AD-A263 547 ‘
RTRRERE - DTIC

ELECTE
MAY 4 1993

‘ C
’ Full Abstraction
for a Shared Variable Parallel Language

Stephen Brookes
April 1993
CMU-CS-93-141

DISTRIEUTION STATEMENT A

! Approved it pubiio release
' Dismouucn Unhmited ¢

-

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

To appear in the Proceedings of the Eighth Annual [EEE Symposium on Logic in Computer
Science, LICS’93, Montreal, Quebec (Canada).

Abstract

We give a new denotational semantics for a shared variable parallel programming language and
prove full abstraction: the semantics gives identical meanings to commands if and only if they
induce the same partial correctness behavior in all program contexts. The meaning of a command
is a set of “transition traces”, which record the ways in which a command may interact with
and be affected by its environment. We show how to modify the semantics to incorporate new
program constructs, to allow for different levels of granularity or atomicity, and to model fair
infinite computation, in each case achieving full abstraction with respect to an appropriate notion
. of program behavior.

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 451433-6543 under Contract

CCR-9006064.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

*ﬂ

. Full Abstraction for a Shared Variable Parallel Language

CMU-CS-93-141

Stephen Brookes
April 19931

We give a new denotational semantics for a shared variable parallel programming language and prove full
abstraction: the semantics gives identical meanings to commands if and only if they induce the same
partial correctness behavior in all program contexts. The meaning of a command is a set of "transition
traces", which record the ways in which a command may interact with and be affected by its environment.
We show how to modify the semantics to incorporate new program constructs, to allow for different
levels of granularity or atomicity, and to model fair infinite computation, in each case achieving full
abstraction with respect to an appropriate notion of program behavior.

Keywords: DENOTATIONAL SEMANTICS, OPERATIONAL SEMANTICS, - PARALLEL PROGRAMMING, PARTIAL
CORRECTNESS, SAFETY PROPERTIES, LIVENESS PROPERTIES, FAIRNESS

’ (19 pages)

9421

8s \\\\\\\\\\\\\\\\\\\x\\\\\\\\m\\ﬁ

| . To appear in the Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science, LICS'93, Montreal,
Quebec, Canada.

TECHNICAL REPORT 1993 COMPUTER SCIENCE CARNEGIE MELLON

1 Introduction

One of the fundamental purposes of semantics is to provide rigorous means of proving the correct-
ness of programs with respect to behavioral specifications. For any particular language different
semantic models may be suitable for reasoning about different behavioral notions, such as partial
correciness, total correctness, and deadlock-freedom. Ideally one would like a semantics in which
the meaning of one term coincides with the meaning of another term if and only if the terms induce
the same behavior in each program context; this guarantees that one term may be replaced by
the other in any context without affecting the behavior of the overall program, thus supporting
compositional or modular reasoning about program behavior. Such a semantics is equationally
fully abstract with respect to the given notion of behavior [10, 13, 15]. When the set of program
behaviors is equipped with an approximation ordering and the semantic model has a partial order
such that the meaning of one term is less than the meaning of another if and only if the behavior of
the first term in each program context approximates the behavior of the second term in the same
context, the semantics is inequationally fully abstract with respect to the given notion of program
behavior and approximation. An inequationally fully abstract semantics is also equationally fully
abstract.

The difficulty of finding fully abstract semantics is well known {2, 10, 13, 15]. Many standard
semantic models are correct, in that whenever two terms induce different behavior in some context
they denote different meanings, but too concrete since the converse may fail. Sometimes one can
show that by adding extra syntactic constructs to the programming language the model becomes
fully abstract. However, unless the extra constructs are computationally natural and the original
language was clearly deficient because of their omission, the full abstraction problem for the original
language is still important.

The standard state-transformation semantics for sequential while-programs is fully abstract
with respect to partial correctness behavior. However, for a parallel version of this language [3,
11], in which parallel commands can interact by updating and reading shared variables, the full
abstraction problem is more difficult. Parallel programs may exhibit non-deterministic behavior,
depending on the scheduling of atomic actions, so the partial correctness behavior of a parallel
command is naturally modelled as a non-deterministic state transformation, usually represented as
a function from states to sets of states. However, the state transformation denoted by a parallel
combination of commands cannot be determined solely from the state transformations denoted by
the component commands; thus the state-transformation semantics for a parallel language is not
even compositional, and is certainly not fully abstract. One needs a semantic model with more
detailed structure, so that the possible interactions between commands executing in parallel may
be modelled appropriately.

Hennessy and Plotkin [5] described a denotational semantics for this language. based on a
recursively defined domain of resumptions, built with a powerdomain operator. However. the
resumptions semantics is too concrete: skip and skip;skip denote different resumptions even
though they induce the same partial correctness behavior in all contexts. They showed that with
the addition of extra features to the programming language, the resumptions model becomes fully
abstract. However, one of the extra constructs is a rather peculiar form of coroutine execution
which allows counting of the number of atomic steps taken by a command executing in parallel.
The problem remained of finding a fully abstract model for the original parallel language.

