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1. FOREWORD

Reliability is one of the primary considerations in the design of communication systems,

computer systems and power transmission systems. Such systems are modelled as graphs or

digraphs whose elements (vertices and/or edges) have an associated probability of being

operational, and the reliability considerations fall into the area known as network reliability. A

key issue in network reliability is the determination of the reliability of a given network

system from the reliabilities of its components. Procedures for computing network reliability

date back to the 1950's; however, due to increasing network complexity, considerable attention

has been given recently to the exploration and discovery of efficient computational methods,

resulting in several outstanding advances in network reliability. Particular attention has been

paid to the all-terminal reliability R(G) of a graph whose edges fail with known probabilities,

where R(G) is the probability that G is connected.

Computing the all-terminal reliability for a general network has been shown to be an NP-hard

problem [14,17], and thus it is unlikely that an efficient polynomial running time procedure

can be constructed for solving general networks. Very recently, it was also established that

even for planar networks the computation of R(G) is NP-hard [18]. In work supported by the

two year ARO grant, we have studied special classes of networks and as a result developed

efficient algorithms for progressively larger subclasses of the class of planar networks. This

ARO supported effort involved two PhD students and resulted in about 10 refereed journal

papers.

An important contribution of the work is the discovery of a general technique to obtain

efficient algorithms for certain important classes networks by the use of forbidden minor

characterizations of these networks. While forbidden minor characterizations have a long and

rich history, there seems to have been no known connection between such characterizations of

graphs and their reliability analysis. Our research centered on forbidden minor

characterizations themselves and their subsequent application to the design of efficient

reliability algorithms.
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2. THE REPORT

A. STATEMENT AND AN OVERVIEW OF THE NETWORK RELIABILITY PROBLEM

In this section we present an overview of the known classes of networks whose reliability can

be computed efficiently. First, we need the description of the K-terminal reliability measure

and the notions of replacements and reliability preserving network reductions.

Suppose G = (V, E) is a graph and K 9 V is a specified subset of the vertex set V.

Furthermore, the elements (vertices and/or edges) of G may fail with known probabilities.

The K-terminal reliability RK(G) is the probability that there is a path of operating elements

between every pair of vertices in K. The all-terminal reliability R(G) = Rv(G) is a special

case of the K-terminal measure.

Reliability Preserving Reductions:

In order to reduce the size of G and therefore reduce the complexity of computing Rk(G),

reliability preserving reductions are often applied. For each edge e, we will denote the

probability that e. operates by p. and the probability that e. fails by q.. The following

reliability preserving reductions are well known.

Parallel reduction: Suppose that ex = uv and ey = uv are two parallel edges in a graph G.

Then a parallel reduction replaces ex and ey with a single edge e. = uv such that p. = I - qXqY.

Series reduction: Suppose that ex M uv and ey = vw are two edges such that v is a degree 2

point in graph G and v is not a K-point. Then a series reduction replaces eX, ey and the

vertex v with a single edge e. M uw such that p. = PxPy.

If G' is the graph obtained from G after a series or parallel reduction, then RK(G) = RK(G').



3

Degree-2 reduction: Suppose that ex = uv and ey 21 vw are two edges such that v is a degree 2

point in G and (u, v, w) C K. Then a degree-2 reduction replaces ex and ey with a single

edge e. M uw such that p. = PxPy/(l - qxqy)• If G' is the graph obtained from G after a

degree-2 reduction, then RK(G) = (1 - qxqy)RK-v(G).

Degree-) reduction: Suppose that ex f uv such that u is a degree 1 point in G and u E K.

Then a degree- 1 reduction deletes point u and edge ex. If G' is the graph obtained from G

after a degree- 1 reduction, then RK(G) = 'pUR(KUV)_u(G') if u E K and RK(G) = RK(G')

otherwise.

Loop reduction: Suppose that edge e = uu is a loop of graph G. Then a loop reduction deletes

edge e from G. If G' is the graph obtained from G after a loop reduction, then RK(G) f

RK(G').

Suppose (a, b, c) is a minimal point disconnecting set of a connected graph G. Let H' be a

connected component of G - (a, b, c). The subgraph, say H, induced by V(H') u (a, b, c) is

called a 3-attached subgraph of G. The points a, b, and c are the attachments of H, while the

points in V(H') are the internalpoints of H. The points V(G) - V(H) are externalpoints of H.

Note that every 3-attached subgraph has at least one internal point and at least one external

point. A 3-attached subgraph with two or more internal points is a non-trivial 3-attached

subgraph. Suppose H is a non-trivial 3-attached subgraph of G. If H has no proper subgraph

which again is a non-trivial 3-attached subgraph of G, then H is called a trisubgraph of G. In

other words, a trisubgraph is a minimal non-trivial 3-attached subgraph.

