
AD-A263 332

AP

4,

TRANSFORMATIONAL PLANNING OF
REACTIVE BEHAVIOR

Drew McDermott

YALEU/CSD/RR #941
December, 1992

Appiuw n pbUe M OW

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

93-088949,," ; -- • 3 EIEiIIHln

• • •~ ~ ~ • •••

0-• 0 0 0 SS0'

At

It

O

I

TRANSFORMATIONAL PLANNING OF

REACTIVE BEHAVIOR

Drew McDermott

YALEU/CSD/RR #941
December, 1992

This work was supported by the Defense Advanced Research Projects Agency, contract

number N00014-91-J-1577, administered by the Office of Naval Research.

0 0 0 0 0 0 0 0 0 0

Transformational Planning of Reactive Behavior

Drew McDermott
p

Abstract

Reactive plans are plans that include steps for sensing the world and coping with the data so obtained.

We investigate the application of Al planning techniques to plans of this sort in a simple simulated world. To

achieve fast reaction times, we assume that the agent starts with a default reactive plan, while the planner

attempts to improve it by applying plan transformations, thus searching through the space of transformed

plans. When the planner has what it believes to be a better plan, it swaps the new plan into the agent's

controller. The plans are written in a reactive language that allows for this kind of swapping. The language

allows for concurrency, and hence, truly "nonlinear" plans. The planner evaluates plans by projecting

them, that is, generating sceparixs frr how execution might go. The resulting projections give estimates

of plan values, but also provide clues to how the plan might be improved. These clues are unearthed by

critics that go through the scenario sets, checking how the world state and the agent state evolved. The

critics suggest plan transformations with associated estimates of how much they will improve the plan. 0

Plan transformations must be able to edit code trees in such a way that the changes are orthogonal and

reversible whenever possible. The system has been tested by comparing the performance of the agent with

and without planning. Preliminary results allow us to conclude that the planner can be fast and directed

enough to generate improved plans in a timely fashion, and that the controller can often cope with a sudden

shift of plan.

Acoession For

?~TIS -GRA-&I
DTIC T,.B 0

~ 0

IDI•"[::. •]

0 0 0 0 AV 0!0

Mot"I

• • • •• • •

Table of Contents

1 Overview 2

1.1 Agent Architecture 6

1.2 An Example Transformation 8

1.3 Transformation Audit Trails 11

1.4 Planning and Execution 12

1.5 Related Work 13

2 The Reactive Plan Language 15

2.1 Perception 15

2.2 Code Trees and Task Networks 17

2 3 Concurrency 20

3 The Projector 23

3.1 The Timeline 24

3.2 Action-Projection Rules 29

3.3 Keeping Track of the Agent's Projected State 31

4 The Planner 35

4.1 The Life Cycle of Bugs 36

4.2 Bug Penalties 39

5 The World 40

5.1 Some RPL Plans and Plan Models 42

6 Bugs and Transformations 52

6.1 Utilities 52

6.2 Giving Up 54

6.3 Scheduling 54

6.4 Protection Violation 57

6.5 Carrying Things in Boxes 60

6.6 Declarative Goals 62

7 Results 63

8 Conclusions and Future Work 66

9 References 68

2

0 0 0 0 0 0 •0 S *

1 Overview

All robots are controlled in some way, but not all robots reason about their controllers. When a robot 0 1

designs or debugs a part of its own controller, we can call that part its plan. The rationale for this choice

of terms is that reasoning about control almost always requires thinking about how alternative controllers 4

would react to future events, and thinking about the future is the essence of planning (McDermott 1992b).

A robot has no need of a plan if its controller can be designed off-line by humans. But, as in other areas,

there is a dear need for automation here, to allow for faster and more reliable reprogramming of robots by

getting the robots to do it themselves on the spot in response to the current context. When a mobile robot

is given one more errand to run, it should be able to figure out for itself at what point in its schedule to

insert the new job.

A plan is reactive if it specifies how an agent is to react to sensory data at run time. A nonreactive

plan corresponds to what is traditionally called "open-loop" control, which is feasible only when the agent's

controller has an excellent model of the world. We will not assume such a model here. The agent's information

about the state of the world can be incomplete or even wrong. The world can change independent of what

the agent does.

The research reported here is an attempt to get a computer to plan the reactive control of a robot. The

robot is to be given jobs such as finding a big white cube near location (3,5) and putting it in the big black

box last seen near location (10, 12). It may be given several jobs at once, not necessarily simultaneously.

It attempts to find the quickest way to accomplish its current list of jobs successfully. The question arises b 0
how we specify jobs to the robot. One way would be to describe a state of affairs, the job then consisting

of bringing it about. However, we opt for a somewhat different formulation. A job is a program. What the

robot has to do is carry it out. If the program finishes in the normal way, we count the robot as successful.

However, if the program should explicitly fail, then the robot has failed to carry out its assignment. The

planner can play it safe, and just execute the programs as they are given to it, in which case we expect them

to have a good chance of succeeding, albeit ploddingly. However, the planner can often improve the plan by

applying plan transformations to it. The resulting plan is supposed to perform better (more efficiently and

robustly), but it may now contain new bugs due to interactions of pieces of the plan that have been thrown I

together. Sometimes the plan, even with bugs, still works better than the original, because it is designed to

cope to a degree with unexpected contingencies. But the planner continues to transform it in the hope of

eliminating all bugs and inefficiencies. Throughout this process, the agent controller uses the best plan the

planner has found so far. There is no lag between a planning phase and an execution phase. 0

The design of the notation in which the robot's programs are written is critical. On the one hand, it

must be flexible enough to control a realistic robot - even when several programs are run simultaneously in

a changing and uncertain world. On the other, it must be transparent enough so that the planner can reason

about the execution of plans and see ways to improve them. The notation I am developing, called RPL,

for Reactive Plan Language (McDermott 1991b), is an effort to meet both these requirements. It is still

• • • •• • •

evolving, but the burden of this paper is to argue that it meets them to some degree. The resulting notation

is more like a robot programming langauge than a classical plan language. It contains local variables, loops, a.

multiple processes, interrupts, and several other features. Its syntax, of course, is Lisp-like.