In this paper we solve this problem: we describe a new denotational semantics for this language.
and we show that it is fully abstract with respect to partial correctness behavior. We model the
meaning of a command as a set of transition traces. A transition trace is a finite sequence of pairs

of states recording a possible interaction sequence of the command with its environment; each pair
of states represents the effect of a finite, possibly empty, sequence of atomic actions. The set of
traces of a command is closed under two natural operations: “stuttering” (¢f. Lamport [9]) and
“mumbling”. This model is conceptually simpler than the resumptions model, since it does not
require the use of powerdomains or recursively defined domains. The model also validates a number
of intuitively natural equations and inequations between programs which fail in the resumptions
model.

We show that our semantic model is adaptable to a variety of settings: one may easily accom-
modate the addition of certain extra features to the programming language, and the results do not
depend crucially on assumptions about the level of atomicity or granularity of execution. We show
that the semantic model can be extended to model fair infinite computations, producing a fully
abstract semantics with respect to the appropriate notion of behavicr, in which both termination
and non-termination are regarded as observable. This semantics may be used to reason about total
correctness, and about safety and liveness properties, of parallel programs executing fairly.

Previous Work

We have already mentioned the relationship between our semantics and the resumptions model of
Hennessy and Plotkin [5).

The idea of using sequences or traces of some kind to model the behavior of concurrent programs
is widespread. For instance, several authors have used traces to build models of determinate or
indeterminate dataflow networks, notably {7, 8, 14]. Indeed, others have also used sequences of
pairs of states [3, 6, 12] in imperative settings. However, in these papers a pair of states represents
a single atomic action while in our model it represents a finite sequence of atomic actions. The
semantics presented in [3, 6] are for different languages and different notions of program behavior.
Park’s semantics [12] for the same language that we discuss is too concrete, distinguishing between
skip and skip; skip again, because his traces record step-by-step behavior exactly. Our work shows
how to adapt his semantics to obtain full abstraction. Abadi and Plotkin [1] use a trace model
(prefix-closed sets of finite sequences of pairs of states, also closed under stuttering and mumbling)
for reasoning about safety properties of reactive systems and the study of composition rules.

2 Syntax

We discuss a standard shared variable parallel language, as in [5, 11]. There are four syntactic sets:
Ide, the set of identifiers, ranged over by I'; Exp, the set of expressions, ranged over by £; BExp.
the set of boolean expressions, ranged over by B; and Com, the set of commands. ranged over by
C. Identifiers and expressions denote integer values, boolean expressions denote truth values. and
the language contains the usual arithmetic and boolean operators and constants. For commands
we specify the following grammar:

C :u= skip| I:'=E | Cy;C2 | Cy||C2 |
if B then C; else C; | while B do C |
await B then C

A command of the form await B then C is a conditional critical region, converting C into an
atomic action that is enabled only in states satisfying B; we impose the (reasonable) syntactic
restriction that C must be a finite sequence of assignments (or skip).

3 An operational semantics

We present a structural operational semantics similar to the semantics given in [5)].

We use N for the set of integers, ranged over by n; and V = {tt,ff} for the set of truth
values, ranged over by v. A state is a finite partial function from identifiers to integer values. Let
S = [Ide —, N] denote the set of states, ranged over by s. We write dom(s) for the domain of s,
and [s | I = n] for the state which agrees with s except that it gives identifier I the value n. We
use notation like [I) = n,,..., I} = ni} for states.

When s is a state defined on (at least) the free identifiers of E, we write (E,s) —* n to indicate
that E evaluates to n in state s. Similarly for boolean expressions. We assume that the semantics
of expressions and boolean expressions are given by semantic functions £ and B, characterized
operationally by:

E[E] = {(s,n) | (E,s) =" n}
BIB] = {(s,v) | (B,s) -~ v}.

For command execution we specify a set of configurations
Conf = {(C,s) e Com x S | free[C] C dom(s)},

a subset of successfully terminated configurations, and a transition relation — C Confx Conf. The
successfully terminated configurations are those for which (C, s)term is provable. A configuration
that is not successfully terminated but has no enabled transition is deadlocked. The transition
rules, given in Figure 1, specify that boolean expression evaluations, assignments, and conditional
critical regions are atomic actions. Later we will show how to adapt our semantics to model finer
levels of atomicity or granularity of execution.

DTIC Quichiad ¥ sde. LUIZD 8 Acceion for

4 Partial correctness behavior NTIS CRA&I
DTIC TAB
We define the partial correctness behavior function M : Com — P(S x S) by: Unannounced
Justiticaton
MIC] = {(s,5") | (C,s) =~ (C", &) term},
By
and we put M[C]s = {s' | (s,5') e M[C]}. Distibution]

This induces a preorder Ca¢ and an equivalence relation =5 on commands:

Availability C
CEMC' = Va(lreelC]U free[C') € dom(s) = MICls © MICT})— -z 0 20

C=p (0 <= CCpmC"&C'CMC. ost | Avail and/{or

(
. Partial correctness equivalence is not a substitutive relation, since we have: }P\.\ : '
|

=lizi=z+1 =p 2:=2
(z:=);z:=2 + 1)||2:=2 #£pm z:=2|2:=2.

We therefore define the substitutive preorder <44 and substitutive equivalence relation = g:

C<mC <= VP[L(P[C]EMm P[C)
C=pC <= C<MmC'&C' <M,

where P[] ranges over program contexts, that is, programs with a hole (denoted [-]) into which a
command may be substituted; and P[C] denotes the program obtained by substituting C into the
hole. Thus C =4 C’ if and only if C and C’ are interchangeable in all program contexts without
affecting partial correctness.

