the early passes as the optical pulse walks off the front of the 

electron pulse. Surprisingly, even the chirped laser exhibits a stable supermode which 

develops into two sub-pulses at the leading and trailing edges of the electron pulse (the 

trailing pulse is much more dominant in the small signal regime.) 
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Fig. 3.19   Small signal supermode evolution at a cavity detuning of+10 um (shorter than synchronous), 
for (a) unchirped electron pulses with a duration of 4 ps, and (b) electron pulses with an energy 
chirp of+2% over 4 ps. The optical powers were renormalized after every 4 passes. The 
electron pulses are located between 0 ps and +4 ps at the beginning of the undulator. 

The large signal supermode of the chirped laser is similar to the small signal super- 

mode, and was obtained from simulations which were driven by noise from spontaneous 

radiation to full saturation over 200 passes. The large signal evolution is illustrated in Fig. 

3.20. We see that the sub-pulses at the beginning and end of the optical pulse are roughly 

the same size and roughly coincide with the beginning and end of the electron pulse. The 

optical phase at each of these points is linear, which corresponds to lasing at two distinct 

frequencies. This effect was also first reported by Moore [3]. Although the peak powers 
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Fig. 3.20  Large signal supermode evolution at a cavity detuning of+10 um (shorter than synchronous) 
from spontaneous radiation to full saturation, (a) Evolution of the optical envelope over 200 
passes, each curve representing 10 passes. The electron pulse is located between 0 ps and 4 ps. 
(b) Optical phase at pass 200, showing a linear time dependence at the beginning and end of the 
electron pulse, (c) Optical spectrum at pass 200, showing two distinct frequencies corresponding 
to the linear phase variations at the ends of the optical pulse. 

are fairly high (just under one megaWatt), the total pulse energy is relatively small because 

the central region of the pulse does not läse at all. Nevertheless, operating the chirped- 

pulse FELL at such large demnings would provide extremely useful diagnostics on the laser 

We should note that corresponding optical spectrum can be confused in some experiments with the side- 
band instability which, of course, it is not: the sideband instability is extinguished for large detunings, in 
contrast to the lobes of the chirped-pulse spectrum, and the temporal sideband modulations are also incon- 
sistent with the substructure of the chirped optical pulses. 
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performance. In particular, optical autocorrelation would provide direct information on the 

duration of the electron pulses, and the corresponding optical spectrum would then provide 

an estimate of the energy chirp. Such diagnostics would greatly expedite the reconfigura- 

tion of the dispersive delay line for optimum pulse compression. 

rv. SUMMARY OF RESULTS 

From the simulations reported in this chapter, the following conclusions appear to 

be justified. 

1. Substantial frequency chirps can be obtained with relatively short electron 

pulses and modest energy chirps. Simulations of the optical pulse formation 

at 3.35 |im using electron pulses with a +2 % energy chirp over 4 ps yielded 

optical pulses with a duration of 3.4 ps which could be compressed by more 

than a factor of 15 to 220 fs. 

2. Due to an intrinsic, positive frequency chirping in the FEL (even for un- 

chirped electron pulses), electron pulses with a positive energy chirp yield 

larger frequency chirps than electron pulses with a negative energy chirp of 

the same magnitude. Consequently, positive chirps yield larger pulse com- 

pression ratios than negative chirps. 

3. Cavity lengths shorter than the synchronous length yield slightly longer 

optical pulses than longer cavities, because the erosion due to laser lethargy is 

reduced. Therefore, shorter cavities yield optical pulses with a greater total 

energy content, as well as a greater optical bandwidth and pulse compression 

ratio for a given frequency chirp. The optical pulse formation is also intrinsi- 

cally more stable due to the reduced effects of noise. 

4. For cavity lengths shorter than the synchronous length, negatively chirped 

electron pulses exhibit a substantially greater energy extraction than positively 

chirped pulses; the converse is true for cavity lengths longer than the synchro- 

nous length. Since shorter cavities are generally preferred over longer cavities 

for the reasons noted in 3, negative chirps would be more appropriate in appli- 

cations requiring high peak powers (even though the compressed pulses are 

longer.) 

5. Intracavity dispersion, such as from a Brewster plate output coupler, can 

distort the envelope and phase of the optical pulse as the laser builds up to 

saturation. However, the effect of dispersion can generally be neglected if 

|2ß"zbo| « 1   , (3.9) 
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where ß" is the second order dispersion defined in (3.7), z is roughly twice 

the thickness of the Brewster plate times the number of passes corresponding 

to the decay time of the resonator, and bo is the optical chirp parameter in the 

absence of dispersion. 

6. When operating the chirped-pulse FEL with cavity lengths shorter than 

the synchronous length, the optical pulses will eventually be pushed out of 

resonance with the incoming electron pulses. Therefore, the macropulse dura- 

tion should not extend too far into saturation. A limited macropulse would also 

preclude the formation of the sideband instability and the corresponding distor- 

tion of the optical envelope and phase prior to pulse compression. 

The simulations reported in this chapter have indicated the feasibility of obtaining broad 

band, frequency-chirped optical pulses by imposing a modest degree of energy chirping in 

an FEL. Simulations of the formation and compression of chirped optical pulses on the 

Mark TU FEL have yielded pulses with durations of just over 200 fs and peak powers of 

several tens of megaWatts. Although such pulses would be appropriate for many fast-time 

resolved and nonlinear studies in the infrared, the broad spectral width associated with such 

optical beams would appear to preclude the possibility of concurrently achieving high spec- 

tral resolution. However, in Part Two of this dissertation, I study a method to increase the 

spectral resolution of the optical beam by using an intracavity interferometer to phase lock 

successive optical pulses, and thereby separate the longitudinal modes of the laser. Such an 

enhancement, which is intrinsically important for high resolution infrared spectroscopy, can 

in principle be implemented simulaneously with energy chirping to yield a train of ultrashort, 

phase locked optical pulses. Consequently, in some applications, the improved temporal 

resolution need not occur at the expense of spectral resolution. 
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3 

Chapter 4 

The Michelson resonator 
free-electron laser 

Due to engineering constraints, most rf linac-driven free-electron lasers (FELs) 

operate with a large number of optical pulses circulating within the cavity at any time. An 

example is the Mark HI FEL [1] which drives 35 independent optical pulses. The spectral 

energy distribution of the output beam is comprised of the Fourier transform of the indi- 

vidual optical pulses enveloping a fringe pattern imposed by the axial mode structure of the 

optical resonator. However, the axial mode spacing is independent of the number of pulses 

contained in the cavity for devices in which the optical pulses build up independently from 

noise, and in this respect, the spectral properties are the same as if the cavity contained only 

a single pulse. Conventional two-mirror resonators with lengths of several meters, typical 

for rf linac-driven systems, have axial mode spacings of less than 100 MHz, and it is there- 

fore difficult to isolate these modes for applications in high resolution spectroscopy. 

One can take advantage of the large number of pulses by using an intracavity inter- 

ferometer to couple successive optical pulses at the beamsplitter [2], [3]. In such a config- 

uration, the circulating optical pulses will evolve from pass to pass with a definite phase 

relationship as they build up from noise. The axial mode spacing (or free spectral range) is 

thereby increased by a factor equal to the number of pulses in the cavity up to a frequency 

interval equal to the driving frequency of the rf linac. For S-band linacs this is usually 

several gigaHertz, resulting in spectral modes which can be more easily isolated in appli- 

cations to high resolution spectroscopy. 

In a previous publication [3], the phase locking properties of a Michelson mirror 
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resonator on short-pulse FELs were examined. The configuration of the Michelson resona- 

tor is shown in Fig. 4.1(a) in which the coupling is provided by an extra delay of one rf 

period in the secondary arm of the interferometer. Numerical simulations of the Michelson 

resonator FEL were reported which confirmed the corresponding increase in the axial mode 

spacing of the put beam on time scales appropriate to microsecond macropulse lengths, 

and a preliminary sigenmode analysis was developed which accurately predicted the mode 

decay rates. Apart from demonstrating the expected increase in the free spectral range, the 

simulations also indicated that the phase locked optical beam grows to the same saturated 

power level as the randomly phased beam. This latter property is particularly important for 

applications in nonlinear spectroscopy. Since the spectral width of the output beam is 

determined primarily by the duration of the short electron pulses, a decrease by a factor of 
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Fig. 4.1    Multiple minor resonators for coupling successive optical pulses in the macropulse: (a) a Mich- 
elson mirror resonator with a delay of one rf period in the secondary arm, and (b) a Fox-Smith 
interferometer with a round trip time of one rf period in the small resonator. 
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N in the number of modes yields an increase by the same factor in the power per mode, 

where N is the number of pulses in the cavity. This can be well over an order of magnitude 

increase in the spectral brightness. 

In the present chapter, I fully develop the eigenmode analysis of the Michelson 

mirror resonator, and more importantly, I demonstrate its equivalence to an independent 

frequency domain analysis based on the passive mode structure of that resonator. The 

advantage of the former is that it yields a rigorous solution to the initial value problem in 

terms of biorthogonal eigenvectors, and provides a convenient interpretation of the phase 

locking process in the time domain. However, within the context developed below, it is 

valid only for the perfectly tuned interferometer. The frequency domain analysis can be 

applied to an arbitrarily detuned interferometer, and is crucial to describing the detuning 

properties of the actively mode coupled laser in terms of the FEL interaction (which theory 

is developed in the following chapter [4].) The latter analysis can also be readily adapted to 

other resonator configurations such as the Fox-Smith interferometer shown in Fig. 4.1(b). 

In Section n, I develop the eigenmode analysis of the perfectly tuned Michelson resonator 

FEL, and in Section HI, I derive the passive frequency response of the three-mirror resona- 

tor from which the stable longitudinal mode structure is extracted. Finally, in Section IV, I 

present numerical simulations which illustrate the analytical results. 

n. EIGENMODE ANALYSIS OF N COUPLED LASERS 

Conventional rf linac-driven FELs, as noted above, usually operate with a large 

number N of optical pulses circulating in the cavity at any time, and pulses which build up 

independently from noise can be considered as N separate lasers driven independently by 

fresh electron pulses on every pass. However, if an interferometer is used to couple a frac- 

tion of each pulse to its successors, then the resulting operation can be viewed as a kind of 

injection locking or injection seeding of one laser by the others as the lasers turn on from 

noise. The coupled pulse formalism derives from this viewpoint, the eigenmode analysis 

motivated by the search for stable configurations which can support the injection locking 

process in a cyclical fashion. The performance of the system depends on the beamsplitter 

reflectance, the phase offset of the secondary mirror on the scale of an optical wavelength, 

and the detunings of the two coupled resonators relative to their respective synchronous 

lengths (as determined by the arrival times of the incoming electron micropulses). In the 

following analysis, we assume that these relative detunings are identical and yield an opti- 

mized gain interaction with the electron beam. Ln particular, we assume that the delay in the 

secondary arm of the interferometer is an exact integral multiple of the rf period, so that 

successive pulses are perfectly overlapped at the beamsplitter. 
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A. Formalism 

For simplicity, we first consider the coupling of N = 4 optical pulses circulating 

within the short cavity of a Michelson mirror resonator (the primary linear cavity), with 

N+l = 5 pulses in the long cavity, so that the primary pulses are delayed by one rf period 

in the secondary arm of the interferometer. The analysis can be easily extended to any num- 

ber of pulses. We assume a net round trip energy gain of 2a, a beamsplitter of reflectance 

r2 and transmittance t2 = 1 - r2, and a relative phase offset of (p at the secondary mirror. Let 

the complex amplitudes of these pulses be represented by Eq(n), where q labels the pulses 

within the primary cavity (q = 1,...,N) and n labels the pass number. Then the following 

set of equations describes the pass to pass evolution of the coupled pulses which arrive in 

the order Ej(n), E2(n), E3(n), E^n), E^n+1), E2(n+1), etc. 

Ei(n+l) = ea [ Ei(n) t2 + E4(n-1) r2 e*] 

E2(n+1) = ea [ E2(n) t2 + E^n) r2 ei(p] 

E3(n+1) = ea [ E3(n) t2 + E2(n) r2 ei(p] 

E4(n+1) = ea [ E4(n) t2 + E3(n) r2 e1*] 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

J Defining the column vector of pulses on pass n as 

"E4(n-1)~ 

Ei(n) 

l£(n)) = E2(n) 

E3(n) 

_ E4(n) _ 

we may recast equations (4.1-4.4) into the matrix format 

I £(n+l) > = Tl 1 E(n)>     , 

where the coupling matrix Ft has elements 

0          0          0 0 1 

ear2ciq>     eat2          Q 0 0 

n = 0      car2eii>    e°t2 0 0 

0          0      ear2e'» eat2 0 

-     0          0          0 ear2ei(P    e :°t2 

(4.5) 

(4.6) 

(4.7) 

We now search for solutions of (4.6) of the form 
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Eq(n+1) = YEq(n) = Yn+1 Eq(0) (4.8) 

where yis independent of n and is by definition the same for all N pulses (this is required 

by the symmetry of the system with respect to time displacement). The equivalent eigen- 

value problem can be written 

YJYi> = Mlyi> (4.9) 

where the eigenvalues Yj are the N+l distinct solutions of the characteristic equation 

Y(Y - eat2)N = (ear2ei<p)N   , (4.10) 

which may also be written as 

expi(9.2sp.) 
_ -a Y = e t2 + r2- 

yl/N 
m = 0,...,N-l  . (4.11) 

The corresponding N+l eigenvectors IV,) form a complete set for the solution of 

the initial value problem, defined by the requirement of specifying a unique superposition 

of the eigenvectors I Vj) for any initial pulse distribution. This assertion can be justified 

physically by noting that there are a total of N+l degrees of freedom which must be speci- 

fied as part of the initial value problem, corresponding to the N pulses in the primary cavity 

plus the pulse in the secondary arm which couples to the first pulse in the primary cavity. 

Therefore, the N+l eigenvectors are sufficient to form any initial superposition, which we 

write as N+1 

l£(0)> = ]T cjYi)       . (4.12) 
i = l 

N+l N+l 

Furthermore,    I E(n)) = rt" I E(0) ) = ]T Ci tt" I Vj > = ]T Cj tf I Yj >.   (4.13) 
i=l i=l 

It is evident that as the pulses evolve from pass to pass, the eigenvector(s) with the largest 

eigenvalue(s) will dominate the structure of the pulse train. 

B. Biorthogonulity 

It can readily be shown that Tt does not commute with its adjoint TV (i.e. it is not 

a normal matrix). Therefore, eigenvectors corresponding to distinct eigenvalues are gener- 

ally non-orthogonal, and the coefficients cs in (4.12) cannot be calculated directly from the 

projections of the initial column vector I E(0)) onto the eigenvectors I Vj). Nevertheless, 

if one considers the adjoint eigenvalue problem 



DI 

o 

^iini> = ntiiji>   , (4.i4) 

then it is possible to show [5] that the eigenvalues ^ of the adjoin' equation are related to 

Si = Y* (4.15) 
the eigenvalues Yi by 

and that the corresponding (appropriately normalized) eigenvectors satisfy die orthonormal- 

ityrelation: /TT ,., v     c .. .* 3 < Hi I Yj > = Sij  . (4.16) 

This property of the vectors 11&) and I Vj) is known as biorthogonality, and is of theoreti- 

cal interest because it allows a rigorous solution of the initial value problem in a completely 
analogous manner to the usual orthogonal projection. In particular, we obtain the follow- 
ing solution for the coefficients q in (4.12): 

Ci = <iZilE(0)> . (4.17) 

Explicitly, the biorthogonal eigenvectors I ü) can be constructed from the elements of the 

I Yi) as follows: 

iYi> = 

C4(-D 

ei(0) 

C2(0) 

e3(0) 

G4<P) 

and Ui> = 

[car2e-«P]c;(_l) 

c4*(0) 

e3*(0) 

e2*(0) 

ci*(0) 

(4.18) 

Ji 

The biorthogonality property is completely equivalent to the non-orthogonality of the I Yi) 

in describing the evolution of the pulse train. For example, consider the total energy P(n) 

on a given pass n, which we define as 

P(n) = (E(n)lE(n))     , (4.19) 

where I E(n)) is given by (4.13). This quantity is of considerable practical interest for cal- 

culating the leakage losses due to destructive interference of the pulses at the beamsplitter. 

Explicit calculation yields 

P(n) = £ c* < Yi I n1" £ Cj n" I Yj > (4.20) 

= XXci'ciX<^intn|iI*K^in lYj)     (4.21) 
i        j * 

where we have inserted the closure relation 
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,J 

1=X lUkXii (4.22) 

for the complete bases of biorthogonal eigenmodes IV^), I Uj.); this relation is analogous 

to the one for orthonormal bases that is familiar from quantum mechanics [6]. Using the 

eigenvalue equations (4.9) and (4.14), and the biorthogonality relations (4.15) and (4.16), 

we then obtain 

P(n) = X X c*CJX <&lYriUkXYklYi
nlyj> 

i       j * 

i    j k 

= X IciPlYil^ + X X Ci'qTfYO&W 

(4.23) 

(4.24) 

(4.25) 
1    j*> 

whsre the I Vj) are assumed to be normalized to unit length. 

We note that the result (4.25) would obtain by directly squaring the absolute value 

of the last equality in (4.13), and that the second term would be absent if the eigenvectors 

were orthogonal. It is therefore interesting to examine the degree of non-orthogonality of 

the I Vj) to determine under which conditions, if any, the second term in (4.25) may be 

neglected. To this end, I have plotted in Fig. 4.2 the magnitudes of the mutual projections 

I ( Vj I Vj )l versus the products of the corresponding eigenvalues I Yi Yj' f°r me casc °f N 

= 35 pulses and a beamsplitter reflectance of r2 = 50 %. The qualitative nature of the graph 
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Fig. 4.2    Mutual projections of the non-orthogonal eigenmodes vs. the products of their eigenvalues, for a 
Michelson mirror resonator with N = 35 pulses and a beamsplitter reflectance of r2 = 50 %. 
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is independent of both r2 and N. We see that for i * j, the non-orthogonality can be quite 

large (as high as I (Vj I Vj )l = 0.74), but that these extremes only occur for small products 

of the eigenvalues; eigenvectors corresponding to larger products of the eigenvalues have a 

greater degree of mutual orthogonality. As a result, the eigenvectors with the greatest non- 

orthogonality will decay away after relatively few passes, leaving only the eigenvectors 

with the largest eigenvalues and the greatest degree of mutual orthogonality to support the 

evolution of the pulse train. In paragraph D, we will derive an approximate solution using 

orthogonal vectors, and in Section HI, we will discuss the physical origin of the non-orthog- 

onality. 

C Equivalent matrix formulation 

The coupled pulse problem with N = 4 pulses in the primary cavity assumed that a 

fraction r2 of each pulse is delayed by one rf period before coupling to the succeeding pulse. 

