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CHAPTER l: EXPERIMENTAL TECHNIQUE 

1.1 INTRODUCTION 

The Naval Undersea Warfare Center Division, Newport, 

Rhode Island, has been developing a computer code to simulate 

the dynamic behavior of flexible hose deployment during the 

launch cycle of wire guided torpedoes, Figure 1.1. The 

accuracy of this computer code is highly dependent on the 

accuracies of the hydrodynamic loading functions on the cable. 

A number of experiments have been performed on various types 

of flexible conduit to determine the hydrodynamic drag 

coefficients. Typically, these experiments were performed by 

towing sections of cable while measuring the tow point tension 

and the tow angle. With this information, it is possible to 

obtain the hydrodynamic drag coefficients of the cable. It 

will be shown that at higher speeds and small tow angles this 

approach leads to large inaccuracies in the drag coefficients. 

Further, during the deployment cycle of a wire guided device, 

the umbilical cable is forced into non-critical angle 

positions. Typically, the hydrodynamic loading functions for 

these cable configurations are derived from critical angle 

experiments. 

As a result of the inaccuracies of the critical angle 

experiments and the application of critical angle data to non- 

critical angle configurations, an alternative approach is 

1 



FLEXIBLE HOSE DEPLOYMENT 

Figure 1.1. Torpedo Launch Cycle 



designed. This approach consists of the development of an 

apparatus that measures the normal and tangential drag forces 

directly. 

1.2 PREVIOUS WORK 

Several past experimental efforts have attempted to 

determine the hydrodynamic forces that affect specific 

flexible cables in a uniform stream. 

Pode, of the David Taylor Model Basin, tested several 

stranded cables (reference 1). The purpose of the work was to 

develop a relationship between the hydrodynamic forces acting 

on the cable and their critical tow angles. 

Puryear and Gay, of the Naval Ship Research and 

Development center, tested six different configurations of 

flexible conduit (reference 2). Each configuration was towed 

in a high speed tow basin to obtain data from which 

hydrodynamic loads could be determined. 

Diggs, of the Naval Ship Research and Development Center, 

undertook a comprehensive program to develop the hydrodynamic 

technology of towed arrays (reference 3). This work included 

testing of various cables in a tow tank system and during at- 

sea evaluations. 

Holler, of the Naval Air Development Center, conducted a 

series of at-sea tests on various suspended cables (reference 

4). The tow point tension and tow angle were measured in an 

effort to determine hydrodynamic drag coefficients. 
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Babb, Hassan, and Labrecque, of the Naval Underwater 

Systems Center, conducted a series of experiments to determine 

the normal and tangential drag coefficients of several 

spirally wound flexible hoses (reference 5). These tests were 

performed at the University of Rhode Island Tow Tank Facility. 

Babb, Milburn, and McGrath, of the Naval Underwater 

Systems Center, conducted a series of tests to determine the 

hydrodynamic drag coefficients of several flexible cables 

(reference 6). These tests were conducted at the NUSC/NASA 

Tow Tank Facility in Hampton, Virginia. 

All of these experiments were performed at critical tow 

angles. Before results from these experiments are analyzed 

and compared, a system definition is required. 

1.3 GOVERNING EQUATIONS 

One of the first attempts to address the characteristics 

of a flexible cable in a uniform stream was completed by Pode 

in 1951 (reference 7). In an effort to create tables for 

computing the equilibrium configuration of a flexible cable. 

Pode solved the governing differential equations of a flexible 

cable system. These equations provided the basis of many 

experimental studies that followed; therefore, Pode's system 

definition will be used. Governing equations are rearranged 

and simplified in terms of the hydrodynamic drag coefficients 

as a function of easily measurable properties. 
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The forces that act on an element of cable have three 

basic components. The first is the hydrodynamic force, which 

stems from the flow? the second is the weight of the cable in 

the fluid; and the third is the tension in the cable at the 

ends of the element. It is assumed that the hydrodynamic force 

acts on an infinitely long cylinder and is similar in 

proportion to a small element inclined at the same angle. 

Considering figure 1.2, which shows an element of a cable 

having unit length ds, the summation of tangential forces 

yields 

dT_ FcosO 
dS |cos0| 

-Wsind = 0 (1.1) 

where the three terms represent in-line tension, the 

tangential drag per unit length and the tangential weight 

component. The sign and the COS functions in the second term 

of equation (1.1) are proper in order to take into account the 

fact that the tangential component of the hydrodynamic force 

never has a positive projection in the direction of motion. 

Equation (1.1) can be manipulated to find the tangential drag 

coefficients 

F=±pVÎDC<je (1.2) 
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dT 
DIRECTION OF MOTION 

Figure 1.2. Free Body Diagram 

6 

:L ' V ■- ' a- ill 11:::1: :. irTyÿi" ■' • 



thus, 

r, - dS 
dt-ï T" 

41-Wsine 
(1.3) 

The normal force acting on an element of a cable can be 

shown to be equal to 

Nds = i?sin(0) |sin(0) |cte (1.4) 

where R is the normal force acting on the cable when the cable 

is 90 degrees to the flow. 

