
Naval Research Laboratory
Washington, DC 20375-5320

, ANRL/MR/6410--93-7178
"AD-A263 395

A Parallel Implicit Incompressible Flow
Solver Using Unstructured Meshes

RAVy RAMAMURTI

RAINALD LOHNER

Center for Reactive Flow and Dynamical Systems
Laboratory for Computational Physics and Fluid Dynamics

January 17, 1993

93-08454

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved

I OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,
gathering end maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave Blank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 17, 1993 Interim
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Parallel Implicit Incompressible Flow Solver Using Unstructured Meshes PE-63569E4
PR-M004
WU -M004

6. AUTHOR(S)

Ravi Ramnamurti and Rainald Lfhner

7. PERFORMING ORGANIZATION NAME(S) and ADDRESS(ESI 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory NRL/MR/6410-93-7178
Washington, DC 20375-5320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency
3701 N. Fairfax Drive, Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

An incompressible flow solver based on unstructured grids is implemented on a parallel distributed memory computer
architecture. An important phase in the flow solver is the solution of the elliptic equations for the velocities and pressure. This
elliptic solver is parallelized and incorporated into both the explicit and implicit versions of the incompressible flow solver.
Performance and scalability studies are carried out on both Intel iPSC 860 and the Intel Delta prototype, and show that the code is
scalable. A parallelizable load balancing algorithm is developed to be used in conjunction with the incompressible flow solver.
Steady and unsteady flows over a tri-element airfoil and NACA0012 airfoil are computed using the parallel incompressible flow
solver.

15, NUMBER OF PAGES14. SUBJECT TERMS

Parallel Computation Incompressible flows 33

Unstructured meshes 16. PRICE CODE

17. SECURITY CLASSIFICATION 1S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 tRev. 2489)
Prescribed by ANSI Sid 239-18

293-102

CONTENTS

Introduction . 1

The Incompressible Flow Solver ... 4

Domain Decomposition 4

Parallel Implementation 5

Results and Discussion .. 6

Explicit Incompressible Flow Solver 8

Implicit Incompressible Flow Solver 9

Summary and Conclusions 10

Acknowledgements ... 10

References 10

Accesion For
NTIS CRA&I

DTiC TAL3

By

Diet ib ,tic ,.

VibeC AL, AvadIib, I y Codes

Avail a d ior
Dist Sp..cial

"I.'

iii..

A PARALLEL IMPLICIT INCOMPRESSIBLE FLOW SOLVER

USING UNSTRUCTURED MESHES

Ravi Ramamurti and Rainald L6hner*

Laboratory for Computational Physics and Fluid Dynamics,
Naval Research Laboratory, Washington, D.C. 20375

* The George Washington University, Washington, D.C. 20052

Introduction

Recent innovations in microprocessor technology have resulted in a variety of architec-
tures for parallel computers. The two most commonly available and used are the single

instruction, multiple data (SIMD) architecture, in which an instruction is carried out simul-

taneously on multiple sets of operands, and the multiple instruction, multiple data (MIMD)
architecture, where several different instructions may be concurrently operating on several
distinct sets of operands. Examples of SIMD machines are the Connection Machines CM-1,
CM-2 and CM-200 from Thinking Machines, Inc., and the MasPar-1 from MasPar. Exam-
ples of MIMD machines are the Intel hypercubes and Meshes (Gamma, Delta prototypes,

Paragon), as well as the nCUBE and Parsytech hypercubes. The MIMD multiprocessor dis-

tributed memory architecture has seen the largest growth in the recent years and has made

significant advances in user-friendliness.

For efficient use of any parallel computer, first an appropriate architecture has to be
chosen for a given algorithm, or the algorithm has to be tailored to suit the given architecture.
Secondly, the problem to be solved is split into several pieces. Each piece is then handed

over to a processor with interprocessor information transfer provided. Finally, all pieces are
assembled. All these steps should be done without incurring substantial overhead both in
terms of reduced computational efficiency and increased communication costs.