3
_

(skip, s)term

(E,8) =*n
(I:=E, s) - (skip.[s | I = n])

(Ch") - (Ci,g')
(C1;C2,8) = (C1;Ca, 8)

(Ch,8)term
(C1;C2,8) — (C2,8)

(C1,8) = (C1,9)
(C1lIC2,8) = (C1]|C2,8")

(C% 3) - (C;a sl)
(CillC2, 8) — (C1lIC3, ')

(Cy,8)term (Ca,s)term
(CH||Ca, s)term

(B,s) =" tt
(if B then C, else C3,s) — (C1,3)

(B,s) -~ £f
(ifB then Cl else Cg,s) hand (CQ,J)

(while B do C,s) —
(if B then C; while B do C else skip, s)

(B,s) =" tt (C,s) =" (C',s")term
(await B then C,s) — (skip,s')

Figure 1: Operational semantics for commands

5 Denotational semantics

Resumptions

Hennessy and Plotkin [5] gave a denotational semantics based on a domain R of “resumptions”,
defined recursively by the domain equation

R=S5—-P(S+(RxS)),

where P is a suitable powerdomain constructor, + denotes the separated sum and x denotes
the cartesian product of domains. However, the resumptions semantics makes many unnecessary
distinctions between programs: for instance skip and skip; skip denote different resumptions even
though they induce the same partial correctness properties in all contexts.

Hennessy and Plotkin added a form of “coroutine” composition C; co C; to the syntax of
the programming language, together with a non-deterministic choice operation C; or C3. The
operational behavior of Cy co (7 is to perform single atomic steps alternately from C, and C,
until one of them terminates, and C; or Cy can behave either like C; or like C3. These two extra
constructs permit program contexts to be built which can count the number of atomic actions
taken by a command, thus distinguishing between skip and skip;skip. The resumptions model
then becomes fully abstract for this extended language. Nevertheless, this coroutine construct
seems rather ad hoc and the full abstraction problem for the original language remained open.

Transition traces

The main problem with the resumptions model is that it represents explicitly the one-step transition
relation — and is therefore forced to distinguish between too many commands. Instead we design
a semantic model based on the reflexive, transitive closure of the transition relation (denoted —=).
Informaily, a transition trace of a command C is defined to be a finite sequence of pairs of states
(30,35)(31,8}) ... (8k,8}) such that it is possible for C to perform a computation from sg to s}, if
execution is interrupted k times, the i* interruption changing the state from sito siyy (0 <2< k).
A transition trace of this form is interference-free iff s. = s;4; for each i. The degenerate case
(k = 0) yields simply a pair (s,s’) such that C has a computation from s terminating in &'
Formally, we write T[C] for the set of transition traces of C, characterized operationally by:

T[C] = {(30736)(3173’1) - (sk’s;c) |
(C730) - (Clv‘96> &
(Ciy81) =" (C2,81) &

Propaosition 5.1 For all commands C, M[C] = {(s,9') | (s,8') € T[C]}.

This operational characterization of 7 has some obvious but important consequences foillowing
from the fact that —* is reflexive and transitive:

Proposition 5.2 The set of transition traces of a command C is closed under “stuttering™ and
“mumbling”: for alla, B e (S x S)* and all s, s/, s" € S,

af e T[C] = afs,s) e T[C]
a(s,8')(s,8")B e T[C) = a(s,s")B e T[C).

5

B EEe——

Given a set T of transition traces, we let ill , the closure of T', be the smallest set containing 7" and
closed under stuttering and mumbling. We say that T is closed if T = Tt. By the above result,
TIC] is closed.
Let £ =5 x S, ana let 'Pt(2+) denote the set of closed sets of (non-empty) traces, ordered by .
inclusion. It is easy to see that this forms a complete lattice, with least element the empty set and
with least upper bounds given by unions.
The standard notion of concatenation for finite sequences can be adapted easily to this setting.
When T; and T3 are closed sets of traces we define

T:T2 = {aflaeTh & 3 ETg}t.

We also extend the Kleene-star operation to closed sets of traces in the obvious way: T dcnotes
the smallest set containing T and the empty trace, closed under stuttering, mumbling and concate-

nation.
Similarly, the standard notion of interleaving on finite traces is given inductively by:

alle =¢efla={a}
oallpf = {ov|7e€allpB}uU{py |7 € oajB},

where o and p range over £, a and (3 range over £*, and ¢ is the empty trace!. When T and T;
are closed sets of traces we define

T = J{ellf | aeTi & e}

We can now give a denotational characterization for 7. To simplify the presentation, and to
facilitate comparison with later developments, it is convenient to define 7{B] = {(s,s) | (s,tt) €

BB},

Proposition 8.3 The (finite) transition traces semantic function 7 : Com — PH(S+) is charac-
terized uniquely by the following clauses:

Tlskip] = {(s,s)]| s € S}t

T[1:=E] = {(s,[s | I = n]) | (s,n) € E[E]Y!

T[CﬂCz] = T[C]],Tl[CQ]]

T[CilIC2) = TICNITIC]

T[if B then C, else Cy] = T[B]; T[C:]Ju T[-B}; T[C,]
T[while B do C} = (T[B); T[C}))*: T[~B]

T[await B then C] = {(s,s') € T[C] | (s,3) € T[B}}.

