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I. Introduction

The study of stratified fluid dynamics has primarily concentrated on the linear or nonlin-

ear interaction of familiar modes of density oscillations in the internal wave frequency range

between the local inertial frequency, f, and the local buoyancy frequency, N. It has been ob-

served by Mfiller and his coworkers, Miller (1988) and Miller et al. (1986,1988), that in the

linearization of the Eulerian equations for internal wave motion, in addition to the familiar

internal wave oscillations, there is also a zero frequency mode which is clearly identifiable as

geostrophic motion or more precisely motion which possesses potential vorticity and whose

space and time scales are to be established. In these papers the question of whether there

is observational or computational evidence, Riley et al. (1981), for these potential vorticity

carrying modes has been addressed at some length. The evidence is quite strong that these

modes do exist, and in some sense of equipartition carry as much energy as the familiar, zero

potential vorticity, internal wave motions.

The purpose of this paper is to provide the consistent formulation of the dynamics of

these modes by studying their interaction in some detail in a fully Hamiltonian context using

a Lagrangian specification of the fluid dynamics of a stratified fluid. The reasons for using

the Lagrangian view of the fluid dynamics are twofold: (1) the formulation is canonical and

all the familiar tools of Hamiltonian mechanics can be employed without worry about the

noncanonical Poisson brackets which arise in the Eulerian fluid dynamics. (2) The conserved

quantities which appear as cyclic coordinates in a canonical formulation (in particular the

potential vorticity) have been "reduced" out of the Eulerian dynamics by construction, and

thus they appear as mysterious or at least obscure conseqiences of the Eulerian equations

of motion. As cyclic coordinates in the Lagrangian formulation, one may treat them on an

equal footing with the interacting internal wave modes. Once this is done, the equipartition
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of energy among these modes appears as a familiar consequence of similar arguments for

equi-distribution of energy among modes in general Hamiltonian systems.

A word about "reduction" is in order here, (Abarbanel et al. (1986)). This is the process

whereby one goes from the six fields in a Lagrangian picture: the Lagrangian positions

and their conjugate momenta, to the four fields in an Eulerian framework: the three fluid

velocities and the fluid density. The remaining quantities are constants of the motion, and

the reduced description provided by the Eulerian formalism restricts evolution of the fluid

to surfaces where these quantities are constant. Thus the Eulerian formulation is unable

to shed any dynamical light on the evolution of these degrees of freedom and leaves us in

the dark about how the degrees of freedom in, for example, potential vorticity interact with

the internal wave modes. The Lagrangian formulation which keeps all degrees of freedom

overcomes these complications.

Having identified the modes which carry potential vorticity, we associate them with both

small scale oscillations which would contribute to carrying energy in the internal wave fre-

quency range, f _ w < N and with the large scale mesoscale motions which drive the

internal waves by transfers of energy to them, Mifiller (1976,1988), MfIller et al. (1986,1988)

and Brown and Evans (1981). [We refer to these modes as PV modes to indicate that they

carry potential vorticity regardless of their spatial scales.] This formulation then allows

us to investigate the interesting question of the transfers of energy and momentum from

mesoscale geostrophic modes to the internal wave degrees of freedom using familiar Hamilto-

nian mechanics. The problem is certainly harder to formulate in Eulerian terms. If the initial

conditions of the problem were chosen to have the potential vorticity modes concentrated at

small scales only, then the interaction among the modes would be essentially a small scale

energy transfer is-,ueo, though eventually the energy would affect the larger scale moLions as
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a matter of principle. The flow from the larger scales to the smaller scale internal wave and

'vortical' modes presumably occurs on a much more rapid time scale than energy flow in the

other direction, if indeed, the latter can occur at all before being dissipated at the smallest

scales by viscosity.

We also formulate the problem in terms of a compressible fluid and would recover the

incompressible case of more direct physical interest by taking the physical limit of sound

speed going to infinity at the end of any calculations. This requires us to carry acoustic

modes of the fluid motion along with internal waves modes, but it also allows us to ignore

the constraint of incompressibility throughout the work. Since this constraint is peculiar

and difficult to implement in the Hamiltonian framework, it is convenient to have it out

of the way. Lighthill (1978) shows in a linear context that as the sound speed becomes

large compared to fluid motion speeds, the acoustic and other modes decouple, as one would

certainly expect on physical grounds.

