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Abstract

The broad and continuous tunability of the rf linac-driven free-clectron laser (FEL),
coupled with its high power picosecond time structure, has greatly enhanced the research
capabilities in the field of infrared spectroscopy. However, the duration of the optical puls-
es is often too long to probe ultrafast processes that occur on time scales of a few tens to a
few hundreds of femtoseconds, and the spectral structure of the optical beam, with closely
spaced longitudinal modes in a bandwidth determined by the Fourier transform of the short
pulses, poses a significant limitation for experiments requiring high spectral resolution.

The temporal resolution can be improved by operating the FEL with electron pulses
whose energy varies linearly with time; the resulting optical pulses possess substantial fre-
quency chirps and are susceptible to pulse compression in an external dispersive delay line.
The spectral resolution can be enhanced by using an intracavity Michelson interferometer to
couple successive optical pulses so that they build up from noise with a definite phase rela-
tionship; the longitudinal modes in the output beam are then separated by the rf frequency
of the linac and can be individually filtered for applications in high resolution spectroscopy.

In this dissertation, I develop small signal analyses for each of these modes of oper-
ation, and report the results of numerical pulse propagation simulations whose parameters
were chosen to guide the design of feasible experiments on the Mark IIT FEL. Chirped-

~ pulse simulations using modest energy chirps have demonstrated a x15 compression ratio

at saturated power levels for 3.4 ps optical pulses at 3.35 um, and coupled pulse simula-
tions have indicated substantial longitudinal mode reduction on microsecond time scales. 1
also develop a simplified derivation of the FEL coupled mode equations using conventional
mode locked laser theory, and solve them numerically in the frequency domain to describe
the detuning properties of the Michelson resonator FEL. Finally, I report the first operation
of a Michelson mirror resonator on the Mark III FEL, and present indirect evidence for
phase locked operation using a beamsplitter reflectance of only 1.4 %.

iv
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A NOTE ON SIGN CONVENTIONS

The following sign conventions are observed consistently throughout this disser-
tation:

1. The carrier phase of the optical electric field is written exp[i(kz-mt)].
Consequently, for example, @ = - 49/4; .

2. Positive energy (frequency) chirps are defined as energies (frequen-
cies) that increase towards the trailing edge of the electron (optical)
pulse. The converse is true for negative chirps.

3. Positive cavity detunings refer to cavity lengths that are shorter than
the synchronous cavity length. The converse is true for negative cav-
ity detunings. (This sign convention is an artifact of the pulse prop-
agation code; it reflects the fact that positive detunings push the optical
pulse forward in time.)

These sign conventions are noted at appropriate points throughout the dissertation.
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Chapter 1

Introduction

The broad and continuous tunability of the rf linac-driven free-electron laser (FEL),
coupled with its high power picosecond time structure, has greatly enhanced the research
capabilities in the field of infrared (IR) spectroscopy. For example, the access of the Mark
I FEL [1]-[3] to the mid-IR band from 2 pm to 10 pm presently allows the fundamental
study on picosecond time scales of the vibrational modes of molecules [4], the dynamics

- [5] and spectroscopy [6] of advanced and high speed materials for electronics, and the dy-

namics of important biochemical and photochemical phenomena [7]. However, the duration
of the optical pulses is often too long to probe ultrafast processes that occur on time scales
of a few tens to a few hundreds of femtoseconds, and the spectral structure of the optical
beam, with closely spaced longitudinal modes in a bandwidth determined by the Fourier
ransform of the short pulses, poses a significant limitation for experiments requiring high
spectral resoluton. The availability of a mid-IR source with pulse durations on the order of
hundreds of femtoseconds and increased peak powers would greatly enhance the study of
ultrafast molecular dynamics and nonlinear spectroscopy [8], and a powerful infrared laser
with a narrow spectral resolution would fill an important gap in the capabilities of present
infrared sources [9].

Fortuitously, the rf linac-driven FEL possesses unique temporal properties that are
amenable to improvements in both the temporal and spectral resoludon of the optical beam.
The temporal resolution can be improved by operating the FEL with electron pulses whose
energy varies linearly with time [10]-[12}; the resulting optical pulses possess substantial
frequency chirps and are susceptible to pulse compression in an external dispersive delay




line. The spectral resolution can be enhanced by using an intracavity interferometer to cou-
ple successive optical pulses so that they build up from noise with a definite phase relation-
ship [13]-[15]; the axial mode spacing is increased from the round trip frequency to the rf
frequency, and the modes can be individually filtered for applications in high resolution spec-
roscopy. The chirped-pulse and phase locked erhancements on the tf linac-driven FEL, and
a brief history of their conceptual development, are described below in Section ITI.

The purpose of this dissertation is to study the implementation of these enhancements
in configurations appropriate to high resolution spectroscopy, and to establish a theoretical
framework for future applications. In the present work, I develop small signal descriptions
for both the chirped-pulse and phase locked FELSs, and report the results of extensive nu-
merical simulations which support the theoretical predictions and indicate the feasibility of
realizing each of these enhancements on conventional rf linac-driven systems. Simulation
parameters are chosen to guide the design of feasible experiments on the Mark IIT FEL,
whose configuration provides a valuable test bed for experimental studies of botn energy
chirping and phase locking, and practical designs for such experiments are described.

Despite the noted application in recent years to many important experiments in infra-
red spectroscopy, the infrared free-electron laser is barely if ever mentioned in almost any
review of the present status of that field. However, current trends are changing, and the
stability and reliability of infrared FELs have been demonstrated at several laboratories of-
fering dedicated user programs in infrared applications [16]. The high resolution enhance-

~ ments described in this dissertation promise to contribute significantly to further advances
in the field.

II. THE MARK Il FREE-ELECTRON LASER

A free-electron laser consists of a high brightness source of ultrarelativistic electrons,
an clectron beam transport system, a spatially periodic magnetic field (the wiggler field), and
an optical resonator co-linear with the axis of the wiggler. The configuration of a typical rf
linac-driven FEL with Brewster plate output coupling, such as the Mark Il FEL, is shown
in Fig. 1.1. The laser action is provided by the coupling of the transverse motion of the elec-
trons in the wiggler field to the transverse electric field of the co-propagating optical wave
stored in the resonator, and the continuous tunability is provided by continuous changes in
either the wiggler magnetic field or the electron energy [17].

The Mark III FEL is w.iven by a 2.857 GHz pulsed rf linac using electrons from a
synchronized microwave gun and a thermionic cathode source. The linac energy can be set
contnuously from 45 MeV to 25 MeV, for which the 2.3 cm period of the wiggler magnet
yields optical wavelengths from 2 um to 10 um. At any given energy, the strength of the
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Fig. 1.1  Anrf linac-driven free-electron laser with Brewster plate output coupling.

wiggler B-field can also be varied to yield more than an octave of tuning. The 30 MW f
source is pulsed at a repetition rate of 1 Hz to 30 Hz and yields electron macropulses with a
duration of 1 ps to 8 ps. Each macropulse consists of a train of picosecond micropulses
delivered at the 1f frequency of 2.857 GHz, which repetition rate is the result of thermionic
emission in ihe microwave gun which fills every bucket of the rf wave. An important con-
sequence of this driving frequency is that the 1.837 m optical cavity contains 35 circulating
optical micropulses that can be successively phase locked to yield spectral modes separated
in frequency by 2.857 GHz.

The macropulse and micropulse structures of the optical beam are essentially the
- same as those of the clectron beam and are illustrated in Fig. 1.2. In the absence of any
mechanism to couple successive optical pulses, the latter build up independently from noise
and the spectral modes are separated by the '2% round trip frequency. These optical pulses
have durations of several picoseconds and peak output powers of several megaWatts, from
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Fig. 1.2 Temporal structure of the optical beam from the Mark ITl FEL..




which all of the pulse energy (several microJoules) is available for external pulse compres-

_ sion in the chirped-pulse mode. The optical cavity is constructed of metal mirrors, and

Brewster plate output coupling appropriate to the horizontally polarized radiation, to exploit
the full tuning range of the laser.

III. HIGH RESOLUTION ENHANCEMENTS

The chirped-pulse FEL uses electron pulses with a linear temporal energy depen-
dence to drive the formation of optical pulses with a linear temporal frequency d':pcndcnc:c.1
Electron pulses with such an energy dependence can be produced in an f linac by accelerat-
ing the pulses off the peak of the rf wave at phases where the field gradient is large [10).
Conceptually, the easiest way to visualize the chirped-pulse FEL is to imagine an electron
pulse consisting of a continuous succession of much smaller electron pulses, each possess-
ing its own discrete energy. In the description of the FEL interaction as the stimulated scat-
tering of virtual photons from the wiggler field into real photons in the laser field [18], each
small section of the eiectron pulse will scatter photons of different frequencies, because the
photon frequency varies as the square of the electron energy [17]. This conceptual picture
is illustrated in Fig. 1.3. In principle, the chirped-pulse FEL can operate at any wavelength
to which the laser can be tuned

Moore was the first to propose the concept of energy chirping in an rf linac-driven

FEL [10), and suggested that negatively chirped electron pulses (in which the energy de-

creases towards the trailing edge) would increase the extraction efficiency in an analogous
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Fig. 1.3 Energy chirping in a free-electron laser.

i The laser frequency actually varies as the square of the electron energy. However, a lincar temporal ap-
proximation is valid for the short pulses considered in the present study.




manner to the tapered wiggler FEL [19]. He developed a theoretical description of such a
device in the highly saturated, large signal regime, and derived [10] and applied [11] the
appropriate equations of motion in a simulation code to study the behavior of the laser from
spontaneous radiation to full saturation. Although enhanced efficiencies were observed in
some instances, they were not in accord with the theoretical predictions. At the time of this
writing, the operation of a chirped-pulse FEL for the purpose of high energy extraction or
external pulse compression has not been reported. Hartemann et al [20] do describe the
operation of an FEL amplifier at 10 GHz (30 mm) in which a frequency chirped microwave
pulsc was actively compressed in the interaction region. However, that scheme was entire-
ly different from the one proposed by Moore; the electron energy was not chirped, and pulse
narrowing was achieved only via the amplification of those microwave frequency compo-
nents that were resonant with the FEL interaction. Therefore, the scheme is more appropri-
ately described as a selective amplification (in which most of the input pulse energy does
not appear in the short output pulse), rather than as a true pulse compression (where all of
the energy in a chirped output pulse is compressed in an external dispersive delay line).

The phase locked FEL is actually a variation on an old theme. In such an FEL, an
intracavity interferometer is used to couple successive optical pulses so that they build up
from noise with a definite phase relationship. The most convenient configurations employ
multiple mirror resonators such as the Michelson mirror resonator [21] (studied in this dis-

sertation) or the Fox-Smith resonator [22]. However, other schemes have also been pro-
~ posed, such as multiple intracavity diffraction gratings [13] in which the various diffraction
orders undergo different round trip delays with respect to the incoming electron pulses.

The use of an intracavity interferometer for phase locking is most easily underscod
in the frequency domain. To clarify the picture, we first distinguish between supermodes
and hypermodes. Supermodes are self-similar sets of longitudinal laser modes that repeat
identically from pass to pass, al'owing multiplication by a complex constant; the Fourier
transform of the dominant supermode yields the shape of the stable circulating optical pulse.
Hypermodes are sets of longitudinal laser modes that are coupled together by the action of
an intracavity loss or gain modulation; if the modulation frequency is some integral multiple
N of the round trip frequency (the so-called harmonic mode locking [23]), then every Nt
mode will be coupled together, and there will be N circulating optical pulses per round trip.
For example, N = 35 in the Mark ITI FEL. In the absence of any coupling between the hy-
permodes, which is the case for the linear, small signal regime of the FEL, each hypermode
will evolve independently and will possess its own complete set of supermodes.

Intracavity interferometers can be used to filter individual supermodes and increase
the duration of the corresponding optcal pulses. This application is illustrated in Fig. 1.4(a)




Passive filter response #1

y N
F

Laser axial modes

Passive filter response #2

. Fig. 1.4 Intracavity filtering of laser longitudinal modes: (a) filtering of individual supermodes;
(b) fikering of individual hypermodes.

and has been employed in storage ring FELs [24]. For line selection in cw lasers, the nar-
row axial modes of a m'ultiplc mirTor resonator can in some cases be used to select a single
laser mode in the gain spectrum and suppress all the others, thereby achieving single mode
operation. This application is more conventional and is described in several review articles
{25]. In phase locking applications, the narrow axial modes of the multiple mirror resona-
tor do not select a single laser mode, but they do filter a given hypermode. The filter can be
tuned so that the stable supermode is unaffected by the interferometer, but in the presence
of homogeneous laser saturation only a single hypermode will dominate the laser spectrum.
This application is illustrated in Fig. 1.4(b), and yiclds a train of phase locked optica! pulses,
i.c. pulses possessing identical envelopes and phases, separated by the modulation period.
The history of mode selection and modulation using passive intracavity filters is as
old as ** _ laser literature. However, the applicaton of multiple mirror resonators for the
selection of individual hypermodes in an harmonically mode locked laser appears to be
novel, and particular to the rf linac-driven FEL. The reason for this is most likely due to




the fact that, while harmonic mode locking has been demonstrated in conventional lasers
using active intracavity modulation {26], harmonic numbers were usually relatively small
(N < 5). Therefore, no great advantage in terms of mode separation would be obtained from
hypermode suppression. On the other hand, rf linacs typically operate at several GHz, and
due to engineering constraints most rf linac-driven FELSs can only operate with harmonic
numbers at least on the order of several tens. Consequently, a considerable advantage in
terms of mode separation can be obtained from hypermode suppression. The idea for phase
locking appears to have surfaced at several FEL laboratories independently [13]-[15]. How-
ever, the present dissertation contains the only complete theoretical description of the opera-

tion of such devices known to the author, and also describes the first operation of a phase
locked FEL.

IV. FEL SPECTROSCOPY

A summary of potential applications of the chirped-pulse and phase locked FELs
would span the entire field of infrared spectroscopy, and the limited space in this Introduc-
tion precludes any attempt to present such a summary. However, these devices do possess
several unique properties which should be noted.

As previously observed, a stable infrared source with femtosecond time resolution
or ultrahigh spectral resolution would greatly extend the research capabilities in infrared
spectroscopy. The main advantages of the proposed FEL enhancements over conventional

" infrared sources are that they do not rely on nonlinear optical processes in crystals (so that

they can be very stable), and they can be implemented at any wavelength to which the FEL
can be continuously tuned. They are also intrinsically of very high power: compressed op-
tical pulses at 3.35 pm with durations of 220 fs and peak powers of 30 MW are feasible,
and a single mode from a 4 ps, 60 mJ macropulse of phase locked, 3.5 ps optical pulses
would yield 150 W of cw power. The spectral resolution of one of these modes is in prin-
ciple limited only by the duration of the macropulse; a 4 pus macropulse at 3 pm would yield
a fractional linewidth of AMA ~ 107,

An important and unique property of chirped-pulse and phase locked FELs, which
evidently has not been previously considered in any other device, is the potential capability
to implement both of these enhancements simultaneously. This does not violate the Fourier
uncerainty principle; each of the fast-time and high spectral resolution components, while
present in the same optical beam, would necessarily act on different properties of the physi-
cal system under study. In such a configuration, it may be possible to study the competing
effects of induced fast dynamical processes, such as collisional energy transfer from select-
ed excited states, on the narrow spectral features of long-lived atomic or molecular states.
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For example, it may be possible to use the ultrafast pulses to pump excited vibrational states
and to simultaneously use the filtered beam to probe the collisional energy transfer to select-
ed rotational states.

Further applications of high resolution optical beams include experiments in high
power, high resolution, Dopplcr-free, coherent two-photon spectroscopy. If o is the fre-
quency of the centermost mode coincident with the sample response curve, then that mode
plus each pair of surrounding modes all contribute a high resolution two-photon excitation
of 2. All of the macropulse power could then be utilized to excite the sample response.

V. OUTLINE OF THE DISSERTATION

This dissertation is organized into two Parts. Part I is concerned with the chirped-
pulse FEL and is comprised of Chapters 2 and 3 and Appendix A. Chapter 2 describes the
small signal theory of the chirped-pulse FEL and the pulse propagation code used in the
numerical simulations, and Chapter 3 describes the results of those simulations. Appendix
A describes the design of a pulse compression experiment on the Mark ITI FEL based on
the simulation results from Chapter 3.

Part ITis concerned with the Michelson resonator FEL and is comprised of Chapters
4 through 6 and Appendix B. Chapter 4 contains a theoretical and numerical description of
the passive mode structure and mode decay in a Michelson resonator FEL, and Chapter 5
contains a theoretical and numerical description of the supermode structure and mirror de-

~ tuning effects. Chapter 6 describes the first operation of a Michelson mirror resonator on

the Mark III FEL, and Appendix B presents a more appropriate design of the resonator and
diagnostics for applicatiois in high resolution spectroscopy.

Finally, Chapter 7 presents some conclusions and summarizes the important results
from this dissertation.
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Chapter 2

The chirped-pulse free-electron
| laser

The generation of optical radiation in a free-electron laser (FEL) can be considered
as the stimulated scattering of a spatially periodic, coherent magnetic field (the wiggler
field) by a beam of ultra-relativistic electrons [1). The laser builds up from spontaneous
radiation with a wavelength A determined primarily by the Doppler upshift condition [2)

=x,,[ cﬁx,\z} [P
A 2721+2nmc2’ azyz[ux] (2.1)

where A, is the period of the magnetic field, B is the rms magnetic field strength, e is the
electron charge (cgs units), and ymc? is the electron energy. To maintain resonance with
the electrons, the optical field must slip ahead of the electrons by one optical wavelength as
the electrons traverse one period of the wiggler magnst [3]). Therefore, in the stimulated
emission process, the interaction of the light with the electrons occurs only within a slip-
page distance equal to Ny times the optical wavelength, where Ny, is the number of wiggler
periods. For electron pulses which are much longer than the slippage distance, it is possi-
ble to have radiation gencrated by one section of the electron pulse that never communicates
with the electrons far ahead in the pulse; in principle, such electrons can even possess dif-
ferent energies, and generate different optical wavelengths as determined by thz Doppler
upshift (or resonance) condidon (2.1).

The chirped-pulse FEL has been proposed as a means to increase the extraction
efficiency of untapered, rf linac-driven FELs via the producton of highly chirped, coherent
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optical pulses [4], [5]. In such an FEL, the injected electron energy varies linearly with
position within the micropulse, and the resulting optical pulses exhibit a linear frequency
chirp of the same sign. An enhanced extraction efficiency is predicted for electron micro-
pulses in which the energy decreases towards the trailing edge, because electrons trapped in
the ponderomotive potential wells are slowed down as they slip behind the optical field and
experience a continuous and adiabatic decrease in the optical frequency. Such an energy
extraction mechanism is analogous to the operation of a tapered wiggler FEL [6], in which
clectrons trapped in the ponderomotive potential wells are slowed down by an adiabatic
decrease of the wiggler parameter K, or alternately the wiggler period Ay, as they traverse
the undulator.

Apart from the predicted capability to increase the extraction efficiency, the chirped-
pulse FEL delivers chirped optical pulses which are susceptible to pulse compression in an
external dispersive delay line, in contrast to the tapered wiggler FEL. As a means of pro-
ducing highly chirped output pulses, the FEL does not suffer from the material constraints
encountered with fiber techniques, such as optical damage, nonlinear scattering losses, or
limited dispersion [7]. The chirped-pulse FEL can operate at almost any wavelength to
which the laser can be tuned, and can yield optical chirps of either sign with a magnitude
determined by the phase offset of the electron micropusses in the rf linac [4].

A simple calculation shows that substantial compression ratios can be expected even
with modest energy chirps. For example, consider a 4 ps electron pulse with a full width
- energy chirp of 57/7 = + 2 %, with energies increasing towards the trailing edge. If we
assume that the optical pulse at saturation is of the same duration, and that the FEL resonance
condition (2.1) determines the lasing frequency at all points along the pulse, then the cormre-
sponding linear frequency chirp is 0w/ = 2 57/7 = +4 %. This pulse can be compressed
by a factor roughly equal to the ratio of the bandwidth of the chirped pulse to the bandwidth
of :n unchirped pulse of the same duration [8]. If the mean wavelength is 3 pm, then this
ratio is approximately (0.04)-(27‘0/3 llm)/ (274 ps) = 16, so that the 4 ps pulse should be
compressible to roughly 250 fs. At 3 pm, this is only 25 optical cycles. In principle, much
larger energy chirps than 2 % should be feasible in some 1f linac systems.

In this chapter, I derive some analytcal results concerning the FEL interaction in the
presence of chirped electron pulses, such as the gain reduction and the shift in the gain
curve, and I describe the numerical simulatons used to model the optical pulse formaton.
In the following chapter, I present the results of these numerical simulations with particular
emphasis on designing a feasible pulse compression experimenton the Mark III FEL, and
in Appendix A, I describe the design of such an experiment using a dispersive delay line
consisting of four minimum deviation, Brewster angle sapphire prisms.
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II. FEL PULSE PROPAGATION

The interaction betwecn the electrons and optical wave in a planar undulator is de-
scribed self consistently by the dimensionless Maxwell-Lorentz equations of motion, which

for CW electron and optical beams are usually written without regard to microtemporal
position as [9]

g}:‘(ti) = | a(t)] cos (F,('c) +1'}(t)) , (2.2)
d%(:l = r{expl-iE@))g, _ (2.3)

where T=ct/L is the dimensionless time, E(t(t)) = (k +k,,)z(t) - ot is the phase of the
electron in the ponderomotive potential, v(t(t)) = d§(t)/dt =L [(k + k,)B,(t) - k] is the
phase velocity or energy detuning parameter,
2 % (1n -
a(t) = 4 Nw*eKJo-JDA

) Pm E(x(1) e1o(xv) (2.4)

is the din. nsionless form of the slowly varying part of the (plane-wave) optical electric
field E(z,t) = vZ E(t()) expli (kz - ot + 9{x(t)))] (» indicating rms values), and

~2
r = ﬁﬁ-"=2-(£“"-)3K—(Jo--h)zﬂe
T A

mc2

(2.5)

" is the dimensionless current density. The parameters appearing in these quantities are de-
fined ipr Table 2.1 (Section V). Equation (2.2) is the pendulum equation describing the
phase space evolution of the electrons in the presence of the optical wave. Equation (2.3)
is the reduced wave equation written in the slowly varying envelope approximation, and is
driven by transverse electron currents averaged over initial phases £, = £(0); in the present
analysis we assume an instantaneously mono-energetic electron beam, for which a further
average over initial energy detunings vg = v(0) is excluded. For a constant value of r char-
acterizing a continuous electron beam, the quantties £(1), v(t), and a(t) are functions only
of the time 7 since the enrance to the undulator.

If the electron beam possesses non-CW properties (for example, if it consists of
short pulses or chirped energies), then the above equations, which remain valid on a micro-
scopic scale, must be modified to include the global evolution of the microbunches due to
slippage between the electron ard optical pulses. This is accomplished by introducing an
extra variable dependence on the microtemporal position Z = z - et for each of the quand-
des a=az1), § =§@1), v=V(Z1), r=r(2), and including the slippage s explicitly as
follows [9]):

12




\w’

NG _ PED
2

a( - s1,1)| cos (E,(i,t) +9@z- st,t)) : (2.6)
ot ot

0a(z,7)

= 1@ +50) (exp(EE+5t0))gy . 2.7

Here, s=N_A isthe slippage between the optical and electron pulses which obtains as ©
varies from 0 to 1 along the undulator. It is important to keep in mind that Z and t are
independent variables, and that Z refers to a position in the optical pulse at which the
optical wave appears stationary for all 7. The same is true of the electron bear quantities.

Equations (2.6,7) may be reduced to a single integral equation for the optical pulse
evolution by eliminating the electron beam quantities. Integrating (2.6) twice and expand-
ing to lowest order in the optical field |a | (the small signal regime) yields

P
E@1) = Eo+Vvo@t + dpj dq 2z - sq.q) | cos (€0 + vo@@q + B - sa.9)) + O|al?)
0
0
(2.8)
Upon evaluating £(z,1) at z = Z + st, substituting into (2.7), and averaging over initial
electron phases £y € [0, 27] in the lowest order terms in | a |, we obtain after some algebra

T
. P
WEY _ifE+sy § j dq alZ + s(1-q).q) exp (-ivoE +51) (+-q)) . (2.9)

o 2
0 0
A final integration then yields

T
t'

a@,1) = a@z0) +12'- dt' 1@ + sr')f dg (') alZ + s(t'-q).q) exp (-iveGE + s1") (¢'-q))
0
0 (2.10)
where one of the integrals has been evaluated explicitly upon changing the order of the inner-
most integrations. The surviving dependence of vp on z + st' allows for the possibility that
the electron beam may possess chirped energies, in which case the resonance parameter will
change as the optical pulse slips over the electron pulse in one pass through the wiggler.

M. GAIN SHIFT AND GAIN REDUCTION IN THE CHIRPED-PULSE FEL

If the energy chirp is sufficiently small, then the small signal properties of the laser
should be similar to those of the unchirped laser, except for the possibility that the spectral
width of the resulting optical pulse may be much larger than the ransform limit if the pulse
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is very long. Specifically, the small signal gain should be unaffected by an energy chirp in
which the energy changes by no more than the gain bandwidth along one slippage length.
However, energy chirps much greater than this limit should yield appreciable gain reduction,
because in that case the lasing electrons cannot maintain resonance with the optical field in
one complete pass through the wiggler. In practical applications of the chirped-pulse FEL
utilizing highly chirped pulses, it is therefore important to know the gain reduction as a
function of the energy chirp.

The small signal gain is obtained by integrating (2.10) for a specific dependence of
the energy detuning vo(z) on the microscopic position within the electron beam. However,
we should first clarify the difference between the energy detuning parameter vy, defined in
Section II as

vo = L [(k +k,)B.0-Kk], (2.11)

and the resonance parameter, which has the same form in the absence of energy chirping
and assumes a value of vg = 2.606 in a CW plane-wave FEL. We note that vo depends on
the frequency  via k = @/c, and that, in general, the frequency depends on the time deriv-
ative of the slowly varying optical phase 9. The difference between the energy detuning
parameter and the resonance parameter is that the energy detuning does not include the
derivative of th optical phase ¥ in the definition of ; the resonance parameter does. This
distinction is itaportant because Vg appearing in (2.10) is the energy detuning (2.11), result-
ing from the fact that the Maxwell-Lorentz equations of motion assume an optical phase of
" the form expli(kz - wt + ¥)], in which ® is a constant carrier frequency independent of 9.
It is this w that appears in the definition of Vg, and any temporal dependence of the slowly
varying phase ¥ does not enter. Consequently, the z-dependence of vy comes only from

the z-dependence of B, (via the chirped energy). We assume a linear energy chirp of the

tent vo@) = vo+viz (2.12)

so that vo@ + 1) = Vo+ V-G +sT) = vo@) + vist (2.13)

where vy is the znergy detuning at Z = 0 in some reference frame fixed with respect to the
electron pulse. The connection between the z-dependences of vo(z) and the dimensionless
optical field a(z) is clarified by imagining a reference frame Z attached to each of the electron
and optical pulses; these frames are coincident at the beginning of the undulator, but at the
end of the undulator the optical reference frame is shifted ahead of the electron reference
frame by the slippage distance.

