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People need to calibrate camera systems in order to determine the relationship between the positions of
features in object space and their corresponding positions in the image. Part of camera calibration is the
determination of image center. But. what is the image center? Ideally, the image center is considered to
be the point of intersection of the camera's optical axis with the camera's sensing plane. In fact there are
many possible definitions of image center, and in real lenses most do not have the same coordinates. In
addition, the image centers move as lens parameters are changed. In this paper we examine why image
centers are not necessarily the same for different image properties and why they vary with lens
parameters. We then provide a taxonomy of 16 different image centers and describe procedures for
measuring them. Finally we examine the calibration of image center for a variable parameter lens.
Several techniques are applied to a precision automated zoom lens and experimental results are shown.
We conclude that the accuracy of the image center can be an important factor in the accuracy of the
overall camera calibration, and that the large variation in the position of the image center across different
definitions and different lens settings makes the calibration problem much more complex than is. conventionally believed. With proper modeling, by using correct definitions for all image centers in a
system, we can improve the accuracy of our camera calibration.
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Abstract

People need to calibrate camera systems in order to determine the relationship between the
positions of features in object space and their corresponding positions in the image. Part of
camera calibration is the determination of image center. But, what is the image center? Ideally,
the image center is considered to be the point of intersection of the camera's optical axis with
the camera's sensing plane. In fact there are many possible definitions of image center, and
in real lenses most do not have the same coordinates. In addition, the image centers move as
lens parameters are changed. In this paper we examine why image centers are not necessarily
the same for different image properties and why they vary with lens parameters. We then
provide a taxonomy of 16 different image centers and describe procedures for measuring them.
Finally we examine the calibration of image center for a variable parameter lens. Several
techniques are applied to a precision automated zoom lens and experimental results are shown.
We conclude that the accuracy of the image center can be an important factor in the accuracy
of the overall camera calibration, and that the large variation in the position, of the image center
across different definitions and different lens settings makes the calibration problem much more
complex than is conventionally believed. With proper modeling, by using correct definitions
for all image centers in a system, we can improve the accuracy of our camera calibration.



1 Camera Calibration and Image Center

Camera calibration involves modeling the relationship between the positions of features in 3D
object space and their corresponding positions in the 2D image. Precise camera models have
many terms that describe the properties of the imaging process, and some of these terms are
used to account for properties that vary with distance from the center of the image. To model
such properties we need to know where their image center is. Naturally. the accuracy of the
model depends on the accuracy of the center that we use.

In an ideal lens there would be one image center which could be used in- modeling any of the
radially varying imaging properties. In practice the manufacturing tolerances for lenses result
in different imaging properties having centers in different places, as shown in Figure 1 for our
camera and lens. So, image centers are not necessarily interchangeable. Indeed, to fully model
a camera we may need several different image centers.

The situation becomes even more complex for an adjustable lens. When camera parameters
such as focus or zoom are varied, the position of the camera's field of view and image centers
will also vary. Figure 2 shows how the position of a fixed point at the center of our camera's
field of view shifts as a function of the focus and zoom motors of the camera lens.

We start this paper by examining why different image properties do not necessarily have
the same image center in real lens systems. We also discuss why the image centers move in
variable focus and variable focal length camera lenses. We then present a taxonomy of image
center definitions based on the number of lens settings that are required to determine the image
center. Procedures for measuring 16 different image centers are given and experimental results
are then presented for ten of the methods. We conclude by examining how image center and
field of view move in a variable parameter zoom lens.

Camera calibration in machine vision has traditionally paid little attention to the issue of
image center. Typically the image center used to model one imaging property is obtained by
measuring a completely different property, if a measurement is made at all. Such approaches
can reduce the overall accuracy of the camera calibration. By using the proper image center for
each image property that we are trying to model and by calibrating the image centers over the
appropriate ranges of lens parameters we can significantly improve the accuracy of our camera
models.

, Ini i i iI I 1
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Figure 1: Different image centers for the same camera system.
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2 Real Lenses

Traditionally a camera's image center is considered to be the poi of intersection of the lens*
optical axis with the camera's sensing plane. The optical axis , defined as the line passing
through the centers of the optical components in the lens. In practice the optical axis is not so
easily defined for real lenses. The type of complications that arise depend in part on whether
the lens has fixed or va. I&e parameters and on how the variable parameters are mechanically
implemented.