Our work proceeds from the general Lagrangian formulation of the fluid dynamics for

three dimensional flows. We linearize the canonical degrees of freedom around a base state

of no flow and identify the quadratic terms in the Hamiltonian for the problem. After a

discussion of the dispersion relation of the linearized problem, we exhibit a canonical trans-

formation from the original canonical coordinates into a set which explicitly possesses the

conserved potential vorticity as one of the canonical momenta whose canonical coordinate

is absent from the Hamiltonian. That is, potential vorticity (PV) appears as a cyclic coor-

dinate in the quadratic Hamiltonian. Next, we impose periodic boundary conditions, and

identify appropriately scaled Fourier coefficients as canonical variables. It is then possible

to explicitly decouple the vortical, internal wave and acoustic modes by a further canonical

transformation. In other words the quadratic Hamiltonian is expressed as a sum of inde-
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pendent harmonic oscillator Hamiltonians. Finally we formulate the problem of interaction

among the modes identified in the linear problem and end with a discussion of future work

including both numerical directions and a possible way to utilize the full, nonlinear potential

vorticity as a cyclic canonical momentum in a further canonical set of variables for the prob-

lem. This paper treats the linear modes only. Our work on the nonlinear interaction among

the modes identified here will appear in future publications. In our fiaal section we provide

both a summary of the work in the paper and some suggestions on the work to be done

in the nonlinear problem. In particular we note that the potential vorticity in Lagrangian

formulation is quadratic in the modes we identify in the linear problem. This is in contrast

to the Eulerian formulation where the potential vorticity is an infinite series in the velocity

and density perturbations to the base state. This suggests that working to all orders in

the nonlinear problem may well be simpler in Lagrangian picture especially if one wants to

emphasize the matter of potential vorticity conservation.

II. Action Principle in Lagrangian Formulation

Our starting point is the Lagrangian for the fluid dynamics of a compressible fluid with

an energy density e(p) and canonical coordinate Y(r,t), which is the Lagrangian position

vector of a fluid particle with label r. This label is also the initial position of the fluid particle

for we require Y(r,O) = r. We want the motion to take place in a rotating frame, so we add

the "rotational potential" R(Y, t) whose curl with respect to Y is twice the local rotation

of the earth. In this paper we will work entirely in an f-plane framework, thus we can take

R(Y, t) = f(-:iY2 + •rY) (1)

for rotation about the z-axis at f/2.
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For this model we have the stationary action principle, Abarbanel and Holm (1987), for

t2__1 ___,t) aY (r, t)1
t2d f d rpo(r) [-1 Y-at + at R(Y(r, t)) - D(Y(r, t)) - (p)] (2)

where po(r) is the density at time t = 0, 4(Y) = gY3 , and g is the gravitational acceleration.

The density p is
= p~o~r (r)

p(Y(r, t),t) = p0(r) aY(rt))' (3)

and is a derived quantity from the dynamical variables Y(r, t) and OY(r, t)/at with the time

derivatives taken at fixed r.

Varying this action with respect to Y(r, t) with variations vanishing at the times tj and

t2 results in the equations of motion
82~~)_ 1 Y(r, t)

2y(r,t) = 1 Vyp(Y(rt)) - VyI(Y(r, t)) + at x if, (4)agt2 p(Y(r, t)) a

in which p(Y(r,t)) = p2ep(p).

The Hamiltonian is established in the usual fashion. Calling the integrand in Eq.( 2) the

Lagrangian L(Y(r, t), atY(r, t)) we have the canonical momentum

( =[8,Y(r, t)]' (5)

or

1-!(r, t) = po(r)[0,Y(r, t) + R(Y, t)], (6)

and this leads to the familiar Hamiltonian

H(YH) =Jd3r [I I poJ 1 + PO°I(Y) + Po+(P)J (7)
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III. Hamiltonian for the .' "nearized Motion

We want to isolate the linear terms in the equations of m'M ion which arise from this

Hamiltonian and the canonical Poisson brackets

{Y1(r, t), Ij(r', t)} = Sij P(r- r'); (8)

ij = 1,2,3. For this purpose we want the quadratic terms in the Hamiltonian in the

expansion of the dynamical variables around the base state Y(r, t) = r and 0tY(r, t) = 0

using

Y(r, t) = r + X(r, t), (9)

and

1T(r,t) = Pof i x r + 7r(r,t). (10)
2

The only tricky part of the expansion procedure is in capturing the quadratic terms in the

energy density c(p) = c(po&(r)/a(Y)). For this we need the result that when y = r + X(r)

a(Y) a(xl,,2) a+(x,,3) a((X2 ,X 3) + o(X)(

(r) -. a(ri,,r2) a(r,,r3) a(r2,r3) c9(r)

This leads to the Hamiltonian correct to second order in the coordinates and to all orders

in 7r

H12 (X, )=f d3[0 + 2  r - Xir12 +± + -P09X3J0g3J L

(12)

where the two vector X± = (XI, X 2 ), and the speed of sound is defined by p, = c2 evaluated

at the base state p = po(r).