Note that all operations on closed sets of traces used in this semantic definition are monotone {even
continuous) with respect to set inclusion. An alternative (and equivalent) definition of the trace
semantics of loops can be given using least fixed points:

T{while B do C] = uT(T[BL; T[CLT u T[-B).

! Although transition traces are always non-empty, some of our definitions are simpler if we include the empty
trace.

6

‘g

6 Full abstraction

Given the assumption that expression evaluation is atomic, the only important aspect of an expres-
sion’s operational behavior in the * “ansition rules for commands is its final value. It follows trivially
that two expressions induce the same partial correctness behavior in all program contexts if and
only if they evaluate to the same results in all states. Thus, & is fully abstract for the expression
sub-language, and B is fully abstract for the boolean expression sub-language.

We now show that the traamsition traces semantics for commands is (inequationally) fully ab-
stract with respect to partial correctness behavior.

We define T{C)s = {s'a | (3,s')a € T[C]} and:

C C1 C' < Vs.(free[C] U free[C’'] C dom(s) > T[C)s C T[C']s)
C=rC' <= CCrC'&C'CrC.

Proposition 8.1 The transition traces semantics T is inequationally fully abstract: for all com-
mands C and C', CC1 C' <= C < C'.

Proof: Suppose C C7 C’. Since 7 is a denotational semantics, for each program context P[] the
only relevant aspect of C in determining T[P[C]] is T[C]. Moreover, all operations used in the
semantic definitions are monotone with respect to set inclusion. Thus we get T7[P[C]] C T[P[C']]).
But then for all relevant states s,

MIP[Clls = {s'|(s,s') e T[P[C]]}
{s' | (s,8") e T[P[C]]}

M[P[C"]s.

Il N

This shows that C T+ C' = C <pm C'.

Since states are finite, for each state s there is a boolean expression IS, that evaluates to tt
from &' if s’ agrees with s on dom(s), and evaluates to £f otherwise. Similarly there is a command
MAKE, such that

(MAKE,,.") —~ (skip, s}

for all states such that dom(s’) = dom(s). Such a command can easily be defined as a finite
sequence of assigniments to the identifiers in dom(s).

Now supposc C Zr C’, so that there is some transition trace a = (sg.56)(51.87) .. (Sk. %)
belonging to T[C] and not T[C']. Let DO, be the command

await IS,6 then MAKE,,;
await IS, then MAKE,,;

await IS’L_. then MAKE,,.
Let P,[-] be the program context [-]]|DO,. By assumption that a € T[C} ~ T[C'] it follows that
(30, 8%) € M[Po[C]] - M[P.[C]],

s0 C €m C'. Thus, C L7 C' implies C £ C’. That completes the proof. .
For example, consider the commands C' = z:=1;z:=z + 1 and ' = r:=1;r:=2. They have the
same partial correctness semantics but different transition traces: clearly

= (fz = 0),[z =)([z = 0}, [z = 1)
7

—“

skip; C = C = C;skip

(C1;C3); C3 = Cy;(Cq;Ca)

Cliskip =C

C1“C2 = Cz“C1

(C1lIC2)IICs = CLll(C2||C5)

C1;(CallC) E (Cr; C)IIC

(if B then C, else C3);C = if B then C,;C else C3;C

if (B1&B;) then C) else C; C if B, then (if B; then C; else C;) else C;
while B do C = if B then C;while B do C else skip

await (B,&B;) then C = await B) then (await B, then C)
await false then C C C’

Figure 2: Some laws of parallel programming

is a transition trace of C but not of C’. The context P,[-] built in the proof above is
(-] | await z = 1 then z:=0

and it is clear that P,[C] may terminate with z = 1 but that P,[C’] cannot.

Similarly, consider the commands z:=0 and z:=0;z:=0. It is easy to see that T{z:=0] C
T{z:=0;z:=0], and this inclusion is proper. The transition trace ({z = 1},{z = 0])({z = 1],[z = 0})
is possible for z:=0; z:=0 but not for z:=0. Tlese two commands can be distinguished by running
them in parallel with the command await £ = 0 then z:=1.

7 Laws of parallel programming

We can use this semantics to prove equations and inequations between programs, with the guarantee
that these laws may be safely used for reasoning about partial correctness, in any program context.
Some examples are given in Figure 2, in which = stands for =1 and C stands for Cr. The majority
of these laws fail in the resumptions model and in Park’s model. The laws may be easily validated
in our semantics, taking advantage of natural algebraic identities involving T1:T,. T1||T;. and T".

A consequence of these laws is the inequality C,;C,; C C||C,. If the expression language is
deterministic, so that for all E and s the set £[E]s contains at most one value, we also obtain the
inequaotion:

[:={E\/1|E; C ['=E\; [:=E,,

where [E,/[]E; denotes the expression obtained by substituting E) for each free occurrence of I
in F2, with appropriate changes of bound variable to avoid capturing any free identifiers of E;.

This semantics identifies deadlock (e.g. await false then C) with divergence (e.g. while true
do skip). This is reasonable, since a deadlocked program and a diverging program vacuously satisfv
the same partial correctness properties in every program context. In addition. since assignment is
atomic, this semantics satisfies the law I:=/] = skip.