Equation (1.4) is derived by resolving the horizontal 

normal force R. When multiplied by sin(0), R can be resolved 

so that it acts in a perpendicular fashion to the cable. If 

this term is then multiplied by the projected normal element 

length, sin(9)ds, it gives the total normal force per unit 

length shown in equation (1.4). 

The summation per unit length in the normal direction is 

given by 

Rsin0|sin0|-Wbos0=O (1.5) 

where the first term is the normal component of drag and the 

second terra is the normal component of weight. The sign and 

the SIN functions in the first term of equation (1.5) are 

proper in order to take into account the fact that the normal 

component of the hydrodynamic force never has a positive 

projection in the direction of motion. 
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The normal component of the hydrodynamic force varies 

with the square of the sine of the angle between the cable and 

the stream. This is well established by experimental evidence 

and supported by theoretical considerations (reference 7), 

Equation (1.5) can be manipulated to find the normal drag 

coefficient. The first step is to substitute 

sin26=l-cos20 (1.6) 

and divide by the normal force. Solving for the cosine of the 

cable angle gives 

COS0=--i^±A 
2R > (4>a+i (1.7) 

where 

and 

R = ^pVÏDCto (1.8) 

2Wcos8 
(1.9) 

Examining these equations, one can readily see how these 

coefficients can be determined using a critical angle 

technique where the tow angle and the tow point tension are 

measured. 
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In 1974, Diggs (reference 3) expanded these equations to 

include one more dimension referred to as the kite angle. 

This assumes Lhat the cable is wound asymmetrically, which in 

turn causes a circulation lift. This changes the tangential 

and normal components of drag and adds a third coefficient, 

lift. Diggs derives these coefficients to be 

ÍVCOS0COS\|í 
cdn-3 

-^DV% (l+cot20sin2i|O 2 
4lm 

(1.10) 

r , -P(fl) -WsinQ 
dt -ß-DV^cos2!!/ (1-11) 

_IVcotQsirulf_ 

-ß-DV2 (l+cot20sin2i|r) 2 
it 

It is easily shown that when the kite angle is zero the lift 

coefficient is zero, and the normal and tangential drag terms 

reduce to Pode's equations. Using these equations, it is 

possible to compare much of the previous experimental work and 

assess its adequacy in the determination of these 

coefficients. 
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1.4 COMPARISON OF PREVIOUS WORK AND ITS UNCERTAINTY 

Previous experiments that attempted to determine the 

hydrodynamic forces that affect specific cables typically 

measured the critical angle of tow, the tow point tension, the 

velocity of the tow point, and the weight of the cable. With 

this information and the equations above, it is possible to 

calculate the hydrodynamic drag coefficients. Plotting 

selected normal drag coefficients versus the angle of attack 

is enlightening. 

Figure 1.3 shows an assortment of data from three 

separate tests carried out on the same cable by Babb in 1987 

to 1989 (references 5 and 6). This figure indicates that as 

the tow angle decreases the calculated normal drag coefficient 

becomes uncertain. The author attributes this to the 

difficulty in the measurement of the tow angle when the cable 

is at small angles of attack. 

Figure 1.4 shows the calculated normal drag coefficient 

vs the measured tow angles for various cables. This work was 

carried out by Diggs in 1974 (reference 3). Again, it is 

readily seen that as the cable angle decreases the calculated 

normal drag coefficient is inconsistent. 

Although each author has his own interpretation of what 

data should be discarded, they all agree that the measurement 

of the tow angle when it has a small angle of attack is 

difficult. Puryear and Gay recommend that measured angles of 

10 
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less than 5 degrees should be ignored (reference 2), whereas 

Babb, Milburn, and McGrath place a tolerance on their tow 

angles of plus or minus 0.5 degree (reference 6). This 

tolerance for small tow angle leads to significant percent 

error. It will be shown that the inherent inaccuracy of the 

measured tow angle at small angle of attack leads to large 

uncertainties in the calculated normal drag coefficient. In 

an effort to better explain this phenomenon a sensitivity 

analysis is presented. 

Form equation (1.9) one can see that the normal drag 

coefficient is a function of velocity, density, diameter, 

weight, and the tow angle. Employing the uncertainty process 

developed by Kline and McClintock (reference 8) , requires that 

the partial derivative of each of these variables be taken 

with respect to the normal drag coefficient. These 

derivatives are 

2cos8 

dW sin2QpV2D 
(1.13) 

dCdn _ -2WcosQ 
dD sin20pV2Dz 

(1.14) 

dCdn _ -2Wcosd 
dp sin2Qp2V2D 

(1.15) 
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àCdn _ -2^(BÍn30+2sin8cos28) 
90 p72Dsin40 

%=-^.(cos20) . (1.17) 
3 V p73Dsin20 

The total uncertainty is computed by summing the squares of 

these partials, then taking their square root, which yields 

W(1.13) 2+U £,(1.14) 2+l)p (1.15 ) 2+l)0 (1.16 ) 2+U yd. 17 ) 2 .. 

