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1. Introduction 

Monte Carlo sampling strategies are commonly used to numerically evaluate high- 

dimensional multiple integrals. As is well known, the associated estimators enjoy the nice 

property that their convergence lates are relatively insensitive to dimensional effects. In 

particular, the central limit theorem (CLT) implies that Monte Carlo estimators typically 

converge at rate n"1/2, where n is the number of function evaluations made, and this rate 

is independent of the dimension d of the integral. In contrast, conventional deterministic 

integration schemes often suffer from a convergence rate of the order n"1^. (See, for 

example, Davis and Rabinowitz 1984). 

Despite the high-dimensional advantages associated with Monte Carlo sampling, it is 

sometimes possible to improve upon its convergence characteristics. We note that Monte 

Carlo sampling schemes typically construct estimators that involve sample means. A 

sample mean is an average over the associated observations in which each observation is 

equally weighted. (In the Monte Carlo integration setting, an observation is basically just 

a function evaluation computed at some randomly chosen point.) Such sample means use 

only the information that is present in the function evaluations themselves. All information 

about the random locations at which the function evaluations were computed is discarded. 

This note concerns the improvements in estimation made possible by taking location 

information into account. Our main result shows that variance is dramatically reduced for 

one-dimensional integration problems when location information is exploited. In particular, 

the convergence rate of the resulting estimator can be improved from rate n"1^2 to rate n~3 

(under suitable smoothness conditions on the integrand). This result suggests that it may 

be advantageous, in future research, to consider high-dimensional Monte Carlo sampling 

algorithms that are somehow able to take advantage of the presence of the additional 

function evaluation location information. 



2. Description of the main result 

Suppose that we wish to integrate a function / over the unit interval [0,1]. (Note that 

by a suitable change of variable, all one-dimensional integration problems may be reduced 

to this form.) The naive Monte Carlo approach to the estimation of 

a = I f(x)dx 
Jo 

begins with generating n independent and identically distributed (iid) uniform [0,1] ran- 

dom variables U\,...,Un. The function / is then evaluated at each of the n locations 

Ui,...,Un, so that f{U\),..., f{Un) are obtained, and the integral a is estimated by the 

sample mean 

Note that an is a function purely of f(U\),... ,f(Un), whereas the information available 

to the simulator comprises the larger set {(Ui,f(Ui)) : t = 1,... ,n}. In any case, the 

CUT implies that if a2 = var/(tfi) < oo, then 

n^V." <»)=>"'(0,1) (2.1) 

as n -* oo, where N(0,1) denotes a normal random variable with zero mean and unit 

variance. The weak convergence result (2.1) establishes that the convergence rate of a„ 

to a is of the order of n-1/3 in the number n of function evaluations computed. This 

convergence rate is relatively slow, especially compared in the one-dimensional setting to 

the faster convergence rates of a number of deterministic quadrature formulae that are 

described, for example, by Davis and Rabinowitz (1984). 

Because of the random sampling that is being used, the "spacing" between the loca- 

tions Ui,...,Un will not be regular. In fact, it is well known (see Devroye 1982) that if 

Kn is the size of the largest subinterval into which [0,1] is partitioned by U\,..., UH, then 

AB *»• ——     a.S. 
n 
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as n —► oo. (For sequences {a„} and {bn}, the notation a« ~ 6« is used if a„/bn —» 1 

asn-» oo.) Although it may be thought that the slow rate of convergence for a„ is a 

consequence of the irregular spacing, arguments given below show that this is not the case. 

Given that the integral a can be computed via Riemann sum approximations, it 

makes sense to weight a given function evaluation according to the size of the subinterval 

over which it is assumed to approximate the original function /. More specifically, let 

Ui(n),..., Un(n) be the order statistics of the sample U\,..., Un, so that Uk(n) denotes 

the kth. largest observation in the sample of n iid uniform random variables. We then 

approximate / over the interval [(Ui-i(n)+Ui(n))/2, (£/i(n)+tf,-+1(n))/2] by the constant 

value f(Ui(n)), to arrive at the approximation 

4« = I)/(^(n)) (£<(»)-t*-i(»)) 

to the integral a, where Lo(n) = 0, Ln(n) = 1, and Li(n) = (Ui(n) + Ui+i(n))/2 for 

1 < t < n - 1. Since the random variable Li(n) lies at the midpoint between Ui(n) and 

Ui+i(n) for 1 < i < n — 1, d„ is a randomized version of the midpoint quadrature rule of 

classical numerical integration. 