The planning problem I have outlined is stated very generally, which raises a methodological question.

It is a fact that AI research tends to succeed better when it focuses on narrowly defined problems, and that

has certainly been true for planning. I can't claim to have algorithms that solve every problem statable as a

program. In the long run, if this approach proves fruitful, we will have to zero in on more tractable special

cases. The current research is mainly exploratory, an investigation into whether planning is possible at all

when plans are construed as arbitrary robot plans. The conclusion is that it is.

I study robot plans because robots are supposed to be models of people in their dealings with the world.

However, today's robots are still struggling with elementary behavior, and do not require a sophisticated

planning ability. So I have followed the usual gambit, and invented a simulated world which resembles the

real one enough that realistic planning problems can arise. The world consists of a set of locations arranged

in a grid. At each location is a collection of objects. The robot can move north, east, south, or west. It can

scan the current location looking for objects matching a description, and get back a list of local "coordinates"

for those objects. It can reach toward a coordinate, using one of its hands (typically, it has two), and grasp

the object there. It can put its hand into a box, grasping and releasing objects inside. For navigation

purposes, every location has a signpost with the locations X and Y coordinates written on it.' Some objects *
can move around. Grasping objects doesn't always succeed, especially when the objects are inside boxes.

The robot's behavior must take these uncertainties into account.

Figure I shows what the robot's world locks like on the screen. There are several objects scattered

around, including balls, keys, boxes, and pyramids. At the robot's current location, X = 1, Y = 9, there is

a gray checked box, at local coordinate Z = 2. In addition, it is holding a white box in hand 1.

Figure 1 is a "God's-eye" view of the robot's world. The robot itself can perceive only objects in its

immediate vicinity. Figure 2 is a copy of the window that displays the robot's recent outputs and inputs to

the world. The outputs are atomic-named commands with simple parameters (numbers, symbols, or short

lists of symbols). The inputs consist of a set of registers, which are set by the sensory system in response

to certain outputs. In the figure, the output (HAND-PROPS 1 '(COLOR FINISH)) has just occurred. In

response, the input register OB-SEEU* is set true, and the input register OB-FEATURES* is set to the color

(WHITE) and the "finish" (NIL, or "dull") of the object in hand 1. The hane force registers show 0 or 1 to

indicate whether the hand is empty or not. The register OB-POSITIONS* is was set to I by some previous

input, and never cleared. (See Section 5 for all the details.) The variables CURRENT-X* and CURRENT-Y*

' This is the least realistic feature of the domain, and eventually we will make the integration of navigation and action more

realistic.

4

ObJecta hem

0 1 Z=2 3 4 5 6 7 96 0 1

H
Hand Spas -1 !:H-nd I pas 3 ,

0B C X=J9 World Speed fl Value 1.0Q.

0 hbot Speed 0 Value 0.33

World Time 430
7 1'

A

RobotA 8 60

A*

Y=I J

Figure 1 The Grid World

encode where the robot believes itself to be. They are not directly sensed, but must be read off signposts,

and can get out of synch if the visual system fails to read a signpost properly.

As an example of the kind of problem we want the robot to solve, suppose that the situation were as in

Figure 1, but that the robot were at 0,9, without a box in its hand. Suppose it had been given the job of

taking a particular white ball A to location 15,10, and a gray and a black ball (B and C) to location 18,18.

The obvious plan for the job involves doing each of these jobs in some random sequence. However, the plan

can be improved by bunching errands together, and possibly even getting a box to carry the balls in. The

planner first runs a scheduler to impose the ordering constraints, but then realizes that the resulting plan

will overtax its carrying capacity, because it has only two hands. There are two alternative ways to fix this

problem: add ordering contraints so that objects are delivered before overloads involving them can occur; or

get a box. The planner must think about both these possibilities, and choose the one projected to be better.

The system's performance on this problem is discussed in Section 7.

The organization of this paper is as follows. In the rest of Section 1, I discuss the overall architecture

of the system, how transformations work, and how planning relates to execution. I then go back over all

5

0

Last output
HAND-PROPS 1 3,((]L• FINISH)

OS-POSITIONS"
(1)

Of-SEEN" Sorest hir•

OS-FEATURES
(WHITE NIL)

CUIIRENT-X* I

CURaENT-V" s

Hand 0 form 0

Hand I fors I

Figure 2 Robot Sensors and Effectors

these areas in more detail. Section 2 is about the reactive plan language the system uses to express its

plans. Section 3 is about the methods the system uses to pred ict what will happen when plans are executed.

Section 4 is about the mechanics of plan transformation based on those predictions. Section 5 describes the

domain I have used for experimentation, and gives examples of plans the agent uses to accomplish tasks in

this domain. Section 6 spells out some of the transformations that have been studied so far. Section 7 gives

a bit of data on how well the system works. Section 8 finishes with a discussion of what's left to do.

1.1 Agent Architecture

Figure 3 shows a coarse block diagram of the architecture of our system, called XFRM. There is a central,

explicit Plan that is manipulated by two processes: the controller and the planner. The controller treats the

plan as a complete specification of how the agent is to behave. The planner, also running asynchronously,

attempts to improve the plan. The planner communicates with the user, who defines the overall job of the

system as a set of top-level commands. Given a set of top-level commands, the planner can combine them

into an obvious overall plan to do everything the user asks: (TOP-LEVEL C1 ... C,,).2 But often it can

think of a better way to carry out the user's wishes than this obvious plan. When it thinks it has a better

version, it replaces the old version.