An equivalent formulation can be made with N+l = 5 pulses in the primary cavity in which 

a fraction t2 = 1 - r2 of each pulse is advanced by one rf period before coupling to the pre- 

ceding pulse. The coupled pulse equations in this case can then be written 

Ejfr+l) = ea [ EjCn) r2 e5* + E2(n) t2 ]        , (4.26) 

j                                          E2(n+1) = ea [ E2(n) r2 e1* + E3(n) t2 ]       , (4.27) 

E3(n+1) = e° [ E3(n) r2 & + E*(n) t2 ]       , (4.28) 

E4(n+1) = ea [ Et(n) r2 c1«? + E5(n) t2 ]       , (4.29) 

E5(n+1) = e°[ E5(n) r2 ei(P + E^n+l) t2 ] (4.30) 

• = ea [ E5(n) r2 e1* + ea E^n) r212 eicP + ea E2(n) t4 ] .    (4.31) 

The eigenmodes I Yj) of the corresponding matrix equation are identical to the I Vj) of the 

original formulation with N = 4 pulses, but the eigenvalues \ are different. The equality of 

the eigenmodes follows from the fact that the two formulations are physically equivalent, 

but the eigenvalues are different because the original problem describes the evolution of 

every fourth pulse, the latter problem the evolution of every fifth pulse. Indeed, one finds 

thatlYj^KI4. 

D. Approximate solutions; physical interpretation 

A useful approximation to the above analysis is obtained for cases in which N is 

very large (good results are obtained for N > 10). In particular, we see from (4.11) that as 

N -* <», the denominator of the second term Cy1^"1) approaches unity for any value of v. 
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The number of eigenvalues is then essentially reduced to N, corresponding to the N solu- 

tions 
Ym* = ea[t2 + r2expi(q>-2ML)J ,    m = 0 N-l . (4.32) 

The number of eigenvectors is still rigorously N+l, but the eigenvector corresponding to 

the smallest eigenvalue will decay to a negligible magnitude after only a few passes. There- 

fore, neglecting it altogether will not appreciably affect the evolution of the pulse train as 

the number of passes increases. In fact, the N eigenvalues (4.32) are exact solutions of the 

modified eigenvalue problem 

Ym
,iYmv=n,ivm)  , (4.33) 

for which the modified NxN coupling matrix TV has elements 

eat2        0 0     ear2e"P 

ear2ekp     eaj2 Q Q 

0      ear2ei(P    eat2        0 

0 0      ear2ei<e    ca^   - 

n' = (4.34) 

The corresponding eigenvectors are mutually orthogonal, which results from the fact that 

tt' is a normal matrix (i.e. M' TV^ = Tl^ tt1). 

The approximation consists of replacing the N+l non-orthogonal eigenvectors of 

(4.9) with the N orthogonal eigenvectors of (4.33) in the superposition describing the evo- 

lution of the pulse train; these N orthogonal eigenvectors have elements 

1 

exp(i2m) 

exp(i4m) 

Vn/> = VN" W expi 

N elements 

(4.35) 

V 

To justify this approximation physically, we note that the non-orthogonality of the N+l 

eigenvectors I Vj) results from the formal asymmetry of (4.1) with respect to the remaining 

coupled pulse equations, in which the first pulse on pass n+l couples the pulses from two 

previous passes instead of only the preceding pass n. However, if the number of pulses N 
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is large, then after many passes they will begin to evolve more slowly from pass to pass, 

and on this basis we may replace pulse EN(n-l) with pulse EN(n) in the formulation of the 

coupled pulse equation (4.1). This single substitution leads to the modified eigenvalue 

problem (4.33). 

The orthogonal eigenvectors I WJR) can be given a straightforward physical inter- 

pretation. In the frequency domain, they correspond to distinct spectral modes displaced 

from one another by one primary cavity axial mode spacing (as can be demonstrated by 

computing the Fourier series for each eigenvector), and therefore fill the entire free spectral 

range of the multiple mirror resonator. In the time domain, they represent configurations in 

which each pulse differs in phase from its successor by 27tm/j^ _ Th.^ ensures that as the 

phase information propagates along the pulse train, a given pulse in the primary cavity will 

remain in phase with itself from pass to pass. For any arbitrary value of (p, one of the ei- 

genvectors will have the largest eigenvalue and will dominate the spectrum as the macro- 

pulse evolves. Therefore, each mode can be selected in turn by varying the value of q> at 

the secondary mirror. This property of the resonator is important for applications to spec- 

troscopy. 

The squares of the absolute values of the eigenvalues (with the gain ea omitted) 

correspond to the relative growth rates and are found from (4.32) to be 

lY^I2 = l-2r2t2[l-cos(9-2Km.)]       . (4.36) 

The corresponding mode losses are 

5m = 1-lYm'l2 = 2r2t2[l-cos(<p-2™-)]   , (4.37) 

and result from destructive interference of the eigenmodes at the beamsplitter. As a numeri- 

cal example, consider a Michelson mirror resonator with N = 35 circulating pulses in the 

primary cavity and a beamsplitter reflectance of r2 = 50 %. In this case the relative single 

pass power growth for the dominant mode and its two nearest neighbors (q> = 0; m = 0,1, 

2) is 1:0.9920:0.9681. The relative power after 300 passes is therefore 1:0.09:6(10'5). 

This number of passes corresponds to a time of 4 (is for the Mark III FEL, showing that 

appreciable mode decay can result in feasible macropulse durations. 

Finally, we may estimate the total leakage losses due to destructive interference of 

the randomly phased pulses at the beamsplitter. The total pulse energy P(n) in the resona- 

tor on pass n was given in (4.25), and the total losses are 

JJ , ,      P(n-1)-P(n)      ,     P(n)- 

^(n) = -S(nTir- = 1-pir7   •      (4-38) 

If the N pulses in the laser start up independently from electron shot noise, then we may 
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assume that the initial pulses are randomly phased and that all of the coefficients q in (4.25) 

are equal. If we also assume that the second term in (4.25) is absent, then the losses at the 

beamsplitter become 
N-l 

&iur(n) = l 

2 (l- 2i2t2[l -cos(<p-2m)])n 

m = 0 
N-l 

(4.39) 

]jT (l-2r2t2[l-cos((p-2mn. n-l 

m = 0 

Although this expression cannot be simplified, it is readily evaluated on a small computer. 

Figure 4.3 shows the error in the estimated leakage losses incurred by using (4.39), instead 

of the result (4.38) in which P(n) is given by (4.25). As suggested by the discussion at the 

end of paragraph B, the approximation significantly improves with the number of passes. 

50 |   i   i   i   |   i   i '   '   <   I   '   '   '   I 

50% reflectance 
• 12% reflectance 

iiü J 
60 BO 100 

Pass Number 
Fig. 4.3    Percent error in calculating the total leakage losses for N = 35 pulses using the approximate 

eigenvalues from Section HD instead of the exact eigenvalues corresponding to the non-orthog- 
onal eigenmodes, for two values of the beamsplitter reflectance. 
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m. PASSIVE MODE STRUCTURE OF THE MICHELSON RESONATOR 

The spectral energy distribution of the circulating optical field inside a laser cavity 

consists, in general, of a superposition of discrete longitudinal cavity modes oscillating 

with frequencies tun. For a plane-wave optical field with a slowly varying amplitude E(t) 

and phase t>(t), this superposition can be written as the modal expansion [7] 

E(t) e'W) e-iü)t = X En(t) e-il%1   , (4.40) 

in which the E„(t) are complex valued spectral components which have a slowly varying 

time dependence only over many passes in the cavity, and essentially describe the long term 

spectral evolution of the laser field. The Michelson mirror resonator actually consists of 
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two coupled linear resonators, each possessing its own complete set of longitudinal modes 

appropriate for the superposition of optical fields in the respective uncoupled resonators. 

However, it is clear that neither of these sets of modes can completely describe the field in 

the Michelson mirror resonator, because the mode spacings are incommensurate with one 

another due to the difference in the cavity lengths. To obtain an appropriate set of longi- 

tudinal modes, one must consider the frequency response of the linear resonators when 

coupled in the Michelson configuration. 

A. Frequency response 

The frequency response of an arbitrary resonator is calculated by coupling a tunable 

CW source of fixed amplitude into the cavity through the output coupler. The discrete 

resonances of the resulting circulating field comprise the only frequencies which can be 

supported by the resonator, and therefore yield a complete set of longitudinal modes. The 

generalized frequency response of a two-mirror cavity with length Lc and complex mirror 

reflectivities ri and ri, obtained in this manner, is [8] 

2 

'inc 

1 - (5c/2) 

1 - e   c/2ectri ^exp iay 2k 
(4.41) 

J 
where E^c and E^c are the incident and circulating field amplitudes, 8C is the round trip 

power loss due to diffraction and output coupling, and 2a is the round trip power gain. 

downstream 
mirror 

r 

Michelson 
mirror- secondary 

mirror 
i 
i 

Z. 
S ä 

Fig. 4.4    Definition of the cavity lengths in a Michelson mirror resonator. The length L of the primary 
linear cavity is L = l^ + Li. 

We take the two cavity mirrors to be a perfect reflector (T\ = 1) and the Michelson mirror 

shown in Fig. 4.4, for which the reflectance ri, assuming perfectly reflecting mirrors, is 

=  r2 T2 = r* exp l [;,v2k 
c J 

+12 exp iü> 
2L, (4.42) 
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Here, r2 is reflectance of the beamsplitter and t2 = 1 - r2 is the transmittance. If we define 
the length L of the primary cavity to be 

L = LC + L!    , (4.43) 

and let the round trip time equal an integral number N of rf periods, then by introducing a 
delay of one rf period in the secondary arm of the interferometer we may write 

&2(L2-U) = &^-tp      , (4.44) 

where q> is a residual phase offset on the scale of an optical wavelength. Substituting (4.42), 

(4.43), and (4.44) into the frequency response (4.41) yields the final result 

2 
-circ 

-inc 

1 - (6V2) 

l-e*5</2eaei27tA{,n 1 - r2l 1 - exp i 2TI Af, 
N 

a.. <P 
(4.45) 

where Afm is the frequency in units of the axial mode spacing of the primary cavity: 

Afm = Af-2^   • (4.46) 

Figure 4.5 shows the normalized frequency response of a Michelson mirror resonator with 
7 % net round trip power losses, a beamsplitter reflectance of r2 = 50 %, and a phase offset 
of (p = 0 at the secondary mirror. Figures (a), (b), and (c) are for N = 10, 20, and 30 rf 

periods respectively, with the abscissa in units of the c/2L round trip frequency of the pri- 

mary linear cavity. 

B. Resonant frequencies and losses 

We see from Fig. 4.5 that the dominant modes are separated by the rf frequency, 

and that the satellite modes oscillate with reduced amplitudes resulting from increased inter- 

ference losses at the beamsplitter. The resonances are roughly separated in frequency by 

the axial mode spacing of the primary cavity, yielding a total of N modes per rf interval. 

This is the same result obtained from the approximate eigcnmode solution in Section II. 

Furthermore, we may identify the outer bracket in the denominator of (4.45) as a complex 
'loss factor' 7, in analogy with the identification of e' ^ =» 1 - 5c/2 as the loss factor due 

to the loss 5c/2. Setting Afm = m in (4.45), where m is an integer, we then obtain 

|y|2 = l-2r2t2 1 -cos PSfH] (4.47) 

which is identical to the result obtained from the eigenmode analysis for the coupled pulse 

problem. This result, together with the mode structure noted above, demonstrates the equiv- 

alence of the time domain and frequency domain analyses. The dominant modes, separated 

by the rf frequency, ultimately support the oscillation of the optical pulses under the 



65 

J 

d 
o 
Q. 
IA 
t) 
U 

X 
a a 
3 
D- 
0) u 

C 
o 
a 

u 
c 
I) 
3 
a- v u 

l-V   a 
,  .  i  i  j i ■  ii i i  | 

0.8 ■ 

0.6 ■ 

0.4 ■ 

CM
         O

 
d

      d
 

-40      -20        0 20        40 

Frequency (axial mode spacings) 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

b 

I 
-40      -20        0 20        40 

Frequency (axial mode spacings) 

-40      -20        0 20        40 

Frequency (axial mode spacings) 

Fig. 4.5    Passive frequency response of optical resonators under CW excitation, showing the axial mode 
structure for a Michelson mirror resonator with a 50 % beamsplitter reflectance, a delay of 1 rf 
period in the secondary arm of the interferometer, and a round trip time in the primary linear 
cavity of: (a) N = 10 rf periods, (b) N * 20 rf periods, and (c) N = 30 rfperiods. 

influence of active mode coupling by the short electron pulses, after the remaining modes 

have decayed away. However, one other point should noted concerning the process of 

mode decay. 

The motivation for studying the the passive mode structure was to determine which 

frequencies can be supported by the multiple mirror resonator under pulsed excitation by an 

electron beam. In the case of a CW excitation, the mode amplitudes derived in paragraph A 

do not vary with time. However, the some of the 'modes' have very high losses, even on 
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the order of unity, and in the case of pulsed excitation these modes will decay away with 
rates determined by those losses. What does it mean to say that we have a 'mode' which 
lasts for only one or a few round trips? Clearly, such modes are not appropriate for the 

modal expansion indicated in (4.40), because the mode coefficients En(t) are no longer 
slowly varying with time and cannot be identified by a single frequency C0n. In fact, modes 

with lifetimes on the order of one round trip will have spectral widths on the order of the 
round trip frequency, and will therefore overlap adjacent modes. This overlap is equivalent 

to 'an expansion of one mode in terms of the others', and comprises the physical origin of 
the non-oithogonality of the modes which we discovered in Section n. As noted in Fig. 
4.2, the degree of overlap is more extreme for modes with smaller eigenvalues. It is inter- 

esting that the eigenmode analysis allows us to compute these mutual projections exactly. 

C. The detuned interferometer 

We now extend the analysis in paragraph A to the case in which the interferometer 
is not perfectiy tuned to the overlap of successive pulses. For simplicity, we set (p = 0 and 

^ ^2(L2-L1) = ä2L(1 + 5N)    t (4>48) 

where 5N represents the small fraction of an rf period by which the round trip time in the 
secondary arm is detuned. The complex loss factor y in the denominator of (4.45) can then 

be rewritten 

r* sin (27cAfm l±ft*)   \ 
N   ;. -v l-2r2t2 l-cos(27tAfm-l±5K exp ltan- 

lm 

\ 
t2 + r2cos 27cAfm-i±^ 

V N J   (4.49) 
where Afm is not restricted to integral values. If we let D equal an integer which represents 

the approximate number of rf frequency intervals by which Afm is detuned from some ref- 

erence mode, we may then introduce the small quantity 

and expand (4.49) in small arguments of the trigonometric terms to obtain 

,2 

(4.50) 

exp (Afml±^ -D) ]exp[i27tr2(Afml±^. .D|     . (4.51) 

In this approximation the frequency response (4.45) of the resonator becomes 

:irc 1 - (Sc/2) 

1-exp a %-2r2t2r Af 1±M. Aim    N D exp i2TtAfm+i HKT^MJ 1+5N 
N 

-D 

(4.52) 

in which the loss and resonance terms have been grouped into the exponentials. Resonances 
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occur when 
2TI Afm + 27tr2(Afml±5& - D) = 2T:(ND + m) (4.53) 

where m « N is a second integer. The corresponding resonant frequencies are 

Afm = ND + m-r^PSN      t 
1+f2/N 

(4.54) 

and the power losses at the resonant frequencies are 

8D = Sc + 47t2r2t2(nj. + D5NJ2 (4.55) 

in which all terms of order (° /N) or (VN
2
) have been neglected relative to the remaining 

terms. Note that for 8N = 0, this is the same loss derived from (4.47) or (4.36) for modes 

separated by the axial mode spacing of the primary linear cavity. However, it is important 
to note that the preceding method of extracting the resonant frequencies and mode losses 
can be applied to the frequency response of any resonator configuration with arbitrary mir- 

ror detunings. 

Hypermodes are identified by a given m, and correspond to sets of longitudinal 
modes that are separated by the rf frequency. If the interferometer is perfectly tuned (5N = 

0), then all of the longitudinal modes in a given hypermode will have the same loss, but 
different hypermodes will have different losses depending on m. If 5N * 0, then the longi- 

tudinal modes within a given hypermode will have different losses depending on D, and the 
spacing between the modes in a given hypermode will deviate from the exact rf frequency, 
depending on 5N. This last point is of particular importance for the analysis of the actively 

mode coupled laser in the presence of a pulsed electron beam, the theory for which is de- 

veloped in the following chapter. For that analysis, we provide the following computation 

for the frequency spacing between the axial modes of a given detuned hypermode. By 

approximating the denominator in the second rrm of (4.54) to unity, we have from (4.46) 

*™.*<».£[4jf*.«*>].£(!«.i»W)   .       (4.56) 

Note that N s Vjf —2- for some ideal cavity length LQ, where vrf is the rf frequency, but 

that L appearing in (4.56) can deviate from this ideal length by 5L. This quantity represents 

the cavity detuning of the primary linear cavity relative to the incoming electron pulses. 

Expanding (4.56) to the lowest order in SL and 8N, and defining 5L s c 5Tc/2 and 5N = 

8TM-vrf, yields 

Af^-Af^ = vrf-vrf-f-(6Tc + r26TM) (4.57) 
2Lo 
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where 8TC and 8TM represent the round trip temporal cletunings of the linear cavity and the 

interferometer respectively (8TC,M > 0 for cavities longer than the synchronous length). 

With the definitions ©„ s 2jc[Af ^l) - At*0*], türf s 27cvrf, and Tc a 2L/C, this last result 

can be written 

Tc (cürf - ©ax) = ©rf (STc + r2 5TM)       . (4.58) 

The interpretation of this result is straightforward: if the beamsplitter reflectance r2 = 0, 

then the only contribution to the cavity detuning comes from the downstream mirror cf the 

primary cavity. If r2 = 1, then we have a two-mirror cavity consisting of the downstream 

mirror and the second reflection mirror, and both mirrors contribute equally to the desyn- 

chronism of the optical pulses with respect to the incoming electron pulses. For 0 < r2 < 1, 

the result is interpolated. 

IV. NUMERICAL SIMULATIONS 

I have performed numerical simulations on the operation of Michelson mirror res- 

onators in which the optical pulses build up from spontaneous radiation to full saturation. 

The computer code is described in Chapter 2, and essentially performs a one-dimensional 

integration of the coupled Maxwell-Lorentz equations for each pulse, in which the trans- 

verse coupling between the electron and optical beams is included by means of a complex 

filling factor appropriate to the Gaussian modes of the resonator. Shot noise is included by 

random modulations of the electron beam density at fixed positions within an optical wave- 

length and generally dominates the effect of quantum noise [9]; the latter is included in the 

present application to ensure that the initial optical phase of each optical pulse is completely 

randomized. 