We may rewrite this form for the quadratic Hamiltonian 112 in the following suggestive

fashion:

H2 (X, 7r) d = LrF+LV r - X 2 ~ 2+ (p2+1pN2X3],(3
[2po 2I~ 2 T 8i2 +- 2poc2P +213
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where the buoyancy frequency N is

N2= g po g2

N 2 9 aP g2' (14)p08r3 C2'

and the acoustic pressure is

Ap = -poC2V. X + gpo 3 . (1.)

This form of the Hamiltonian shows clearly the separate contributions of acoustic energy

and internal wave energy, see Lighthill (1978).

The equations of motion following from this Hamiltonian and the Poisson brackets

{X,(r),7rj(r')} = S63(r - r') are

a Xi.= faX.L x z - V.L(, (16)

and
N 2 c2

a,,X3 = -- (V- X) - 03C, (17)g

where C = Ap/po.

It is immediate from the taking the curl of tne X-. equation that the conservation law

a [al2 -[ 1 2 X ± + fV.L" X.L] = 0 (1S)

holds. This is the linearized form of the conservation law found in Abarbanel and Holm

(1987) for pressure relationships of the form we have here; namely, pressure a function of p

and, through po(r 3), also a function of r 3. That conservation law states that the following

quantity is conserved:

!Q, -rL- + R,(Y, Ot) ay a --- + (Y,t) (19)
ar r2 [at ar2 ar at ((9

8



so

Ofl(r, t)at -0. (20)

This is the potential vorticity as shown in the paper of Abarbanel and Holm (1987).

If one considers the buoyancy frequency constant, then these linearized equations admit

a plane wave solution of the form

X(r, t) = X' exp[i(k • r - wt)], (21)

with X0 a constant vector. The frequency is related to the wave vector by the dispersion

relation

(w2 _ f 2 )(w 2 _ ik3 (g + N2 c2 W- w21k12c2 + c2(k3f 2 + Ik±12N 2) = 0. (22)
9

This has the approximate solutions, for large c, of an acoustic mode

"LA = Iklc, (23)

and of internal wave modes "2 = (k2f 2 + ±l 12 N2 )

IV 1k12  (24)

There is also a zero frequency mode associated with the conservation law, and in this mode

we have the condition on the dynamical variables

faX± X i = V±((, (25)

which is recognized as the geostrophic relation.

One of our goals will be to bring out the conservation law as resulting from a cyclic or

ignorable coordinate in the Hamiltonian by making an appropriate canonical transformationi.
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The canonical transformation which isolates the conserved quantity as a canonical mo-

mentum with an ignorable coordinate is the following

Ql(r,t) = 91X2 -a 2XI, (26)

Q2(r,t) = ,.L X,, (27)

Q3(r,t) = X 3, (2S)

P,(r,t) =- 1.(49r 2 -o 27r,+ - [V.-X,]), (29)

P2(r, t) = 12(V_ 7r + ý.- [alX 2 -O2 X,]), (30)

P 3(r,t) = 7r3 . (31)

Using this transformation we find the new Hamiltonian

H 2(Q,P) = 3d r [ IVN + , IVP212 + P}- fQ 2P1  (32)

+ -'e--Q2 -½Q2 + OC(Q 2 + a3Q3)2 pogQ 2Q3 ]
2 y(2-

This is clearly independent of Q1, so the canonical momentum P1 is conserved OtPi(r, t) = 0.

The coupling between P, and Q2 acts as a constant displacement on the Q2 motion. We

could remove it by a noncanonical transformation, but it is harmless as it stands, so we leave

it present. P1 is directly related to the conserved quantity one deduces from the equations

of motion since
PI(r,t) = Po;k [al7V2 - 02 A1 + fV.. X,]. (33)

IV. A Modified Dispersion Relation

We now exhibit a further canonical transformation that explicitly decouples the internal

wave, acoustic and potential vorticity (PV) motions in the Hamiltonian for the linearized
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motion. This provides a physically motivated set of coordinates in which to study the effects

of the nonlinear interactions. We have already isolated the PV degrees of freedom from the

other degrees of freedom by a canonical transformation given in the previous section. We

shall see that a subtlety is involved in the use of this transformation. This will be discussed

below and later another canonical transformation will be given that explicitly decouples the

PV and internal wave modes for the linearized motion.