The planner judges how good a plan is by projecting it, generating several execution scenarios. The

projector uses the same plan interpreter as the controller, except that instead of actually causing behavior,

2 TOP-LEVEL (McDermott 1991b) says to do all the Ci in parallel; but the Ci will usually be competing for agent resources,

and the resulting concurrency control will cause most steps to be suspended most of the time. For details, see Section 2.3. The

actual full form of the initial plan is more complex. See Section 1.3.

6

TOP-LEVEL 5,

COMMANDS PLANNER

USER P WORLD

CONTROLLER

Figure 3 Agent Architecture

it records a prediction of a possible behavior. Each such projection consists of a list of events called the

timeline that could result from executing the plan, synchronized with a task network that records how the

robot's actions caused and were affected by those events. In some scenarios, some of the top-level commands

fail. In others, the commands all succeed, but the cost of success is high. The utility of a scenario is the

sum of the values the user attaches to each successful top-level command, minus the costs of the resources

consumed.
3

The planner is trying to improve the expected utility of its plan. (We will assume that the expected

utility is just the average of the utilities of the separate scenarios, thus neglecting issues about risk aversion

and whatnot.) A method that is intended to improve plan utility is called a transformation. Transformations

are associated with bugs, which are discovered by critics (Sussman 1975). A bug specifies a transformation,

plus an estimate of the expected improvement in plan utility if the transformation is tried. This estimate is

called the severity of the bug. The description also specifies a bug signature that enables the planner to tell

whether the "same" bug has occurred in different scenarios, in different plans, and in different stages of the

evolution of a plan.

After each round of plan revision, the planner will have a choice of bugs to try to eliminate. The planner

maintains a queue of alternative plans, each with a record of the bugs that have been detected in it. On each

cycle, the planner selects the most promising plan, the one with the highest expected utility. It transforms

the plan using repair strategies associated with the plan's worst bug (with the highest severity). The result

3 Currently, the only resour,.e we charge for is time, and each command has the same constant value.

7

*

0 0 0 0 0 0 0 0

A

will be zero or more new plans. Each is evaluated, criticized, and inserted back into the queue. Whenever

the planner succeeds in improving the pla, it was given, it transmits the improved version to the controller

to execute. It then continues to try and improve it even more. I

1.2 An Example Transformation

To clarify all of this, let's look at an example of a bug and its repair, for a classic protection violation

(Sussman 1975). Protections arise wher. agents need to bring about a state of affairs and then work to keep

it in force. A robot might want to put an object in the middle of its workspace, and keep it there for a

while. It is said to be protecting the state "Object in middle of workspace." A protection is a good example

of a policy, a behavior committed to as a constraint on the rest of the agent's plan. In classi-al planning,

protections are to be enforced by careful planning, so that no event is allowed to occur that could cause 0

the protected state to become false - to violate it. In RPL, we take a somewhat different approach. The

construct

(PROTECTION rigidity proposition fluent -repair--)

means "If the fluent should become false, execute the repair to make it true again, and FAIL if it doesn't." 0

A fluent is a special register that can trigger agent behaviors (McDermott 1991b); the repair is an arbitrary

RPL plan. The proposition states what fact about the world the fluent is supposed to be tracking. For

example, the proposition (HOLDING A H1AND1) might be tracked by a fluent set by the force sensor of hand 1.

It is up to the plan itself to make sure that the proposition and the fluent are in synch. Violations of the 0 *
protection are detected solely by checking the fluent value. Hence the primary meaning of PROTECTION is

as a run-time construct, which attempts to correct lapses in the truth value of a statt, in contrast to the

classical insistence that such lapses be prevented completely by planning (Firby 1989). Nonetheless. some

protection violations are worth preventing. The rigidity argument specifies how important it is to avoid a

violation of this protection. If it is :HARD or :RIGID, then a projected violation, even a correctable one, is

counted as a bug. (The difference between :HARD and :RIGID is that a failure is projected when a :RIGID

protection is violated.)

Protections typically occur in a context like this:

(WITH-POLICY (PROTECTION ...)

primary)

The action primary is executed with the protection as a constraint, or "policy." There are two features that 0

make it behave in a "constraint-like" way. The first is that if the protection policy should fail, the whole

WITH-POLICY fails (whereas it cannot succeed until the primary succeeds). The second is that the policy gets

strict priority over the primary. The policy is normally dormant; a protection, for instance, does nothing

until the protected fluent becomes false. When the policy wakes up, the primary suspends until the policy 0

blocks again. The policy is free to take control, inspect the state of the primary, and get it back on track.

8

•- •• • • •• •

0 0 0 ii i1 0 0 0i 0 0i0 *

If the policy requests a valve owned by 'he primary, it pre-empts it. (A "valve" is a RPL semaphore. See

Sect 2.3.)

Here is a simple (in fact, rather contrived) example of a plan containing a protection, as it might be

given to XFRM: 4

(PARTIAL-ORDER
((:TAG MAIN

(TOP-LEMVE
(:TAG COMKAND-1

(WITH-POLICY (PROTECTION :HARD

)(CARRYING A-BOX-i*)
(NOT (EMPTY HANDI*))
(ACHIEVE-OB-IN-HAND

A-BOX-1* HAND1*))
(WITH-VALVE WHEELS (GO 10 10))))

(:TAG COMMAND-2 (SEQ (WAIT-TIME 30)
(UNHAND iD*)))

(For details on the constructs used here, see McDermott 1991b.) There are two top-level commands here,

tagged with names COMMAND-i and COKMAND-2. ')ne says to make sure that HANDI* does not become empty

while the agent goes to location 10,10. The other is to wait at least 30 seconds and release what is in the

hand. (Perhaps we want to test the release mechanism!) Obviously, there is a possible conflict here, because

the release could occur while the agent was in transit. The repair of the violation is carried out by the RPL *
procedure ACHIEVE-GB-IN-HAND, which is a large reactive plan. (Its text is given in Section 5.1.2.)