In an ideal lens system the optical axis is defined as the straight line passing through all of
the radii of curvature of the lens elements. The rotational symmetry of the system naturally
leads to imaging properties that are radially symmetric around the optical axis. In a real lens
system things are not so simple. For a simple lens element like that shown in Figure 3 there
are actually two axes of symmetry, one optical and one mechanical. The optical axis of the
lens is defined as the straight line joining the centers of curvature of the two surfaces of the
lens. The mechanical axis of the lens is determined during manufacture by the centerline of the
machine used to grind the lens' edge. Ideally the optical and mechanical axes would coincide.
Practically though they won't. The tolerance between them is called decentration (6].

In a compound lens two or more lens elements are aligned and mounted together to form
the complete lens, as illustrated in Figure 4. Ideally all of the elements would be aligned along
a common optical axis, but this is not always possible given the decentration in the individual
elements. The cumulative effect of the mechanical tolerances for the lens elements is that there
is no "ideal" optical axis for the lens. In fact, the decentration and misalignment can produce
tangential lens distortion and asymmetric radial lens distortion [1]. As a result, the different
imaging properties of the lens will not necessarily have a common axis of symmetry.

With adjustable lenses the focus and zoom are changed by varying the positions of the lens
elements within the lens body. Moving the lens elements is typically accomplished in one of
two ways. In the first method the lens elements are mounted in a threaded section of the lens
barrel which can then be rotated around the lens body to move the group along the axis of
the lens. In the second method the lens elements are mounted on slides or rails which can
then be translated along the axis of the lens body using internal cams. As the spacing of tile
lens elements is changed so is any misalignment between their mechanical and optical axes.
Generally the rotationL of a lens g,:,p will caiisr -. rotational ,rift in the position of the lens'
optical axis [4], while the sliding of a lens group will cause a translational motion of the lens'
optical axis in the image plane. These rotational and translational shifts in the position of the
optical axis cause a corresponding rotational and translational shifting of the camera's field of
view.

In variable focus fixed focal length lenses typically all of the lens elements are mounted
together in a single fixed assembly. To vary the lens' focus the separation between the optit-
and the camera sensor is changed by moving the lens assembly with either a rotational or
translational type mechanism. A less common focusing method found in some newer 35 mIn

autofocus lens designs involves the movement of a small lightweight element within the lens*
optics to vary the focus of the image [2].

In variable focal length (zoom) lenses, such as the one illustrated in Figure 5. the focal
length is changed by moving groups of lens elements relative to one another. Typically this is
done by using a translational type mechanism on one or more of the internal groups. The hvns"
focus is often varied by using a rotational mechanism on the front lens group.
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3 A Taxonomy of.Image Centers

In machine vision the most commonly used definitions of image center are the focus of exIprn-
sion and the center of perspective ir.yjection. The numericul center of the image (i.e.. digitizer)
coordinates is also commor t, A, but unlike the other two it does not involve the measure-

ment of a system's actual . ging properties. We base our taxonomy on the number different
lens settings that must be used in order to establish the image center. The center of image

coordinates belongs to the class of techniques that we call non-imaging which require no image

measurements. The center of perspective projection belongs to a second class that we call sin-

gle imag 'cchniques that measure properties of images taken at a single camera setting. The

focus of expansion approach belongs to a third class that we call multi-image techniques that

measure properties that occur between two or more images taken at different camera settings.
In this last class the image center is defined in terms of the differences between images taken at

different lens settings and should not be confused with simply tracking one of the single image

techniques over different lens settings.
For techniques that make use of image measurements we further divide our taxonomy into

two subcategories: feature based and non-feature based. Feature based techniques involve tile

detection of feature points in the image followed by the application of a geometric interpretation
of the 3D to 2D projection to yield an image center. The center of perspective projection

(section 3.2.2) is an example of this type of technique. Non-feature based techniques involve

using the image sensor or some other sensing device to take direct measurements of the image

formed by the lens. Taking the image of an autocollimated laser (section 3.2.5) is an example
of this type of technique.