In order to accomplish this transformation to normal mode coordinates it is necessary

first to make an intermediate change of variables. This is related to a peculiarity of the

dispersion relation (22), which the reader may have noticed, namely the occurrence of imag-

inary quantities. This might suggest an instability of the steady state, but as hinted at in

Lighthill (1978), it is the result of not looking at the problem in quite the right coordinates.

A transformation to a set of proper coordinates will give a well behaved dispersion rela-

tion, with four real frequencies at each choice of wave number. These correspond to pairs

of acoustic and internal waves travelling in opposite directions. The form of the Hamilto-

nian in Eq. (12) itself suggests the correct transformation by the following reasoning. One

would like to make the problem of finding normal mode coordinates algebraic by using a

Fourier representation of the degrees of freedom. The appearance of factors of po(r) prevent

a straightforward implementation of this plan. These factors go away by using the following

canonical transformation

v(r,t) = po 1 /2 (r)7r(r, t), x(r, t) = p0
1/2(r)X(r, t). (34)

In terms of these variables the quadratic Hamiltonian is expressed as

H2 (x, v) = ffdr IV2+L(X2 V 1 - 1 V 2 )±+EX2 (35)
-' 12 2 88k

VC 2 .X2C 2  1

1 )X 3 V1.X±+-X32 2 8 j
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where

N2 g d log po(r 3 ) (36)
9 c2  dr 3

Now the quadratic Hamiltonian contains no explicit pa factors so that a transformation to

Fourier modes, assuming N to be constant, will indeed make the normal mode problem

algebraic. Before we go on to this, it is interesting to compute the dispersion relation again,

using Hamilton's equations for x and v. We easily deduce

8uxz = fO tx x i+V± c2V.x+(-'C--g)X3], (37)

Q1c2E2 2 . '2

-9 iX3 = C2 03 (V.x) - a -g) -. x )V.L x+ -•4 2

4 21 2

This yields the dispersion relation for plane waves

•2 2

(w2 _ f 2 )(W2 _ ) w21k12c2 + c2(k3f 2 + Ik±12N 2) = 0, (39)

where, as before, there is also a zero frequency solution corresponding to the geostrophic

motion. Comparing this dispersion relation for combined acoustic and internal wave modes

to the previous dispersion relation, Eq. (22), we see that the following modification has taken

place

ik 3  4 -. * (40)
4

We shall see later that the dispersion relation in its new form has four real roots.

V. Normal Mode Coordinates

We now take our fluid to be confined to a periodic box with horizontal sides of length L

and height D. Our coordinates and momenta can now be expressed as Fourier series

xi(r,t) 1 E qj(n,t) exp(i(An.. r1 + Tcn3r 3 )), (41)

12n
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vD(r,-t) 1n" p,(n,t)exp(-i(Anj. r_. + cn3r 3 )), (42)

where

A - 2,r (43)
L 1 -

n = (ni,n2,n 3), n. - (n1 ,n 2,0), (44)

and where the sum above runs over all integer values of ni, n2 and n3. One must also have

qi(-n, t) = qý(n, t) and pi(-n, t) = p!(n, t), by the reality of xi(r, t) and vi(r, t). The v/i5E2

normalization assures that the qj and pi are canonical coordinates with Poisson bracket

{qi(n,t),pj(m,t)} = 6ij6nm. (45)

Expressing the quadratic Hamiltonian, H2(x, v) Eq. (35), in terms of these Fourier coef-

ficients, we obtain

H2(q,p) = I [ p(n) -p(-n) + f(q 2(n)pl(n) - q1(n)p2(n)) (46)

+ Lq1 (n). q 1(-n) + c2(An± .• q1 (n) + Kn3q3(n))(An• - q.(-n) + tcn 3q3(-n))
4

+ iA(--•- - g)(n ., q±(n)q3(-n) - n. -qj.(-n)q3(n)) + -$-q3 (n)q3(-n)
2 4

The evolution equations for the Fourier coefficients are Hamilton's equations

dq,(n) _ aH2 dpi(n) = H (47)
dt api(n) ' dt aqi (n)"

It would now seem that in our search for normal mode coordinates we should first im-

plement a Fourier version of the canonical transformation in Eq.'s (26)-(31), which isolates

the PV motion. However there is an issue here which we mentioned above. An examination

of the canonical transformation reveals that it is not well defined for phase space variables

independent of rj because of the occurrence of the inverse perpendicular Laplacian in the

13



transformation. This is a warning that in the Hamiltonian (46) we should treat the case of

mode amplitudes satisfying n± 0 0 separately from the case n± = 0. Indeed the isolation of

the PV motion can be performed by a Fourier version of the canonical transformation (26)-

(31) for the case n1 0 0. The case nfl = 0 must be treated differently, however normal mode

coordinates are still easy to find.