The plan transformation that fixes protection violations due to interference from the agent's own be-

havior is well known (Sussman 1975, Sacerdoti 1977, Tate 1975). Suppose that the protected proposition is

projected to become false as a result of a particular action A by the agent itself. (In the example, A = (UN-

HAND HAIDI*).) Then it may be possible that A could be done earlier or later, either before the protection

is imposed, or after it is no longer in force. We use the phrase protection interval for the time period when

A is dangerous and should be avoided. The planner can move A out of the protection interval by installing

ordering constraints on the plan that force A to be done outside the protection interval. The scope of a 0

policy is the task it constrains.4 The protection interval for a particular occasion when a fact is protected

is just the interval containing the scope of the protection policy. Hence, to eliminate a protection violation,

the planner can either put the violating event before the beginning of the scope, or put the end of the scope

before the violating event.

The critic that carries this operation out must solve three problems: finding the protection scope; finding

the violator and verifying that it is under the agent's control; and estimating the severity of the bug. The

first job is simple. The protection violation descriptor carries with it a pointer to the protection task P, and

4 But see Section 6.4.

9

the primary is Primary(Super(P)). The second job is slightly trickier. The violation is detected when the

protected fluent becomes false during a projection. At that point in the timeline, the agent will ha,*- just

done some action. It is reasonable to assume that the task corresponding to that action is culpable, and

should be constrained to lie outside the protection interval.

The hardest part is to estimate the severity of the protection violation. Recall that the severity is the

expected increase in utility to be had by running the bug's transformation. It is, of course impossible to make

an accurate estimate without actually trying it out. Eliminating a protection violation should save the agent

the effort to r.'2t,•re the violated state, but the new ordering relationships might have far-reaching effects that

outwegf th. savwngs. We take the usual A* tack of seeking generous estimates of the value of transformations,

so that L&; search process will not overlook opportunities. Hence, for a general protection violation, we simply

guess that the expected improvement is the total cost (= execution time) of the protection-repair subtask of

the protection policy. If this estimate is overoptimistic, the actual improvement (if any) will be revealed by

the next projection, and this will be remembered in case the same bug is seen again (see Section 4.2).

In the example, here is the outcome of running the protection-violation transforniation :

(PARTIAL-ORDER
((:TAG MAIN

(TOP-LEVEL
(:TAG COMMAND-i

(WITH-POLICY (PROTECTION :HARD

'(CARRYING A-BOX-I*) b *
(NOT (EMPTY HANDI*))
(ACHIEVE-OB-IN-HAND

A-BOX-1* HANDI*))
(:TAG PROCESS/8

(WITH-VALVE WHEELS (GO 10 10)))))
(:TAG COMMAND-2

(SEQ (WAIT-TIME 30)
(:TAG UNHAND/9 (UNHAND HANDI*)))))))

(:ORDER PROCESS/8 UMHAND/9 PROTECTION-SAVER))))

Two new tags have been introduced, and an :ORDER clause that cons, -is which of the tagged b 'btasks

must be done first.' The result is to force the UNHAND task to whit until the agent has reached its destiuation.

This example, besides being contrived, has been carefully instructed to conceal various complexities.

The actual plan that XFRM assembles from top-level commands is a bit mor, complicated than the version

Rhown. In this example, we were able to treat ACHIEVE-OB-IN-HAND as a black box; in general, as explained

in Section 6.1, the planner will have to expand procedL'e calls in order to edit procedure bodies.

5 The idea of putting the UIIHAIID be, re the Go will not eliminate the violation in this case.

6 The flag PROTECTION-SAVER in the :ORDER clause is called the provenance of the clause; see Section 1.3.

10

0S

0 S 0 0 0 0 0 0 0 *

10

The ordering constraints are amendments to the text of the plan. But the critic and transformation 0

(which are pieces of Lisp code in the current implementation) had to examine more than just the plan text Z,

in order to decide how to change it. C-itics have at their disposal several projections of the plan, each of

which describes a sequence of events resulting from executing the plan. The event sequence is just a list, but

the task network recording the plan execution is a hierarchy specifying how actions were derived from pieces

of the plan (McDermott 1985). The top task in the hierarchy corresponds to the entire plan, and subtasks

correspond to various occurrences of pieces of the plan. For example, the task tagged MAIN in the example

has two subtasks, one for each top-level command. Transformations are able to access the projected state

of the world and state of the controller before and after every task. See Section 3.

1.3 Transformation Audit Trails

A plan transformation is an arbitrary program that takes a plan and returns zero or more new plans.

It would seemingly be desirable to impose some constraints on these transformations, but most constraints

have counterexamples. For example, you might think it would forbidden for a transformation to simply

delete one of the user's top-level commands. But if the system estimates that the effort required to carry out

the command costs more resources than the user is willing to pay, then deleting it will improve the expected

utility of the plan. (See Section 6.2.)

There are a few mechanisms we can deploy to compensate for the potency of transformations. One is to

require a plan to succeed at projection time as well as at execution time; and to provide declarations to the

projector about what conditions should be true when a task is completed. For example, a task of the form

(ACHIEVE p) can be reduced to a subplan for actually making p true. The proposition p might be "The

light is on," and the reducing plan might be B = "Flick the switch." Rather than just replace (ACHIEVE p)

by B, we require (or, anyway, urge) that it be replaced by (REDUCE (ACHIEVE p) B), which means, "Do

B as a way of doing achieving p." The controller treats this expression as roughly synonymous with B, but

the projector can think about whether B really will accomplish p. Furthermore, the result is reversible. The

planner can discard B if it leads to insoluble problems (even if other transformations have been performed)

(Beetz and McDermott 1992).