A computer code was developed to determine the total 

uncertainty of the normal drag coefficient. The inputs to 

this code are simply the physical variables shown above. 

Two plots illustrate clearly the uncertainty related to 

calculating the normal drag coefficient at small angles of 

attack. The first plot assumes that one can determine the tow 

angle to within 0.5 degree, and the second assumes that one 

can measure the tow angle to within 1.0 degree of the actual 

angle. A review of experimental work shows these to be 

conservative approximations. 

The uncertainty shown in these graphs for small angles of 

attack is at best on the order of 400 to 500 percent. For 

this reason it is felt that a better methodology is required 

so that more realistic drag coefficients can be obtained. 

14 
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Figure 1.6. Uncertainty in the Normal Drag Coefficient +/- 1.0 Deg 
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1.5 DESIGN METHODOLOGY 

Instead of using a critical tow angle technique, it is 

felt that a two-point drag apparatus would be better suited, 

figure 1.7. This apparatus has the ability to pull flexible 

cables at various angles of attache at speeds up to 20 knots. 

The test section has to sustain a catenary of less than 2 

percent in order to maintain a specific angle of attack. This 

requires that the deflection at the center of the test section 

not exceed 2 percent of its total length. Biaxial force 

transducers are placed on each end of the test section so that 

the hydrodynamic loading can be measured directly. With this 

information it will be possible to compute the normal drag 

coefficients at high velocities at numerous angles of attack 

without having an inherent uncertainty in the tow angle. 

The design of the two-point drag apparatus is 

accomplished in three succinct steps. First, a method is 

developed for stiffening the flexible cable so that the 

catenary is less than 2 percent of its total length. Second, 

an instrumentation method is developed that accurately 

measures normal and tangential forces on the cable. Finally, 

based on the constraints of the Langley Tow Tank Facility, the 

remaining conceptual design is completed and a vibration 

analysis is performed. 

17 
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CHAPTER 2: DRAG APPARATUS TEST SECTION 

2,1 DESCRIPTION OF THE TEST SECTION 

A drag apparatus that utilizes a test section attached at 

both ends was described conceptually in chapter 1, figure 1.7. 

The test section of this apparatus will be the focus of this 

chapter. It is required that the test section's catenary be 

as small as possible. This will insure that the in-line 

tension forces can be discerned from the perpendicular forces 

because each portion of the test section will be inclined at 

the same angle with respect to the flow. The test section 

will be supported on both ends as shown in figure 2.1. As a 

design goal the maximum center deflection is required to be 

less than 2 percent of the total length. In an effort to 

reduce the catenary of the test section it was decided to run 

a tensioned stainless steel shaft through the middle of the 

braided cable. The cable itself does not have the strength to 

survive the stresses and vibrations imposed on it by the test 

apparatus and the hydrodynamic forces. 

Two cases will be considered in detail: A fixed-end 

attachment case where the test section is rigidly attached to 

the vertical strut, and a simply supported case where the test 

section is free to rotate on the vertical strut. 

19 



Figure 2.1, Test Section Orientation 

20 

C
 A

T
E

IM
A

R
 Y
 E

F
F

E
C

T
S
 L

E
S

S
 
T

H
A

N
 

S
°
/a

 



2.2 FIXED-END CONDITION 

The test section can be considered as a beam fixed at 

both ends under axial tension. In addition there is a 

transverse load of drag forces, W, as shown in figure 2.2. 

The axial tension tends to straighten the beam and reduce the 

bending moment produced by the transverse loading. It will be 

assumed that the test section is 90 degrees to the flow, the 

most severe of any orientation. 

W 

Figure 2.2 Fixed-End Condition 
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The governing equation for this system can be written as 

a second order differential equation in the form 

(2.1) 

where 

M = V0X- ±WXZ + TY- M0. 
£a 

(2.2) 

Substituting the moment back into the first equation and 

rearranging, one finds that 

-TY=-M0+V0X- A WX2. 
dX2 0 0 2 

(2.3) 

This differential equation is solved in conjunction with 

the force equations so that the deflections and stresses in 

the beam can be found. The solution of this differential 

equation is the sum of the homogeneous and particular 

solutions (reference 9). The homogeneous solution is found by 

assuming the solution to be of the form 

Y(x) = elx. (2.4) 

Substituting this back into the left side of the equation and 

setting equal to zero gives the following solution: 

(2.5) 

where 

22 



(2.6) À = ± 
T 
El 

The particular solution is assumed to be of the form 

Yp = A + BX + CX2 (2.7) 

and 

Yp = 2C (2.8) 

