
AD-A263 543 DTIC
ELEGTEiii!!iiiiii iii!l i. ioi APR 6 1993

Naval Research Laboratory S c
Stennis Space Center, MS 39529-5004

NRL/MR/7173-92- 7004

ARSRP Signal Processing Software

-7

LISA A. PFL•uG
JERALD W. CARUERS
RicHCRD R. SLATmR

Ocean Acoustics Branch
, Center for Environmental Acoustics Division

February 1993

93-07184

Approved for public release; distribution is unlimited.

IForm ApprvedREPORT DOCUMENTATION PAGE OB 0M No 0704018
Publi.c repoh"i burden lor ise coileebon ofinb m woman is eutwnetd to everrge 1 hour per response, includig the tine Wc mvtwin inetrucbol. beafching exaftVn d~al sources., gateungV end
inwtai gmedaaf edd, mI .dcVW and guvidra f tog colisewnofinorncuration. seWrodnmse readeigm~is burcenoraiyceraspectm~iscosectiono otinatioin. bI dIgIsuggmtsc
1wr reductog "i burden, to Washintoln Headtquarters Sam=ce. Directorate ior kinonmation Operations mid Peports. 1215 Jetfusonc Davis aHighway. Sties t204. Auiflgion. VA 2202-4302, and to
"m Oft*c c1 Manisgemmwn and Sudget. Papeoiaork Re&,ction Pfc~im (0704.0188). Washliingtr DC 2050M.

1. Agency Use Only (Leave blank).T1. Report Date. T3. Report Type and Dates Covered.
February 1993 Final

4. Title and Subtitle. 5. Funding Numbers.

ARSRP Signal Processing Software Program1 Elemet No. 06011 53N
Pkvir&. 3204

6. Author(s). ras*AbA. 040
Lisa Pflug, J. W. Caruthers, and R. R. Slater AccessimAb.7N. DN251004

Wbw* Ursr No. 12402A

7. Performing Organization Name(s) and Address(es). S. Performing Organization
Naval Research Laboratory-Detachment Report Number.
Center for Environmental Acoustics
Stennis Space Center, MS 39529-5004 Memorandum Report 7004

9. Sportsoring/Uorttoring Agency Name(s) and Address(es). 10. Sponsorlng/Moriltoring Agency

Office of Naval Research Report Number.
800 N. Quincy Street
Arlington, VA 22217-5000 Memorandum Report 7004

11. Supplemtentary Notes.

12s. Distribution/Avaiiability StatemenL 12b. Distribution Code.

Approved for public release; distribution is unlimited. Naval Research Laboratory,
Washington, DC 20376-5320.

13. Abstract (Maximum 2W words).

,Software written in PV-WAVE to process data collected aboard the RV Cofy Ch~ouest during the Acoustic Reverberation
--pecial Research Program Reconnaissance (ARSRP) Experiment conducted in the summer of 1991 is documented in this
memorandum report. Although developed specifically for ARSRP-collected data, the software will work on any data collected
aboard the RV CofyChouestand written to 9-track tape for processing with the Off Line Processor (OLP) software in the 'beam
tape' (BTS) format - this includes beamformed and hydrophone pass-through data. Software written by the Scripps Institution
of Oceanography to read OLP tapes and output files in Society of Exploration Geophysicists 'V' (SEGY) format is discussed.
ARSRP Signal Processing Software (ASPS) discussed in the report includes reading SEGY format archive tapes into ASCII
format, conversion of ASCII data filies to unformatted form for compact storage and fast access by PV-WAVE, and beamforming
and matched filtering with PV-WAVE programs. A program to create waterfall display plots of hydrophone data, beamformed data,
or matched filtered data is included. A printout of each program is given in an appendix. Since this software is intended to reproduce
real-time data processing created by the Monitoring Support Software (MSS) aboard the Coiy, some of the real-time data displays
are shown for comparison. Since there is only a limited capability of ARSAP investigators to access the OLP tapes in their standard
formats, high-priority segments of the ARSAP reconnaissance data has been converted to exabyte tapes in SEGY format for
routine access with UNIX equipment using ASPS or other software. A listing of available exabyte tapes is given in an appendix.
For ARSRP program use, a limited number of these tapes may be obtained from the authors.

14. Subject Terms. 15. Number of Pages.
Bottom Scattening, Reverberation 61

16. Price Code.

17. Security Classification 18. Security Classification 19. Security Classification 20. Umitation of Abstract.
of Report. of This Page. of Abstract.

Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Forin 298 (Rev. 249)

Prescnried by ANSI Sid. Z3S-1lS
2114-102

Accesion For

NTIS CRA&I
DTIC TAE3
UU drinourced 0

CONTENTS -

By
D 'st r i nb u oto n

I. INTRODUCTION
Aviailability Codes 1

II . ORIGINAL DATA FORMATS Dist Spe, adlo1

IV. CO V R I N FRO M, EYO AS I

V. CONVERSION
FROM ASCII TO BINARY

6

Data Containing Real and Imaginary Parts 6

Data Containing Beam Number, Time Sample, Real and 7

Imaginary Parts

VI. READING DATA INTO PV-WAVE8

VIDI. BEAMFORMING

10

VII I. WAVEFORMS
13

HFM Upsweep
13

CW Tonals

14

IX. MATCHED FILTERING
16

X. WATERFALL PLOTS
17

XI. STORING OUTPUT
25

Storing Output in Binary

25

Storing Output in ASCII

25

XII. PROCESSING
CW DATA

26

ACKNOWLEDGMENTS

32

REFERENCES

32

APPENDICES

33

Appendix A - Reading OLP BBN formatted tapes
33

Appendix B - OLP and SEGY tapes held by NRL/SSC
37

Appendix C - Program Code
41

iii

Imagi nary P art

ARSRP Signal Processing Software

I. INTRODUCTION

Software written in PV-WAVE, Version 3.0, is used to
process Acoustic Reverberation Special Research Program (ARSRP)
Reconnaissance Experiment data collected by the RV Cory Chouest
during the summer of 1991. This software is referred to as the
ARSRP Signal Processing Software (ASPS) and was written to
reproduce the real-time processing done during the experiment
using a software system aboard the Cory referred to as the
Monitoring Support Software (MSS). ARSRP Signal Processing
Software (ASPS) discussed in this report includes reading SEGY
format archive tapes into ASCII format, conversion of ASCII data
files to unformatted form for compact storage and fast access
by PV-WAVE, and beamforming and matched filtering with PV-WAVE
programs. A program to create waterfall display plots of
hydrophone data, beamformed data, or matched filtered data is
included. Information about the experiment is documented in the
Acoustic Reverberation Special Research Program Initial Report
of 19 August 19911, and displays of the real-time processed data
can be found in the Acoustic Reverberation Special Research
Program Monitoring Support Software Supplement of 7 April 19922.

Programs and data discussed in this report are available as
follows:

Programs and data Jerald W. Caruthers (601) 688-5438
telnet - jwc@milo.noarl.navy.mil

PV-WAVE programs Lisa A. Pflug (601) 688-5574
telnet - pflug@pfester.noarl.navy.mil

Modified SIO C prg. Richard R. Slater (601) 688-5472
telnet - slater@gandalf.noarl.navy.mil

II. ORIGINAL DATA FORMATS

The original real-time data recording of the full waveforms
for each wavetrain is done on HDDR tapes aboard the Cory. An
original pair of 9-track tapes containing complex demodulated
signals is written during Real-Time Processing (RTP). These two
9-tracks are referred to as "beamformed tapes" (BF or BTS) and
"matched filter tapes" (MF or MFT) and each is in a format
referred to in ref. 1 as "Format A," which is half (62)
hydrophones (called "pass throughs"), half (64) beams, and 2

1

desensitized phones. The HDDR and original 9-track tapes are
at the Naval Research Laboratory archives in Washington, D.C.
(NRL/DC). Several other institutions, including Naval Research
Laboratory at Stennis Space Center, MS (NRL/SSC), hold some
duplicates of the Format A archive tapes held by NRL/DC and also
9-track tapes written from the original HDDRs in other formats,
i.e., format B - all beams (126) and format C - all phones (126)
(each include 2 desensitized phones). Additional details
relevant to the tape setups may be found in ref. 1, RTP SETUP
pp 149-151 or Section 8, "Real Time Processing System" pp 216-
227. Details on what institutions hold what tapes in which
formats can be found in ref. 1, pp 183 to 186.

All 9-track tapes are in a special VAX format (developed by
BBN, Inc.) written for a system called the Off-Line Processor
(OLP, ref. 1, pp 235-241). Only NRL/DC and NRL/SSC have the OLP
hardware/software to read the 9-tracks. ARSRP investigators at
Scripps Institution of Oceanography (SIO) have developed the
software to use standard UNIX equipment to read the tapes and
produce a Society of Exploration Geophysicists "Y" (SEGY,
pronounced "seg - Y") formatted exabyte tape. (Appendix A
includes a brief description of the SIO software in the form of
an OMNET message posted by John Orcutt in March 1992.) We have
adopted SIO software, with modifications, for our routine
processing in lieu of the dedicated OLP system. Although the
primary subject of this report is the development and
application of additional software for beamforving and matched
filtering, a brief section on reading the original OLP 9-track
tapes and putting into SEGY format on exabyte and then reading
the SEGY tapes as we have it implemented at NRL/SSC is included
in Appendix A.

NRL/SSC holds over one hundred 9-track OLP tapes. A
selected set of the tapes have been converted to SEGY format and
written to exabyte tapes. Listings of 9-track and exabyte tapes
held by NRL/SSC is given in Appendix B. NRL/DC is the archival
depot for all 9-track tapes in the A format and all HDDR tapes.

As mentioned previously, we have implemented our beamformer
and matched filter in PV-WAVE coding and, since PV-WAVE does not
read SEGY format directly, we have an additional step of
converting to ASCII when reading in the exabyte tapes. Finally,
although some of the original 9-track data tapes contain half
beamformed data and half hydrophone data, the processing
discussed in this document applies to all hydrophone or all beam

2

data. The beamforming program default uses 126 phones but can
easily be modified to beamform 62 channels (BTS format A). Note
that by default, channel numbers (hydrophone or beam) begin with
0, and that all data is complex due to complex demodulation
(basebanding) performed during data collection. Data processed
with this software matches the Monitoring Support Software (MSS)
plots, although the choice of default angles for beamforming are
different, as will be discussed later.

III. PROGRAM SUMM(ARY

The following table lists the existing software in ASPS
with brief descriptions of their functions. Each program is
discussed in a separate section following the overview, and the
code for all but bbn2segy.c (i.e., the SIO software) is included
in Appendix C. All programs ending with ".pro" are PV-WAVE
programs. Examples of interactive sessions (italics indicate
user input) and figures are included in this document.

Program Function

bbn2segy.c Scripps program (modified) to read the 9-
track BBN formatted tapes and convert to
SEGY.

segy2ascii.c 'C' program that converts SEGY data on
archive tape to ASCII format.

pvconvert2arr.pro Converts one ASCII file containing 128
sequential channels of data of the form (real
part, imaginary part) to unformatted output.

pvconvert4arr.pro Second version of pvconvert2arr.pro which
converts one ASCII file containing 128
sequential channels of data of the form
(channel number, time sample, real part,
imaginary part) to unformatted output.

readdata.pro Opens and reads the unformatted data created
by pvconvert2arr.pro or pvconvert4arr.pro
into PV-WAVE variables.