Typical problems of interest are unsteady aerodynamic flows and turbulent separating
flows over complex vehicles such as submarines. The end users of codes developed for these

problems are the aerodynamic and hydrodynamic vehicle designers. To be successful in a

time-constrained design environment a code must be capable of rapid mesh generation and
flow computation so that an adequate range of alternative configurations can be studied in

a timely manner.

For the simulation of flows about complex geometries such as the fully appended sub-

marine, an unstructured grid approach offers the greatest flexibility with the fewest degrees
of freedom. Furthermore, the method allows straightforward adaptive meshing strategies for

dynamic resolution in transient problems. This paper describes the parallel implementation

Manuscript approved November 7, 1992. 1

of FEFLOIC, which is an implicit finite-element incompressible transient Navier-Stokes code

for the simulation of 2-D flows. The important aspects of this algorithm are the unstructured

mesh generation and the implicit flow solver. These aspects dictate which type of parallel

computer is best suitable. For example, the mesh generation using the advancing front al-

gorithm i1l will require different tasks to be performed in different subdomains. This will

necessitate the use of a MIMD architecture. The implicit flow solver employs linelets as a

preconditioner to achieve improved convergence rates 12,31. The use of a SIMD architecture

would imply that either linelets have to be used in all subdomains or the linelets are not used

anywhere. The latter case implies that the flow solution is advanced in an explicit manner,

resulting in a reduced computational efficiency. Therefore, in order to retain an implicit

solver in regions such as the boundary layer and the capability to explicitly advance the flow

solution in regions where the cell sizes are large, one has to resort to a MIMD architecture.

Another disadvantage of the SIMD type of computer is that the communication is inefficient

if it is not between nearest neighbours. In an unstructured mesh, the communication pattern

is quite irregular. However, mapping techniques (41 can be applied to assign vertices of the

mesh to processors of the computer, thus minimizing the communication cost. This mapping

is quite costly and is not pragmatic in situations where adaptive remeshing is essential, for

example, tracking of vortices in the wake.

The present research effort is directed towards the parallel simulation of transient flows
with high Reynolds numbers. In particular, the goal is to simulate transient separating flow

about a fully appended submarine and a self-consistent maneuvering trajectory. Accurate

representation of the very near-wall behaviour of the velocity field will be critical in realis-

tically simulating the unsteady three dimensional separation which exists on maneuvering

submarines. This will necessitate the use of increasingly fine elements (y+ < 10) toward the

wall. This precludes the use of an explicit solver due to the prohibitively small timesteps

associated with the elements in the near wall region. Hence in the present formulation, the

pressure as well as the advection-diffusion terms of the Navier-Stokes equations are treated

in an implicit manner. The elliptic equations for pressure and the velocities are solved us-

ing a preconditioned conjugate gradient algorithm. Details of the flow solver are given by

L6hner and Martin [2,3]. This algorithm has been successfully evaluated by Ramamurti and

Lohner [5] for several flow problems, such as the flow over a backward facing step, the flow

past a circular cylinder and unsteady flow over airfoils.

For the above algorithm to be parallelizable, it should be broken into several smaller

components and executed without incurring substantial overhead. Load balancing and com-

munication are, therefore, important issues to be addressed in order to reduce this overhead.