8 Finer granularity

Our semantics can be adapted to deal with finer levels of granularity. For instance, we might allow
interruption of an assignment I:=F during the evaluation of E, and interruption of a conditional

8

during the evaluation of its test. To make t!.e discussion precise, sugpose that we have the following
abstract syntax for boolean expres s - .d integer expressions:

B ::=true : false | -B | B1&B, | E1 < E;
Ez=0|1]1)| E;+E; | if Bthen E, else E,

To adapt the operatirnal semantics we introduce the set BExp’ of extended boolean expressions,
defined by adding .he clauses B::=v (v ¢ V) to the grammar for BExp, and the set Exp’ of
extended integer expressions, defined by adding E::=n (n € V) to the grammar for Exp. We use
configurations of form (F, s) and (B, s), where E and B are extended expressions. A configuration
of form {n + E;,8) (with n € N) represents a stage in evaluation of a sum expression where the
left-hand expression has been evaluated to the integer n and the right-hand expression remaining
to be computed is E3; a configuration of form n € N represents the final result of evaluation.

A fine-grained operational semantics for expressions is described in Figures 3 and 4. Note that
the transition rules specify that a conjunction B;& B; is evaluated from left-to-right with a short-
circuit strategy, avoiding evaluation of Bj if B; evaluates to ff. On the other hand we specify
that in a sum expression E; + E; the two sub-expressions are evaluated in parallel. These choices
were made solely for illustration, and the transition rules may easily be modified to model different
evaluation strategies without affecting the general properties of our semantics.

Now that expression evaluation is no longer atomic. the semantic functions & and B are not
fully abstract. Instead we need to extend the transition traces semantics to cover expressions.
to allow for the possibility that the state may change during evaluation. Since we assume that
expression evaluation never causes any side-effects, we can use a slightly simpler trace structure
than for commands?:

T[BY = {((s0,50)(81.81) ... {5k, 8k) V) |
(B.so) =" (B1,30) &
(Bi,s1) —=* (B2, s1) &

(Bkisk) d U}

TIEY = {((s0,%0)(31.31) - - (Sk.5k). 1) |
(E,SQ) — (E;,So) &
(Eyr,81) =" (Ea81) &
e &

Thus a trace ((30,30)(81,31)...(8k,8k),v) € T[B] means that there is an evaluation of B from
initial state so resulting in value v, during which the environment makes & interruptions. the it
interruption changing the state to s;. In particular allowing no interruptions ccrresponds to the
definition of B, and B[B] = {(s,n) | ((s,3),n) € T[B]}. Note that the traces of an expression are
again closed under (the obvious analogues of) stuttering and mumbling. For boolean expressions
this amounts to the following:

Proposition 8.1 For all boolean expressions B, all states s, all o3 € ¥, and all truth values v,

(aB,v) e T[B] = (a(s,s)d,v)e T[B]
(a(s,s)(s,3)8,v) e T[B] = (als,s)3.r)e T[B).

'Actul.lly, we could have used traces of form (sos;...sx, v), with minor modifications in what follows. Our
notation is deliberately chosen so as to simplify some of the details that follow.

9
—

(true,s) — tt
(false,s) — £f

(B,s) = (B,s)
(ﬂB,S) - (-‘Bla-s)

(B,s) — tt
(-B,s) — £t

(B,s) — £f
(~B,s) — tt
(B],S) - (B{,S)
(B1&B3,s) — (Bi&B,,s')

(By,8) — tt
(B1&B3,3) — (B3, s)

(By,s) — £t
(By1& By, 3) — £f

(E],S) i (E{,S)
(Ey < Ey,8) —» (E} < Ea,s)

(Ea,s) — (Ej.s)
(Ey < Ep,8) ~ (Ey < E},8)

(m<n,s)—tt ifm<n

(m<ns)—tt Hm>n

Figure 3: A fine-grained operational semantics for boolean expressions

10

(0,3) — 0
(1,8) = 1

(I,3) — s[I}

(Bvs) - (B',S)
(if B then E, else E;,s) — (if B then E, else E,,s)

(B,s) — tt
(if B then E, else E;,s) — (Ey,s)

(B,s) — £t
(if B then E, else Ez,s) — (Ey,s)

(Er,s) — (EY,s)
(El + E?vs) - (E; + E2$3)

<E2’3) - (E;’s)
(E] + E2,3) — (E] + E;,s)

(m+n,s8)—k fm+n=k

Figure 4: A fine-grained operational semantics for integer expressions

it

(skip, s)term

(E,s) = (E',s)
(I:=E,s) — (I:=F', s)

(I:=n,s) — (skip,[s | I = n])

(Cr,8) = (1,3’>
(C1;Ca,8) = (C1;Ca,)

(C1, 8)term
(C15C2,8) — (Ca,8)

(C:,S) - (i’sl)
(C1[[Ca,8) = (C1ICa, &)

(Ca,8) = (C,8)
(C1liC2,8) = (C1]|C2, 8)

(Cy,8)term (Ca,s)term
(Ch]|C2, s)term

(B's) - (B”‘s)
(if B then C, else C;,3) — (if B’ then C; else C3,s)

(B,s) — tt
(if B then C; else C3,s) — (C,, s)

(B,s) — £t
(if B then C,; else C;,3) — (Cy,s)

(while B do C,s) -
(if B then C;while B do C else skip, s)

(B,s) =" tt (C,s) ="
(await B then C,s) — s’

Figure 5: A fine-grained operational semantics for commands

12

We write ‘Pt(E*‘ x V') for the set of closed sets, ordered again by inclusion. Similar properties hold
for integer expressions, so that T[E] is a closed subset of % x N.