Upon introducing the small gain condition a(z +s(t -q),q) - a(z + s(t -q) 0) and
substituting (2.13) into (2.10), we obtain after some variable substitutions
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Aa@) = a@z 1) - az,0) (2.14)
S E+s .
- - BI dy-y-aG+y)e 1v0y/sJ: dz 1(z) c-wlzy/s ’ 2.15)
Z+y

where v is independent of Z. In the absence of energy chirping (v; = 0), this is the same
result obtained from the small gain supermode theory [10], [11]. For a chirped electron
beam with constant current, we may set r(z) = r = constant and integrate (2.15) to obtain

s
Aa@) = - —-‘;——I dy-a@Z+y) c—ivo(i)y/s (c'ivly - e-ivlyzls) (2.16)

where we have reinserted vo(z) = vo+Vvy-z. To complete the integration, we assume a
chirped optical field of the form

2G) = aellPoZ + 0127 2.17)

in which 'a’ is independent of z (reflecting the assumption that the FEL interaction yields
the same growth at all points along the optical beam). The connection between ¢; and v; is
then established from symmetry by requiring that the initial resonance parameter be the
same at all points along the optical beam, because it is this condition which determines the
absolute optical frequency for which the FEL interaction will experience maximum gain.
The energy detuning vo(z) and the frequency detuning (z) now both enter into the defini-
. tion of the resonance parameter j(z), where

o)(i') = -%33 = -%.1%- sd% = +C(¢o+2¢1i) (2.18)

(the last equality resulting from the variable substitution t = - Z/c). For the difference in the
resonance parameter between two points z; and 7,

K| . omipNga) i MAQ)| =0 2.19)

: ]
| Zz-Z| Zz - Z\

or Av0| iAml =0 , (2.20)

22 - 2\ Z2 - Z\

equations (2.18) and (2.12) then immediately yield the result

61 = +3k 2.21)
Furthermore, we may set ¢g = 0, which merely incorporates any uniform frequency detun-
ing implicitly into the value of vo. Finally, substitution into (2.16) of a(z) from (2.17) and
vo(z) from (2.12) with the above values of ¢g and ¢ yields the complex small signal gain
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Aa@) _  ir silvg + Y3 x [v1s ]
G =5 dxe 2) sin 7 x(x-1)| . (2.22)
0

The maximum |value| of the argument of the sine function is |v;s/8|, so by introducing the
small chirp condition I Vis
8

« 1 (2.23)
we may integrate (2.22) in closed form to yield
AaG) ) -rI(Vo+ 5 )[cxp 1(vo+ 5 )+1 +2{exp 1(vo+ ) 1

>
a(@) 2 (Vo + y_12_5)3

(2.24)

This is exactly the small signal gain for the usual (unchirIQGd) FEL [12], except that the opti-
mum value of the resonance parameter vy is shifted to

VP = 2606-YE

which is analogous to the gain shift in the tapered wiggler FEL [9}, [13].
The power gain G is related to the real part of the complex gain (2.22):

_ Aa(z)
G(a,d) = 2Rc{ 5

ai

(2.25)

1
} = -21'—[ dx-sin[ax}sian(x-l)] ,  (2.26)
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where @ =vo+ v;s/2and § =v; s. The maximum value of G and the optimum value of
a are plotted in Fig. 2.1 as functions of 3, the resonance shift along the slippage length. We
note that the small signal gain drops only slightly for values of 8 approaching the gain band-
width of 2n. However, the gain drops rapidly beyond this point, and the optimum reso-
nance parameter shifts to smaller values corresponding to shorter wavelengths at the entrance

. to the wiggler. The gain reduction in this regime results from the fact that resonance can be

maintained only over a small fraction of the wiggler length, which reduces the effective num-
ber of wiggler periods and broadens the spectrum. The spectral distortion is accompanied
oy fluctuations in the gain function due to the rapid oscillation of the resonance parameter at
other positions in the undulator, which fluctuations are illustrated in Fig. 2.2 for the case of
d = 10m, and lead to the discontinuities in Fig. 2.1. Similar behavior is observed in tapered
wiggler FELs [13], [14], for which the ga'.i function has the same form as (2.26).l Never-
theless, in practical applications of the chirped-pulse FEL in pulse compression experiments,

! 'l_'his is most easily seen by solving the Maxwell-Lorentz equations for the case of a tapered wiggler FEL,
which take the form [9] av;z.t) - 54/ a6 - 529)] cos (é('i B st.t))
T
da(z.7)

o1
The analogous equation to (2.10) is
<

= -1z +st)exp (-iEE + ST R

5 <
A1) = -(i0)+§-l dpr('z'*rsv)J dQ(p-q)-('i«f*(P-q)-q)exp('iVo(p-q)*rf(P’-Q’)) ;
0
0

which upon seuting r, a, and vy all independent of z yiclds precisely the result (2.22) with § ¥ v, .
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it is possible to achieve extremely broad band optical pulses with energy chirps substantially
smaller than the gain bandwidth divided by the slippage distance. Therefore, the problems
of gain reduction and spectral distortion can be avoided in almost all cases of interest.

In deriving the above results for large energy chirps, it is necessary to justify some
approximations. In particular, the dimensionless electric field 'a' and current density '
defined in (2.4) and (2.5) are scaled by the electron energy ¥, which by assumption is a
function of the microscopic position Z within the pulse and leads to the z-dependence of vo.
We have treated 7y as a constant in those scaling relations. However, we are really only
interested in the interaction of the electrons with the radiation inside a distance no longer
than the slippage length (corresponding to a single pass through the undulator), and for the
case of Ny, » 1, the relation § =4nNy, AY(i)/-Y yields a large variation in the energy detun-
ing parameter & even for modest changes in y over the slippage length. For the Mark ITI
FEL with N, = 47, the example of Fig. 2.2 with § = 10 yields Ay(Z)/y = 5.3 %, which is
accurately described by the dimensionless equations of motion with constant scaling. An
analogous conclusion [9] holds for the tapered wiggler FEL with Ny, » 1, in which case a
large d can be achieved with smail variations in AA,,(t) or Aﬁ(‘t) along the undulator, so
that the dimensionless equations with constant scaling are also appropriate.

IV. NUMERICAL SIMULATIONS OF THE CHIRPED-PULSE FEL

The equations used to model the FEL interaction are based on the Maxwell-Lorentz

~ equations of motion for electrons responding to the multiple transverse modes of an optical

resonator [15], and assume the slowly varying envelope approximation for the optical
pulse. This approximation will still be valid for the frequency chirps encountered in the
present simulations. The radial dependence is factored out of the equations of motion by
assuming that the electrons remain on rigid sheets whose spatial and temporal features are
independent of the initial phase and velocity of the electrons [16). With this approximation,
a filling factor can be calculated for each of the cavity modes to account for the ransverse
coupling with the electron beam. We decompose the optical field acting on the electrons as

H'i,r.t)ciﬁ(i'r't) = Z cm('i.t)Em(r.t)ci‘V"(r’t) (2.27)

where Ep(r,t), Ym(r,t) are the amplitude and phase of the m® normalized Gauss-Laguerre
cavity mode evaluated at the electron position corresponding to radius r and time t since the
entrance into the wiggler, and cp(Z.t) = [cnZ.)] explipm(E,t)] is the projection of the field

onto the mt mode which depends on both the time t and position Z relative to the center of
the optical puise.
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In terms of the dimensionless current density r and electric field a, , defined as

_se?[LPRE ;g2
1 = B2l (Y)J;W(J" 1) 0@ 2.28)
2 ”~~
and agfz.t) = ENw cKUo-T)hw . (5 1y 2.29)

¥ mc2

where the dimensionless time t = (¢/L)t, the equations used to model the interaction can
then be written as follows [17):

M) _
ot

1) _ viz1)
~ :

D |2z D) Ral ta()] coslE5ED) + oulE)- arg(fnm)]  230)

(2.31)

aa,;(":',‘C) = - 2) £m(1){ PmicdBo-Vo) exp -iﬁ(ﬁo:vo)])go,w ' (2-32)

Equations (2.30) and (2.31) comprise the pendulum equation for the phase £ and
velocity v of the electrons. Equation (2.32) is the modified wave equation written in the
slowly varying envelope approximation. The quantity f,(1) is a complex filling factor
calculated for the m transverse mode evaluated at the electron position corresponding to

" time 1, and R, is the ratio of the area of the optical mode to that of the electron beam; these

filling factors are calculated from the weighted averages of the phase and amplitude of the
optical modes over the radial electron distribution assuming paraboloidal charge sheets. The
longitudinal charge distribution ne(z) is taken to be a tophat pulse, but a density fluctuation
Pmicr is included in the wave equation to incorporate the effects of shot noise.

To integrate the equations of motion, the longitudinal electron pulse distribution is
divided into several hundred bins in the z coordinate, each bin containing ten samples of the
local electron density for which the position & and velocity v are allowed to evolve. For
each time step 61 along the wiggler, the pendulum equations are integrated for each sample
via a second order Runge-Kutta using the optical fields coincident with the corresponding
bins at time 1, and the resulting contributions to the fields at each bin are then calculated
from the wave equation. Optical pulse slippage is included in each time step by linear inter-
polation between the bins, and the integration continues in this fashion from pass to pass to
a point usually just short of full saturation (to prevent distortion of the optical amplitude and
phase by the sideband instability.) Cavity length detuning is also included on each pass by
linear interpolation of the magnitude and phase between the optical bins, where the phase is

19




first smoothed by adding or subtracting multiples of 21 at each bin. Only the lowest order
TEMgp mode is included in the present simulations, consistent with the measured Strehl
ratio (> 0.8) for the optical beam delivered by the Mark IIT FEL.2 Conclusions regarding the
formation of chirped optical pulses should remain generally valid, since chirping primarily
affects only the longitudinal mode structure, not the transverse structure.

The number of bins in Z is determined by the sampling rate required to accommo-
date the large spectral widths of the chirped optical pulses. The most sensitive diagnostic
for this criterion is evidently a numerical check on the conservation of energy, which is
performed by comparing the total energy gained by the optical pulse to the energy lost by
all of the electron samples in the electron pulse. For simulations using the energy chirps
reported in Chapter 3, it was usually necessary to at least quadruple the number of bins that
were used in simulations of the unchirped laser. (In contrast, the resulting optical pulse
formation, as well as any deviations from energy conservation, were insensitive to the
number of electron samples per bin in the range of ten to forty samples.) Energy conser-
vation was then usually satisfied to within deviations smaller than 1 or 2 %, which was
typical in simulations of the unchirped laser.

To simulate the injected electron pulses, the samples within any given bin are initial-
ized with a constant velocity v and are distributed uniformly over 2x radians of optical
phase Ep. A constant Vg is appropriate for the instantaneous energy spreads which occur in
the Mark III FEL, for which an inhomogeneous gain reduction factor [18] is used to scale

- the current. Classical shot noise is included by random modulations of the sampled elec-

tron beam density according to a thermal distribution [19]). The chirped electron energies
are prepared by assigning a velocity Vg = vo(z) which depends linearly on the position with-
in the micropulse, and the optical pulse is then allowed to evolve under the effects of the
FEL interaction, optical pulse slippage, and cavity detuning in the manner described above.
No assumption is made regarding the time dependence of the optical phase; it evolves
naturally from the FEL interaction as the laser turns on from noise.

Parameters which otherwise depend on the energy and wavelength are held constant
along the micropulses. In particular, the scaling relations which define the current density
r(z) and electric field an(z,t) use the mean ¥, and the complex filling factor fm(T) uses the
mean A For full width energy chirps of 5Y/ ¢35 %, the application of these approximations
along the entire pulse length is consistent with the previous justification of constant scaling
along one slippage length. Finally, the duration of the chirped electron puises is assumed
to remain constant along the wiggler, which approximation is accurate in the present

2 Experimentally, mode selection is enforced in the Mark III FEL by the long and siender vacuum chamber
which must fit in the 7 mm gap between the jaws of the wiggler magnet.
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simulations to within, for example, 0.5 % for a 4 ps electron pulse with a 2 % energy chirp.3
The simulation parameters are appropriate to the Mark III FEL and are listed in Table 2.1.

V. NUMERICAL BENCH MARKS

For unchirped electron pulses, the FEL pulse propagation code has been accurately
bench marked both analytically [17] and experimentally [20], [21] with respect to the longi-
tudinal structure of the resulting optical pulses. However, the chirped-pulse code predicts
novel phenomena, and it is therefore prudent to check the numerical simulations with readi-
ly calculated quantities particular to the chirped-pulse FEL. One possible candidate is the
gain reduction predicted in Section III to occur for large energy chirps. Unfortunately, the
finite spectral width of the numerical window in the present code limits the chirped-pulse
bandwidth of the simulated optical pulses, and in order 10 observe any gain reduction for
energy chirps much larger than the gain bandwidth divided by the slippage distance, it is
necessary to limit the pulse length to the order of the slippage length. This introduces
appreciable lethargy and other short-pulse supermode effects which were not included in
the quasi-CW analysis of Section III, but which can also be expected to affect the small
signal gain [22]. On the other hand, the gain shift predicted from (2.25) is linear in the
energy chirp for any magnitude of chirp, and this gain shift is therefore suitable as a second
candidate for bench marking the code. In contrast to the gain reduction, the gain shift should

J It is interesting to consider more closely the description of the FEL interaction in the presence of energy
chirping. As noted, a chirped electron pulse with higher energies at the trailing edge will be compressed in
on transit through the wiggler; an electron pulse with lower energies at the trailing edge will be broadened.
Does this mean, for example, that we have to track changes in the peak current along the wiggles? Well,

consider a section of the electron pulse which is one optical wavelength long. The difference in velocity
between the leading and trailing edges is
dvi= Becdp/n®

where dyy = 1™ - yP** . In one transit through the wiggler, the change in length of this small section is

(dJviggia = Atu-dvy = %’-‘Ldv. =2NJhdyfy |
c
where we have substituted the resonance condition A = A+/(2 1. Now, if the pulse has higher energies at
the trailing edge, then decreasing wavelengths will be overtaking it as it becomes compressed; if the pulse
has lower energies at the trailing edge, then increasing wavelengths will be overtaking it as it broadens.
Indeed, it turns out that the iotal change in optical wavelength that slips over the pulse in one pass through
the wiggler is
(4272 kiippags = 2 (d9/7 Jpar wevelanga (N« wavelengths)

of (dAksippage = 2Nw A dY/Y, 50 that (dAksppege = (Fo)wiggier . Consequently, electrons which are distributed
within one optical period at the beginning of the wiggler remain distributed within exactly one period at the
end of the wiggler, and the gain can be calculated as the total energy lost by these electrons to the coincident
optical wave. In our chirped-pulse simulations, we assume that the electron bins remain fixed in one pass
through the wiggler, but we also assume that the optical frequency @ is fixed. Chirping is then described
only by changes in the phase 9, and so the simulations remain consistent with the above picture.
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Parameter Definition Simulation value
Optical beam parameters
A Resonant optical wavelength 3.35um
Ye Extraneous cavity losses 7.3%
ZR Rayleigh range ' 53.23 cm
Le Cavity length 1.837m
Electron beam parameters
Y Electron beam energy / mc2 83.19
oyl Full width linear energy chirp 2%
Tp Duration of tophat electron puise 4ps
1 Peak electron current (inciuding gain reduction) 18.8 A
A\ RF frequency 2.857 GHz
Ex Normalized horizontal emittance (1/e ) 8x mm-mrad
Ey Normalized vertical emittance (1/e ) 4z mmmrad
Bx Horizontal focussing parameter 45cm
Wiggler parameters
Ny Number of wiggler periods 47
L, Wiggler length 108.1 cm
Ay Wiggler period 2.3¢cm
B RMS wiggler field 4.7 kGauss
(-T2 Bessel function factor 0.738

Table 2.1 Mark IlI parameters used in the simulations of the chirped-pulse FEL.

be manifest even for long electron pulses with small energy chirps, and so it can be accu-
rately checked with the present code.

Figure 2.3 shows the simulated optical pulse formation after 100 passes in a laser
driven by electron pulses with a full width energy chirp of + 2 % over a duration of 4 ps
(positive chirps indicating energies which increase towards the trailing edge.) The slippage
parameter has the value Nwl/ctp =(.131 for the parameters listed in Table 2.1. We see
that the optical phase indeed exhibits the quadratic ime dependence indicative of a linear fre-
quency chirp with higher frequencies towards the trailing edge (recall that @ = - dd/4; in
the present formalism.) This time dependence is quantified by fitting a least-squares poly-
nomial of third degree to the optical phase within the FWHM region of the optical pulse,
and is written '

Bopdt) = Do - Wot - to) - bt - tg)2- o[t - o) (2.33)
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Fig. 2.3 The simulated optical envelope and phase after 100 passes in a chirped-pulse FEL, for a4 ps
tophat electron micropulse with a full width linear energy chirp of +2 %. Other simulation

parameters are listed in Table 2.1.
ddopdt) 2
so that Qopdt) = - raniel 2b(t- o) +30(t - 1) . (2.34)

where a) is the frequency at the center of the optical pulse, b is the optical chirp parameter
[8), and ¢ is the third order fitting constant.

To bench mark the pulse propagation code, the optical pulse formation is simulated

"~ in an oscillator configuration using electron pulses with various energy chirps. The opti-

mum value of the resonance parameter then evolves naturally from the gain interaction as
the laser turns on from noise, and is determined by the temporal dependence of the optical
phase after the final pdss through the oscillator. These simulations are performed at the
synchronous cavity length, as required by the implicit assumption in Section Il that the Z
reference frames attached to each of the electron and optical pulses are coincident at the
beginning of the undulator. The synchronous length is the only choice of cavity detuning
that maintains this relationship between the electron and optical pulses from pass to pass.
The resonance parameter 1 at the beginning of the undulator is then calculated as an average
along the electron pulse from the midpoint to the trailing edge (which region avoids the ero-
sion due to lethargy at the front end of the optical pulse) according to the definition

h= <Vo(‘) ¥‘°®>z . 2.35)
where vg(2) is the injected electron energy detuning and () is calculated from (2.34) as a
function of Z(t). Figure 2.4 shows the simulated resonance parameter as a function of the
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Fig. 2.4 The value of the resonance parameter yielding the maximum gain in a chirped-pulse FEL, as a
function of the full width energy chirp along a 4 ps tophat electron pulse. The squares are the

values calculated from the simulations, and the solid line is the comresponding least squares fit.
Simulation parameters are listed in Table 2.). The dotted line is the predicted shift from (2.25).

energy chirp, in which the dotted line is the predicted shift from eq. (2.25).* The error bars
at each value of the energy detuning represent the standard deviations for eight simulations
in which only the numerical seed for the electron shot noise was varied. The agreement

between the slopes of the numerical and theoretical curves is seen to be well within error.

The resonance parameter at zero energy chirp is approximately 4.6 instead of 2.6, because
the Guoy phase shift of the lowest order Gauss-Laguerre resonator mode manifests itself as
an additional frequency shift to the relativistic electrons; the magnitude of the corresponding
shift in the resonance parameter is roughly given by [23]

A% - +% , (2.36)

which has a value of + 2.03 for the parameters listed in Table 2.1.

In Chapter 3, I report the results of extensive simulations of the chirped-pulse FZL using
the pulse propagation code described above. Particular emphasis is placed on studyng the
bandwidth and stability of chirped optical pulses for the purposes of pulse compression.
However, we will also find, even in moderately saturated interactions, that an enhanced
extraction efficiency can be achieved with either sign of the energy chirp (in which case the

y In this chapter and the next, we define positively chirped pulses 10 have energies which increase towards
the trailing edge. Therefore, we see from (2.12) that the corresponding vy is negative. Coaversely, vy is
positive for negatively chirped pulses,

24




25

energy extraction mechanism is not related to the adiabatic deceleration of trapped electrons.)

The design of a feasible pulse compression experiment on the iviark Il FEL is described in
Appendix A.
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Chapter 3

Numerical simulations

The concept of energy chirping, as an alternative to wiggler tapering, was originally
proposed by Moore [1], [2] as a means of increasing the extraction efficiency of 1f linac-
driven FELs. In the chirped-pulse FEL, the injected electron energy varies linearly with
position within the micropulse, and the resulting optical pulses exhibit a linear frequency
chirp of the same sign. The theory predicts an enhanced extraction efficiency for electron
micropulses in which the energy decreases towards the trailing edge, because electrons
trapped in the ponderomotive potential wells are slowed down as they slip behind the
optical field and experience a continuous and adiabatic decrease in the optical frequency.
Of particular importance for the generation of high peak powers, it was noted by Moore
that all of the extracted energy would appear in a frequency chirped optical pulse, so that
even higher peak powers than determined by the saturation mechanism could be achieved
by means of external pulse compression.

However, extensive simulations of the chirped-pulse FEL by Moore and Goldstein
[3] showed no evidence for the predicted trapping behavior, although they did observe an
enhanced extraction efficiency for some modes of operation. The authors attributed the
absence of electron trapping to the cogeneration of optical sidebands within the broad spec-
trum of the chirped optical pulses, which sidebands tend to depopulate the ponderomotive
traps. Such detrapping was previously predicted to occur in the tapered wiggler FEL [4],
and an extensive literature has developed on the characterization. and control of these insta-
bilities [5]-[12]. Unfortunately, the broad band nature of the chirped-pulse FEL precludes
the use of spectral filtering in that laser to control the formation of sidebands.
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In this chapter, I report the results of numerical simulations on the optical pulse
formatirn in chirped-pulse FELs using the pulse propagation code described in Chapter 2.
In contrast to the goal of demonstrating enhanced extraction efficiencies, particular empha-
sis will be placed on studying the bandwidth and stability of chirped optical pulses, and the
effects of i tracavity dispersion, for the purposes of pulse compression. Nevertheless, we
will find ever in moderately saturated interactions that an enhanced extraction efficiency can
be achiever: «ith either sign of the energy chirp (in which case the energy extraction imecha-
nism is not n:"ated to the adiabatic deceleration of trapped electrons.) Furthermore, we will
demonstrate :he presence of an intrinsic frequency chirp which occurs even in simulations
of the unchirped FEL and can significantly affect the bandwidth of the optical pulses from
the chirped-pu:ise FEL. The simulations reported in this chapter are the extension of previ-
ous investigations {13] and were chosen in part to guide the design of feasible pulse com-
pression experiments on the Mark IIl FEL; the appropriate simulation parameters are listed
in Chapter 2, Table 2.1. The design of the pulse compressor and optical diagnostics for an
experiment using positively chirped electron and optical pulses is described in Appendix A.

II. GENERAL SIMULATION RESULTS

In this section, I present general simulation resuits for FELs operating with modest
energy chirps, i.e. a’Y/y <5 % over the duration of the electron micropulses. As noted in the
previous chapter, the dimensionless Maxwell-Lorentz equations of motion are appropriate
~ for describing energy chirps of this magnitude. To properly simulate larger energy chirps,
and especially large changes in the electron energy at saturation, the more general set of
equations developed by Moore (2], [3] is required in which the electron energy is tracked
via Y(7) instead of the dimensionless energy detuning v(t). In contrast, the present simula-
tions are allowed to evolve only into the early stages of saturation in order to mimic actual
pulse compression experiments in an FEL. Although several reasons for this restriction will
be noted below, the foremost is to preveat the formation of the sideband instability from
distorting the optical envelope and phase prior to compression in a dispersive delay line.

A. General features of chirped optical pulses

Figure 3.1 shows typical results for the optical pulse formation at 3.35 pmina
chirped-pulse FEL with a cavity length detuning of +1.3 pm (shorter than synchronous)
after 100 passes through the oscillator. Graphs (a), (b), and (c) display the optical envelope
and phase for energy chirps of -2 % (energies decreasing towards the trailing edge), 0 %,
and +2 % respectively across a tophat electron pulse situated between 0 ps and 4 ps on the
abscissa. The corresponding power spectra are shown in Fig. 3.2.
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(a) Power spectrum for the negatively chirped optical pulse in Fig. 3.1(a); (b) power spectrum

for the unchirped optical pulse in Fig. 3.1(b); (c) power spectrum for the positively chirped
optical pulse in Fig. 3.1(c).

We see from Fig. 3.1 that the phase of each of the chirped optical pulses exhibits
the quadratic time dependence indicative of a linear frequency chirp, and that the chirped-
pulse spectra from Fig. 3.2 show substantial broadening over the unchirped spectrum by
more than a factor of ten. For ideal phase compensation, this ratio roughly gives the order

by which the chirped optical pulses can be compressed [14]. Several other features are also
immediately evident from these figures.




First, the average optical power appears to increase roughly linearly from positive
chirps to negative chirps, with all other simulation parameters remaining the same; the larg-
er power in the negatively chirped pulse has led to the onset of the sideband instability,
producing spikes in the optical envelope and a slight distortion in the optical phase at the
front end of the pulse. The dependence of the power on the energy chirp will be shown
below to be present only for finite cavity length detunings.

Second, the optical pulses are slightly shorter than the electron pulses, even though
the cavity length detuning is finite. This is due to the effect of laser lethargy [15], which
for cavity detunings near the synchronous length yields a group velocity for the optical puls-
es which is less than that of the electron pulses, and leads to an erosion at the front end of
the optical pulses. This effect has practical consequences for pulse compression experi-
ments on the chirped-pulse FEL, because the reduced optical pulse widths yield slightly
reduced bandwidths, thereby limiting the ultimate optical pulse compression ratios.

Third, we see from Fig. 3.2 that the spectrum of the positively chirped pulse is broad-
er than that of the negatively chirped pulse, even though the energy chirps have the same
magnitude (2 % over 4 ps). This discrepancy in the spectral widths is not due to differenc-
es in the pulse duration (3.27 ps vs. 3.38 ps for the negatively vs. positively chirped puls-
es), but is instead due to differences in the frequency chirp (-3.45 % vs. +4.60 % over 4 ps
for the negatively vs. positively chirped pulses). This difference in the maznitude of the
frequency chirps is manifest in all simulations of negatively vs. positively chirped pulses,
and substantially affects the pulse compression ratio. Figure 3.3 compares the optimally
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Fig. 3.3 (a) Optimum quadratic compression of the optical pulse in Fig. 3.1(a). The compressed pulse
has a FWHM duration of 300 fs and a peak power of 56 MW. (b) Optimum quadratic compres-

sion of the optical pulse in Fig. 3.1(c). The compressed pulse has a FWHM duration of 230 fs
and a peak power of 27 MW.
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compressed pulses for each of the two cases assuming only quadratic phase compensation.1
The positively chirped pulse can be compressed to 230 fs, compared to only 300 fs for the
negatively chirped pulse (the greater peak power in the latter case is due to the larger energy
content of the original optical pulse.) In the following two paragraphs, we will examine
more closely the discrepancies in both the optical frequency chirps and the average optical
powers for negatively and positively chirped pulses.

B. Dependence of frequency chirp on energy chirp

If one assumes that the FEL resonance condition determines the lasing wavelength

at all points along the optical pulse, then for small chirps the time dependent frequency can
be written in terms of the time dependent energy as

ldo - 2%
odt = yar (3.1
The chirp parameter ‘b’ from eq. (2.34) of Chapter 2 can be written as
dy
b() = 2Ze L2 (3.2)

where A is the optical wavelength.

Figure 3.4 shows the frequency chirp 4@/, at 3.35 pm (extrapolated to the dura-
tion of the electron pulses), as function of the electron pulse width, for full width energy
chirps of +2 % and -2 %. The error bars represent the standard deviations for eight simula-
tions in which only the numerical seed for the electron shot noise was varied. The dashed
lines are the frequency chirps predicted from the resonance condition (3.1). We see that for
pulse widths T, > 2 ps (T'I\v/7~/c'1:p < 0.3), the frequency chirps exhibit a definite, positive
offset which is larger in most cases than the statistical errors and range in magnitude from
B0/l tteer = 0.3 % 10 B/l greer ~ 0.9 %. This apparently intrinsic frequency chirp oc-

curs even in simulations of the unchirped laser, for which the extrapolated frequency chirp

! Propagation through a dispersive delay line is accomplished by taking the Fourier transform of the opti-
cal electric field,

E(0) =J EQet®a

—

multiplying by a frequency dependent quadratic phase factor,
Q l 2
expl -i——(w - wo
p[ bK ( ) ]

and taking the inverse Fourier transform o obtain the compressed optcal pulse. Here, b is the chirp para-
meter from eq. (2.34) of Chapter 2, and the parameter K is varied in order to obtain the optimum compres-
sion ratio (defined in all cases as yielding the maximum compressed peak power, not the minimum FWHM
pulse duration.) The optimum value of K was usually found to be in the range of 4.3 10 4.4, and would have
been almost exactly 4 for linearly chirped Gaussian pulses [14).
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width, for energy chirps of +2 % and -2 %. The emror bars are the standard deviations after 100
passes for eight simulations in which only the electron shot noise was varied. The dashed lines
are the chirps predicted from the resonance condition (3.1). The cavity detuning is +1 pm.

was found to be A0/ = (0.5 £0.4) % in a series of thirty simulations using unchirped elec-

tron pulses with a duration of 4 ps. This offset is substantial compared to the energy chirps
being considered for pulse compression.

From symmetry, one can argue that for very long electron pulses (or small slippage
parameters), the resonance conditions (3.1) and (3.2) would have to determine the frequen-

~ cy chirp at all points along the pulse. Therefore, the most likely sources of the discrepancy

are the end effects accompanying pulses of finite duration. There are two such end effects
that can contribute to the intrinsic frequency chirp with the observed sign.

The first contribution results from the effects of saturation and slippage, and origi-
nates from the fact that electrons at the trailing edge of the electron pulse interact with a lower
average intensity in one pass through the wiggler due to optical slippage in the forward di-
rection. The gain curve for these electrons is not shifted as far towards long wavelengths as
for the electrons on the leading edge [16), yiclding an optical pulse chirped towards increas-
ing frequencies. A related effect also occurs at the leading edge of the optical pulse, which
usually exhibits some erosion due to lethargy. For electrons located within one slippage
distance in front of the leading edge, the effective number of wiggler periods in the laser
interaction is reduced because the optical pulse does not overtake them until some distance
along the undulator. This leads to an increased extraction efficiency for those electrons and
the formation of a superradiant spike [17]; the corresponding enhanced degree of saturation
forces the optical frequency to longer wavelengths at the leading edge. Figure 3.5 compares
the simulated phase space trajectories of electrons at the leading edge, the center, and at the
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Fig. 3.5 Phase space trajectories on the 100t pass in a simulation using unchirped electron pulses with a
duration of 4 ps. (a) electrons located within one half of the slippage distance in front of the op-
tical pulse at the beginning of the undulator; (b) electrons at the center of the electron pulse; (c)
electrons at the end of the electron pulse.

trailing edge of an unchirped electron pulse on the 100% pass of the optical pulse. We see
that the center electrons execute more than one half of one revolution in the phase space
buckets, but that the electrons at the trailing edge do not evolve as deeply into saturation.
Conversely, the clectrons at the leading edge execute much deeper orbits. Note that the

superradiant spike is manifest in each of Figs. 3.1(a),(b),(c), and that the optical phase in

the unchirped pulse exhibits a slight, overall, positive frequency chirp, especially near the
ends of the optical pulse.