Putting this back into equation (1.1)/ one can show that 

EH2C) - T{A+BX+CX2) = -M0 + V0X - —WX2. (2.9) 
4L» 

Equating the two sides gives 

M^T+EIW 
A = ——-—- 

<jr2 
(2.10) 

r - 11 b=--2 
2 T T 

Thus, the particular solution is shown to be 

m0t+ew vOVi 1 

~ TX~2~fX 
(2.11) 

Adding the particular solution to the homogeneous solution 

gives the total solution: 

Y=C1e £rJr+C, 
M0T+EIW 

rp2 T 2 T 
(2.12) 

Using this equation, the sum of the forces in the y direction, 

23 



and the initial conditions, one can determine the constants C, 

and C2. Tne initial conditions are X=0 when Y=0 and 

dY/dX = 0 v/hen X = L/2. With these conditions the two unknown 

constants can be found to be 

Mg + EIW 

(2.13) 

and 

q=-(2.14) 

Substituting C-, and C2 into equation 2.12 leaves it with two 

unknowns, Y and M0. A third boundary condition can be used to 

satisfy this condition 

H = 0 X = 0. (2.15) 

This gives an expression for M0 in terms of known quantities: 

EIW t V0 
T2 t 

) (1+e ^r"L) +2-^^ 
T2 

(2.16) 

Equation (2.12) is coded so numerous options can be 

explored. Two aspects of the analysis will be considered: 

the mid-point deflection when X = L/2, and the stress at the 

end point. The end moment for numerous cases will be 

reviewed. Finally, the Von Mises failure criterion will be 

24 



used to compute the maximum stress in the test section 

(reference 10). This will take the form 

°max <l+ 
V, (2.17) 

and will be computed at the end point. 

The fixed geometric conditions are given as design 

constraints. The maximum diameter for the stiffening rod is 

determined by the internal diameter of the flexible hose. The 

maximum total length of the test section is determined by the 

dimensions of the Langley Tow Tank Facility (reference 11). 

The estimated distributed load caused by hydrodynamic drag is 

calculated from the outside diameter of the flexible hose 

(reference 12) : 

W=lpV2CdnD. (2.18) 

Graphs that follow indicate various loading situations 

for the given design constraints. The focus of this initial 

study will be a flexible spiral wound cable that has an 

internal diameter of 0.4 inch, an outside diameter of 0.625 

inch, and an estimated normal drag coefficient of 1.39 

(reference 13). Two test section lengths will be considered: 

one that is 96 inches long and an other that is 60 inches 

25 



long. 

Figure 2.3 is the end-moment graphed with the in-line 

tension for various velocities. For each test case it can be 

seen that as the in-line tension is increased the end-moment 

is reduced. This reduces the Von Mises stress at the end 

point. The design goal, where mid-point deflection is less 

than 2 percent of the test section length, implies that the 

minimum in-line tension must be on the order of 2000 pounds. 

This means that the stiffening rod must be able to handle 

130,000 to 140,000 psi without failing. Figure 2.4 represents 

mid-point deflection graphed against the in-line tension for 

numerous velocities. Figure 2.5 is the calculated stress at 

the end plotted against in-line tension for various 

velocities. 
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Figure 2.3. End Moment vs Tension at Fixed End 
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Figure 2.4. Mid-Point Deflection vs Tension at Fixed End 
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Figure 2.5. Von Mises Stress vs Tension at Fixed End 
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2.3 SIMPLY SUPPORTED CONDITION 

This case considers that the test section is a beam 

supported at both ends but free to rotate, figure 2.6. The 

stiffener is under axial tension and a uniform cross load 

caused by the fluid drag. 

The governing equation for this system can be written as 

a second-order differential equation of the form 

c&y 
E I --4 = M. (2.19) 

dX2 ' 

In this case there is no moment at each end of the test 

section. 

W 

Figure 2.6 Simply Supported Condition 
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The governing equation is 

EI-^Ç = V0X—^WX2+TY. (2.20) 
dx2 2 

The homogeneous solution remains the same as in the fixed-end 

conditionf so that 

Y^qeV E*+Cze V K. (3’21> 

The particular solution is also in the same form as the fixed 

end solution. Putting this into equation (2.20) gives 

EI(2C) -T(Ä+3X+ CX2) =V0X--^WX2. 
Mã 

(2.22) 

By equating the two sides it can be shown that 

EIW 
rj>2 T 

r- 11 
2 T 

So the particular solution is shown to be 

y - EIW_ Voy. 1 Wy2 
TlT ’ 

(2.23) 

(2.24) 

Adding the particular solution to the homogeneous solution 

gives 

1 2 t2 T 2 T 
(2.25) 

The constants Cj and C2 are found using the initial conditions 

X = 0 when Y = 0, and dY/dX = 0 when X = L/2; thus, 
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WEI 

rf_ wet 

tprL~ T2 
(2.26) 

WEI 

1-e 

(2.27) 

Equation (2.25) is coded so that numerous options can be 

explored. Two aspects of the analysis are integral to the 

test section design: the mid-point deflection and the stress 

at the end point. 