The primary objective in load balancing is to divide the workload equally among all the

2

processors. For field solvers based on grids, the computational work is proportional to NP,
where N is the number of elements. The exponent p = 1 for explicit time-marching or

iterative schemes; p > 1, for implicit time-marching schemes or direct solvers. This implies
that optimal load balancing is achieved if each processor is allocated the same number of
elements. Besides the CPU time required in each processor to advance the solution one
time-step, communication overhead between the processors should be taken into account.
This overhead is directly proportional to the amount of information that needs to be trans-

ferred between processors. For field solvers based on grids, the amount of information that
needs to be transferred is proportional to the number of surface faces in each of the subdo-

mains. Therefore, an optimal load and communication balance is achieved by allocating to
each processor the same number of elements while minimizing the number of surface faces
in each subdomain. The load balancing algorithm used in the current work is described by

L5hner et. a]. 161. This algorithm is based on the concept that elements are exchanged be-
tween the subdomains along the interfaces. The final subdivision having balanced workload
is achieved through an iterative process. A heuristic method is employed to minimize the
surface to volume ratio, i.e., the communication to computational load ratio. Furthermore,
the decomposition insists on simply connected subdomains, again to reduce communication
costs. Additional renumbering of the subdomains is done in an effort to minimize the number
of communication hops between subdomains, a step important for a mesh type architecture

such as the Intel Delta prototype.

In this paper, a description of the implicit flow solver and the load balancing algorithm

are given. An important phase in the the flow solver is the solution of the elliptic equations
for the velocities and pressure. A preconditioned conjugate gradient algorithm is employed

to solve these equations. As a first step of the parallelization of this elliptic solver, a model
problem of solving the heat conduction equation is considered. Results are obtained for the
problem of a circular cylinder in a heated bath. Next, an explicit version of the incompressible
flow solver is parallelized. This is applied for solving steady flow over a NACA0012 airfoil

at zero angle of attack. For time accurate simulations, this explicit algorithm is not suitable
since, as discussed earlier, it would require prohibitively small timesteps. Hence, the implicit
flow solver with linelets as the preconditioner for solving the elliptic equations is parallelized.
With some initial studies, it was quite apparent that the linelets should not be split between
subdomains. Hence, the partitioning algorithm was modified to accomodate a set of complete

linelets within a subdomain. The algorithm was then tested via simulation of unsteady flow
past NACA0012 airfoil at a = 200. Scalability and performance studies were done for all of

the above-mentioned algorithms.

3

The Incompressible Flow Solver

The incompressible Navier-Stokes equations in the arbitrary Lagrangian Eulerian (ALE)

form can be written as

±V- + Va. -v + VP = V- a, (la)

V. v = 0, (1b)

where

va = V - W. (0c)

Here p and a denote the pressure and the stress tensor scaled by density, v the flow velocity

and w the mesh velocity.
The governing equations (la-b) are first discretized in time and the resulting equations

are linearized. This is followed by the discretization in space. Linear elements with equal

order interpolation for velocities and pressures are used. The resulting matrix system is

solved sequentially using a projection-like method 17,81. Thus, the velocities are updated first.

This is followed by the solution of a Poisson-type equation for the pressures. The role of this
step is to project the predicted velocity field into a divergence-free field. From the pressures,

a new velocity field is obtained. This two-step process can be repeated several times until
convergence is obtained. However, it is seldom applied in practice: our experience indicates

that one pass is sufficient for accurate solutions. The large linear systems of equations that

appear during both the steps are solved iteratively with a preconditioned conjugate gradient

algorithm. As a preconditioner, linelets are employed. More details of the discretization, the

construction of the linelets and the solution of the Poisson equation are given in 12].

Domain Decomposition

A simple algorithm based on the 'wavefront'-type scheme is used to obtain a subdivision

into NDOMN subdomains. Briefly, this algorithm can be described as follows. We assume

that the work required by each element, a desired work per domain, and the elements that

surround each point are given. To start the process, any given point can be selected. All

the elements surrounding this point are then marked as belonging to the present subdomain.