Trisubgraph to Y reduction: Suppose that H is a trisubgraph of G with attachments (a, b, c)

and (a, b, c) 9 K. A trisubgraph-to-Y reduction deletes the internal points of H and any

existing edges between (a, b, c), adds a non-K point w and edges x = wa, y = wb, z = wc.

The probabilities of w, x, y and z are as follows:
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Px al(a Py = al(a + '6b,{.,b)), P= = -l(a + 46c{a,b}) and p, = A/(A + B).

Moreover, A, B, a 6&,(b,c)' 8 b,fa,c], #c,(a,b) and y are given by:

A = (a + i.,(b,c))(a + 6b,{a,c))(a + 1c,[,,b)).

B = a2. _ (Q&a,{b,c)€b,{a,c) + G 6b,(a,c)'c,{a,b) + 0afi& b,€'c,){ab) + fla,(b~c)'b,{bc)c,{&,b1).

a : the probability that every K-point in H is connected to every point of (a, b, c).

Pi,T : the probability that every K-point in H is connected to either i or to all points of T,

but not both, where i E (a, b, c) and T = {a, b, c) - (i).

y : the probability that every K-point in H is connected to exactly one of (a, b, c).

If G' is the graph obtained from G after a trisubgraph to Y reduction, then

RK(G) = ((A + B)/a2) RKI(H)(G'), where I(H) is the set of internal points of H.

Graphs with cupoints:

A connected graph is said to be separable if it has a cutpoint. Let G = (V,E) be a separable

graph. If u e V is a cut-point of G, then we can decompose G into two subgraphs G1

(V 1 E1 ) and G 2 = (V 2 ,E2 ) such that G = G1 u G 2 , and G, n G2 = (u}. It is well-known that

R(G) = R(G 1 )R(G2 ). This decomposition can be repeated on subgraphs G1 and G 2 , and so on,

until all the subgraphs obtained are nonseparable.

Note that the nonseparable components of G can be found in time O(IVI+IEI) using the Depth-

First-Search. Furthermore it is clear that the reductions, series, parallel, degree-2, and

degree-I are constant time reductions. For this reason we need only consider nonseparable

graphs which admit none of these four reductions.

Graphs with separation-pairs:

A pair of points u and v in a nonseparable graph G is a separation-pair if the deletion of u

and v from G results in a disconnected graph. Clearly a nonseparable graph with no

separation pairs is 3-connected. Suppose that (u, v) is a separation pair in a nonseparable



graph G, then we can decompose G into two subgraphs G, = (V1,E,) and G2 = (V2 ,E2) such

thatG -G, uG 2, Gi r) = (u, v), and E, n E2 = 0. It is known that, for the case of all-

terminal reliability, any of these subgraphs can be replaced by a single edge to yield a

reliability preserving reduction. Specifically, if G' is the graph obtained from Gi by adding

an edge e, = (u., v) to G1 , then R(G) - a R(G'); the values of o and p, depend on R(G 2).

This decomposition can be repeated on graphs G, + ea and G2 + e., and so on, until all the

graphs obtained are 3-connected.

The 3-connected components of G can be obtained in time O(IVI+IEI) using the algorithm of

Hopcroft and Tarjan [7]. Thus we need only consider 3-connected graphs.

Graph replacements:

Consider the following six operations (replacements) on graphs without regard to probabilities:

(i) Parallel replacement : deletes an edge that is parallel to another edge

(ii) Series replacement contracts an edge that is in series with another edge

(iii) Degree- I replacement: deletes a degree one vertex

(iv) Loop replacement. deletes an edge that is a loop

(v) Y-A replacement: deletes a degree 3 vertex, say u, whose neighbors are (a, b, c) and adds

new edges between the pairs (a, b), (b, c) and (a, c)

(vi) A-Y replacement the inverse of Y-A replacement.

Replacements are operations involving only replacement of some edges or vertices of a graph

G by other edges or vertices to obtain a new graph G'. A reduction, on the other hand, is

defined with respect to G, K, and edge reliabilities. A reduction in G includes the act of

replacement to create G' along with defining edge reliabilities, K° and f0, all such that RK(G) =

O'RK,(G'), i.e. reliability is preserved. To underpin this distinction in network reliability

algorithms, let us first consider the well-known class of series-parallel graphs.

Series-parallel graphs
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A graph is a series-parallel graph if it can be reduced to an edgeless graph by a finite

sequence of the operations (i) thru (iv). This definition should not be confused with the

definition of a "two-terminal" series parallel network in which two vertices must remain fixed.

No special vertices are distinguished here. For example, it is easy to see that the graph of Fig.

I is a series-parallel graph. In particular, one may apply reliability preserving reductions for

the network shown in Fig. Ia to reduce it to an edgeless graph; i.e., the reliability of the

network of Fig. la is computable using a sequence of series, parallel and degree-I reductions.