The main result is the following theorem, which is proved in the Appendix. 

Theorem 1. Suppose that / is twice continuously differenti&ble over [0,1]. Then 

as n —♦ oo, where xl and x\ are independent chi-squared random variables each with two 

degrees of freedom. 

Theorem 1 shows that when function evaluation location information is exploited, the 

rate of convergence can be dramatically improved. Specifically, upon comparison of (2.2) 

to (2.1), it is evident that using 6n in place of a„ improves the covergence rate from n~*/3 

ton-2. 



r 

It is also instructive to consider the convergence rate that arises when a determin- 

istic grid is used to specify the points at which function evaluations are to be com- 

puted. In particular, suppose that the n function evaluations are performed at the points 

l/(2n), 3/(2n),..., (2n — l)/(2n), and consider the estimator 

1=1      N ' 

Arguments similar to those used in the proof of Theorem 1 show that 

n2« - a) - (/(1>(1) - /(1)(0))/24. (2.3) 

Since E(xl) = E{x\) — 2, results (2.2) and (2.3) together suggest that the leading term of 

the expected error for the "randomized midpoint quadrature rule" is exactly twelve times 

that of the error for the deterministic midpoint quadrature rule. However, a feature of 

the estimator a* is that it can not be recursively updated, since the grid for sample size 

n +1 is different from that for sample size n. In contrast, the estimator ä»+i merely adds 

a function evaluation at the point Un+\ to those already computed at Ui,..., Un. Thus, 

the factor of twelve can be viewed as a penalty paid to obtain an estimator that can be 

recursively updated. Of course, the recursive update of d«+j from &n would engender a 

significant computational burden. The integer i for which the subinterval [£,_i(n),Xi(n)] 

contains Un+i would need to be determined, and the cost of finding i would increase with 

the sample size n. Indeed, for very large n, the cost could become prohibitively expensive. 

This analysis in the one-dimensional setting suggests that use of function evaluation 

location information is particularly appropriate for situations where the proposed sample 

size n is moderate and function evaluations are expensive. Theorem 1 indicates that the 

slow convergence rate of n~1/2 associated with naive Monte Carlo estimation is (for one- 

dimensional problems, at least) not a consequence of the irregular spacing of the function 

evaluations, but rather it results from the uniform weights that are used in constructing 

the sample mean. Limit (2.3) indicates that the rate of convergence for a properly weighted 
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Monte Carlo estimator is identical to that of the corresponding deterministic quadrature 

rule using a regularly spaced grid. 

Another approach to improving the rate of convergence of an would be by developing a 

randomized version of Simpson's integration rule. The results observed here for quadrature 

rules suggest that the error of Simpson's rule on a regular deterministic grid would be 

asymptotically smaller (at least by a constant factor) than the error of a randomized 

version. 

The primary purpose of this paper is to observe that the performance of Monte Carlo 

sampling schemes can sometimes be substantially improved by taking advantage of function 

evaluation location information. Given that deterministic quadrature rules are likely to 

be the methods of choice for one-dimensional integration problems (particularly when 

the integrand is smooth), the real impact of this observation lies in the possible use of 

location information for problems involving high-dimensional integrals, where Monte Carlo 

sampling is most frequently employed. 

The theory presented here bears a superficial resemblance to a rotation sampling 

scheme proposed by Fishman and Huang (1983). Their method involves using a randomly 

translated regular grid with constant spacing, and it is effectively identical to the well 

known rectangular integration rule, as pointed out by Glynn and Whitt (1992). Our 

result, in contrast, involves function evaluations that lie on a randomly generated and 

irregularly spaced grid. 

Conclusions 

We have shown that the use of function evaluation location information can dramat- 

ically improve the performance of one-dimensional sampling schemes. This improvement 

arises via an appropriate reweighting of the function evaluations so that they no longer 

necessarily receive identical weights. The results obtained here suggest that it may be es- 

pecially beneficial to judiciously incorporate location information when using Monte Carlo 



sampling methods for estimation of high-dimensional integrals.1 

1 The research of the first author was supported by National Science Foundation 

Contract No. DMS59204864. The research of the second author was supported by Army 

Research Office Contract No. DAAL03-91-G-0101 and by National Science Foundation 

Contract No. DDM91-01580. 