The cumulative work for the elements of this domain is updated. The points of each of

these elements which are unsurrounded yet, are stored in a list LHELP. If the desired work

per domain has been exceeded, a new domain is started. Otherwise, the next point to be

surrounded is selected from the order of creation list LHELP. The procedure continues until all

4

elements have been allocated. More details of this domain splitting algorithm are described

in 19].
The load balancing algorithm assumes that an initial subdivision with NDOMN subdomains

is supplied through the domain splitting algorithm, or a parallel grid generator [91, or from

a previous timestep of a flow computation. Given the measure of work required by each ele-

ment, the workload in each subdomain is summed up. The surplus/deficit of this workload

with the desired average workload is computed for each element. A deficit difference func-

tion is computed in each element that reflects the imbalance in surplus/deficit between the

element and its neighbours. Elements are then added to subdomains with negative deficit

function. This process is repeated until a balanced subdivision is obtained. The choice of

the deficit difference function and details of the algorithm are described in [61.

Parallel Implementation

Having partitioned the domain into several subdomains, each subdomain is assigned to

a processor. The subdomains formed are such that there is one layer of elements overlapped

between adjacent subdomains. The information at the vertices associated with this layer of

elements are communicated between processors.

An important phase in the flow solver algorithm is the solution of the elliptic equations

using the preconditioned conjugate gradient algorithm (PCG). This algorithm has been

described by Saad 1101.
Given an initial guess x0 to the solution of the linear system Ax = b, the PCG algorithm

is as follows.

1. Compute the preconditioner based on the linelets M.

2. Start the process by setting ro = b - Axo, PO = zo = M-1 ro.

3. Iterate until convergence

(a) w = Api

(b) ai = (ri,zi)/(w,pi)

(c) xi+1 = xi + aipi

(d) r,+l = r, - aiw

(e) Zi+l = M-lri+l

(f) A = (ri+l'Zi+l)/rtZ)

(g) Pi+1 = zi+1 + fliPi
In the above algorithm, the dot products in step 3b and 3f are potential bottlenecks on

many parallel or vector machines. This is because when all the vectors in the algorithm can be
split equally among the processors, dot products require global communication. Therefore,

the algorithm is synchronized at these two steps and a global sum of the scalars a and •

5

are obtained. This is important for the stability of the PCG algorithm. After step 3g,

the relevant components of the vectors p and x are exchar _J between the processors. To

facilitate the transfer of information betweet, he various processors, a list of points that are

to be sent by a processor and those to be received by it are maintained. These lists consist
of the processor to %_ ch the information has to be sent or received from and the local

pointers. The information that is sent is then packed into a common block and communicated

synchronously. On an Intel iPSC 860, this is done using CSEND and CRECV across processors.

The communication overhead can be reduced by performing computations in regions

which do not depend on the interface boundaries. Then communication can be done in

an asynchronous manner by posting all the IRECVs before the CSENDs on an iPSC 860.

Fyfe [11i has compared the communication cost beteween the asynchronous and synchronous

communications in the parallel version of the non-orthogonal Flux Corrected Transport

algorithm based on structured grids. The gain through asynchronous communication was

about 5% of the total time.

In order to take advantage of this asynchronous communication, first the interior points

of a subdomain should be handled separately from the points along the communication in-

terfaces. In an unstructured grid, this would result in an additional computational overhead.

Secondly, the dot products in steps 3b and 3f of the PCG algoritm have to be completed

before anything else can be done and no other computation can be performed while they are

being computed. Saad 110] has outlined a few ways of overcoming this difficulty but warns

that they could lead to an unstable algorithm. Hence, in the present effort, synchronous

communication was deemed the most appropriate for this algorithm.

Results and Discussion

Model Problem

The parallel implementation of the PCG algorithm was first tested via application to a

model problem of solving the heat conduction equation:

PCp V . kVT + S (2a)

T=To(t) on rD , n.kVT=q0(t) on FN (2b)

Here p, cp, T, k, S denote the density, specific heat at constant pressure, temperature, con-

ductivity, sources respectively. The boundary conditions are prescribed temperature To on

Dirichlet boundaries rD and prescribed heat flux qo on Neumann boundaries FN. As with the

6

incompressible flow solver, linear finite elements are used, and the discretization is obtained

from the standard Galerkin weighted residual method.