The Michelson mirror resonator is simulated in the following fashion. On a given 

pass n, each pulse Eq(n) [ = Eqin(t) eil3q-nW ] interacts with a fresh electron micropulse, 

undergoes cavity losses and cavity detuning in relation to the electron micropulses, and is 

then coupled to its predecessor Eq.i(n) by means of the relations 

Eq(n+1) = t^OO + r2Eq
d!(n) ei<p (4.59) 

for q = 2,... , N, or 

Ei(n+1) = t2Ei(n) + r2E^(n-i)ei(p (4.60) 

for q = 1. The total leakage power is also calculated on each pass n according to the sum- 

mation N 

Pi«k(n) = £ Pq(n)   , (4.61) 
q=l 



69 

D 

Parameter Definition Simulation value 

Optical beam parameters 

X Resonant optical wavelength 3.35 u.m 

N Number of circulating optical pulses 35 

6c Cavity losses 7.3% 

Oout Output coupling 5.5% 

ZR Rayleigh range 73.08 cm 

Electron beam parameters 

1 Electron beam energy / mc2 83.19 

*P Electron pulse duration 4ps 
I Peak electron current 18.8 A 

Vrf RF frequency 2.857 GHz 

Ex Normalized horizontal emittance (1/e )        8n mm-mrad 

Ey Normalized vertical emittance (1/e) 4« mm-mrad 

ßx Horizontal "Rayleigh range' 45 cm 

Wiggler parameters 

Nw Number of wiggler periods 47 

K Wiggler length 108.1 cm 

\/ Wiggler period 2.3 cm 

Table 4.1  Parameters used in the Michelson resonator simulations on the Mark III FEL. 

where 

Pq(n) = | rt Eqfn) - it E* j(n) c* |2 (4.62) 

for q = 2,... , N, or 

Pi(n) = |n Ei(n)-rt E^(n-l)ei,p|2 (4.63) 

for q = 1. The superscript d indicates relative cavity length detuning at the secondary mir- 

ror prior to coupling, and is performed by shifting the entire slowly varying optical enve- 

lope and phase in the numerical window with linear interpolation between the sample points 

(the effects of changing the relative cavity detunings between the two coupled resonators 

were oniy qualitatively studied in the present work; more extensive quantitative studies are 

reported in the following chapter.) The phase offset e'' is performed by direct multiplica- 

tion independendy of the cavity detuning, and the above steps are then repeated for pass 
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n+l using the pulses Eq(n+1). The parameters for these simulations are appropriate to 

those of the Mark HI FEL and arc listed in Table 4.1. 

Figure 4.6 illustrates the previous assertion that the surviving spectral mode can be 

selected by varying the phase offset 9 at the secondary mirror. In these simulations the 

primary linear cavity contains N = 4 circulating pulses, the beamsplitter reflectance is r2 = 

50 %, and the relative cavity length detuning in the interferometer is zero. We see that the 

relative phase difference between successive optical pulses at the end of the macropulse 

exhibits a discrete jump of Ad = rc/2 when the relative phase offset at the secondary mirror 

crosses 9 = TC/4; similar jumps would also occur at phase offsets of 9 = 37t/4, 5TI/4, and 

IK/4. This optical phase difference is calculated as an RMS average across the temporal 

profile of each pair of adjacent pulses (q,q+l) with a weighting factor equal to the geomet- 

ric mean of the powers at each sample point The differences for each of the N = 4 pairs of 

adjacent pulses are then averaged. 
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Fig. 4.6    Simulations showing the phase difference between adjacent optical pulses at the end of the 
macropulse (100 passes), as a function of the phase offset at the secondary mirror, in a Michel- 
son resonator FEL with N = 4 circulating pulses in the primary linear cavity and a beamsplitter 
reflectance of 50 %. 

The discrete phase difference between the pulses is a manifestation of a single hy- 

permode in the axial mode spectrum. However, the optical macropulses exhibit increased 

losses for phase offsets near the discontinuities. These losses are illustrated in Fig. 4.7 and 

result from destructive interference between successive pulses at the beamsplitter, even 

though the pulses are perfectly phase locked. The magnitude of these losses is given 

roughly by (4.37), but they can never be greater than 
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Fig. 4.7    Leakage losses due to interference in the surviving hypermodes at the end of the macropulse for 

the simulations in Fig. 4.6. The dashed line is the prediction of (4.37) with N = 4. 

J 

5m„ = 2r2t2[l-cos(£)] (4.64) 

which decreases for increasing N. The dashed line in Fig. 4.7 is the analytical loss as a 

function of cp predicted from (4.37) for N = 4, where the hypermode number is m = 0 for 9 

< TC/4 and m = 1 for 9 > id A. The agreement between the analytical and simulated losses 

is surprisingly good, in light of the fact that (4.37) was derived from the approximate 

eigenmode analysis assuming large N. 

The surviving spectral modes for phase offsets of (p/2:t = 0.1,0.125, and 0.15 are 

shown in Fig. 4.8. These macropulse power spectra S(co) are calculated from the temporal 

averages of the amplitude E and phase -d along each optical pulse according to 

S((o) = -L 

N 

Ete iökc-ikT(ö 

k=l 

(4.65) 

where T is the rf period, Q) the frequency, ovcrbars denote power-weighted temporal aver- 

ages, and the sum is over all N pulses in the output macropulse. The spectra for <p < TC/4 

and <p > 7t/4 show single hypermodes shifted by one quarter of the free spectral range of 

the Michelson mirror resonator, but the spectrum for <p = TC/4 shows two competing 

This approximation is based on the fact that temporal variations of the amplitude and phase within the 
pulses contribute to a broad spectral envelope, whereas the absolute fluctuations of these quantifies among 
the pulses determine the mode structure of the pulse train. 
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Fig. 4.8    Spectra of the simulated macropulses from Fig. 4.6 with phase offsets at the secondary mirror 
of: (a) <D/2TC = 0.1, (b) <p/2rc = 0.: 25, and (c) <J>/2JC = 0.15. 

hypermodes (the bias of the relative amplitudes is due to start up from noise.) An explicit 

calculation in the eigenmode analysis of the two surviving non-orthogonal modes for the 

case of N = 4 and q> = TC/4 can be ussd to reconstruct the pulse train according to the rela- 

tive mode amplitudes measured from Fig. 4.8(b). Figure 4.9 displays the beating of the 

phase difference between adjacent pulses (q,q+l) in the resulting pulse train, and is seen to 

agree very veil with the simulation in both the amplitude and period of the oscillations. 

To evaluate the theory for large N, I performed simulations of the Michelson res- 

onator FEL with N = 35 pulses, r2 = 50 % coupling, <p = 0 phase offset at the secondary 
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Fig. 4.9 Phase difference between two adjacent optical pulses as a function of pass number, corresponding 
to the simulation in F:g. 4.8(b). The solid line is the simulated phase difference, and the dashed 
line is the result of an explicit calculation in the eigenmode analysis using the amplitudes of the 
two surviving non-orthogonal modes measured from Fig. 4.8(b). 

mirror, and zero relative detuning in the interferometer. Figure 4.10 compares the saturated 

optical pulse power and spectrum after 160 passes with a simulation using only a single 

pulse in the corresponding two-mirror cavity.  We see that the overall spectral properties 
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arc essentially unaffected by the presence of the perfectly tuned interferometer. Both simu- 

lations show the slight formation of sidebands at a frequency of -2000 GHz, corresponding 

to the spikes at the front end of the optical pulses, and both simulations yield pulses of 

roughly the same duration and average optical power. Other properties of the laser, such as 

the shape of the cavity detuning curve, also turn out to be unaffected by the presence of the 

perfectly tuned interferometer. These results can be understood using simple arguments: in 

the time domain, the tuned interferometer couples phase locked optical pulses that are per- 

fectly overlapped in time, and in the absence of leakage losses the properties of the satura- 

ted laser are then determined only by the separate interaction of the electron pulses with 

each optical pulse. In the frequency domain, the pulsed electron beam produces coupling 

only among the modes of a given hypermode, and the surviving hypermode of the perfectiy 

tuned interferometer is identical to the hypermodes of the corresponding two-mirror cavity. 

The solid curve in Fig. 4.11(a) shows the output power in the resulting macropulse 

as the laser turns on from noise, compared with the output power using the same simulation 

parameters for only the single pulse in the cavity (dashed curve). We see that the Michelson 

resonator FEL exhibits a slight delay in the turn on time due to the presence of leakage loss- 

es at the beamsplitter, but that the macropulse power otherwise grows to essentially the 

same level at saturation as the hypermodes and leakage losses decay from pass to pass. The 

corresponding leakage power is plotted as the solid curve in Fig. 4.11(b), and the theoreti- 

cal leakage power is plotted as the dashed curve; this theoretical result is obtained by 
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Fig. 4.11  (a): Output macropulse power for the single-pulse simulation of Fig. 4.10 (dashed line), and for 
(he Michelson resonator simulation of Fig. 4.10 (solid line), (b): Leakage power for the Michel- 
son resonator simulation of Fig. 4.10, showing the theoretical curve (clashed line) calculated 
from (4.39), and the simulated curve (solid line). 



75 

multiplying the leakage losses from (4.39) by the simulated intracavity power assuming 5.5 

% output coupling. The simulated leakage power initially exceeds the theoretical prediction 

at the start of the macropulse (pass one to pass twenty), because the presence of spontane- 

ous radiation in the simulations uniformly repopulates all of the modes as they decay at the 

beamsplitter. However, as the intracavity power grows to the onset of saturation (pass 

twenty to pass sixty), the relative magnitude of the spontaneous radiation is reduced and the 

theoretical leakage power begins to show excellent agreement with the simulated leakage 

power. 

In the saturated regime beyond pass sixty, the simulated and theoretical leakage 

powers in Fig. 4.11 (b) again begin to show a significant difference which is maintained to 

the end of the macropulse. The origin of this discrepancy lies in the theoretical calculation 

of the leakage losses, where we assumed in (4.39) that the surviving hypermode was the 

lowest order mode with m = 0. Figure 4.12(a) indicates that this assumption is accurate up 

to at least pass fifty, but Fig. 4.12(b) shows that the surviving mode at saturation is m = 1. 

Therefore, instead of resulting from hypermode decay (for which (4.39) yields a theoretical 

leakage power of 2400 W), the losses at saturation result primarily from destructive inter- 

ference of the m = 1 hypermode at the beamsplitter. If we compute the leakage losses at 

saturation from (4.37) using (p = 0 and m = 1, we obtain an average theoretical leakage 

power of 5900 W, which compares more favorably with the simulated leakage power of 

5600 W. The reason for the shift in the dominant hypermode from m = 0 before saturation 
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to m = 1 after saturation is presently unknown. However, it may result from nonlinear 

mode competition [10], coupled with the presence of a small amount of spontaneous radia- 

tion at saturation. In most simulations, the surviving hypermode was indeed m = 0, but in 

these cases the theoretical leakage power at saturation usually exceeded the simulated leak- 

age power, and a greater degree of mode reduction was observed in the corresponding 

spectra than would be predicted from the mode analysis. These results are also consistent 

with an extraneous mode reduction mechanism. It may be possible to confirm this conjec- 

ture in the time domain by changing the depth of saturation via the total resonator losses 

[11], and observing any changes in the mode structure and leakage losses. To perform 

such simulations in the absence of noise, the initial mode populations can be biased by 

preparing the initial pulses with (4.12), in which the I Vj) are given by (4.35) and the q are 

given unit length and random phase. 

In the following chapter, I further develop the theory of the Michelson resonator FEL to 

properly include the FEL interaction of short electron pulses with the longitudinal modes of 

the Michelson mirror resonator. The theory is based on a conventional mode locked laser 

analysis using the passive mode structure derived in Section IH of the present chapter, and 

-^ accordingly, provides a means of accounting for finite interferometer detunings. The pri- 

mary motivation for extending the theory is the following (presendy unanswered) question: 

What range of interferometer detunings yields hypermode decay rates that are appropriate 

for applications in spectroscopy? The range should lie somewhere between the perfect 

overlap of successive pulses (which yields optimum hypermode decay), and the complete 

detuning of successive pulses (which merely yields the axial mode spectrum of a two- 

mirror resonator with increased losses.) Apart from answering this question, the extended 

theory will also be shown to provide a novel and general method for numerically studying 

the evolution of FEL supermodes in arbitrary resonator configurations. 
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Chapter 5 

Supermode structure and 
mirror detuning effects 

Multiple mirror resonators have been suggested as a means to separate and isolate 

the longitudinal cavity modes of rf linac-driven free-electron lasers (FELs) for applications 

in high resolution spectroscopy. Proposed configurations have included the diffraction 

grating resonator [1], the intracavity etalon or Fox-Smith interferometer [2], and the Mich- 

elson mirror resonator [3], [5], which are all designed to couple successive optical pulses 

so that they build up from pass to pass with a definite phase relationship. These resonators 

differ in operation from thin intracavity etalons, which have also been proposed as a means 

to alter the gross spectral and temporal properties of FELs by filtering individual pulses [4]. 

In the previous chapter, the passive properties of the Michelson mirror resonator 

(see Fig. 4.1) were shown to provide a good quantitative description of the performance of 

such resonators on short pulse FELs if the interferometer mirrors were perfectly tuned. The 

passive theory was sufficient to account for mode decay, beamsplitter leakage, and mode 

selectivity via the phase offset of the secondary interferometer mirror. Furthermore, gross 

laser properties such as the spectral and temporal profiles of the pulses, as well as the cav- 

ity detuning curve, were unaffected by the presence of the perfectly tuned interferometer. 

However, as I report in this chapter, finite detunings of the interferometer can severely alter 

the cavity detuning curve, the laser spectrum and pulse structure, and the rate of mode 

decay, and cannot be described by the passive theory. These effects can have important 

implications for the practical application of such resonators. 

Analytical descriptions of the detuning properties of FEL resonators have been 
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successfully applied to conventional two-mirror systems, as well as to thin intracavity eta- 

Ions, in the regimes of small slippage parameters and small cavity detunings [4], [6], [7]. 

However, these techniques are difficult to apply to the Michelson resonator FEL, because 

the latter can operate at saturation with mirror detunings even greater than half of the optical 

pulse width. Nevertheless, the longitudinal mode structure of such resonators is always 

well defined even for arbitrary mirror detunings. Therefore, a self-consistent description of 

the FEL interaction in terms of longitudinal cavity modes should provide a general analysis 

of the performance of such resonators. 

In the present chapter, I develop such a description by applying conventional mode 

locked laser theory [8] to the rf linac-driven Michelson resonator FEL. This analysis actu- 

ally reproduces the small signal, small gain coupled mode equations obtained from early 

descriptions of the short pulse FEL [9], [10], but the application of the conventional theory 

represents a significant simplification in the derivation of those equations, while simulta- 

neously providing a clear and intuitive picture of the mode locking mechanism due to short 

pulse effects in the absence of noise. The coupled mode equations can be applied to the 

mode structure of any resonator configuration, and are valid for arbitrary slippage para- 

meters, cavity detunings, and electron pulse shapes; they are applied in the present study to 

resonator configurations which include mode dependent cavity losses. I derive the coupled 

mode equations in Section II, indicate in Section El how harmonic mode locking can sim- 

plify the numerical solutions described in Section IV, and compare those solutions in 

Section V with simulations of the Michelson resonator FEL using a pulse propagation code 

based on the Maxwell-Lorentz equations of motion. 

II. THE FEL COUPLED MODE EQUATIONS 

In this section, I derive the longitudinal coupled mode equations for FELs driven by 

short electron pulses using the injection locking analysis of conventional mode locked laser 

theory. The analysis starts from the Maxwell-Lorentz formulation of the FEL interaction 

[11], and yields in a straightforward manner the coupled mode equations derived previous- 

ly from a rigorous Hamiltonian formalism for the interaction of short electron pulses with 

multiple resonator modes [9]. In Section IV, I will apply these equations to the mode evo- 

lution in a Michelson mirror resonator with mode dependent cavity losses arising from the 

detuning of the second reflection mirror. 

A. Temporal analysis 

The starting point for the analysis of the longitudinal effects in an FEL is the pair of 

generalized Maxwell-Lorentz equations of motion, which were recorded in Chapter 2 as 
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^!!l = ?iM = |a^-sx>x)|cos(^,i) + d(z-sT,T))    ,     (5.1) 

-^- = -r(z + sx) (exp (-i£(z + sx,x)) )^     . (5.2) 
dx 

Here, t = ct/L is the dimensionless time, £(x(t)) = (k + kw)z(t) - cat is the phase of the 
electron in the ponderomotive potential, v(x(t)) = d£(x)/dx = L [(k + kw)ßz(t) - k] is the 
phase velocity or resonance parameter, and s = NWX is die slippage between the optical and 
electron pulses which obtains as x varies from 0 to 1 along the undulator. The quantity 

a(x(t)) = 47tN-2f(J°-Jl)^E(x(t))e^(0) (5.3) 
•pnc2 

is the dimensionless form of the slowly varying part of the (plane-wave) optical electric 

field E(z,t) = VI E(x(t)) exp [i (kz - tot + t>{x(t)))] (A indicating rms values), and 

^\y,K ^ <5'4> 

is the dimensionless current density. The parameters appearing in these quantities are de- 
fined in Table 5.1 (Section V). Equations (5.1) and (5.2) were combined in Chapter 2 to 
yield the small signal pulse propagation equation 

•  (X     , , f 
a(z,x) = a(z,0) + J- I   dx'r(z + sx') I   dq (x'-q) a(z + s(x'-q),q)exp (-ivo(z + sx')-(x'-q)) 

Jo J0 
,   (5.5) 

which was derived for a long (essentially CW) electron beam with energy chirping. In this 

section, we assume that the pulses possess no energy chirp, and focus instead on the mode 

locking effects of short electron pulses of arbitrary shape and duration. For this analysis, a 

slightly more convenient form of (5.5) is obtained by expressing the microtemporal posi- 
tion in terms of the time t =" z/c (not related to x) instead of the position z. For the set of 

independent variables (t,x) we may rewrite (5.5), with an implicit change in the form of the 

functions r -+ r and I -* a, as 

a(t,x) = a(t,0)+£ dx 

Jo 

' r(t - *£) I   dq (x'-q) a(t - ^l,q) exp (-iv0 (x'-q)) 

>° ,(5.6) 

where we have eliminated the z-dependence of the phase velocity VQ. The minus sign in hx, 
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argument for t results from a reversal of the leading and trailing edges of the pulses when 
the independent variable is changed from z to t. 

Equation (5.6) is the primary result of the temporal analysis in the small signal 
regime, and is valid for both small and large gains and for any degree of optical slippage. 
We proceed to illustrate its application to an important example, namely, the small gain 
amplification of a weak CW optical wave due to a short electron pulse. 

We first identify the small gain regime by setting a[t — ,,q) -* a[t — -.O] t 

so that for a CW input field a(t,0) = ag we may then eliminate any reference to the micro- 

temporal position t in the optical field appearing in the integrand of (5.6). Extracting the 
optical field from the integral and carrying the p'.üse evolution to x = 1 then yields 

Aa(t) = a(U) - a(t,0) 
l 

= ao ^      dx' r(t - &-)l   dq (x'-q) exp (-iv0 (x'-q)) (5.7) 

c 

- *i    (ife)dt*r(t-l,) i[(l^£A+,)exp(4v^)-|J (5-8) 

= ao       dt' r(t -t) gVo(t) (5.9) 

where the time dependence of the dimensionless current density is given by 

r(t)=^(M3^(Jo-^ne(t) , 
mc2  \YI  )_ 

and the gain function 

['. gv0(t) I        2V0 
= 0   otherwise. 