An important property of any transformation is that it leave behind an audit trail. A plan is essentially a

Lisp S-expression representing a program written in RPL. A transformation just outputs a new S-expression,

but we provide it with some machinery to help keep track of what it did.

The top-level plan is cast in a stereotyped form to make analysis simpler. Its central fragment looks like

(PARTIAL-ORDER ((:TAG MAIN (TOP-LEVEL
(:TAG name1 corn1)
(:TAG name2 corn2)

(:TAG namek comk)))

-other-tasks-)
-orderngs-)

IL

L

This fragment is usually encapsulated in a set of policies and partial orderings that specify global con-

straints (things like, "Avoid running out of fuel") that are present in all plans in the domain, as well as

local constraints added by various transformations. The TOP-LEVEL action is a set of tagged commands

corresponding to the user's instructions. The tags get bound as variables whose values are the tasks they 4

tag. The remaining other-tasks are plan fragments added by the planner. Ordering constraints are of

the form (:ORDER ti t2 [provenance]), where the ti are names of subtasks of the PARTIAL-ORDER; such

constraints govern the order in which subtasks are executed. The scheduler and other plan manipulators

iften install new constraints, so we arrange for an optional provenance for each constraint. Ordering con-

straints just include the provenance as a third field. As an example, all constraints imposed by the scheduler

have provenance--SCREDULER. When a plan is to be rescheduled, all such constraints are discarded so that

scheduling can start from an unencumbered plan.

The other constraints on a plan, the policies, are formallyjust tasks. Hence we can use the :TAG notation

to refer to them. Between the tags and the ordering provenances, we have a technique for referring to any

"fragment" of a plan.

We use this technique in specifying planchanges, which are records of the changes wrought by transfor-

mations. A planchange consists of a table of plan fragments, a critic, and an undoer. The plan-fragment

table specifies the tags of the pieces of the plan introduced by the transformation. The critic is run whenever

the transformed plan is projected. One purpose for such a critic is to see if the change made by the trans-

formation has become redundant. (If the planner decides to get a box to carry things in, the critic for the I *
changed plan might check to see if the box is being carried around with nothing in it as a result of subsequent

optimizations.) Another reason might be to follow up this transformation with further elaboration of the

plan. The undoer attempts to edit the plan fragments out of the current plan.

0
1.4 Planning and Execution

Whenever the planner thinks it has an improved version of the plan, it notifies the controller. The

controller discards the old version and begins working on the new. At the most glib level, that's all there is

to it.

Obviously, there are situations when this approach will not work. If we tell the agent to send up three

puffs of smoke as a signal of some kind, and it has already sent up two when the plan gets swapped, then it

will start all over again, and end by sending up five puffs of smoke. Such examples are worth meditating on,

because they demonstrate that precise specifications of intentions are not easy to come by. The naive plan

for sending up three puffs of smoke is in fact compatible with doing other actions simultaneously or soon

before or soon after. What the example shows is that sending other puffs of smoke is not one of the other

actions this plan should be compatible with.

To avoid such complexities, we will restrict all top-level commands to be tropistic, that is, to be char-

acterized as either tending to bring about a state of affairs, or tending to preserve a state of affairs. "Send

12

0 0 0 0 0 000 0

up three puffs of smoke" does not fall in this category, but "Go to location (4,4)," and "Stay near location

(4,4)" do. Tropistic intentions have the property that an agent needs to know only the current state of the
0world, not its past history, in order to pursue them. Hence wiping the slate clean and starting over will not

make them impossible (although the restarted plan may waste a little time rechecking world conditions in

order to resume making progress). Making the notion of "tropism" more precise is an open area of research.

There is one tricky aspect to the idea of casual plan swapping. An important job of many plans is to

record new information in the global world model of the agent. For example, when an object is picked up,

the plan for picking it up must note that the object is now in the hand that did the grasping. But suppose

that a plan swap occurs between the grasp and the recording of the information. In that case, the outdated

belief about the location of the object will persist, and cause the performance of later plans to degrade.

(They will have to hunt for the object, and may fail to find it completely.) It might be .thought that such

coincidences were rare, but in fact most plans are suspended waiting for feedback from the world most of the

time, and many of them are poised to record conclusions based on that feedback. Hence it is fairly essential

for plans to be able to block their own evaporation until global world-model updates can be finished. The

mechanism for accomplishing this blockage is the construct (EVAP-PROTECT a b) , which is analogous to

UNWIND-PROTECT in Common Lisp. It normally means the same as (SEQ a b), that is, do a and then b. but

if a should "evaporate" because the plan containing it gets swapped out, then b gets executed anyway. It is

up to the plan writer to make sure that EVAP-PROTECT gets used when required.

The overall XFRM planning-and-execution system is thus "greedy." It begins execution before planning

is completed. It may finish execution before the planner thinks of anything, in which case the plan it started

with was probably pretty good. It may also waste some effort by rushing off half-cocked, although it seems to

happen just as often that the old plan and the new are sufficiently similar that the steps taken in executing

half of the old plan get the agent into a more favorable state for executing the new plan. (E.g., the changes

do not affect the first task much, so the steps taken to execute it leave the agent closer to getting it done.)

Unfortunately, the worst case is entirely possible under the current regime, the worst case being that by the

time planning is completed, the controller has gotten the agent into a situation where the estimate of the

value of the current plan is all wrong. For example, the agent might spend considerable time optimizing its

route, and conclude that it should start with a task at location A. However, by the time it comes to this

conclusion, it has reached location B, where another task awaits. Plan swapping will cause it to march back

to A. I will return to this issue in Section 8.