In accordance with these observations, we write

H2(q,p) = H±(q(n),p(n)) + Hv(q(O, 0, n 3), p(O, 0, n 3)) (48)

where H1 is the part of the Hamiltonian involving a sum over Fourier coefficients satisfying

n± 5 0, and Hv (V for "vertical") is the remaining part of the Hamiltonian with n± = 0.

A. The Case of Vanishing Horizontal Wavenumber (n1± = 0)

For convenience we write

q(O,O,n 3) = q(n 3), (49)

p(O,O,n 3 ) = p(n3 ). (50)

Then from Eq. (46), we may write

Hv(q,p) = • p±(n3) -p(- n3 ) + f(q 2(n3 )pj(n3 ) - ql(n 3 )p2 (n3))

where

02C2
2- n 2c- (5 2 )

^Yn3  f 3C + 4

For these n1 = 0 modes the motion in q3, p3 is already explicitly decoupled from q±, p1 .

It is clear that the evolution of the q3, P3 represents acoustic waves with allowed frequencies

14



w,3= :^: 3. A canonical transformation that diagonalizes the remainder of HV is

apv(n3) = Iq1 (n3 ) + Ip2(-n3) (53)

2 (
bpl(n 3) = -q2(-n3) + pl(n3) (54)

al(n3) = 1-q2(-n 3) + p,(n3) (55)

bi(n 3) = -- L qi(n 3) + p2(-n 3), (56)

and for uniformity of notation we will also set

aA(n3) = q3(n 3) (57)

bA(n 3 ) = p3 (n3 ). (58)

The notation PV, I, and A indicates potential vorticity, internal wave, and acoustic modes

respectively. It can be checked easily that the a's and the b's form conjugate pairs

{ai(n 3 ),b1 (M3)} = 60W3135m, (39)

with the remaining brackets vanishing. The indices i and j now run over PV, I, and A. In

terms of these variables we have

Hv(a,b) = Eb(n 3 )bl(-n 3 ) + f'a 1 (n 3 )aj(-n 3 )
2 n3

+ bA(n 3 )bA(-n 3 ) + -y/3aA(n3)aA(-n3)]. (60)

We see that the PV degrees of freedom are completely absent from Hv, and the allowed

internal wave frequencies are simply ±f. These results are in agreement with the fact that f

is the minimum allowed linear internal wave frequency and is reached when k± = Ani. = 0.

PV or geostrophic motions vanish when n1. = 0. We now proceed to the more complicated

case when n± # 0.
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B. The Case of Nonvanishing Horizontal Wavenumber (n± # 0)

The part of the Hamiltonian involving a sum over the n± : 0 modes is

H±(q,p) = !E p(n) p(-n) + f(q 2(n)pl(n) - ql(n)p2 (n)) + qq(n).qi(-n) (61)

+ c2(Xn±- q1 (n) + tcn 3q3(n))(,\nj. q_1(-n) + Kn3q3(-n))
O • Ca E 2 C 2 "

+ iA(--c- - g)(n±, q_.(n)q 3(-n) -- q 1 (-n)q3 (n)) + - q3(n)q3(-n)
2 4

The prime on the summation symbol indicates that the terms nj_ = 0 are omitted from the

sum. A Fourier version of the canonical transformation in Eq.'s (26)-(31) will now isolate

the PV motion from the internal wave and acoustic wave motions. This Fourier version of

the transformation may be written

QI(n) = iA(nlq 2(n) - n2ql(n)), (62)

Q2(n) = iA(nlql(n) + n 2q2(n)), (63)

Q3(n) = q3(n), (64)

Pi(n) = -i nip 2(n) - n2Pp(n) + 2(nlq(-n) + n2q2(-n)) (65)

P2(n) = [n±p1(n) + n2p2(n) + -(nlq 2(-n) - n~q,(-n)) (66)[nL 2
P3(n) = p3(n). (67)

From these formulae it is evident that the nL = 0 modes did require separate treatment. It

is again simple to verify that the Q's and P's form canonically conjugate pairs

{Qi(n),Pj(m)} = 6ij6nm, (68)

with the remaining brackets vanishing. In terms of these coordinates we have

H±(Q,P) = 2 '[A2 n 2(p(n)P,(-n) + P 2(n)P 2(-n)) + P 3(n)P 3(-n)
21n
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+ 2- Q2(n)Q2(-n) + 7 3 Q3(n)Q3(-n) - 2fQ2(n)P1 (n)