(5.10) 

NwX 

(5.11) 

N By normalizing the electron density ne(t) = -   g - f(t) to a total charge of eNe in the elec- 
c(A) 

tron pulse, where (A) is the optical mode area, we may finally write the integral in (5.9) 

as 
Aa(t) 

30 J-oo 
f(t -t ) gv,(t ) (5.12) 
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where ff(t)dt=l,    and     3C=M|i(If]3£i(Jo.Jl)2   N^ 
J.0O mc2  \y) xw c(A) 

(5.13) 

and gVo(t) is given by (5.11). The amplified field of a CW input wave is proportional to the 

convolution of the electron pulse shape with the gain function gVo(t). This result is illustrat- 

ed in Fig. 5.1 in which we display, for two electron pulse shapes, the single pass amplifica- 
tion of a CW optical field at the peak of the small signal gain curve using a one dimensional 
pulse propagation code [12], and the same interactions using a numerical convolution of 
(5.12). In the following paragraph we will apply (5.12) to the derivation of the coupled 
mode equations. 
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Fig. 5. 1    Single pass amplification of a CW optical wave due to short electron pulses. (i)a. simulation 
using a pulse propagation code; (i)b, numerical convolution of eq. (S.12), both using the tophat 
pulse shown at bottom. (ii)a;b, same as in (i) except using the inverse parabolic pulse shown at 
bottom. The slippage parameter (NwMCTp) equals 0.525 in each case. 

B. Spectral analysis 

The spectral energy distribution of the circulating optical field inside a laser cavity 

consists, in general, of a superposition of longitudinal cavity modes oscillating within the 

gain spectrum. For a slowly varying optical field whose plane-wave components are given 

by (5.3), this superposition can be written as the modal expansion [13] 

E(t) e^0 ei"« = £ E„(t) e-^t = £ E„(t) r^nt (5.14) 

v - 
in which the E„(t) are complex valued spectral components which have a slowly varying 

time dependence only over many passes in the cavity, and essentially describe the long term 
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spectral evolution of the laser field. In the case of a free running laser oscillation the longi- 

tudinal modes can be identified as the axial normal modes of the cavity and are separated in 

frequency by the passive axial mode spacings (plus any frequency pulling effects). How- 

ever, in the presence of forcing due to active intracavity loss or gain modulation, the longi- 

tudinal modes will be separated by the driving frequency of the forced modulation, and the 

laser will reach a sustained oscillation only if this driving frequency is sufficiently close to 

the axial normal mode spacing. In this time-perturbative description of the laser field, the 

active modulation produces sideband components on each of the (essentially CW) resonant 

normal modes, and these sidebands then injection lock those neighboring normal modes 

with which they are in resonance. The successive sideband growth and injection locking 

process continues until all of the modes, separated by the driving frequency, are phase 

locked to one or more of their neighbors. 

The frequency domain analysis of mode locking which describes this injection lock- 

ing process is applied by Siegman to the active loss and phase modulation of a conventional 

laser oscillator [14]; our derivation of the FEL coupled mode equations for the case of gain 

modulation by a pulsed electron beam essentially follows those analyses. We start with the 

slowly varying evolution equation for the n* mode of a laser oscillator, derived by Siegman 

and written for the case of intracavity modulation (with the sign of CO indicated in (5.14)) as 

at 

or as AEn + 

7n 
2 

Yn 
L 2 

i (CD„ - Cue) E„ = ^- (5.15) 

iTcK-Cüc) E„ = AET1   . (5-16) 

where E„ is the complex amplitude of the n* laser mode, Tc is the cavity round trip time, Yn 

is the rate of fractional energy loss, Yn is the fractional energy loss in one round trip, and 

AEn ^ is the change in amplitude AE„ induced on E„ by the modulator after one round trip. 

The driving frequency ü)n must lie sufficiently close to one of the axial normal mode fre- 

quencies coc in order for the injection locking to succeed, and indeed Tc((0„ - (üj m (§n - <y 

must be much smaller than 2xc. The phasor interpretation of (5.16) is then straightforward: 

the only contributions to the mode E„ arise from the the small phase shift exp[i (<j)n - <J>C)], 

the cavity losses (V2)En, ana the modulator AE„ od. This phasor interpretation is illustrat- 

ed in Fig. 5.2. 

We now consider a CW input field of frequency (^, and calculate the sideband 

modulation after a single pass through the undulator due to a train of electron pulses sepa- 

rated in time by Te. For the input waveform we write 

EfcG) = Ekexp(-i27rfkt)  , (5.17) 
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Fig. 52   Phasor interpretation of the mode locking process in eq. (5.16), showing the superposition of 
coincident sidebands produced by an active intracavity modulation. 

and the input spectrum is just Ei„(f) = Ek5(f-fk) (5.18) 

where 6(f) is the delta function and the tilde refers to the Fourier domain. Note that the 

sign of 0) in the expansion (5.14) implies the Fourier transform pair 

h(t) 

h(f) 

■i: 
•i 

h(f) c™1 df 

h(t)c+i2Jdtdt 

(5.19) 

(5.20) 

V.' 

To compute the output waveform, we recall from (5.12) that the amplified field of a CW 

input wave is proportional to the convolution of the electron pulse shape f(t) with the gain 

function gv^O given in (5.11); in this case the resonance parameter vk corresponds to the 

input frequency o^. Note that the small gain restriction on this result is consistent with a 

general time-perturbative analysis. If instead of a single electron pulse we then have a train 

of pulses separated by Te, we obtain for the output field 

Eom(t) = Ek exp(-i27tfkt) • Jl + [K f(t)*gvk(t)]*£ 5(t - nTe)\       (5.21) 

where JC is given in (5.13) and # indicates convolution. Note that only the complex enve- 

lope of the added field is modulated by the comb function ]jT 5(t - nTc). By successively 
n 

applying the Fourier convolution theorem and the sifting property of the delta function, we 

compute the output spectrum to be: 
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(5.22) Eout(f) = Ek 8(f - y + 36 Ek 6(f - ft)* (f(f)-gtf;vk)). £ X 8(f - £) 

= Ek 6(f - ft) + ^ Ek (f(f - f^gtf - fcVk)) • £ 6(f - fk - £)      (5.23) 

= EkSCf-fk) + ^lEkfCfn-fOKfn-fklV^.^f-fn) (5.24) 

n 
where we have defined fn = fk + j . The terms in the summation with n * 0 represent the 

sideband components 8(f - fn) induced on the input wave Ek by the pulsed electron beam. 

If many such modes Ek are present, then the total contribution to the mode amplitude E„ for 

a given fn is then simply the sum over k (including fk = fj of all other sidebands coincident 

with that mode E„. The modulator term in (5.16) for a pulsed electron beam theiefore 

becomes 
AEr1 = f- £ Ek f(fn - fO-gtfn - fk',vk) (5.25) 

Explicit calculations yield 

f(fn-fk) -c* 
■I 

f(t) exp [+i2w (fn - f0 t] 

dz f(z) exp [-i (kn - kit) z] 

where each of f(t) and f(z) is normalized, and 

r 
g(fn - fkiVk) =       dt gv^t) exp [+i2n (fn - f^ t] 

(5.26) 

(5.27) 

(5.28) 

= .1 
2 

cos (vn - vO - 1 nsinv,  , cosv„ -1(1  ,  M 
V„Vk VnVk      lvn     VkJ ^(Vn-Vk)       I 

+ ^(cosv^ , siny^M     n + sin(vn-Vk) \"| 
T l \ v. vk     vn vk Iv,   vk)     vj (vn - Vk) IJ (     } 

s -i-[Qvn,vk) + iS(vB,vk)] (5.30) 

where C(vn,vk) and S(vn,vk) are also defined in ref. [9], and we have substituted from 
(o^ - (Ok) to (vn - vk) via the definition of the resonance parameter: 

V„-Vk  = -^(cOa-COk)       . (5.31) 

The function C(vn,vk) + i S(vn,vk) may also be written as 



86 

3 

E(vn,vk) s Qv„,vk) + i S(vn,vk) = e-ivn JL l-e*k   1 
(Vn-Vk) 

_e^n 

Vj V* vnvk 

. (5.32) 

Note that this function, and the integral in (527), are complex conjugates of the correspond- 

ing functions defined by Dattoli et cd [10], because those authors chose a phase exp[i (ox - 

kz + $)] which differs from our choice exp[i (kz - cot + •&)]. The complete coupled mode 

equations (5.16) can now be written 

AE„ = Yn + iTcfCDa-Gfe) E» - A" I Ek-f~(fn - fk)E(vn,Vk)    , 2Te 
(5.33) 

where X is given by (5.13), f(fn - fk) is given by (5.26) or (527), and E(vn,vk) is given 

by (5.32). Equation (5.33) is the form of the coupled mode equations which we will apply 

to the analysis of the Michelson mirror resonator in Section IV. However, it may also be 

cast as separate equations for the mode energy Wn s | En |2 and phase <Pn * arg (En) as: 

AWn = -YnWn - ^(W.Wkp-lBlkCoKqht-tpk) + K x sin (<P„ - ft)] 
le k 

(5.34) 

A?« = TCK-CüC) - ^-£(^)1/2-[Bn,kCOS(«Pn-9k) - B»* sin (<fc - <fc)] 

(5.35) 

where we have defined1        Bn.k ■ Bn,k + i Bn.k s f(fn - fk)E(vn,vk) .   (5.36) 

Finally, we note that the term Tc (%■ &J on the RHS of (5.35) can be written in terms of 

the temporal detuning between the electron and optical pulses. Defining the modulation 

frequency of the electron beam as com ■ ^Ä/Te and the passive axial mode spacing (for a 

two-mirror resonator) as o)^ s 2»/Te, we may label the oscillating longitudinal modes 0J„ 

and the corresponding normal modes coc (with which the former are in resonance) in terms 

of the mode number n as follows: 

o\ = (QQ + no^ (5.37) 

and (üc = CüQ + nco,,      , (5.38) 

where COQ is a reference frequency and n is necessarily the same for each set. The detuning 

term Tc (ov coj on the RHS of (5.35) can then be written 

The functions Bnk,Bnk are identical to those defined by Dattoli et al [10] for a mono-energetic elec- 
tron beam of zero emitsance. Therefore, the coupled mode equations reported by those authors can be recov- 
ered in form by setting 9^ -»- (p^ and A<p„ -»• A<pn, as required by the opposite choice of phase. 
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Tc (CD,,- aO = Tc [(©o + ncDm) - (cöo + ncoj] 

= ^_n(cüm-CDtx) (5.39) 

and since this term contributes only to the phase <p„ of the mode E„, the addition of another 

term independent of n merely results in a common shift of the reference phase of the 
modes. We may therefore write, using (5.39) and the definitions of üV ov and ©„: 

= COnCTc-Te) 

sönOTcv      , (5.40) 

where we have defined 6Tctv = Tc - Te. This completes the derivation of the coupled 

mode equations. It is interesting to note that the time dependent evolution equation of the 

small gain supermode theory [10], which arises from a transformation of the coupled mode 

equations into the time domain, can be obtained directly from the evolution equation (5.5) 

(in the absence of chirping) simply by introducing a few variable substitutions and inter- 

changing »he order of integration; in this case, the cavity loss and detuning terms must be 

\ added explicitly. In Section IV, we will apply the coupled mode equations (5.33) to the 

evolution of the longitudinal modes in a Michelson mirror resonator with mode dependent 
losses Yn arising from the detuning of the second reflection mirror, and in Section V, we 

will compare the numerical solutions with one dimensional simulations of the FEL inter- 

action using the Maxwell-Lorentz equations of motion. 

m. THE HARMONICALLY MODE LOCKED FEL 

Harmonic mode locking is defined as the forced modulation of a laser cavity at a 

frequency which is some multiple N of the round trip frequency, producing N mode locked 

laser pulses per round trip. Becker et al [15] describe the harmonically mode locked 

Nd:YAG laser for N ■ 2 up to N = 5. The primary difference between mode locking with 

N = 1 and N > 1 is that, in the spectral description of the mode locking process, harmonic 

modulation produces sideband components on any given mode which are N > 1 axial mode 

spacings away. As a result, the modulator couples together only every N* longitudinal 

mode, and as many as N such sets of coupled modes, or hypermodes, may oscillate at any 

instant The number of hypermodes which do oscillate depends in pan on the spatial dis- 

tribution of the gain medium. In the above experiments described by Becker et al, mode 

locking with N = 2 either produced laser oscillation in both hypermodes simultaneously, or 
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in one or the other hypermode randomly, depending respectively on whether the laser rod 

was located near the center or near the end of the laser cavity. They never did observe the 

continuous oscillation of a single hypermode. 

Due to engineering constraints, most rf linac-driven FELs operate with large har- 

monic numbers, such as the Mark HI FEL [16] which contains N = 35 circulating optical 

pulses. Such FELs, if constructed with conventional two-mirror resonators, will oscillate 

simultaneously in all N hypermodes, because the optical pulses build up independently 

from noise and are driven independently by fresh electron pulses on every pass. The result- 

ing optical pulse train therefore reproduces itself only after every round trip and yields a 

spectrum of longitudinal modes separated by the round trip frequency. 

However, if an rf linac is used to drive a multiple mirror resonator such as a Mich- 

elson interferometer, successive optical pulses can be coupled by means of the beamsplitter 

and will build up from pass to pass only if they interfere constructively in the direction of 

the undulator. The operation of such resonators is described in the previous chapter. The 

stable cavity eigenmode consists of N phase locked optical pulses separated by the rf period 

of the linac, yielding a single hypermode in the output spectrum with longitudinal modes 

separated by the rf frequency. One can also describe the spectral evolution towards a single 

hypermode in terms of the decay of all other hypermodes due to interference at the beam- 

1 splitter, relative to that hypermode with the lowest such losses. Homogeneous laser satura- 

tion then ensures that only a single or at most a few hypermodes dominate the laser spec- 

trum, even in the deeply saturated large signal regime. 

From the above discussion, it is clear that the evolution of each hypermode in the 

small signal regime is described independently by its own set of coupled mode equations, 

with mode losses appropriate to each hypermode. Therefore, when we solve the coupled 

mode equations in Section IV to describe the detuning effects in a Michelson minor resona- 

tor, we assume that only the dominant hypermode and its nearest neighbors comprise the 

laser spectrum. Harmonic mode locking then allows us to reduce by a factor of N the num- 

ber of modes coupled together within the gain bandwidth; in the simulations to be reported, 

the reduction is from - 24,000 modes to - 680 modes for each hypermode, yielding trac- 

table computation times even on a smal" workstation. Figure S.3 shows the spectral range 

in which we solve the coupled mode equations. 

Finally, it may be important to note that the coupled mode equations can be solved 

in the above manner even for harmonically driven two-mirror resonators, with a similar 

reduction in the number of modes, in order to investigate the supermode evolution for 

arbitrary electron pulse shapes. The supermode theory can then be parameterized directly 

in the spectral domain for any electron pulse shape and any degree of optical slippage. The 
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Fig. 3.3    Frequency band on the small signal fain curve used in the coupled mode simulations. The region 
from v ■ 0 to v = 6362 encloses 675 longitudinal modes separated by the if frequency. 

main disadvantage is that the iterative procedure used to solve the coupled mode equations 

yields only the lowest order supermode, in contrast to the usual analytical treatment of 

supermodes in the long bunch regime [4], [6], [7]. 

IV. SOLUTION OF THE COUPLED MODE EQUATIONS 

The coupled mode equations (S.33) are most conveniently solved by iteration on an 

initial configuration of longitudinal modes. This method, known as the power method 

[17], is appropriate for extracting the dominant eigenvector and associated eigenvalue of a 

matrix. Its application in the present case is suggested formally (as well as physically) by 

(5.33), in which successive multiplications by a coupling matrix correspond to the physical 

mode locking mechanism on successive passes in the resonator. From (5.33), the corre- 

sponding matrix equation may be written 

M-Ep = E5»1 (5.41) 

where E p is a vector containing the complex mode amplitudes on pass p, and the matrix M 

has components 

Mnk = l-^+iTcK-CDc) 5„k - ^ f(f„ - fk)E(vn,vk) .      (5.42) 

The FEL supermodes are defined as the eigenvectors of this coupling matrix, which form a 

complete basis due to the fact that M is normal (i.e. MMt=MtM). For the finite subspace 
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of vectors spanned by the possible configurations of modes in Fig. 5.3, we assume tnat the 

initial configuration has a non-zero projection onto the lowest order supermode, and that 

subsequent matrix iterations correspond to the spectral evolution of the FEL supermodes in 

the regime for which spontaneous radiation is negligible. 

To solve the coupled mode equations, the longitudinal modes E„ in Fig. 5.3 are ini- 

tially populated with equal amplitudes and zero phase. The matrix multiplication indicated 

by (5.41) is then performed and the modes renormalized so that XI ^» 12 remains constant 
n 

on each pass. This matrix multiplication and renormalization are then repeated until the 

modes converge on the lowest order supeimode, as indicated by the convergence of the 

gain Gc(p) of the centermost mode Ec with the gain GT(p) of the entire spectrum, which we 

calculate on each pass p (prior to normalization) according to 

IEP|
2 

G^-UL-1 (5.43) 

and Grip) = -= 1    . (5.44) 

IIE^'I
2 

n 

(For the numerical results reported in Section V, the solution of the coupled mode equations 
2 

usually consisted of 75 iterations, and in most cases the 'eigenvalues' [i.e. 1 + G^xtp)] 

settled to within 1% of one another after approximately 20 iterations.) 

The mode dependent cavity loss and detuning terms which uniquely characterize the 

Michelson mirror resonator were derived in the previous chapter. If the interferometer 

contains one rf period of delay in the secondary arm, then the mode loss of die n* mode is 

given by r _ ,, 
Yn = Yc + 47t2r2t2[m^ + n5NJ2     , (5.45) 

where yc is the cavity loss due to mirror reflection and output coupling, r2 is the power 

reflectance of the beamsplitter, t2 = 1 - r2 is the transmittance, mh is the hypermode num- 

ber (mh = 0 defining the lowest order hypermode), N is the number of circulating optical 

pulses in the resonator, and 8N is the small fraction of an rf period representing the detun- 

ing of the Michelson interferometer. For finite detunings 8N, the mode loss can become 

greater than unity for large I n I, in which case the mode loss yn is set equal to unity. The 

resonator detuning term for the n* mode (compare with (5.40)) is given by 

The unconventional use in this chapter of the term 'eigenvalue' refers to IX, I , where X is the complex 
eigenvalue of the coupling matrix and whose corresponding eigenvector is the lowest order supermode. 
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Tc K - ob) = «On (5Tcav + r2 8TMich)   , (5.46) 

where ©„ = n cüj-f is the longitudinal mode frequency, oT^y = Tc - NTe is the temporal 

desynchronism of the optical and electron pulses in the corresponding two-mirror resona- 

tor, and oTMJch is the temporal desynchronism of the Michclson interferometer (proportion- 

al to 8N). 

The numbering of the modes is unambiguous. For a given set of simulation para- 

meters, the centermost mode is obtained by solving the coupled mode equations for the low- 

est order hypermode with zero detuning in the interferometer, and labelling as n = 0 that 

mode which is coincident with the maximum amplitude of the laser spectrum. This mode is 

then labelled as n = 0 for all other interferometer detunings and hypermode numbers for 

the given set of simulation parameters. This prescription is physically motivated by the fact 

that the laser wavelength is not affected by the presence of an intracavity interferometer 

under any degree of pulse coupling (a fact which is confirmed by FEL simulations of the 

Michelson mirror resonator using the Maxwell-Lorentz equations of motion). Given the 

quadratic dependence of yn on n, we accordingly choose a numbering scheme which pre- 

cludes any wavelength shift for finite detunings 8N. 