The second contribution to the intrinsic frequency chirp results from the Guoy phase
shift of the TEMyg transverse resonator mode. This phase shift is manifest as an additional
frequency shift to the relativistic electrons as they traverse the undulator [18]. However,
since it is also nonlinear (being related to the arctangent of the displacement along the undu-
lator), it can lead to nonlinear frequency effects in the optical wave as the latter slips over
the electrons. Figure 3.6 shows the optical phase in simulations (without noise) using un-
chirped electron pulses and different Rayleigh ranges in resonators set to the synchronous
length. In order to eliminate any saturation effects, the optical powers were renormalized to
small signal levels after every four passes. We see that the optical phase again exhibits a
positve frequency chirp, and that the chirp parameter increases with decreasing Rayleigh
range. The comresponding frequency chirps, extrapolated to a 4 ps duration, are 0.31 %,
0.36 %, and 0.44 %. These chirps are reduced for cavity lengths shorter than the synchro-
nous length, suggesting that the nonlinear effects responsible for chirping become smeared
out as the optical pulse is pushed forward from pass to pass.
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Fig. 3.6 Optical phase after 200 passes, in simulations using unchirped electron pulses with no noise.
The optical powers were reset to small signal levels after every 4 passes. (a) Rayleigh range zg =
103.5 cm, chirp parameter b = 0.22(102¢) 52, (b) Rayleigh range zg = 73.1 cm, chirp parameter
b = 0.25(1024) 5°2; (c) Rayleigh range zg = 53.2 cm, chirp parameter b = 0.31(102¢) 52,

Finally, we should note from Fig. 3.4 that there is apparently no correlation between
the frequency chirp and energy chirp for pulse widths 1, < 2 ps. This result may be due to
the onset of the superradiant interaction [17] for electron pulse lengths on the order of the
slippage length, which would dominate the effects of energy chirping, or it may be due to
the random effects of noise on the optical pulse formation for short pulses oscillating near

" the synchronous cavity length.

C. Dependence of optical power on energy chirp

In order to check the prediction by Moore of enhanced extraction efficiencies for
negatively chirped pulses, I performed several series of simulations with the present code
by varying the energy chirps over the 4 ps duration of the electron pulses. For each value
of the energy chirp, eight simulations were performed in which only the numerical seed for
the clectron shot noise was varied. The results for cavity detunings of O pm and +1 pm
(shorter than synchronous) are summarized in Fig. 3.7.

We see that for oscillation at the synchronous length, there is no statisdcally signifi-
cant dependence on the energy chirp in any of the small signal gain, the macropulse power
prior to the onset of saturation (pass 30), or the macropulse power at saturation (pass 100).
These results are not surprising; the theoretical efficiency enhancement for small chirps is
simply the slippage parameter times the full width energy chirp of the pulse [1],

" = ka(ﬂ) | e
T
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and even for an energy chirp of - 4 % over 4 ps the enhancement is only 0.53 %. This is
substantially smaller than the 1/2N,, efficiency of the Mark III FEL, so that no significant
advantage is to be expected from energy chirps of this magnitude. Furthermore, eq. (3.3)
assumes that all of the electrons become trapped at the beginning of the undulator, whereas
the present simulations are only weakly saturated at pass 100.

For oscillation at a cavity detuning 1 um shorter than synchronous, there is again no
statistically significant dependence on the energy chirp in either the small signal gain or the
macropulse power prior to the onset of saturation.? However, the saturated macropulse
powers show a large and unexpected dependence on the energy chirp. Figure 3.8 displays
similar results in terms of the electron energy extraction efficiency. This enhanced energy
extraction can be understood by recalling that, as the laser saturates, the optical wavelength
continually increases as the peak of the gain curve shifts to larger values of the resonance
parameter [16]. In an unchirped FEL, this shift in wavelength occurs adiabatically under the
influence of pumping and cavity losses, because the old radiation takes time to decay away.
However, in an FEL operating with a negative energy chirp, the effect of finite cavity detun-
ings is to discretely shift the resonance parameter to larger values on each pass, so that opti-
mum resonance can be maintained throughout saturation. The electrons continually under-
go expanding orbits in the phase space buckets, which deepen in response to the accelerated
growth in laser power (this is illustrated in Fig. 3.10(c).)3 A similar argument by Moore [3]
also suggested that finite detunings would enhance the extraction efficiency of negatively

- chirped pulses: the optical pulse would be pushed below resonance on each pass, so that the

injected electrons would fall a greater distance in the ponderomotive buckets.

Finally, if this argument is valid, then precisely the same reasoning should predict
an enhanced extraction efficiency for electron pulses with a posirive energy chirp operating
with cavity detunings longer than the synchronous length. Figures 3.9, 3.10, and 3.11
display the phase space trajectories on pass 100 for cavity detunings of 0 pm, +1.3 pm
(shorter than synchronous), and -1.3 um (longer than synchronous), respectively. Each
figure plots the trajectories for energy chirps of (a) +2 %, (b) 0 %, and (c) - 2 %. The asser-
tion of an enhanced efficiency for positive chirps is illustrated dramatically in Fig. 3.11.

2 The independence of the small signal gain on the energy chirp for a detuning of 1 um can be explained by
noting that, for a 4 % encrgy chirp over 4 ps, the shift in the resonance parameter on each pass is only 0.63

% of the gain bandwidth, and after 14 passes (corresponding o the cavity decay time for a round trip loss of
7.3 %), the resonance shift is still only 8.8 % of the gain bandwidth.

2 Crudely, for a 4 % energy chirp over 4 ps, a detuning of 1 wm yields a shift in the resonance parameter of
Ap = 0.039; the comresponding energy shift is A'Y/-y = 0.007 %. If this energy is released to the optical
ficld on each pass during saturation beyond roughly pass number 60 (as indicated by the simulations), then
at pass 100 the energy yield (assuming optimum bucket growth) is (A¥/y)¢,, ~ 40 (0.007 %) = 0.3 %. This
is roughly the order of the enhanced efficiency observed in Fig. 3.8 for an energy chirp of 4 %.
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Fig.3.11 Same as in Fig. 3.9, except that the cavity length is 1.3 pm longer than synchronous. The
figures depict the trajectories for full width energy chirps of: (2) +2 %; (b) 0 %; (c) -2 %. Here,
the +2 % chirp shows substantially greater energy extraction than the -2 % chirp.
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HOI. ENERGY CHIRPING ON THE MARK Ill FEL; DESIGN PARAMETERS

In this section, I suggest a feasible configuration for operating the Mark I FEL in
the chirped-pulse mode, and present the appropriate simulation results for designing a pulse
compression experiment near 3 pm. Practical operating parameters such as the shape of the
cavity detuning curve and the stability of the compressed optical pulses will be addressed.
The simulations assume that chirped electron pulses with the desired properties can be deliv-
ered to the laser. Energy chirping can be accomplished in an rf linac simply by dephasing
the electrons from the gun with respect to the peak rf voltage of the traveling wave in the
linac [1], and simple relations are invoked to determine the appropriate phase offset and the
resulting energy spread. The chosen parameters are somewhat modest for the Mark III
linac, and the confidence for achieving them is based partly on the early operation of the
Mark I FEL* At any rate, a complete and rigorous investigation of the generation and

transport of chirped electron pulses from the gun and linac would require extensive particle
simulations which are beyond the scope of the present study.

A. Proposed configuration
As noted above, electron micropulses with a linear energy dependence on time can
be produced at the rf linac by accelerating the pulses off the peak voltage of the traveling

wave at phases where the field gradient is large. In principle, energy chirps of either sign
are possible. However, the electron micropulses must be compatible with the downstream

* transport, which is a primary constraint on any chirped-pulse system. Moore has suggest-

ed a magnetic compression system for negatively chirped pulses that is appropriate for use
on the Los Alamos FEL [1]. In the case of the Mark III FEL, dispersion in the chicane
path preceding the wiggler complicates the use of negatively chirped pulses by increasing
the pulse width and lowering the current, and therefore the available gain. Accordingly, the
present experiments are designed for positively chirped pulses. The Mark III chicane path
is shown in Fig. 3.12.

The energy chirp induced in the linac, and the subsequent dispersion in the chicane
path preceding the wiggler, are given by simple expressions if the electron pulses are much

shorter than the rf period and the energy chirps are on the order of a few percent [20]. The
full width energy chirp induced in the linac at a phase offset of  is given by

E ‘The original momentum filter for the alpha magnet in the Mark 111 gun was not optimally designed, and
the electrons were not properly bunched at the entrance to the linac. The gun current was also limited, and
in order to generate the peak currents required 1o achieve lasing, the gun had 1o be dephased relative to the
linac so that the resulting chirped electron pulses could be compressed in the chicane path preceding the

wiggler. Baszd on these experiences, it has been suggested that phase offsets as large as 15° can be achieved
with the present design [19].
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where T, is the pulse duration in the linac and @y = 27tvys is the angular rf frequency (Vi =
2.857 GHz). The temporal dispersion in the chicane path is given by

At = -%(%)%Bmﬁ , (3.5)

where [ and B are shown in Fig. 3.12 for the Mark III FEL.

As suggested by the simulations in Section II, substantial optical pulse compression
ratios can be achieved by driving the laser with electron pulses having a +2 % energy chirp
over 4 ps, and this is chosen to be the nominal operating configuration for the Mark III FEL
experiments. From (3.4), a 6 ps electron pulse in the linac, which is a feasible pulse width
from the gun, will exhibit an energy chirp of +2 % at a phase offset of y = 10.5°, which is
a modest phase offset for the Mark Il linac. From (3.5), the resulting dispersion in the chi-
cane path will then be AT, = - 1.92 ps, so that the 6 ps electron pulse should be compressed
to just over 4 ps prior to injection into the laser. Note that the 6 ps electron pulse in the linac
spans phase angles between Y = 7.4° and y = 13.6°, so that the energy chirp is not exactly
linear. However, simulations using the corresponding nonlinear energy distribution yielded
no observable effect on either the formation or compression of the resulting optical pulses.

B. Numerical simularions in the proposed configuration

Figure 3.13 shows typical results for the optical pulse formation at 3.35 pm in a
chirped-puise FEL after 100 passes through the oscillator and various cavity length detun-
ings. The corresponding power spectra are shown in Fig. 3.14. Several important features
are cvident from these figures. First, the average powers during the optical micropulses
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Fig. 3.13 Optical envelope and phase after 100 passes for electron pulses with a full width energy chirp of
+2 % over 4 ps and various cavity detunings. (a) Detuning = 1.3 pm longer than synchronous
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(b) Detuning = 0 um (the corresponding optical chirp is + 4.56 % over 4 ps; the FWHM pulse
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Fig. 3.14 (a) Power spectrum for the optical pulse in Fig. 3.13(a); (b) power spectrum for the optical
pulse in Fig. 3.13(b); (c) power spectrum for the optical pulse in Fig. 3.13(c).

decrease dramatically as the cavity detuning is changed from longer-than-synchronous to
shorter-than-synchronous values. This change in optical power is due to the dependence of
the extraction efficiency on cavity detuning which was previously predicted to occur for
positively chirped pulses. Second, laser lethargy more greatly erodes the front end of the
optical pulses at longer cavity lengths. As a result, the total energy content does not change
as greatly as the optical powers would indicate. Third, the spectral widths displayed in Fig.
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3.14 are narrower for optical pulses oscillating at longer cavity lengths, but the frequency
chirps are roughly independent of cavity detuning. This variation in spectral width is due
directly to the effect of lethargy on the final pulse widths; pulses experiencing a greater ero-
sion will be shorter and will yield reduced bandwidths for a given frequency chirp. (Note
that this variation in the spectral width occurs in contrast to Figs. 3.1 and 3.2, in which the
pulse widths were roughly the same but the frequency chirps were different.)

An important consequence of the reduced bandwidth is that the pulse compression
ratio will be limited for longer cavity lengths. Figure 3.15 displays the compressed optical
pulses for cavity detunings 1.3 pm longer and 1.3 pm shorter than the synchronous length.
In figure (a), eight simulations were performed using different numerical seeds for the elec-
tron shot noise, and the resulting optical pulses were compressed in the same optimum dis-
persive delay line. The same is true of figure (b), cxccpi that the corresponding delay line
was optimized for that case. We see that the pulses from the longer cavity can only be com-
pressed to 301 + 10 fs, compared to 222 * 3 fs for the pulses from the shorter cavity. The
large fluctuations in pulse width in the former case are due to the fact that the laser is largely
driven by noise at cavity lengths longer than the synchronous length [21], resulting in un-
stable frequency chirps across the short pulses. The presence of noise also yields a much
greater intrinsic timing jitter (+ 90 fs for the longer cavity, compared to only * 22 fs for the
shorter cavity), because the average laser frequency also exhibits greater fluctuations, and
different frequencies will yield different absolute group delays in a given dispersive delay
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Fig.3.15 Optimum quadratic compression of cight optical pulses in which only the numerical seed for the
electron shot noise was varied. (a) cavity detuning = -1.3 pm (longer than synchronous); the
compressed pulse widths are 301 * 10 fs and the intrinsic timing jitter is + 90 fs. (b) cavity
detuning = +1.3 um (shorter than synchronous); the compressed pulse widths are 222 + 3 fs and
the intrinsic iming jitter is + 22 fs. The energy chirp is +2 % over 4 ps in each case.
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line [14]. Since the compressed optical power is only slightly higher for the longer cavity
than for the shorter cavity, any benefits to nonlinear spectroscopy would be effectively
climinated by the increased pulse widths and large temporal fluctuations. On the contrary,
pulse widths of 222 + 3 fs would be appropriate for most studies of ultrafast processes in
the infrared, and a 10 % timing jitter would be sufficiently small to allow accurate cross-
correlation experiments using different pulses in the pulse train. Not least, a compressed
peak power of 30 MW would be appropriate for studying many nonlinear interactions, for
which the diffraction-limited optical beam at 3.35 pm could easily be focused to intensities
greater than 2(10'%) W/cm?.

For the purpose of designing an appropriate dispersive delay line for the compressed
pulses in Fig. 3.15(b), we note that the average chirp parameter of the uncompressed pulses
is <b»=+3.3 (1024) s2, and the optimum compensation factor K (see Footmote 1) is found
to be K = 4.3. Accordingly, the optimum delay line uses a fixed second order dispersion
constant of 1/¢h,K = +7.0 (10°2%) s2. These pulses can be compressed from Tp=3.4ps
to Tp = 220 fs. For extending the design to other wavelengths, it is useful to assume that
the frequency chirp is determined by the resonance condition, so that the chirp parameter ‘b’
is inversely proportional to the wavelength for a given pulse width, as indicated by (3.2).
Figure 3.16 displays this result for various wavelengths using electron pulses with a +2 %
energy chirp over 6 ps. The linearity is very good, and the slope of the graph differs only
slightly from the theoretical slope due to the intrinsic frequency chirps indicated in Fig. 3.4.
The design of a dispersive delay line using sapphire prisms is described in Appendix A.

Least squares [t
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Fig. 3.16 Frequency chirp as a function of wavenumber for electron pulses with a +2 % energy chirp over
6 ps, indicating that the frequency chirp is inversely proportional to the wavelength. The slope

of the simulated points differs slightly from the theoretical slope because of the intrinsic frequen-
cy chirp indicated in Fig. 3 4.
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C. Effects of intracavity dispersion

The Mark III FEL uses metal cavity mirrors and Brewster plate output coupling to
exploit the wide tunability of the device. Apart from a slight inconvenience in the geometry
of the outcoupled beams, the insertion of an intracavity Brewster plate poses no problems
to the operation of the unchirped laser (of course, the potential for optical damage [22] is
absent in methods such as hole coupling [23].) Indeed, the dependence of the dispersion
on wavelength has proven to be extremely useful for the operation of the laser on higher
harmonics [24]. However, in the chirped-pulse FEL, a significant amount of intracavity
dispersion can be expected to have detrimental effects on the optical pulse structure.

The most important comphcation of dispersion arises from the potential to distort
the chirped optical pulses as the laser builds up to saturation. The effect of group velocity
dispersion is to impose a wavelength dependent group delay on the different spectral com-
ponents in the pulse, and since these components are localized temporally via the frequency
chirp, the puise will be temporally distorted. This is essentially how a pulse compressor
works [14], except that the compression (or broadening) now occurs inside the cavity. In
the chirped-pulse FEL, a severe temporal distortion of the spectral components from pass
to pass can eventually preclude the optical pulse from maintaining resonance with the in-
coming electron pulses over the entire pulse duration.

The effect of dispersion can be estimated by assuming that the optical pulses have a
Gaussian profile and a linear chirp, which pulses are characterized by Siegman [14] in terms
~ of a chirp parameter 'b’ and a pulse width parameter 'a’ via the definitions

o) = @+ 2b)t  and  a = 21082 (3.6)

2
Tp

Here, ax1) is the time-dependent optical frequency and 1, is the FWHM pulse duration. If
a Gaussian optical pulse with initial parameters a; and b, propagates through a dispersive
medium over a distance z, Siegman has shown that the resulting pulse parameters are then
5 = bo(1+ 2p"zbo) + 2B"zad =1 T -
(14 2872b0)* + (25"220) (1+ 282b0) +(28"220)
3.7

where B" = (az/am'-Z) [ 9@] is the second order dispsrsion of the medium and n(w) is the

refractive index. In the chirped-pulse FEL, an appropriate distance z is roughly twice the
thickness of the Brewster plate times the number of passes corresponding to the decay time
of the resonator. Fora 2 mm thick Brewster plate with a total round trip loss of 7.3 %, the
radiation decay time is roughly 15 passes, and z ~ 60 mm. For calcium fluoride or sapphire

e
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Brewster plates, the second order dispersions at 3.35 pm can be found from the published
Sellmeier data [25] to be B"caF, = -1.6(10%) s2/y and B" capphire = -8.2 (10°%) $2/py.

We may now estimate the effects of the dispersion on the circulating optical pulses.
For the uncompressed optical pulses from paragraph B, we take bg = +3.3 (10%*) s2 and
ag = +1.2O(1023) 52 (corresponding to Tp = 3.4 ps.) For the calcium fluoride Brewster
plate, egs. (3.7) then yield b(60 mm) = +3.5 (10*) s and a(60 mm) = +1.37(10%) s
(corresponding to Tp = 3.2 ps.) The pulse is compressed by only 6 % over the repeated
round trips, and the chirp parameter is only slightly altered by the dispersion. However,
the situation is different for the sapphire plate, for which egs. (3.7) yield b(60 mm) = +4.9
(10%*) 5’2 and a(60 mm) = +2.63(10%) 52 (corresponding to T, = 2.3 ps.) The chirp para-
meter is significantly increased by the dispersiorn, and the optical pulse shows substantial
compression by more than 32 %. Even in the absence of any other distortions, this com-
pression will significantly reduce the optical bandwidth and, consequently, the external
pulse compression ratio.

I have performed simulations of the chirped-pulse FEL to investigate the effects of
dispersion in the Brewster plate. The FEL pulse propagation code is the same as in previ-
ous simulations, except that the optical pulse is transmitted through the Brewster plate on
each pass by taking the Fourier transform of the optical field, multiplying by a frequency
dependent phase factor of the form

Bn Zt

+H= (m-mo)z} . (3.8)

exp

where 2t is twice the thickness of the Brewster plate, and taking the inverse Fourier trans-
form to obtain the transmitted optical pulse. Figures 3.17(a,b) compare the simulated opti-
cal envelope and phase after 100 passes in a chirped-pulse FEL using calcium fluoride and
sapphire Brewster plates. The energy chirp is +2 % over 4 ps and the cavity detuning is
+1.3 pm; these figures can be compared with Fig. 3.13(c) in which no Brewster plate was
present.

We see that the dispersion from the calcium fluoride plate has little effect on either
the optical envelope or phase. The chirp parameter is b =+3.4 (10%*) 572, and the pulse
width is 2.90 ps, which is 14 % shorter than the width of the optcal pulse from Fig. 3.13(c).
Evidently, the pulse shortening due to dispersion is slightly underestimated in the previous
analysis. However, that analysis is still instructive given the crude assumptions and the
neglect of the FEL interaction. This optical pulse can be compressed to 255 fs.

On the other hand, dispersion in the sapphire Brewster plate yields a considerable
distortion in both the envelope and phase of the circulating optical pulse. The final pulse
width is only 1.95 ps, which is 42 % shorter than the optical pulse width from Fig. 3.13(c).
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Fig. 3.17 Optical envelope and phase after 100 passes at 3.35 pm for electron pulses with a full width
energy chirp of +2 % over 4 ps including dispersion in: (a) a 2 mm calcium fluoride Brewster
plate, (b) a 2 mm sapphire Brewster plate, and (c) a 2 mm zinc selenide Brewster plate.

The reduced optical bandwidth and pulse energy are too small to yield a useful compressed
optical pulse. Consequently, in the chirped-pulse operation of the Mark Il FEL near 3 um,
sapphire Brewster plates cannot be used. However, the effects of dispersion ¢ /en in the
calcium fluoride Brewster plate can be reduced considerably by using a 1 mm thickness in-
stead of a 2 mm thickness. Alternately, one can employ a different material. For example,
zinc selenide has a dispersion at 3.35 pm of B"zuse = +1.3(10%°) /5. A ZnSe Brewster
plate will therefore broaden the circulating optical pulse, thereby increasing the total optical
bandwidth and yielding a larger exterral pulse compression ratio. This is illustrated fora 2
mm ZnSe Brewster plate by the optical pulse in Fig. 3.17(c), which has a duration of 3.90
ps and can be compressed to 211 fs. Finally, one can insert an extrancous Brewster plate
into the cavity which has a dispersion opposite to that of the output coupler. The appropri-
ate thickness can then be chosen to yield a zero net round trip dispersion.

D. Simulated cavity detuning curves

One of the most important and basic diagnostics of laser performance is the shape
and width of the cavity detuning curve. Accordingly, I have performed a series of simula-
tions to study the effects of energy chirping on the detuning properties of the FEL. Several
effects of cavity length detuning have already been established in previous paragraphs, such
as the enhanced energy extraction efficiency for energy chirps of either sign, and the effect
of lethargy on the erosion of the leading edge of the optical pulse which decreases the opti-
cal bandwidth.

Figure 3.18 compares the cavity power detuning curves for unchirped 4 ps electron
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Fig. 3.18 Cavity power detuning curves for (a) unchirped 4 ps electron pulses, and (b) electron pulses with
an energy chirp of +2 % over 4 ps. Positive detunings refer to shorter cavities.

pulses, and electron pulses with an energy chirp of +2 % over 4 ps. We see that the detun-
ing curve for the chirped laser shows significant erosion on the short-cavity side compared

to the unchirped laser, and that the former shows an increased power at a deuning of 6L ~

-1 um on the long-cavity side. Otherwise, the optical power on the long-cavity side is
extinguished at a detuning of 8L ~ -5 pm in both cases. The erosion on the short-cavity
side can be explained by noting that, for large detunings, the chirped optical pulse is pushed
ahead of the incoming electrons too quickly for resonance to be maintained over a suffi-
ciently large number of passes. This effect was first noted by Moore [2]. The origin of the
erosion of the detuning curve is illustrated in Fig. 3.19, which shows the small signal super-
mode evolution for both the unchirped and chirped lasers at a cavity detuning of +10 pm.
These simulations were performed with no noise starting from a tophat seed pulse, and the
optical powers were renormalized to smail signal levels after every four passes (the onset of
saturation would have occurred at roughly pass number sixty if the optical powers were not
renormalized.) We see that the unchirped supermode evolves monotonically towards a
stable pulse located roughly near the center of the electron pulse. However, the chirped
laser decays markedly during the early passes as the optical pulse walks off the front of the
electron pulse. Surprisingly, even the chirped laser exhibits a stable supermode which
develops into two sub-pulses at the leading and trailing edges of the electron pulse (the
trailing pulse is much more dominant in the small signal regime.)
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Fig.3.19 Small signal supermode evolution at a cavity detuning of +10 pm (shorter than synchronous),
for (a) unchirped electron pulses with a duration of 4 ps, and (b) electron pulses with an energy
chirp of +2 % over 4 ps. The optical powers were renormalized after every 4 passes. The
clectron pulses are located between 0 ps and +4 ps at the beginning of the undulator.

The large signal supermode of the chirped laser is similar to the small signal super-
mode, and was obtained from simulations which were driven by noise from spontaneous

radiation to full saturation over 200 passes. The large signal evolution is illustrated in Fig.
3.20. We see that the sub-pulses at the beginning and end of the optical pulse are roughly
the same size and roughly coincide with the beginning and end of the electron pulse. The
optical phase at each of these points is linear, which corresponds to lasing at two distinct
frequencies. This effect was also first reported by Moore (3]. Although the peak powers
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Fig.3.20 Large signal supermode evolution at a cavity detning of +10 um (shorter than synchronous)
from spontaneous radiation to full saturation. (a) Evolution of the optical envelope over 200
passes, each curve representing 10 passes. The electron pulse is located between 0 ps and 4 ps.
(b) Optical phase at pass 200, showing a linear time dependence at the beginning and end of the
electron pulse. (c) Optical spectrum at pass 200, showing two distinct frequencias corresponding
10 the linear phase variations at the ends of the optical pulse.

are fairly high (just under one megaWatt), the total pulse energy is relatively small because
the central region of the pulse does not lase at all® Nevertheless, operating the chirped-
pulse FEL at such large detunings would provide extremely useful diagnostics on the laser

s We should note that corresponding optical spectrum can be confused in some experiments with the side-
band instability which, of course, it is not: the sideband instability is extinguished for large detunings, in
contrast to the lobes of the chirped-pulse spectrum, and the temporal sideband modulations are also incon-
sistent with the substructure of the chirped optical pulses.
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performance. In particular, optical autocorrelation would provide direct information on the
duration of the electron pulses, and the corresponding optical spectrum would then provide

an estimate of the energy chirp. Such diagnostics would greatly expedite the reconfigura-
tion of the dispersive delay line for optimum pulse compression.

IV. SUMMARY OF RESULTS

From the simulations reported in this chapter, the following conclusions appear to

be justified.

1. Substantial frequency chirps can be obtained with relatively short electron
pulses and modest energy chirps. Simulations of the optical pulse formation
at 3.35 pm using electron pulses with a +2 % energy chirp over 4 ps yiclded
optical pulses with a duration of 3.4 ps which could be compressed by more
than a factor of 15 to 220 fs.

2. Due to an intrinsic, positive frequency chirping in the FEL (even for un-
chirped electron pulses), electron pulses with a positive energy chirp yield
larger frequency chirps than electron pulses with a negative energy chirp of
the same magnitude. Consequently, positve chirps yield larger pulse com-
pression ratios than negative chirps.

3. Cavity lengths shorter than the synchronous length yield slightly longer
optical pulses than longer cavities, because the erosion due to laser lethargy is
reduced. Therefore, shorter cavities yield optical pulses with a greater total
energy content, as well as a greater optical bandwidth and pulse compression
ratio for a given frequency chirp. The optical pulse formation is also intrinsi-
cally more stable due to the reduced effects of noise.

4. For cavity lengths shorter than the synchronous length, negatively chirped
electron pulses exhibit a substantially greater energy extraction than positively
chirped pulses; the converse is true for cavity lengths longer than the synchro-
nous length. Since shorter cavities are generally preferred over longer cavities
for the reasons noted in 3, negative chirps would be more appropriate in appli-
cations requiring high peak powers (even though the compressed pulses are
longer.)

5. Intracavity dispersion, such as from a Brewster plate output coupler, can
distort the envelope and phase of the optical pulse as the laser builds up to
saturation. However, the effect of dispersion can generally be neglected if

|28"2bo| « 1 , (3.9)
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where B" is the second order dispersion defined in (3.7), z is roughly twice
the thickness of the Brewster plate times the number of passes corresponding
to the decay time of the resonator, and by is the optical chirp parameter in the
absence of dispersion.

6. When operating the chirped-pulse FEL with cavity lengths shorter than
the synchronous length, the optical pulses will eventually be pushed out of
resonance with the incoming electron pulses. Therefore, the macropulse dura-
tion should not extend too far into saturation. A limited macropulse would also
preclude the formation of the sideband instability and the corresponding distor-
tion of the optical envelope and phase prior to pulse compression.