We can name at least 16 different definitions of image center under this taxon,,m.v. By class

they are:

Non-imaging
"* Numerical Center of Image/Digitizer Coordinates (section 3.1.1)

"* Center of Sensor Coordinates (section :3.1.2)

Single image
Feature based

"• Center of Radial Lens Distortion (section 3.2.1)
"* Center of Perspective Projection (section 3.2.2)
* Center of Lines of Interpretation (section 3.2.3)
* Center of Field of View (section 3.2.4)

Non-feature based
"* Center of an Autocollimated Laser (section 3.2.5)
"* (enter of cos4th Radiometric Falloff (section 3.2.6)
"* ('enter of Vignetting/Image Spot (sect ion 3.2.7)
"• Center of Focus/Defocus (section :.2.,S
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Multi-image
Feature based

"* Center of Expansion (section 3.3.1)
"* From Focus
"• From Zoom
"* From Aperture
"• From Image Band

"• Focus of Expansion (section 3.3.2)

3.1 Non-imaging Definitions

B) ,i .I: ;Fition non-imaging techniques do not make use of image properties to determine image
en e:. lstead the image center is defined in terms of the camera's sensor or digitizer properties.

"Ihese properties in turn depend on the type of camera being used. Two techniques are used
in _iudern solid state cameras to obtain digital images from a camera's sensor. They are video
output cameras (also called closed circuit television or CCTV cameras) and non-video digital
output cameras (also called scientific, slow scan or pixel clocked cameras).

In video output cameras each row of the CCD is scanned off of the sensor and converted
to a continuous analog signal. The continuous analog signal is then resamp!,,d by a digitizer
board to obtain a digital representation for the row. In this type of camera there is a direct
relationship between the row numbers on the sensor and the row numbers on the digitizer.
However, the relationship between the column numbers on the sensor and the column numbers
in the digitizer is not direct, and depends on the synchronization of the digitizer to the start of
the analog signal for each row and on the relative sampling rates of the sensor's output clock
and the digitizer's sampling clock.

In non-video digital output cameras the sensor's pixels are digitized directly as they are
clocked off of the sensor resulting in a one-to-one correspondence between the sensor's row and
column pixel coordinatcs and the digitizer's coordinates.

3.1.1 Numerical Center of Image/Digitizer Coordinates

If the numerical center of the image coordinates is used as image center then the coordirlates
of the image center are trivially given by

Xmax - Xmin
=X 2

Ymax - Ymin

"2

where Xmax, Xmin, Ymax and ymin are the maximum and minimum column and row numbers
respectively.1

'Throughout this paper we specify the image center in ry image coordinates, in pixels, where x corresponds
to column number in the image and y corresponds to row number.
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3.1.2 Center of Sensor Coordinates

If the numerical ceitter of the sensor's pixel array is be to used as the image center then the
coordinates of the image center are given by

f *ensor dock
C, = (cx sensor - k.) xfdensor clock

fdigitizer clock

Cy = Cy sensor - ky

where

cX sensor is the center of the sensor in pixels in the x direction,

cy sensor is the center of the sensor in pixels in the y direction,

k, is the number of sensor columns skipped over before digitizing starts.
ky is the number of sensor rows skipped over before digitizing starts,

fsensor clock is the frequency that sensor elements are clocked off of the CCD and

fdigitizer dock is the frequency at which the digitizer samples.

For non-video digital output cameras k, and ky are integers and fsensor clock = fdigitzer clock.

3.2 Single Imag2- Definitions

Single image techniques rely on the analysis of images taken at one fixed lens setting to estimate
the image center. These techniques are important because in many machine vision systems the
lens parameters are unautomated or even fixed.

3.2.1 Center of Radial Lens Distortion

Lens distortion is the displacement of the image of a point away from the position that is
predicted by a perfect perspective projection by the camera. Displacements that are aloag
radial lines from the center of an image are called radial lens distortions. For radial lens
distortion the relationship between the distorted position of a point (xi, yd) on the image plane
and the undistorted position of the point (xs,y,,) can be modeled as

xu = (xd-c.,)(l+ Kr2 + K 2 r4 +)+cX
Y. = (Yd -- Cy)(I1 + N, r 2 + K-2r 4 + " )+ cy