However, if the K-vertices are different, as shown in Fig. lb, the network does not admit any

series, parallel or degree-I reductions. Motivated by the difference between graphs which

allow replacements but, with K and edge reliabilities defined, do not allow reliability

preserving reductions, one can classify the series-parallel graphs into two types as follows:

S K - vertices

FIG. Ia. sp-reducible graph. FIG. lb. sp-irreducible graph.
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Let G = (V,E) be a series-parallel graph such that the edges of G operate with known

probabilities. For a given K _ V, the graph G is said to be s-p reducible if it can be

reduced to an edgeless graph by a sequence of series, parallel, degree-I and degree-2

reductions. The series-parallel graph of Fig .1a is s-p reducible while that of Fig. lb is s-p

irreducible.

It is evident that the K-terminal reliability of an sp-reducible network G = (V,E) can be

computed in O(EI) time using series, parallel, degree-I and degree-2 reductions. However,

these reductions are not sufficient to compute the reliability of sp-irreducible networks.

Satyanarayana and Wood [16] constructed a linear time algorithm to compute RK(G) of sp-

irreducible networks, using a new reduction called polygon-to-chain reduction. A cycle C in a

graph G is called a polygon if C has exactly two points of degree > 2 and every other point of

C has degree equal to 2 in G. Satyanarayana and Wood showed that every sp-irreducible

graph has a polygon which can be replaced by a chain such that the reliability of the network

is preserved and the resulting graph is again a series-parallel graph. Similar results have also

been obtained for directed networks. A directed graph is said to be basically series-parallel

(BSP-digraph) if the underlying undirected graph is a series-parallel graph. An O(IEI) time

algorithm to compute the source-to-K-terminal reliability of BSP-digraphs has been found by

Agrawal and Satyanarayana [1,2].

Graph characterizations in terms of forbidden minors

If x = uv is an edge of G with the end points u and v, then by the contraction of edge x, we

mean deleting x and identifying the points u and v to a single point. A graph H is

contractible to a graph G if G is obtained from H by a sequence of edge contractions. A

graph H is a minor of G if G has a subgraph contractible to H. Characterizations of certain

classes of graphs in terms of some forbidden minors have a rich history in graph theory. For

example, the classical result of Kuratowski may be stated as follows. A graph G is planar if

and only if the complete graph K5 or the complete bipartite graph K3, 3 is not a minor of G.
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The well-known series-parallel graph characterization of Duffin [4] can be stated as follows.

A graph G is series-parallel if and only if the complete graph K4 is not a minor of G.

In the following discussion, we say that a graph G is a (H1, H12, .... , Hm)-ftee graph if graphs

H1, H 2 , ..... H. are not minors of G.

Y-A graphs, A-Y graphs and A-Y-A graphs

A graph is a A-Y-A graph if it can be reduced to an edgeless graph by a finite sequence of

the replacements (i) thru (vi). A A-Y-A graph is a Y-A graph (A-Y graph) if the reduction

sequence does not use the A-Y replacement (Y-A replacement). A-Y-A graphs have been

known for a number of decades; series-parallel, A-Y and Y-A replacements have been used to

simplify the analysis of electrical networks. A-Y-A graphs constitute a large class of graphs;

indeed, Epifanov [5] showed that every planar graph is a A-Y-A graph.

The recent forbidden minor characterizations of A-Y graphs and Y-A graphs led us to

discover efficient reliability computation algorithms for these classes.

A-V graphs:

Politof (9], in his PhD thesis, provided the first structural characterization of A-Y graphs. He

showed that every A-Y graph is planar and that a planar graph is A-Y graph if and only if it

is a (C5+2K 1, K2 x C4)-free graph. The graphs C5+2K, and K2 x C4 are shown in Fig. 2. This

characterization turns out to be very useful in reliability analysis. Indeed, this yields an

efficient algorithm to compute the reliability of a slightly larger class, namely the class of K2

x C 4-free graphs that include A-Y graphs. Politof and Satyanarayana 110,111 used this

structural characterization and showed that R(G) of a K2 x C4-free graph G can be computed

in linear-time. Note that one could also compute R(G) of a 4-Y graph using reliability

preserving reductions discussed above, but this would result in an algorithm of complexity at

least O(n 2 ).
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E . 9

CS + 2KI K2 x C4

Fig. 2 The graphs C5 +2K 1 and K 2 x C 4

Y-A graphs:

Satyanarayana ana Tung [15] and Arnborg, Proskurowski and Corneil [3] independently showed

that a graph is a Y-A graph if and only if it is a (K5 , K 2 ,2 2 , C8 (1,4), K 2 x Cs)-free graph.

Graphs Ks, K2,2,2, C8(1,4) and K2 x C5 are shown in Fig. 3. This characterization is again

useful in reliability analysis and it yields an efficient algorithm to compute the reliability of a

much larger class, namely the class of (K., K2,2, 2)-free graphs that include Y-A graphs.