3

beamform.pro Beamforms phone data at a default or user-
defined set of angles.

hfmsource.pro Creates a 210 - 280 Hz HFM upsweep source
function for use in match filtering data
(waveform ID SPSS053).

cwtonal.pro Creates one of nine 2-second CW tonals for
use in match filtering data.

mfilt.pro Match filters beamformed data with a user
supplied source.

waterfall.pro Creates a waterfall plot of amplitudes for
channel (phone, beamformed, or match filtered
data) versus time.

unformatoutput.pro Stores data in a binary file which can later
be read into PV-WAVE variables by
readdata.pro.

asciioutput.pro Stores data in an ASCII file in one of two
formats which can be later be converted to
unformatted data by pvconvert2arr.pro or
pvconvert4arr.pro.

The programs hfmsource.pro and cwtonal.pro are included in
the software to reproduce the wavetrains WTRP001 and WTRP008,
respectively (p 124, ref. 1). Like the data, the wavetrains are
basebanded and sampled at 128 samples/second.

Figure 1 contains a reference flow chart of the ASPS
programs included in this list.

IV. CONVERSION FROM SEGY TO ASCII

Program Name: segy2ascii.c
Syntax: % segy2ascii

This 'C' program converts data in SEGY format to ASCII
format. The SEGY tapes contain data separated into records.
The first record contains 66.5 seconds of data and the remaining
records contain 59.5 seconds of data. Except for the CW exabyte
tapes, the exabyte archive tapes at NRL/SSC contain

4

- 4 MFILT.PRORPI

A RSCIOUTPUTPRO I~OALR

Figure 1. Flow chart of ASPS programs. 5

approximately 145 seconds (less than two records) of data for
one ping (the HFM upsweep) from Run 5. The program allows the
user to choose the number of records to extract.

NOTE: For each oT the following examples the number
distinguishes different processing sequences of different data
sets and the letter between different processing sequences
within -ae same data set.

Example 1(a). Remove first record of data from tape
btsc218 0948.392b (phone data for ping 190 of Run 5). To do
this, load the appropriate 8mm tape. The command on acoustics
(NRL/SSC specific) (Silicon Graphics) to copy the file is:
% dd if=/dev/mt/tpsOd6v of=my-dir-name/btsc218_0948.392b
conv=swab bs=2048
where my-dir-name is the full path name where the file is to be
copied. (Other organizations would make appropriate changes.)
Now run segy2ascii.c.
% segy2ascii

Enter input file name: btsc218 0948.392b
Enter output file name: ascii btsc218_0948.392b
Enter starting record number tI-N]: 1
Enter ending record number [1-N]: 1
Writing channel 1, record 1

Writing channel 128, record 128

V. CONVERSION FROM ASCII TO BINARY

Data Containing Real and Imaginary Parts

Program Name: pvconvert2arr.pro
Syntax: WAVE>pvconvert2arr,<infile>,<outfile>
Variables: infile - name of input file containing ASCII data

outfile - name of output file containing
unformatted data

The program pvconvert2arr.pro reads in an ASCII input file
(created by segy2ascii.c) which contains the phone or beam data
to be processed in sequential order. The file contains two
arrays: real part of data and imaginary part of data. There
are no headers in the file. The user must know the number of

6

points present in each channel which is (8512 + 7616k) points,
where k is the number of records minus 1, if the first record
is included. If the first channel is not included, the number
of points is 7616k. The output of this program is simply the
input data in unformatted form and usually requires
approximately half the storage space of the ASCII file.
However, the main purpose of this program is to store the data
in a format which can be accessed quickly by PV-WAVE for a
processing session. The first line of the output file contains
the channel number zero and the number of sample points in that
channel, both integers. The second line contains the time
array, the third line the real part of the data, and the fourth
line, the imaginary part of the data, all for channel zero. The
next line contains the channel number 1 and the number of sample
points in that channel (number of points per channel should be
constant), etc. This form is read automatically by the program
readdata.pro. The conversion from ASCII to unformatted output
needs to be done only once, and readdata.pro used to access the
data thereafter. The programs signals each time a channel is
read from the input file and written to the output file.

Example l(b). Convert ASCII file ascii btsc2l8 0948.392b to
unformatted form and store in unf btsc218_0948.392b. Number
phones from 0 to 127.

WAVE>pvconvert2arr, 'ascii btsc2l8_0948.392b', 'unf btsc218_094
8.392b'
Enter start phone/beam number in file (usually 0 or 1).
:0
Enter number of points per phone/beam.
: 8512
Channel number converted: 0
Channel number converted: 1

Channel number converted: 127
Unformatted output in unf btsc218_0948.392b

Data Containing Beam Number, Time Sample, and Real and Imaginary
Parts

Program Name: pvconvert4arr.pro
Syntax: WAVE>pvconvert4arr,<infile>,<outfile>

7

Variables: infile - name of input file containing ASCII data
outfile - name of output file containing
unformatted data

This program is a second version of pvconvert2arr.p.o with
the major ifi.erence being that the input file contains four
arrays inrtad of two: channel number, time sample, real part
of data, imaginary part of data. The program segy2ascii.c can
be modified to produce ASCII output in this format. In this
caze, a sample input file containing three channels of four data
-points each, sampled at time increment .5 should be in the form
(without headers):

BEAM TIME REAL IMAGINARY
NUMBER SAMPLES PART PART

0 0.0 3.5 1.0
0 0.5 2.1 -0.2
0 1.0 -0.2 1.1
0 1.5 0.4 0.2
1 0.0 1.3 1.2
1 0.5 -0.3 1.2
1 1.0 -0.2 1.3
1 1.5 -0.1 0.3
2 0.0 3.2 2.0
2 0.5 1.1 1.0
2 1.0 -0.2 0.0
2 1.5 -0.4 0.1

The ARSRP data is sampled at 128 samples/second. Thus,
given the initial array size of 2100000 in the code (see
Appendix C), a maximum of 128 seconds of data for 128 beams may
be converted and stored if pvconvert4arr.pro is used.

VI. READING DATA INTO PV-WAVE

Program Name: readdata.pro
Syntax: WAVE>readdata, timedata, realdata, imagdata
Variables: timedata - one-dimensional array of time samples

(output)
realdata - two-dimensional array of real part of
data for each channel (output)

8

imagdata - two-dimensional array of imaginary
part of data for each channel (output)

The file created by pvconvert2arr.pro or pvconvert4arr.pro
are read into a current PV-WAVE session by using readdata.pro
where the arrays realdata and imagdata contain the real part of
the data and the imaginary part of the data for each beam,
respectively, and the array timedata contains the time domain
samples over which each beam is defined. The first dimension
contains the time sample, real part, or imaginary part, and the
second dimension contains the channel number (the channel number
corresponds directly to th, array position since PV-WAVE arrays
use zero as the starting position). A message giving the
channel number and number of sample points is printed to the
screen after each channel is read. The user is given the option
of keeping a subset of the time samples and/or a subset of the
channels. The first channel in the subset is assigned to the
zero position in the array, however, when plotting, the user is
prompted for the first and last channel
numbers in the subset for accurate plot labels. The program
prints the channel number and number of points to the screen
after each channel is read.

Example 1(c). Read file unf btsc2l8 0948.392b into PV-WAVE
variables. Keep all the phones with 8192 points each to use in
beamforming program.

WAVE>readdata, timedata, realdata, imagdata
Enter input file name.
: unf btsc218_0948.392b
Enter number of channels in file.
: 128
Number of channels read = 128.0
Enter beginning and ending channel numbers to keep

-possible 0 to 127
0 127

Number of channels to keep = 128.0
Number of points per channel - 8512
Enter number of points per channel to keep.
: 8192
Data read for channel number - 0
Number of points per channel - 8512
Data read for channel number - 1
Number of points per channel - 8512

9

Data read for channel number - 127
Number of points per channel - 8512

VII. BEAMFORMING

Program Name: beamform.pro
Syntax: WAVE>beamform,timedata,realdata,imagdata,

angledata, realbeam, imagbeam
Variables: timedata - one-dimensional array of time samples

(input)
realdata - two-dimensional array of real part of
phone data for each channel (input)
imagdata - two-dimensional array of imaginary part
of phone data for each channel (input)
angledata - one-dimensional array of beamforming
angles (output)
realbeam - two-dimensional array of real part of
beamformed data for each angle (output)
imagbeam - two-dimensional array of imaginary part
of beamformed data for each angle (output)

Given 128 channels of hydrophone phone data, and a default
set of 126 angles or a user-defined set of an arbitrary number
of angles, beamform.pro creates a beam for each angle. For a
user-defined set of angles, the user must supply the program
with the total number of angles, the starting angle in degrees,
and the angle increment in degrees. The program writes the
array of angles, whether user-defined or default before
processing. At this point, the user should interrupt the
prngram if the array of angles has been entered incorrectly.
The default set of angles used in the ASPS software does not
match the set of angles used by the MSS. It is unclear how the
angles given in references (1) and (2) we-e calculated.

The beamformer is a multiple frequency version of a time-
delay beamformer such as that described by Burdic', which uses
frequency-dependent phase shifts for calculations in the
frequency domain. It includes interpolation for dead phones
(dead phones in the program are specifically for Run 5 and
should be modified for different tracks) and a time-domain
Hamming window4 . Phones 0 and 1 are the forward and aft
desensitized phones. These are not included in the beamforming

10

process, but are moved from phones 0 and 1 to the last two
beams.

To match the real-time beamformed data, 64 seconds of data
(8192 sample points) should be used when beamforming. For 8192
samples points, the program takes approximately 5 minutes to
beamform at one angle after the initial data transformation from
the time-domain to the frequency-domain. ARSRP data considers
forward as 0 degrees and aft as 180 degrees, the program
implements a temporary -90 degree shift so that broadside is 0
degrees in the calculations.

There is a +3 dB amplitude difference between the real-
time recorded beamformed data and the output from beamform.pro
which is not accounted for in the program. To match the output
of the PV-WAVE beamformer to the real-time beamform, the speed
of sound used is 1510 m/s. However, the speed of sound
hardwired into the program is 1525 m/s, which we believe to be
the correct value. See Figure 2 for comparisons to the real-
time MSS beam at angle 71.85. Near broadside, the difference
in output is minimal, but increases as the angle leaves
broadside. Note that the output of this beamformer is not
converted to dB.

To beamform 62 phones (format A) instead of the 126
default, the constant nphones in beamform.pro should be changed
from 126 to 62. Also, the constant numangles should be changed
from 126 to 62 for the default set of angles to span 0 to 180
degrees evenly in cosine space.

Ezample 1(d). Beamform the data read in Example l(c) at angles
69.85 to 71.85 with angle increment 0.1.

WAVE>beamform,.timedata,realdata,imagdata,angledata,
realbeam, imagbeam
Enter number of points per phone.
: 8192
User defined set of angles or default? U=user D=default
: U
Enter number of angles.
: 61
Enter start angle.
: 69.85
Enter angle increment (theta) in degrees.
: 0.1

11

00

0
0 ,-

CC

U I U

I
09 0

6 2! co

o~~c W .