So far we have characterized 7[B] and 7[F] operationally. As with commands, we can also
give denotational definitions. We give the details only for boolean expressions.

Proposition 8.2 The fine-grained trace semantics T : BExp — 'P"(E* x V') is uniquely charac-
terized by the following clauses:

Tltrue] = {((s,s),tt) | s € S}

T{false] = {((s,3),22) | s € S}

T[-B) = {(a,~v) | (a,v) € T[B]}, where -tt = £f,~ff = tt

T[B:1&B;] = {(a,21) | (a,22) e T[B1]} U {(aB,v)](a,tt) e T[Bi] & (B.v) € T[B,]}
TIE: € E3) = {(7,m < n) [(e,m) € T[E\] & (B,n) € T[E2] & 7 € of|B}T.

An operational characterization of the fine-grained trace semantics of commands is given exactly
as before, but using the fine-grained transition relation — from Figure 5:

TICT = {(50,30)(31,81) - - - (3K 8%) |
(Cys0) == (C1,8p) &
(C1y81) =" (C2,81) &

(Ck,8k) ~* (C', 8}) term}.
In the following denotational definition for 7{C] we identify 7] B] with the set {a | (a,tt) e T[B}}.

Proposition 8.3 The fine-grained trace semantics of commands is uniquely characterized by the
following clauses:

T[skip] = {(s,s)| s ¢ S}t

TH:=E] = {a(s,[s| I = n])| (a,n) € TIED}}

T[C1;Ca] = T[C1); TIC,]

T[Cy||C2) = TICHITIC,]

Tlif B then C, else C;] = T[B); T[C1]u T[-B); T[C.]
T{while B do C] = (T[B); T[C])": T[-B]

Tlawait B then C] = {(s,¢') e T[C} | (s,s) e T[B]}|.

Again all operations on trace sets used in this semantics are monotone (even continuous) with
respect to set inclusion.

Of course, since the operational semantics of commands is now fine-grained. we are now inter-
ested in a fine-grained version of partial correctness behavior, which we still call M. defined as
before but using the fine-grained transition relation of Figure 5.

Proposition 8.4 The fine-grained semantics is fully abstract with respect to fine-grained partial
correctness: for all terms t and t’' of the same syntactic type, t Ty t' < t <yt

Proof: For commands the proof is similar to the proof of Proposition 6.1.

For boolean expressions ¢ and ¢’ with different transition traces it is easy to construct a context
of form CJ|if [] then 2:=0 else z:=1 (for a suitably chosen C) that distinguishes between them.

13

L ——— R ———

For integer expressions with different transition traces we can find a discriminating context of
form C||z:=[-]. .

For example, the boolean expressions z < z and true are not semantically equivalent, and they
may induce different behavior in contexts such as

z:=1; (z:=0}|if [-] then y:=1 else y:=2).

The relationships given in Figure 2 continue to hold for the fine-grained semantics. However, the
identity I:=I = skip fails because assignment is not atomic. For example,

z:=0; [z:=z|z:=1] #m z:=0;[skip||z:=1].

This is because ([z = 0},[z = 0])([z = 1],[z = 0]) is a transition trace of z:=z but not of skip.
Instead we get the inequality skip C I:=1.

9 Fairness and strong correctness

So far we have ignored the possibility of infinite computation and non-termination. This was
appropriate for reasoning about partial correctness. However, many parallel programs are designed
specifically not to terminate, and we would like a semantics suitable for reasoning about total
correctness, and about safety and liveness properties, in addition to partial correctness. Moreover,
when reasoning about parallel programs it is often natural to make a fairness assumption [12]: when
running commands in parallel, no individual command is forever denied its turn for execution. It
is well known that the assumption of fairness implies unbounded nondeterminism, and that in
many models (typically using powerdomains) this causes lack of continuity of various semantic
functions [2, 12].

Despite this, we can model fair infinite execution of parallel programs simply by extending our
transition trace model to include fair infinite traces. A (fair) infinite trace of a command C is a
sequence

(305 90)(81,87) ... (30187)(8n41+ 8041) - - -

describing a (fair) infinite computation of C from initial state so during which execution is inter-
rupted infinitely often, the i** interruption changing the state from 8} to s;41 (for each ¢ > 0). Each
(84, 8}) represents a finite (possibly empty) sequence of atomic actions performed by the command.
and infinitely many of these action sequences must be non-empty3.

Every finite transition trace of C is fair. In order to characterize the fair infinite computations
of a command operationally, the fairness condition must be applied to each parallel sub-command
of C: care must be taken to keep track of which syntactic component of C performs each atomic
action in a computation. See for example [4].

Let T[C] now denote the set of fair transition traces of C. For obvious reasons only finitely
many interruptions can occur between successive atomic actions by C; consequently, 7{C] is again
closed under stuttering and mumbling, where we allow finitely many stutters or mumbles between
successive stages in a trace. We continue to use the notation Tt for the closure of T. where T now
ranges over L = L+ U v, the set of finite or infinite transition traces. Let Pt(S’”) denote the
set of closed sets of finite or infinite traces. This again forms a complete lattice under set inclusion.

3For example, this requirement guarantees that C has an infinite interference-free trace beginning in state s iff
{C, s) has a fair infinite computation.