The problem considered for this purpose, is to obtain a steady state temperature distri-

bution around a cylinder immersed in a hot bath. In order to obtain a steady state solution.
the explicit version of the elliptic solver with diagonal preconditioning (no linelets) is em-
ployed. For scalability studies of this algorithm, a coarse grid consisting of 1,526 points and
a fine grid consisting of 9,767 points were chosen. The performance of the explicit solver
in terms of both the speed-up (S) and the CPU time taken per point per timestep (r) are
shown in figures la and lb respectively. These results are also summarized in Table 1.
The performance of the algorithm both with and without I/O operations from the disk are

shown. For a computationally bound problem, such as the simulation of a transient flow,
the performance obtained by not considering the 1/O will be a true representative value of
the overall performance of the solver. From Fig. la, it can be seen that the S obtained using

the coarse grid is close to the ideal linear curve for 4 processors and drops thereafter. Also,

it is clear that the performance in terms of S for 16 processors is decreased from 8.0 to 6.2
when I/O time is considered. This is because of the fact that the number of points in each

subdomain is only around 100, and therefore, the I/O time is an overwhelming part of the
total time. The I/O overhead can be reduced if one were to use unformatted read/write
operations. As a finer grid is used, the algorithm scales very well and the S is improved
considerably, achieving a value of almost 12.7 for 16 processors, compared to a value of 8.0
obtained using the coarse grid. Even for the finer grid employed, the number of points per

subdomain with 16 processors is only about 600, out of which almost 10% of these points
are located along the communication interfaces. Hence, the deviation of the performance

of the solver without I/O when 16 processors are employed, is largely due to the increased
communication/computation ratio. All of the performance results obtained in the present
study are obtained using 64-bit floating-point arithmetic. This is important because the
64-bit arithmetic is the appropriate one for this algorithm, and performance results based

on 32-bit arithmetic could be misleading 1121 if one were to compare it to other systems such

as the CRAY.
The finer grid that was employed in this study and the temperature distribution after

500 timesteps using 8 processors are shown in Figs. 2a and 2b respectively. It can be seen
from Fig. 2b that the solution has achieved steady state. This solution was identical to

the one obtained using a single domain. This provides reasonable confidence in the parallel

implementation of the elliptic solver.

7

Explicit Incompressible Flow Solver

The parallel elliptic sol] was incorporated into the incompressible flow solver. Results
were obtained for steady i,, -j past a NACA0012 airfoil at a = 00 and a Reynolds number

Re = 300. For this vi- Jus flow, the grid that was employed is semi-structured and consists
of 2,992 points and 5,860 triangular elements. This coarse grid was chosen so as to fit into one

8K processir on the Intel iPSC 860 (Gamma) available at the Naval Research Laboratory.
The "CG algorithm uses diagonal preconditioning, which is equivalent to an explicit time-

marching scheme. In order to achieve steady state, the maximum allowable timestep in each

element is employed.

The performance results of this explicit incompressible flow solver are shown in Fig. 3

and are also summarized in Table 2. The effect of compiler optimization on the performance
is also shown. A speed-up of 10.18 is obtained using 16 processors. From these results it

is clear that the algorithm is scalable. r'he use of compiler optimization is to reduce the S
obtained with 16 processors to 8.98. This reduction is due to the fact that with compiler
optimization, the computational time per processor is decreased while the communication

overhead remains a constant. It is clear from Table 2 that for 16 processors, the CPU time

per point per timestep is reduced by about 20% with the use of compiler optimization.

The Laboratory for Computational Physics and Fluid Dynamics at NRL has, as a result
of DARPA and NRL support, a 32-node Intel iPSC860 Touchstone Gamma. DARPA has

also made computing time available to us on the 512 node Intel Delta prototype at CalTech.