12

Angle array = 69.85 69.95 70.05 71.75 71.85
Input data Fourier transformed.
Finished beam for angle 69.85
Finished beam for angle 69.95

Finished beam for angle 71.85

VIII. WAVEFORMS

Several different waveforms were used in the ARSRP reconn
experiment (cf. ref. 1, pp 90-126). Within the ASPS software
we have implemented match filtering for only two of them: the
HFM upsweep and the CW tonals. A discussion for each of these
follows:

'M Upsweep

Program Name: hfmsource.pro
Syntax: WAVE>hfmsource, f, freqhfm
Variables: f - frequency array (output)

freqhfm - frequency-domain HFM source signal
(output)

This program creates a 210 - 280 Hz HFM upsweep source
(Waveform ID SPSS053), and basebands the 186 to 314 Hz region.
To do this, the source is actually basebanded at a center
frequency of 250 Hz using the complex demodulation process
described in Marple 4. Then a low pass filter from -64 to 64 Hz
is applied. This is then inverse transformed into the time-
domain and zero-padded to a user given number of samples. The
fourier transform of the zero-padded source results in a 128 Hz
bandwidth frequency domain source stored in the variable
freqhfm, which can be used to match filter the data, also of
bandwidth 128 Hz. Note that the source function is rearranged
to have negative frequencies preceding positive frequencies (-
64 to 64 Hz), and then assigned to frequencies 0 to 128 Hz to
match the bandwidth of the data. The algorithm uses a center
frequency of 250 Hz instead of 186 Hz only to avoid an extra
step of rearranging the data. An equivalent algorithm using 186
Hz center frequency could be implemented, however, the original
source would be required to have a minimum of 628 samples/second

13

before basebanding and decimation. For large time series, it
would be prohibitive.

Since the beamformer implemented in this package does not
exactly match the real-time beamformer due to sound speed
differences, Example 2 is not a continuation of Example 1.
Instead of phone data for ping 190, real-time beamformed data
from archive tape for ping 190 found in file btsb218_0948.393a
will be used for all of Example 2.

Example 2(a). Create a 8192 point hfm source function for use
in the matched filter.

WAVE >h fmsource, f, freqhifm
time increment = 0.000976562
Nyquist = 512.0
freq increment = 0.50
Enter number of points in source signal (sampled at 128
samples/sec.)
: 8192
zero-domain hfm source points = 8192.0
new time increment = 0.0078125
new freq increment = 0.015625
new Nyquist freq = 64.0

The frequency variable f is not needed in other programs,
but simply output for plotting purposes. The result of Example
2(a) is shown in Figure 3.

CW Tonals

Program Name: cwtonal.pro
Syntax: WAVE>cwtonal, f, freqcw
Variables: f - frequency array (output)

freqcw - frequency-domain CW tonal (output)

This program creates one of nine tonal waveforms in the
wavetrain WRTPOO8. Each is a two second signal centered at the
given frequency (Waveform ID's SRP010, SRP011, ... , SRP018), and
basebands the 186 to 314 Hz region in the manner described for
the HFM source. Processing of CW tonal data differs from that
of the HFM data, and is discussed separately in Section XII.

14

0)0

0

OL-

r 0o
N

o PC

0N

- 00

CN 0
CC

0 0 0
apln~y

01

IX. MATCHED FILTERING

Program Name: mfilt.pro
Syntax: WAVE>mfilt, source, timedata, realbeam, imagbeam,

timemf, realmf, imagmf
Variables: source - frequency domain source (input)

timedata - one-dimensional array of time samples
(input)
realbeam - two-dimensional array of real part of
beamformed data for each beam (input)
imagbeam - two-dimensional array of imaginary
part of beamformed data for each beam (input)
timemf - time array shifted to beginning of source
transmission (output)
realmf - two-dimensional array of real part of
matched filtered data for each beam (output)
imagmf - two-dimensional array of imaginary part
of matched filtered data (output)

Beamformed data which has been created by beamform.pro or
read from archive tape is matched filtered with a user supplied
frequency-domain source.

A subset of the beams and/or time may be used for matched
filtering. To do this, one can remove unwanted data in
readdata.pro by choice of beams and number of points to keep,
or alternately, read all the data, match filter, and then plot
only the selected subsets. The latter is recommended to avoid
confusion caused by reassignment of channel numbers. For Run
5, hfmsource.pro can be used to create the basebanded source for
matched filtering. For 64 second of data (8192 points), the
program mfilt.pro takes approximately 2 or 3 minutes to run.

Time is shifted so that the origin denotes the time sound
is emitted from the source using the formula: shift = tl - t 2 =

x/c, where tj = actual direct arrival time of source on forward
desensitized phone, t 2 = expected direct arrival time of source
on forward desensitized phone, x = distance between source and
midpoint of hydrophone array (881m), and c = speed of sound
(1525m/s). Thus negative time represents time between the start
of recording and source transmission. The user is asked whether
the data is phone or beam data. If the user supplies beamformed
data, then the two desensitized phones have been moved by the
beamformer from channels 0 and 1 to the last two channels. If
the user supplies phone, or matched filtered data, then the two

16

desensitized phones are found in channels 0 and 1. Since the
time origin is calculated using the two desensitized phones, it
is important that the user supply the correct answer to this
question.

The output of the matched filter is converted to dB. Note
that during the conversion to dB, a small constant is added to
avoid taking the logarithm of zero.

Example 2(b). First read unformatted data into
timedata,realbeam, and imagbeam using readdata.pro. For this
example, all the data is read in and match filtered with the hfm
source produced in Example 2(a).

WAVE>mffilt, freqhifm, timedata, realbeam, imagbeam, timemf, realmif, i
magmif
Enter number of channels in data file.
: 128
Enter number of points per channel- should be equal to number
of points in source.
: 8192
Enter phone or beam data? P or B
: b
Time shift = -7.28167

The time shift indicates that original beginning and ending
times of 0 and 64 seconds has been shifted to -7.28167 and
56.7813 seconds, respectively.

X. WATERFALL PLOTS

Program Name: waterfall.pro
Syntax: WAVE>waterfall,ti,re,im (general form)

WAVE>waterfall, timedata, realdata, imagdata (for
phone data)
WAVE>waterfall, timedata, realbeam, imagbeam (for
beamformed data)
WAVE>waterfall, timemf, realmtf, imagmf (for matched
filtered data)

Variables: ti - one-dimensional array of time samples (input)
re - two-dimensional array of real part of data
for each channel (input)
im - two-dimensional array of imaginary part of
data for each channel (input)

17

The variables ti, re, and im can hold either phone,
beamformed, or matched filtered data. One only needs to pass
the appropriate variables, as listed above. The program creates
a waterfall plot of the magnitude of the complex data. The y-
axis of each plot is labelled with the integer phone or beam
number. Amplitudes are not calibrated. The user has many
options for plotting, however, the data can be smoothed using
"a given number of points only once during the program. To use
"a different number of points in the smoothing, the program
should be terminated and started again. After the data is
smoothed (or averaged), the program allows the user to create
many plots with varying sets of beams, times, gain factors, and
thresholds. This information is given in the upper right-hand
corner of each plot. After each plot is created, the user can
indicate whether or not a hard copy is wanted, and the name of
the file in which to store the postscript output.

Example 2 (c). Plot the matched filtered data created in Example
2(b).

WAVE>waterfall, timemf, realmf, imagmf
Enter number of channels.
: 128
Enter number of points per channel.
: 8192
Enter number of magnitude points to average.
: 16
Begin plots.
Enter title.
: b0948
Minimum magnitude (in dB) = -90.0457
Maximum magnitude (in dB) = 78.5482
Threshold data? Y or N
: Y
Enter min and max threshold values (dB).
: 45 80
Enter gain factor.
: 4.0
Enter first channel and last channel to plot.
: 0 127
Enter channel increment (integer).
:2
Label y-axis with channel number of angle? C or A
:C

18

Time shift in seconds = -7.28167
Min, Max times = -7.28167 56.7105
Enter min and max time in seconds to plot.
: 0 35
Plot finished.
Hardcopy of plot? Y or N
: Y
Enter name of postscript output file.
: wavel.ps
Postscript file created.

Note: At this point, the file wave.ps is ready to be sent to
the printer. Since the postscript files are usually large, use
the command lpr -s wavel.ps to create a symbolic link rather
than copying to the spool area. The program continues:
Another plot? Y or N
: Y
Enter title.
: Subset of b0948
Minimum magnitude (in dB) = -90.0457
Maximum magnitude (in dB) = 78.5482
Threshold data? Y or N
:Y
Enter min and max threshold values (dB).
: 35.0 80.0
Enter gain factor.
: 1.5
Enter first channel and last channel to plot.
: 41 45
Enter channel increment (integer).
:1
Label y-axis with channel number of angle? C or A
: C
Time shift in seconds = -7.28167
Min, Max times = -7.28167 56.7105
Enter min and max time in seconds to plot.
:5.0 34.0
Plot finished.
Hardcopy of plot? Y or N
: Y
Enter name of postscript output file.
: wave2.ps
Postscript file created.
Another plot? Y or N
:N

19

The two plots created and stored in wavel.ps and wave2.ps
are shown in Figures 4 and 5 with the corresponding MSS real-
time plots from the ARSRP Monitoring Support Software Supplement
shown in Figure 6 and 7. The time origins for the MSS plots are
not the same as the software discussed here, but are plotted
with the same total time.

20

co

020

0~
C)

1 0

00

q.5
U) e u

M.O . t

0- E

00

IQV)t

c2

00cn o

NQk
06
0 0o

0 0 '0D

C, C)
.O0 -O

r) IC C0

cm c c
SEl

x ZV u
0 .c E~ .c .~ . V)cnc E

0

Z~Žo E
m 1N

co (N

0)

0) E

to. -nW)L

22

0W- E f 'l r

01 E -0 -
Co- CC

-00 1 0

cc~~ Itc
Ici

Co6

TN in 7

23

-4-I

'n 0

C* :30Eo~u .

X..

O.CJuL

Lee

-m~-r

24 -

XI. STORING OUTPUT

Storing Output in Binary

Program Name: unformatoutput.pro
Syntax: WAVE>unformatoutput, timeout, realout , ima gout

(general form)
WAVE>unformatoutput, timedata, realbeam, imagbeam
(for beamformed data)
WAVE>unformatoutput, timemf, realmtf, imagmf (for
matched filtered data)

Variables: timeout - one-dimensional array of time samples
(input)
realout - two-dimensional array of real part of
data for each channel (input)
imagout - two-dimensional array of imaginary part
of data for each channel (input)

Once data has been beamformed or matched filtered, it may
be saved using unformatoutput.pro in a binary (unformatted) file
in a form which can be read directly by readdata.pro in another
PV-WAVE session. The program line

openw, 1, outfile
should be replaced with

openw, 1, output,/f77_unformatted
if the user wishes to create a binary file which can be read by
a fortran program. The program readdata.pro can be modified in
the same manner to read the fortran compatible file into PV-
WAVE.

Storing Output in ASCII

Program Name: asciioutput.pro
Syntax: WAVE>asclioutput, timeout, realout, imagout

(general form)
WAVE>asciioutput, timedata, realbeam, imagbeam (for
beamformed data)
WAVE>asciioutput, timemf, realmtf, imagmf (for matched
filtered data)

Variables: timeout - one-dimensional array of time samples
(input)

25

realout - two-dimensional array of real part of
data for each channel (input)
imagout - two-dimensional array of imaginary part
of data for each channel (input)

Once data has been beamformed or matched filtered, it may
be saved using unformatoutput.pro in an ASCII file in one of two
formats. The first choice creates a file which contains only
the real and imaginary parts of the data and can be converted
to binary using pvconvert2arr.pro for use in another PV-WAVE
session. The second choice creates a file which contains four
arrays instead of two, namely, channel number, time sample, real
part, and imaginary part, and can be converted to binary using
pvconvert4arr.pro. No headers are present in either format.

XII. PROCESSING CW DATA

In Run 5, a sequence of nine two second tonals sources with
Hamming taper (Wavetrain ID WTRP008) were transmitted one second
apart. The software to create each of the nine replicas is
cwtonal.pro.

The CW tonal hydrophone data for Pings 188, 189, 190, and
191 currently exists on four exabyte tapes, one per ping. Each
CW epoch begins at 600 seconds. Data before 600 seconds is HFM
data which can be found on other tapes. To extract the proper
epoch, the user should read record number 10 and 11, or if one
can ignore the first two seconds of the ping, only record 11.
Record 11 contains data from 602 to 661.5 seconds.