Finally, we note that the coupled mode equations are strictly valid only for plane- 

wave interactions in the small signal, small gain regime. However, they can be used to 

describe the one dimensional interaction with realistic transverse cavity modes if one 

defines an appropriate filling factor for the coefficient JC in (5.13). Alternately, for the 

comparison in Section V with the pulse propagation simulations in which only the lowest 

order Gauss-Laguerre mode is assumed, we calculate the coefficient K directly from the 

gain of that mode by assuming continuous electron and optical beams, and integrating the 

Maxwell-Lorentz equations directly in terms of the interaction with transverse cavity modes 

[18]. If we define the gain go(vp) at the peak of the small signal gain curve as 

where a(0), a(l) arc the complex fields at the beginning and end of the undulator, then from 

(5.33) the corresponding gain for a single longitudinal mode in the laser spectrum is 

go(vp) = AE = -^E(vp,vp)      , (5.48) 

where v = 2.606 is the resonance parameter for maximum small signal gain . In the case 

3 
The corresponding resonance parameter in the pulse propagation code is actually vp~ 4.1 due to the 

phase shift of the TEMOO mode. 
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of a tophat electron pulse of full width Tp (used in the present study) and the same value of 

the peak current, we then obtain 

|go(vp)| 
3C = 2ip 

E(Vp,vp)| 
(5.49) 

JC can be obtained in a similar manner for other electron pulse shapes by appropriately scal- 

ing the number of electrons Ne in the pulse. 

V. NUMERICAL RESULTS; COMPARISON WITH PULSE PROPAGATION SIMULATIONS 

As noted in the Introduction, increasing the interferometer detuning of a Michelson 

mirror resonator can severely alter the spectral and temporal properties of the laser. The 

most important effects are a broadening and shifting of the cavity detuning curve, a narrow- 

ing of the overall laser spectrum, and a decrease in the rate of hypermode decay, all of 

3 

Parameter Definition Simulation value 

Optical beam parameters 

X Resonant optical wavelength 3.35 um 

N Number of circulating optical pulses 35 
r2 Beamsplitter reflectance 50% 

Yc Extraneous cavity losses 7.3% 

ZR Rayleigh range 73.08 cm 

(A) Average optical mode area « 0.01447 cm2 

his. 
2 H&n 

Electron beam parameters 

Electron beam energy / mc2 

Duration of tophat electron pulse 

I Peak electron current 

Te RF period 

Wiggler parameters 

Nw Number of wiggler periods 

U Wiggler length 

K Wiggler period 

K 

Oo-h)2 
RMS wiggler parameter 
Bessel function factor 

83.19 

4DS 

18.8 A 

350.1 ps 

47 

108.1 cm 

2.3cm 

1.008 
0.738 

Table S. 1  Definition of FEL parameters, and values used in the coupled mode simulations. 
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which can have practical consequences for the operation of such resonators or their applica- 

tion to spectroscopy. In the following paragraphs, we present numerical solutions of the 

coupled mode equations for Michelson resonator FELs with finite detunings in the interfer- 

ometer, and compare the results with those from an FEL pulse propagation code using the 

Maxwell-Lorentz equations of motion and realistic transverse cavity modes; the latter simu- 

lations are described in Chapter 4 and include both electron shot noise and quantum noise. 

The simulation parameters are appropriate to the operation of the Mark in FEL and are list- 

ed in Table S.l. It is interesting to note that the coupled mode simulations run as fast on a 

SUN04 workstation as the corresponding pulse propagation simulations run on a CRAY 

Y/MP supercomputer. 

A. Broadening of cavity detuning curves 

The fact that finite interferometer detunings can affect the cavity detuning curve is 

seen immediately from (5.46), in which the frequency detuning term affects the FEL super- 

nk ies only via the net combination of oT^y and 6TMich. Therefore, any finite value of ihe 

latter should alter the detunings 6TC1V for which the FEL supermodes experience maximum 

gain. Of course, finite detunings 8TMich also introduce mode dependent losses for each 

hypermode, and the actual supermode structure depends on this parameter in a manner 

described below in paragraph B. 

Figure 5.4 displays the cavity detuning curves for several values of the detuning 

5LMich, calculated from the coupled mode simulations for the lowest order hypermode. The 
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Fig. S .4    Cavity detuning curves for various fixed values of the secondary Michelson minor detuning, 

with i2 = 50*. The dashed envelope corresponds to SL^,, + r28LMichss+M)um. Note that, 
in this chapter, SL > 0 refers to cavity detunings shorter than the synchronous length. 
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Cavity detuning (microns) 

Fig. 5 .5    Small signal gains (hash marks) calculated from the pulse propagation simulations, and 
corresponding to: (a) the dashed envelope in Fig. S.4; and (b) the cavity detuning curves for 
6LMich = 0 Jim and SL^^ = -152 um in Fig. S.4. Figure 6(c) shows the output power 
detuning curves at saturation for the simulations in (b) after 160 passes. 

dashed envelope corresponds to combinations of ST^ and 6TMich for which the effective 

cavity detuning in (5.46) is 10 urn shorter than synchronous; this detuning is predicted by 

the supermode theory [7] to yield the maximum gain for the parameters listed in Table 5.1. 

The broadening of the detuning curves is a manifestation of the general effect of an intra- 

cavity etalon [4], and is produced to a greater degree in a highly reflecting etalon because of 
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the multiple reflections. These broadened and shifted detuning curves may yield a practical 

advantage in the initial search for the synchronous mirror positions of the Michelson resona- 

tor, especially if several beamsplitters are switched during operation. They are also related 

to pulse shaping effects described below in paragraph B. 

The small signal gains from the corresponding pulse propagation simulator ns are 

indicated in Fig. 5.5, and were obtained by averaging over passes for which the optical 

power was well above the noise level but beneath the onset of saturation. These values 

were adjusted to account for the finite leakage losses resulting from the decay of the higher 

order hypermodes. Figures 5.5a and 5.5b reproduce the detuning envelope and two of the 

cavity detuning curves from Fig. 5.4. The slight enhancement in the gains near the syn- 

chronous cavity length in Fig. 5.5b is due to the build up from noise in the pulse propaga- 

tion simulations, as observed in previous studies [19]. The power detuning curves in Fig. 

5.5c were obtained from the above simulations for the same parameters as in Fig. 5.5b, and 

indicate that essentially the same degree of broadening is maintained at saturation. Finally, 

we note that the reduced gains on the wings of the detuning envelope result from leakage 

losses in the lowest order hypermode. These losses are always present for finite interfero- 

meter detunings, even in the perfectly phase locked case, because successive circulating 

pulses are always displaced relative to one another by the Michelson mirror. It may be 

possible to exploit these leakage losses for outcoupling the intracavity power in an inher- 

ently uni-directional output beam. However, there is a trade off between increasing the 

output coupling with this scheme and maintaining a phase locked optical beam; the latter 

problem is studied below in paragraph C. 

B. Spectral narrowing ofsupermodes 

In this paragraph we show how the mode dependent cavity losses (5.45) in the low- 

est order hypermode alter the form of the surviving FEL supermodes. This result is not 

unexpected; these cavity losses result from the detuning of the Michelson interferometer, 

and the finite displacement between successive pulses effectively lengthens the spatial 

supermodes at the beamsplitter. The corresponding decrease in the width of the overall 

spectrum is consistent with mode suppression at the extremes of the gain band where the 

losses are higher. These mode losses are indicated in Fig. 5.6 by the passive mode inten- 

sities of the lowest order hypermode for various Michelson detunings 5N, which curves 

were calculated from the passive frequency response of the detuned Michelson resonator 

[5] at the resonant frequencies of that hypermode (assuming yc = 7.3 % extraneous cavity 

losses). We see that the losses are independent of mode number only for a zero detuning 

5N; finite detunings increase the losses symmetrically about the center mode. 

Supermode spectra from the coupled mode simulations are illustrated in Fig. 5.7 for 
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Fig. 5.6   Passive intracavity intensities for various fractional interferometer (learnings SN, with N = 35 
and 7C = 7.3 %, from a source of fixed amplitude coupled into the cavity at the resonances of the 
zeroth order hypermode. (a) 5N = 0; (b) 8N = 0.0001; (c) 5N = 0.0002; (d) 6N = 0.0003; (e) 5N 
= 0.0004; (0 8N = 0.0005; (g) 5N = 0.005. 
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Fig. 5.7    Normalized supermode spectra of the lowest order hypermode for various secondary Michelscn 
mirror detunings. (a) 5LMich = 0 um; (b) 5LMich = -51 urn; (c) 5LMich =  -102 um; (d) 
5LMk;h = -152 urn; (e) 5LMich * -203 urn; (f) 5LMich = -254 urn. The frequency of 0 GHz 
corresponds to the resonant frequency. 

secondary mirror detunings ranging from 5LMich = 0 Jim to -254 Jim (6TMich > 0). The 

cavity detunings 5Tctv were adjusted to yield an effective detuning in (5.46) of 10 |im. The 

overall spectrum is indeed narrowed by increased interferometer detunings. Furthermore, a 
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detuning of 6LMich = "254 p.m. corresponding to 8N = 0.005, is seen to yield a spectral 

width of 120 GHz (40 modes), which compares with a width of ~ 20 modes from the pas- 

sive mode structure for the same 5N and yc in Fig. 5.6. This broadening of the passive spec- 

trum, even in the presence of gain, is due to mode coupling by the short electron pulses. 

A comparison between the coupled mode and pulse propagation simulations is illus- 

trated in Fig. 5.8, which displays the surviving temporal supermodes for secondary mirror 
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Fig. S .8    Temporal supermodes from the coupled mode (dashed line) and pulse propagation (solid line) 
simulations for secondary Michelson mirror detunings of: (a) 5LMich = +279 urn; (b) 5LMich ■■ 
0 urn; (c) 8LMich = -254 urn. 
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detunings of 6LMich = +279 um, 5LMich = 0 p.m. and 5LMich = -254 \im at the peaks of the 

cavity detuning curves. The temporal supermodes from the coupled mode simulations 

were obtained simply by Fourier transforming the spectra and normalizing the maximum 

powers to unity; the pulse propagation supermodes were obtained by averaging the N 

pulses in the cavity just prior to the onset of saturation, and again normalizing the powers 

to unity. The time of 0 ps corresponds to the centroid of each curve. Aside from power 

fluctuations in the pulse propagation simulations due to the build up from noise in the pres- 

ence of the higher order hypermodes, the agreement with the coupled mode simulations is 

excellent The anomaly in the pulse propagation curve for SL^^ = 0 um may be due to an 

incomplete decay of the higher order supermodes prior to the onset of saturation. 

Finally, as suggested by the broad power detuning curve in Fig. 5.5c, the optical 

pulses should remain broad at saturation. This is in fact confirmed from the pulse propaga- 

tion simulations, and suggests that the Michelson resonator can be used for palse shaping 

in applications requiring variable pulse widths. Such manipulations would be much easier 

than altering the linac configuration to yield variable electron pulse widths. On the other 

hand, the resulting pulses would generally not be appropriate for high resolution spectro- 

scopy, because large detunings of the secondary mirror decrease the decay rates of the 

higher order hypermodes. This is shown in the following paragraph. 

C. Decrease of the hypermode decay rates 

Applications of the Michelson resonator FEL in high resolution spectroscopy 

depend upon the suppression of the higher order hypermodes in a time much shorter than 

the duration of the macropulse. Optimum hypermode decay is obtained by perfectly over- 

lapping the pulses in the interferometer, whereas completely detuning the pulses merely 

yields the axial mode spectrum of a two-mirror resonator with increased losses. Therefore, 

the problem of determining the range of interferometer detunings which yield tolerable 

decay rates has immediate practical consequences. In this paragraph we report the results 

of both coupled mode and pulse propagation simulations for the case of finite interfero- 

meter detunings. 

The incomplete decay of the higher order hypermodes is illustrated in Fig. 5.9, 

which shows the macropulse spectra after 160 passes obtained from pulse propagation 

simulations of a Michelson resonator FEL with N = 10 circulating pulses and an optimum 

beamsplitter reflectance of'2 = 50 %. The cavity detunings were adjusted in (5.46) to yield 

an effective desynchronism of 10 urn. The dots in Fig. 5.9 are the relative mode intensities 

after 160 passes calculated from the corresponding coupled mode simulations with N = 10, 
which were obtained from the eigenvalues A,^ of the surviving supermodes for each of the 
mh = 0, ±1, ±2 hypermodes according to 
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3 

160 rel 

£ PmacrCp) A) 

W160) = ^1— ; < H ^ , (5.50) 
160 

^PmicrCp) 
p=l 

Ao 

where PmicrCp) is the macropulse power at pass p from the pulse propagation simulations, 
rel P 

and (An«) *s *e relative spectral hypermode intensity 'at pass p*. 

Discrepancies between the simulations can be attributed to several factors, such as 

the build up from shot noise in the pulse propagation simulations, which initially biases and 

continuously populates the mode intensities, and the onset of saturation in these simula- 

tions, which flattens and shifts the gain curve. Both of these effects are omitted from the 

classical small signal analysis from which the coupled mode equations are derived in 

Section II. The relative mode intensities from the coupled mode simulations are also seen 

to vary more continuously with interferometer detuning than the spectra from the pulse 

propagation simulations, which may be evidence for mode competition effects in the latter 

simulations during the onset of saturation. 

Aside from these discrepancies, we see that the coupled mode simulations repro- 

duce the widths of the surviving groups of hypermodes fairly accurately (at least to the 

extent that applications to spectroscopy can be practically assessed), and that the asymmetry 

of the intensities with respect to the lowest order hypermode is clearly manifest in each set 

of simulations. The tolerable detuning range of the interferometer is fairly large, yielding 

essentially complete hypermode decay for detunings 15L,Mich I < 70 |im; the corresponding 

shift in the overlap of successive pulses is -140 \im, which compares to a slippage length 

of 160 um or an electron pulse length (4 ps) of 1200 Jim. Larger detunings yield mode 

spectra that are not appropriate for high resolution spectroscopy. This detuning range is 

substantially less than the pulse length, but much larger than the fractional wavelength 

stability of the mirrors which must be maintained in order to select and tune the hyper- 

modes. We can provide a simplified understanding of these results by examining the 

passive mode structure of the detuned Michelson mirror resonator. 

From the expression for hypermode loss given in (5.45), we see that for finite de- 
tunings 5N there exists a mode 

no ■ *- (5 51) 
N8N K      } 

which exhibits essentially zero interferometer loss, even for the higher order hypermodes; 

this result is illustrated in Fig. 5.10, which shows the mode structure of the first order hy- 
permode for various detunings SN. If the detuning is small, the mode n^ is positioned well 
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Fig. S.10 Passive intracavity intensities of the fust order hypermode for various fractional interferometer 

detunings 5N, calculated in the same manner as Fig. 5.6. (a) 5N = 0; (b) 5N = 0.0001; (c) 5N * 
0.0002; (d) 5N = 0.0003; (e) 5N = 0.0004; (0 5N = 0.0005. 

J 
outside of the gain curve, and the mode losses within the gain curve exhibit only a linear 

dependence on frequency with little net change in absolute value. However, increasing the 
interferometer detuning shifts the mode no towards the peak of the lowest order hypermode 

located (by definition) near the center of the gain curve. Eventually the peaks of, say, the 

zeroth and first order hypermodes will both be centered on the gain curve. Since the hyper- 

mode curvature (i.e. the second derivative of mode loss with respect to mode number) is 
independent of the hypermode number mh, these hypermodes will yield FEL supermodes 

with essentially the same total leakage losses, and, consequently, the same relative decay 

rates. 

From the above observations, we suspect that a decrease in the hypermode decay 

rates should occur somewhere between small detunings, for which there is essentially no 

change in the relative loss of the zeroth and higher order hypermodes, and large detunings, 

for which several of the lowest order hypermodes are peaked near the center of the gain 

curve and yield essentially identical net gains. The crossover point can be quantified by 
considering the shift in the peak of the first order hypermode due to a finite detuning 5NC 

(the analysis does not distinguish between mh = ±1), for which the following criterion is 

chosen: The hypermode decay rates start to decrease when the first order hypermode is 

peaked at a frequency fe for which the small signal gain is equal to the net gain ofthat 

hypermode in the case of zero detuning. This criterion is illustrated schematically in Fig. 

5.11 and is motivated by the paraphrase that, for zero detuning, die difference in the relative 
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Fig. 5.11  Criterion for determining the onset of degradation in the hypermode decay rales. The onset of 

degradation occurs when the first order hypermode is peaked at a frequency for which the small 
signal gain is equal to the net gain of that hypermode in the case of zero detuning. The mode 
shift and hypermode losses are only schematic and are greatly exaggerated. 

decay of the zeroth and first order hypermodes is due to different losses, whereas for finite 

detunings, the difference in the relative decay is due to different gains (the mode structures 

being equal, but peaked at different positions on the gain curve). The transition should 

actually be somewhat gradual, because the FEL supermodes of the first order hypermode 

will always be pulled slightly from the crossover point and towards the center of the gain 

curve. 

To quantify the above criterion, we first expand the CW small signal power gain 

G(v) H 2-Re{g0(v)} about the peak of the gain curve vp, where go(v) is defined in (5.48) 

and vp = 2.606 is the corresponding resonance parameter. The expansion yields 

G(v) = 13 [0.135 - 0.0221 (v - vp)2]       , (5.52) 

where the dimensionless current density is 

l-^feT^ft-^rTirr    . (5-53) mc2  m X*. c(A)e 

and I is the electron beam current. According to the above criterion, the resonance para- 

meter vc corresponding to the frequency fc should then satisfy the following equation: 

G(vc) = 0.135 «s- (4£J2£)   , (5.54) 

where the first order hypermode loss on the RHS is got from (5.45) with mh = 1 and 5N * 0. 
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Note that the common cavity losses yc and the leakage losses of the detuned hypermodes 

both drop out in an equivalent condition requiring that the relative eigenvalues (instead of 
the net gains) be the same. Solving (5.52) and (5.54) for v = vc and converting to fc via the 

definition of the resonance parameter (5.31) yields 

By relating the frequency shift (fc - fp) to the first order hypermode shift no from (5.51), 

(in which the no modes are separated by the rf frequency), and by writing the fractional 

detuning 8NC as the ratio of the temporal pulse displacement to the rf period, 

5Nc s 5SHL S ilMich   t (557) 
ie CTe 

we may finally combine (5.55), (5.56), and (5.57) to yield our final result for the secondary 

mirror detuning 5LMich for which a decrease in the hypermode decay rate becomes evident: 

|SLc
Michl = ^||       • (5-58) 

This result has an interesting physical interpretation. The most important conse- 

quence is that the 'critical detuning' is independent of both the rf period Te and the number 

of pulses N in the cavity. Practical resonator designs will typically have beamsplitter 

reflectances between r2 ~ 10 % and r2 ~ 50 %, so that setting r2 = 18.4 % will result in no 

more than a 30 % error in (5.58) over that range of reflectances. This approximation gives 

I Si-Mich I - 0.191-(NWX)- Vrj". In moderate gain devices such as the Mark HI FEL, for 

which the s.nall signal gain might range from 30 % to 80 %, we may approximate VTj" - 

1.90 with, again, no more than a 30 % error over that range of gains. This second approx- 

imation gives ! 5LMich | » 0.4-(NWX), which is accurate to about ± 50 % for the practical 

operating parameters given above. We may interpret this result as follows: in order to 

obtain the optimum hypermode decay, the gross overlap of the pulses in the interferometer 

(i.e. 2-15Lj^ich I) should be accurate to within roughly one slippage length, so that the 

phase information between corresponding sections of successive pulses can be communi- 

cated in a single pass through the wiggler, this communication evidently occurs via the 

electron beam. If successive pulses are shifted by more than a slippage distance, more than 

one pass will be required to transmit the phase information between pulses, resulting in a 

decrease in the hypermode decay rates. 
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Fig. 5.12 Coupled mode simulations of hypermode loss Ym,, for N = 35, as a function of secondary 
Michelson mirror detuning, calculated as the average loss of the ±1% hypermodes. 