Appendix 

Proof of Theorem 1. Observe that 

Since / is twice continuously differentiable, 

/(«) - f{Ui(n)) = /(1>(tf.(n))(* - Ui(n)) + i/(2>fc(n))(* - U^n))7, 

where £«(n) lies between x and #i(n). Now, 

£ /Mn) /(l)w«))(*-^»))^-sE/(1)(^n>)(A^n)*-A^,,),)• 
where A,(n) = (^i(n) - £/,_j(n))/2. By using summation by parts, the latter sum can be 

written as 

i/<"(^.-,(n))A.(n)1 - i/|,<(Cr1(n))A2(n)' 

- | ^{/"»(^(n)) - /<'>(^-,(n))}A,(n)' 

=$/0)(^-i(n))A«(n)2 - \f"{VM)A2(n)2 - I £ /«(^(«»^(n)8, (A.2) 

where 7j(n) lies between Uj-\{n) and tf>(n) (j a= 2,...,n - 1). 

It is possible at this point to assume that Uj{n) — Tj/Tn+i (j * 1,.. •, n), where Tj is 

the ;th jump time of a Poisaon process N(t) having unit rate, since (Ui(n),..., Un(n)) is 

distributed as (Tj/Tn+i,... ,rB/TR+i) for each n > 1. (See, for example, Devroye 1982). 
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Since fW is continuous (and hence uniformly continuous) over [0,1], there exists an 

integer k = k(e) for each e > 0 such that \fw(x) - /(2)(v)| < e whenever \x-y\< 1/Jfc. 

Then 

3*1 

N(r„+l/*)-i *_! Ar(,T„+i/*)-i 

> {/(2)(o) -«}    E   A»3+E{/(2)((« -1)/*) -«}     E     A»3 
;
"2 iai2 i-N((.-i)r.+t/Jk) 

+ {/(2)((*-!)/*)-<}       E       A;(n)3- 
>-N((fc-l)T«+l/fc) 

Let r, = T, - Tj-i (j = l,...,n + 1) and observe that ri,...,r»+i are independent 

exponential random variables, each having mean 1. Since Tn/n -* 1 a.s. as n -» co, it is 

evident that 

N(IT»+,/*)-I 

E     A»3 

jmN((i-l)TK+l/k) 

/   n   y ü;^((i-»r.4,/*)fj N(iTn+i/k)^N((i-l)Tn^/k) 
\Tn^J N(iTW*)-tf((i-l)T«+i/*) 8T.+, 

sW - h   a 8 
as n -♦ oo. Hence, 

Um na E /(2)(7i(n))A,(n)' > ± £(/<»(.■/*) - c)       a..., 

and similarly, 

n-l 3  *-l 

n-°°       jm2 - i-0 

-i 3 4-1 

E «' £ /(,)(7i(»))Ai(»)1 < ~ £(/(a)(«/*)+«)   *•»• 
ft* mQg% _ "Ä ""~°°       >«2 "" i«0 

Since e was arbitrary and since 
k-\ 

I£ /(2)(»/*) - jf /(2)(o* - WD - /m(o), 
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it follows that 

»* E ^feWWn)1 - j(/(1)(D - /(1)(0))       a.s. (A.3) 
3 

i=2 

A similar argument proves that 

2 n-l   tLi(n) 

TE / '      /(2)fe(n))(* " WO)'* - l(/(1)(D - /(1)(0))       a.s.        (AA) 

as n —► oo. Furthermore, 

^'/...(„„»^„^^„„(^.M) 
and 

a.s. ^(^„„Ä.n./'-fä^- /<-V<4 
as n -♦ oo. Whereas 

K /        fi2){Un))(* - Ux{n))*dx < n> sup |/<»(«)|Ii(n)» 

<na sup|/(«(x)|iL-0       a.s., 

it is evident that 

n3/tl<n)[/(») - /(^(n))]^ - nV(1)(^(n))^^ - -/(1)(0)|       a.s.     (A.5) 

as n -♦ oo. A similar analysis holds for the error over the final subinterval [l„_i(n), l]. 

Since the square of an exponential random variable with mean 1 has the chi-squared 

distribution with 2 degrees of freedom, Theorem 1 follows upon combining (A.1)-(A.5). 
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