Unlike the HFM data, which is beamformed and then matched
filtered, the CW data is first match filtered to extract one CW,
and then beamformed. This process is repeated nine times, once
for each CW tonal, creating nine sets of acoustic data. The
following example is shown to illustrate this process.

Example 3(a). Extract the acoustic data field produced by the
250 Hz CW tonal for Ping 190.

First, use segy2ascii.c to extract record 11 from the tape
labelled CWC218_0948.393A and put into an ASCII file of the same
name. Use pvconvert2arr.pro to convert from ASCII to PV-WAVE
binary.

26

WAVE>pvconvert2arr, "cwc218 0948.393a', "cwc2l8 0948unf. 393a'
Enter start phone/beam number in file (usually 0 or 1).
: 0
Enter number of points per phone/beam.
: 7616
Channel number converted: 0

Channel number converted: 127
Unformatted output in cwc218_0948unf.393a.

Example 3(b). Use readdata to read the data into PV-WAVE
variables, timedata, realdata, imagdata.

WAVE>readdata, timedata, realdata, imagdata
Enter input file name.
: cwc218 0948unf.393a
Enter number of channels in file.
: 128
Number of channels read = 128.0
Enter beginning and ending channel numbers to keep

-possible 0 to 127
0 127

Number of channels to keep = 128.0
Number of points per channel - 7616
Enter number of points per channel to keep.
: 7616
Data read for channel number - 0
Number of points per channel - 7616

Data read for channel number - 127
Number of points per channel - 7616

Example 3(c). Create a 7616 point 290 Hz CW tonal source to be
used as the matched filter.

WAVE>cwtonal, f, freqcw
time increment = 0.000976562
Nyquist = 512.000
freq increment = 0.50000
Enter frequency (210,220,230,240,250,260,270,280,290)

290

27

Enter number of points in source signal (sampled at 128
samples/sec).
: 7616
zero padded time-domain cw source points = 7616
new time increment = 0.00781250
new freq increment = 0.0168067
new Nyquist frequency = 64.0000

Example 3(d). Match filter the data with the 290 Hz CW source.

WAVE>mfilt, freqcw, timedata, realdata, imagdata, timemf, realmf, im
agmf
Enter number of channels in data file.
: 128
Enter number of points per channel - should be equal to number
of points in source.
: 7616
Enter phone or beam data? P or B
: P
Time shift = -7.24261

Example 3(e). Beamform the matched filtered data from angles
25 to 104
degrees with an angle increment of one degree.

WAVE>beamform, timemf ,realmf ,imagmf, anglearray, realbeam, imagbeam
Enter number of points per phone.
: 7616
User defined set of angles or default? U=user D=default
: u
Enter number of angles.
: 80
Enter start angle.
: 25
Enter angle increment (theta) in degrees.
:1
Angle array = 25.0000 26.0000 27.0000 ... 103.0000
104.0000
Input data Fourier transformed.
Finished beam for angle 25.0000
Finished beam for angle 26.0000

Finished beam for angle 104.0000

28

Example 3(f). Plot the data from 16 to 35 seconds. First,
throw away the desensitized phones. Remember that the matched
filtered data shifts the time array, thus, timemf is used for
plotting.

WAVE>realbeam = realbeamr(*,0:79)
WAVE>imagbeam = imagbeam(*,0:79)
WAVE>waterfall, timemf, realbeam, imagbeam
Enter number of channels.
: 80
Enter number of points per channel.
: 7616
Enter number of magnitude points to average.
:1
Begin plots.
Enter title.
: P190F290.CW
Minimum magniuude (in dB) = -21.6739
Maximum magnitude (in dB) = 66.1557
Threshold data? Y or N
: Y
Enter min and max threshold values (dB).
: 45 70
Enter gain factor.
: 5.0
Enter first channel and last channel to plot.
: 0 79
Enter channel increment (integer).
:1
Label y-axis with channel number of angle? C or A
:A
Enter number of labels (integer).
:9
Enter 9 labels (one per line).
:25

35
: 45

55
65
75
85
95
105

Time shift in seconds = -7.24261

29

Min, Max times = -7.24261 52.2496
Enter min and max time in seconds to plot.
: 16 35
Plot finished.
Hardcopy of plot? Y or N
: Y
Enter name of postscript output file.
: output.ps
Postscript file created.
Another Plot? Y or N
: N

A hardcopy of this plot is shown in Figure 8.

30

LA)

(0

()0o
W)0o
f- 0

--
0

.- 0*
'40

mo

a) 0

CcE

00

m, 0

00

0 SP

0 M~ 0f M P0 L) I

ai~ua

C%31

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to Prof.
John Orcutt and his associates at Scripps Institute of
Oceanography, especially Mr. Paul Henkart, for making the
original of the BBN to SEGY conversion program available to us;
to Prof. Donald Tufts and his graduate students at the
University of Rhode Island for parts of the routines for
beamforming and matched filtering in Matlab which we used as
examples for parts of our PV-WAVE programs; and to Messrs. E.J.
Yoerger and James Showalter for assistance in programming and
data handling. Finally, we express our appreciation to Office
of Naval Research Program Managers Drs. Marshall Orr and MoE'en
Badiey for interest in and funding of this work. This work was
funded under PE 0601153N.

REFERENCES

1. Acoustic Reverberation Special Research Program, Acoustic
Reconnaissance Cruise: Initial Report, 19 August 1991.

2. Acoustic Reverberation Special Research Program, Acoustic
Reconnaissance Cruise: Monitoring Support Software
Supplement, 7 April 1992.

3. Burdic, William S. (1984). Underwater Acoustic System
Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.

4. Marple, S. Lawrence (1987). Digital Spectral Analysis with
Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc.

32

APPENDIX A

Reading OLP BBN formatted tapes

In early March the Scripps Institute of Oceanography (SIO)
supplied some software to the ARSRP community which allowed its
users to read the 9-track data tapes produced by the Off Line
Processor (OLP) on the RV Cory Chouest. The following is a copy
of the message posted to OMNET/BOTMREV.ACOUSTICS by John Orcutt:

Posted: Fri, Mar 13, 1992 1:50 PM EST Msg: DGJC-5158-3064
From: J.ORCUTT
To: botmrev.acoustics
Subj: UNIX software

A set of software for reading the SRP 9-track tapes on a UNIX
machine has been put on a SUN at IGPP which can be accessed by
anonymous FTP protocols. The address is "sioseis.ucsd.edu" and
the required code as well as a "read-me" file is in the FTP user
area. The code could be made available on other media, but this
is probably the simplest approach. If there are problems please
call either myself or Paul Henkart (the author) at (619)534-3487.
Paul's Internet address is "henkart@sioseis.ucsd.edu" and mine is
"orcutt@bull.ucsd.edu." The programs read the nine track tapes
and write the time series in modified SEGY format. Much of the
header information, like ship's position and time, is written to
the SEGY headers. The software will allow you to read the tapes
and save the data in a standard format for plotting or
processing. We've found that MATLAB running on a workstation is
pretty efficient for much of the signal processing. As changes
are made to the software at your institutions, it would be a good
idea to share improvements throughout the community.

As often happens with such software, it was not as portable
as its authors had hoped, and it was necessary to modify it
further before it could be used locally. This turned out to be
a more difficult exercise than expected, because several subtle
compiler differences had to be located and corrected before the
time-series data could be read and demultiplexed.

The SIO software has now been successfully used to read OLP
tapes produced during the ARSRP Reconnaissance Cruise, and it
should prove equally useful with CST and LFA tapes. Not only
have results been verified as numerically correct, but the speed

33

of reading any data tape is several orders of magnitude faster
than the local OLP hardware/software. As an example, it took
more than eight hours for the OLP to read track 5 data and
convert them to an ASCII format file. The current software can
read and convert the same data in fewer than five minutes.

The 9-track tapes produced on the Cory contain several
types of data, but the format in which the data are written is
not standard and was selected by the BBN Corporation. A 9-
track tape typically contains the following types of
information:

a) Configuration data for the real time processor (beam
directions, transmission times, beamformer bias).

b) Non-acoustic source (NAS) data (latitude, longitude,
and other navigation data).

c) Multiplexed time series data in 16 bit BBN floating
point format.

d) System time in DEC VMS format.

The SIO software reads the 9-track tapes and produces a
disk file of navigation and time-series data which adhere to two
widely used standards: (1) The BBN floating point numbers are
converted to IEEE floating point numbers so that computers such
as Sun workstations and desk top microcomputers can use them
directly and (2) the navigation and digitization parameters are
combined with the data samples in a format known as the Society
of Exploration Geophysicist's Y-format (SEGY). The results are
"a sequence of records - called traces - each one of which has
"a trace header preceding the time-series data. The trace header
contains navigation and digitization information and is
immediately followed by the complex time-series data. One
"trace" corresponds to either the output data from one
hydrophone (passthrough data) or to the output of one beam
(beamformed data). Thus, the output file contains important
additional information such as the sampling rate, and there is
much less chance of losing information needed to process and
interpret the data. The SEGY format is easily converted to
others. The program segy2ascii.c described in the main text
converts the SEGY format to ASCII format.

It is very important that the software is compiled and

34

linked on the Sun workstation where it will be used. Failure
to do so may result in software which operates incorrectly or
not at all. A later section discusses how to do this.

The heart of the software is a program called bbn2segy.
This program reads the 9-track BBN formatted tapes, converts and
demultiplexes the data, and produces one or more SEGY files.
There are only a few questions the user needs to answer, and
theyý are all straightforward. The user will be asked for the
number of minutes of data which are to appear per beam or
hydrophone after each ping and the number of pings to be read.
Be aware that the SIO software uses a slightly peculiar
definition of a minute. A minute contains exactly 66.5 seconds
of data or 8512 complex samples. The program does not allow the
user to read less than one "minute" of data per ping, and will
only accept an integer number of minutes. If the user elects
to read more than one minute of data, there will be a seven
second overlap of data during each succeeding minute. That is,
each 66.5 second data trace written to the file will contain the
last seven seconds of the preceding data trace at its beginning.
Because of the way in which the tape is structured, it is
necessary to deal with 448 complex points at a time (3.5
seconds). This leads to the 66.5 second minute and to the
overlap given above.

The software actually means "epoch" when it asks for the
number of pings to read, and it is important not to confuse a
software ping with the more usual use of the word. If, for
example, you want to reach some CW data which follows a series
of FM chirps, you must read all of the preceding data in the
epoch.

The software produces one SEGY disk file per epoch (ping)
of data, and it will ask the user to make up a name for each
disk file to be written before it reads anytning from tape.
That is, if the user selects eight epochs, the program will ask
for eight file names right at the start of the run. Each file
will require approximately 8,750,000 bytes for each minute of
data read. There is no additional information required, other
than the name of the tape drive on which the 9-track tape will
be found.

Usually each tape contains two epochs of data, and the
attempt to read more epochs than are present will cause the
software to issue instructions to the operator to mount another

35

tape. Should that happen, restart the software so that only the
number of epochs on one tape are required.

There is additional software (see the installation
instructions which follow) in the SIO package, but it is mostly
used for examining a tape prior to reading it in detail. There
are programs to print the navigation and configuration data to
the screen (dump.nasdata,dump.configdata) as well as one program
to very briefly list the number of NAS data packets on the tape.
Most people will probably not be interested in the output of
these additional programs, although the program dump.configdata
can be used to count the number of epochs on a tape by counting
how many times it will run before the end of tape indicator is
reached.