The coupled mode simulations actually display this 'critical detuning' unambigu- 

ously. Figure 5.12 shows the relative hypermode losses y^ a 1 - A,^ for | mh I = 1,2,3,4 

in a Michelson resonator FEL with N = 35 circulating pulses and an optimum beamsplitter 

reflectance of r2 = 50 %, where A^ are the relative eigenvalues defined in (5.50). The cavity 

and interferometer detunings were again adjusted in (5.46) to yield an effective desynchro- 

nism of 10 |im. The log-log plot indicates a distinct transition between two asymptotic re- 

gions of essentially constant, and rapidly decreasing, losses; the decreased relative losses in 

the latter region lead to reduced decay rates. These asymptotes intersect at an interferometer 

detuning of 44 p.m. which compares with a detuning of 48 urn calculated directly from 

(5.58) and (5.53) for the parameters listed in Table 5.1 (rj = 4.3); the agreement would actu- 

ally be better if an appropriate filling factor were included in the calculation of rj. Further- 

more, by identifying the relative loss yt of the first order hypermode with the decrease in 

relative gain from the second term in (5.52), and substituting for the corresponding detun- 

ing 5L in a manner similar to the previous calculation, we obtain (for 5L > 6L^ich) 

2.2 1 N2 V 
Yi = 7t2 (0.0221) rj-^ä^- 

N25L2 
(5.59) 

so that the hypermode loss is proportional to the inverse square of the detuning 8L. This 

result compares with a measured slope of -2.01 for the second asymptote on the log-log 

plot in Fig. 5.12. 
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The output coupling scheme considered in paragraph A can now be re-examined. 

By phase locking the optical beam in Fig. 5.9 using a secondary mirror detuning of, say, 50 

to 80 pm, with a corresponding cavity detuning of 5Lcav - -15 to -30 urn, we see from Fig. 

5 Ja that roughly 1 to 3 % of the intracavity power can be outcoupled in the form of leakage 

losses. Therefore, in applications to high resolution spectroscopy, outcoupling by means 

of leakage losses can be competitive with Brewster plate output coupling, which typically 

yields less than 4 % of outcoupled power per surface. 

In the following chapter, I report the first operation of a Michelson resonator FEL, and 

provide indirect evidence for the presence of mode reduction based on numerical simula- 

tions of the leakage losses. In the resonator configuration employed in the experiment, the 

output coupler and beamsplitter were two sides of the same (parallel) Brewster plate. As a 

result, the leakage power traveled to the detector with the outcoupled power. Although 

practical applications of the Michelson resonator FEL in spectroscopy would normally 

require an isolated output beam, the concurrent detection of leakage power in the experi- 

ment actually provided the crucial diagnostic, in the absence of mode-selective spectral 

diagnostics on the output beam, to indirectly demonstrate the presence of phase locking. 
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Chapter 6 

A phase locking experiment 
on the Mark III free-electron laser 

The broad and continuous tunability of the rf linac-driven infrared free-electron 

laser (EEL), coupled with its high power picosecond time structure, has greatly enhanced 

the research capabilities in the field of in^-ared spectroscopy. However, the spectral struc- 

ture of the optical beam, with longitudinal modes spaced by the round trip frequency in a 

bandwidth determined by the Fourier transform of the short pulses, often poses a signifi- 

cant limitation for experiments requiring high spectral resolution. A more convenient mode 

structure can be obtained by using an intracavity interferometer [l]-[3] to couple successive 

optical pulses so that they build up from noise with a definite phase relationship. The 

resulting phase locked optical pulses yield a spectrum of longitudinal modes separated by 

de rf frequency of the linac, which modes can then be more easily isolated and filtered in 

applications to high resolution spectroscopy. 

In this chapter, I report the first operation of an FEL using an intracavity Michelson 

mirror resonator [4], [5] on the Mark III FEL, and present indirect evidence for phase locked 

operation using a beamsplitter reflectance of only 1.4 %. Although mode-selective spectral 

diagnostics were not available at the time the experiment was performed, evidence for phase 

locking was obtained from measurements of the optical power which indicated a substantial 

degree of destructive interference in the output pulses at the beamsplitter. The observed 

power fluctuations, and the displacement of the secondary interferometer mirror over which 

these fluctuations were observed, are reproduced fairly accurately in both pulse propagation 
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simulations (Chapter 4) and coupled mode simulations (Chapter 5) using operating para- 

meters appropriate to the experimental configuration. 

II. EXPERIMENTAL DESIGN 

A. Laser configuration 

The Mark HI PEL [6], [7] is driven by a 2.857 GHz pulsed if linac using electrons 

from a synchronized microwave gun and a thermionic cathode source. Since thermionic 

emission fills every bucket of the rf wave, the electron micropulses are delivered to the 

laser at the rf frequency of 2.857 GHz; this driving frequency harmonically mode locks the 

1.837 m resonator and yields 35 independently circulating optical micropulses per round 

trip. The linac energy was set to roughly 38.4 MeV in the present experiment and the las- 
ing wavelength was 3.2 urn, corresponding to an rms wiggler field of 3.5 kGauss over 

each 2.3 cm wiggler period. The rf source was pulsed at a repetition rate of 15 Hz, and the 
average current was roughly 105 mA over an electron macropulse duration of 2.5 \xs; this 

current was inferred from an inductive toroid positioned at the exit of the linac. 

The optical cavity uses metal cavity mirrors and Brewster plate output coupling of 

the horizontally polarized radiation. The vacuum chamber containing the upstream cavity 

mirror and output couplers was designed to allow four choices of Brewster plates, two of 

which can be placed on the beamline at the same time. In the usual configuration, a single 

Brewster plate is inserted into the beam, and only the reflections from one side of that plate 

are normally outcoupled to the user laboratory. However, one of the output couplers is 

positioned beside a Brewster window on the vacuum chamber, which allows the alignment 

of an external mirror for redirecting the secondary outcoupled reflections into the user 

laboratory as well 

B. Michelson mirror resonator 

The Michelson mirror resonator was constructed using a 2 mm thick, uncoated zinc 

selenide Brewster plate placed beside the vacuum window, with one surface acting as the 

beamsplitter and the other surface acting as the output coupler. The optical cavity and laser 
diagnostics are shown in Fig. 6.1. The angle of incidence was t>; = 60.8°, which was mea- 

sured with a Hc-Ne laser co-aligned to the resonator and outcoupled through the side vac- 

uum window. The corresponding reflectance of each surface (calculated from the Fresnel 

equations [8]) was 1.4 *>. The radius of curvature of mirrors Ml, M2, and M3 was 150 

cm, with M2 positioned on a translation stage so that its distance from the Brewster plate 

was one half of an rf wavelength longer than the distance from Ml to the Brewster plate. 

As a result of this mirror placement, the linear resonator formed by I 2 and M3 yielded a 
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Fig. 6.1    Experimental configuration of the Mkhelson mirror resonator and the optical diagnostics. The 
round trip time from the back surface of Brewstcr plate BP to the secondary mirror M2 is one if 
period longer than the round trip time from BP to Ml. Mirrors M2 and KG are on translation 
stages. The Brewstcr plate is an uncoated ZnSe etalon with a thickness of t = 2 mm and an an- 
gle of incidence of ty = 60.8°. The transverse deviation between the two surface reflections is 
A = 0.73 mm. The leakage beam is shown as the dashed line. 

slightly different Raylcigh range than the linear resonator formed by Ml and M3. How- 

ever, calculations using the appropriate radii of curvature for the transverse modes at the 

beamsplitter indicated a negligible reduction in the Strehl ratio of the superposed beam. 
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The most important feature of the experiment resulted from the 5 arc second parallel- 

ism of the Brewster plate, due to which both the output and leakage beams traveled to the 

detector with a transverse deviation of less than 180 pm over 7.3 m. The coincident detec- 

tion of leakage power was actually used to infer the presence of phase locking, as explained 

below. On the other hand, the 2 mm thickness yielded a transverse displacement of A = 

0.73 mm between the two beams. As a result, only a single secondary reflection ton the 

external mirror could be aligned to the laser diagnostics; the other beam (shown as the skew 

reflection on M2 in Fig. 6.1) was displaced transversely by roughly 7 mm in the laboratory 

and was vignetted by an aperture placed in front of the laser diagnostics. 

C. Laser diagnostics 

The diagnostic apparatus consisted primarily of a mo:iochrometer to measure the 

wavelength and a fast gold-doped germanium detector to measure the time dependent opti- 

cal power during the macropulse. A co-linear optical autocorrelator (not shown in Fig. 

6.1) was also used to measure the duration of the optical micropulses. 

The discance from the laser to the diagnostic table was roughly 7.3 m. The optical 

beam was first spatially filtered with an aperture in order to vignette the skew reflection 

from the secondary mirror M2. A removable mirror could then be positioned to direct the 

beam into aim grating monochrometer. Otherwise, the beam continued through a colli- 

mating telescope and a germanium Brewster plate which was used to filter out the coherent 

harmonics of the FEL. In order to locate the synchronous position of mirror M2, the fil- 

tered beam was first passed through a Type I phase-matched lithium niobate crystal to ampli- 

fy small changes in peak intensity. A polarizer after the doubling crystal was used to filter 

the horizontally polarized fundamental light from the vertically polarized doubled light, and 

the doubled beam was then focused onto the Ge:Au detector. 

in. EXPERIMENTAL PROCEDURE AND RESULTS 

To bring the Michelson resonator to lasing, the secondary mirror M2 was first de- 

tuned, and the position of mirror M3 was set by scanning the cavity length until the optical 

macropulse through the doubling crystal showed the greatest peak power with the smallest 

fluctuations; this position corresponded to the stable maximum of the cavity detuning curve. 

The secondary mirror M2 was then aligned transversely using the co-aligned He-Ne laser, 

and the position of synchronism determined by translating the secondary stage until the 

largest power fluctuations in the doubled beam were observed on the detector. The second- 

ary mirror was then rcstecred to optimize the transverse overlap, and the doubling crystal 

was removed in order to observe the 3.2 um beam on the detector. 
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Figure 6.2 shows oscilloscope traces of the detector response displaying the enve- 

lopes of 32 successive macropulses in cases in which (a) the secondary mirror was com- 

pletely detuned, and (b) the secondary mirror was longitudinally synchronized; the power 

fluctuations are ±5 % and ±25 % respectively. Note that, apart from the large intrinsic fluc- 

tuations in the synchronized case, the lower limit of the laser power in Fig. 6.2(b) is 14 % 

smaller than the mean macropulse power from Fig. 6.2(a); in some instances, reductions as 

great as 27 % and enhancements as large as 52 % (i.e. fluctuations of ±35 %) were also ob- 

served. These power fluctuations were observed over a range of 225 \im in the position of 

the secondary mirror, and were rather abruptly extinguished outside of this range. Treated 

as an autocorrelation measurement, this tuning range would indicate a pulse width of 1.1 ± 

0.4 ps (the uncertainty resulting from the distorted pulse shape and the estimated degree of 

overlap within which any power fluctuations would be manifest) To confirm that this tun- 

ing range was indeed due to the synchronism of mirror M2, a proper autocorrelation mea- 

surement [9] was also performed on the diagnostic table for the case in which the secondary 

mirror was desynchronized. The autocorrelation trace is shown in Fig. 6.3 and indicates a 

roughly Gaussian profile with a FWHM pulse width of Ax = 1.2 ps. The corresponding op- 

tical spectrum obtained on the monochrometer is shown in Fig. 6.4. The time-bandwidth 

product for the pulses is Ax •Av = 0.56, which is slightly larger than the transform limited 

product of 0.44. 

Fig. 6.2   Oscilloscope traces of ».he Ge: Au detector response showing the envelopes of 32 successive 
macropulses for a Michelson mirror resonator with N = 35 pulses and 1.4 % coupling in which 
the secondary minor was (a) completely detuned, and (b) synchronous at the position of one rf 
period delay. Horizontal scale is 0.5 |is/div. 
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Fig. 6.3   Optical autocorrelation trace of the miaopulses from the laser in which the secondary minor was 
completely detuned. The 0.010" FWHM refers to the displacement of the autocorrelator mirror. 
The FWHM delay is therefore 0.020", which yields a FWHM pulse duration of 12 ps assuming 
a Gaussian optical pulse profile. (From [9].) 
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Fig. 6.4    Spectrum of the optical beam from the laser in which the secondary mirror was completely de- 
tuned, obtained using aim monochrometer. The time-bandwidth product of the optical pulses 
is 0.56, which is slightly larger man the transform limit for Gaussian pulses. (From [9].) 
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The most remarkable aspect of the above results is the dramatic change in the entire 

macropulse power resulting from only a 1.4 % beamsplitter reflectance. If mirror M2 were 

positioned so that the same optical pulses instead of successive ones were coupled at the 

beamsplitter, a trace of the output power (including leakage) versus mirror position would 

show interference fringes with an amplitude of ±67 % for every half wavelength in the 

mirror position. This is not much greater than the largest fluctuations observed in the above 

experiment in which successive pulses were coupled, a fact which suggests strongly that 

the macropulses were at least partially phase locked. Nevertheless, the presence of phase 

locking does not explain the origin of the fluctuations; in particular, the complete destruc- 

tive interference of the leakage beam due to phase locking would always decrease the total 

output power. In Section IV, we will demonstrate that such fluctuations could be caused 

by a mechanical jitter on the secondary mirror mount 

IV. NUMERICAL SIMULATIONS 

A. Simulation parameters 

Pulse propagation simulations of the above experiment were performed in order to 

determine the degree to which the optical beam would be phase locked; the computer code 

is described in Chapter 4. The simulations of the detuned Michelson resonator, which fol- 

lowed the growth of only a single pulse, assumed a total output coupling of 4.2 % (three 

beams aligned with the detector) and a total loss of 7.3 %. The simulations of the synchro- 

nized Michelson mirror resonator using 35 coupled pulses assumed a total output coupling 

of 1.4 % (one beam aligned with the detector) and a total loss of 4.6 %. In each case, the 

output coupling neglected the skew reflection from the secondary mirror, but the total loss 

included this reflection' plus an extraneous mirror loss of 1.8 %. The output coupling and 

total losses in the detuned resonator were greater than those of the synchronized resonator 

by two surface reflections (2.8 %) becaus', the second surface in the latter case acted as the 

beamsplitter; the leakage losses in the latter simulations appeared naturally in addition to the 

total losses, and were added explicitly to the outcoupled beam to compute the total output 

power reaching the detector. 

The cavity detuning at mirror M3 was determined from a series of simulations of 

the detuning curve, in which eight simulations were performed at positions separated by 
0.76 p.m near the synchronous length. A detuning of 2.3 u.m shorter than synchronous 

was chosen to correspond to the stable maximum of the detuning curve; the power fluc- 

tuations at that point were only ±3 %, compared to ±60 % at the synchronous length. 

The other simulation parameters were determined from the operating configurations 

of the linac ?nd FEL. The electron beam energy was 38.4 MeV and the optical wavelength 
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Parameter Definition Simulation value 

Optical beam parameters 

X Resonant optical wavelength 3.2 urn 

N Number of circulating optical pulses 35 
r* Beamsplitter reflectance 1.4% 

Tout Output coupling 4.2% (detuned) 
1.4% (synchronized) 

Ytot Total cavity losses 7.3% (detuned) 
4.6 % (synchronized) 

ZR Rayleigh range 73.08 cm 

SLcav Cavity detuning (shorter than synch) 2.3 urn 
P 
Mot Number of passes (2.5 us) 200 

Electron beam parameters 

Y Electron beam energy / mc2 75.15 

Sy/y Inhomogeneous energy spread (1/e) 0.5% 

h Duration of tophat electron pulse 1.6ps 

I Peak electron current 23 A 

GRF Inhomogeneous gain reduction factor 0.8 
Te RF period 350.1 ps 

Ex Normalized horizontal emittance (1/e) 8JI mm-mrad 

Ey Normalized vertical emittance (1/e) 4JC mm-mrad 

ßx Horizontal focussing parameter 45 cm 

Wiggler parameters 

Nw Number of wiggler periods 47 

U Wiggler length 108.1 cm 

K Wiggler period 2.3 cm 

K RMS wiggler parameter 0.756 

do-Ji)2 Bessel function factor 0.812 

Table 6.1 Parameters used in the simulations of the Mark in experiment. 

was 3.2 u,m. The durations of the election and optical pulses were assumed to be the same. 

- Since tophat electron pulses were used in all of the simulations, the pulse duration (1.6 ps) 

was chosen to yield roughly the same rms pulse width as a Gaussian pulse with a FWHM 

duration of 1.2 ps. The electron beam current during the macropulse was roughly 105 mA, 

corresponding to a peak micropulse current of 23 A. However, the peak current used in the 
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simulations was also multiplied by an inhomogeneous gain reduction factor [10] to account 

for the effects of emittance and energy spread. All of the simulation parameters are listed in 

Table 6.1. 

B. Simulation results 

The degree of mode reduction resulting from a beamsplitter reflectance of 1.4 % is 

illustrated in Fig. 6.5, which shows the average mode spectrum of the entire macropulse 

for eight simulations of the synchronized resonator. The dots are the relative mode powers 

predicted from the eigenmode analysis of Chapter 4, weighted over the macropulse. We see 

that the mode reduction is substantial and can be expected to yield relatively small leakage 

losses. Indeed, the leakage losses calculated from eq. (4.39) of Chapter 4 are only 0.26 % 

after 200 passes, which is substantially smaller than the 2.8 % output coupling from the 

beamsplitter which would result from the superposition of pulses with uncorrelated phases. 