The simulations reported in this chapter have indicatcd'thc feasibility of obtaining broad
band, frequency-chirped optical pulses by imposing a modest degree of energy chirping in
an FEL. Simulations of the formation and compression of chirped optical pulses on the
Mark OI FEL have yielded pulses with durations of just over 200 fs and peak powers of
several tens of megaWatts. Although such pulses would be appropriate for many fast-time
resolved and nonlinear studies in the infrared, the broad spectral width associated with such
optical beams would appear to preclude the possibility of concurrently achieving high spec-
tral resolution. However, in Part Two of this dissertation, I study a method to increase the
spectral resolution of the optical beam by using an intracavity interferometer to phase lock
successive optical pulses, and thereby separate the longitudinal modes of the laser. Such an
enhancement, which is intrinsically important for high resolution infrared spectroscopy, can
in principle be implemented simulaneously with energy chirping to yield a train of ultrashort,

phase locked optical pulses. Consequently, in some applications, the improved temporal
resolution need not occur at the expense of spectral resolution.
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Chapter 4

The Michelson resonator
free-electron laser

Due to engineering constraints, most rf linac-driven free-clectron lasers (FELs)
operate with a large number of optical pulses circulating within the cavity at any time. An
example is the Mark IIT FEL [1] which drives 35 independent optical pulses. The spectral
energy distribution of the output beam is comprised of the Fourier transform of the indi-
vidual optical pulses enveloping a fringe pattern imposed by the axial mode structure of the
optical resonator. However, the axial mode spacing is independent of the number of pulses
contained in the cavity for devices in which the optical pulses build up independently from
noise, and in this respect, the spectral properties are the same as if the cavity contained only
a single pulse. Conventional two-mirror resonators with lengths of several meters, typical
for 1f linac-driven systems, have axial mode spacings of less than 100 MHz, and it is there-
fore difficult to isolate these modes for applications in high resolution spectroscopy.

One can take advantage of the large number of pulses by using an intracavity inter-
ferometer to couple successive optical pulses at the beamsplitter [2], [3]. In such a config-
uration, the circulating optical pulses will evolve from pass to pass with a definite phase
relationship as they build up from noise. The axial mode spacing (or free spectral range) is
thereby increased by a factor equal to the number of pulses in the cavity up to a frequency
interval equal to the driving frequency of the rf linac. For S-band linacs this is usually
several gigaHertz, resulting in spectral modes which can be more casily isolated in appli-
cations to high resolution spectroscopy.

In a previous publication [3], the phase locking properties of a Michelson mirror

-
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resonator on short-pulse FELs were examined. The configuration of the Michelson resona-
tor is shown in Fig. 4.1(a) in which the coupling is provided by an extra delay of one rf
periad in the secondary arm of the interferometer. Numerical simulations of the Michelson
resonator FEL were reported which confirmed the corresponding increase in the axial mode
spacing of the - : put beam on time scales appropriate to microsecond macropulse lengths,
and a preliminary sigenmode analysis was developed which accurately predicted the mode
decay rates. Apart from demonstrating the expected increase in the free spectral range, the
simulations also indicated that the phase locked optical beam grows to the same saturated
power level as the randomly phased beam. This latter property is particularly important for
applications in nonlinear spectroscopy. Since the spectral width of the output beam is
determined primarily by the duration of the short electron pulses, a decrease by a factor of
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Fig. 4.1 Multiple mirror resonators for coupling successive optical pulses in the macropulse: (a) a Mich-
elson mirror resonator with a delay of one rf period in the secondary arm, and (b) a Fox-Smith
interferometer with a round trip time of one rf period in the small resonator.




N in the number of modes yields an increase by the same factor in the power per mode,
where N is the number of pulses in the cavity. This can be well over an order of magnitude
increase in the spectral brightness.

In the present chapter, I fully develop the eigenmode analysis of the Michelson
mirror resonator, and more importantly, I demonstrate its equivalence to an independent
frequency domain analysis based on the passive mode structure of that resonator. The
advantage of the former is that it yields a rigorous solution to the initial value problem in
terms of biorthogonal eigenvectors, and provides a convenient interpretation of the phase
locking process in the time domain. However, within the context developed below, it is
valid only for the perfectly tuned interferometer. The frequency domain analysis can be
applied to an arbitrarily detuned interferometer, and is crucial to describing the detuning
properties of the actively mode coupled laser in terms of the FEL interaction (which theory
is developed in the following chapter [4].) The latter analysis can also be readily adapted to
other resonator configurations such as the Fox-Smith interferometer shown in Fig. 4.1(b).
In Section II, I develop the eigenmode analysis of the perfectly tuned Michelson resonator
FEL, and in Section ITI, I derive the passive frequency response of the three-mirror resona-
tor from which the stable longitudinal mode structure is extracted. Finally, in Section IV, I
present numerical simulations which illustrate the analytical results.

II. EIGENMODE ANALYSIS OF N COUPLED LASERS

Conventional rf linac-driven FELs, as noted above, usually operate with a large
number N of optical pulses circulating in the cavity at any time, and pulses which build up
independently from noise can be considered as N separate lasers driven independently by
fresh electron pulses on every pass. However, if an interferometer is used to couple a frac-
tion of each pulse to its successors, then the resulting operation can be viewed as a kind of
injection locking or injection seeding of one laser by the others as the lasers turn on from
noise. The coupled pulse formalism derives from this viewpoint, the eigenmode analysis
motivated by the search for stable configurations which can support the injection locking
process in a cyclical fashion. The performance of the system depends on the beamsplitter
reflectance, the phase offset of the secondary mirror on the scale of an optical wavelength,
and the detunings of the two coupled resonators relative to their respective synchronous
lengths (as determined by the arrival times of the incoming electron micropulses). In the
following analysis, we assume that these relative detunings are identical and yield an opt-
mized gain interaction with the electron beam. In particular, we assume that the delay in the
secondary arm of the interferometer is an exact integral multiple of the rf period, so that
successive pulses are perfectly overlapped at the beamsplitter.




.

A. Formalism

For simplicity, we first consider the coupling of N = 4 optical pulses circulating
within the short cavity of a Michelson mirror resonator (the primary linear cavity), with
N+1 =5 pulses in the long cavity, so that the primary pulses are delayed by one f period
in the secondary arm of the interferometer. The analysis can be easily extended to any num-
ber of pulses. We assume a net round trip energy gain of 2a., a beamsplitter of reflectance
12 and transmittance 2 = 1 - 12, and a relative phase offset of @ at the secondary mirror. Let
the complex amplitudes of these pulses be represented by Eq(n), where q labels the pulses
within the primary cavity (q = 1,...,N) and n labels the pass number. Then the following
set of equations describes the pass to pass evolution of the coupled pulses which arrive in
the order E;(n), Ex(n), E3(n), E4(n), Ej(n+1), Ep(n+1), etc.

Ei(n+1) = e[ Ey(n) 2 + E4(n-1) 2 ei®] 4.1)
Ej(n+1) = e[ Ey(n) 2 +Ej(n) 2ei®] (4.2)
Ey(n+1) = ¢ E3(n) 2 + Eo(n) 2ei®] & (4.3)
Esn+1) = e[ Eqn) 2 + Es(n) 2ei®] . (4.4)

Defining the column vector of pulses on pass n as
[ Es(n-1) ]
Ey(n)
lEM)) =| Exm) , (4.5)
E3(n)
L E4(n) |

we may recast equations (4.1-4.4) into the matrix format

lE@+1)) = M IEm) , (4.6)
where the coupling mairix M has elements
[0 0 0 0 1]
eor2eio  eay? 0 0 0
M= 0 eorlei® eoq? 0 0 4.7)
0 0 eBrleiv eaq? 0
L 0 0 0 er2eio eug2

We now search for solutions of (4.6) of the form
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Ey(n+1) = YEq(n) = y™1 E((0) (4.8)

where Yis independent of n and is by definition the same for all N pulses (this is required

by the symmetry of the system with respect to time displacement). The equivalent eigen-
value problem can be written

Vi) =MIY;) BN CRY
where the eigenvalues ¥; are the N+1 distinct solutions of the characteristic equation
vy - =) = (eor2ei0)N (4.10)
which may also be written as
Xp 1§ - i
¥y = ca[ﬁ + T —(—”N—L} m=0,..,N1 . 4.11)
Y

The corresponding N+1 eigenvectors | V; ) form a complete set for the solution of
the initial value problem, defined by the requirement of specifying a unique superposition
of the eigenvectors | V; ) for any initial pulse distribution. This assertion can be justified
physically by noting that there are a total of N+1 degrees of freedom which must be speci-
fied as part of the initial value problem, corresponding to the N pulses in the primary cavity
plus the pulse in the secondary arm which couples to the first pulse in the primary cavity.

Therefore, the N+1 eigenvectors are sufficient to form any initial superposition, which we
write as

N+i
IEO) = ), al¥) . @.12)
i=1
g N+1 N+1
Futhermore, |E@m) = M IEO) = D oM 1V) = Y oy IV). @.13)

i=1 i=1

It is evident that as the pulses evolve from pass to pass, the eigenvector(s) with the largest
eigenvalue(s) will dominate the structure of the pulse train.
B. Biorthogonulity

It can readily be shown that M does not commute with its adjoint M Gie. itis not

a normal marrix). Therefore, eigenvectors corresponding to distinct eigenvalues are gener-
ally non-orthogonal, and the coefficients c; in (4.12) cannot be calculated directly from the

projections of the inital column ve~tor | E(0) ) onto the eigenvectors | V; ). Nevertheless,
if one considers the adjoint eigenvalue problem




21

glu) = M 1w)

then it is possible to show [5] that the eigenvalues &; of the adjoin' equation are related to
the eigenvalues ¥, by

; (4.14)

E=1v 4.15)
and that the corresponding (appropriately normalized) eigenvectors satisfy the orthonormal-
yiSlancn: (Uil V5) = & | (4.16)
This property of the vectors | U; ) and | V; ) is known as biorthogonality, and is of theoreti-

cal interest because it allows a rigorous srlution of the initial value problem in a completely

analogous manner to the usual orthogonal projection. In particular, we obtain the follow-
ing solution for the coefficients c; in (4.12):

ci = (LLIEWO)) . 4.:7)

Explicitly, the biorthogonal eigenvectors | U; ) can be constructed from the elements of the
| V;) as follows:

T D) T [ [e9'2e ™) (1) |
c1(0) e4(0)
Vi) = | e20) and 1) = e5(0) . (4.18)
e3(0) e, (0)
|« N ()

-i
The biorthogonality property is completely equivalent to the non-orthogonality of the | Y; )

in describing the evolution of the pulse train. For example, consider the total energy P(n)
on a given pass n, which we define as

P(n) = (EmEM)) (4.19)

where | E(n) } is given by (4.13). This quantity is of considerabie practical interest for cal-

culating the leakage losses due to destructive interference of the pulses at the beamsplitter.
Explicit calculation yields

P(n) = Z ¢ <zi|n7nz M 1Y) (4.20)

! j
<N n
=22Cf¢j2(lﬂﬂ' Uk M I 1Y) @.2D)
i j k

where we have inserted the closure relation




'
3
\\j

]l=z U ) Vi (4.22)
k

for the complete bases of biorthogonal eigenmodes | Vy ), | Uy ); this relation is analogous
to the one for orthonormal bases that is familiar from quantum mechanics [6]. Using the

cigenvalue equations (4.9) and (4.14), and the biorthogonality relations (4.15) and (4.16),
we then obtain

P(n) =Z Zci'cj-Z(lalvf"luk)(yxlvj"Ix;) (4.23)
I k
=22°i.°i7in %o B Vel V) (4.24)
z fie; 2 |y,|2“+2 2 ¢y Ty AN 1Y) (4.25)
i j#i

where the | V; ) are assumed to be normalized to unit length.

We note that the result (4.25) would obtain by directly squaring the absolute value
of the last equality in (4.13), and that the second term would be absent if the eigenvectors
were orthogonal. It is therefore interesting to examine the degree of non-orthogonality of
the | V; ) to determine under which conditions, if any, the second term in (4.25) may be
neglected. To this end, I have plotted in Fig. 4.2 the magnitudes of the mutual projections
I{ ¥; | ¥; )| versus the products of the corresponding eigenvalues | * ;! for the case of N
= 35 pulses and a beamsplitter reflectance of 12 = 50 %. The qualitative nature of the graph
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Fig. 4.2 Mutual projections of the non-orthogonal eigenmodes vs. the products of their eigenvalues, for a
Michelson mirror resonator with N = 35 pulses and a beamspliter reflectance of 2 =50 %.
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is independent of both r2 and N. We see that for i # j, the non-orthogonality can be quite
large (as high as [{ V; | ;) = 0.74), but that these extremes only occur for small products
of the eigenvalues; eigenvectors corresponding to larger products of the eigenvalues have a
greater degree of mwual orthogonality. As a result, the eigenvectors with the greatest non-
orthogonality will decay away after relatively few passes, leaving only the eigenvectors
with the largest cigenvalues and the greatest degree of mutual orthogonality to support the
evolution of the pulse train. In paragraph D, we will derive an approximate solution using
orthogonal vectors, and in Section I, we will discuss the physical origin of the non-orthog-
onality.

C. Equivalent matrix formulation

The coupled pulse problem with N = 4 pulses in the primary cavity assumed that a
fraction r2 of each pulse is delayed by one rf period before coupling to the succeeding pulse.
An equivalent formulation can be made with N+1 = 5 pulses in the primary cavity in which
a fraction t2 = 1 - r of each pulse is advanced by one rf period before coupling to the pre-
ceding pulse. The coupled pulse equations in this case can then be written

Ei(n+l) = c“[ E;(n) r2 €i® + Ey(n) 12

| (4.26)
Ey(n+1) = e@[ Ep(n) 12ei® +Esm) 2] (4.27)
Es(n+l) = eo[ Es(n) 12ei® + Eqn) 2] (4.28)
E4n+1) = e[ E4n) r2¢i® + Es(n) 2] (4.29)
Es(n+l) = e@| E5(n) 12 ei® + E;(n+1) £2] (4.30)

o[ Es(n) 12 ¢i® + e2 Ey(n) 2 2 ei®+ 0 Ep(n) 4] . (4.31)

The eigenmodes | Y; ) of the corresponding matrix equation are identical to the | V; ) of the
original formulation with N = 4 pulses, but the eigenvalues m; are different. The equality of
the eigenmodes follows from the fact that the two formulations are physically equivalent,
but the eigenvalues are different because the original problem describes the evolution of
every fourth pulse, the latter problem the evolution of every fifth pulse. Indeed, one finds
that |7, [° = [m;]%

D. Approximate solutions; physical interpretation

A useful approximation to the above analysis is obtained for cases in which N is
very large (good results are obtained for N> 10). In particular, we see from (4.11) that as
N —~ oo, the denominator of the second term (YN ) approaches unity for any value of ¥.
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The number of eigenvalues is then essentially reduced to N, corresponding to the N solu-
tions

Yo' = e[ + rzexpi(<p-2—N’“—“-)] , m=0,.., N1 . (4.32)

The number of eigenvectors is still rigorously N+1, but the eigenvector corresponding to
the smallest eigenvalue will decay to a negligible magnitude after only a few passes. There-
fore, neglecting it altogether will not appreciably affect the evolution of the pulse train as

the number of passes increases. In fact, the N eigenvalues (4.32) are exact solutions of the
modified eigenvalue problem

Yo | V) = M VSY (4.33)

for which the modified N X N coupling matrix M.' has elements

e 2 0 0 evrleio |
erleio  eap? 0 0 :
M= i 4.34
0 er2eio eoq? 0 g
L 0 0 e%rZeiv a2

The corresponding eigenvectors are mutually orthogonal, which results from the fact that
M.' is a normal matrix G.e. M'M'T =M'TM".

The approximation consists of replacing the N+1 non-orthogonal eigenvectors of
(4.9) with the N orthogonal eigenvectors of (4.33) in the superposition describing the evo-
lution of the pulse train; these N orthogonal eigenvectors have elements

1]
cxp(i Zﬁn)

cxp(i iﬁ—“l)

cxp(i %\“}‘l

3

(4.35)

N elements

—

To justify this approximation physically, we note that the non-orthogonality of the N+1
eigenvectors | V; ) results from the formal asymmetry of (4.1) with respect to the remaining
coupled pulse equations, in which the first pulse on pass n+1 couples the pulses from two
previous passes instead of only the preceding pass n. However, if the number of pulses N
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is large, then after many passes they will begin to evolve more slowly from pass to pass,
and on this basis we may replace pulse En(n-1) with pulse En(n) in the formulation of the

coupled pulse equation (4.1). This single substitution leads to the modified eigenvalue
problem (4.33).

The orthogonal eigenvectors | V') can be given a straightforward physical inter-
pretation. In the frequency domain, they correspond to distinct spectral modes displaced
from one another by one primary cavity axial mode spacing (as can be demonstrated by
computing the Fourier series for each eigenvector), and therefore fill the entire free spectral
range of the multiple mirror resonator. In the time domain, they represent configurations in
which each pulse differs in phase from its successor by 2%M/n . This ensures that as the
phase information propagates along the pulse train, a given pulse in the primary cavity will
remain in phase with itself from pass to pass. For any arbitrary value of @, one of the ei-
genvectors will have the largest eigenvalue and will dominate the spectrum as the macro-
pulse evolves. Therefore, each mode can be selected in turn by varying the value of ¢ at
the secondary mirror. This property of the resonator is important for applications to spec-
troscopy.

The squares of the absolute values of the eigenvalues (with the gain ¢® omitted)
correspond to the relative growth rates and are found from (4.32) to be

[t = 1-202¢[1- coslp-28m)] (4.36)
The corresponding mode losses are
8m = 1-|7m'|? = 2r2t2[1-cos((p-2§m)] , 4.37)

and result from destructive interference of the eigenmodes at the beamsplitter. As a numeri-
cal example, consider a Michelson mirror resonator with N = 35 circulating pulses in the
primary cavity and a beamsplitter reflectance of r2 = 50 %. In this case the relative single
pass power growth for the dominant mode and its two nearest neighbors (¢ =0; m =0, 1,
2)1s1:0.9920:0.9681. The relative power after 300 passes is therefore 1 :0.09: 6(10° 5).
This number of passes corresponds to a time of 4 ps for the Mark III FEL, showing that
appreciabie mode decay can result in feasible macropulse durations.

Finally, we may estimate the total leakage losses due to destructive interference of
the randomly phased pulses at the beamsplitter. The total pulse energy P(n) in the resona-
tor on pass n was given in (4.25), and the total losses are

_ P(n-1) - P(n) _ ) P(n)-
Sror(n) = o) - UPwn (4.38)

If the N pulses in the laser start up independently from electron shot noise, then we may
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assume that the initial pulses are randomly phased and that all of the coefficients c; in (4.25)

are equal. If we also assume that the second term in (4.25) is absent, then the losses at the

beamsplitter become
N-1

Z {1-2r2t2[1-cos((p-zﬁn-)]}“
Stor(n) = 1--2=0 . (4.39)

g {1 -212 t2[1 - cos((p e Zﬁn)]}n-l

Although this expression cannot be simplified, it is readily evaluated on a small computer.
Figure 4.3 shows the error in the estimated leakage losses incurred by using (4.39), instead
of the result (4.38) in which P(n) is given by (4.25). As suggested by the discussion at the
end of paragraph B, the approximation significantly improves with the number of passes.

50 pmper e ey e
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Fig. 4.3 Percent error in calculating the total leakage losses for N = 35 pulses using the approximate
cigenvalues from Section ILD instead of the exact eigenvalues corresponding to the non-orthog-
onal cigenmodes, for two values of the beamsplitter reflectance.

[II. PASSIVE MODE STRUCTURE OF THE MICHELSON RESONATOR

The spectral energy distribution of the circulating optical ficld inside a laser cavity
consists, in general, of a superpositior. of discrete longitudinal cavity modes oscillating
with frequencies w,. For a plane-wave optical field with a slowly varying amplitude E(1)
and phase (), this superposition can be written as the modal expansion [7]

E(1) ei%0) et = ) Ep(r) esiont | (4.40)

in which the E, (1) are complex valued spectral components which have a slowly varying

time dependence only over many passes in the cavity, and essentially describe the long term
spectral evolution of the laser field. The Michelson mirror resonator actually consists of
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two coupled linear resonators, each possessing its own complete set of longitudinal modes
appropriate for the superposition of optical fields in the respective uncoupled resonators.
However, it is clear that neither of these sets of modes can completely describe the field in
the Michelson mirror resonator, because the mode spacings are incommensurate with one
another due to the difference in the cavity lengths. To obtain an appropriate set of longi-

tudinal modes, one must consider the frequency response of the linear resonators when
coupled in the Michelson configuration.

A. Frequency response

. The frequency response of an arbitrary resonator is calculated by coupling a tunable
CW source of fixed amplitude into the cavity through the output coupler. The discrete
resonances of the resulting circulating field comprise the only frequencies which can be
supported by the resonator, and therefore yield a complete set of longitudinal modes. The
generalized frequency response of a two-mirror cavity with length L. and complex mirror
reflectivities r; and ry, obtained in this manner, is [8]

2 1- (3/2) s

1-¢°32¢% 1y cxp[im%—]

where Ejc and E i are the incident and circulating field amplitudes, . is the round trip
power loss due to diffraction and output coupling, and 2« is the round trip power gain.

Ecirc

Einc

(4.41)
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Fig. 44 Definition of the cavity lengths in 2 Michelson mirror resonator. The length L of the primary
linear cavityis L=L.+L;.

We take the two cavity mirrors to be a perfect reflector (r; = 1) and the Michelson mirror
shown in Fig. 4.4, for which the reflectance 15, assuming perfectly reflecting mirrors, is

r =12 cxp[iu)—z-léz-] +12 cxp{imz%] . (4.42)
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Here, 12 is reflectance of the beamsplitter and t2 = 1 - 12 is the transmittance. If we define
the length L of the primary cavity to be

L=L+L; , (4.43)
and let the round trip time equal an integral number N of rf periods, then by introducing a
delay of one rf period in the secondary arm of the interferometer we may write
Do1,-Ly) = Q2L .
¢2a-L) = 2 -9 (4.44)

where @ s a residual phase offset on the scale of an optical wavelength. Substituting (4.42),
(4.43), and (4.44) into the frequency response (4.41) yields the final result

Ecie |2 _ 1 - @82) .
Eisg - | - o820l 2mAL [1 ) I‘Z(l - cxpi 2r Afy ])] (4.45)
N
where Af_ is the frequency in units of the axial mode spacing of the primary cavity:
Afp = Af2L (4.46)

Figure 4.5 shows the normalized frequency response of a Michelson mirror resonator with
7 % net round trip power losses, a beamsplitter reflectance of r2 = 50 %, and a phase offset
of ¢ = 0 at the secondary mirror. Figures (), (b), and (c) are for N = 10, 20, and 30 rf
periods respectively, with the abscissa in units of the ¢/2L round trip frequency of the pri-
mary linear cavity.
B. Resonant frequencies and losses

~ We see from Fig. 4.5 that the dominant modes are separated by the rf frequency,
and that the satellite modes oscillate with reduced amplitudes resulting from increased inter-
ference losses at the beamsplitter. The resonances are roughly separated in frequency by
the axial mode spacing of the primary cavity, yielding a total of N modes per rf interval.
This is the same result obtained from the approximate eigenmode solution in Section I

Furthermore, we may identify the outer bracket in the denominator of (4.45) as a complex
"loss factor' 7, in analogy with the idzntification of ¢ 8c/2 = 1 - 8/2 as the loss factor due

to the loss 8c/2. Setting Af,, =m in (4.45), where m is an integer, we then obtain

lv]? = 1-2r2t2[1 -cos(lﬁf‘— -‘P)] . (4.47)

which is identical to the result obtained from the eigenmode analysis for the coupled pulse
problem. This result, together with the mode structure noted above, demonstrates the equiv-
alence of the time domain and frequency domain analyses. The dominant modes, scparated
by the rf frequency, ultimately support the oscillation of the optical pulses under the
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Fig. 4.5 Passive frequency response of optical resonators under CW excitation, showing the axial mode
structure for a Michelson mirror resonator with a 50 % beamspliuer reflectance, a delay of 1 ff
period in the secondary arm of the interferometer, and a round trip time in the primary linear
cavity of: (a) N = 10 f periods, (b) N = 20 rf periods, and (c) N = 30 rf periods.

influence of active mode couapling by the short electron pulses, after the remaining modes
have decayed away. However, one other point should noted concerning the process of

mode decay.

The motivation for studying the the passive mode structure was to determine which
frequencies can be supported by the multipie mirror resonator under pulsed excitation by an
electron beam. In the case of a CW excitation, the mode amplitudes derived in paragraph A
do not vary with ime. However, the some of the ‘modes’ have very high losses, even on
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the order of unity, and in the case of pulsed excitation these modes will decay away with
rates determined by those losses. What does it mean to say that we have a 'mode’ which
lasts for only one or a few round trips? Clearly, such modes are not appropriate for the
modal expansion indicated in (4.40), because the mode coefficients Ey(t) are no longer
slowly varying with time and cannot be identified by a single frequency wy,. In fact, modes
with lifetimes on the order of one round trip will have spectral widths on the order of the
round trip frequency, and will therefore overlap adjacent modes. This overlap is equivalent
to 'an expansion of one mode in terms of the others', and comprises the physical origin of
the non-orthogonality of the modes which we discovered in Section II. As noted in Fig.
4.2, the degree of overlap is more extreme for modes with smaller eigenvalues. It is inter-
esting that the eigenmode analysis allows us to compute these mutual projections exactly.

C. The detuned interferometer

We now extend the analysis in paragraph A to the case in which the interferometer

is not perfectly tuned to the overlap of successive pulses. For simplicity, we set ¢ =0 and

WTite

D2L,-1,) = @2L

22(L,- L) = 22L(1+8N) (4.48)
where 0N represents the small fraction of an rf period by which the round trip time in the

secondary arm is detuned. The complex loss factor y in the denominator of (4.45) can then
be rewritten

2 sin (21:Af lt&‘l)
Y= '\/l -2r2t2l1 - cos (2nAfm1i§N-)J exp| itan-! " N

t? + 12 cos (ZnAfm l—"%&) (4.49)

where Afy, is not restricted to integral values. If we let D equal an integer which represents
the approximate number of rf frequency intervals by which Afy, is detuned from some ref-
erence mode, we may then introduce the small quantty

2 (Afml—*ﬁm : D) (4.50)
and expand (4.49) in small arguments of the trigonometric terms to obtain
, 2

Y = cxp[-2r2 & nz(AfmllN‘m - D) ] cxp[ i21tr2(!&f,,,-1i£E - D)] : (4.51)

In this approximaton the frequency response (4.45) of the resonator becomes

B2 1 - (5/2) 2
E: = 2

S cxp[a A 52—° -2p2 t2r.2(AfmbN§ﬂ -D) ] cxp[isz,,,+ i2nr2(Afml—+N§N- -Dﬂ
(4.52)

in which the loss and resonance terms have been grouped into the exponentials. Resonances
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occur when
2R A, + 2nr2(Afmh§N- - D) = 27(ND + m) (4.53)

where m « N is a second integer. The corresponding resonant frequencies are

Afm=ND+m;ﬁm

L+ (4.54)
and the power losses at the resonant frequencies are
8p = 8 +4n22%( I+ D&N)* (4.55)

in which all terms of order (SN/N) or (1/N2) have been neglected relative to the remaining
terms. Note that for 8N = 0, this is the same loss derived from (4.47) or (4.36) for modes
separated by the axial mode spacing of the primary linear cavity. However, it is important
to note that the preceding method of extracting the resonant frequencies and mode losses
can be applied to the frequency response of any resonator configuration with arbitrary mir-
ror detunings.