Scalability studies for 2,4,8,16 and 32 processors were carried out on the NRL Gamma
prototype and a 64 processor computation was carried out on the Delta. For this pupose

a finer grid consisting of approximately twice the number of poiits of the coarse grid was

employed. The performance results on the Delta and the comparison with the Gamma are

shown in Fig. 4. It is clear that the code is scalable. It can be seen that as the number of
processors is increased for a constant problem size, the S deviates from the ideal linear curve.

This is a result of the increased communication/computation ratio. There is considerable
improvement in S as the problem size is increased, as would be expected. Even for this finer
mesh, the performance drops down when the number of processors employed is greater than

16. This is again due to the fact that the communication overhead is overwhelming the total
computational cost. There is clearly no benefit to be obtained by increasing the number of
processors further for this constant size problem. Figures 5a and 5b show the coarse grid

and the steady state pressure in the vicinity of the airfoil. The subdomain interfaces are

superimposed on the pressure contours in Fig. 5b.

This explicit flow solver was then applied to solve the inviscid flow past a complex landing

8

configuration tri-element airfoil. The grid that was employed, the partitiong consisting of
32 subdomains are shown in Figs. 6a and 6b respectively. The grid consists of 8,952 points

and 17,127 elements. The results obtained at a = 50 after 500 timesteps are shown in Fig.

7. This figure shows the pressure, the contours of absolute velocity and the velocity vectors

with the interface boundaries superposed on each of them. Figure 7c shows the presence of

a recirculating region behind the main section of the airfoil. The total CPU time taken for

the 500 steps is 14 minutes and 6 seconds resuomng in r = 0.189 mSec/point/timestep.

Implicit Incompressible Flow Solver

For ýii simulation of unsteady separated flows, the typically fine elements in the bound-

ary fayer would force prohibitively small timesteps with an explicit solver for the advection

terms. Hence, the implicit flow solver is parallelized next. Here, the linelets are used as a
preconditioner in the PCG algorithm. The parallel algorithm was applied for solving the

unsteady flow past the NACA0012 airfoil at a = 20*. The grid that was employea is the

coarse grid consisting of 2,992 points. This grid was partitioned as before, and each sub-

domain handed to a processor. Linelets were then constructed in each of these subdomains

and the flow was advanced in each of these subdomains. It was quite apparent that the PCG
algorithm was not stable, and the maximum residue in the equation solved would occur

near the communication interface where a linelet is split. Hence, the domain partitioning

algorithm was modified to accomodate a complete set of linelets within a subdomain. This

was done by supplying to the domain splitting algorithm the additional information about
the points that would be a part of a linelet. First, a point along a linelet is chosen. All the
elements surrounding this point are then marked belonging to the present subdomain. The

next point is selected from the order of creation of this linelet. The process is continued until

all the points along this linelet are exhausted. When the number of elements belonging to
this subdomain exceeds a set average value, the subdomain counter is updated. In regions

of flow where the large aspect ratio cells are not required, such as the region outside the

boundary layer and the wake, the advection terms can be advanced in an explicit manner

and no linelet preconditioning is necessary. These regions are subdivided next.

The comparison of the performance of the implicit and the explicit versions of the code
is shown in Fig. 8. It is clear that there is very little difference in S obtained due to the

addition of the linelet preconditioning. One main reason for this is in the boundary layer

regions only one set of linelets, aligned closely along the normal to the airfoil, is employed.

This results in a tridiagonal system to be inverted at the preconditioning step (Steps 2 and

3e) of the PCG algorithm. The inversion of this system is very efficient. Another reason is

that the linelets are confined to regions of high aspect ratio cells, which are typically in the

boundary layer and the wake

Figure 9a shows a grid consisting of 6,785 points and 13,376 elements that was employed

for computing the flow over NACA0012 airfoil at a = 200 at Re = 300. This flow adapted

grid was obtained from a previous run for the same flow configuration on a vector machine.