To obtain the software, use the ftp file transfer program
from slater@gandalf.noarl.navy.mil to copy the file
"scripps.tar". Place the file in the directory area where you
want the software to self-install, and type

tar -xvf scripps.tar

to extract all of the software. This should result in two new
subdirectories called src and lib, as well as a READ.ME file.
There should also be a file called "install" present, and it
should be marked as executable (it is a script file). Type

install

and the script file will attempt to generate the library,
followed by the executable program "bbn2segy." If this results
in an "access denied" message, type

csh install.

In order for the script file to work, the Sun f77 compiler
must be available as well as a C compiler. The Sun workstations
have so far come with the cc compiler installed, and so the cc
compiler is assumed. If any error messages are observed, check
the path to be sure that both cc and f77 can be accessed.
Install simply invokes the make utility for each of the SIO
programs, and is therefore not complicated.

36

APPENDIX B

OLP and SEGY tapes held by NRL/SSC

The following table lists the 9-track OLP tapes held by
NRL/SSC. (Not all the information in the columns are readily
available, but it can be determined with a little effort.) Note
that in addition to the A format (1/2 phones and 1/2 beams)
previously discussed, the B format is all beams and the C format
is all phones. The sequence number is our tape ID.

9-track OLP tapes

RUN STRT TIME STOP TIME PNG ID# TYP FM SEQ#

1 216:0615Z 005,006 BTS B 353B
1 216:0615Z 216:0645Z 005,006 BTS C 356B
1 216:0645Z 007,008 BTS B 354B
1 216:0645Z 216:0700Z 007 BTS C 357B
1 216:0700Z 216:0730Z 008,009 BTS C 358B
1 216:0715Z 009,010 BTS B 355B
1 216:0730Z 216:0745Z 010 BTS C 359B
1 216:1349Z 216:1444Z BTS A 016B
1 216:1440Z 216:1640Z MFT A 005A
1 216:1440Z 216:1646Z MFT A 005B
1 216:1444Z 216:1515Z BTS A 017B
1 216:1544Z 216:1614Z BTS A 019A
1 216:1544Z 216:1614Z BTS A 019A
1 216:1545Z 216:1615Z 041,042 BTS B 363A
1 216:1545Z 216:1615Z 040,041 BTS C 364A
2 216:2105Z 216:2135Z BTS A 028A
2 216:2105Z 216:2135Z BTS A 028A
2 216:2108Z 216:2327Z MFT A 008A
2 216:2108Z 216:2327Z MFT A 008A
2 216:2206Z 216:2236Z 062,063 BTS C 365A
2 217:0151Z 217:0206Z 075 BTS C 372A
2 217:0251Z 217:0306Z 079 BTS C 368A
3 217:1215Z 217:1420Z MFT A 015A
3 217:1339Z 217:1408Z BTS A 059A
3 217:1354Z 217:1424Z 120,121 BTS C 373A
3 217:1354Z 217:1424Z 124,125? BTS C 375A
3 217:1408Z 217:1438Z BTS A 060A

37

3 217:1420Z 217:1620Z MFT A 016A
3 217:1420Z 217:1620Z MFT A 016A
3 217:1424Z 217:1524Z 122,123 BTS C 374A
3 217:1438Z 217:1508Z BTS A 061A
3 217:1508Z 217:1538Z BTS A 062A
3 217:1508Z 217:1538Z BTS A 062A
4 217:2220Z 218:0025Z MFT A 020A
4 217:2220Z 218:0025Z MFT A 020A
4 217:2244Z 217:2314Z BTS A 075A
4 217:2244Z 217:2314Z BTS A 075A
4 217:2314Z 217:2344Z BTS A 076A
4 217:2344Z 218:0014Z BTS A 077B
4 218:0025Z 218:0235Z MFT A 021A
5 218:0900Z 218:0930Z BTS A 094A
5 218:0918Z 218:0948Z 188,189 BTS C 391A
5 218:0918Z 218:0933Z MFT A 026A
5 218:0918Z 218:0948Z 188,189 BTS C 391
5 218:0930Z 218:1002Z 189,190 BTS A 095A
5 218:0948Z 218:1018Z 190,191 BTS C 392B
5 218:0948Z 218:1018Z 190,191 BTS B 393A
5 218:1002Z 218:1033Z 191,192 BTS A 096A
5 218:1018Z 218:1033Z 192 BTS B 394A
5 218:1018Z 218:1038Z 192 BTS B 395B
5 218:1038Z 218:1301Z MFT A 027A
5 218:1038Z 218:1301Z MFT A 027A
5 218:1103Z 218:1148Z BTS A 098A
5 218:1103Z 218:1148Z BTS A 098A
5 218:1103Z 218:1113Z 195 BTS C 396A
5 218:1103Z 195 BTS C 396
5 218:1203Z 218:1233Z 198,199 BTS C 397A
5 218:1203Z 198,199 BTS B 399
5 218:1233Z 218:1248Z 200 BTS B 398A
5 218:1248Z 218:1318Z BTS A 101A
5 218:1301Z 218:1506Z MFT A 028A
5 218:1310Z 218:1506Z MFT A 028A
5 218:1329Z 218:1347Z BTS A 102A
5 218:1347Z 218:1417Z BTS A 103A
5 218:1347Z 218:1417Z BTS A 103A
5 218:1403Z 218:1418Z 206 BTS C 401A
5 218:1403Z 218:1418Z 206 BTS C 401
5 218:1417Z 218:1447Z BTS A 104A

5P 218:1719Z 218:1739Z BTS A 11OA
5P 218:1739Z 218:1800Z BTS A 1lIA
5P 218:1740Z 218:1800Z 218 BTS C 402A
5P 218:1740Z 218 BTS C 402

38

7 218:2331Z 219:0135Z MFT A 033A
7 218:2354Z 218:0024Z BTS A 124A
7 219:0024Z 219:0054Z BTS A 125A
7 219:0054Z 219:0124Z BTS A 126A
7 219:0124Z 219:0154Z BTS A 127A
7 219:0135Z 219:0245Z MFT A 034A
7 219:0140Z 219:0210Z 246,247 BTS C 412A
7 219:0140Z 219:0210Z 246,247 BTS C 412
7 219:0154Z 218:0204Z BTS A 128A
7 219:0245Z 219:0320Z BTS A 130A
7 219:0320Z 219:0410Z BTS A 131A
7 219:0345Z 219:0627Z MFT A 036A
7 219:0410Z 219:0425Z 253 BTS C 415A
7 219:0410Z 253 BTS C 415
8 219:0510Z 219:0540Z BTS A 134A
8 219:0510Z 219:0525Z 257 BTS B 417A
8 219:0510Z 257 BTS C 417
8 219:0540Z 219:0610Z BTS A 135A
8 219:0610Z 219:0640Z BTS A 136A
13 222:0127Z 222:0159Z BTS A 256A
13 222:0159Z 222:0231Z BTS A 257A
13 222:0231Z 222:0304Z BTS A 258A
14 222:2119Z 222:2158Z BTS A 295A
14 222:2140Z 222:2220Z 580,581 BTS B 449A
14 222:2140Z 222:2240Z 580,581 BTS B 449
14 222:2158Z 222:2239Z BTS A 296A
14 222:2220Z 222:2240Z 582 BTS B 450A
14 222:2220Z 222:2240Z 582 BTS B 450
14 222:2239Z 222:2300Z BTS A 297A
15 223:0250Z 223:0329Z BTS A 304A
15 223:0310Z 223:0350Z 596,597 BTS B 451B
15 223:0319Z 223:0409Z BTS A 305A
15 223:0350Z 223:0430Z 598,599 BTS. B 452B
15 223:0409Z 223:0448Z BTS A 306A
16 223:0800Z 223:0840Z 610 BTS B 453B
16 223:0819Z 223:0900Z BTS A 312A
16 223:0840Z 223:0900Z 611 BTS B 454B
16 223:0900Z 223:0940Z BTS A 313A
16 223:0946Z 223:1001Z BTS A 314A
17 223:1350Z 223:1430Z BTS A 320A
17 223:1430Z 223:1509Z BTS A 321A
17 223:1509Z 223:1530Z BTS A 322A
18 223:1923Z 223:2019Z BTS A 329A
18 223:2019Z 223:2100Z BTS A 330A

39

Exabyte SEGY tapes

The following exabyte SEGY tapes have been created f orom their
corresponding OLP tapes. The tape name are constructed as
followings: example BTSB218 0948.363A -- "BTS"-beam tapes, "A"-
format A (also B or C), "218_0948"-Julian date and time zulu,
".363A"-OLP tape sequence number. All "BTS" exabyte tapes list
below are HFM upsweeps with the initial 145 sec recorded. "CWC"
tapes are all CW tonals in the C format.

BTSB218_0948.393A BTSB223_0840.454B
BTSB218_1033.393A BTSC218_1740.402A
BTSB218_1018.394A BTSC216_0615.356B
BTSC218_0948.392B BTSC216_0630.356B
BTSC218_1003.392A BTSC216_0645.357B
BTSC218_0918.391A BTSC216_0700.358B
BTSC218_0933.391A BTSC216_0715.358B
BTSC218_1103.396A BTSC216_0730.359B
BTSB218_1203.399 BTSC216_1545.364A
BTSB218_1218.399 BTSC216_1600.364A
BTSB218_1233.398A BTSC216_2206.365A
BTSB219_0510.417A BTSC216_2221.365A
BTSC219_0510.417 BTSC217_0151.372A
BTSB216_0615.353B BTSC217_0251.368A
BTSB216_0630.353B BTSC217_1354.373A
BTSB216_0645.354B BTSC217 1409.373A
BTSB216_0700.354B BTSC217_1424.374A
BTSB216_0715.355B BTSC217_1439.374A
BTSB216_0730.355B BTSC218_1403.401A
BTSB216_1545.363A BTSC219_0140.412A
BTSB216_1600.363A BTSC218_0155.412A
BTSB222_2140.449A BTSC219_0410.415A
BTSB222_2155.449A BTSC217 1354.375A
BTSB222_2220.450A BTSC217_1409.375A
BTSB223_0310.451 B CWC218 _0948.392B
BTSB223_0325.451B CWC218 1003.392B
BTSB223_0350.452B CWC218 0918.391A
BTSB223_0405.452B CWC218 _0933.391A
BTSB223_0800.453B CWC218 _1103.396A

40

APPENDIX C

Program Code

The program listings are given for the following
programs:

segy2ascii .c
pvconvert2arr .pro
pvconvert4arr pro
readdata .pro
beamforn. pro
hfmsource .pro
cwtonal .pro
mfilt .pro
waterfall .pro
unformatoutput .pro
asciioutput .pro

41

/* segy2ascii

/* Small program to read bbn2segy files and write ascii files. *1

/* This program writes all channels sequentially to the output file */
/* by scanning the input segy file repeatedly for records belonging *1
/* to the desired channel. */

/* A "record" is a segy record, corresponding to 66.5 - 7 - 58.5 seconds */
/* of data. This program ignores the first 7 seconds of every record */
/* beyond the first, because that is duplicated in the previous record. 'I

/* The program can be invoked entirely from the command line with the 'I
/* syntax: segy2ascii inputfile outputfile begin-trace endtrace */

/* Slater - NRL-SSC *1

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

#define SEEK SET 0
#define SEEK-CUR 1
#define SEEK_END 2

/* SEGY trace header structure. */

struct thdI
char dumO8);
long recno, chno;
char dumltl2l;
short chflg;
char dum2[421;
float sourcelat, sourcelong, reclat, reclong;
char dum3[26]:
unsigned short nsamp, sint;
cher dum4138];
short year, day, hour, minute, sec, MeCcs;
char dum5124];
float flsint;
char dum6[44];

main(argc, argv
int argc;
char *argv(];