Hypermodes are identified by a given m, and correspond to sets of longitudinal
modes that are separated by the rf frequency. If the interferometer is perfectly tuned (8N =
0), then all of the longitudinal modes in a given hypermode will have the same loss, but
different hypermodes will have different losses depending on m. If 8N = 0, then the longi-
tudinal modes within a given hypermode will have different losses depending on D, and the
spacing between the modes in a given hypermode will deviate from the exact rf frequency,
depending on 8N. This last point is of particular importance for the analysis of the actively
mode coupled laser in the presence of a pulsed electron beam, the theory for which is de-
veloped in the following chapter. For that analysis, we provide the following computaticn
for the frequency spacing between the axial modes of a given detuned hypermode. By
approximating the denominator in the second t~mm of (4.54) to unity, we have from (4.46)

(D+1) ®) _ (D+1) o) _ 2
AP Af®) 2 -,i—[Afm AP = -29L-(N- 28N) . (4.56)
Note that N = v,fz—lz:Q for some ideal cavity length Ly, where vyt is the if frequency, but
that L appearing in (4.56) can deviate from this ideal length by SL. This quantity represents

the cavity detuning of the primary linear cavity relatve to the incoming electron pulses.
Expanding (4.56) to the lowest order in 8L and 8N, and defining 5L = € 8Tc/2 and 6N =
STm Vi, yields )

Af(Dﬂ)-Af(D) = v,f-v,fi%o(STc+r28TM) (4.57)
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where 6T, and 8Ty represent the round trip temporal detunings of the linear cavity and the
interferometer respectively (6Tc,m > O for cavities longer than the synchronous length).
With the definitions g = 20[Af @V - AFP], @ = 27tvyg, and Te = 2L, this last result
can be written

Te (0t - Oux) = @ (ST +128Tn) - (4.58)

The interpretation of this result is straightforward: if the beamsplitter reflectance r2 = 0,
then the only contribution to the cavity detuning comes from the downstream mirror cf the
primary cavity. If r2 = 1, then we have a two-mirror cavity consisting of the downstream
mirror and the second reflection mirror, and both mirrors contribute equally o the desyn-

chronism of the optical pulses with respect to the incoming electron pulses. For0 «r2 <1,
the result is interpolated.

IV. NUMERICAL SIMULATIONS

I have performed numerical simulations on the operation of Michelson mirror res-
onators in which the optical pulses build up from spontaneous radiation to full saturation.
The computer code is described in Chapter 2, and essentially performs a one-dimensional
integration of the coupled Maxwell-Lorentz equations for each pulse, in which the trans-
verse coupling between the electron and optical beams is included by means of a complex
filling factor appropriate to the Gaussian modes of the resonator. Shot noise is included by
random modulations of the electron beam density at fixed positions within an optical wave-
length and generally dominates the effect of quantum noise [9]; the latter is included in the
present application to ensure that the initial optical phase of each optical pulse is completely
randomized.

The Michelson mirror resonator is simulated in the following fashion. On a given
pass n, each pulse Eq(n) [ = Eq (1) ¢9q.n(¥) ] interacts with a fresh electron micropulse,
undergoes cavity losses and cavity detuning in relation to the electron micropulses, and is
then coupled to its predecessor Eq.1(n) by means of the relanons

Eq(n+1) = Eq(n) +12ES(n) ¢ (4.59)

forq=2,..,N,or

Ei(n+1) = 2Ej(n) + 12E¢ (n-1) ¢*® (4.60)

for g = 1. The total leakage power is also calculated on each pass n according to the sum-
mation )

N
Peacn) = Y Paln) (4.61)

q=1
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Parameter Definition Simulation value
Optical beam parameters
A Resonant optical wavelength 3.35 um
N Number of circulating optical pulses 35
S Cavity losses 7.3%
Sout Output coupling 5.5%
ZR Rayleigh range 73.08 cm
Electron beam parameters
Y Electron beam energy / mc? 83.19
Tp Electron pulse duration 4ps
I Peak electron current 18.8 A
"2 RF tfrequency 2.857 GHz
Ex Normalized horizontal emittance (1/e ) 8z mm-mrad
Ey Normalized vertical emittance (1/e ) 4n mm-mrad
Bx Horizontal '‘Rayleigh range' 45cm
Wiggler parameters
N. Number of wiggler periods 47
| Wiggler length 108.1 cm
A, Wiggler period 2.3cm

Table 4.1 Parameters used in the Michelson resonator simulations on the Mark III FEL.

where

Pa@®) = |nt Eym)- n Ed (m) £ (4.62)
forq=2,..,N,or

Pi(n) = |n Ey(n) -t Edn-1) e®|? (4.63)

forq=1. The superscript ¢ indicates relative cavity length detuning at the secondary mir-
ror prior to coupling, and is performed by shifting the entire slowly varying optical enve-
lope and phase in the numerical window with linear interpolation between the sample points
(the effects of changing the relative cavity detunings between the two coupled resonators
were oniy qualitatively studied in the present work; more extensive quantitative studies are
reported in the following chapter)) The phase offset ¢i? is performed by direct multiplica-
tion independently of the cavity detuning, and the above steps are then repeated for pass

69




n+1 using the pulses Eq(n+1). The parameters for these simulations are appropriate to
those of the Mark Il FEL and are listed in Table 4.1.

Figure 4.6 illustrates the previous assertion that the surviving spectral mode can be
selected by varying the phase offset ¢ at the secondary mirror. In these simulations the
primary linear cavity contains N = 4 circulating pulses, the beamsplitter reflectance is 12 =
50 %, and the relative cavity length detuning in the interferometer is zero. We see that the
relative phase difference between successive optical pulses at the end of the macropulse
exhibits a discrete jump of A® = /2 when the relative phase offset at the secondary mirror
crosses ¢ = 1/4; similar jumps would also occur at phase offsets of ¢ = 3n/4, 51/4, and
7n/4. This optical phase difference is calculated as an RMS average across the temporal
profile of each pair of adjacent pulses (q,q+1) with a weighting factor equal to the geomet-

ric mean of the powers at each sample point. The differences for each of the N = 4 pairs of
adjacent pulses are then averaged.

Bl e

15 -

3 - -
1.0 - -
0.5 - .

i [14

ooFm..m. M R

Phase difference (rad)

A I TP IS [Tt M & S |
000 005 0.10 015 020 025

Phase offset/2n (rad)

Fig. 4.6 Simulations showing the phase difference between adjacent optical pulses at the end of the
macropulse (100 passss), as a function of the phase offset at the secondary mirror, in a Michel-

son resonator FEL with N = 4 circulating pulses in the primary linear cavity and a beamsplitter
reflectance of 50 %.

The discrete phase difference between the pulses is a manifestation of a single hy-
permode in the axial mode specttum. Howeve:, the optical macropulses exhibit increased
losses for phase offsets near the discontinuities. These losses are illustrated in Fig. 4.7 and
result from destructive interference between successive pulses at the beamsplitter, even
though the pulses are perfectly phase locked. The magnitude of these losses is given
roughly by (4.37), but they can never be greater than
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Fig. 4.7 Leakage losses due to interference in the surviving hypermodes at the end of the macropulse for
the simulations in Fig. 4.6. The dashed line is the prediction of (4.37) with N = 4.

Smax = 212 tz[l -cos(ﬁ)] (4.64)

which decreases for increasing N. The dashed line in Fig. 4.7 is the analytical loss as a
functon of ¢ predicted from (4.37) for N = 4, where the hypermode number is m = 0 for ¢
<7/4 and m = 1 for ¢ > 7/4. The agreement between the analytical and simulated losses

is surprisingly good, in light of the fact that (4.37) was derived from the approximate
eigenmode analysis assuming large N.

The surviving spectral modes for phase offsets of ¢/2x = 0.1, 0.125, and 0.15 are

shown in Fig. 4.8. These macropulse power spectra S(w) are calculated from the temporal
averages of the amplitude E and phase ¥ along each optical pulscl according to

~

N = <
S(@) = L| ) EeidreikTo (4.65)
Nl

where T is the rf period, o the frequency, overbars denote power-weighted temporal aver-
ages, and the sum is over all N pulses in the output macropulse. The spectra for ¢ < /4
and ¢ > /4 show single hypermodes shifted by one quarter of the free spectral range of
the Michelson mirror resonator, but the spectrum for @ = =/4 shows two competing

! This approximaton is based on the fact that temporal variations of the amplitude and phase within the
pulses contribute 1o a broad spectral envelope, whereas the absolute fluctuations of these quantities among
the pulses determine the mode structure of the pulse train.
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Fig. 4.8 Spectra of the simulated macropulses from Fig. 4.6 with phase offsets at the secondary mirror
of: () ¢/2x = 0.1, (b) ¢/2x = 0.225, and (c) ¢p/2x = 0.15.

hypermodes (the bias of the relative amplitudes is due to start up from noise.) An explicit
calculation in the eigenmode analysis of the two surviving non-orthogonal modes for the
case of N = 4 and ¢ = /4 can be usad to reconstruct the pulse train according to the rela-
tive mode amplitudes measured from Fig. 4.8(b). Figure 4.9 displays the beating of the
phase difference between adjacent pulses (q,g+1) in the resulting pulse train, and is seen 10
agree very well with the simulation in both the amplitude and period of the oscillations.

To evaluate the theory for large N, I performed simulations of the Michelson res-
onator FEL with N = 35 pulses, r2 = 50 % coupling, ¢ = 0 phase offset at the secondary
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Fig. 4.9 Phase difference between two adjacent optical pulses as a function of pass number, corresponding
to the simulation in Fig. 4.8(b). The solid line is the simulated phase difference, and the dashed
line is the result of an explicit calculation in the eigenmode analysis using the amplitudes of the
two surviving non-orthogonal modes measured from Fig, 4.8(b).

mirror, and zero relative detuning in the interferometer. Figure 4.10 compares the saturated
optical pulse power and spectrum after 160 passes with a simulation using only a single
pulse in the corresponding two-mirror cavity. We see that the overall spectral properties
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Fig. 4.10 (a), (b): Temporal and spectral structure of the opiical micropulses after 160 passes, from FEL
simulations of a single pulse in a two-mirror resonator. (c), (d): Same as in (a), (b), except for N
= 35 pulses in a perfectly maned Michelson resonator FEL with a beamsplitter reflectance of 50%
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are essentially unaffected by the presence of the perfectly tuned interferometer. Both simu-
ladons show the slight formation of sidebands at a frequency of -2000 GHz, corresponding
to the spikes at the front end of the optical pulses, and both simulations yield pulses of
roughly the same duration and average optical power. Other properties of the laser, such as
the shape of the cavity detuning curve, also turn out to be unaffected by the presence of the
perfectly tuned interferometer. These results can be understood using simple arguments: in
the time domain, the tuned interferometer couples phase locked optical pulses that are per-
fectly overlapped in time, and in the absence of leakage losses the properties of the satura-
ted laser are then determined only by the separate interaction of the electron pulses with
each optical pulse. In the frequency domain, the pulsed electron beam produces coupling
only among the modes of a given hypermode, and the surviving hypermode of the perfectly
tuned interferometer is identical to the hypermodes of the corresponding two-mirror cavity.
The solid curve in Fig. 4.11(a) shows the output power in the resulting macropulse
as the laser turns on from noise, compared with the output power using the same simulation
parameters for only the single pulse in the cavity (dashed curve). We see that the Michelson
resonator FEL exhibits a slight delay in the turn on time due to the presence of leakage loss-
es at the beamsplitter, but that the macropulse power otherwise grows to essentially the
same level at saturation as the hypermodes and leakage losses decay from pass to pass. The
corresponding leakage power is plotted as the solid curve in Fig. 4.11(b), and the theoret-
cal leakage power is plotted as the dashed curve; this theoretical result is obtained by
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Fig. 4.11 (a): Output macropulse power for the single-pulse simulation of Fig. 4.10 {dashed linc), and for
the Michelson resonator simulation of Fig. 4.10 (solid line). (b): Leakage power for the Michel-
son resonator simulation of Fig. 4.10, showing the theoret‘cal curve (dashed line) calculated
from (4.39), and the simulated curve (solid line).
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multiplying the leakage losses from (4.39) by the simulated intracavity power assuming 5.5
% output coupiing. The simulated leakage power initially exceeds the theoretical prediction
at the start of the macropulse (pass one to pass twenty), because the presence of spontane-
ous radiation in the simulations uniformly repopulates all of the modes as they decay at the
beamsplitter. However, as the intracavity power grows to the onset of saturation (pass
twenty to pass sixty), the relative magnitude of the spontaneous radiation is reduced and the
theoretical leakage power begins to show excellent agreement with the simulated leakage
power.

In the saturated regime beyond pass sixty, the simulated and theoretical leakage
powers in Fig. 4.11(b) again begin to show a significant difference which is maintained to
the end of the macropulse. The origin of this discrepancy lies in the theoretical calculation
of the leakage losses, where we assumed in (4.39) that the surviving hypermode was the
lowest order mode with m = 0. Figure 4.12(a) indicates that this assumption is accurate up
to at least pass fifty, but Fig. 4.12(b) shows that the surviving mode at saturation is m = 1.
Therefore, instead of resulting from hypermode decay (for which (4.39) yields a theoretical
leakage power of 2400 W), the losses at saturation result primarily from destructive inter-
ference of the m = 1 hypermode at the beamsplitter. If we compute the leakage losses at
saturation from (4.37) using ¢ = 0 and m = 1, we obtain an average theoretical leakage
power of 5900 W, which compares more favorably with the simulated leakage power of
5600 W. Tiic reason for the shift in the dominant hypermode from m = 0 before saturation

T T T T T YT | AR S A R |
a L
- W A4O-b -
= = " :
«© « 4
~ 0.002 n V L 1
E - g E 30:.. .:
= p =
e e
° 1 o [ ]
4 | &8 ]
w' 0.001 R 4 ©n [ ]
3 1 8 | :
[} o e y o 10__
= l 1 =
[ bl b L : 1 l!_ .i';.
o'ooorl..Alll...vAAl.ll..Al 0-1....1....1....1‘..‘1
~-0.5 0.0 0.5 1.0 1.5 ~0.5 0.0 0.5 1.0 1.5

Frequency * RF period Frequency * RF period

Fig. 4.12 Macropuise mode structure from the Michelson resonator simulation of Fig. 4.10 after: (a) 50

passes, and (b) 160 passes. The dots in Fig. (a) are the relative mode amplitudes predicted from
the growth rate (4.36).
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to m = 1 after saturation is presently unknown. However, it may result from nonlinear
mode competition [10], coupled with the presence of a small amount of spontaneous radia-
tion at saturation. In most simulations, the surviving hypermode was indeed m = 0, but in
these cases the theoretical leakage power at saturation usually exceeded the simulated leak-
age power, and a greater degree of mode reduction was observed in the corresponding
spectra than would be predicted from the mode analysis. These results are also consistent
with an extraneous mode reduction mechanism. It may be possible to confirm this conjec-
ture in the time domain by changing the depth of saturation via the total resonator losses
[11], and observing any changes in the mode structure and leakage losses. To perform
such simulations in the absence of noise, the initial mode populations can be biased by
preparing the initial pulses with (4.12), in which the | V; ) are given by (4.35) and the c; are
given unit length and random phase.

In the following chapter, I further develop the theory of the Michelson resonator FEL to
properly include the FEL interaction of short electron pulses with the longitudinal modes of
the Michelson mirror resonator. The theory is based on a conventional mode locked laser
analysis using the passive mode structure derived in Section III of the present chapter, and
accordingly, provides a means of accounting for finite interferometer detunings. The pri-
mary motivation for extending the theory is the following (presently unanswered) question:
What range of interferometer detunings yields hypermode decay rates that are appropriate
for applications in spectroscopy? The range should lie somewhere between the perfect
overlap of successive pulses (which yields optimum hypermode decay), and the complete
detuning of successive pulses (which merely yields the axial mode spectrum of a two-
mirror resonator with increased losses.) Apart from answering this question, the extended
theory will also be shown to provide a novel and general method for numerically studying
the evolution of FEL supermodes in arbitrary resonator configuratons.
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Chapter 5

Supermode structure and
mirror detuning effects

Multiple mirror resonators have been suggested as a means to separate and isolate
the longitudinal cavity modes of rf linac-driven free-electron lasers (FELS) for applications
in high resolution spectroscopy. Pro,osed configurations have included the diffraction
grating resonator [1], the intracavity etalon or Fox-Smith interferometer [2], and the Mich-
elson mirror resonator [3], [5], which are all designed to couple successive optical pulses
so that they build up from pass to pass with a definite phase relationship. These resonators
differ in operation from thin intracavity etalons, which have also been proposed as a means
to alter the gross spectral and temporal properties of FELs by filtering individual pulses [4].

In the previous chapter, the passive properties of the Michelson mirror resonator
(see Fig. 4.1) were shown to provide & good quantitative description of the performance of
such resonators on short pulse FELS if the interferometer mirrors were perfectly tuned. The
passive theory was sufficient to account for mode decay, beamsplitter leakage, and mode
selectivity via the phase offset of the secondary interferometer mirror. Furthermore, gross
laser properties such as the spectral and temporal profiles of the pulses, as well as the cav-
ity detuning curve, were unaffected by the presence of the perfectly tuned interferometer.
However, as I report in this chapter, finite detunings of the interferometer can severely alter
the cavity detuning curve, the laser spectrum and pulse structure, and the rate of mode
decay, and cannot be described by the passive theory. These effects can have important
implications for the practical application of such resonators.

Analytical descriptions of the detuning properties of FEL resonators have been
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successfully applied to conventional two-mirror systems, as well as to thin intracavity eta-
lons, in the regimes of small slippage parameters and small cavity detunings [4], [6], [7].
However, these techniques are difficult to apply to the Michelson resonator FEL, because
the latter can operate at saturation with mirror detunings even greater than half of the optical
pulse width, Nevertheless, the longitudinal mode structure of such resonators is always
well defined even for arbitrary mirror detunings. Therefore, a self-consistent description of
the FEL interaction in terms of longitudinal cavity modes should provide a general analysis
of the performance of such resonators.

In the present chapter, I develop such a description by applying conventional mode
locked laser theory [8] to the rf linac-driven Michelson resonator FEL. This analysis actu-
ally reproduces the small signal, small gain coupled mode equations obtained from early
descriptions of the short pulse FEL [9], [10], but the application of the conventional theory
represents a significant simplification in the derivation of those equations, while simulta-
neously providing a clear and intuitive picture of the mode locking mechanism due to short
pulse effects in the absence of noise. The coupled mode equations can be applied to the
mode structure of any resonator configuration, and are valid for arbitrary slippage para-
meters, cavity detunings, and electron pulse shapes; they are applied in the present study to
resonator configurations which include mode dependent cavity losses. I derive the coupled
mode equations in Section II, indicate in Section IIl how harmonic mode locking can sim-
plify the numerical solutions described in Section IV, and compare those solutions in
Section V with simulations of the Michelson resonator FEL using a pulse propagation code
based on the Maxwell-Lorentz equations of motion.

‘ II. THE FEL COUPLED MODE EQUATIONS

In this section, I derive the longitudinal coupled mode equations for FELs driven by
short electron pulses using the injection locking analysis of conventional mode locked laser
theory. The analysis starts from the Maxwell-Lorentz formulation of the FEL interaction
[11], and yields in a straightforward manner the coupled mode equations derived previous-
ly from a rigorous Hamiltonian formalism for the interaction of short electron pulses with
multiple resonator modes [9]. In Section IV, I will apply these equations to the mode evo-
lution in a Michelson mirror resonator with mode dependent cavity losses arising from the
detuning of the second reflection mirror.

A. Temporal analysis

The starting point for the analysis of the longitudinal effects in an FEL is the pair of
generalized Maxwell-Lorentz equations of motion, which were recorded in Chapter 2 as
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Here, ©=Ct/L is the dimensionless time, &(1(1)) = (k + k,,)z(t) - 0t is the phase of the
electron in the ponderomotive potential, v(1(t)) = d§(t)/dt =L [(k + k,)B,(1) - k] is the
phase velocity or resonance parameter, and s = Ny A is the slippage between the optical and
electron pulses which obtains as T varies from 0 to 1 along the undulator. The quantity

_ 4nNG2eK (g - 1Ay

1) = s E(1(1)) ei8G0) (5.3)

is the dimensionless form of the slowly varying part of the (plane-wave) optical electric
field E(z) =2 E1(t)) exp[i(kz - @t + 8(1(t)))] (* indicating rms values), and

=.8.Ez_¢lli K_z_J- 2
: )J)vw(oh)ne

me2 v (5.4

is the dimensionless current density. The parameters appearing in these quantities are de-
fined in Table 5.1 (Section V). Equations (5.1) and (5.2) were combined in Chapter 2 to
yield the small signal pulse propagation equation

1 o

a@) = a@0) +d | dr'r@+ st')j dq (v'- dZ + s(t'-q).q) exp (-ivo(E + st')-(7'-q)
0 0

' ,» (8:3)
which was derived for a long (essentially CW) electron beam with energy chirping. In this
section, we assume that the pulses possess no energy chirp, and focus instead on the mode
locking effects of short electron pulses of arbitrary shape and duration. For this analysis, a
slightly more convenient form of (5.5) is obtained by expressing the microtemporal posi-
tion in terms of the ime t=" 2/c (not related to 1) instead of the position z. For the set of
independent variables (t,t) we may rewrite (5.5), with an implicit change in the form of the
functions T—r and a - a, as

T e '
aty) = a0 +1 | dr'rt-5 I dq (t'q) a(t . ch-q_)’q) exp (-ivo (1'-q))

0 g ‘ , (5.6)

where we have eliminated the Z-dependence of the phase velocity vg. The minus sign in tic
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argument for t results from a reversal of the leading and trailing edges of the pulses when
the independent variable is changed from Z to t.

Equation (5.6) is the primary result of the temporal analysis in the small signal
regime, and is valid for both small and large gains and for any degree of optical slippage.
We proceed to illustrate its application to an important example, namely, the small gain
amplification of a weak CW optical wave due to a short electron pulse.

We first identify the small gain regime by setting a(t --S(T;—q),q) - a(t - S(T;—'q),o) ’
so that for a CW input field a(t,0) = a; we may then eliminate any reference to the micro-
temporal position t in the optical field appearing in the integrand of (5.6). Extracting the
optical field from the integral and carrying the pulse evolution to T =1 then yields

Aa(t) = a(t,1) - a(t,0)
N e
= 2 dr’ r(t--sg-—)j dq (t"-q) exp (-ivo (t'-q)) (5.7
Jo 0
Nwh
[ . .
= apd € Nar' -y LI % .
ao%.J wa)d[ r(t-1) v%[(woﬁ;ﬂ)cxp(woﬁx) 1] (5.8)
0
= a j d' ) gt) (5.9)

where the time dependence of the dimensionless current density is given by
' 202 (LB K2
) = P K g png (5.10)
me> \Y /[ 2,
and the gain function

e { = 2\%(-’:‘%* [(ivoﬁ%“ 1) exp CivogL) - 1] for 0 <1<Na

= 0 otherwise. (5.11)

By normalizing the electron density n.(t) = c_(%\—) f(1) to a total charge of eN, in the elec-
tron pulse, where (A) is the optical mode area, we may finally write the integral in (5.9)
as

% =X j dt’ £t -t') gy, (1) : (5.12)

81




oo
where f fpdt=1, and X = &ié(ﬁ); R 12N 5.13)
= me2 1Y/ A, c(A)

and gy,(t) is given by (5.11). The amplified field of a CW input wave is proportional to the
convolution of the electron pulse shape with the gain function g, (t). This result is illustrat-
ed in Fig. 5.1 in which we display, for two electron pulse shapes, the single pass amplifica-
tion of a CW optical field at the peak of the small signal gain curve using a one dimensional
pulse propagation code [12], and the same interactions using a numerical convolution of

(5.12). In the following paragraph we will apply (5.12) to the derivation of the coupled
mode equations.

0.0015

y Y ' j ] 0.0015 [ : E
(i)a (ii)a
0.0010 —-/j———- 0.0010 ———/\-/;
-1 0 1 2 -1 0 1 2
0.0020 r— ' r T 0.0020 pr— v T Y
o s , 1 © 1 -
= ()b {= ()b :
T 0.0015 F 4 % oo0015F 3
w s i [ ]
5 q /N1 8 [ A S '
£ 00010 I & 00010
g : ] § ' 3
@ ¢ % [ ]
E 0.0005 | 9 ‘g 0.0005 | 4
p 4 <
a ; b I [ ]
0.0000 “hteotoris - e 0.0000 L =t
-1 0 1 2 - 0 1 2
Time (ps) Time (ps)

Fig. 5.1 Single pass amplification of a CW optical wave due to short electron pulses. (i)a, simulation
using a pulse propagation code; (i)b, numerical convolution of eq. (5.12), both using the tophat
pulse shown at bottom. (ii)a;b, same as in (i) except using the inverse parabolic pulse shown at
bottom. The slippage parameter (iNywA/Ctp) equals 0.525 in cach case.

B. Spectral analysis

The spectral energy distribution of the circulating optical field inside a laser cavity
consists, in general, of a superposition of longitudinal cavity modes oscillating within the
gain spectrum. For a slowly varying optical field whose plane-wave components are given
by (5.3), this superposition can be written as the modal expansion [13]

E() ¢ it = Y E (1) eiint = ) E (1) ei2nfat (5.14)

in which the E; (1) are complex valued spectral components which have a slowly varying
time dependence only over many passes in the cavity, and essentially describe the long term
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spectral evolution of the laser field. In the case of a free running laser oscillation the longi-
tudinal modes can be identified as the axial normal modes of the cavity and are separated in
frequency by the passive axial mode spacings (plus any frequency pulling effects). How-
ever, in the presence of forcing due to active intracavity loss or gain modulation, the longi-
tudinal modes will be separated by the driving frequency of the forced modulation, and the
laser will reach a sustained oscillation only if this driving frequency is sufficiently close to
the axial normal mode spacing. In this time-perturbative description of the laser field, the
active modulation produces sideband components on each of the (essentially CW) resonant
normal modes, and these sidebands then injection lock those neighboring normal modes
with which they are in resonance. The successive sideband growth and injection locking
process continues until all of the modes, separated by the driving frequency, are phase
locked to one or more of their neighbors.

The frequency domain analysis of mode locking which describes this injection lock-
ing process is applied by Siegman to the active loss and phase modulation of a conventional
laser oscillator [14]; our derivation of the FEL coupled mode equations for the case of gain
modulation by a pulsed electron beam essentially follows those analyses. We start with the
slowly varying evolution equation for the nh mode of a laser oscillator, derived by Siegman
and written for the case of intracavity modulation (with the sign of ® indicated in (5.14)) as

%-+ Y%-i(mn-ak)]ﬁﬁ%zﬁ (5.15)
orss 8By + | B iTe(on- 0By = aEp 616

where E,, is the complex amplitude of the n'® laser mode, T, is the cavity round trip time, T
is the rate of fractional energy loss, ¥, is the fractional energy loss in one round trip, and
AE®d is the change in amplitude AE, induced on E, by the modulator after one round trip.
The driving frequency w, must lie sufficiently close to one of the axial normal mode fre-
quencies . in order for the injection locking to succesd, and indeed T (@, - @) = (¢, - ¢
must be much smaller than 2x. The phasor interpretation of (5.16) is then straightforward:
the only contributions to the mode E,, arise from the the small phase shift expfi (¢, - ¢.)],
the cavity losses (Yo/2)E, , ana the modulator AET®. This phasor interpretation is illustrat-
ed in Fig. 5.2.