r \J[.r~i -r,)] + [d?(yd - y

where d•, d. and .s, are camera constants and Ki are the distortion coefficients.
In Tsai's camera calibration approach [7] the data used to calibrate the caniera sYstvem

consists of the world coordinates (x,,,y,,,.z, ) and the measured image coordinates (x,. y,) for
a set of fatire points. The image plane error is the difference between the image coordinates
of a feature point given by the calibrated camera model and the actual meastired inmage co-
ordinates (x,. y,) given in the calibration data. We define the center of radial lens distortion
as the image center that produces the minimum average image plane error for the calibration
data. To determine this center we follow Tsai's camera calibration algorithmn with a non-linear
optimization of all of the caliculated model parameters plus the r, and rY parainet ers.
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3.2.2 Center of Perspective Projection

Under perspective projection the images of two lines that are parallel in object space but not
parallel to the camera's sensing plane will appear to intersect at a location (u, v), called a
vanishing point. In the image of three sets of lines, where the lines within each set are parallel
in object space and where each of the sets are not parallel with each other or the image plane,

there will be three vanishing points (u,, va), (ub, Vb) and (u,, v,). Further, if the three sets
of parallel lines are mutually perpendicular in object space, then the center of perspective

projection for the camera can be calculated from the three vanishing points using the formula
presented in [8],

C, U;] - Ua Vc - Va Ub(Uc - Ua,) + vb(vC - v,,)
e. = Uc-U6 Vc--Vb U.(Uc Ub)+V (Vc Vb)

An image of three sets of parallel lines that are mutually orthogonal can be easily obtained
by imaging the corner of a right angled cube and using the cube's nine visible edges, as shown

in Figure 6.

3.2.3 Center of Lines of Interpretation

In a camera each pixel lies on a line-of-sight or line of interpretation through object space. All
lines of interpretation intersect behind the image plane at a location called the viewing point for

the camera. The normal projection of the viewing point onto the imaging plane defines a center
for the lines of interpretation. For this approach we require the equations of at least three2 non-

coplanar lines of interpretation, L1 , L2 and L3 and the 2D image coordinates of their intersection
with the imaging plane, P1, P 2 and P3 . The intersection of the lines of interpretation determines

the 3D coordinates of the viewing point. The relative 2D distances between the images of the
lines of interpretation at P1, P 2 and P3 together with the equations of the lines of interpretation
determine the parameters of the image plane. Finally the normal projection of the viewpoint
onto the image plane provides us with the image center, as illustrated Figure 7.

To determine the equations of lines of interpretation we use a target consisting of two points.
T1 and T2 , mounted on the ends of a rod. The rod is manipulated manually until the two points
coincide in the camera's image plane. A pair of surveyor's transits are then used to determine

the equation in 3D world coordinates of the line of interpretation connecting T, and T2. The

location of the image of the two superimposed points defines the interception point of the line
of interpretation with the image plane.

3.2.4 Center of Field of View

In a camera the four corners of the sensor can be used to define the extent of the camera's field
ot view. The center of field of view is simply the coordinates of the image of the physical center

of the field of view in object space.
To measure the center of the field of view we position a straight edge target such that the

target's edge extends precisely from the upper right hand corner of the camera's image to the

lower left hand corner. A second image is taken with the target's edge extending across to the
alternate corners of the image. The center of field of view is then determined 1y finding the
location of the intersection of the edges in the two superimposed images, as shown in Figure S.

2 As with the center of perspective projection, the lines of interpretation technique determines the image center

based on a limited number of image measurements, generally without regard to underlying phenomena like radial
lens distortion. As a result the image centers from these techniques tend not to be very robust.
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Figure 8: Center of field of view.

3.2.5 Center of an Autocollimated Laser

In an ideal lens the centers of the radii of curvature for all of the lens elements would fall on a
line defined as the optical axis. In this situation a ray of light traveling down the optical axis
of the lens would remain unbent and would strike each lens element normal to its surface. Any
light reflected back from a lens surface would travel directly back along the path of the incident
ray. In a real lens the centers of the radii of curvature for the lens elements do not fall on a
line. Instead manufacturing tolerances result in decentering and tilting of the lens elements
relative to one another. As a result there is no single path which will have all of the reflected
light return directly along the same path; the reflected light returns at various angles relative
to the incident light.