+ C(CI + ia 2(n 3))Q 3(n)Q 2(-n) + c(al - ia 2(n 3))Q 2 (n)Q3(-n)], (69)

where

-t2 2 22 aC 2g 2 2 2 2 , a"3f2 + Anc +n - -, a 2 (n 3 ) = Kn 3c. (70)

Once our intermediate canonical transformation given by Eq. (34) is accounted for, H±(Q, P)

given in Eq. (69) is the Fourier space version of H 2(Q,P) given in Eq. (32). We see that

Qi(n) does not occur in H±(Q,P), so the P1(n,t) are conserved for each n. Therefore Q,

and P1 describe the PV degrees of freedom. The term involving Q2(n)P1 (n) in Eq. (69)

appears to couple the PV motion to the internal wave and acoustic modes. The constancy

of the Pl(n) means that this term represents just a constant displacement of either the

acoustic or internal wave modes. These displacements can be removed from the quadratic

Hamiltonian by a noncanonical change of variables, but we choose to carry them along, see

Arnol'd (1978). We now give one further canonical transformation that serves to explicitly

decouple the internal wave and acoustic modes

AA(n) = 2 _+(n ) (7. Q2(n)+ _7ni - .9- Q3 (n)) (71)
Aj(n) - A l ()(n) n) (n) ( n +c(a - ((3))

In =7W2 3-_W2ý- 2 (n 2) w+(n- Q3 (n) (72)

An An-, () - Q n(n) , (72)

BIA(nl) = Anja•(V.) = /((n)- W 2n))C(W2 •i
+ -w (n))(+(n)- T)

x ((w 2(n) - -y2 3)P2 (n) + c(al - iu 2(n3))P 3(n)), (73)

B, (n) 2 2An. W
V(W+(n)-W- _(n)) (7ln2-- w(n))

((2 - w2(n))P(n) - c(o1 - ia 2(n3))P 3(n)), (74)
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where

2w4(n) = 02 + f2 ± -[(02 + .L )2 - 4(N 2 02 + f 2 (-y,- -N2))11/2

= O.. + 72 / -2 y,)2 + 4A c2n_1.12, (75)

and where a- = al + i;a2. Note that -y2 =2 - N2 . We see from this that both . are real

and positive. Also we see that the quantities n73 - w- and . - 7" are positive. All the

square roots in the canonical transformation are therefore well defined. Again for uniformity

of notation we also put

Apv(n) = QI(n), Bpv(n) = P1 (n). (76)

This transformation may appear mysterious, however, it can be motivated by a standard

normal mode analysis of the linear equations of motion for Q and P. W2 are simply the solu-

tions of the quadratic equation for w2 in the dispersion relation (39), where the wave numbers

have been properly "quantized" through the imposition of periodic boundary conditicns

k = (An,,An 2 ,Kn 3). (77)

The A's and the B's form canonically conjugate pairs

{Ai(n),Bj(m)} = Sijbnm, (78)

with the remaining brackets vanishing.

Note that as the speed of sound becomes infinite,

222 2 + 2

W+. -k1 2c= (A.Ln• + fl)c, (79)

and

kN2 +kf (+0)
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Now we express the nj. 0 0 part of the Hamiltonian, H1. in terms of the normal mode

coordinates

Ha.(A, B) = A2n± 2Bpv(n)Bpv(-n) + BA(n)BA(-n) + BI(n)Bi(-n)

+ w2+(n)AA(n)AA(-n) + w2 (n)A,(n)Aj(-n) (81)

L2,4(n)-- -y2 2 W 2_(n)
2fAn±.Bpv(n) [ .(n)A-wn)4A(n) + - w2 (n)A(n) "

2 2 n) ) fljiW+ (n) - wl-(n) ~ 4o(n) - w2 A

From Hamilton's equations

dA;(n) = 8Ha(A, B) dB (n) _0H 1 (A,B)

dt aBi(n) ' dt aAi(n)

we can now deduce the normal mode equations for the evolution of either the momenta

B(n, t) or the coordinates A(n, t),

[• _(n_) -2(nt) (82)

Apv(n,t) = A2n.2Býpv(n,t)-fAnj .(n)-w+ (n)

W 2An _W ()tI nt1 (2

+ 713 -w!(n) mt(n,t)
2 (n) -_W(n)

b3pv(n,t) = 0,

AA (n,t) = B (n,t),

W2+(n) -"• -y't)
!3(n,t) = -W+ (n)AA(n,t) + fAn-L W.(n) -w'(n) 'Pvt),

A B = (n,t),

2 W2
b;(n,t) = -w2(n)Aj(n,t) + fAn, w._n__(n) Bpv(n,t).

W4(n) - w-(n)pVt)

So we do indeed have normal mode coordinates.
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VI. Summary; Future Work

The work in this paper has concentrated solely on the identification of the linear normal

modes for the evolution of an inviscid, stratified fluid-all done in Lagrangian formulation.