We now consider a CW input field of frequency wy , and calculate the sideband

modulation after a single pass through the undulator due to a train of electron pulses sepa-
rated in ime by T, . For the input waveform we write

E, () = Eg exp(-2rfyt) (5.17)
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Fig. 5.2 Phasor interpretation of the mode locking process in eq. (5.16), showing the superposition of
coincident sidebands produced by an active intracavity modulation.
and the input spectrum is just Einf) = Ex 8(f - fi) (5.18)

where 8(f) is the delta function and the tilde refers to the Fourier domain. Note that the
sign of @ in the expansion (5.14) implies the Fourier transform pair

h@t) = h(f) eizrfrgs (5.19)
h(f) = h(t) eti2xfidy | (5.20)
j 2

To compute the output- waveform, we recall from (5.12) that the amplified field of a CW
input wave is proportional to the convolution of the electron pulsc shape f(t) with the gain
function gv(t) given in (5.11); in this case the resonance parameter vy corresponds to the
input frequency ;. Note that the small gain restriction on this result is consistent with a

general time-perturbative analysis. If instead of a single electron pulse we then have a train
of pulses separated by T, , we obtain for the output field

Eou(t) = Ey exp(-i2nfit) - {l + [K f(t)*gvk(t)]*z &t - nT,)} (5.21)
n

where X is given in (5.13) and * indicates convolution. Note that only the complex enve-
lope of the added ficld is modulated by the comb function z &(t- nTe) . By successively

n
applying the Fourier convolution theorem and the sifting property of the delta function, we
compute the output spectrum to be:




&

Eou(®) = Ex8(f-f) + K Ex 8(f-fk)*[('f'(f)-g"(f;w) T G(f -n-)] (5.22)
= By O(f - fy) + %Ek [(?(f- fi)-£1f - fk:Vk) ; B(f- fy - -'Ix‘t)] (5.23)
= E 8- + %2 Ex (- £ 56 - fiov) - o - £o) (5.24)

where we have defined f, = fy + 7. The terms in the summation with n # 0 represent the
sideband components &(f - f,) induced on the input wave E; by the pulsed electron beam.
If many such modes E; are present, then the total contribution to the mode amplitude E;, for
a given f, is then simply the sum over k (including f, = f;) of all other sidebands coincident

with that mode E;. The modulator term in (5.16) for a pulsed electron beam therefore
becomes '

aeps = K N B Hh- f0flh-fav) . (5.29)
€k
Explicit calculations yield
f(fn - fi) = F dt £(t) exp [+i2n (£, - fi) 1) (5.26)
= f & £@) exp[-i (kq - k) 2] (5.27)

where each of f(t) and () is normalized, and

Efn-fuvy = I“ dt gy, (1) exp[+i2x (f, - fi) 1] (5.28)
_ ]_[ sinvy , cosVa-17] 1) €os(Va-V) -1
Vn Vk VaVk Voo Vg VA (Vo - Vi)
i ) - S i
= -1[Qvavi) + i Svave] (5.30)

where C(v,,v;) and S(v,,v,) are also defined in ref. [9], and we have substituted from
(@, - @) © (V, - V) via the definition of the resonance parameter:

Va-vi = Nk gy L (5.31)

The function C(v,,v,) +i S(v,,v,) may also be written as
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l-eivk _1-evn) . _j ]

ER N AR

. (5.32)
Note that this function, and the integral in (5.27), are complex conjugates of the correspond-
ing functions defined by Dattoli et al [10], because those authors chose a phase expl[i (ax -

kz + 9)] which differs from our choice exp[i (kz - wt + ©)]. The complete coupled mode
equations (5.16) can now be written

E{vn,vy) = QvaVy) + i Vavy) = e-ivn[ (Vn}Vk)

0B, = [-B 4 iT(on- o) B - X T Eefita- 0 EVav) L (6539
¢ x

where X is given by (5.13), f(f, - fy) is given by (5.26) or (5.27), and E(v,,vy) is given
by (5.32). Equation (5.33) is the form of the coupled mode equations which we will apply
to the analysis of the Michelson mirror resonator in Section IV. However, it may also be

cast as separate equations for the mode energy W, =|E, |2 and phase @, = arg(Ey) as:

AWq = -Ya W, - %Z(Wn Wi)'2 - [Bfk cos (n - 91 + Bhy sin (9n - )]
€ x

(5.34)
A@y = Te(wy- @) - 5T 2(&) B’n.kcos((Pn @) - Bhy sin (¢n - (Pk)]
€ k
(5.35)

where we have defined’ By = Biy + i By = f(f, - i) E(vavi) . (5.36)

Finally, we note that the term T, (@,- @) on the RHS of (5.35) can be written in terms of
the temporal detuning between the electron and optical pulses. Defining the modulation
frequency of the electron beam as o, = 2y . and the passive axial mode spacing (for a
tWO-MIITOr resonator) as @,, = 21T, , we may label the oscillating longitudinal modes o,
and the corresponding normal modes @, (with which the former are in resonance) in terms
of the mode number n as follows:

@, = Wy + Ny, (5.37)

and ©, = Wy +nw, , (5.38)
where @y is a reference frequency and n is necessarily the same for each set. The detuning
term T, (@,- @) on the RHS of (5.35) can then be written

! The functions BSy , By arc identical o those defined by Datoli er af [10] for 2 mono-energetic elec-
tron beam of zero emitance. Therefore, the coupled mode equations reported by those authors can be recov-
ered in form by sewing @,y —* - @,y and A, —* - AQy, , as required by the opposite choice of phase.
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T, (@,- @) = T, [(0g + nwy) - (0 + nw,,)]

= ﬁ;’f;n(wm- Our) : (5.39)

and since this term contributes only to the phase @, of the mode E,,, the addition of another

term independent of n merely results in a common shift of the reference phase of the
modes. We may therefore write, using (5.39) and the definitions of @, ®,,, and ®,,:

Te (@ - @) = Te (0n - @) +03021(:fnm$;m.,)

= @y (Tc .‘ Te)
E Oy OTcav . (5.40)

where we have defined 8T, = T, - T, . This completes the derivation of the coupled
mode equations. Itis interesting to note that the time dependent evolution equation of the
small gain supermode theory [10], which arises from a transformation of the coupled mode
equations into the time domain, can be obtained directly from the evolution equation (5.5)
(in the absence of chirping) simply by introducing a few variable substitutions and inter-
changing *he order of integration; in this case, the cavity loss and detuning terms must be
added explicitly. In Section IV, we will apply the coupled mode equations (5.33) to the
evolution of the longitudinal modes in a Michelson mirror resonator with mode dependent
losses ¥, arising from the detuning of the second reflection mirror, and in Section V, we
will compare the numerical solutions with one dimensional simulations of the FEL inter-
action using the Maxwell-Lorentz equations of motion.

II. THE HARMONICALLY MODE LOCKED FEL

Harmonic mode locking is defined as the forced modulation of a laser cavity ata
frequency which is some multiple N of the round trip frequency, producing N mode locked
laser pulses per round trip. Becker et al [15] describe the harmonically mode locked
Nd:YAG laser for N =2 upto N = 5. The primary difference between mode locking with
N =1and N > 1 is that, in the spectral description of the mode locking process, harmonic
modulation produces sideband components on any given mode which are N > 1 axial mode
spacings away. As a result, the modulator couples together only every Nt longitudinal
mode, and as many as N such sets of coupled modes, or hkypermodes, may oscillate at any
instant. The number of hypermodes which do oscillate depends in part on the spatial dis-
tribution of the gain medium. In the above experiments described by Becker er al, mode
locking with N = 2 either produced laser oscillation in both hypermodes simultaneously, or
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in one or the other hypermode randomly, depending respectively on whether the laser rod
was located near the center or near the end of the laser cavity. They never did observe the
continuous oscillation of a single hypermode.

Due to engineering constraints, most rf linac-driven FELs operate with large har-
monic numbers, such as the Mark III FEL [16] which contains N = 35 circulating optical
pulses. Such FELSs, if constructed with conventional two-mirror resonators, will oscillate
simultaneously in all N hypermodes, because the optical pulses build up independently
from noise and are driven independently by fresh electron pulses on every pass. The result-
ing optical pulse train therefore reproduces itself only after every round trip and yields a
spectrum of longitudinal modes separated by the round trip frequency.

However, if &n rf linac is used to drive a multiple mirror resonator such as a Mich-
elson interferometer, successive optical pulses can be coupled by means of the beamsplitter
and will build up from pass to pass only if they interfere constructively in the direction of
the undulator. The operation of such resonators is described in the previous chapter. The
stable cavity eigenmode consists of N phase locked optical pulses separated by the rf period
of the linac, yielding a single hypermode in the output spectrum with longitudinal modes
separated by the rf frequency. One can also describe the spectral evolution towards a single
hypermode in terms of the decay of all other hypermodes due to interference at the beam-
splitter, relative to that hypermode with the lowest such losses. Homogeneous laser satura-
tion then ensures that only a single or at most a few hypermodes dominate the laser spec-
trum, even in the deeply saturated large signal regime.

From the above discussion, it is ciear that the evolution of each hypermode in the
small signal regime is described independently by its own set of coupled mode equations,
with mode losses appropriate to each hypermode. Therefore, when we solve the coupled
mode equations in Section I'V to describe the detuning effects in a Michelson miirror resona-
tor, we assume that only the dominant hypermode and its nearest neighbors comprise the
laser spectrum. Harmonic mode locking then allows us to reduce by a factor of N the num-
ber of modes coupled together within the gain bandwidth; in the simulations to be reported,
the reduction is from ~ 24,000 modes to ~ 680 modes for each hypermode, yielding trac-
table computation times even on a smal’ workstation. Figue 5.3 shows the spectral range
in which we solve the coupled mode equations.

Finally, it may be important to note that the coupled mode equations can be solved
in the above manner even for harmonically driven two-mirror resonators, with a similar
reduction in the number of modes, in order to investigate the supermode evolution for
arbitrary electron pulse shapes. The supermode theory can then be parameterized directly
in the spectral domain for any electron pulse shape and any degree of optical slippage. The
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Fig. 5.3 Frequency band on the small signal gain curve used in the coupled mode simulations. The region
from v = 0 to v = 6.362 encloses 675 iongitdinal modes separated by the f frequency.

main disadvantage is that the iterative procedure used to solve the coupled mode equations
yields only the lowest order supermode, in contrast to the usual analytical treatment of
supermodes in the long bunch regime [4], [6], [7].

IV. SOLUTION OF THE COUPLED MODE EQUATIONS

The coupled mode equations (5.33) are most conveniently solved by iteration on an
initial configuration of longitudinal modes. This method, known as the power method
[17], is appropriate for extracting the dominant eigenvector and associated eigenvalue of a
matrix. Its application in the present case is suggested formally (as well as physically) by
(5.33), in which successive multiplications by a coupling matrix correspond to the physical
mode locking mechanism on successive passes in the resonator. From (5.33), the corre-
sponding matrix equation may be written

M.EP = EP! (5.41)

where E P is a vector containing the complex mode amplitudes on pass p, and the matrix M
has components

Mu = [172—" + 1 Tc (@ - @) | Snx - -2% f(f, - fk)'E(Vka) . (5.42)

The FEL supermodes are defined as the eigenvectors of this coupling matrix, which form a
complete basis due to the fact that M is normal (ie. MM T =M 'M). For the finite subspace
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of vectors spanned by the possible configurations of modes in Fig. 5.3, we assume that the
initial configuration has a non-zero projection onto the lowest order supermode, and that

subsequent matrix iterations correspond to the spectral evolution of the FEL supermodes in
the regime for which spontaneous radiation is negligible.

To solve the coupled mode equations, the longitudinal modes E,, in Fig. 5.3 are ini-
tially populated with equal amplitudes and zero phase. The matrix multiplication indicated
by (5.41) is then performed and the modes renormalized so that Y, | En|2 remains constant

n

on each pass. This matrix multiplication and renormalization are then repeated until the

modes converge on the lowest order supeimode, as indicated by the convergence of the
gain G(p) of the centermost mode E_ with the gain G(p) of the entire spectrum, which we
calculate on each pass p (prior to normalization) according to

2
Ge(p) = E2|® -1 (5.43)
||
Y |E?|?
and Gp) = 2—— -1 . (5.44)
Y |ep|?

(For the numerical results reported in Section V, the solution of the coupled mode equations
usually consisted of 75 iterations, and in most cases the ’cigcnvalucs'2 fie. 1 + G, 1(p)]

settled to within 1% of one another after approximately 20 iterations.)
The mode dependent cavity loss and detuning terms which uniquely characterize the
Michelson mirror resonator were derived in the previous chapter. If the interferometer

contains one rf period of delay in the secondary arm, then the mode loss of the n™® mode is
given by
Yo = yc+4n2r2t2[mﬁ-+n8N]2 , (5.45)

where ¥, is the cavity loss due to mirror reflection and output coupling, 12 is the power
reflectance of the beamsplitter, t2=1 - 12 is the transmittance, my, is the hypermode num-
ber (my, = 0 defining the lowest order hypermode), N is the number of circulating optical
pulses in the resonator, and SN is the small fraction of an rf period representing the detun-
ing of the Michelson interferometer. For finite detunings 8N, the mode loss can become
greater than unity for large [ n |, in which case the mode loss ¥, is set equal to unity. The
resonator detuning term for the n™ mode (compare with (5.40)) is given by

2 The unconventional use in this chapter of the term ‘eigenvalue’ refers to | A 12, where A is the complex
eigenvalue of the coupling matrix and whose corresponding eigenvector is the lowest order supermode.




Te (@n - @) = On (8Tcay + 12 8Thgicr) (5.46)

where @, = n @y is the longitudinal mode frequency, 6T,,, = T, - NT, is the temporal
desynchronism of the optical and electron pulses in the corresponding two-mirror resona-
tor, and 8T);q, is the temporal desynchronism of the Michelson interferometer (proportion-
al to 8N).

The numbering of the modes is unambiguous. For a given set of simulation para-
meters, the centermost mode is obtained by solving the coupled mode equations for the low-
est order hypermode with zero detuning in the interferometer, and labelling as n=0 that
mode which is coincident with the maximum amplitude of the laser spectrum. This mode is
then labelled as n =0 for all other interferometer detunings and hypermode numbers for
the given set of simulation parameters. This prescription is physically motivated by the fact
that the laser wavelength is not afiected by the presence of an intracavity interferometer
under any degree of pulse coupling (a fact which is confirmed by FEL simulations of the
Michelson mirror resonator using the Maxwell-Lorentz equations of motion). Given the
quadratic dependence of ¥, on n, we accordingly choose a numbering scheme which pre-
cludes any wavelength shift for finite detunings SN.

Finally, we note that the coupled mode equations are strictly valid only for plane-
wave interactions in the small signal, small gain regime. However, they can be used to
describe the one dimensional interaction with realistic transverse cavity modes if one
defines an appropriate filling factor for the coefficient X in (5.13). Alternately, for the
comparison in Section V with the pulse propagation simulations in which only the lowest
order Gauss-Laguerre mode is assumed, we calculate the coefficient X directly from the
gain of that mode by assuming continuous electron and optical beams, and integrating the
Maxwell-Lorentz equations directly in terms of the interaction with transverse cavity modes
[18]. If we define the gain go(Vp) at the peak of the small signal gain curve as
a(l) - a(0)

g()(\v'p) E a(o) ’

(5.47)

where a(0), a(1) are the complex fields at the beginning and end of the undulator, then from

(5.33) the corresponding gain for a single longitudinal mode in the laser spectrum is
gO(Vp) = E = - '2% E(vprvp) 3 (548)

where v, = 2.606 is the resonance parameter for maximum small signal gain3. In the case

The corresponding resonance parameter in the pulse propagation code is actually vp~ 4.1 due to the
phase shift of the TEM00 mode.
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of a tophat electron pulse of full width T, (used in the present study) and the same value of
the peak current, we then obtain

X = 21,1800

E(vpvp)|

(5.49)

X can be obtained in a similar manner for other electron pulse shapes by appropriately scal-
ing the number of electrons N, in the pulse.

V. NUMERICAL RESULTS; COMPARISON WITH PULSE PROPAGATION SIMULATIONS

As noted in the Introduction, increasing the interferometer detuning of a Micielson
mirror resonator can severely alter the spectral and temporal properties of the laser. The
most important effects are a broadening and shifting of the cavity detuning curve, a narrow-
ing of the overall laser spectrum, and a decrease in the rate of hypermode decay, all of

Parameter Definition Simuiation vaiue
Optical beam parameters
A Resonant optical wavelength 3.35um
N Number of circulating optical pulses 35
r2 Beamsplitter reflectance 50 %
Y. Extraneous cavity losses 7.3%
R Rayleigh range 73.08 cm
(A) Average optical mode area = 0.01447 cm2
_R.;‘z [1 + l.‘_L_\!_)z]
2 312z
Electron beam parameters
Y Electron beam energy / mc2 83.19
Tp Duration of tophat electron pulse 4ps
I Peak electron current 18.8 A
T RF period 350.1 ps
Wiggler parameters
N, Number of wiggler periods 47
L, Wiggler length 108.1 cm
Ay Wiggler period 2.3cm
K RMS wiggler parameter 1.008
(Jo-J1)? Bessel function factor 0.738

Table 5.1 Definition of FEL parameters, and values used in the coupled mode simulations.




which can have practical consequences for the operation of such resonators or their applica-
tion to spectroscopy. In the following paragraphs, we present numerical solutions of the
coupled mode equations for Michelson resonator FELs with finite detunings in the interfer-
ometer, and compare the results with those from an FEL pulse propagation code using the
Maxwell-Lorentz equations of motion and realistic transverse cavity modes; the latter simu-
lations are described in Chapter 4 and include both electron shot noise and quantum noise.
The simulation parameters are appropriate to the operation of the Mark III FEL and are list-
ed in Table 5.1. Itis interesting to note that the coupled mode simulations run as fast on a

SUNO04 workstation as the corresponding pulse propagation simulations run on a CRAY
Y/MP supercomputer.

A. Broadening of cavity detuning curves

The fact that finite interferometer detunings can affect the cavity detuning curve is
seen immediately from (5.46), in which the frequency detuning term affects the FEL super-
m. Jes only via the net combination of 8T, and 8Ty;;,. Therefore, any finite value of the
latter should alter the detunings 8T,,, for which the FEL supermodes experience maximum
gain. Of course, finite detunings 3Ty;., also introduce mode dependent losses for each
hypermode, and the actual supermode structure depends on this parameter in a manner
described below in paragraph B.

Figure 5.4 displays the cavity detuning curves for several values of the detuning
OLsichy Calculated from the coupled mode simulations for the lowest order hypermode. The

0-5 i v L4 L L 1 Ll L] L] L ] Ll L] L] L] I 1 4 1 ] L] LS ‘ ]
: 6Ly 51 0 g 51
- =431 pum _, 7\~ =51 pm b
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Cavity detuning (microns)

Fig. 5.4 Cavity detuning curves for various fixed values of the secondary Michelson mirror detuning,
with 12 = 50 %. The dashed envelope corresponds 10 8L,y + I SLpy;cy = +10 pum. Note that,
in this chapter, 8L > 0 refers w cavity dewnings shorter than the synchronous length.
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Fig. 5.5 Small signal gains (hash marks) calculated from the pulse propagation simulations, and
comresponding to: (a) the dashed envelope in Fig. 5.4; and (b) the cavity detuning curves for
8L Mich = 0 um and 8Lg;cp = -152 um in Fig. 5.4. Figure 6(c) shows the output power
detuning curves at saturation for the simulations ir. (b) after 160 passes.

dashed envelope corresponds to combinations of 8T,,, and 8Ty, for which the effecrive
cavity detuning in (5.46) is 10 pm shorter than synchronous; this detuning is predicted by
the supermode theory [7] to yield the maximum gain for the parameters listed in Table 5.1.
The broadening of the detuning curves is a manifestation of the general effect of an intra-
cavity etalon [4], and is produced 10 a greater degree in a highly reflecting etalon because of
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the multiple reflections. These broadened and shified detuning curves may yield a practical
advantage in the initial search for the synchronous mirror positions of the Michelson resona-
tor, especially if several beamsplitters are switched during operation. They are also related
to pulse shaping effects described below in paragraph B.

The small signal gains from the corresponding pulse propagation simulat.c ns are
indicated in Fig. 5.5, and were obtained by averaging over passes for which the optical
power was well above the noise level but beneath the onset of saturation. These values
were adjusted to account for the finite leakage losses resulting from the decay of the higher
order hypermodes. Figures 5.5a and 5.5b reproduce the detuning envelope and two of the
cavity detuning curves from Fig. 5.4. The slight enhancement in the gains near the syn-
chronous cavity length in Fig. 5.5b is due to the build up from noise in the pulse propaga-
tion simulations, as observed in previous studies [19]. The power detuning curves in Fig.
5.5¢c were obtained from the above simulations for the same parameters as in Fig. 5.5b, and
indicate that essentially the same degree of broadening is maintained at saturation. Finally,
we note that the reduced gains on the wings of the detuning envelope result from leakage
losses in the lowest order hypermode. These losses are always present for finite interfero-
meter detunings, even in the perfectly phase locked case, because successive circulating
pulses are always displaced relative to one another by the Michelson mirror. It may be
possible to exploit these leakage losses for outcoupling the intracavity power in an inher-
ently uni-directional output beam. However, there is a trade off between increasing the
output coupling with this scheme and maintaining a phase locked optical beam; the latter
problem is studied below in paragraph C.

B. Spectral narrowing of supermodes

In this paragraph we show how the mode dependent cavity losses (5.45) in the low-
est order hypermode alter the form of the surviving FEL supermodes. This result is not
unexpected; these cavity losses result from the detuning of the Michelson interferometer,
and the finite displacement between successive pulses effectively lengthens the spatial
supermodes at the beamsplitter. The corresponding decrease in the width of the overall
spectrum is consistent with mode suppression at the extremes of the gain band where the
losses are higher. These mode losses are indicated in Fig. 5.6 by the passive mode inten-
sities of the lowest order hypermode for various Michelson detunings 8N, which curves
were calculated from the passive frequency response of the detuned Michelson resonator
[5] at the resonant frequencies of that hypermode (assuming y, = 7.3 % extrancous cavity
losses). We see that the losses are independent of mode number only for a zero detuning
ON; finite detunings increase the losses symmetrically about the center mode.

Supermode spectra from the coupled mode simulations are illustrated in Fig. 5.7 for
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secondary mirror detunings ranging from 8L, = O pm to -254 pm (8T, > 0). The
cavity detunings 8T,,, were adjusted to yield an effective detuning in (5.46) of 10 pm. The
overall spectrum is indeed narrowed by increased interferometer detunings. Furthermore, a




97

detuning of dLy;cp, = -254 um, corresponding to 6N = 0.005, is seen to yield a spectral
width of 120 GHz (40 modes), which compares with a width of ~ 20 modes from the pas-
sive mode structure for the same 0N and v, in Fig. 5.6. This broadening of the passive spec-
trum, even in the presence of gain, is due to mode coupling by the short electron pulses.

A comparison between the coupled mode and pulse propagation simulations is illus-
trated in Fig. 5.8, which displays the surviving temporal supermodes for secondary mirror
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Fig. 5.8 Temporal supermodes from the coupled mode (dashed line) and pulse propagation (solid line)
simulations for secondary Michelson mirror detunings of: (a) SLyg;., = +279 um; (b) SLyg;ch =
0 um; (c) SLMich = -254 um.




EXT I

detunings of SLyg;cp, = +279 pm, dLyy;c, = O um, and 8Ly, = -254 pm at the peaks of the
cavity detuning curves. The temporal supermodes from the coupled mode simulations
were obtained simply by Fourier transforming the spectra and normalizing the maximum
powers to unity; the pulse propagation supermodes were obtained by averaging the N
pulses in the cavity just prior to the onset of saturation, and again normalizing the powers
to unity. The time of 0 ps corresponds to the centroid of each curve. Aside from power
fluctuations in the pulse propagation simulations due to the build up from noise in the pres-
ence of the higher order hypermodes, the agreement with the coupled mode simulations is
excellent. The anomaly in the pulse propagation curve for 8Ly, =0 pm may be due to an
incomplete decay of the higher order supermodes prior to the onset of saturation.

Finally, as suggested by the broad power detuning curve in Fig. 5.5c¢, the optical
pulses should remain broad at saturation. This is in fact confirmed from the pulse propaga-
tion simulations, and suggests that the Michelson resonator can be used for palse shaping
in applications requiring variable pulse widths. Such manipulations would be much easier
than altering the linac configuration to yield variable electron pulse widths. On the other
hand, the resulting pulses would generally not be appropriate for high resolution spectro-
scopy, because large detunings of the secondary mirror decrease the decay rates of the
higher order hypermodes. This is shown in the following paragraph.

C. Decrease of the hypermode decay rates

Applications of the Michelson resonator FEL in high resolution spectroscopy
depend upon the suppression of the higher order hypermodes in a time much shorter than
the duration of the macropulse. Optimum hypermode decay is obtained by perfectly over-
lapping the pulses in the interferometer, whereas completely detuning the pulses merely
yields the axial mode spectrum of a two-mirror resonator with increased losses. Therefore,
the problem of determining the range of interferometer detunings which yield tolerable
decay rates has immediate practical consequences. In this paragraph we report the results
of both coupled mode and pulse propagation simulations for the case of finite interfero-
meter detunings.

The incomplete decay of the higher order hypermodes is illustrated in Fig. 5.9,
which shows the macropulse spectra after 160 passes obtained from pulse propagation
simulations of a Michelson resonator FEL with N = 10 circulating pulses and an optimum
beamsplitter reflectance of -2 =50 %. The cavity detunings were adjusted in (5.46) to yield
an effective desynchronism of 10 um. The dots in Fig. 5.9 are the relative mode intensities

after 160 passes calculated from the corresponding coupled mode simulations with N = 10,

which were obtained from the eigenvalues Am, of the surviving supermodes for each of the
my =0, 1, #2 hypermodes according to '
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where Pp,(p) is the macropulse power at pass p from the pulse propagation simulations,
and (ALS)” is the relative spectral hypermode intensity ‘at pass p'.

Discrepancies between the simulations can be attributed to several factors, such as
the build up from shot noise in the pulse propagation simulations, which initially biases and
continuously populates the mode intensities, and the onset of saturation in these simula-
tions, which flattens and shifts the gain curve. Both of these effects are omitted from the
classical small signal analysis from which the coupled mode equations are derived in
Section II. The relative mode intensities from the coupled mode simulations are also seen
to vary more continuously with interferometer detuning than the spectra from the pulse
propagation simulations, which may be evidence for mode competition effects in the latter
simulations during the onset of saturation.

Aside from these discrepancies, we see that the coupled mode simulations repro-
duce the widths of the surviving groups of hypermodes fairly accurately (at least to the
extent that applications to spectroscopy can be practically assessed), and that the asymmetry
of the intensities with respect to the lowest order hypermode is clearly manifest in each set
of simulations. The tolerable detuning range of the interferometer is fairly large, yielding
essentially complete hypermode decay for detunings | SLMich | < 70 pm; the corresponding
shift in the overlap of successive pulses is ~ 140 um, which compares to a slippage length
of 160 um or an electron pulse length (4 ps) of 1200 um. Larger detunings yield mode
spectra that are not appropriate for high resolution spectroscopy. This detuning range is
substantially less than the pulse length, but much larger than the fractional wavelength
stability of the mirrors which must be maintained in order to select and tune the hyper-
modes. We can provide a simplified understanding of these results by examining the
passive mode structure of the detuned Michelson mirror resonator.

From the expression for hypermode loss given in (5.45), we see that for finite de-
tunings ON there exists a mode

n0=-._mh_

N 5N (5.51)

which exhibits essentially zero interferometer loss, even for the higher order hypermodes;
this result is illustrated in Fig. 5.10, which shows the mode structure of the first order hy-
permode for various detunings 6N. If the detuning is small, the mode ny is positioned well
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Fig. 5.10 Passive intracavity intensities of the first order hypermode for various fractional interferometer
detunings 8N, calculated in the same manner as Fig. 5.6. (a) 8N = 0; (b) 8N = 0.0001; (c) ON =
0.0002; (d) 8N = 0.0003; (¢) &N = 0.0004; (f) 8N = 0.0005.

outside of the gain curve, and the mode losses within the gain curve exhibit only a linear
dependence on frequency with little net change in absolute value. However, increasing the
interferometer detuning shifts the mode ng towards the peak of the lowest order hypermode
located (by definition) near the center of the gain curve. Eventually the peaks of, say, the
zeroth and first order hypermodes will both be centered on the gain curve. Since the hyper-
mode curvature (i.e. the second derivative of mode loss with respect to mode number) is
independent of the hypermode number my, these hypermodes will yield FEL supermodes
with essendally the same total leakage losses, and, consequently, the same relative decay
rates.

From the above obserations, we suspect that a decrease in the hypermode decay
rates should occur somewhere between small detunings, for which there is essentially no
change in the relative loss of the zeroth and higher order hypermodes, and large detunings,
for which several of the lowest order hypermodes are peaked near the center of the gain
curve and yield essentially identical net gains. The crossover point can be quantified by
considering the shift in the peak of the first order hypermode due to a finite detuning 6N,
(the analysis does not distinguish between m,, = £1), for which the following criterion is
chosen: The hypermode decay rates start to decrease when the first order hypermode is
peaked at a frequency f. for which the small signal gain is equal to the net gain of that
hypermode in the case o}‘ zero detuning. This criterion is illustrated schematically in Fig.
5.11 and is motivated by the paraphrase that, for zero detuning, the difference in the relative
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Fig. 5.11 Criterion for determining the onset of degradation in the hypermode decay rates. The onset of

degradation occurs when the first order hypermode is peaked at a frequency for which the small
signal gain is equal to the net gain of thai hypermode in the case of zero detuning. The mode
shift and hypermode losses are only schematic and are greatly exaggerated.

decay of the zeroth and first order hypermodes is due to different losses, whereas for finite
detunings, the difference in the relative decay is due to different gains (the mode structures
being equal, but peaked at different positions on the gain curve). The transition should
actually be somewhat gradual, because the FEL supermodes of the first order hypermode
will always be pulled slightly from the crossover point and towards the center of the gain
curve.

To quantify the above criterion, we first expand the CW small signal power gain
G(v) = 2-Re{go(v)} about the peak of the gain curve vy, where go(v) is defined in (5.48)
and vp = 2.606 is the corresponding resonance parameter. The expansion yields

G(v) = £;[0.135 - 0.0221 (v - vp)?]