7 Added to the language since (McDermott 1991b).

1,

• • • •• • •

6IIIn nl 0N~n NN m0n0n0nnnn0nunn0

1.5 Related Work

There is a substantial body of work on reactive plans, and another on transformational planning, and
a somewhat smaller one on combining the two.

General-purpose reactive plan interpreters have been built by Firby (1989), Georgeff and Lansky (1986),

and Nilsson (1988). Compilers have been constructed by Kaelbling (1988) and Chapman (1990). The GAPPS

system of (Kaelbling 1988) is especially interesting because it compiles reactive plans out of what I call here

"tropistic" task specifications. Schoppers (1987) discusses a system for compiling "universal" plans given the

physics of a domain. A universal plan is not quite reactive in the sense I am interested in, because it specifies

what to do under all possible circumstances, without specifying how to sense the relevant circumstances.

(But see Schoppers 1992.)

Much of the focus of work on reactive planning has been on "anytime" algorithms for generating plans

(Boddy and Dean 1989), that is, algorithms that return steadily better plans given more time. The algorithm

reported here is sort of like that, except that I do not assume the agent can remain quiescent during a

preliminary planning phase that is predicted to improve its plan by a certain amount.

Transformational planning has been tried before. The pioneering work was by Sussman (1975), where the

ideas of critic and bug originated. This planner was never actually implemented to the point where it could

be tested. The concept of projection is due to Wilensky (1983). In the late eighties, the transformational

approach was revitalized by the independent work of Hammond (1990) and Simmons (1992). These systems b O

both made use of the projection-transformation cycle that XFRM uses. However, the goals of these works

were somewhat different. Hammond's and Simmons's planners try to find correct plans; XFRM starts with a

workable plan, and tries to make it more efficient and robust without making it incorrect. Neither Hammond

nor Simmons actually tried to execute the resulting plans, and required no model of the relationship between I

planning and execution. Finally, both of these systems relied on detailed causal models of the world to

diagnose problems with plans and propose changes. Such models are not incompatible with the present

research, but we have not yet attempted to use them. Probabilistic projection for transformational planners

was studied by Hanks (1990, Hanks and McDermott 1993), on whose work the projector described here is I

based, and by Dean and Kanazawa (1989).

There has been previous work on combining transformational planning with reactive plans. One ex-

ample is the work of Lyons and Hendriks (Lyons et al. 1991). They cast the planning problem as off-line

improvement of a reactive system, in their case, a kitting robot. The reactor is written in a notation called 0

RS that is similar to RPL. However, they do not make use of projection, but instead wait until the reactor

runs into difficulties. Their approach assumes that the same reactor will be reused for a repetitive series

of essentially identical tasks. Another example is the work of Drummond and Bresina (1990). They study

artificial agents in simulated worlds (not unlike the one studied here), in which a probabilistic projector is 0

used to explore possible execution scenarios in order to build up a table of condition-action rules to deal

14

0

0 0 0 0 0 0 0 0 0 *

with predicted contingencies. The sysLem has the anytime property, so the rule set becomes steadily more

competent as time progresses.

The architecture of the O-PLAN system of (Currie and Tate 1991) is similar in some ways to the

architecture of XFRM. The "flaws" of O-PLAN are similar to the "bugs" of XFRM. One difference is that

O-PLAN does not start with an executable plan; one class of flaw is the presence of unexecutable steps,

which must be elaborated. The plan language of O-PLAN is more suitable for traditional project-planning

applications than for the kind of reactive problems I focus on here.

2 The Reactive Plan Language

0
Plans are written in a notation called RPL, which is documented more thoroughly in (McDermott 1991b).

Syntactically, RPL looks like Lisp. It allows for subroutine calls, bound variables, loops, and conditionals.

It also provides for concurrent processes, synchronized using "valves," which are a kind of semaphore. The

XFRM planner can be considered to be a "nonlinear" planner, but the nonlinearity often persists into the

final product. When two steps are left unordered, the interpreter will execute them simultaneously, until

they both try to grab the same valve, when one will wait for the other to release it. See Section 2.3.

The central execution loop for the agent maintains a queue of enabled "threads," each with a stored 0

continuation. It repeatedly picks a thread, runs its continuation, and gets back a list of threads that get

requeued. The central execution loop doesn't know about the interpreter; but, in fact, most threads are

interpreting RPL code. (If there were a compiler, that would change.)

The main loop of the interpreter consults a dispatch table to decide how to handle each part of

the plan. For example, to interpret (SEQ a, a 2 a3), it generates a thread to interpret a,, then go on

to interpret a 2 and a3. Procedure definitions are stored in the same dispatch table. The Lisp macro

(DEF-IITERP-PROC P (--args-) -body-)

defines P globally as a RPL procedure. A task Tp with action (P ...) will be handled by executing the

body of P as a subtask of Tp, in an environment with the args suitably bound.

The interpreter can be called in controller mode or projection mode. The projector projects (SEQ a,

a2 a3) by setting up a thread to interpret a,, then a2, then a03 just as the controller would. (In fact, it

uses exactly the same handler in both modes.) The two modes differ at the lower levels. Where the real

controller moves the hand, the projector must put "the hand moves" into the timeline as a predicted event.

The projector is discussed at great length in Section 3.

15

• • • •• • •

|0i|ii ~ 0 0 0 0 0 0 0 0 0

2.1 Perception 0
Plans involve manipulating objects. In many cases, manipulating a particular object is unproblematic. 0

If a robot wishes to alter th: torque on joint 3, there is a wire it puts a voltage on. The robot need take no

position on what that wire is actually connected to; if it is not connected to joint 3, then the wrong thing

will happen, but the robot will not be able to do much about it.