We have worked with a compressible fluid, so the three kinds of linear modes are an acoustic

mode, internal wave modes, and a low frequency potential vorticity carrying mode which

satisfies the geostrophic balance. The Hamiltonian formulation of the problem in Lagrangian

fluid variables provides both a fully diagonalized Hamiltonian for the linear problem and a

framework for the interaction of these linear modes in a fully nonlinear, fully Hamiltonian

fashion.

To provide a summary in one place of the developments and various canonical transforma-

tions developed in this paper, we collect the results here. First of all we have the Lagrangian

coordinates Y(r, t) = r + X(r, t) and canonical momenta //(r, t) = i x r f/2 + 7r(r, t) which

satisfy the canonical Poisson bracket relation {Xj(r), irj(r')} = b;jb 3(r - r') with all other

brackets vanishing. The Hamiltonian in these canonical coordinates takes the form

H (X, 7r) d 3dr [Ir - + pogX 3 + PO(j --O) (83)

where the quantity ý is

1(X1 ,X 2 ) +(X,,X 3) +(X 2 ,X 3 ) +(X)
=(rl,r2) + 8(r,,r3) + (r2,r3) 9(r) (S4)

The expansion of this Hamiltonian to second order in powers of X(r, t) was found to be

2~ ,2 1j j r F POP L r -1 r J-~ X I + C2  (V X) P ~ 3 ± A JH2 (X27)p0 + LXrl- X17r2] + _L + •ý X) 2 _ pogX3 V.L" . ,_

(85)

using 8po(r3)/8r3 = -gpo(r 3) and p0 = p2Cp(Po). This is the quadratic Hamiltonian we

diagonalized in the body of this paper. To do so we performed various canonical transforma-

tions from the phase space coordinates X and 7r to others which evolve as simple harmonic
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oscillators. In a moment we will make the complete connection between these normal mode

coordinates and the X and -r coordinates.

We may use the normal canonical coordinates in the full Hamiltonian H(X, 7r) written

above and, with Hamilton's equations, have a set of fluid evolution equations which are not

amenable to analytic solution but can be addressed numerically with the advantage over

the formulation in X, 7r form that we know exactly the linear interpretation of each of

the modes: acoustic (A), internal wave (I), and potential vorticity (PV) as they enter the

Hamiltonian. The PV modes enter in a nice way in the quadratic Hamiltonian: only the

PV momenta, called Bpv(r, t), are present. Their canonical conjugates, called Apv(r, t), are

absent, so the Bpv are constant in time. The Apv(r, t) are present in the potential energy

term pogX 3 + pof( 1 t). This means that the Bpv(r, t) will not be conserved in the nonlinear

interactions. It is interesting to note that the conserved momentum B-,v(r,t) is found in

the potential energy, so the dynamics of regions of the fluid with different potential vorticity

will generally be different. This would seem consistent with some of the observations of

Sommeria et al. (19S9).

One may regard this as a problem, but it is not a serious one. This is for two reasons.

We know from general considerations, Abarbanel and Holm (1987), the exact form of the

conserved potential vorticity 6?(r,t)

po (r3) 2rt) = 1: ayrri (856)
n 1 Or, Or2 OrY p (86)

and this is proportional to Bpv(r, t) in linear order. The full fl(r, t) is quadratic in the coor-

dinates and can be easily tracked throughout any investigation of the nonlinear interactions.

In other words, the exact potential vorticity can be identified in the interaction and in the

solution of the equations of motion.
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There is another attractive possibility which we will investigate in our subsequent papers

on this subject. The full potential vorticity is only a quadratic polynomial in canonical

coordinates It may be possible to make a canonical transformation in which f2(r) becomes

a new "momentum" with its conjugate "coordinate" absent from the Hamiltonian. Then the

conservation law will be evident but the presence of fQ(r) in the interaction potential energy

will still provide a driving of internal wave and acoustic motions by PV states.

One may use this observation to set up an interesting problem where working to some

order in the nonlinearity one specifies the PV modes at t = 0 knowing they do not evolve

(on an f-plane). They then act as time independent driving terms for the other modes. If

one establishes a mesoscale flow at an init;al time, its energy will transfer to internal wave

motions as the system evolves. The rate of transfer can be compared to the rates observed

by Brown and Evans (1981).