Politof and Satyanarayana and Tung [13] used the characterization and showed that R(G) of a

(Ks, K 2 ,2 2 )-free graph G can be computed in O(n log n), where n is the number of vertices

of G. It is important to note that there is no Y-A reliability preserving reduction. However,

using the forbidden miner characterization Y-A graphs it is possible to show that every Y-A

graph admits a trisubgraph-to-Y reduction and the resulting graph is again a Y-A graph. This

indeed is the basis of the O(n logn) algorithm of [13].
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Ks K2 .2 .

Cs(1,4) K2 x Cs

Fig. 3 The graphs Kr, K2,2,2, C.(0,4) and K2 x CS
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B. SU.M.MARY OF RESULTS

An important outgrowth of the work during the second year of the grant period is the

development of the notion of quasi 4-connected graphs and their characterization by Politof

and Satyanarayana [121. A minimal vertex disconnecting set S of a graph G is a nontrivial ISI-

separator if the connected components of G-S can be partitioned into two sets each of which

has at least two vertices. A 3-connected graph is quasi 4-connected if it has no nontrivial 3-

separators. A super set of quasi 4-connected graphs, called Vosperian graphs, have been

recently studied by Hamidoune and Tindell [6) from a group-theoretic point of view.

Politof and Satyanarayana [121 proved the following:

Theorem 1: Suppose G is a nonplanar quasi 4-connected graph. If K5 is not a minor of G

then G is either C8(1,4), or G has exactly six points and has K3 ,3 as a subgraph.

Theorem 2: Suppose G is a planar quasi 4-connected graph. If K2 X C4 is not a minor of G

and G # Cs + 2K 1 then G is a subgraph of either P or Q. (Graphs P and Q are shown in Fig.

4).

Theorem 3: Suppose G is a planar quasi 4-connected graph. If K,2,2 is not a minor of G and

G # K2 x C5 then G is a subgraph of Q.

These results in conjunction with the known forbidden minor characterizations of A-N and Y-

A graphs yield the following propositions that form the basis for the construction of efficient

algorithms for computing R(G).

Since a A-y graph is a planar and (K. X C4, C5 + 2K,)-free graph, Proposition I is immediate

from Theorem 2.

Proposition 1: Every 3-connected A-Y graph has a trisubgraph H which is a subgraph of

graph P or Q.
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//
/

/

The graph P

The graph Q

Fig. 4. Graphs P and Q
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Since a Y-A graph is a (K., K2,2,2, CS(l,4), K2 x C5)-free graph, Proposition 2 is immediate

from Theorems I and 3.

Proposition 2: Every 3-connected Y-A graph has a trisubgraph H such that H is one of the

four graphs shown in Fig. 5 in which the broken lines correspond to edges that may or may

not exist.

/ .\

/ / I

I I

Fig. 5. Trisubgraphs of Y-A graphs

In both the cases, the propositions assert that there is a trisubgraph H in the given graph such

that the number of points in H is bounded by a constant. Thus the trisubgraph-to-Y

reduction can be executed in constant time and the resulting graphs belong to the same class

again so that the argument can be repeated. Moreover, given a vertex, verifying whether it is

an internal vertex of a trisubgraph can be done in constant time for A-Y graphs. It takes little
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more to show that 0(log n) time suffices to do the same in the case of Y-A graphs. Thus

O(n) and O(n log n) algorithms can be constructed to compute R(G) of A-Y graphs and Y-A

graphs respectively.

The results and the discussion above lead to a general scheme to develop efficient algorithms

for computing the all-terminal reliability of much wider classes of graphs whenever they

satisfy the following property.

Let r be the collection of all (H1 , H2, ..... Hk)-free graphs for some finite set of graphs (HI,

H2, .... Hk). Let rq be the collection of all quasi 4-connected graphs in r. Note that, in

general, r is infinite. If the reliability of the graphs in rq is efficiently computable, then the

reliability of every graph in r is efficiently computable. In particular, this will be the case if

rq is finite.

G. Lingner, T.Politof and A. Satyanarayana [8] studied the following class of graphs and

proved some important results. Consider the seven graphs shown in Fig. 6. We say that a

graph G belongs to e if none of the seven graphs of Fig. 6 is a minor of G. They proved

that there are finitely many quasi 4-connected graphs in 61 and moreover that each such graph

has at most 14 vertices. From this it is shown that R(G) of any G in 6' is computable in O(n

log n) time where n is the number of vertices of G. The class 6' contains both planar and

nonplanar graphs. In fact 6' contains all A-Y graphs and Y-A graphs.



(a !(b) C12 (C) fl3

(d) 04 (e) Q 5 () •6

(0 F15

Fig. 6. The Seven Forbidden Graphs
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