In the autocollimated laser approach a low power laser beam is passed through a hole in a
white screen and into the objective of the lens under test, as illustrated in Figure 9. The laser
beam serves as an intense highly collimated light ray. As the beam travels down the lens the
lens elements reflect part of it back out the lens and onto the white screen. By manipulating
the position and orientation of the laser and the lens the reflections coming back from the lens
can be roughly lined up with the hole that the laser is being passed through. At this point the
laser is said to be autocollimated, with the laser beam traveling along the "best" optical axis
for the lens. An image taken of the laser in this configuration yields the image center for an
autocollimated laser.

3.2.6 Center of cos 4
1h Radiometric Falloff

In a lens system the illumination of the image plane will be found to decrease away front the
optical axis at least with the 4th power of the cosine of the angle of obliquity with the optical
axis [3]. This falloff can be clearly seen in Figure 10 which shows the profile of a scanline taken
from the image of a more or less uniform white field. The abrupt drop in intensity values near
the edges is due to vignetting which is the subject of section 3.2.7.

The most direct way to determine the center of radiometri,: falloff would be to take an image
of a uniform white field, smooth it to remove per pixel noise and then find the location of the
intensity peak. In practice it is nearly impossible to create a target with uniform reflectance
and illumination across the full field of view. Rather than trying to meas~ure the intensity across
the full field of view at once we instead measure the intensity of a patch of pixels at the center

10
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Figure 9: Center of an autocollimated laser.

of the image of a small diffuse calibrated light source. By stepping the calibrated light source
across the camera's field of view we build up a set of intensity measurements for the entire image
plane. To determine the center of the radiometric falloff we fit the simple bivariate quadratic
polynomial

1(x, y) = aoo + aoly + alox + alixy + ao2 y2 + a 2ox 2

to the measurements. The position of the polynomial's peak and thus the center of the radio-

metric falloff is then given by

ao0 all - 2a 10a 2o
4a 20 a0 2 - a2

aloala - 2aoi a024a 20 a0 2 - a12

We use a quadratic polynomial instead of a cos4th function because the fitting can be done in
closed form for the polynomial.

3.2.7 Center of Vignetting/Image Spot

For angles nearly parallel to the optical axis the edges of the bundle of rays passing completely
through the lens will usually be bounded by the diameter of the aperture stop. However, at

more oblique angles of incidence the extreme rays of the bundle may be limited by the front and
rear lens openings rather than the aperture stop, as shown in Figure 11. This phenomenon is
known as vignetting and leads to a reduction of the image illumination at increasing distances
away from the axis [3]. Figure 12 shows sharply defined vignetting in an image of a uniform
white field.

To determine the center of the vignetting for we locate the edge of the image spot along the
rows and columns of the image using a standard Laplacian-of-Gaussian edge finding technique.
A circle is then fit to the spot's edge to estimate the center of the vignetting.

Note: In virtually all commercial camera systems the size of the lens' image spot (the inage
format) is chosen to larger than the dimensions of the sensor specifically to avoid significant
vignetting effects. Thus this technique can only be used when the lens is removed from the

camera system or in camera systems where the image format is smaller than the sensor size.

11
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Figure 12: Image of a uniform white field showing sharply defined vignetting.
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3.2.8 Center of Focus/Defocus

With an ideal lens a planar target in front of the lens would produce an image of the target
behind the lens that would also be planar. With real lenses though the image of a plane will
not itself lie in a plane. The difference between the position of a plane's real image, illustrated
in Figure 13, and its ideal planar image is known as the field curvature of the lens. In practical
terms field curvature means that the focussed distance of the lens varies across the field of view
of the lens, as has been shown in [5].

To measure the center of focus or defocus we start by imaging a plane that is nearly perpen-
dicular to the optical axis and parallel to the sensing plane of the camera. The field curvature
of the lens introduces local defocusing in the image of the plane. If the target plane is nearly
perpendicular to the optical axis then the focus/defocus pattern will be radially symmetric. To
more accurately measure the amount of defocus we use a target plane containing a uniform high
spatial frequency texture (e.g., a fine checkerboard pattern). A difference operator is run across
the image to enhance the focus/defocus information contained in the image's high frequency
content and attenuate the effect of the low frequency variations in the image intensity due to
factors such as illumination and the cos4th law. The image center is then determined by fitting
a radially symmetric model to the resulting pattern of focus and defocus.