Since this is a simply supported condition there is no 

end moment. Figure 2.7 is the Von Mises stress plotted 

against the in-line tension for numerous velocities. Figure 

2.8 is the mid-point deflection plotted against the in-line 

tension for numerous velocities. In order to obtain the 

desired mid-point deflection, an in-line tension on the order 

of 2000 pounds is again required. This yields a considerably 

smaller maximum stress at the end point, which is on the order 

of 15,000 to 25,000 psi. 
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Figure 2.7. Von Mises Stress vs Tension, Simply Supported 
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Figure 2.8. Mid-Point Deflection vs Tension, Simply Supported 



2.4 TEST SECTION DESIGN 

It should be remembered that the hydrodynamic loading of 

the test section was estimated. This was necessary to compute 

the test section reactions but might lead to false confidence 

in the absolute numbers of stress and deflection at various 

velocities. Further, it should be noted that vortex shedding 

on the test section is a real phenomenon that has been 

neglected. Vortex shedding might cause oscillations of the 

test section, which in turn would increase the effective 

frontal area, which then increases the hydrodynamic load. 

Finite element models have been constructed to address these 

issues and are presented in chapter 4. These models are able 

to predict the modal response of the drag apparatus, which 

will aid in determining if resonant vibrations occur. 

It is evident after reviewing the fixed-end and simply 

supported end conditions of the test section that both are 

capable of reducing the catenary to 2 percent of the overall 

length. The fixed-end condition has significantly higher 

stress at the end points. While this is a disadvantage when 

considering stress, it might prove beneficial when considering 

the mounting of strain transducers. 

With these end conditions evaluated it is now possible to 

consider in detail the methodology to be used to instrument 

the ends of the test section to measure the hydrodynamic load 

directly. 
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CHAPTER 3: INSTRUMENTATION 

3.1 TRANSDUCER SETUP 

To accurately determine the hydrodynamic loads acting on 

the test section it is necessary to measure the in-line forces 

at the end of the test section. In both the simply supported 

and the fixed-end conditions, strain transducers will be used 

to accomplish this task. It is felt that strain transducers 

are best suited for this particular application (reference 

14). These transducers will provide the best accuracy while 

avoiding the cost of a more expensive system. 

In the preceding chapter, significant effort was made to 

determine the reaction forces and stresses at the end of the 

test section. It was determined that the stress in both cases 

was greatest at the ends of the test section. This fact, 

coupled with ease of orientation, dictates the location of the 

transducers. Load cells that can accurately measure high in¬ 

line forces, as well as smaller off-axis forces, are not 

available; thus, a force transducer was designed for this 

application. 

The mechanical design of these transducers will be 

addressed separately for the simply supported condition and 

the fixed-end condition. For environmental reasons, stress 

requirements, and strain sensitivity, the material selected 

for both transducers is stainless steel 17-4ph (reference 15). 
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Important design criteria for each case will be based on 

linear and uniform strain contours. It is considered that if 

the material where the strain rosettes are mounted has a 

strain field that is uniform, the results of the experiment 

will be more accurate. 

Significant effort has been devoted to determining the 

end loads so that a stiffening rod may be used with the 

apparatus design to reduce potential catenary problems. This 

analysis assumes uniform drag loading of the test section. 

The predicted end loads are used to design the strain 

transducers. 

3.2 SIMPLY SUPPORTED CASE 

From chapter 2 one can see that the maximum end load 

occurs for the simply supported case when the apparatus is 

moving at 15 knots, in this condition, the end forces are 

2220 pounds in tension and 180 pounds in shear with zero 

moment. There are three options available to measure the 

shear and tension forces: (1) Measure them directly with a 

biaxial strain transducer. Given the nature of the stress in 

this condition, this method would not give sensitive shear 

values. (2) Measure the in-line tension and the angle of 

rotation at the end point. Since the angle of rotation is so 

small this would be very difficult. (3) Measure the resultant 

force and calculate the angle of rotation. To calculate the 
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angle of rotation the governing equation in chapter 2 could be 

used for the case that is 90 degrees to the flow. For other 

orientations a differential equation that considers a more 

general equation must be derived. 

It is assumed that the body of the transducer is a beam 

simply supported on one end with a load applied on the other 

end (see figure 3.1). With a predicted maximum load of 2220 

pounds and a desired stress state of 130,000 psi, the desired 

cross sectional area can be calculated in a rather trivial 

manner. If the outside diameter, is chosen to be close to the 

test section diameter, then the internal diameter can be chosen 

directly: 

T 
o = — where A = nR^-nr2. (3.1) 

Since the beam is in pure tension, the strain field will be 

completely uniform. 