14

We extend concatenation to fair traces in the obvious way: af is defined to be a if a is an
infinite sequence. Then we define T1; T, and T™ on closed sets of finite or infinite traces as before.
We also define*

T = {aga1...0n...|Yn > 0.a, eT}f.

For a and g in. £ let a||3 be the set of all traces built by fairly interleaving a with 3. Perhaps
the simplest way to define af|3 formally, following Park [12], is:

al|8 = {7 | (a,8,7) € fairmerge}

fairmerge = (L*RR*L)* U(LU R)*A
L={(0e0)|0eS)

R = {(¢,0,0) |0 € X}

A={(a,,a) |aeE®} U {(¢,8,8) | Be £},

where we extend concatenation to work on sets and on triples of traces in the obvious way: AB =
{aB | @ € A, € B} and (o,a2,a3)(B1,0203) = (@11, a202,a303). When a and 3 are finite
this definition of a||8 coincides with the inductive definition given earlier. Then we define a fair
interleaving operator on closed sets of traces by:

Ty(|T2 = Henllaz | a1 € Ty & az € To}.

With these definitions in hand, we can define 7 denotationally. Apart from the above modifications
to T1; T (and therefore also T*) and T1{|7;, the only change in the semantic clauses concerns the
meaning of a loop. We give details only for the coarse-grained case; the corresponding fine-grained
version is obtainable similarly.

Definition 9.1 The fair transition traces semantic function 7 : Com — ’Pt(S”") is defined by
the following clauses:

Tlskip] = {(s,5) | s € S}}

T[I:=E] = {(s,[s | I = n]) | (3,n) € E[E]}

T[CUCz] = T[Cl],T[CQ]

T[CrlIC2] = TICTIC:]

T[if B then C, else C1] = T[B}; T[C1]u T[-B}; TIC]
Twhile B do C) = (T[B}; T[C])*; T[~B}u (T[B); T[C])*
T[await B then C] = {(s,s') € T[C]| (s,s) € T[B]}}

Yet again all operations on trace sets used in this semantics are monotone (even continuous) with
respect to set inclugsion. However, the least fixed point characterization for loop semantics no
longer applies. Instead, the loop semantics corresponds to what might be called an “operational
fixed point” of the function AT.(T[B}; TIC);T u T[-B).

We now need a notion of behavior that takes into account the possibility of non-termination.
We therefore introduce a pseudo-state L to represent non-termination, and let §; = SU {L}.

Note that since ¢ is not 2 member of T there is no need to define what ¢ means.

15

Definition 9.2 The strong correctness behavior function M : Com — P(S x S5) is given by:

MIC) = {(s,8') | (C,3) —* (C', s} term} U
{(s, 1) | (C,3) »“},

where (C, s) —“ means that there is an infinite fair computation of C starting from s. .

This behavior function can also be obtained from the trace semantics, since (C,s) —*“ holds if and
only if C has an infinite interference-free trace starting from s.

Proposition 9.3 For all commands C,

M[Cl = {(s,8) [(s,8) e T[CT} U
{(s, L) [(8y81)(31,82) ... (8n,8n41) ... € T[C]}.

Proposition 9.4 The fair trace semantics is fully abstract with rcspect to strong correctness: for
all commands C and C', CCr C' <= C<mC'.

Proof: Similar to that of Proposition 6.1, extended to deal with infinite traces. The most difficult
part is to show that when a is an infinite trace of C' that is not also a trace of C’, there is some
finite prefix 8 of a such that the behavior of C' “after 3” is distinguishable from the behavior of
C’ “after 8”. The proof of this finite distinguishability property uses Konig’s Lemma and the fact
that for any command C and any pair of states s and s’ the set of C” such (C,s) —~ (C”,s') is
finite. []

The laws given in Figure 2 continue to hold for the fair trace semantics, except that the inequa-
tion

C1:(C2lIC) E (Cr; CR)IIC

may fail if Cy has infinite traces. Nevertheless, the inequation still holds if C; is loop-free. Note
that the fair trace semantics no longer identifies await false then skip with while true do skip.
since the former denotes the empty set and the latter denotes the set of all infinite stuttering
sequences.

10 Total correctness

We remarked earlier that the finite trace semantics for a loop while B do C has an equivalent
formulation as the least fixed point of the function

AT(TIBL; TICL T U T[-B)).

In the fair trace semantics, the loop’s meaning is still a fixed point of this functional, but not
the least. For instance, the loop while true do skip has for its fair traces all infinite stuttering
sequences, whereas in the least fixed point semantics this loop denotes the empty set. This example
also shows that the fair trace semantics does not correspond to the use of the greatest fixed point
either. There is, therefore, a third form of semantics, obtained by using greatest fixed points in the
semantic clause for loops. Under this semantics the above loop has all possible traces.

The trace sets constructed in this semantics enjoy a further closure property in addition to
stuttering and mumbling:

¢ if af € T[C] and B € TV is interference-free, then for all y € £ we also have ay € T[C].
16
“

We call this “closure under chattering”. This closure property has the effect of identifying all
commands that may fail to terminate. This form of trace semantics is fully abstract with respect
to total correctness behavior, defined by

M[C] = {(s,8') | (C, 8) == (C’,s'}term} U
{(‘9’3,) ' (Cs") - & de S_L}

11 Robustness

The full abstraction results given above relied only on certain general properties: monotonicity of
the semantic definitions, compositionality, finite distinguishability, and the fact that the behavior
of a program is embedded in its trace set. We can therefore extend these results to deal with any
additional program constructs that do not violate these properties®. For instance, we may add a
non-deterministic choice construct C; or C,, with operational semantics given by:

(Cy or Cz,3) = (Ch,8)
(Cy or Cq,8) — (Ca,8).