- (5.52)
where the dimensionless current density is
;= &Ez_Lz(L_W)j - ] 21
L= -J , 5.53
Y ome? |y xw(o 1) c(A)e Gk,

and I is the electron beam current. According to the above criterion, the resonance para-
meter v, corresponding to the frequency f, should then satisfy the following equation:

G(ve) = 0.135 r,--(iﬂ%zﬁ) , (5.54)

where the first order hypermode loss on the RHS is got from (5.45) with m, = 1 and SN =0.
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Note that the common cavity losses ¥, and the leakage losses of the detuned hypermodes

both drop out in an equivalent condition requiring that the relative eigenvalues (instead of
the net gains) be the same. Solving (5.52) and (5.54) for v = v, and converting to f, via the
definition of the resonance parameter (5.31) yields

£ = 673 SC0 _ 5.55
|fe-fp Nok NVE; (5.55)
By relating the frequency shift (fc - ;) to the first order hypermode shift ny from (5.51),
PR S (5.56)
(-L N| &N, | '
e

(in which the ng modes are separated by the rf frequency), and by writing the fractional
detuning 0N as the ratio of the temporal pulse displacement to the 1f period,

8Ten . - 2-8Lkicn
T, T T, , (5.57)

ON,

we may finally combine (5.55), (5.56), and (5.57) to yield our final result for the secondary
mirror detuning 8L§y;,, for which a decrease in the hypermode decay rate becomes evident:
| 8L5gcn | = %‘% (5.58)
This result has an interesting physical interpretation. The most important conse-
quence is that the ‘critical detuning' is independent of both the rf period T, and the number
of pulses N in the cavity. Practical resonator designs will typically have beamsplitter
reflectances between r2 ~ 10 % and r2 ~ 50 %, so that setting r2 = 18.4 % will result in no
more than a 30 % error in (5.58) over that range of reflectances. This approximation gives
ISLi(ichl = 0.191.(NyA)- YT . In moderate gain devices such as the Mark ITI FEL, for
which the s.aall signal gain might range from 30 % to 80 %, we may approximate YTj ~
1.90 with, again, no more than a 30 % error over that range of gains. This second approx-
imation gives l SLCMichl = 0.4-(NwA), which is accurate to about 50 % for the practical
operating parameters given above. We may interpret this result as follows: in order to
obtain the optimum hypermode decay, the gross overlap of the pulses in the interferometer
(ie. 2. IBL‘;MC,,I) should be accurate to within roughly one slippage length, so that the
phase information between corresponding sections of successive pulses can be communi-
cated in a single pass through the wiggler; this communication evidently occurs via the
electron beam. If successive pulses are shifted by more than a slippage distance, more than

one pass will be required to transmit the phase information between pulses, resulting in a
decrease in the hypermode decay rates.

103




T ™ 1 i
-1
107k e F
=~ 107 :
5 3 =
o E —— b
<}
E
o ¢
8 -3
10 " ¢ E
._-E‘ E — — — 1" order hypermode 3
o »d
[ ——— — 2" order hypermode
e
- —-—-— 3 order hypermode
" ——— 4™ order hypermode
107 3 x 3
PO i M AT P, S SO P er iy [N AR o o o7
0.1 1 10 100

Interferometer detuning (um)

Fig. 5.12 Coupled mode simulations of hypermode loss ¥, for N = 35, as a function of secondary
Michelson mirror detuning, calculated as the average loss of the tmy, hypermodes.

The coupled mode simulations actually display this ‘critical detuning' unambigu-
ously. Figure 5.12 shows the relative hypermode losses Y, =1 - A:;l‘ for |myl =1,2,3,4
in a Michelson resonator FEL with N = 35 circulating pulses and an optimum beamsplitter

reflectance of r2 =50 %, where A:: are the relative eigenvalues defined in (5.50). The cavity
and interferometer detunings were again adjusted in (5.46) to yield an effective desynchro-
nism of 10 um. The log-log plot indicates a distinct transition between two asymptotic re-
gions of essentially constant, and rapidly decreasing, losses; the decreased relative losses in
the latter region lead to reduced decay rates. These asymptotes intersect at an interferometer
detuning of 44 pm, which compares with a detuning of 48 um calculated directly from
(5.58) and (5.53) for the parameters listed in Table 5.1 (1j = 4.3); the agreement would actu-
ally be better if an appropriate filling factor were included in the calculation of j. Further-
more, by identifying the relative loss ¥, of the first order hypermode with the decrease in
relative gain from the second term in (5.52), and substituting for the corresponding detun-
ing 8L in a manner similar to the previous calculaton, we obtain (for 8L > 8Ly, )
N2 A2

N2 §L2

so that the hypermode loss is proportional to the inverse square of the detuning 8L. This

result compares with a measured slope of -2.01 for the second asymptote on the log-log
plot in Fig. 5.12.

N = 2 (0.0221) 1 (5.59)
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The output coupling scheme considered in paragraph A can now be re-examined.
By phase locking the optical beam in Fig. 5.9 using a secondary mirror detuning of, say, 50
to 80 pm, with a corresponding cavity detuning of 8L, ~ -15 to -30 pm, we see from Fig.
5.5a that roughly 1 to 3 % of the intracavity power can be outcoupled in the form of leakage
losses. Therefore, in applications to high resolution spectroscopy, outcoupling by means
of leakage losses can be competitive with Brewster plate output coupling, which typically
yields less than 4 % of outcoupled power per surface.

In the following chapter, I report the first operation of a Michelson resonator FEL, and
provide indirect evidence for the presence of mode reduction based on numerical simula-
tions of the leakage losses. In the resonator configuration employed in the experiment, the
output coupler and beamsplitter were two sides of the same (parallel) Brewster plate. Asa
result, the leakage power traveled to the detector with the outcoupled power. Although
practical applications of the Michelson resonator FEL in spectroscopy would normally
require an isolated output beam, the concurrent detection of leakage power in the experi-
ment actually provided the crucial diagnostic, in the absence of mode-selective spectral
diagnostics on the output beam, to indirectly demonstrate the presence of phase locking.
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Chapter 6

A phase locking experiment
on the Mark III free-electron laser

The broad and continuous tunability of the rf linac-driven infrared free-electron
laser (FEL), coupled with its high power picosecond time structure, has greatly enhanced
the research capabilities in the field of infrared spectroscopy. However, the spectral struc-
ture of the optical beam, with longitudina! modes spaced by the round trip frequency in a
bandwidth determined by the Fourier transform of the short pulses, often poses a signifi-
cant limitation for experiments requiring high spectral resolution. A more convenient mode
structure can be obtained by using an intracavity interferometer {1]-[3] to couple successive
optical pulses so that they build up from noise with a definite phase relationship. The
resulting phase locked optical pulses yield a spectrum of longitudinal modes separated by
e rf frequency of the linac, which modes can then be more easily isolated and filtered in
applications to high resolution spectroscopy.

In this chapter, I report the first operation of an FEL using an intracavity Michelson
mirror resonator [4], [S] on the Mark I FEL, and present indirect evidence for phase locked
operation using a beamsplitter reflectance of only 1.4 %. Although mode-selective spectral
diagnostics were not available at the time the experiment was performed, evidence for phase
locking was obtained from measurements of the optical power which indicated a substantial
degree of destructive interference in the output pulses at the beamsplitter. The observed
power fluctuations, and the displacement of the secondary interferometer mirror over which
these fluctuations were observed, are reproduced fairly accurately in both pulse propagation
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simulations (Chapter 4) and coupled mode simulations (Chapter 5) using operating para-
meters appropriate to the ex~rimental configuration.

II. EXPERIMENTAL DESIGN

A. Laser configuration

The Mark IIl FEL (6], [7] is driven by a 2.857 GHz pulsed rf linac using electrons
from a synchronized microwave gun and a thermionic cathode source. Since thermionic
emission fills every bucket of the rf wave, the electron micropulses are delivered to the
laser at the 1f frequency of 2.857 GHz; this driving frequency harmonically mode locks the
1.837 m resonator and yields 35 independently circulating optical micropulses per round
trip. The linac energy was set to roughly 38.4 MeV in the present experiment and the las-
ing wavelength was 3.2 um, corresponding to an rms 'wigglcr field of 3.5 kGauss over
each 2.3 cm wiggler period. The rf source was pulsed at a repetition rate of 15 Hz, and the
average current was roughly 105 mA over an electron macropulse duration of 2.5 ys; this
current was inferred from an inductive toroid positioned at the exit of the linac.

The optical cavity uses metal cavity mirrors and Brewster plate output coupling of
the horizontally polarized radiation. The vacuum chamber containing the upstream cavity
mirror and output couplers was designed to allow four choices of Brewster plates, two of
which can be placed on the beamline at the same time. In the usual configuration, a single
Brewster plate is inserted into the beam, and only the reflections from one side of that plate
are normally outcoupled to the user laboratory. However, one of the output couplers is
positioned beside a Brewster window on the vacuum chamber, which allows the alignment

of an external mirror for redirecting the secondary outcoupled reflections into the user
laboratory as well.

B. Michelson mirror resonator

The Michelson mirror resonator was constructed using a 2 mm thick, uncoated zinc
selenide Brewster plate placed beside the vacuum window, with one surface acting as the
beamsplitter and the other surface acting as the output coupler. The optical cavity and laser
diagnostics are shown in Fig. 6.1. The angle of incidence was ¥; = 60.8°, which was mea-
sured with a He-Ne laser co-aligned to the resonator and outcoupled through the side vac-
uum window. The corresponding reflectance of each surface (calculated from the Fresnel
equations [8]) was 1.4 %. The radius of curvature of mirrors M1, M2, and M3 was 150
cm, with M2 positioned on a translation stage so that its distance from the Brewster plate
was one half of an rf wavelength longer than the distance from M1 to the Brewster plate.
As a result of this mirror placement, the linear resonator formed by } .2 and M3 yielded a
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Fig. 6.1 Experimental configuration of the Michelson mirrar resonator and the optical diagnostics. The
round trip time from the back surface of Brewster plate BP 10 the secondary mirror M2 is one rf
period longer than the round trip time from BP to M1. Mirrors M2 and M3 are on translation
stages. The Brewster plate is an uncoated ZnSe etalon with a thickness of t = 2 mm and an an-
gle of incidence of ¥; = 60.8°. The transverse deviation between the two surface reflections is
A =0.73 mm. The leakage beam is shown as the dashed line.

slightly different Rayleigh range than the linear resonator formed by M1 and M3. How-
ever, calculations using the appropriate radii of curvature for the ransverse modes at the
beamsplitter indicated a negligible reduction in the Strehl ratio of the superposed beam.
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The most important feature of the experiment resulted from the 5 arc second parallel-
ism of the Brewster plate, due to which both the output and leakage beams traveled to the
detector with a transverse deviation of less than 180 pm over 7.3 m. The coincident detec-
tion of leakage power was actually used to infer the presence of phase locking, as explained
below. On the other hand, the 2 mm thickness yielded a transverse displacem:nt of A =
0.73 mm between the two beams. As a result, only a single secondary reflection from the
external mirror could be aligned to the laser diagnostics; the other beam (shown as the skew
reflection on M2 in Fig. 6.1) was displaced transversely by roughly 7 mm in the laboratory
and was vignetted by an aperture placed in front of the laser diagnostics.

C. Laser diagnostics

The diagnostic apparatus consisted primarily of a mouochrometer to measure the
wavelength and a fast gold-doped germanium detector to measure the time dependent opti-
cal power during the macropulse. A co-linear optical autocorrelator (not shown in Fig.
6.1) was also used to measure the duration of the optical micropulses.

The discance from the laser to the diagnostic tabie was roughly 7.3 m. The optical
beam was first spatially filtered with an aperture in order to vignette the skew reflection
from the secondary mirror M2. A removable mirror could then be positioned to direct the
beam into a 1 m: grating monochrometer. Otherwise, the beam continued through a colli-
mating telescope and a germanium Brewster plate which was used to filter out the coherent
harmonics of the FEL. In order to locate the synchronous position of mirror M2, the fil-
tered beam was first passed through a Type I phase-matched lithium niobate crystal to ampli-
fy small changes in peak intensity. A polarizer after the doubling crystal was used to filter
the horizontally polarized fundamental light from the vertically polarized doubled light, and
the doubled bea: was then focused onto the Ge:Au detector.

I1I. EXPERIMENTAL PROCEDURE AND RESULTS

To bring the Michelson resonator to lasing, the secondary mirror M2 was first de-
tuned, and the position of mirror M3 was set by scanning the cavity length until the optical
macropulse through the doubling crystal showed the greatest peak power with the smallest
fluctuations; this position corresponded to the stable maximum of the cavity d=tuning curve.
The secondary mirror M2 was then aligned transversely using the co-aligned He-Ne laser,
and the position of synchronism determined by translating the secondary stage until the
largest power fluctuations in the doubled beam were observed on the detector. The second-

ary mirror was then resteered to optimize the transverse overlap, and the doubling crystal
was removed in order to observe the 3.2 pum beam on the detector.
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Figure 6.2 shows oscilloscope traces of the detector response displaying the enve-
lopes of 32 successive macropulses in cases in which (a) the secondary mirror was com-
pletely detuned, and (b) the secondary mirror was longitudinally synchronized; the power
fluctuations are +5 % and +25 % respectively. Note that, apart from the large intrinsic fluc-
tuations in the synchronized case, the lower limit of the laser power in Fig. 6.2(b) is 14 %
smaller than the mean macropulse power from Fig. 6.2(a); in some instances, reductions as
gn:ét as 27 % and enhancements as large as 52 % (i.e. fluctuations of +35 %) were also ob-
served. These power fluctuations were observed over a range of 225 pm in the position of
the secondary mirror, and were rather abruptly extinguished outside of this range. Treated
as an autocorrelation measurement, this tuning range would indicate a pulse widthof 1.1 +
0.4 ps (the uncertainty resulting from the distorted pulse shape and the estimated degree of
overlap within which any power fluctuations would be manifest.) To confirm that this tun-
ing range was indeed due to the synchronism of mirror M2, a proper autocorrelation mea-
surement [9] was also performed on the diagnostic table for the case in which the secondary
mirror was desynchronized. The autocorrelation trace is shown in Fig. 6.3 and indicates a
roughly Gaussian profile with a FWHM pulse width of At = 1.2 ps. The corresponding op-
tical spectrum obtained on the monochrometer is shown in Fig. 6.4. The time-bandwidth

product for the pulses is At - Av = 0.56, which is slightly larger than the transform limited
product of 0.44.

|1_'Tﬁ_7__f__'."_“'_ 3

B .) 2nd mirror detuned i b) 2nd mirror synchronized

Fig. 6.2  Oscilloscope traces of the Ge:Au detector response showing the envelopes of 32 successive
macropulses for a Michelson mirror resonator with N = 35 pulses and 1.4 % coupling in which
the secondary mirror was (a) completely deuned, and (b) synchronous at the position of one rf
period delay. Honzontal scale is 0.5 ps/div.
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Fig. 6.3 Optical autocorrelation trace of the micropulses from the laser in which the secondary mirror was
completely detuned. The 0.010" FWHM refers to the displacement of the autocorrelator mirror.

The FWHM delay is therefore 0.020", which yields a FWHM pulse duration of 1.2 ps assuming
a Gaussian optical pulse profile. (From [9).)
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Fig. 6.4 Spectrum of the optical beam from the laser in which the secondary mimor was completely de-
tuned, obtained using 2 1 m monochrometer. The time-bandwidth product of the optical pulses
is 0.56, which is slightly larger than the transform limit for Gaussian pulses. (From (9).)




The most remarkable aspect of the above results is the dramatic change in the entire
macropulse power resulting from only a 1.4 % beamsplitter reflectance. If mirror M2 were
positioned so that the same optical pulses instead of successive ones were coupled at the
beamsplitter, a trace of the output power (including leakage) versus mirror position would
show interference fringes with an amplitude of £67 % for every half wavelength in the
mirror position. This is not much greater than the largest fluctuations observed in the above
experiment in which successive pulses were coupled, a fact which suggests strongly that
the macropulses were at least partially phase locked. Nevertheless, the presence of phase
locking does not explain the origin of the fluctuations; in particular, the complete destruc-
tive interference of the leakage beam due to phase locking would always decrease the total
output power. In Section IV, we will demonstrate that such fluctuations could be caused
by a mechanical jitter on the secondary mirror mount.

IV. NUMERICAL SIMULATIONS

A. Simulation parameters

Pulse propagation simulations of the above experiment were performed in order to
determine the degree to which the optical beam would be phase locked; the computer code
is described in Chapter 4. The simulations of the detuned Michelson resonator, which fol-
lowed the growth of only a single pulse, assumed a total output coupling of 4.2 % (three
beams aligned with the detector) and a total loss of 7.3 %. The simvlations of the synchro-
nized Michelson mirror resonator using 35 coupled pulses assumed a total output coupling
of 1.4 % (one beam aligned with the detector) and a total loss of 4.6 %. In each case, the
output coupling neglected the skew reflection from the secondary mirror, but the total loss
included this reflection plus an extraneous mirror loss of 1.8 %. The output coupling and
total losses in the detuned resonator were greater than those of the synchronized resonator
by two surface reflections (2.8 %) becaus’. the second surface in the latter case acted as the
beamsplitter; the leakage losses in the latter simulations appeared naturally in addition to the
total losses, and were added explicitly to the outcoupled beam to compute the total output
power reaching the detector.

The cavity detuning at mirror M3 was determined from a series of simulations of
the detuning curve, in which eight simulations were performed at positions separated by
0.76 um near the synchronous length. A detuning of 2.3 um shorter than synchronous
was chosen to correspond to the stable maximum of the detuning curve; the power fluc-
tuations at that point were only +3 %, compared to +60 % at the synchronous length.

The other simulation parameters were determined from the operating configurations
of the linac and FEL. The electron beam energy was 38.4 MeV and the optical wavelength
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Parameter Definition Simulation value
Optical beam parameters
A Resonant optical wavelength 3.2um
N Number of circulating optical pulses 35
r2 Beamsplitter reflectance 1.4%
Yout Output coupling 4.2 % (detuned)
1.4 % (synchronized)
Yiot Total cavity losses 7.3 % (detuned)
4.6 % (synchronized)
Zp Rayleigh range 73.08 cm
OL oy Cavity detuning (shorter than synch). 2.3um
Pis Number of passes (2.5 us) 200
Electron beam parameters
Y Electron beam energy / mc2 75.15
oyl Inhomogeneous energy spread (1/e ) 0.5%
T Duration of tophat electron pulse 1.6ps
I Peak electron current 23A
GRF Inhomogeneous gain reduction factor 0.8
T RF period 350.1 ps
€x Normalized horizontal emittance (1/e ) 8x mm-mrad
&y Normalized vertical emittance (1/e ) 4z mm-mrad
Bx Horizontal focussing parameter 45cm
Wiggler parameters
N, Number of wiggler periods 47
L, Wiggler length 108.1 cm
A, Wiggler pericd 2.3cm
K RMS wiggler parameter 0.756
(Jo-3))2 Bessel function factor 0.812

Table 6.1 Parameters used in the simulations of the Mark ITI experiment.

was 3.2 um. The durations of the electron and optical pulses were assumed to be the same.

- Since tophat electron pulses were used in all of the simulations, the pulse duration (1.6 ps)

was chosen to yield roughly the same rms pulse width as a Gaussian pulse witha FWHM
duration of 1.2 ps. The electron beam current during the macropulse was roughly 105 mA,
corresponding to a peak micropulse current of 23 A. However, the peak current used in the
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simulations was also multiplied by an inhomogeneous gain reduction factor [10] to account

for the effects of emittance and energy spread. All of the simulation parameters are listed in
Table 6.1.

B. Simulation results

The degree of mode reduction resulting from a beamsplitter reflectance of 1.4 % is
illustrated in Fig. 6.5, which shows the average mode spectrum of the entire macropulse
for eight simulations of the synchronized resonator. The dots are the relative mode powers
predicted from the eigenmode analysis of Chapter 4, weighted over the macropulse. We see
that the mode reduction is substantial and can be expected to yield relatively small leakage
losses. Indeed, the leakage losses calculated from eq. (4.39) of Chapter 4 are only 0.26 %
after 200 passes, which is substantially smaller than the 2.8 % output coupling from the
beamsplitter which would result from the superposition of pulses with uncorrelated phases.

A comparison of the simulated output powers for the detuned and synchronized res-
onators is shown in Fig. 6.6. We see that the total output power in the synchronized case
is reduced by 42 % from the power in the detuned resonator, and the fluctuations are only
17 %. Therefore, the degree of phase locking indicated by Fig. €.5 can have a dramatic
effect on the total outcoupled power. On the other hand, the +7 % fluctuations do not
reproduce the fluctuations observed in the experiment. To determine whether the presence
of jitter in the secondary mirror mount could cause these fluctuations, I performed a series
of simulations in which the phase offset between successive pulses was continuously
slewed over the macropulse. Total phase shifts of x, 2x, 4%, and 8% radians were exam-
ined using eight simulations for each value, and the largest effect was observed for a phase
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Fig. 6.5 Longiwdinal mode spectrum of a perfectly tuned Michelson resonator FEL with 35 pulses and
a beamsplitter reflectance of 1.4 %. The spectra for 200 passes are averaged over eight simula-
tions. The dots are the mode powers predicted from the eigenmode analysis of Chapter 4.
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Fig. 6.6 Simulated output macropulse powers for (a) the completely detuned Michelson mirror resonator,
and (b) the phase locked Michelson mirror resonator. The curves in each case show the enve-
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Fig. 6.7 (a) Simulated output macropulse powers for the partially phase locked Michelson mirror resona-
tor with a total slew (during the macropulse) of 2x radians in the relative phase offset at the

secondary mirror. (b) Macropulse envelopes for the partially phase locked beam from Fig. 6.7(a)
and the maximally phase locked beam from Fig. 6.6(b); the fluctuations are +33 %.

shift of 2r radians. The corresponding macropulse powers are shown in Fig. 6.7(a). We
see that the total outcoupled power with jitter on the mirror mount can even be greater than
the output power shown in Fig. 6.6(a) for the detuned resonator. Evidently, the phase slew
acts as a kind of continuous cavity dumping, and forces the partially phase locked output
pulses from destructive interference to constructive interference at the beamsplitter. The
envelopes in Fig. 6.7(b) mimic the oscilloscope trace from Fig. 6.2(b) using the slewed
macropulses from Fig. 6.7(a) and the stable macropulses from Fig. 6.6(b). The simulated
fluctuations are £33 %, and are consistent with the largest fluctuations observed in the ex-
periment.




Finally, if the fluctuations observed in the experiment were indeed due to a continu-
ous cavity dumping of the partially phase locked optical beam, then the tuning range of the
secondary mirror within which these fluctuations were observed could be interpreted as the
tuning range over which phase locking was induced in the mactopulse. The ‘critical' sec-
ondary mirror detuning was calculated in Chapter 5,

| 8Ll = %%'({r_?)- , (6.1
and yields a total detuning range of 2- | SLiﬁchl = 360 pm for the experimental parameters
(1j =3.6). Note that this range is considerably larger than the slippage distance of 150 um,
because the square root of the small reflectance appears in the denominator, but it is well
within a factor of two of the 225 pm range observed in the experiment. The discrepancy is
most likely due to the ambiguity in using the observed power fluctuations and the decreased
hypermode decay rates as indicators of the degree of phase locking. Furthermore, eq. (6.1)
assumed that the optical pulses were much longer than the slippage distance and that super-
mode effects could be neglected. This may not be true for the 1.6 ps pulses assumed in the
present experiment. Figure 6.8 shows the first order hypermode losses calculated from the
coupled mode simulations for the experimental parameters in Table 6.1. The 3 dB points
are roughly 100 pm on the long-cavity side and 150 pum on the short-cavity side, indicating
a phase locked tuning range of 250 pm for the secondary mirror. This value is much closer
to the range observed in the experiment. However, any conclusions regarding the detuning
range are still ambiguous for the reasons noted above.
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Fig. 6.8 Coupled mode simulations of the first order hypermode loss in a Michelson mirror resonator with
the parameters listed in Table 6.1. (a) Mirror displacement towards the long-cavity side; (b) Mir-
ror Cisplacement towards the short-cavity side.
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V. DISCUSSION AND CONCLUSIONS

I have described a phase locking experiment on the Mark Il FEL using a Michelson
mirror resonator with a beamsplitter reflectance of only 1.4 %. Measurements on the output
optical beam showed substantial fluctuations (as large as 335 % in some instances) in the
total power reaching the detector, which included the leakage power from the beamsplitter.
Evidence for phase locking was inferred from a substantial reduction in power for some
macropulses, which suggested the presence of destructive interference in the leakage beam.
The power fluctuations were observed over a range of 225 pum in the position of the second-
ary mirror, which was consistent with autocorrelation measurements of the width of the
output pulses.

Simulations of the above experiment showed that substantial phase locking could be
induced with a 1.4 % reflectance, and that the leakage power could be almost extinguished
due to destructive interference in the outcoupled beam. However, the fluctuations observed
in the experiment could only be simulated by imposing a continuous slew in the relative
phase offset at the secondary mirror. A phase slew of 2x radians (one optical wave) during
the macropulse was sufficient to induce simulated fluctuations of £33 % in the outcoupled
power, which was very close to the fluctuations observed in the experiment. Consequently,
if the macropulses were phase locked, they were probably also subject to mechanical vibra-
tions on the interferometer mirror. The most likely source of these fluctuations was the
mechanical coupling of a turbo pump to the vacuum chamber which housed the intzrferome-
ter optics. (The vibrations were later discovered to have actually unscrewed one of the small
bolts on the flange of the side vacuum window.) Such vibrations could have caus=d a quasi-
continuous cavity dumping of some of the macropulses during the phase locking process.
However, the maximum output powers observed in the simulations were only slightly
enhanced over the output powers from the detuned resonator, whereas the enhancements
observed in the experiment were as large as 52 %. This discrepancy remains unexplained.
However, it may indicate imperfections in the alignment of the infrared optical beams.
Another possibility is that, if phase locking were not induced to the degree suggested by the
simulations, then fluctuations could still be caused by a random walk superposition of the
output pulses in the leakage beam. If we represent the N pulses in the entire intracavity
macropulse train as exp[ivy); n =1,..., N, where the phases of the N = 35 circulating pulsss

are random but repeat identically from pass to pass, then the total output power (including
leakage) is

E [lrci"“|2+lrciﬁ"-rci‘s“"lz] =r2N +2r'~’N(1 +-1_| .(6.2)
n=1 —{Z—N_
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For N = 35, the rms fluctuations are 8 %, which is considerably smaller than the fluctua-
tions observed in the experiment. It may be possible that some of the absolute fluctuations
were as large as the observed fluctuations. However, it is also clear from the theory and

simulations that the phases of the optical pulses evolve considerably from pass to pass, and
do not remain completely uncorrelated.

At best, the above results suggest only indirectly that phase locking was achieved in
the experiment. However, the dramatic effect on the output power for a beamsplitter reflec-
tance of only 1.4 % also suggests that phase locking should be readily achieved with an op-
timum reflectance of 50 %. An unambiguous demonstration of phase locking will require
stabilized mirror mounts, and spectral measurements of the longitudinai mode structure of
the output beam in which the leakage losses from: the beansplitter are completely isolated
and filtered. Appendix B describes the design of a practical Michelson mirror resonator on

the Mark III FEL, as well as spectral diagnostics which have been procured for future ex-
periments on that laser.
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Chapter 7

Summary and conclusions

In this dissertation, I have reported extensive analytic and numerical investigations
of the optical pulse evolution in rf linac-driven free-electron lasers in both the chirped-pulse
and phase locked modes of operation. These studies were motivated in general by the tre-
mendous potential impact that such enhancements could provide in the fields of fast-time
resolved and high spectral resolution infrared spectroscopies, and in particular by the possi-
bility of implementing both of these enhancements on the Mark Il infrared FEL. The
chirped-pulse mode of operation uses electron micropulses with a linear temporal energy
dependence to drive the formation of broad band optical pulses with a linear temporal fre-
quency dependence; these ‘chirped’ optical pulses are susceptible to pulse compression in
an external dispersive delay line. The phase locked mode of operation uses an intracavity
interferometer to couple successive optical pulses so that they build up from noise with a
definite phase relationship; these 'phase locked' optical pulses yield well separated longi-
tudinal modes in the output beam that can be individually filtered for applications in high
resolution spectroscopy. Small signal analyses were fully developed for each of these
modes of operation, which analyses were supported by numerical pulse propagation simu-

lations whose parameters were chosen to guide the design of feasible experiments on the
Mark ITI FEL.

The chirped-pulse FEL

The small signal regime of the chirped-pulse FEL was shown to possess completely
analogous properties to the small signal tapered wiggler FEL, except that the former yields
strongly chirped optcal pulses whereas the latter does not. In particular, small energy
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chirps merely shift the optimum resonance parameter of the small signal gain curve with no
distortion in the gain function, but dimensionless energy chirps much larger than the gain
bandwidth divided by the slippage distance severely distort the gain spectrum and reduce
the overall gain in an analogous manner to the tapered wiggler FEL. Nevertheless, in most
applications of the chirped-pulse FEL to pulse compression, substantial compression ratios
can be obtained with energy chirps much smaller than this limit. For example, simulations
of the Mark IIT FEL at 3.35 pm using relatively short electron pulses (4 ps) and modest en-
ergy chirps (+2 %) demonstrated the formation of broad band optical pulses that could be
compressed from 3.4 ps to 220 fs with compressed peak powers of 30 MW.