This grid was then subdivided into 32 subdomains. Fig. 9b shows the domain decomposition

in the vicinity of the airfoil. Figures 9c-e show the pressure, vorticity and the velocity vectors

of the unsteady flow after 25 characteristic times. The Strouhal number St for this flow is

approximately 0.43. The CPU time taken for 500 timesteps is 13 minutes and 12.9 seconds

resulting in r = 0.2337 mSec/point/timestep. A grid consisting of 10,952 points and 21,640

elements was employed for computing the flow over a NACA0012 airfoil at Re = 1.4 x 106

using the CRAY YMP, Convex C210 and the Intel iPSC 860. This performance study

showed that the CPU time taken per point per timestep (r) on the Intel iPSC 860 using 32

processors is 0.2 mSec. compared to 0.16 mSec. on one processor YMP. The corresponding

value of r for the Convex is 1.46 mSec.

Summary and Conclusions

An incompressible flow solver based on unstructured grids was successfully implemented

on a MIMD architecture, viz., Intel iPSC 860. The parallel implementation of the elliptic
solver was tested using the heat conduction equation as a model problem. The parallelized

elliptic solver was then incorporated into the explicit and implicit versions of the incompress-

ible flow solver. Performance studies were performed on all of these algorithms. Scalability

studies were performed on both the Gamma and the Delta prototypes, and show that the

code is scalable. A parallelizable load balancing algorithm was developed to be used in

conjunction with the incompressible flow solver. Future developments will be focused on

the incorporation of adaptive regridding in 2-D and the parallel implementation of the 3-D

incompressible flow solver.

Acknowledgements

This work was supported by the DARPA Submarine Technology Program with Mr.

Gary Jones as the program manager. The authors wish to acknowledge useful discussions

throughout this work with Dr. W.C. Sandberg of NRL.

References

1. L6hner, R. and Parikh, P., "Three-Dimensional Grid Generation by the Advancing Front

Method," Int. J. Num. Meth. Fluids 8, pp. 1135-1149, 1988.

10

2. L6hner, R. and Martin, D., "An Implicit, Linelet Based Solver for Incompressible Flows,"
Advances in Finite Element Analysis, FED Vol. 123, Editors: M.N. Dhaubhadel et. al.,

ASME Publication, New York, 1991.

3. Martin, D. and L6hner, R., "An Implicit Linelet-Based Solver for Incompressible Flows,"

AIAA-92-0668, 1992.

4. Dahl, E.D., "Mapping and Compiled Communication on the Connection Machine,"

Proceedings of Distributed Memory Computing Conference V, IEEE Computer Soci-

ety Press, April 1990.

5. Ramamurti, R. and Lfhner, R., "Evaluation of an Incompressible Flow Solver Based on
Simple Elements," to be presented at the ASME Winter Annual Meeting, Anaheim, CA,

November 1992.

6. Lihner, R., Ramamurti, R. and Martin, D., "A Parallelizable Load Balancing Algo-
rithm," to be presented at the AIAA Aerospace Sciences Meeting, Reno, NV, 1993.

7. Chorin, A.J., "Numerical Solution of the Navier-Stokes Equations," Math. Comp. 22,

pp. 745-762, 1968.

8. Donea, J., Giuliani, S., Laval, H. and Quartapelle, L., "Solution of the Unsteady Navier-
Stokes Equations by a Fractional Step Method," Comp. Meth. Appl. Mech. Eng. 30, pp.

53-73, 1982.

9. L6hner, R., Camberos, J. and Merriam, M., "Parallel Unstructured Grid Generation,"

Comp. Meth. Appl. Mech. Eng. 95, pp. 343-357, 1992.

10. Saad, Y., "Krylov Subspace Methods on Supercomputers," SIAM J. Sci. Stat. Comput.

10, No. 6, pp. 1200-1232, 1989.