The simply supported condition proves to be more 

complicated than the fixed-end condition because the measured 

quantities are used in conjunction with the governing 

equations to obtain a solution. Errors are propagated through 

the governing equations, which increases the uncertainty of 

the solution. To quantify the significance of this problem an 

uncertainty analysis should be completed. 
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Figure 3.1. Simply Supported Transducer 
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3.2 FIXED-END CONDITION 

In the fixed-end condition the inverse solution technique 

is used to design the transducer. It is assumed in this case 

that the body of the transducer is a beam fixed on one end 

with a load applied on the other end (see figure 3.2). The 

transducer cross section is optimized so that it holds the 

maximum expected load of 2000 pounds in pure tension, 180 

pounds of shear, and 707 inch-pounds of moment, while giving 

the sensitivity to accurately measure the shear and tension 

forces. 

By making a rectangular cross section one increases the 

sensitivity of the shear measurement while holding the 

tension stress constant. Holding large in-line tensions while 

remaining sensitive to the shear loading is an ideal situation 

for a biaxial strain transducer. If this can be done and only 

small strain gradients are created, a solution has been found. 

The design variables are the height, length, and width of the 

rectangular cross section. 

From the Von Mises stress equation, 

A I 

1 

(3.2) 

T 
4 J? 

3 A 
A = bd. 

With the dimensions shown in figure 3.2, it is calculated that 

the bending moment is 91.3 percent of the total stress 

contribution. This insures sufficient strain length to obtain 
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Figure 3.2. Fixed-End Transducer 
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shear force accuracy. 

A three-dimensional mathematical model of the fixed beam 

was created in ABAQUS finite element code to aid in the design 

of the strain transducer (reference 16) . This model was used 

to calculate stress values in the cross section; these values 

were similar to those obtained by direct calculation. The 

model also showed predicted strain contours that indicated 

that there were no adverse strain gradients. 

A mesh of the model is shown in figure 3.3. The model is 

built from eight-node, linear displacement bricks. The basic 

geometry was created in a solid model package. A mesh 

generator was used to create the full mesh. All the nodes on 

the right face were grouped together into a node set so that 

the predicted loads could be applied. All the nodes on the 

face were fixed in space. A linear step analysis was 

selected that indicated that the stiffness matrix should be 

formed at the first increment and then used throughout the 

entire step. This step was analyzed as a static load step 

with the basic tolerances for the solution of the equilibrium 

equations being ser to 0.1 pound of all the forces at each 

node. 

The results of the stress analysis are shown graphically 

in figures 3.4 through 3.9. It can be seen that the maximum 

predicted stress is within 5 percent of the calculated value. 

Also, it is evident that in the middle of the transducer there 

are no adverse strain gradients. 
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Figure 3.3. Mesh of Transducer 
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Figure 3.4. Deflection of Transducer
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Figure 3.5. Von Hises Stress, Bird's Eye View
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Figure 3.6. Von Hises Stress, Back View
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Figure 3.7. Von Mises Stress, Top View
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Figure 3.8. Von Mises Stress, Front View
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Figure 3.9. Von Nises Stress, Deflected
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3.4 COMPARISON OF THE END CONDITIONS 

It can be seen that the simply supported case has the 

inherent problem of being dependent on theoretical 

calculations when computing the normal hydrodynamic drag 

coefficient. Errors in the measured values will propagate 

through the governing equations and increase the uncertainty 

of the solution. There is merit to using this type of setup 

when measuring the tangential drag coefficient because the 

tangential force is measured directly, making the calculation 

of the tangential coefficient straight-forward. 

By designing the cross sectional area of the fixed-end 

transducer in the form of a rectangle and making its height- 

to-width ratio almost 4 to 1, one can obtain accurate 

measurements. This design allows for the bending moment to 

contribute 91.4 percent of the total stress, which makes it 

highly sensitive to the shear load and thus a good place to 

mount a bi-directional strain rosette. 
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CHAPTER 4: VIBRATION ANALYSIS 

4.1 INTRODUCTION 

In an effort to determine the adequacy of the drag 

apparatus when considering vibration isolation of the test 

section, the natural frequencies of vibration have been 

computed using the ABAQUS finite element code (reference 16). 

The fundamental frequency of the test section is compared to 

the extracted value computed by ABAQUS. The anticipated 

vortex shedding frequencies are calculated at different 

locations in an effort to determine if resonant excitations 

are present. Displacement data and stress information are 

compared to the chapter 2 calculations. The focus of this 

chapter is two-fold: first, to determine if the drag apparatus 

isolates vibrations from the strain transducers and the test 

section; and, second, to cross-check calculations presented in 

chapter 2. 

4.2 EIGENVALUE EXTRACTION 

The finite element model (FEM) of the drag apparatus, 

figure 1.7, is created with 210 two node beams as shown in 

figure 4.1. Distributed loads representing the hydrodynamic 

drag are placed on the test section and supports. A point load 

is placed on node 147 to simulate the tensioning system. Only 

half of the apparatus is modeled since it is symmetric. The 

test section is 96 inch long and 0.625 inch in diameter. 
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Figure 4.1. Beam Model of Drag Apparatus 



The vertical struts are 48 inches long and 2.5 inches in 

diameter. The supporting I-beam is 16 feet long and is a 

standard W6-25 flange. The truss that connects the I-beam to 

the tow carriage is made from 3 by 3 by 3/8-inch box beams. 