FILE *fpin, *fpout;

char inpath[80), oupath[80);
static struct thd hdr;
float buffer(17024);
int count-0, beam-i, start-i, stop-0;

if (argc < 2

/* Query for and open input file. *1
printf("Enter input file name: "
gets(inpath);

else

strcpy(inpath, argv[l]);

if((fpin - fopen(inpath, "rb")) -- NULL

printf("Can't open input file.\n");
exit(I 1;

if (argc < 3

/* Query for output file name. */

printf("Enter output file name: ");
gets(oupath);

else

strcpy(oupath, argv[2]);

Position file past reel and binary headers. *1

if (!(fseek(fpin, 3600L, SEEK SET) - NULL

printf("Can't position input file.\n");
exit(1);

if ((fpout-fopen(oupath,"wt")) -- NULLI
printf("Can't open output file Is\n", oupath);
exit(l);

if(arge < 4)
I printf("Enter starting record number (1-NJ: ");

gets(inpath);

else strcpy(inpath, argv[3]);

if(sscanf(inpath, "%d", &start) !-l) exit(1);

if(argc < 5)
C printf("Enter ending record number [%d-Nj: ", start);

gets (inpath);

else strcpy(inpath, argv[4]);

if(sacanf(inpath, "%d", &stop) !-I) exit(l);

if(start > stop)
printf("Record numbers specified incorrectly.\n");
exit(1);

Adjust start and stop for later use. *1

start--;
stop++.

while (!feof(fpin)

if (fread(&hdr, (unsigned) sizeof(struct thd), 1, fpin !-0

if (hdr.recno > start && hdr.recno < stop

if (hdr.chno -- beam)

if (!(fread(buffer, (unsigned) sizeof(float), hdr.nsamp,
fpin) -- hdr.nsamp))(
printf("Can't read trace.\n");
exit(l);)

/* If this is the first record, get all of the samples. */
/* Otherwise, skip the duplicated 7 seconds of data. *I

if (hdr.recno -- 1

printf("Writing channel %ld, record %ld\n", hdr.chno, hdr.recno);
for (count - 0; count < hdr.nsamp; count+-2)

fprintf(fpout, "%g %g\n", buffer(countj, buffer(count+l));

else

printf("Writing channel %ld, record %ld\n", hdr.chno, hdr.recno);
for (count - 1792; count < hdr.nsamp; count+-2)

fprintf(fpout, "%g %g\n", buffer(count), buffer(count+l]);

else facek (fpin, 68096L, SEEK-CUR); /* skip data *

else Iif(I hdr.recno >- stop) fseek(fpin, OL, SEEKEND),
else fseeklfpin, 68096L, SEEKCUR);) /* E0OF or skip *

else / * EOF found. Reset if not done. *
beam++;
if (beam < 129) fseek(fpin,3600L,SEEKSET);

fclosel fpout)
exit (0);

pro pvconvert2arr, infile,outfile

- August 1992, L. A. Pflug
; Program to convert ascii output (created by segy2ascii.pro)
; to unformatted data which can be read more quickly by pv-wave.
; input data should consist of two arrays: real part, imaginary part.

;open input and output files
openr,l,infile
openw, 2,outfile

;us5r must input firit -ýnel number and points per channel
nchannel-0
arrsize-0
print,'Enter start and end channel numbers in file (possible 0 to 127).'
read, nchannelstart,nchannelend
print,'Enter number of points per phone/beam.'
read, arrsize

;initialize data arrays
;(output time array is redundant for this program but is
;compatible with readdata.pro
outtime-fltarr(arrsize)
outreal-fltarr(arrsize)
outimag-fltarr(arrsize)

;define dt as the sampling rate
dt-1/128.

for iloop-nchannelstart,nchannelend do begin
; read each channel and create time array

t-0.0
for ipoint-0,arrsize-1 do begin

readf, l,tempy,tempz
outtime(ipoint)-t
outreal(ipoint)-tempy
outimag(ipoint)-tempz
t-t+dt

endfor
; output channel in unformatted form

print,'Channel number converted: ',iloop
writeu, 2, fix(iloop),fix(arrsize)
writeu, 2,outtime
writeu,2,outreal
writeu, 2,outimag

endfor

;close input and output files
close, 1
close, 2

print,'Unformatted output in ',outfile

end

pro pvconvert4arr, infile,outfile

June 1992, L. A. Pflug
Program to convert ascii output to PV-WAVE unformatted data
which can be read more quickly by pv-wave.
Input data should consist of four arrays:
phone/beam number, time, real part, imaginary part
output data numbers channels from 0 to nchannel-1.

;open input file
openr, l,infile
openw, 2,outfile

;following two lines should be uncomnented if a header is present
;header-' I
;readf,l,header

;initialize nchannel to integer 0
nchannel-0

;user input number of channels and points per channel.
print,'Enter start phone/beam number in file (usually 0 or 1).'
read, nchannel
print,'Enter number of points per phone/beam.'
read, arrsize

;initialize input arrays for unknown number of points (max of 128 seconds
;data) and output arrays
timearr-fltarr(2100000)
realarr-fltarr(2100000)
imagarr-fltarr(2100000)
outtime-fltarr(arrsize)
outreal-fltarr(azrsize)
outimag-fltarr(arrsize)

;initialize nptstotal (total number of points overall) to long integer
;initialize nsize (number of points per channel) and nchannelnum to 0
nptstotal - OL
nsize-O
nchannelnum-0

;loop through each channel
while not eof(l) do begin
; read one channel

readf,l,nchannelnum,tempx,tempy,tempz
timearr(nptstotal)-tempx
realarr(nptstotal)-tempy
imagarr(nptstotal)-tempz

; output one channel in unformatted form
if (nchannelnum gt nchannel) or (eof(l)) then begin

if (not eof(l)) then begin
print,'Channel number converted: ',nchannelnum-1
print, 'Number points read = ',nsize
writeu,2,fix(nchannelnum-l),fix(n3ize)
assign channel to output array
outtime-timearr(nptstotal-nsize:nptstotal-1)
outreal-realarr(nptstotal-nsize:nptstotal-1)
outimag-imagarr(nptstotal-nsize:nptstotal-1)
writeu,2,outtime
writeu,2,outreal
writeu,2,outimag

endif
if eof(1) then begin

print,'Channel number converted: ',nchannelnum
print, 'Number points read - ',nsize+l
writeu, 2,nchannelnum, nsize+l
assign channel to output array
outtime-timearr(nptstotal-nsize:nptstotal)
outreal-realarr(nptstotal-nsize:nptstotal)
outimag-imagarr(nptstotal-nsize:nptstotal)
writeu,2,outtime
writeu,2,outreal
writeu,2,outimag

endif
nchannel-nchannel+l

re-initialize nutpui and variables and nsize
outtime-fltarr (arrsize)
outreal-fltarr (arrsize)
outimag-fltarr (arrsize)
nsize-0

endif

increment nsize and nptstOtal
nsize-nsize+l
nPtstotal-nptstotal+l

endwhile

print, 'Total number points for all channels- ',nptstotal

;close input and output files
close, 1
close, 2

print,'Unforinatted output in ',outfile

end

pro readdata, timedata, realdata, imagdata

June 1992, L. A. Pflug
Reads binary phone or beam data from input file.

;open input file
filename-'
print,'Enter input file name.'
read, filename
openr,1, filename

;get number of channels and points per channel
print,'Enter number of channels in file.'
read, nchannels
print,'Nurnber of channels read - ',nchannels
print,'Enter beginning and endiný, channel numbers to keep'
print,' -Possible 0 to 127'
read, nchannelstart, nchanrnelend
nchannelkeep-nchannelend-nchannelstart+l
print,'Num~ber of channels to keep - ',nchannelkeep

;read header line with channel number and number of points
firstline-intarr (2)
readu. ,lfirstline
print, firstline
nchannel-firstline (0)
npts-firstline Cl)

;points per channel to keep
print,'Number of points per channel - ',npt3
print,'Enter number of points per channel to keep.'
read. ptkeep

;initialize input and temporary data arrays
tenptime-fltarr (npts)
tempreal-fltarr (npts)
ternpimag-fltarr (npts)
timedata-fltarr (ptkeep)
realdata-fltarr (ptkeep, nchannels)
imnagdata-fltarr (ptkeep, nchannels)

;read each phone/beam
for ichannel-0,nchannel3-l do begin

if (ichannel gt 0) then begin
read header line for this channel
readu,1, firstline
nchannel-firstline (0)
npts-firstline (1)

endif
;read three arrays
readu, l,tenptirne
readu, l,tempreal
readu, l,tempimag

;throw away unwanted points
timedata-temptime (0:ptkeep-l)
realdata (0:ptkeep-l, ichannel) -te-mpreal CO:ptkeep-l)
imagdata (0:ptkeep-l, ichannel)-tempimag(0:ptkeep-1)

;output current status
print,' Data read for channel number - ',nchannel
print,' N~umber of points per channel - ',npts

endfor

;Close input file
close, 1

;throw away unwanted beams
realdata-realdata ', nchannelstart :nchannelend)
imagdata-inagdata (*,nchannelstart nchannelend)

end

pro beamform, timedata, realdata, imagdata, anglearray, realbeam, imagbeam

;Uses phone data to time-delay add beamform using phase shifts in
;frequency.
;Beamformed data is output in realbeam,imagbeam.
;First two phones are desensitized and output as last two beams.

;define number of phones
nphonesl128

;define constants
pi - 3.1415926536
twopi-2*pi
;dist =distance between hydrophones in meters
dist =2.5

?c- sound velocity in rmeters/-econd
c-1525.0

;r- sampling rate in points/second
r-128.0
;downshift - downshift in frequency used for basebanding phone data
downshift -186.0

;Get number of points per phone.
print,'Enter number of points per phone.'
read, ptnum

;Create angle array in degrees.
angleanswer-st ring (1)
print,'User defined set of angles or default? U-user D-default'
read, angleanswer

;user-defined angles
if (angleanswer eq 'U' or angleanawer eq 'u') then begin

print,'Enter number of angles.,
read, numangles
anglearray-fltarr (numangles)
print,'Enter start angle.'
read, ang
anglearray (0?-ang
if (numangles gt 1) then begin

print,'Enter angle increment (theta) in degrees.'
read, theta
for i-l,numangles-l do begin

anglearray (i) -anglearray (0)+theta*i
endfor

endif
endif

;default angles (126 angles evenly spaced in Cosine)
if (angleanswer eq '0' or angleanswer eq 'd') then begin

numangles-126
anglearray-fltarr (numangles)
cosincrement-2./125.
cosnumber-l.
for i-0,numangle3-l do begin

anglearray (i) -180* (acos (cosnumber))/pi
cosnumber-cosnumber-cosincrement

endfor
endif
print, 'Angle array - ,anglearray

;Create real and complex arrays.
phonedata-complexarr (ptnum, nphones)
freqphonedata-complexarr (ptnum. nphones)
realbeam-fltarr (ptnum, numangles+2)
imagbeam-fltarr (ptnum, numangle3+2)

;Adjust for dead phones in Run 5. (9,29,34,58,70,74,100,104,121,126)
ndead-10
deadarray-(9, 29,34,58,70, 74, 100, 104, 121,1263
for iphone-0,ndead-1 do begin

if (nphones gt deadarray(iphone)) then begin
realdata(*,deadarray(iphone))-(realdata(*,deadarray(iphone)-l)$
+realdata(*,deadarray(iphone)+l))/2.0
imagdata(*,deadarray(iphone))-(imagdata(*,deadarray(iphone)-l)$
+imagdata (*,deadarray (iphone)+l))/2.0

endif

endfor

;Conivert realdata and imagdata to complex arrays for easier computation
;and calculate Fourier transform of time-domain phone data array.
dtl1/128.
df-l/(ptnum~dt)
for i-2,nphones-l do begin

phonedata(*,i)=complex(realdata(*,i),imagdata(*,i))
freqphonedata (*, i) -fft (phonedata (*,i) -1)

endfor
print, 'nput data F- ..-er transformed.'