The simulations also showed that the frequency chirp is partially affected by both the
transverse mode structure of the resonator and by the onset of saturation, and that the extrac-
ton efficiency depends strongly on the energy chirp in the presence of finite cavity length
detunings. The two most important consequences were that: (1) due to an intrinsic frequen-
cy chirping in the FEL, electron pulses with a positive energy chirp yielded larger frequency
chirps than electron pulses with a negative energy chirp of the same magnitude; and (2) for
cavity lengths shorter than the synchronous length, negatively chirped electron pulses yield-
ed a substantally greater extraction efficiency than positively chirped pulses, although the
converse was true for cavity lengths longer than the synchronous length. Negative energy
chirps were originally predicted to increase the extraction efficiency at saturation due to the
adiabatic deceleration of trapped electrons, and it is therefore interesting to find that enhanced

efficiencies can in fact be obtained with energy chirps of either sign (although the energy
extraction mechanism is not related to adiabatic deceleration.)

The Michelson resonator FEL

I also performed analytical and numerical investigations on the feasibility of using a
Michelson mirror resonator on FELs driven by tf linacs to couple successive optical pulses
in the pulse train. In such a configuration, the optical pulses will grow only if adjacent
pulses maintain a definite phase relationship, and in this fashion the axial mode spacing can
be increased from the round trip frequency up to the driving frequency of the f linac. A
linear eigenmode analysis was presented which predicted the time scale on which the short
optical pulses vecome phase locked; this analysis can be used to calculate the mode losses
and decay rates in practical applications of these resonators. The mode structure predicted
by this analysis was also shown to be equivalent to the mode structure obtained from the
passive frequency response of the Michelson mirror resonator. The latter has a wider range
of application because it can be calculated for any resonator configuration (for example, the
Fox-Smith interferometer) with arbitrary mirror detunings.
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Pulse propagation simulations of the perfectly tuned Michelson mirror resonator,
using parameters appropriate to the Mark IIl FEL, confirmed the corresponding increase in
the axial mode spacing of the output beam on microsecond time scales. The perfectly tuned
interferometer was shown to have no appreciable effect on the overall spectrum of the opti-
cal beam, but the temporal evolution of the supporting longitudinal modes was accurately
predicted from the eigenmode analysis. Furthermore, the simulations also indicated that the
phase locked optical beam in the perfectly tuned interferometer grows to the samie saturated
power level as the randomly phased beam. This latter property is particularly important for
applications in nonlinear spectroscopy. Since the spectral width of the output beam is deter-
mined primarily by the duration of the short electron pulses, a decrease by a factor of N
in the number of modes yields an increase by the same factor in the power per mode, where
N is the number of pulses in the cavity. This can be well over an order of magnitude in-
crease in the spectral brightness.

In order to study the effects of finite interferometer detunings, I applied conveniional
mode locked laser theory to the evolution of the longitudinal modes in the Michelson reso-
nator FEL, and obtained a greatly simplified derivation of the small signal, small gain FEL
coupled mode equations. These equations were solved numerically to study supermode
evolution in the presence of arbitrary mirror detunings, and the results were compared with
simulations of the Michelson resonator FEL using a pulse propagation code based on the
Maxwell-Lorentz equations of motion. The effects of increasing the interferometer detuning
included a shift and broadening of the cavity detuning curves, a narrowing of the supermode
spectrum, and a decrease in the rate of hypermode decay. Practical consequences of all of
these effects were discussed. A significant achievement of the coupled mode analysis was
the confirmation of a simple theory describing the dependence of the hypermode decay rates
on the detuning, which theory indicated for most laser configurations that the hypermode
decay rates remain large as long as the relative shift between the coupled pulses in the inter-
acton region is less than the slippage distance.

The demonstrated agreement between the pulse propagation and coupled mode sim-
uladons with regard to small signal gain, supermode structure, and hypermode decay indi-
cated that the latter simulations are entirely appropriate for general resonator analysis. In
practice, it is much simpler to implement an arbitrary mode structure in the coupled mode
analysis than 10 implement an arbitrary pulse coupling geometry in the pulse propagation
code. These analyses can easily be applied to the mode structure of resonators incorporat-
ing an intracavity ctalon or Fox-Smith interferometer, and may also be appropriate for

studying the supermode evolution for arbitrary slippage parameters and electron pulse
shapes in conventional two-mirTor resonators.
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Preliminary experimental results

Finally, I described a phase locking experiment on the Mark Il FEL using a Michel-
son mirror resonator with a beamsplitter reflectance of only 1.4 %. Evidence for phase
locking was inferred from a substantial reduction in power for some of the macropulses,
which suggested the presence of destructive interference in the leakage beam. Simulations
of the experiment demonstrated that substantial phase locking could indeed be induced with
a 1.4 % reflectance, and that the leakage power could be almost extinguished due to destruc-
tive interference in the outcoupled beam. Although substantial fluctuations in the output
power were also observed in the experiment, they could be reproduced in the simulatons
by imposing a mechanical jitter on the interferometer mirror.

The dramatic effect on the output power for a beamsplitter reflectance of only 1.4 %
suggests that phase locking should be readily achieved with an optimum reflectance of 50
%. An unambiguous demonstration of phase locking, and the applicaton of phase locked
optical beams in spectroscopy, will probably require actively stabilized mirror mounts, and
will certainly require spectral diagnostics capable of resolving the individual longitudinal

modes. However, the design and implementation of such apparatus should not be too tech-
nically demanding for infrared wavelengths.
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Appendix A

Optical diagnostics for
chirped-pulse free-electron lasers

In recent years there have been several proposals to operate rf-linac driven FELs
with chirped energy electron micropulses for applications in fast time-resolved spectro-
scopy, in which the output optical pulses possess appreciable frequency chirps and are
susceptible to pulse compression in an external dispersive delay line [1]-[3]. The physical
principles governing these experiments are geneally not specific to a particular wavelength,
because substantial energy chirps can be achieved at a given energy simply by dephasing
the electron bunches relative to the accelerating field in the accelerator. Consequently, the
most practical realizations of these experiments should employ broad band optics in both
the optical transport and diagnostic apparatus in order to fully exploit the inherent tunability
of the FEL.

In this appendix, I describe the implementation of this experiment on the Mark III
FEL for wavelengths between 2.5 pum and 4.1 pm, using a broad band sapphire prism
pulse compressor which has been des: med and procured for applications in a user-oriented
program at Duke University. Section II gives a brief tutorial review of linear pulse propa-
gation and pulse compression, and presents some apparently original expressions for the
compression of several ideal pulse shapes with linear frequency chirps. Section I reviews
the relevant principles of the chirped pulse FEL, and lists the pulse parameters for the Mark
IIl experiments on which the design of the pulse compressor (Section I'V) and the autocor-
relator (Section V) are based. Finally, Section VI suggests some possible extensions to
other wavelength regimes in the near and far infrared.
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II. PULSE PARAMETERS

A chirped optical pulse is most conveniently characterized by a chirp parameter 'b’
and a pulse width parameter 'a' [4] defined by

o(t) = wg+ (2b)t (A1)
and a= 21:?2 , (A2)

where (t) is the time-dependent optical frequency and 7 is the FWHM pulse width. The
spectrum of an optical pulse

E(t) = E@) exp|-j (wot + bt2)) (A3)

can then be written in the general form

E@) = B exp| +j—2——(0- )2 + jO@- w)}| (A4
4[f(a,b) + b?]

where f(a,b) is a form factor that depends on the pulse shape; for example, f(a,b) = a2 for

Gaussian pulses. The first order term in the exponent can be omitted because it affects only

the centroid of the pulse, and if the frequency chirp is large and purely linear, then the high-
er order terms are usually negligible.

Second order phase compensation means 10 eliminate the j[-](@ - wp)? term in the
spectral phase factor, and is the usual manner of compressing the pulse. This is accom-

plished by sending the pulse through a dispersive delay line, which has the effect of mula-
plying the spectrum by a phase factor of the form

.1 d2 :
-cXP{+J-2LE£;(m-wo)2+JO(m-mo)3] : (A.5)

The spectral width (as determined from IE(&)) I 2) is unaltered by this propagation, but the
compensated optical pulse has essentiaily no frequency chirp, since b = 0 in the absence of
the sccond order term in (A.4). As a result, the original spectral content of the pulse is ef-
fectively transferred from the optical phase to the optical envelope, and the pulse is com-
pressed. The coefficient of the quadratic frequency term in (A.5) which compensates the
corresponding term in (A.4) can be written phenomenologically as

d*o
Ty
comp

dw? b-K(a,b)

where K(a,b) is a factor that depends on the pulse shape and on the rato of (a/b), and has




a limitng value of K -+ 4 as (a/b) = 0. Figure A.1 displays the numerically derived values
of K(a,b) for several ideal pulse shapes, and Fig. A.2 displays the corresponding pulse
compression ratios; in all cases, optimum compression was defined as yielding the maxi-
mum compressed peak power, not the minimum FWHM pulse duration. The curve fits
appearing in those figures are given below for | a/b] < 1, and may be useful in the design
and adjustment of phase compensators for chirped pulse experiments in which the shape
and duration of the optical pulses can be inferred from autocorrelation measurements.
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Fig. A.1 Optimam quadratic phase compensation factors K(a,b) from eq. (A_6) for various ideal pulse
shapes, defined as yielding the maximum compressed peak powers. The data and curve fits were

obtained numerically.
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Fig. A2 Optmum pulse compression ratios corresponding to the compensation factors in Fig. A.l.
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K(ab) = 4{{2)2+1 : T ] (A.7a)
[(b) ] T [(%)2+1] 172
Sech? .
Kb) = 4[0.76(2)2%0 +1]%%° . B _ 0784 (A.7b)
[ (b) ] ‘lp [(%)2*-0.311] 172
Parabolic .
K(ab) = 4] 22(2)1% 4 1]0%0 . B - 1.74 (AT¢)
[ (b) ] T [(%)413+5.50]3’4
Tophat -
K@pb) = 4[26(%)1'604- 1] o0 T 2.12 (A.7d)
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The equations for the Gaussian case are exact analytical results [4]. The only conditions
assumed in the form of the remaining equations are that they depend only on the ratio of
(a/b), and that they approach the limits K(a,b) = 4 and t™%/1, > const:|a/b| as (a/b)

= 0; these conditions are heuristic and agree with the Gaussian case.

T’

III. MARK III DESIGN PARAMETERS

Simulations of the optical pulse generation using chirped energy electron pulses on
the Mark Il FEL were previously described in Chapter 3. Those simulations were based
on practical operating configurations of the Mark III linac, in which the electron pulses are
compatible with the dispersion in the downstream transport line and yield chirped optical
pulses with large spectral widths at saturation. For experiments near A = 3.35 pum, the
electron pulses in the wiggler have a duration of 4 ps and a linear energy chirp of 8Y/Y =

+2 % with higher energies towards the trailing edge. The simulations assumed tophat
electron pulses, since optical autocorrelation measurements on the Mark II FEL have in-
dicated that the optical pulses at saturation are essentially tophat in shape [5]). The duration
of the optical pulses (t, ~ 3.4 ps) is slightly shorter than 4 ps due to lethargy, but the mag-
nitude of the positive frequency chirp (AW ~ +4.6 % over 4 ps) is slightly larger than
would be predicted by assuming that the resonance condition determines the lasing wave-
length during the pulss; this frequency chirp is determined numerically from the simulations
by fitting a least squares parabola to the optical phase over the FWHM duration of the

optical pulse. The corresponding chirpsd pulse parameters from the simulations at A =
3.35 um are

[
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a=+12(10)Bs-2

b= +3.3(10)#5-2

K(a,b) = 4.3 (A.8)
-l(d—zdi) = -7.0 (10) 2652
2\ d0? Jcomp
and the compressed optical pulses have a duration of ~ 230 fs. The simulated profiles of
the chirped output pulses, and the results of pulse compression, are reported in Chapter 3.

For designing experiments over a range of wavelengths, it is useful to assume that

the resonance condition determines the lasing wavelength during the pulse; this will actually
be a fairly good approximation if the slippage parameter is sufficiently small. The wave-
length dependence of the chirp parameter b then becomes explicit:

boy = 28 1YY

, (A9)
A oYd o

where ymc? is the electron energy, and if one also assumes that the duration of the optical
pulses at saturation is equal to the duration of the electron pulses (appropriate for long

electron pulses), then the compensation factor in (A.6) can be readily evaluated using (A.9)
and (A.7).

IV. PULSE COMPRESSOR DESIGN

The two general designs for pulse compressors employ either grating pairs or
Brewster angle prism pairs [6). The latter choice is preferred in the present application
because of the possibility of achieving substantial compression ratios over a wide range of
wavelengths. In contrast, the diffractive geometry of a given grating system is very sensi-
tive to wavelength, and the corresponding dispersions can be too large to yield practical
compressor designs in chirped pulse FEL experiments. For example, a double pass Lit-
trow grating system at 3.35 pm, designed to compensate the pulse parameters in (A.8),
would have a slant spacing of only a few millimeters.

The design of prism pulse compressors has been treated extensively in the literature
[6]-[9). A typical minimum deviation, single pass, Brewster angle prism system is shown
in Fig. A.3. The second order dispersion for a corresponding double pass system is given

by
2 3
et ol LR I

where A is the vacuum wavelength, n(A) is the refractive index, and L, and § are shown in
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Minimum deviation,
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Fig. A.3 Typical prism configuration for a single pass dispersive delay line. The prisms are in the
minimum deviation geometry to avoid astigmatism in the transmitied beam.

Fig. A.3. For a given set of system parameters, the LHS of (A.10) should equal the re-
quired compensating factor from (A.6).

The contributions to the dispersion arise from material dispersion and angular dis-
persion, the latter leading to wavelength-dependent geometrical paths through the system.
In particular, material dispersion in the crystals yields the dzﬂ/d;‘,2 term in (A.10), angular
dispersion in the crystals yields the 1/53:(d%/43)? term, and angular dispersion in air,
comprising the dominant contribution in most systems, yields the two remaining terms.
The angle B is usually determined by the clear aperture of the beam through the system, for
example, by setting £, sin B S 40y, Where 0, is the mode radius. If [, is much
larger than @y, One may then set cos f ~ 1.

The pulse com;;rcssor for the Mark III experiments consists of four minimum devi-
aton sapphire prisms arranged as shown in Fig. A.4. The prisms are cut at Brewster's
angle for 3.35 pum, which yields no more than 0.03 % total reflection losses for the double
pass system between 2.5 um and 4.1 pm. The optic axis of the crystal is perpendicular to
the triangular faces to within 30 minutes, so that the horizontally polarized ray is ordinary.
A double pass system is required in order to eliminate the presence of lateral spectral walk-

off in the output beam, which can significantly increase the duraton of the compressed op-
tical pulses [10] according to

1/2
Eﬂ=[1+(_&m&)}
ZR ’

Trtin

(A.11)

Tmin

WhETe Teomps Tmin 4 the durations of the compressed pulses in the presence and absence
of spectral walkoff, 1,y is the duration of the input pulse, and zg is the Rayleigh range.
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Fig. A4 Double pass, sapphire prism dispersive delay linc for the Mark III experiments between 2.5 um
and 4.1 um. The setup includes removable mirror assemblies to interchange the compressed and
uncompressed pulses between the autocorrelator and the experimental sample.

For example, a single pass system designed to compensate the pulse parameters in (A.8)
would compress the optical pulses to no less than 1.5 times the minimum duration that
could be achieved in the absence of spectral walkoff.

The mounting of the prisms on translation stages allows the experimenter to vary
the dispersion of the system by changing the path length through all four prisms without
changing the position or direction of the output beam. The size of the prisms was chosen
so that roughly 70 % of the required dispersion at 3.35 um could be provided t y moving
the prisms in this fashion. The removable mirror assembly at the input to the system

allows the quick interchange of compressed ar uncompressed pulses into the autocorrelator
or onto the experimental sample.
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The estimated prism spacing as a function of wavelength is shown in Fig. A.5. The
spacing for 3.35 um is found by equating the prism dispersion from (A.10) with the re-
quired dispersion from (A.8), using £, sin B ~ S0y, and Wypem = 1.5 mm. The correspond-
ing 4 m confocal parameter is much larger than the total path length of 70 cm through the
system. For other wavelengths, the optical pulse widths are assumed to remain constant,
and the prism spacings are found by equating the prism dispersion with the dispersion
predicted from (A.6), where (A.9) and (A.7) are used to calculate b(A) and K(a,b) (adjust-
ments in the numerical constants appearing in (A.10) were also included to account for the
deviation from Brewster’s angle in the minimum deviation geometry). Although the prism
spacing increases for decreasing wavelengths, the Rayleigh range increases in inverse
proporton to A, so that it should be possible to maintain a high deg=e of collimation with a
beam whose radius need not be adjusted with wavelength. This consiczration is important
because the beam radius is usually limited by the clear aperture of the prism height.
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Fig. A.5 Estimated apex-t0-apex prism separations for the Mark Il experiments between 2.5 and 4.1 pum.

V. OPTICAL DIAGNOSTICS

The autocorrelator for the above experiments is a typical crossed beam autocorrela-
tor [11], designed to measure pulse durations as short as 200 fs between 3.1 and 3.35 pum.

The basic component arrangement is shown in Fig. A.6. The crossed beam geomertry yiclds
a background-free autocorrelation trace with no intensity fringes, and so is appropriate for
digitized data acquisiion. The doubling crystal is a 90° Type I phase matched silver galli-
um selenide (AgGaSe,) wafer with a thickness of L. = 450 um; this is the coherence length
for a 200 fs optical pulse which yields a phase matching factor of
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Fig. A.6 Layout of the autocorrelator for measuring pulse durations as short as 200 fs.

sin2(Ak-1c/2)

205 (el
(Ak-1./2)?

for all frequencies within the FWHEM bandwidth. Here, Ak =2k;(w;) cos(%/2) - ky(w)
is the phase mismatch between the fundaraental (@;) and second harmonic (w,) waves, and
a is the internal crossed beam angle. By moving the lower translation stage in Fig. A.6, this

intzrnal angle can be changed from 3.5° (9.2° extenal) at 3.1 pm to 7.5° (19.7° extemal)
at 3.35 um without altering the path length. For wavelengths less than 3.1 pm or greater
than 3.35 pm, one can use 8"7'¢! < 90° phase matched LiNbO; crystals or AgGaSe; crys-
tals respectively.

The focussing geometry is chosen to accept the 1.5 mm radius beam directly from
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the pulse compressor and focus it down to a radius of 190 um at the crystal surface (note
that the waists of the focussed beams are located in front of the crossover point). This
focussing geometry is of critical importance for the measurement of short optical pulses,
because if the beams are 100 wide the pulse duration will be grossly overestimated. For
marginally wide beams, the overestimate can be calculated exactly (assuming Gaussian
temporal pulse profiles [12]) from

24 72
2 loge2 o
T2ens = Toita * - & Opeam

A.13
VZou (A.13)

where 7 are fundamental FWHM pulse durations, and vgroup is the group velocity of the
fundamental pulses in the crystal. Note that group velocity dispersion in the crystal has a
negligible effect on the fundamental pulse duration. For Tpuse = 200 fs, the above auto-

correlator with a cross beam angle of 3.5° will yield an overestimate of Tmeas = 209 fs for
the fundamental pulse duration.

V1. EXPERIMENTS AT OTHER WAVELENGTHS

As previously noted, chirped pulse FEL experiments can in principle be performed
on 1f linac-driven systems at any wavelength. At present, several such systems are designed
to deliver wavelengths throughout the near and far infrared [13]-[16]. As suggested by the
experimental design described above, prism systems should provide the greatest wave-
length flexibility in FEL pulse compression experiments. Figure A.7 shows the dispersions

-
(o]

-

—
o

Dispersion dn/dA (m™")

Ll it dadidii A
1 10 100
Wavelength (microns)

Fig. A.7 Dispersion of several low- or non-hygroscopic infrared materials over their range of transparency;
all of these materials also transmit at 633 nm, and may be suitable as prism delay lines for
chirped-pulse FEL experiments in the near and far infrared.
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| d“/d}\, | of several infrared materials over their range of transparency, which were calcu-

lated from the published Sellmeier equations [17]. These materials also transmit at 632 nm,
so that alignment is possible using a He-Ne laser. For a given material, the most useful
wavelength range is the one in which the dispersion increases with wavelength. However,
materials which transmit at longer wavelengths generally have lower dispersions. This is
not a serious problem in the design of long-wavelength pulse compressors, because the
dominant contribution to the prism dispersion comes from the last term in (A.10), i.e.

iﬂ;-_f_ dn\2

Therefore, the reduction in dispersion due to decreased (dn/d;)2 is compensated by the
presence of the A3 factor. Even for electron pulse lengths or energy chirps which do not
change greatly with wavelength, the required dispersion from (A.6) and (A.9) is propor-
tional only to A, so that the prism spacing [, is roughly proportional to 1/A%. Therefore,

broad band pulse compressors for experiments at other wavelengths can most likely be
designed within convenient dimensions on a laboratory bench.
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Appendix B

Spectral diagnostics for
phase locked free-electron lasers

The practical design of a Michelson resonator free-electron laser [1], [2] requires
the outcoupled optical beam to be separated from the leakage beam at the beamsplitter, and
subsequent applications in high resolution spectroscopy require sensitive spectral diagnos-
tics to measure the longitudinal mode structure, tune the laser line, and monitor any drifts in
frequency. This appendix describes the practical design of a Michelson mirror resonator on
the Mark ITI FEL [3], as well as mode-selective spectral diagnostics which have been pro-
cured for experiments in high resolution spectroscopy near 3 pm.

II. RESONATOR DESIGN

As noted in Chapter 6, the Mark IIT optical cavity uses Brewster plate output cou-
pling for the horizontally polarized radiation. The vacuum chamber containing the upstream
cavity mirror and output couplers was designed to allow four choices of Brewster plates,
two of which can be placed on the beamline at the same time. In the usual configuration, 2
single Brewster plate is inserted into the beam, and only the reflections from one side of
that plate are normally outcoupled to the user laboratory. However, one of the output cou-
plers is positioned beside a Brewster window on the vacuum chamber, which allows the
alignment of an external mirror for redirecting the secondary outcoupled reflections into the
user laboratory as well.

The design of the intracavity Michelson interferometer represents a trivial extension
to the above arrangement, and is shown in Fig. B.1. In the proposed configuration, two
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Fig. B.1 The design of the Michelson mirror resonator for the phase locking experiments on the Mark III
FEL, showing the position of the beamsplitter, output coupler, and interferometer mirrors.

Brewster plates are inserted into the beamline, but one of them is a beamsplitter that reflects
the secondary reflection to an interferometer mirror outside of the vacuum window. Two
different beamsplitters have been procured for these experiments. The first one consists of
an Al,O3 monolayer on a TiO; monolayer on a calcium fluoride substrate, yielding a reflec-
tance of 8.5 % 10 13 % for wavelengths between 2.5 pm and 3.7 pum. The second beam-
splitter consists of several alternating Al,O3 and TiO; monolayers on calcium fluoride,
yielding a reflectance of 40 % to 50 % for wavelengths between 2.6 um and 3.2 pm. These
coating materials were chosen for their potentially high damage thresholds [4]-[7]. The
output coupler located between the beamsplitter and the upstream cavity mirror is a wedged
calcium fluoride Brewster plate, aligned so that only a single surface reflection is outcou-
pled to the diagnostic apparatus.

The secondary external cavity mirror is mounted on a translation stage to facilitate
the location of the synchronous mirror position. The procedure is as follows. Foreach of
the 10 % and 50 % beamsplitters, an identical uncoated Brewster plate is first inserted onto
the beamline, along with a parallel mirror to reflect the outcoupled beams to the laboratory.
The synchronous position is located by using one side of this uncoated plate as the output
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coupler, and the other side of the same plate as the beamsplitter. With an unsynchronized
external mirror, the total outcoupled power reaching the detector will consist of three sur-
face reflections (neglecting the skewed reflection from the external mirror.) However,
when the mirror is scanned through the synchronous position, two of these reflections will
interfere destructively due to partial phase locking in the optical beam, yiclding as much as a
60 % decrease in the detected power. After locating the synchronous mirror position in this
manner, the coated beamsplitter (without a parallel mirror) is reinserted onto the beamline in
place of the uncoated plate, and outcoupling is recovered from the wedged output coupler.

The locaton of the output coupler within one of the interferometer arms slighty
affects the phase locking properties of the resonator. For the configuration shown in Fig.
B.1, the passive frequency response of the resonator can be calculated following the pro-
cedure outlined in Chapter 4, Section III, and the resonator losses can then be extracted.
The results of the calculation are as follows.

Let the outcoupled losses from all four surfaces of the Brewster plate equal Spiate,

so that the round trip power transmission is [1 - 8piae]. If the reflectance of the beamsplit-
ter is 12, then the cavity losses 8¢,y due 10 output coupling are

deav = 6plale( 1- r2) s (B.1)

and the leakage losses at the beamsplitter, which are finite even for a perfectly phase locked
beam, are (to lowest order in Spja)

Oleak = '}irz 2 5:1”: ] (B.2)

The optimum beamsplitter reflectance yielding the maximum hypermode decay rate is

4B

Topt

(B.3)
and the corresponding decay rate for the first order hypermode with N circulating pulses is

- 1 +cos(%§-)

Iml* = T . (B.4)

which is independent of Spja,. i.c. the first order hypermode falls to a power of || %
times the power in the lowest order hypermode after p passes. These results suggest a way
to reduce the optimum beamsplitter reflectance for the resonator. For example, in a suffi-
ciently high gain FEL with a total loss of 8¢,y = 16 %, the losses through the Brewster plate
could be as high as 8pjye = 30 %. Then the optimum reflectance would be reduced from r2
=50 % 1o r2 = 46 %, the leakage losses would be only &,y = 0.6 %, and the power in the

first order hypermode would fall 10 9 % of the power in the dominant mode after 300 pass-
es (less than 4.0 ps in the Mark IIT FEL).
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III. SPECTRAL DIAGNOSTICS

I have designed and procured a spectral diagnostics capable of detecting the axial
maodes in both the phase locked and randomly phased optical beams for wavelengths near 3
pm. The setup is shown in Fig. B.2. In order to unambiguously detect a single longitudi-
nal mode in a device such as etalon, the optical beam must first be filtered so that only a
single mode is incident; otherwise, any unfiltered modes will be aliased into the spectral
window of the etalon [8]. Consequently, the FEL optical beam is first filtered witha 1 m
grating monochrometer with a resolution of approximately 20 GHz. The filtered beam is
then passed through a planar etalon prefilter with a free spectral range wider than the
resolution of the monochrometer, but with an axial mode bandwidth of just under 3 GHz.
This secondary filtering yields an optical beam with a total bandwidth of roughly 3 GHz,
containing 35 FEL axial modes for the randomly phased optical beam, and a single FEL
axial for the perfectly phase locked optical beam. Because the coating reflectance for the
planar etalons varies slightly with wavelength, the substrates were designed to have slightly
different thicknesses, so that the proper axial mode bandwidth could be chosen within a

Phase locked FEL spectrum

; | from Mark I FEL

.||||”H I

1 meter monochrometer:

- spectral resolution ~ 20 GHz.
- isolates one axial mode of the planar
ctalon.

1 meter monochrometer pre-

Planar etalon (angle tuned):

46 GHz

il

m——
A8%

- material is CaF,, with choice of thickness

from 2.0 10 2.5 mm.

- free spectral range ~ 42-52 GHz, which is

wider than the monochrometer resolution.

- reflectance = §7 2 2 % per surface between

2.8-3.2 um, which i3 the main contribution
10 the instrument finesse.

- mode widths ~ 2.0-3.0 GHz.

Burleigh scanning confocai interferometer:

- free spectra] range = 3 GHz
- resolution = 37 MHz; this is 1/2 times the

82 MHz axial mode spacing of the Mark III
FEL with two mirrors.

- broadband optics from 2.3-3.45 um.
V 10 detector

Fig. B.2 Spectral diagnostics for filtering and resolving the individual FEL axial modes in the phase

locked optical beam from the Mark I FEL.




wide wavelength range; the final design is appropriate for wavelengths between 2.8 pm
and 3.2 pm.

The individual FEL axial modes within the 3 GHz bandwidth of the prefiltered beam

are detected with a commercial scanning confocal interferometer from Burleigh, with a free
spectral range of 3 GHz by design. This particular interferometer has a resolution of 37
MHz, capable of differentiating axial modes spaced by the FEL round trip frequency of 82
MHz, and can be used for wavelengths between 2.3 pm and 3.45um By scanning the fre-
quency of the confocal etalon through the filtered FEL beam, the longitudinal mode structure
and the degree of hypermode decay can then be monitored.

(1]

(2

(3]

(4]

(53

(6l

(8]
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