The support cables are 12 feet long and 0 • 5 inch in diameter. 

Beam elements that represent this basic structure are created 

in ABAQUS and the natural frequencies are extracted. The 

extracted frequencies in this analysis are only numerical 

solutions and do not predict the magnitude of vibration. A 

forced response analysis would be the next step for this 

vibration analysis. 

It should be noted that the added mass of the water is 

not considered in this analysis. The added mass effect of the 

water would have the effect of reducing the frequency response 

of the submerged sections of the apparatus. If the natural 

modes of vibration are close to the forced vibration# this 

added mass cannot be neglected. 

Natural frequencies and the normalized displacements are 

extracted from the FEM model. This enables a comparison of 

the normalized displacements in the structure. Then, 

predictions on how vibrations are transferred to and from 

different sections can be made. The structure can be broken 

down into three distinct components: the main beam, the test 

section, and the vertical struts. Each component has its own 

fundamental modes of vibration. The "high frequency" modes 

will be neglected because the maximum normalized displacements 
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are significantly smaller than displacements at the low modes. 

This is based on the assumption that the energy of a given 

mode will be reduced as the modes reach high frequencies. 

Thus, it is necessary to consider only the lower order 

frequencies because they will be the worst case. 

The I-beam has one fundamental mode of vibration at 1.1 

Hz in the flow direction. In this case, the strain 

transducer's normalized displacement is 2.9 percent of the 

maximum normalized displacement. The I-beam has another 

fundamental mode predicted at 3.5 Hz in the y direction. The 

strain transducer's normalized displacement in this case is 

less than 1.0 percent of the maximum normalized displacement. 

In either case there is no appreciable transfer of vibration 

in the structure. 

The test section has its predicted fundamental mode of 

vibration at 1.4 Hz, see figure 4.2. The strain transducer's 

normalized displacement is about 4.0 percent of the maximum 

normalized displacement. There is no appreciable transfer of 

vibration in the structure. 

The vertical strut has its predicted fundamental 

frequency at 5.4 Hz, figure 4.3, and again at 8.4 Hz, figure 

4.4. The strain transducer's normalized displacements are 

27.2 percent and 36.2 percent of tha maximum displacement 

respectively. There is a transfer of vibration from the strut 

to the test section, to the main beam, and to the support 

cables. 
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Figure 4.3. Vertical Strut Fundamental Mode 

67/68 
Reverse Blank 



Figure 4.4- Vertical Strut Second Fundamental 
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These fundamental modes are considered the worst case 

scenario, but it should be noted that the first 50 eigenmodes, 

which include at least the third harmonic of the principal 

sections of the structure, all vibrate at a frequency of less 

than 10 Hz- This value will become important when the 

possible excitation sources are evaluated. If there is an 

excitation source close to any of the fundamental frequencies, 

resonant vibrations could occur. 

4.3 VORTEX SHEDDING 

When a long, unstreamlined body (such as a circular 

cylinder) is placed in a flow field, it can undergo flow 

excited transverse oscillations. These oscillations are the 

result of the periodic shedding of vortices from the upper and 

lower surfaces of the object. If the body is rigidly 

supported the vortices are shed at the Strouhal frequency 

(reference 17). This vortex shedding will be the primary 

excitation present in the drag apparatus, so the shedding 

frequency is calculated for the test section and the vertical 

struts. It is felt that if these shedding frequencies are 

different enough from the natural frequencies of the drag 

apparatus, resonant oscillations will not orcur. 

The Strouhal number for circular cyx-_ rs has been 

measured to be 0.21 for Reynolds numbers of 1500 to 150,000 

(reference 18) . The Strouhal number is a dimensionless 
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coefficient of the form 

o D 
2 TZ U 

St = (4-1) 

The following table lists the various speeds and potential 

excitation frequencies. 

SPEED IN KNOTS TEST SECTION VERTICAL STRUT 

5 32.4 HZ 8.1 HZ 

10 64.8 HZ 16.2 HZ 

15 97.2 HZ 24.3 HZ 

20 129.6 HZ 32.4 HZ 

It is readily seen that the excitation frequencies will be far 

above the fundamental resonant frequencies of every major 

section of the drag apparatus. Further, fairings will be 

placed on the vertical strut and all attached cables. These 

fairings will reduce drag forces and eliminate vortex 

shedding. 