Then T[C; or C2] = T[C1] U T[C:], and all of the previous development goes through with

minor modifications. The semantics is still fully abstract, and the laws of programming given

earlier continue to hold. In addition, C C C’ if and only if (C or C’) = C’, or is idempotent,

commutative and associative, and or distributes through sequential and parallel composition.
The coarse-grained semantics satisfies the law

Ly:=E\||I:=FEy = (I1:=E\; I:=E3) or (I:=E3; I1:=E,),

but this fails in the fine-grained case: for example, when assignment is not atomic the parallel
command z:=z + 1)|z:=z + 1 has the trace ([z = 0],[z = 1]), and this is not a trace of z:=2 +
L;z:=z + 1.

12 Summary and Conclusions

We have introduced transition traces and used them as the basis for a variety of fully abstract
semantics for a shared variable parallel programming language. Our results apply in coarse- and
fine-grained versions to yield full abstraction with respect to three forms of program behavior:
partial, strong, and total correctness. In each case, extra language features may be added without
invalidating full abstraction, provided certain general semantic properties are preserved; in partic-
ular, the trace semantics of the new features must be definable compositionally and monotonically.
This shows the flexibility and generality of our ideas and results.

Program constructs or operational assumptions (such as fairness) that give rise to unbounded
nondeterminism do not appear to cause severe semantic problems in this framework. For instance,
it is almost trivial to add a random assigament command I:=? to the syntax. with the following

semantics:
T:=={(s;,[s[[=n])|secS &ne N}

This would not affect the validity of any of our results.

$0f course, the coroutine construct C; co C; from Hennessy-Plotkin cannot be handled by our semantics, since
T[C: co C3] cannot be determined from T[C1] and T[C:].

17

It is interesting to compare our results with the work of Apt and Plotkin 2], who proved that for
a sequential while-loop language with random assignment there is no denotational continuous least
fixed point semantics that is fully abstract with respect to strong correctness. Our fair trace model
provides a denotational continuous semantics for a parallel version of this language, and is fully
abstract for strong correctness; but this is not a least fixed point semantics. The corresponding least
fixed point semantics is fully abstract for partial correctness, and the corresponding greatest fixed
point semantics is fully abstract for total correctness. For the sequential language there is no need
to use traces to achieve full abstraction, as the behavior functions can be defined compositionally.
When our definitions are adapted to the sequential setting they yield three fully abstract semantics
for the Apt-Plotkin language, with respect to partial, strong, and total correctness respectively,
again corresponding to the three interpretations of while-loops.

We plan further research into the use of transition trace semantics. In particular, with appropri-
ate adjustments to represent deadlock, we can give a deadlock-sensitive transition trace semantics
that can be used to reason about deadlock-freedom.

References

{1] M. Abadi and G. D. Plotkin. A logical view of composition. Theoretical Computer Science,
114(1):3-30, June 1993.

[2] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment. JACM,
33(4):724-767, October 1986.

[3] F. de Boer, J. Kok, C. Palamidessi, and J. Rutten. The failure of failures in a paradigm for
asynchronous communication. In J. Baeten and J. Groote, editors, Concur’9/, number 527 in
Lecture Notes in Computer Science, pages 111-126. Springer-Verlag, 1991.

{4] N. Francez. Fairness. Springer-Verlag, 1986.

[5] M. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel programming language.
In Mathematical Foundations of Computer Science, volume 74 of Lecture Notes in Computer
Science, pages 108-120. Springer Verlag, 1979.

[6] E. Horita, J. de Bakker, and J. Rutten. Fully abstract denotational models for nonuniform
concurrent languages, June 1990. Technical Report CS-R9027, Centre for Mathematics and
Computer Science, Amsterdam.

[7] B. Jonsson. A fully abstract trace semantics for dataflow networks. In Sizteenth Annual ACM
Symposium on Principles of Programming Languages, 1989.

(8] R. M. Keller and P. Panangaden. Semantics of digital networks containing indeterminate
operators. Distributed Computing, 1(4):235-245, 1986.

[9] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Information Processing
83: Proceedings of the IFIP 9* World Congress. IFIP, North Holland, September 1983.

(10] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science.
4:1-22, 1977.

{11] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Infor-
matica, 6:319-340, 1976.

18

(12] D. Park. On the semantics of fair parallelism. In D. Bjgrner, editor, Abstract Software Spec-
tfications, volume 86 of Lecture Notes in Computer Science, pages 504-526. Springer-Verlag,
1979.

(13] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
7 5(3):223-255, 1977.

{14] J. R. Russell. Full abstraction for nondeterministic dataflow networks. In Proceedings of the
30* Annual Symposium on Foundations of Computer Science, pages 170-177, IEEE Press,
1989.

(15] A.Stoughton. Fully Abstract Models of Programming Languages. Research Notes in Theoretical
Computer Science. Pitman, 1988.

19