A comparison of the simulated output powers for the detuned and synchronized res- 

onators is shown in Fig. 6.6. We see that the total output power in the synchronized case 

is reduced by 42 % from the power in the detuned resonator, and the fluctuations are only 

±7 %. Therefore, the degree of phase locking indicated by Fig. 6.5 can have a dramatic 

effect on the total outcoupled power. On the other hand, the ±7 % fluctuations do not 

reproduce the fluctuations observed in the experiment. To determine whether the presence 

of jitter in the secondary mirror mount could cause these fluctuations, I performed a series 

of simulations in which the phase offset between successive pulses was continuously 

slewed over the macropulse. Total phase shifts of it, 2K, 4K, and 8K radians were exam- 

ined using eight simulations for each value, and the largest effect was observed for a phase 
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Fig. 6.5 Longitudinal mode spectrum of a perfectly tuned Michelson resonator FEL with 35pulsesand 
a beamsplitter reflectance of 1.4 %. The spectra for 200 passes are averaged over eight simula- 
tions. The dots are the mode powers predicted from the eigenmode analysis of Chapter 4. 
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Fig. 6.6    Simulated output macropulse powers for (a) me completely detuned Michelson minor resonator, 
and (b) the phase locked Michelson minor resonator. The curves in each case show the enve- 
lopes for eight simulations. 
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Fig. 6.7    (a) Simulated output maoopulse powers for the partially phase locked Michelson minor resona- 

tor with a total slew (during the maoopulse) of 2ic radians in the relative phase offset at the 
secondary mirror, (b) Macropulse envelopes for the partially phase locked beam from Fig. 6.7(a) 
and the maximally phase locked beam from Fig. 6.6(b); the fluctuations are ±33 %. 

shift of 2JI radians. The corresponding macropulse powers are shown in Fig. 6.7(a). We 

see that the total outcoupled power with jitter on the mirror mount can even be greater than 

the output power shown in Fig. 6.6(a) for the detuned resonator. Evidendy, the phase slew 

acts as a kind of continuous cavity dumping, and forces the partially phase locked output 

pulses from destructive interference to constructive interference at the beamsplitter. The 

envelopes in Fig. 6.7(b) mimic the oscilloscope trace from Fig. 6.2(b) using the slewed 

macropulses from Fig. 6.7(a) and the stable macropulses from Fig. 6.6(b). The simulated 

fluctuations are ±33 %, and are consistent with the largest fluctuations observed in the ex- 

periment 
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Finally, if the fluctuations observed in the experiment were indeed due to a continu- 

ous cavity dumping of the partially phase locked optical beam, then the tuning range of the 

secondary mirror within which these fluctuations were observed could be interpreted as the 

tuning range over which phase locking was induced in the maciopulse. The 'criticar sec- 

ondary mirror detuning was calculated in Chapter 5, 

5LMichl * TlJfrO (6.1) 

and yields a total detuning range of 2-1 SL^ich I = 360 um for the experimental parameters 

(rj = 3.6). Note that this range is considerably larger than the slippage distance of 150 \un, 

because the square root of the small reflectance appears in the denominator, but it is well 

within a factor of two of the 225 \im range observed in the experiment The discrepancy is 

most likely due to the ambiguity in using the observed power fluctuations and the decreased 

hypermode decay rates as indicators of the degree of phase locking. Furthermore, eq. (6.1) 

assumed that the optical pulses were much longer than the slippage distance and that super- 

mode effects could be neglected. This may not be true for the 1.6 ps pulses assumed in the 

present experiment. Figure 6.8 shows the first order hypermode losses calculated from the 

coupled mode simulations for the experimental parameters in Table 6.1. The 3 dB points 

are roughly 100 Jim on the long-cavity side and 150 pm on the short-cavity side, indicating 

a phase locked tuning range of 250 pn for the secondary mirror. This value is much closer 

to the range observed in the experiment However, any conclusions regarding the detuning 

range are still ambiguous for the reasons noted above. 
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Fig. 6.8 Coupled mode simulations of the first order hypermode loss in a Michelson mirror resonator with 
the parameters listed in Table 6.1. (a) Minor displacement towards the long-cavity side; (b) Mir- 
ror displacement towards the short-cavity side. 
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V. DISCUSSION AND CONCLUSIONS 

I have described a phase locking experiment on the Mark HI EEL using a Michelson 

mirror resonator with a beamsplitter reflectance of only 1.4 %. Measurements on the output 

optical beam showed substantial fluctuations (as large as ±35 % in some instances) in the 

total power reaching the detector, which included the leakage power from the beamsplitter. 

Evidence for phase locking was inferred from a substantial reduction in power for some 

macropulses, which suggested the presence of destructive interference in the leakage beam. 
The power fluctuations were observed over a range of 225 pm in the position of the second- 

ary mirror, which was consistent with autocorrelation measurements of the width of the 

output pulses. 

Simulations of the above experiment showed that substantial phase locking could be 

induced with a 1.4 % reflectance, and that the leakage power could be almost extinguished 

due to destructive interference in the outcoupled beam. However, the fluctuations observed 

in the experiment could only be simulated by imposing a continuous slew in the relative 

phase offset at the secondary mirror. A phase slew of 2TC radians (one optical wave) during 

the macropulse was sufficient to induce simulated fluctuations of ±33 % in the outcoupled 

power, which was very close to the fluctuations observed in the experiment. Consequently, 

if the macropulses were phase locked, they were probably also subject to mechanical vibra- 

tions on the interferometer mirror. The most likely source of these fluctuations was the 

mechanical coupling of a turbo pump to the vacuum chamber which housed the interferome- 

ter optics. (The vibrations were later discovered to have actually unscrewed one of the small 

bolts on the flange of the side vacuum window.) Such vibrations could have causr-d a quasi- 

continuous cavity dumping of some of the macropulses during the phase locking process. 

However, the maximum output powers observed in the simulations were only slightly 

enhanced over the output powers from the detuned resonator, whereas the enhancements 

observed in the experiment were as large as 52 %. This discrepancy remains unexplained. 

However, it may indicate imperfections in the alignment of the infrared optical beams. 

Another possibility is that, if phase locking were not induced to the degree suggested by the 

simulations, then fluctuations could still be caused by a random walk superposition of the 

output pulses in the leakage beam. If we represent the X pulses in the entire intracavity 

macropulse train as exp[ii3,J; n = 1,..., N, where the phases of the N = 35 circulating pulses 

are random but repeat identically from pass to pass, then the total output power (including 

leakage) is 

l[|rei^|2 + |rerö"-reil3»-i|2] = r2N+2r2N[l±Tl=|   .(6.2) 
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For N = 35, the rms fluctuations are ±8 %, which is considerably smaller than the fluctua- 

tions observed in the experiment. It may be possible that some of the absolute fluctuations 

were as large as the observed fluctuations. However, it is also clear from the theory and 

simulations that the phases of the optical pulses evolve considerably from pass to pass, and 

do not remain completely uncorrelated. 

At best, the above results suggest only indirectly that phase locking was achieved in 

the experiment. However, the dramatic effect on the output power for a beamsplitter reflec- 

tance of only 1.4 % also suggests that phase locking should be readily achieved with an op- 

timum reflectance of 50 %. An unambiguous demonstration of phase locking will require 

stabilized mirror mounts, and spectral measurements of the longitudinal mode structure of 

the output beam in which the leakage losses from the beamsplitter are completely isolated 

and filtered. Appendix B describes the design of a practical Michelson mirror resonator on 

the Mark III FEL, as well as spectral diagnostics which have been procured for future ex- 

periments on that laser. 
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Chapter 7 

Summary and conclusions 

In this dissertation, I have reported extensive analytic and numerical investigations 

of the optical pulse evolution in if linac-driven free-electron lasers in both the chirped-pulse 

and phase locked modes of operation. These studies were motivated in general by the tre- 

mendous potential impact that such enhancements could provide in the fields of fast-time 

resolved and high spectral resolution infrared spectroscopies, and in particular by the possi- 

bility of implementing both of these enhancements on the Mark m infrared EEL. The 

chirped-pulse mode of operation uses electron micropulses with a linear temporal energy 

dependence to drive the formation of broad band optical pulses with a linear temporal fre- 

quency dependence; these 'chirped' optical pulses are susceptible to pulse compression in 

an external dispersive delay line. The phase locked mode of operation uses an intracavity 

interferometer to couple successive optical pulses so that they build up from noise with a 

definite phase relationship; these 'phase locked' optical pulses yield well separated longi- 

tudinal modes in the output beam that can be individually filtered for applications in high 

resolution spectroscopy. Small signal analyses were fully developed for each of these 

modes of operation, which analyses were supported by numerical pulse propagation simu- 

lations whose parameters were chosen to guide the design of feasible experiments on the 

MarkfflFEL. 

The chirped-pulse FEL 

The small signal regime of the chirped-pulse FEL was shown to possess completely 

analogous properties to the small signal tapered wiggler EEL, except that the former yields 

strongly chirped optical pulses whereas the latter does not In particular, small energy 
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chirps merely shift the optimum resonance parameter of the small signal gain curve with no 

distortion in the gain function, but dimensionless energy chirps much larger than the gain 

bandwidth divided by the slippage distance severely distort the gain spectrum and reduce 

the overall gain in an analogous manner to the tapered wiggler FEL. Nevertheless, in most 

applications of the chirped-pulse FEL to pulse compression, substantial compression ratios 

can be obtained with energy chirps much smaller than this limit For example, simulations 

of the Mark m FEL at 3.35 |im using relatively short electron pulses (4 ps) and modest en- 

ergy chirps (+2 %) demonstrated the formation of broad band optical pulses that could be 

compressed from 3.4 ps to 220 fs with compressed peak powers of 30 MW. 

The simulations also showed that the frequency chirp is partially affected by both the 

transverse mode structure of the resonator and by the onset of saturation, and that the extrac- 

tion efficiency depends strongly on the energy chirp in the presence of finite cavity length 

detunings. The two most important consequences were that (1) due to an intrinsic frequen- 

cy chirping in the FEL, electron pulses with a positive energy chirp yielded larger frequency 

chirps than electron pulses with a negative energy chirp of the same magnitude; and (2) for 

cavity lengths shorter than the synchronous length, negatively chirped electron pulses yield- 

ed a substantially greater extraction efficiency than positively chirped pulses, although the 

converse was true for cavity lengths longer than the synchronous length. Negative energy 

chirps were originally predicted to increase the extraction efficiency at saturation due to the 

adiabatic deceleration of trapped electrons, and it is therefore interesting to find that enhanced 

efficiencies can in fact be obtained with energy chirps of either sign (although the energy 

extraction mechanism is not related to adiabatic deceleration.) 

The Michelson resonator FEL 

I also performed analytical and numerical investigations on the feasibility of using a 

Michelson mirror resonator on FELs driven by rf linacs to couple successive optical pulses 

in the pulse train. In such a configuration, the optical pulses will grow only if adjacent 

pulses maintain a definite phase relationship, and in this fashion the axial mode spacing can 

be increased from the round trip frequency up to the driving frequency of the rf linac. A 

linear eigenmode analysis was presented which predicted the time scale on which the short 

optical pulses become phase locked; this analysis can be used to calculate the mode losses 

and decay rates in practical applications of these resonators. The mode structure predicted 

by this analysis was also shown to be equivalent to the mode structure obtained from the 

passive frequency response of the Michelson mirror resonator. The latter has a wider range 

of application because it can be calculated for any resonator configuration (for example, the 

Fox-Smith interferometer) with arbitrary mirror detunings. 
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Pulse propagation simulations of the perfectly tuned Michelson mirror resonator, 

using parameters appropriate to the Mark in FEL, confirmed the corresponding increase in 

the axial mode spacing of the output beam on microsecond time scales. The perfectly tuned 

interferometer was shown to have no appreciable effect on the overall spectrum of the opti- 

cal beam, but the temporal evolution of the supporting longitudinal modes was accurately 

predicted from the eigenmode analysis. Furthermore, the simulations also indicated that the 

phase locked optical beam in the perfectly tuned interferometer grows to the same saturated 

power level as the randomly phased beam. This latter property is particularly important for 

applications in nonlinear spectroscopy. Since the spectral width of the output beam is deter- 

mined primarily by the duration of the short electron pulses, a decrease by a factor of N 

in the number of modes yields an increase by the same factor in the power per mode, where 

N is the number of pulses in the cavity. This can be well over an order of magnitude in- 

crease in the spectral brightness. 

In order to study the effects of finite interferometer detunings, I applied conventional 

mode locked laser theory to the evolution of the longitudinal modes in the Michelson reso- 

nator FEL, and obtained a greatly simplified derivation of the small signal, small gain FEL 

coupled mode equations. These equations were solved numerically to study supermode 

evolution in the presence of arbitrary mirror detunings, and the results were compared with 

simulations of the Michelson resonator FEL using a pulse propagation code based on the 

Maxwell-Lorentz equations of motion. The effects of increasing the interferometer detuning 

included a shift and broadening of the cavity detuning curves, a narrowing of the supermode 

spectrum, and a decrease in the rate of hypermode decay. Practical consequences of all of 

these effects were discussed. A significant achievement of the coupled mode analysis was 

the confirmation of a simple theory describing the dependence of the hypermode decay rates 

on the detuning, which theory indicated for most laser configurations that the hypermode 

decay rates remain large as long as the relative shift between the coupled pulses in the inter- 

action region is less than the slippage distance. 

The demonstrated agreement between the pulse propagation and coupled mode sim- 

ulations with regard to small signal gain, supermode structure, and hypermode decay indi- 

cated that the latter simulations are entirely appropriate for general resonator analysis. In 

practice, it is much simpler to implement an arbitrary mode structure in the coupled mode 

analysis than to implement an arbitrary pulse coupling geometry in the pulse propagation 

code. These analyses can easily be applied to the mode structure of resonators incorporat- 

ing an intracavity etalon or Fox-Smith interferometer, and may also be appropriate for 

studying the supermode evolution for arbitrary slippage parameters and electron pulse 

shapes in conventional two-mirroi resonators. 
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Preliminary experimental results 

Finally, I described a phase locking experiment on the Marie III FEL using a Michel- 

son mirror resonator with a beamsplitter reflectance of only 1.4 %. Evidence for phase 

locking was inferred from a substantial reduction in power for some of the macropulses, 

which suggested the presence of destructive interference in the leakage beam. Simulations 

of the experiment demonstrated that substantial phase locking could indeed be induced with 

a 1.4 % reflectance, and that the leakage power could be almost extinguished due to destruc- 

tive interference in the outcoupled beam. Although substantial fluctuations in the output 

power were also observed in the experiment, they could be reproduced in the simulations 

by imposing a mechanical jitter on the interferometer mirror. 

The dramatic effect on the output power for a beamsplitter reflectance of only 1.4 % 

suggests that phase locking should be readily achieved with an optimum reflectance of 50 

%. An unambiguous demonstration of phase locking, and the application of phase locked 

optical beams in spectroscopy, will probably require actively stabilized mirror mounts, and 

will certainly require spectral diagnostics capable of resolving the individual longitudinal 

modes. However, the design and implementation of such apparatus should not be too tech- 

nically demanding for infrared wavelengths. 
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Appendix A 

Optical diagnostics for 
chirped-pulse free-electron lasers 

In recent years there have been several proposals to operate rf-linac driven FELs 

with chirped energy electron micropulses for applications in fast rime-resolved spectro- 

scopy, in which the output optical pulses possess appreciable frequency chirps and are 

susceptible to pulse compression in an external dispersive delay line [l]-[3]. The physical 

principles governing these experiments are generally not specific to a particular wavelength, 

because substantial energy chirps can be achieved at a given energy simply by dephasing 

the electron bunches relative to the accelerating field in the accelerator. Consequently, the 

most practical realizations of these experiments should employ broad band optics in both 

the optical transport and diagnostic apparatus in order to fully exploit the inherent tunability 

oftheFEL. 

In this appendix, I describe the implementation of this experiment on the Mark HI 

FEL for wavelengths between 2.5 urn and 4.1 pm, using a broad band sapphire prism 

pulse compressor which has been des;pned and procured for applications in a user-oriented 

program at Duke University. Section II gives a brief tutorial review of linear pulse propa- 

gation and pulse compression, and presents some apparently original expressions for the 

compression of several ideal pulse shapes with linear frequency chirps. Section HI reviews 

the relevant principles of the chirped pulse PEL, and lists the pulse parameters for the Mark 

HI experiments on which the design of the pulse compressor (Section IV) and the autocor- 

relator (Section V) are based. Finally, Section VI suggests some possible extensions to 

other wavelength regimes in the near and far infrared. 
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II. PULSE PARAMETERS 

A chirped optical pulse is most conveniently characterized by a chirp parameter 'b' 

and a pulse width parameter 'a' [4] defined by 

d)(t) = (üo + (2b)t (A.1) 

and a_21oge2 
(A.2) 

where co(t) is the time-dependent optical frequency and Xp is the FWHM pulse width. The 

spectrum of an optical pulse 

£(t) = E(t) exp[ -j (coot + bt2)] (A.3) 

can then be written in the general form 

E(o)) = E((o) exp + J 
4[f(a,b) + b2] 

(co-mo)2 + jO{o)-tDo)3 (A.4) 

where f(a,b) is a form factor that depends on the pulse shape; for example, f(a,b) = a2 for 

Gaussian pulses. The first order term in the exponent can be omitted because it affects only 

the centroid of the pulse, and if the frequency chirp is large and purely linear, then the high- 

er order terms are usually negligible. 

Second order phase compensation means to eliminate the j[—](ü> - (üo)2 term in the 

spectral phase factor, and is the usual manner of compressing the pulse. This is accom- 

plished by sending the pulse through a dispersive delay line, which has the effect of multi- 

plying the spectrum by a phase factor of the form 

exp 
. d2<b 

+j -i-HH® - «üo)2 + j 0(CD- (üo)3 
1 dco2 (A.5) 

The spectral width (as determined from | £(co) ) is unaltered by this propagation, but the 

compensated optical pulse has essentially no frequency chirp, since b = 0 in the absence of 

the second order term in (A.4). As a result, the original spectral content of the pulse is ef- 

fectively transferred from the optical phase to the optical envelope, and the pulse is com- 

pressed. The coefficient of the quadratic frequency term in (A.5) which compensates the 

corresponding term in (A.4) can be written phenomenologically as 

(ft) 2W 
J_ 

comp       b-K(a.b) 
(A.6) 

where K(a,b) is a factor that depends on the pulse shape and on the ratio of (a/b), and has 
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a limiting value of K -* 4 as (a/b) -* 0. Figure A.l displays the numerically derived values 

of K(a,b) for several ideal pulse shapes, and Fig. A.2 displays the corresponding pulse 

compression ratios; in all cases, optimum compression was defined as yielding the maxi- 

mum compressed peak power, not the minimum FWHM pulse duration. The curve fits 

appearing in those figures are given below for | a/b | < 1, and may be useful in rhe design 

and adjustment of phase compensators for chirped pulse experiments in which the shape 

and duration of the optical pulses can be inferred from autocorrelation measurements. 
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Fig. A. 1   Optimum quadratic phase compensation factors K(a,b) from eq. (A.6) for various ideal pulse 
shapes, defined as yielding the maximum compressed peak powers. The data and curve fits were 
obtained numerically. 
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The equations for the Gaussian case are exact analytical results [4]. The only conditions 

assumed in the form of the remaining equations are that they depend only on the ratio of 

(a/b), and that they approach the limits K(a,b) -»• 4 and xp
mm/Tp -»• const-1 a/b | as (a/b) 

-* 0; these conditions are heuristic and agree with the Gaussian case. 

in. MARK in DESIGN PARAMETERS 

Simulations of the optical pulse generation using chirped energy electron pulses on 

the Mark m FEL were previously described in Chapter 3. Those simulations were based 

on practical operating configurations of the Mark III linac, in which the electron pulses are 

compatible with the dispersion in the downstream transport line and yield chirped optical 

pulses with large spectral widths at saturation. For experiments near X = 3.35 p.m. the 

electron pulses in the wiggler have a duration of 4 ps and a linear energy chirp of "Y/y = 

+2 % with higher energies towards the trailing edge. The simulations assumed tophat 

electron pulses, since optical autocorrelation measurements on the Mark El FEL have in- 

dicated that the optical pulses at saturation are essentially tophat in shape [5]. The duration 

of the optical pulses (xp - 3.4 ps) is slightly shorter than 4 ps due to lethargy, but the mag- 

nitude of the positive frequency chirp (Acu/co ~ +4.6 % over 4 ps) is slightly larger than 

would be predicted by assuming that the resonance condition determines the lasing wave- 

length during the pulse; this frequency chirp is determined numerically from the simulations 

by fitting a least squares parabola to the optical phase over the FWHM duration of the 

optical pulse. The corresponding chirped pulse parameters from the simulations at X = 

3.35 urn are 
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a « +1.2 (10) ^ s-2 

b = +3.3 (10) ^s-2 

K(M>) = 4.3 (A.g) 

|B = -7.0(10)-*s2    , 

and the compressed optical pulses have a duration of - 230 fs. The simulated profiles of 

the chirped output pulses, and the results of pulse compression, are reported in Chapter 3. 