3.3 Multi-image Definitions

The last class in our image center taxonomy is multi-image techniques. These techniques rely
on the analysis of two or more images taken at different lens settings to determine an image
center. Since the image center is defined in terms of the differences between images and not in

terms of the properties of the individual images, multi-image techniques say more about how
lens alignment and centration tolerances interact as the lens parameters are varied than they
do about about the image properties covered by the previous single image techniques.

Changing any lens parameter will cause changes in the image parameters, including for
example the magnification, focussed distance and intensity of the image. While any of these
image properties might be used as the basis of a multi-image definition of image center, image
magnification has the most apparent usefulness.

13



3.3.1 Center of Expansion for Focus, Zoom, Aperture and Image Band

Given two images taken at different magnifications exactly one position in the scene in both
images will remain in the same place in the image plane. This position is called the center
of expansion between the two images. More precisely, given two images 1 and 12 taken at
two magnifications mr and m 2 , and given n reference points P1 .. P,, in image 11 and the
corresponding points Q, ... Q, in image 12, then there exists a center of expansion C that
satisfies the constraint

(C-P 2 )=k(C-Q2 ) Vi = I...n

where
k M

M2

The relative image plane magnification k can be estimated from the change in relative separation
of the points in each image by evaluating

kz:, - qc,- q, > j, I q, -q., > threshold
Pxi ,

_ y -ihqy,ky,• - qy - P•, , -y> qi [> threshold

k - -k p •
k = k•V+ Ek y

a, + fl

where n., and ny are the number of points in the x and y directions passing the threshold test.
The threshold test is necessary to minimize the effects of the measurement noise in coordinates
of the reference points. Typically we use a value that is 2 to 3 orders of magnitude greater than
the uncertainty in the measurement of the reference point coordinates. If k is close to unity
then the relative positions of the reference points do not move significantly between the two
images and the effects of radial lens distortion can be ignored.

To find the center of expansion we start by defining the squared error for the center as

e., = (c. - p,,)- k(c. - q.,)

e = (c.-py,)-k(cy- qy)

e = -e2+e2,
i=1I

To find the c,, and cy that minimizes the squared error we differentiate e with respect to c, and
C% and set the results equal to zero, yielding

c - n(k - 1)
•i1(kqy, - Py,)

c = n(k - 1)

Normally image magnification is changed by varying a lens' zoom. however niagnification
can also be changed by varying the focus, aperture and color band of the lens (91. Accordingly
centers of expansion can be defined for all four lens parameters.
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Table 1: Different image centers for the same camera system.

Definition c, [pixels] c. [pixels]
Numerical center of image/digitizer coordinates 288 192
Center of sensor coordinates 290.0 195.5
Center of expansion (zoom) 310.7 182.3
Center of expansion (focus) 324.2 164.8
Center of expansion (aperture) 324.7 191.9
Center of cos4th falloff 283.1 156.7
Center of vignetting/image spot 273.2 200.1
Center of an autocollimated laser 267.0 204.0
Center of radial lens distortion 258.1 203.9
Center of perspective projection 229-261 165-171

3.3.2 Focus of Expansion

In what is known as the focus of expansion technique the trajectories of a number of feature
points are tracked across several images taken over a range of zoom settings. The intersection
of these trajectories yields an image center called the focus of expansion. Since the intersection
of the trajectories for any pair of images will yield a center of expansion, the focus of expansion
is efftivcly J-- the averag, center of expansion for zoom over a particular range of zoom
settings. The equations for the focus of expansion are straightforward generalizations of the
equations for the center of expansion.

3.4 Experimental Results

To illustrate the importance of an accurate image center we calibrated our Fujinon lens and
Photometrics camera using Tsai's camera calibration technique (7]. The non-coplanar data
used in the calibration was obtained using a planar target containing a total of 225 uniformly
spaced reference points (a 15x 15 grid) mounted on a precision motion platform.