By contrast, if a robot is supposed to do something to an object that is not connected directly to itself

in this way, then it has the problem of finding the object. Suppose a robot is to take a turnip from one place

to another. Its first job is to find a turnip (assuming we don't care which one). It must then carry it to

the destination, making sure that if it is necessary to put the turnip down (perhaps to open a door), then

means be available to find it again. During an interval when the turnip is in the robot's gripper, reference

to it is roughly as simple as reference to the gripper itself, provided that there is no doubt that the turnip

has remained in the gripper throughout the interval. However, when the turnip is not in the gripper, the

only hold the robot has on it is a description of where it is and what it looks like (assuming that vision is

the sense being used). To get it back in the gripper, the robot must use that description to find the turnip

again and move the gripper to its location.

I will use the term designator to refer to a data structure with this kind of information. Of course,

nothing guarantees that a stored description will succeed in referring to exactly the object that the agent

or its designer "intends." But the agent can usually assume that if just one object fits the description, that

object is good enough for its purposes. After all, if it should happen to pick up the wrong turnip, who would 0

care?'

Although the idea of designator is implicit in any robot program, the first incorporation of the idea

into a planner was by Jim Firby (1989). He used the term sensor name for essentially the same concept. In

his RAP model, all sensing operations generated symbolic descriptions involving new sensor names for the

objects sensed. As time passed, the symbolic descriptions remained true, but the names lost their usefulness

in reacquiring their referents in the world. If the agent saw one blue object at location 8, then it would enter

(BLUE 0B33) in its list of objects at location 8, and record enough information about 0B33 that it could

reach out and pick it up if desired. If it left location 8 and came back, the assumption was that 0B33 was

no longer a sensor name, but there was no reason to forget (BLUE 0B33), i.e., that there was a blue object

at that location. Indeed, when the agent returns to location 8, it can use this information to infer that if

there is one blue object there, it is equal to 0B33. The RAP memory undertook to do this sort of matching

whenever it revisited and resensed a location. Firby developed some elegant and efficient algorithms for

managing this matching process; the algorithms had the property that they would infer a maximal set of

equalities between "old" and "new" designators.

8 Agse and Chapman 1990 have argued that this looseness in the bindings of descriptions to objects amounts to a revolution

in the semantics of plans. I disagree.

16

• • • •• • •

Unfortunately, these algorithms do not carry over to a more general framework. They were based on

the assumption that every location could be assigned a set of designators of objects sensed at various times

at that location - an assumption that makes sense only if the robot can visit the "same" place repeatedly,

know where it is on each visit, and expect to perceive exactly the same set of objects each time if nothing

has moved. In the real world, it is likely that place recognition depends on object recognition rather than

the other way around. The robot could realize where it was because it saw a familiar object. If it was seeing

this object from a new angle, then this object would be perceived in a "new place" without anything having

moved. Furthermore, the exact definition of a place is vague; it is unlikely that the robot will ever be in

exactly the same place twice.

Hence I now assume that designator management does not depend on an automatic mechanism for object

identification. Instead, it is the responsibility of domain-dependent plans to make sure that designators are

up-to-date enough to be likely to be effective. The RPL interpreter executes these plans, but is otherwise

uninvolved in updating designators.

In the robot-delivery domain, there is a datatype desig that is the locus of information about world

objects. The data type is basically just a property list (with properties like color, current position, etc.).

However, there is an operation EQUATE that takes two desigs De, and D.1d, and links them together in a

special way. De,,, gets recorded as the "latest version" of Dozd. Typically, EQUATE is used whenever the 0

agent has just created a designator Dnew, and has decided that it denotes the same object as an existing

designator D.ld. The operation (DESIG-GET d i) accesses the property list of a desig d for a property i, but

it checks for later versions of d. It always starts with the latest version and works its way to earlier versions

until it finds an entry for i. So, if the agent's beliefs about the position of d have changed, (DESIG-GET d

'POS) will return the latest belief.

2.2 Code Trees and Task Networks

XFRM spends a lot of its time doing "tree walks," that is, traversals of tree-structured data. There

are three ways to think of a plan as a tree. First, a plan is a Lisp S-expression, and so it is a binary tree.

Second, it is convenient to expand the RPL macros and find all the :TAGs before executing the plan. The

resulting data structure is called a rpl-code. Tags are recorded in tag tables at all nodes in the rpl-code tree

where tags get bound, including the top level and iterative contexts like loop bodies. See Figure 4. Third,

when the plan is executed, it gives rise to a tree of activation records for pieces of the plan. Each activation

record describes a task, and the whole tree is called the task network. Each task in the network is normally

discarded as it is completed, but during projection the network is retained for later reference, so that it can

17

0 0 0 0 0 0 0 0 0 0

(SEQ (PAR (A) (-TAG U (B)))
(LOOP (:TAG V (D)) UNTIL (P)))

(a) S-Expression Lisp Procedures: A, D, P

RPL Procedure: B
F]U- ((TEP 1)

I RM(C C 2)) with code tree
(STEP 1) (STEP 2) from plan library

A F; F"1
(BRANCH / \BRANCH 2) \(ITER *) "

(STEP i/

(b) Code Tree 7D)

Figure 4 Rpl-code tree for a plan

serve as a complete record of what the agent might have tried to do. See Figure 5. Note that in the task

network tags have become variables bound to the tasks themselves.

The task network is referred to more often than either of the other data structures, partly because that's

the way XFRM has evolved. A common pattern for reasoning modules within XFRM is for them to start at

the top task and work through to leaf tasks, performing an operation on each task in between. The code for 0
the operation is organized in a "data-driven" way, associated with the main operation of the task's action

via a dispatch table. For example, the errand scheduler (Section 6.3) must walk through the task network

finding all tasks that require the agent to go somewhere. It has a dispatch table with an entry for each RPL

construct. The table entry for SEQ specifies that, to extract a set of errands from (SEQ a, ... a,), you

must extract the errands from each ai, then string them together (i.e., constrain them to occur in the given

order).