11. Fyfe, D.E., private communication, 1992.

12. Bailey, D.H., "Twelve Ways to Fool the Masses When Giving Performance Results on
Parallel Computers," Supercomputing Review, pp. 54-55, August 1992.

|1

00

0y

0 I- 0
-wu

UU

04

1600

IC

It CY 4 c w V C 0

(ss) U

120

00 co oc0 m 00

-4 D 00mccC

W vi 6 o600

0~~ 00t -C
(D ~ ~ -~ 00C DCO I

C4 Lti 06 t6 -t -

O~~LI~OO-65 0)0-~ 4
In. CD _ _ 0l D 0

V o _ _ _ t-

IC Qý COD' 00o 0 u cz
ifM t- 00- LC~

Cq.

q 090)c

0q -4r0

C4- ql~0O00

0 z

13

a. Grid, npoin= 9,767, nelem= 29,236, ndomn= 8

b. Temperature Distribution, min= 0.0, max= 334.0, AT= 16.7

Fig. 2. Model Problem of Heat Conduction around a Cylinder

14

0000

z

o a CEn

0000 0

00

00

"0~

CM Qes w) 2 w C

IIs

o 00 IV -4 "IT 0 - ,W U`5

R- 004

ooot-o .-T .

CD-4 -IC M~~ L"

CI

. , -w - 04QC muDc 4)0

Cq ~ ~ ~ 0 c)mI . 0 "
0. U) CD c')U 0L -
-6 vi _ a; * o -4 -r L

o 0

- -W -O W 00t-1*0

o " M -4C o 5t

t- 4

0 IV

2 6s

16

SS.

C 0

C.)

0 2
00,A'H

40

0 0 a

so

17)

MESH ,6742 , NPOI

Fig. 5. Flow Past a NACAO012 Airfoil, a = 00

a. Grid, npoin = 2992, nelem = 5860, ndomn = 16

18

PRESSUR *MIN- 8.45 -01 . MAX= 1.61 +00 . DUC= 1.92E-02

Fig. 5. Flow Past a NACA0012 Airfoil, a = 00

b. Pressure, rain.= 0.845, max.= 1.61, A p= 1.92E-02

19

, NELEM= NPOIN= 11087

Fig. 6a. Unstructured Grid Around a Tri-Element Airfoil

20

Fig. 6b. Domain Decomposition of the Grid around a Tri-Element Airfoil

ndomn = 32

21

PR SSURE MIN-2.03 + MAX= 1.48E+00 8.78E-02

Fig. 7. Flow Past a Tri-Element Airfoil, a = 50

a. Pressure, min.= -2.03, max.= 1.48, A p= 8.78E-02

22

ABS(V Li. MIN= 2.63 -03 , =. 0.DC .34E-02

Fig. 7. Flow Past a ¶fri-Element Airfoil, a =50

b. Absolute Velocity, mini.= 2.63&-03, max.= 2.54, A V== 6.34F,02

23

Fig. 7. Flow Past a Tri-Element Airfoil, a 50

c. Velocity Vectors

24

o 0
a >
0

aa4

102

ju. z
CL CL 0

x.
- -

25E

Fig. 9. Flow Past a NACA0012 Airfoil, a = 200

a. Grid, npoin = 6,785, nelem = 13,376

26

Fig. 9. Flow Past a NACA0012 Airfoil, a = 200

b. Domain Decomposition, ndomn - 32

27

PRESSURE, MIN= 3.80E-01 MAX= 1.55E+00 2 .93E-02

Fig. 9. Flow Past a NACA0012 Airfoil, a = 200

c. Pressure, min.= 0.38, max.= 1.55, A p= 2.93&-02

28

VORTICI.. HIN=-1.44E.02 . MAX= 2.87E+01 , DUC� 2.16E'00

K

Fig. 9. Flow Past a NACAOO12 Airfoil, a = 200

d. Vorticity, min.= -1.44E+02, max.= 2.87E+O1, i�w = 2.16

29

VELOCITY VECýTO ' '

Fig. 9. Flow Past a NACA0012 Airfoil, a = 200

e. Velocity Vectors

30