For designing experiments over a range of wavelengths, it is useful to assume that 

the resonance condition determines the lasing wavelength during the pulse; this will actually 

be a fairly good approximation if the slippage parameter is sufficiently small. The wave- 

length dependence of the chirp parameter b then becomes explicit: 

X   Ydt     • 

where Ymc2 is the electron energy, and if one also assumes that the duration of the optical 

pulses at saturation is equal to the duration of the electron pulses (appropriate for long 

electron pulses), then the compensation factor in (A.6) can be readily evaluated using (A.9) 

and (A.7). 

rv. PULSE COMPRESSOR DESIGN 

The two general designs for pulse compressors employ either grating pairs or 

Brewster angle prism pairs [6]. The latter choice is preferred in the present application 

because of the possibility of achieving substantial compression ratios over a wide range of 

wavelengths. In contrast, the diffractive geometry of a given grating system is very sensi- 

tive to wavelength, and the corresponding dispersions can be too large to yield practical 

compressor designs in chirped pulse FEL experiments. For example, a double pass Lit- 

trow grating system at 3.35 p.m. designed to compensate the pulse parameters in (A.8), 

would have a slant spacing of only a few millimeters. 

The design of prism pulse compressors has been treated extensively in the literature 

[6]-[9]. A typical minimum deviation, single pass, Brewster angle prism system is shown 

in Fig. A.3. The second order dispersion for a corresponding double pass system is given 
by 

±B--6\i^-x}^-^r^\ (A.10) 

where X is the vacuum wavelength, n(X) is the refractive index, and tp and ß are shown in 
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Minimum deviation, 
Brewster angle 
prism pair 

Fig. A.3   Typical prism configuration for a single pass dispersive delay line. The prisms are in the 
minimum deviation geometry to avoid astigmatism in the transmitted beam. 

Fig. A.3. For a given set of system parameters, the LHS of (A. 10) should equal the re- 

quired compensating factor from (A.6). 

The contributions to the dispersion arise from material dispersion and angular dis- 

persion, the latter leading to wavelength-dependent geometrical paths through the system. 
In particular, material dispersion in the crystals yields the ^1$} term in (A. 10), angular 

dispersion in the crystals yields the Vn3'(^n/dX)2 tcrm» ^d angular dispersion in air, 

comprising the dominant contribution in most systems, yields the two remaining terms. 

The angle ß is usually determined by the clear aperture of the beam through the system, for 

example, by setting Cp sin ß > ^b^, where (ü\)taia is the mode radius. If tp is much 

larger than (übe«,, one may then set cos ß - 1. 

The pulse compressor for the Mark ID experiments consists of four minimum devi- 

ation sapphire prisms arranged as shown in Fig. A.4. The prisms are cut at Brewster's 

angle for 3.35 p.m. which yields no more than 0.03 % total reflection losses for the double 

pass system between 2.5 urn and 4.1 um. The optic axis of the crystal is perpendicular to 

the triangular faces to within 30 minutes, so that the horizontally polarized ray is ordinary. 

A double pass system is required in order to eliminate the presence of lateral spectral walk- 

off in the output beam, which can significantly increase the duration of the compressed op- 

tical pulses [10] according to 

1/2 
^comp 

wmin 

1+   ilDJi 
^min ™' 

(A.11) 

V. • 

are the durations of the compressed pulses in the presence and absence 

of spectral walkoff, T^ is the duration of the input pulse, and ZR is the Rayleigh range. 

where x^^, xm^ 
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Fig. A.4   Double pass, sapphire prism dispersive delay line for the Mark III experiments between IS um 
and 4.1 urn. The setup includes removable mirror assemblies to interchange the compressed and 
uncompressed pulses between the autocorrelator and the experimental sample. 

For example, a single pass system designed to compensate the pulse parameters in (A.8) 

would compress the optical pulses to no less than 1.5 times the minimum duration that 

could be achieved in the absence of spectral walkoff. 

The mounting of the prisms on translation stages allows the experimenter to vary 

the dispersion of the system by changing the path length through all four prisms without 

changing the position or direction of the output beam. The size of the prisms was chosen 

so that roughly 70 % of the required dispersion at 3.35 \im could be provided r y moving 

the prisms in this fashion. The removable mirror assembly at the input to the system 

allows the quick interchange of compressed or uncompressed pulses into the autocorrelator 

or onto the experimental sample. 
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The estimated prism spacing as a function of wavelength is shown in Fig. A.5. The 

spacing for 3.35 |im is found by equating the prism dispersion from (A. 10) with the re- 

quired dispersion from (A.8), using Cp sin ß ~ 5(0^,^ and ©beam =1.5 mm. The correspond- 

ing 4 m confocal parameter is much larger than the total path length of 70 cm through the 

system. For other wavelengths, the optical pulse widths are assumed to remain constant, 

and the prism spacings are found by equating the prism dispersion with the dispersion 

predicted from (A.6), where (A.9) and (A.7) are used to calculate b(X) and K(a,b) (adjust- 

ments in the numerical constants appearing in (A. 10) were also included to account for the 

deviation from Brewstef s angle in the minimum deviation geometry). Although the prism 

spacing increases for decreasing wavelengths, the Rayleigh range increases in inverse 

proportion to X, so that it should be possible to maintain a high d?gr?e of collimation with a 

beam whose radius need not be adjusted with wavelength. This consideration is important 

because the beam radius is usually limited by the clear aperture of the prism height 
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Fig. A.5   Estimated apex-to-apex prism separations for the Mark in experiments between 2.5 and 4.1 um. 

v. OPTICAL DIAGNOSTICS 

The autocorrelator for the above experiments is a typical crossed beam autocorrela- 

tor [11], designed to measure pulse durations as short as 200 fs between 3.1 and 3.35 |im. 

The basic component arrangement is shown in Fig. A.6. The crossed beam geometry yields 

a background-free autocorrelation trace with no intensity fringes, and so is appropriate for 

digitized data acquisition. The doubling crystal is a 90° Type I phase matched silver galli- 

um selenide (AgGaSe2) wafer with a thickness of 1« = 450 urn; this is the coherence length 

for a 200 fs optical pulse which yields a phase matching factor of 



132 

TZZ. 
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Fig. A.6   Layout of the autocorrelator for measuring pulse durations as short as 200 fs. 

sin2(Aklc/2) 

(Aklc/2)2 
£0.5 (A.12) 

for all frequencies within the FWKM bandwidth. Here, Ak = 2 ki(ü)i) cos(a/2) - k2(ö>2) 

is the phase mismatch between the fundamental (ci>i) and second harmonic (0)2) waves, and 

a is the internal crossed beam angle. By moving the lower translation stage in Fig. A.6, this 

internal angle can be changed from 3.5° (9.2° external) at 3.1 urn to 7.5° (19.7° external) 

at 3.35 urn without altering the path length. For wavelengths less than 3.1 ^m or greater 

than 3.35 urn, one can use 8Tpyc l < 90° phase matched LiNbOs crystals or AgGaSe2 crys- 

tals respectively. 

The focussing geometry is chosen to accept the 1.5 mm radius beam directly from 
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the pulse compressor and focus it down to a radius of 190 \im at the crystal surface (note 

that the waists of the focussed beams are located in front of the crossover point). This 

focussing geometry is of critical importance for the measurement of short optical pulses, 

because if the beams are too wide the pulse duration will be grossly overestimated. For 

marginally wide beams, the overestimate can be calculated exactly (assuming Gaussian 

temporal pulse profiles [12]) from 

(A.13) T2      _ .2,       10ge2  ^(^«n 
^meas -   »•pulseT     ^ % 

'group 

where x are fundamental FWHM pulse durations, and vgroUp is the group velocity of the 

fundamental pulses in the crystal. Note that group velocity dispersion in the crystal has a 

negligible effect on the fundamental pulse duration. For TpuUc = 200 fs, the above auto- 

correlator with a cross beam angle of 3.5° will yield an overestimate of Xmeas = 209 fs for 

the fundamental pulse duration. 

VI. EXPERIMENTS AT OTHER WAVELENGTHS 

As previously noted, chirped pulse FEL experiments can in principle be performed 

on rf linac-driven systems at any wavelength. At present, several such systems are designed 

to deliver wavelengths throughout the near and far infrared [13]-[16]. As suggested by the 

experimental design described above, prism systems should provide the greatest wave- 

length flexibility in FEL pulse compression experiments. Figure A.7 shows the dispersions 

TTTTT !       L.LLl.UJ.l. 
...A * i ...J..J..;..^.;..;.;.. 

Wavelength (microns) 

Fig. A-7   Dispersion of several low- or non-hygroscopic infrared materials over their range of transparency; 
all of these materials also transmit at 633 nm, and may be suitable as prism delay lines for 
chirped-pulse FEL experiments in the near and far infrared. 
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v.. 

I '"VdX | of several infrared materials over their range of transparency, which were calcu- 

lated from the published Sellmeier equations [17]. These materials also transmit at 632 nm, 

so that alignment is possible using a He-Ne laser. For a given material, the most useful 

wavelength range is the one in which the dispersion increases with wavelength. However, 

materials which transmit at longer wavelengths generally have lower dispersions. This is 

not a serious problem in the design of long-wavelength pulse compressors, because the 

dominant contribution to the prism dispersion comes from the last term in (A. 10), i.e. 

Therefore, the reduction in dispersion due to decreased (^/dX)2 is compensated by the 

presence of the X3 factor. Even for electron pulse lengths or energy chirps which do not 

change greatly with wavelength, the required dispersion from (A.6) and (A.9) is propor- 

tional only to X, so that the prism spacing Cp is roughly proportional to 1/X2. Therefore, 

broad band pulse compressors for experiments at other wavelengths can most likely be 

designed within convenient dimensions on a laboratory bench. 
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Appendix B 

Spectral diagnostics for 
phase locked free-electron lasers 

The practical design of a Michelson resonator free-electron laser [1], [2] requires 

the outcoupled optical beam to be separated from the leakage beam at the beamsplitter, and 

subsequent applications in high resolution spectroscopy require sensitive spectral diagnos- 

tics to measure the longitudinal mode structure, tune the laser line, and monitor any drifts in 

frequency. This appendix describes the practical design of a Michelson mirror resonator on 

the Mark III FEL [3], as well as mode-selective spectral diagnostics which have been pro- 

cured for experiments in high resolution spectroscopy near 3 pm. 

II. RESONATOR DESIGN 

As noted in Chapter 6, the Mark HI optical cavity uses Brewster plate output cou- 

pling for the horizontally polarized radiation. The vacuum chamber containing the upstream 

cavity mirror and output couplers was designed to allow four choices of Brewster plates, 

two of which can be placed on the beamline at the same time. In the usual configuration, a 

single Brewster plate is inserted into the beam, and only the reflections from one side of 

that plate are normally outcoupled to the user laboratory. However, one of the output cou- 

plers is positioned beside a Brewster window on die vacuum chamber, which allows the 

alignment of an external mirror for redirecting the secondary outcoupled reflections into the 

user laboratory as well. 

The design of the intracavity Michelson interferometer represents a trivial extension 

to the above arrangement, and is shown in Fig. B.l. In the proposed configuration, two 
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to laboratory ^ 

upstream 
cavity   / 
mirror / 

second reflection mirror: 
round trip delay = 1 rf period 

Fig. B. 1    The design of the Michelson mirror resonator for the phase locking experiments on the Mark III 
FEL, showing the position of the beamsplitter, output coupler, and interferometer mirrors. 

Brewster plates are inserted into the beamline, but one of them is a beamsplitter that reflects 

the secondary reflection to an interferometer mirror outside of the vacuum window. Two 

different beamsplitters have been procured for these experiments. The first one consists of 

an AI2O3 monolayer on a Ti02 monolayer on a calcium fluoride substrate, yielding a reflec- 

tance of 8.5 % to 13 % for wavelengths between 2.5 |im and 3.7 Jim. The second beam- 

splitter consists of several alternating AI2O3 and T1O2 monolayers on calcium fluoride, 

yielding a reflectance of 40 % to 50 % for wavelengths between 2.6 urn and 3.2 p.m. These 

coating materials were chosen for their potentially high damage thresholds [4]-[7]. The 

output coupler located between the beamsplitter and the upstream cavity mirror is a wedged 

calcium fluoride Brewster plate, aligned so that only a single surface reflection is outcou- 

pled to the diagnostic apparatus. 

The secondary external cavity mirror is mounted on a translation stage to facilitate 

the location of the synchronous mirror position. The procedure is as follows. For each of 

the 10 % and 50 % beamsplitters, an identical uncoated Brewster plate is first inserted onto 

the beamline, along with a parallel mirror to reflect the outcoupled beams to the laboratory. 

The synchronous position is located by using one side of this uncoated plate as the output 
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coupler, and the other side of the same plate as the beamsplitter. With an unsynchronized 

external mirror, the total outcoupled power reaching the detector will consist of three sur- 

face reflections (neglecting the skewed reflection from the external mirror.) However, 

when the mirror is scanned through the synchronous position, two of these reflections will 

interfere destructively due to partial phase locking in the optical beam, yielding as much as a 

60 % denease in the detected power. After locating the synchronous mirror position in this 

manner, the coated beamsplitter (without a parallel mirror) is reinserted onto the beamJine in 

place of the uncoated plate, and outcoupling is recovered from the wedged output coupler. 

The location of the output coupler within one of the interferometer arms slightly 

affects the phase locking properties of the resonator. For the configuration shown in Fig. 

B.l, the passive frequency response of the resonator can be calculated following the pro- 

cedure oudined in Chapter 4, Section HI, and the resonator losses can then be extracted. 

The results of the calculation are as follows. 

Let the outcoupled losses from all four surfaces of the Brewster plate equal Opiate, 

so that the round trip power transmission is [1 - OpiuJ. If the reflectance of the beamsplit- 

ter is r2, then the cavity losses 5MV due to output coupling arc 

6cav = 6piate(l-r
2)    , (B.l) 

and the leakage losses at the beamsplitter, which are finite even for a perfectly phase locked 

beam, are (to lowest order in 5piale) 

5i„k = ^r2t20piate  . (B.2) 

The optimum beamsplitter reflectance yielding the maximum hypermode decay rate is 

rL -l(l-S* Pl*e , (B3) 
'opt     2 \       4 

and the corresponding decay rate for the first order hypermode with N circulating pulses is 

l +cos (£) |Yi|2 =  f^-    , (B.4) 

which is independent of 5piale. i.e. the first order hypermode falls to a power of |Yi |2p 

times the power in the lowest order hypermode after p passes. These results suggest a way 

to reduce the optimum beamsplitter reflectance for the resonator. For example, in a suffi- 

ciently high gain FEL with a total loss of 5cav * 16 %, the losses through the Brewster plate 

could be as high as 6piale * 30 %. Then the optimum reflectance would be reduced from r2 

= 50 % to r2 = 46 %, the leakage losses would be only 8^ » 0.6 %, and the power in the 

first order hypermode would fall to 9 % of the power in the dominant mode after 300 pass- 

es (less than 4.0 [is in the Mark HI FEL). 
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in. SPECTRAL DIAGNOSTICS 

I have designed and procured a spectral diagnostics capable of detecting the axial 

modes in both the phase locked and randomly phased optical beams for wavelengths near 3 

Urn. The setup is shown in Fig. B.2. In order to unambiguously detect a single longitudi- 

nal mode in a device such as etalon, the optical beam must first be filtered so that only a 

single mode is incident; otherwise, any unfiltered modes will be aliased into the spectral 

window of the etalon [8]. Consequently, the EEL optical beam is first filtered with aim 

grating monochrometer with a resolution of approximately 20 GHz. The filtered beam is 

then passed through a planar etalon prefilter with a free spectral range wider than the 

resolution of the monochrometer, but with an axial mode bandwidth of just under 3 GHz. 

This secondary filtering yields an optical beam with a total bandwidth of roughly 3 GHz, 

containing 35 FEL axial modes for the randomly phased optical beam, and a single EEL 

axial for the perfectly phase locked optical beam. Because the coating reflectance for the 

planar etalons varies slighüy with wavelength, the substrates were designed to have slighdy 

different thicknesses, so that the proper axial mode bandwidth could be chosen within a 

Phase locked FEL spectrum 

▼ from Muk III FEL 

1 meter monochrometer pre-fDter*! 

Planar eulon pre-filtcr » 2 

2.5 _ 
GHz D 

1 meter monochrometer. 

• spectral resolution - 20 GHz. 
- isoUtes one axial mode of the planar 

etalon. 

Planar etalon (angle tuned): 

- material is CaF,, with choice of thickness 
from 2.0 to 2.S mm. 

- free spectral range - 42-S2 GHz. which is 
wider than the monochrometer resolution. 

- reflectance » 87 ± 2 fc per surface between 
2.8-3.2 um, which i: the main contribution 
to the instrument finesse. 

■ mode widths - 2.0-3.0 GHz. 

Buxieigh scanning confocai interferometer. 

- free spectral range » 3 GHz 
- resolution - 37 MHz; this is 1/2 times the 

82 MHz axial mode spacing of the Mark III 
FEL with two mirrors. 

- broadband optics from 2.3-3.45 \im. 

to detector 

Fig. B.2   Spectral diagnostics for filtering and resolving the individual FEL axial modes in the phase 
locked optical beam from the Mark m FEL. 
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wide wavelength range; the final design is appropriate for wavelengths between 2.8 u,m 

and 3.2 p.m. 

The individual EEL axial modes within the 3 GHz bandwidth of the prefiltered beam 

are detected with a commercial scanning confocal interferometer from Burleigh, with a free 

spectral range of 3 GHz by design. This particular interferometer has a resolution of 37 

MHz, capable of differentiating axial modes spaced by the EEL round trip frequency of 82 

MHz, and can be used for wavelengths between 2.3 \im and 3.45 \UP By scanning the fre- 

quency of the confocal etalon through the filtered EEL beam, the longitudinal mode structure 

and the degree of hypermode decay can then be monitored. 
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