« 
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4.4 COMPARISON OF FEM AND CALCULATED VALUES 

The fundamental frequency of the test section can be 

calculated analytically (reference 17). The solution of the 

governing differential equation reduces to 

/ Nit \ 2 T + (4-2) 
L M L M 

where N=l, L=96", T=2323 lb, M=0.0359 lb/in., I=1.256X10'3in4., 

and E= 30,000,000 psi. The fundamental natural frequency is 

1.336 Hz. This value compares well to the extracted value 

computed by ABAQUS. 

The mid-point deflection of the test section and the Von 

Mises stress at the end of the test section were also computed 

in ABAQUS. The table below lists pertinent information. 

It can be seen that the values for mid-point deflection of 

the test section computed by the ABAQUS FEM code are within 

6.0 percent of the solution computed in chapter 2. The 

predicted Von Mises stress values computed in ABAQUS are 

within 5.0 percent of the differential equation solution. 
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ABAQUS DIFFERENTIAL 

EQUATION 

MID-POINT 

DEFLECTION 

8 FOOT 

1.68 INCHES 1.56 INCHES 

VON MISES 

STRESS 

8 FOOT 

122,000 PSI 124,596 PSI 

MID-POINT 

DEFLECTION 

5 FOOT 

1.01 INCHES 0.95 INCHES 

VON MISES 

STRESS 

5 FOOT 

124,000 PSI 129,885 PSI 

4.5 VIBRATION CONSIDERATIONS 

The first 50 modes of vibration for the test apparatus 

are below 10 Hz. These modes include at least the third mode 

of vibration for each of the major components of the test 

apparatus. Vibration modes of higher order are considered to 

have energy levels sufficiently low so that the transfer of 

vibration to and from the test section can be neglected. 
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The predicted excitation caused by the vortex shedding is 

considered to be higher than 10 Hz so that resonant vibrations 

are unlikely to occur. To insure that the vertical struts and 

support cables do not contribute to vibration of the test 

section, drag/strum fairings will be placed on all of these 

items to reduce drag and vortex shedding. 

It can be seen from this chapter that the stress and 

deflection data presented in chapter 2, agree well with 

results obtained from ABAQUS, a finite element code. This 

fact gives greater confidence that the design of the test 

apparatus is correct. The next phase of the design process 

will be an assessment of specific mechanical operations such 

as the tensioning system, rotation system, and instrumentation 

system. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

Data have been correlated and compared from previous 

experiments that attempted to measure the drag coefficients of 

wire conduits. These experiments were all performed by towing 

sections of cable while measuring the tow point tension and 

the tow angle. With this information, it is possible to 

calculate the hydrodynamic drag coefficients. It is shown in 

this work that the uncertainty of these drag coefficients at 

small angles of attack is on the order of 400 to 500 percent. 

As a result of the inaccuracies of the critical angle 

experiments and the application of critical angle data to non- 

critical angle configurations, an apparatus that measures the 

normal and tangential drag forces was developed. 

The design of the two-point drag apparatus was presented 

in three succinct steps. A method was developed for 

stiffening the flexible cable so that the catenary is less 

than 2 percent of its total length. An instrumentation method 

was developed so that the normal and tangential forces could 

be measured accurately. The remaining conceptual design was 

completed and a vibration analysis performed. 

In an effort to reduce the catenary of the test section, 

it was decided to run a tensioned stainless steel shaft 

through the middle of the braided cable. The cable itself 

does not have the strength to survive the adverse conditions 
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imposed on it by the test apparatus and the hydrodynamic 

forces. It is evident after a detailed analysis that both the 

fixed-end and simply supported end conditions of the test 

section are capable of reducing the catenary to 2 percent of 

the overall length. The fixed-end condition has significantly 

higher stresses at the end points. While this is 

disadvantageous when considering stress, it proves beneficial 

when considering the mounting of the strain transducers. 

The mechanical design of the strain transducers was also 

presented. Important design criteria for each case were based 

on linear and uniform strain contours and the percentage of 

strain in the principal directions. A three-dimensional 

finite element model of the fixed-end transducer was created 

to aid in its design. This model not only predicts stress 

levels in the cross section, but it also shows stress contours 

that are smooth in all principal directions. Designing the 

cross sectional area of the fixed end transducer in the form 

of a rectangle and making its height-to-width ratio 4.0 to 1.0 

makes possible accurate measurement of the hydrodynamic 

loading. 

The adequacy of the drag apparatus when considering 

component vibration was also determined. The first 50 modes 

of vibration for the test apparatus were below 10 Hz. These 

modes include at least the third harmonic of each of the major 

components of the apparatus. The predicted excitation caused 
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by vortex shedding is considered to be much higher than 10 Hz 

so that resonant vibrations are unlikely to occur, 

A revolutionary design of a two-point attachment 

apparatus for the measurement of normal and tangential drag 

coefficients has been presented. This apparatus is capable of 

accurately measuring the hydrodynamic drag coefficients of 
V 

flexible cable at various angles of attack and at numerous 

speeds. The experimental method will be beneficial for the 

development of computer codes that attempt to predict dynamic 

behavior of flexible cables in a marine environment. 
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