In Tsai's technique the image center is considered to be a fixed camera parameter generally
determined separately from the calibration of the camera model. Figure 14 shows the mean
value of the image plane error for Tsai's technique for a range of different image centers. For
an image center equal to the numerical center of the image at (288. 192] (point 1 in Figure 1)
the mean and standard deviation of the image plane error are 0.553 pixels and 0.413 pixels.
However, for our camera and lens the image center that yields the minimum average image plane
error occurs at [258.1, 203.9] (point 9 in Figure 1), where the mean and standard deviation of
the error drop to 0.084 pixels and 0.046 pixels.

To illustrate the variation in the position of image center between different definitions we
measured ten different image centers for our automated Fujinon lens.3 The results, drawn to
scale in Figure 1 and listed in Table 1, show variations of over 90 pixels in the x direction and
over 40 pixels in the y direction (image size is 576x384 pixels).

3The first nine measurements were made with a focussed distance of 2.16 m, an effective focal length of 98 mm
and an aperture of f/8.1. The perspective projection measurements were made with the focussed distance varYing
from 1.2 - 2.0 m, an effective focal length of 20 mm and an aperture of f/12.5.
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Figure 14: Mean image plane error as a function of image center used during calibration.
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4 Image Center in Variable Parameter Lenses

Varying the focus and zoom of a camera lens changes the alignment of the lens components
and causes the image center and field of view to shift. As we have shown, knowing the position
of the image center is necessary to accurately model radially symmetric image properties for
any given lens setting. But knowing how an image center shifts can also be important for other
aspects of the camera's calibration. In Tsai's camera model the image center parameters c, and
CY are used both as the center of radial lens distortion and as the point of intersection of the
camera's z axis with the image plane. To maintain model calibration as the lens parameters
are varied the coordinates of the model's z axis intercept must be adjusted to compensate for
shifts in the camera's field of view. We note that there is no reason that the shifting of the
z axis intercept should coincide with the shifting of the center of radial lens distortion. For
variable parameter lenses a more accurate approach would be to use two separate image centers
to model the two properties.

For our study of image center in a variable parameter lens we use the autocollimated laser
approach because of its accuracy, repeatability, and robustness over the full range of lens set-
tings. For the first experiment we start by autocollimating the lens at one lens setting. We
then step through the full range of focus and zoom settings while the centroid of the image of
the laser is recorded. The results, plotted in Figure 2, show the laser's image moving across 3.2
pixels in the x direction and 6.6 pixels in the y direction over the full range of focus and zoom
positions. Two observations are worth noting here. First, the motion of the image center is
clearly rotational as a function of focus, as we would expect from the focus mechanism for our
lens. Second, the motion as a function of zoom is clearly translational, also as we would expect
for our lens.

To determine the mechanical repeatability of the lens we measure the position of the laser
as the focus and zoom parameters are stepped through twice.4 Figures 15 and 16 show that
the lens has good mechanical repeatability. Figures 17 and 18 show the motion of the laser's
image as either the focus or zoom parameter is held constant and the lens is stepped back and
forth through the full range of the other parameter. The double curves indicate that there is an
appreciable amount of mechanical hysteresis in the lens system, but this can be easily overcome
by always approaching a given lens setting from one direction.

4The automation for our lens is provided by highly repeatable digital microstepping motors (9], thus all error
is due primarily to the mechanical and optical properties of the lens itself.
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5 Conclusions

For an ideal lens camera calibration would involve modeling a 3D to 2D projection through a
simple center of perspective projection. Unfortunately, models for real lenses need to take into
account additional imaging properties that vary radially in the distance from the center of the
image. To capture these properties we need to know their center. As we have demonstrated,
an inaccurate image center can have a significant effect on the accuracy of the final calibrated
model.

Still, if lenses were at least manufactured perfectly they would have perfect radial symme-
try around one well defined optical axis which could easily be determined by any one of the
16 methods that we have described in this paper. In practice however, lens manufacturing
tolerances result in a wide variation in the location of the image centers fur different image

properties. Thus image centers are not interchangeable.
The image center calibration problem becomes even more complex in variable parameter

lenses, where manufacturing tolerances can cause image centers to move significantly as the
parameters are changed. However, the motion is for the most part regular and repeatable and
can be modeled and compensated for.

By using the proper image center for each image property that we are trying to model
and by calibrating the image centers over the appropriate ranges of lens parameters we can
significantly improve the calibration accuracy of our camera models.
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