;Create Harmuing window positioned evenly over data phones
w-fltarr (nphones)
f or i-2,nphones-1 do begin

w(il-0.54-(0.46*coa(twopi*(i-2)/(nphones-31)))
endfor

;Create frequency array.
f-fltarr (ptnum)
for j-0,ptnum-l do begin

f(j)-(j+(downshift*ptnum/r))*(r/ptnum)
endfor

;Beamform at each angle.
junk-check-math (1,1)
for angle-0,numangles-1 do begin

;Shift angle by -90 degrees to simulate broadside as 0 degrees
anglearray (angle) -90-anglearray (angle)
taufactor-(dist/c)*sin(pi*anglearray(angle) /180.)
;initialize sum
sum-complexarr (ptnum)
sum-replicate (0.0,ptnum)
for i-2,nphones-l do begin

tau-taufactor* (nphone3-1-i)
argument-complexarr (ptnum)
for j-0,ptnum-1 do begin

argument (j)-complex (0. 0, -twopi*f (J) *tau)
endfor
expfactor-complexarr (ptnum)
expfactor-exp (argument)
;initialize shifidata

shiftdata-complexarr (ptnum)
shiftdata-w Ci) *freqphonedata (*,il *expfactor
;Inverse Fourier transform and sum
sum m sum + fft(shiftdata,l)

endfor

;Store in appropriate position in beam arrays (possible 0-125)
realbeam(*,angle)m(float(sum))/ (nphone3-2)
imagbeam (*,angle) -(imaginary (sum))/ (nphones-2)
print,'Finished beam for angle '.90.0-anglearray~angle)

endfor

;move desensitized phones 0 and 1 into last two beams
realbeam (*, numangles) -realdata (*, 0)
imagbeam(*,numangles)-imagdata (*, 0)
realbeam(*, numangles+l) -realdata (*, 1)
imagbeam(*, numangles+l)-imagdata (*,)

close, 1

end

pro hfmsource, f, freqhfm

;Create HFM upsweep 210 to 280 Hz source (SOURCE ID SPSS053)

;and downshift by 186 Hz.

;define time duration of source and original sampling rate
sourcetime-2.
origpts-sourcetilne*1

0 2 4 .

;initialize original time, f req. and time domain source arrays
torig-fltarr (origpts)
forig-fltarr (origpts)
timehfm-fltarr (Origpts)

; determine time and frequency increments and Nyquist frequency of
;original source
dt-sourcetizue/origpta
df-l .1(origptS'dt)
fnyq..1./ (2. *dt)
print,'time increment - ',dt
print, 'Nyquist -I, fnyq
print,'f req increment - ',df

;define beginning and endding frequencies for source
fl-210 .0
f2-280.0

;create original source
konstant-(2*3.l4l5921*3ourcetime*fl*f2)/I(f2-fl)
for i-0,origPt3-l do begin

torig(i) - i*dt
forig(i) - i*df
if (i gt origpts/2) then forig(i)-forig(i)-2*fnyq
arg-f2-((f2-fl)*torigWi) fnurcetime
phi-konstant*(alog(f2)-alog(arg))
timehfm(i) -sin(phi)

endfor

;baseband signal by pha~se shifting in time (Marple, p. 52)
;moves 250 Hz down to 0 Hz
;source will be complex instead of real
ternphfm-timehfm
timehfm-complexarr (origpts)
centerfreq--250.0
const-2*3. 1415921)*centerfreq*dt
for i-0,origpts--l do begin

arg-const*i
timehfm(i) - complex(temphfm(i)*cos(arg),tenlphfm(i)*sin(arg))

endfor

;use -64 to 64 Hz filter on f req-domain signal (129 Hz total
;bandwidth with 256 pta)
pts-256
;create new time and frequency arrays, and f req-domain source
f-fltarr (pt3)
t-fltarr (pta)
freqhfm-complexarr (pta)
Sf ft time domain source
tempfreqhfm-fft (timehfm, -1)
;rearrange order of f req array and f req-domain shifted source (put
;negative f req on left)
fbegl-0
fbeg2- (pts/2) -1
fendl-origpts- (pts/2)
fend2-origpt3-1
f (0;Pts/2-1)-forig(fbegl: fbeg2)
f (pts/2 :pts-1) -forig (fendi fend2)
f-f (:pts-1)
freqhfm(0:pts/2-1)-tempfreqhfm(fbegl fbeg2)
freqhfm(pts/2:pts-l) -tempfreqhfm(fendl fend2)
;throw away frequencies outside -64 to 64 Hz
freqhfm-freqhfm (0:pt3-i)

;inverse f ft for new time-domain hfm with appropriate dt
timehfm-complexarr (pts)
timehfm-fft (freqhfm, 1)

;zero pad to desired time duration
print,'Enter number of points in source signal (sampled at 128 samples/sec).'
read, newpts
oldpts-pts
fi~lltime-newpts/ Coldpts/2)
print,'zero padded time-domain hfm source points m ',newpts
newtimehfm-complexarr (newpts)
newtimehfmCO :oidpts-l) -timehfm(O:oldpt3-1)

;transform to get f req domain equivalent
temp-complexarr (newpts)
temp-f ft (newtimehfm, -1)

;reverse f ft order on source (negative f req on left)
freqhfm-complexarr (newpts)
freqhfm(O: (newpts/2)-l) - temp(newpts/2:newpts-1)
freqhfm(newpts/2:newpts-1) - temp(O: (newpts/2) -1)

;find new dt,df and nyquist f req
dt-fulltime/newpts
df-l./ (newpts*dt)
fnyq-l.I C2.*dt)
print,'new time increment - ',dt
print,'nev f req increment - ',df
print,'new Nyquist f req - ',fnyq

;create new time and frequency arrays and shift frequercies to 0 to 128 Hz.
t-fltarr (n~wpts)
f-f ltarr (newpts)
for i0O.newpt3-1 do begin
t Ci) =i*dt
f Ci)-(i'df)
endfor

end

pro cwtonal, f, freqcw

:create one CW tonal at a given frequency
;and downshift by 186 Hz

;define* time duration of source and original sampling rate
sourcetime-2.
origpts-sourcetime*1024.

,initialize original time, f req. and time domain source arrays
torig-fltarr (origptS)
forig-fltarr (origptS)
timecw-fltarr (origpts)

;determine time and frequency increments and ?4yquist frequency of
;original source
dt-sourcetime/origpts
df-l. /(origpts*dt)
fnyq-l./ (2.*dt)
print,'time increment - ',dt
print, 'Nyquist -I, fnyq
print,'f req increment - ',df

;input frequency for source
print,'Enter frequency (210,220,230,240,250,260,270,280,290)'
read, freq

;create original source with Manning weighting
pi-3.141a5927
for i-0,origpts-l do begin

torig(i) i'dt
forig(i) -i*df

if (i gt origpts/2) then forig(i)-forig(i)-2*fnyq
temp- (sin (pi*torig(i) /sourcetime)) 2
timecw(i)-temp*co3(2*pi*freq*torig(i))

endfor

;baseband signal by phase shifting in time (Narple, p. 52)
;moves 250 Hz down to 0 Hz
;source will be complex instead of real
ternpcw-timecw
timecw-complexarr (origpts)
centerfreq--250. 0
const-2*3. 1415927*centerfreq*dt
for i..0,origjpt3-1 do begin

arg-const ~i
timecw(i) - complex(tempcw(i)*cos(arg),tempcwci)*sin(arg))

endfor

;use -64 to 64 Hz filter on freq-domain signal (128 Hz total
;bandwidth with 256 Pts)
pts-2S6
;create new time and frequency arrays, and f req-domain source
f-fltarr (pta)
t-fltarr (pta)
freqcw-complenarr (pts)
;f ft time domain source
tempfreqcw-f ft (timecw, -1)
;rearrange order of f req array and f req-domain shifted source (put
;negative f req on left)
thegi -0
fbeg2- (pt3/2) -1
fendl-origpts- (pts/2)
fend2-origpts-1
f(O:pts/2-1)-forig(fbegl :fbeg2)
f Cpt3/2:Pt3-1)-forig(fendl fend2)
f-f (0pts-l)

* freqcw(0:pts/2-1)-tempfreqcw(fb~egl fbeg2)
freqcw(Pt3/2:pts-l)-tempfreqcw(fendl fend2)
*throw away frequencies outside -64 to 64 Hz
freqcw-freqcw (0:pts-1)

;inverse fft for new time-domain cw with appropriate dt
ti-necw-complexarr Cpts)
tirnecw-fftt(freqcw, 1)

;zero pad to desired time duration

print, 'Enlter number of points in source signal (sampled at 128 sarnpleslsec).
read, newpts
oldpts-pts
fulltime-newpts/ (oldpts/2)
print, Izero padded time-domain cw source points -'newpts

newtimecw-comfplexarr (newpt3)
newtimecw(O:oldpts-1)-timecw CO:oldpts-l)

;transform to get f req domain equivalent
temp-complexarr (newpts)
temp-fft (newtimecw, -1)

;reverse f ft. order on source (negative f req on left)
freqcw-complexarr (newpts)
freqcw(O: (newpt3/2)-l) = temp(newpts/2:newpts-1)
freqcw~newpts/2:newpt3-1) = templO: (newPts/2)-l)

;find new dt,df and nyquist. f req
dt-fulltime/nempts
df-l./I(newpts*dt)
fnyq-l./(2.*dt)
print,'new time increment = ',dt
print,'new f req increment - ',df
print,'new Nyquist. f req - ',fnyq

;create new time and frequency arrays and shift frequencies to 0 to 128 Hz.
t-fltarr (newpts)
f-f ltarr (newpts)
for i-0,newpt3-l do begin

t (i)-i*dt
f (i)-i*df

endfor

end

pro mfilt,source,timedata, realbeam, imagbeam, timemf, realmf,imagmf

;L. A. Pflug - August, 1992
;Program match filters complex data with a user supplied complex frequency-
;domain source.