The decoupling of the acoustic modes when c2 -- oo is certainly expected on physical

grounds, but we have not exhibited this explicitly. While we will deal with this in our

future work, we have two observations which may be useful in this regard. First, there

actually may not be a smooth transition in a formal sense to infinite sound speed since the

Hamiltonian formulation of that problem ab initio requires introducing the pressure as a

Lagrange multiplier which serves to enforce the constraint that the Jacobian O(Y(r, t))/c9(r)

always equal unity. This departs from the straight line Hamiltonian path we have developed

here and requires complications to introduce this constraint in Poisson brackets and other

necessary formal apparatus, Abarbanel et al. (1986). If one has to avoid the limit in the

Hamiltonian itself, then noting that the w+ modes are much more rapidly evolving than

either the internal wave or PV modes when c is large, we may eliminate the acoustic modes

by either some form of averaging or further, approximate canonical transformations to the
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"adiabatic invariant" associated with the rapid motion.

We complete the cycles of canonical transformation given in this paper by recording the

full expression of the conjugate coordinates X(r, t) and 7r(r. t) in terms of the normal modes.

First we recall that the X and -r have Fourier expansions

X (r,t) 7 1 qi(n 3 , t)exp(iKn 3r3)

+ • qi(n,t)exp(i(An± .r± + cn3r3 ))}, (87)
n;nL$O

7.i(r, t) = -1 pi(n 3 , t)exp(-iKn 3r 3)
n3;n. =0

+ Z v1(n,t)exp(-i(Anj. r± + Kn3r3))}. (88)
n;nl.joo

In terms of the conjugate variables Apv(n), Bpv(n), A,(n), BI(n), AA(n), and BA(n) we

have the total quadratic Hamiltonian

H(A, B) = A2n± 2Bpv(n)Bpv(-n) + BA(n)BA(--n) + Bi(n)BI(-n)

+ w4+(n)AA(n)AA(-n) +w.(n)Aj(n)Aj(-n) (89)

2 _22 (n) I1l- W(n) `4A(n)+ W- n
+2j]n±Bpv(n) w _ ( W) 2 (n) a + (n) - ' (n)A 1 t

where we have combined the two forms for n.1 = 0 and n1 : 0, noting that at n1 = 0,

+ y 2 73, and w2 = f 2 . Also we have used the notation that Ai(n. 0, n 3) = a,(n3 ) and

Bi(nj = 0, n 3) = bi(n 3 ) to conform to our earlier symbols. The equations of motion at linear

order are those given in Eq.( 82).

Finally we record the connections between the qi(n) and pi(n) and the normal mode

coordinates. First for n1 = 0 we have

ql(n 3 ) = apv(n 3 ) - bh(n3 ) (90)

f
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q2 (n3) = a I(na)- býiV(n 3) (91)f

Pi (n3) = 1 [fai(n3) + bpv(n 3)], (92)

P2 (n3) = 1 [fc4,v(n3) + b7(n 3)]. (93)

For the more complex case when n± 54 0 we have the following

q, (n) = -~~(nlQ2(fl) - fl2Ql(fl)), (94)

q2 (n) = z -(n1Ql(n) +n2Q2(n)), (95)

q3(n) = Q3(n), (96)

where

QI(n) = Apv(n), (97)

Q2n)2 () (n +4(n) -~AA(n) + V'fl3 .2w±(n)A') , (9S)

Q3 (n) - AnLc(al iaAn)) ( AA (n) AI(n) ' ~ (99)

Also we have

PI(n) = iA(n1P2(n) -n 2P1(n))-- - (nQ,(n) -n2;n (100)

P2(n) = iA(n1P1(n) +n 2P2(n)) -- -n 1Q;(n) +n 2Q7(n)], (101)

p3 (n) = P3 (n), (102)

and finally

P1(n) Bpv(n), (103)

P2(n) =-_ ( wn) -~BA (n) + Ly 2 - ~(n)BI(n)) (104)
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(' 1(n) - -)(Y -W 2(n))

Anrzc(al - ia 2 (n 3 )) 0+.(n) - w2 (n)

x •/,•-w(n) B,,(n)- -w/,2+(n) - -y,2 )) (105)

These connections summarize the set of canonical transformations we have developed to

transform the Lagrangian fluid variables X(r, t) and 7r(r, t) to normal modes of the linearized

problem of stratified flow. Using these expressions in the full nonlinear Hamiltonian Eq.( 83)

will allow the study of the interaction among the PV, I, and A modes to all orders while

keeping the physical identification we have established. An analysis of several of the issues

and suggestions made here will be presented in our subsequent work.
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