;constant speed of sound
c-1525.0

;get number of channels and points per channel
print,'Enter number of channels in data file.'
read, nchannels
print,'Enter number of points per channel - should be equal to number of $
points in source.'
read, ptnum

;match filter phone or beam data?
phonebeam-string(1)
print,'Enter phone or beam data? P or B'
read, phonebeam

;initialize output variables
timemf-fltarr(ptnuni)
realmf-fltarr(ptnum, nchannels)
imagmf-fltarr(ptnum, nchannels)

;fourier transform each channel and match filter source with
;data in frequency domain (conjugate on source)
newdata-complexarr(ptnum)
fftdata-complexarr(ptnum)
for i-O,nchannels-1 do begin

fftdata(O:ptnum-l)-complex(realbeam(*,i),imagbeam(*,i))
fftdata-fft(fftdata,-1)
newdata-conj(source)*fftdata
newdata-fft(newdata, 1)
realmf(*,i)-float(newdata)
imagmf(*,i)-imaginary(newdata)

endfor

:time shift origin to beginning of source transmission
:find peaks of matched filtered desensitized phones
if (phonebeam eq 'P' or phonebeam eq 'p') then iplace-2
if (phonebeam eq 'B' or phonebeam eq 'b') then iplace-nchannels
maxl-max(abs(complex(realmf(*,iplace-2),imagmf(*,iplace-2))),maxsubscript)
timel-timedata(maxsubscript)
:use distance between source and first phone (881 m) to find true time
time2-881.0/c
:difference between true time and peak of first mf phone is time shift
tshift-timel-time2
timemf-timedata-tshift
print,'Time shift - ',-tshift

end

pro waterfall,ti,re,im

;June 1992, L. A. Pflug
;waterfall plot of magnitude versus time for many channels of data
input file should be read by readdata.pro

!p.region-[0, 0,1.3, .81

print,'Enter number of channels'
read, nchannel
minchannel-0
maxchannel-nchannel-l
print,'Enter number of points per channel'
read, ptnum,

;create variables
nhardcopy-string (1)
magndata-fltarr (ptnum, nchannel)
magntemp-fltarr (ptnum, nchannel)
print,'Enter number of magnitude points to average.'
read, navg

for ichannel0O,nchannel-1 do begin
;calculate magndata (magnitude of data)
magndata (*,ichannel)-sqrt ((re (*, ichannel)) 2+ (im(*,ichamnel)) 2)

;average magnitudes of user given number of points
if (navg gt 1) then begin
for ibeg-0,ptnum-l do begin

iend-ibeg+navg-l
if (iend le ptnum-l) then rpgndata(ibeg,ichannel)- $
total Cmagndata (ibeg:iend, ichannel))/navg
if (iend gt ptnum-1) then magndata(ibeg,ichannel)-$
total (magndata (ibeg:ptnum-l,ichannel))/navg

endfor
endi f

;convert magnitude to dB after adding small constant
;minimum dB value is -120 dB for constant-0.000001
magndata (*,ichannel)-magrndata (*,ichannel)+.000001
magndata (*, ichannel)-20*alogl0 (magindata(*, ichannel))

endfor

;make plots
print, 'Begin plots.'

;get title of plot
jumpl: mytitle - 1
print, 'Enter title.'
read, mytitle

;threshold magnitude data
;downshift data to zero for plotting purposes
magntemp-magndata
minmag-min (magndata)
maxmag-max (magndata)
print, 'minimum magnitude (in dB) - ',minmag
print, 'maximum magnitude (in dB) - ',maxmag
print, 'Threshhold data? Y or N'
threshans-string (1)
read, threshans
if (threshans eq '19 or threshans eq 'y') then begin

print,'Enter min and max threshold values (dB).'
read, threshmin, threshmax
if (threshmin gt min(magndata)) then magntemp(where(magndata lt $

threshmin)) - threshmin
if (threshmax It max(magndata)) then magntemp(where(magndata gt $

threshmax)) - threshmax
magntemp-magntemp-threshmin

endif
if (threshans eq 'N' or threshans eq 'n') then magntemp-magntemp-min(magntemp)

:normalize to unit height and multiply by gain factor for plotting purposes
magntemp-magntemp/max (abs (msgntemp))
print,'Enter gain factor.'
read, gain
magntemp-magnternpt gain
print, gain*min,max magnitude - ',min(nagntemp),max(magntemp)

print,'Enter first channel and last Channel to plot.'
read, nchannelbeg, nehannelend
print,'Enter channel increment (integer).'
read. ndeltachannel

y-axis labels for channels or angles

rint,'Label y-axis with channel number or angle? C or A'
~ead,ylabel
..f (ylabel eq 'C' or ylabel eq 'c') then begin

ytit-' Channel'
endif
if Cylabel eq 'A' or ylabel eq 'a') then begin

ytit-'Angle'
ylabsize-O
print,'Enter number of labels (integer).'
read, ylabaize
ystring-3trarr (ylabsize)
pzint,3trcompress('Enter '+string(ylabsize)+' labels (one per line).')
read, ystring

endif

;get times to plot
tshift-ti (0)
print,'Time shift in seconds - ',tahift
print,'Min, Max times - ',ti(0),ti(ptnum-1)
print,'Enter min and max time in seconds to plot.'
read, mintime, maxtime

ndelta-nchannelbeg
;loop through each channel, and konstant for plotting, and plot
for iloop-nchannelbeg,nchannelend do begin

ichannel-iloop-rainchannel
;first plot
if iloop eq nchannelbeg them begin

konstant-nchannelbeg - 1/2.
if (ylabel eq 'c' or ylabel eq 'C') then plot,ti,S

magntemp(*, ichannel) +konstant,xrange-[imintime,maxtimej ,$
yrange-Enchannelbeg-.5, nchannelend+l3, $
xtitle-'Time (sec) ',ytitle-ytit,xstylel2,ystyle-l, S
title-mytitle

if (ylabel eq 'a' or ylabel eq 'A) them plot,ti,$
magntemp(*, ichannel) +konstamt,xrange-fmintime,maxtimej .5
yrange- (nchannelbeg-.5, nchannelend+1),
xtitle.'Time (sec) ',ytitle-ytit,xstyle-l~ystyle-l, $
title--mytitle, ytickname-Ystring, yticks-ylabsiZe-l

endif
;remaining plots
if (iloop qt nchannelbeg) then begin

if (iloop eq ndelta+ndeltachannel) then begin
oplot,ti,magntemp(*, ichannel)+konstant
ndelta-ndelta+ndeltachannel

endif
endif
konstant - konstant + 1.

endfor

;output pertinent information to plot
xyouts,/normal, .63, .98,strcompress(FMinI Max Magnitude (dB): '+3tring(minmag)4' I's

+string(maxmag))
if(threshans eq 'VI or threshans eq 'y') then XYOUts,/normal,.63,.95,S

strcompress ('Threshhold (dB): '+string(threshmin) +' -' +string (threshmax))
it(threshans eq 'N' or threshans eq In') then xyouts,/normal,.63..95,$

strcompress('Threshhold (ds): '+'None')
xyouts, /normal, .63, .92.strcompre33('iMagnitude points avg: '+string(navg))
xyouts,/normal, .63, .89,strcompress('Gain factor: '+string(gain))
xyouts,/normal, .63, .86,strcompre33('Beam increment: '+3tring(fix(ndeltachannelH))
xyouts,/normal, .63. .83,strcompre33('Time Shift: '+string(tshift))
print, 'Plot finished'

;Set Up for Postscript output and repeat plot
nhardcopy-' N'
print,'Hardcopy of plot? Y' or N'
read, nhardcopy
if (nhardcopy eq 'IV) or (nhardcopy eq 'y') then begin

set-plot, ps'
postfile-'I
print, 'Enter name of postscript output file.'
read, postfile
device, /landscape, /inches,xsize-9. O,ysize-6. 5, filename-postfile
ndelta-nchannelbeq
;loop through each channel, and konstant for plotting, and plot
for iloop-nchannelbeg,nchannelend do begin

ichannel-iloop-minchannel
if iloop eq nchannelbeg then begin

konstant-nchannelbeg - 1/2.
if Cylabel eq 'c' or ylabel eq 'C') then plot,ti,S

magntemp(*, ichannel)+konstant,xrange-tmintime,Ifaxtimel, $
yrange-(nchannelbeg-.5,nchannelend+l] ,$
xtitle-'Time (3ec)' ,ytitle-ytit,xstyle-l,ystyle-l, $
title-mytitle

if (ylabel eq 'a' or ylabel eq WA) then plot,ti,$
magntemp(*, ichannel)+konstant,xrange-Cmintime,maxtimel ,$
yrange-[nchannelbeg-.5,nchannelend+l] ,$
xtitle-' Time (sec) ',ytitle-ytit,xstyle-l,y~tyle'l, $
title-mytitle, ytickname-ystrinq, ytick3-ylabsize-l

endif
if (iloop gt nchannelbeg) then begin

if (iloop eq ndelta+ndeltachannel) then begin
oplot,ti,magntemp(*, ichannel) +konstant
ndelta-ndelta+ndeltachannel

endif
endif
konstant - konstant + 1.

endfor
;output pertinent information to plot
xyouts,/normal, .63, .98,strcompress('M4in, Max Magnitude (dB): '+string(minmag)+' I'$

+st ring (maxmag))
if(threshans eq "1' or threshana eq 'y') then xyouts,/normal,.63,.95,$

3trcompress ('Threahhold (dB): '+string (threshmin) +' -, +string (threshmax))
if(threshans eq 'N' or threshan3 eq 'n') then xyouts,/normal,.63,.95,$

3trcompress('Threshhold (dB): '+'None')
xyouts, /normal, .63, .92, strcompress ('Magnitude points avg: '+string(navg))
xyouts, /normal, .63, .89, strcornpress ('Gain factor: '+string(gain))
xyouts, /normal, .63, .86, strcompress ('Beam increment: '+string(fix(ndeltachannel)))
xyouts, /normal, .63, .83, strcompress ('Time Shift: '+string(tshift))
;reinitialize device variables
empty
device, close
print,'Postscript file created.'

endif

;loop through for more plots
print,'Another plot? Y or N'
another-string Cl)
read, another
if (another eq 'Y' or another eq 'y') then goto,jumpl

end

pro unformatoutput, timeout, realout, imagout

;August, 1992 - L. A. Pflug
;Write real and imaginary parts of data to PV-WAVE unformatted file.
;Channels written sequentially.

;determine size of matrices
realsize-size (realout)
ptnum-fix(realsize(l))
numchannels-fiX (realsize (2))
print, 'Real part:'
print, strcompress(' number points - '+3tring(ptnum))
print,strcompress(' number of channels - '+string(numchannels))
imagsizes3ize (imagout)
ptnum-fix (imagsize (1))
numchannels-fix (imagsize (2))
print, 'Imaginary part:'
print,strcompress(' number points - '+3tring~ptnum))
print,strcompress(' number of channels - '+string(nwnchannels))

;open output file
outfile'I
print,'Enter name of output file.'
read, out file
openw,1, outfile

;Write data to file
for ichannel-O,numchannels-l do begin

writeu,1, ichannel,ptnum
writeu,1, timeout
writeu,1, realout (*, ichannel)
writeu, 1,imagout(*,ichannel)
print, strcompress ('Channel number '+string(ichannel) +' written to file.')

endfor
print,'Output in file - ',outfile

;Close file
close, 1

end

pro asciioutput, timeout, realout, imagout

;August, 1992 - L. A. Pflug
;Write real and imaginary parts of data to ascii file.
;Channels written sequentially.

;determine size of matrices
timesize-size (timeout)
ptnum-fixc(timesize (1))
print,'Time array:'
print,strcompress(' number points - '+string(ptnum))
realsize-size (realout)
ptnum-fix (realsize (1))
numchannels-fix (realsize (2))
print, 'Real part:'
print,strcompress(' number points - '+string(ptnufl))
print, strcompre~ssC number of channels - '+string(numchannels))
imagsize-size (imagout)
ptnum-fix (imagsize (1))
numchannels-fix (imagsize (2))
print,' Imaginary part:'
print,strcompress(' number points - '+string(ptnum))
print,strcompress(' number of channels - '+string~numchannels))

;determine format of output
print,'Ascii output form:'
print,' 1 - (real part, imaginary part)'
print,' - compatible with pvconvert2arr.pro'
print,' 2 - (beam number, time sample, real, part, imaginary part)'
print,' - compatible with pvconvert4arr.pro'
print,'Enter 1 or 2.'
read, nform

;open output file
outfile'I
print,'Enter name of output file.'
read, outfile
openw,1, outfile

;write data to file
for ichannel-O,numchannels-1 do begin

for ipoint-O,ptnum-1 do begin
if (nform eq 1) then printf,l,realout(ipoint,ichannel),S
imagout (ipoint, ichannel)
if (nform eq 2) then printf,l,ichannel,timeout(ipoint),S
realout (ipoint, ichannel) ,imagout (ipoint, ichannel)

endfor
print, strcompreSs('Channel number '+string(ichannel)+' written to file.')

endfor
print,strcompress('Output in file - '+ outfile)

;close file
close, 1

end