The RPL interpreter itself works this way. As discussed, it has its own dispatch table, whose entries

contain handlers that spell out how to interpret SEQ, IF, etc. It may seem that the interpreter would have to

be different from other task-network traversers, in that it builds the network in the first place. Actually, the

network is built "on demand." When some XFRM module attempts to traverse a piece of the network that

might exist, the piece gets constructed. The interpreter is just one such module. So that SEQ dispatcher can

just say: "Interpret the subtask for a,, then the subtask for a2, ... ," and the subtasks appear as they are

required. One way to think about this approach is that it treats all possible subtasks as equally real. The

subtask corresponding to the 999th iteration of a loop may not ever be executed, but it is well defined (and

distinct from the 998th iteration).

Every task, except the top task, has a name of the form fo(fl, ... , f,, T), where T is its supertask,

and the f, serve to distinguish this task from its siblings. For example, the false arm of a task T with action

18

• • • •• • •

0Ira ai moiIi m 0 0 0i 0', 0 -

T.. 2) Each task points to corresponding

(STEP (STEP 2) rpl-code

C)4

(BA 2 ITER 1\)(ITER 2) ITER 3)c0 c vcO vo vO
V V

(A) (B)

CD (D) (D) (D)

Figure 5 Task network for the plan in Figure 4

(IF ...) has the name if-arm(false, T). The 999th iteration of a loop T has the name iter(999, T). We use

the term name prefix for the Lisp list of the fi for a task, such as (IF-ARM FALSE) or (ITER 999). The

name path for a task is a list of all the name prefixes from that task to the top task. If the top task has

action (IF A (I-TIMES 3 (PUSH-BUTTON))), then the first task with action (PUSH-BUTTON) has name path

((ITER 1) (IF-ARM TRUE)). In a diagram such as Figure 5, you can read the name path for a task off by b

collecting edge labels as you go up the tree. These naming conventions are used in plans and by critics. See

Section 6.1.

In (McDermott 1985), 1 made a distinction between syntactic and synthetic subtasks. The former are

those whose actions correspond to parts of the actions of their supertasks; the latter are those whose actions

were chosen to accomplish their supertasks. The idea was that the planner would reduce some tasks to

subtasks by inference processes, and that resulting task-subtask relationship would be synthetic, whereas

the interpreter could handle syntactic reductions "routinely." But in the current architecture, we assume

that the interpreter is never at a loss for how to proceed, and that design feature is reflected in the fact that

all subtasks have name paths. For example, suppose a task B consists of a call to a RPL procedure. Its

subtask S corresponds to the body of that procedure, and has the name proc - body(B) (Figure 5). In a

sense, the code for S is not derived from the code for B, and so S is a synthetic subtask, but the "synthesis"

occurred by looking up the text of the procedure in a table, not as a result of a deep planning process. Indeed,

if we count table entries as part of the overall text of the plan, then the derivation of the proc-body task is

purely syntactic. The same points apply to other subtasks that one might loosely refer to as "synthetic."

RPL provides notations to refer to them all as if they were syntactic.

Of course, the planner does find nonobvious reductions of tasks, but it effects them by altering the text

of the plan, so the reducing step becomes a piece of the revised version's text. That is, a task with action

19

0 0000000 0

A can be changed to (REDUCE A R). The work is now done by a subtask with action R, and name prefix

(RMUCER). a,

2.3 Concurrency

RPL plans make heavy use of concurrency. Wherever possible, we avoid imposing an arbitrary order

on plan steps, and instead serialize them by having them compete for a kind of semaphore called a valve

(McDermott 1991b). A plan can request a valve using the RPL primitive VALVE-REQUEST; when it does,

execution suspends until the valve is freed. But what do I mean by "plan" here? A RPL program is

conceptually broken into pieces, each working on different parts of the overall problem, and the request is

made in the name of a "piece." We use the name process for the pieces.

Here's an example9 :

(PAR (PROCESS ONE (VALVE-REQUEST ONE WHEELS '#F) a))
(PROCESS TWO (VALVE-REQUEST TWO WHEELS '#F))3)))

Here each branch of the PAR has made itself a process. They contend for a valve called WHEELS. Normally

one will get it and keep it until its process is finish.ed, so that cc and #3 will not overlap in execution. (For

details on the syntax of VALVE-REQUEST, see McDermott 1991b.)

In many concurrent programs, this is all the complexity we need to worry about, but planning raises

special problems. As plans unfold, processes often come to exist in combinations that are hard to foresee

at first. Processes form a hierarchy. If a task belonging to process Po executes a (PROCESS v a) form,

the newly created process P, becomes an immediate subprocess of P0, and the variable v is bound to it.

Over time, an entire tree of processes develops. Every task belongs to a process; in fact, it belongs to every

process from its own process up to the root of the tree. The task associated with (PROCESS v a) belongs

to the created process P1 and hence to all the superprocesses of P 1. The task for a has the same process

associations, and so do all its subtasks and subsubtasks, until the execution of a new PROCESS form, which

adds another subprocess.
10

The WITH-POLICY construct interacts with the process hierarchy. When (WITH-POLICY C A) is en-

countered, two new processes Pc and PA are sprouted, one for C and one for A. A new policy valve V is

created, permanently requested by both Pc and PA. PA is a said to be an immediate constrainee of Pc. The

owner is determined by the rule: PA owns the valve if and only if Pc is wait-blocked. To understand this

rule, you have to understand the difference between being wait-blocked and being valve-blocked. A process

9 The Lisp boolean values are ST and SF, true and false

10 The RPL constructs (PROCESS-Il p) and (PROCESS-OUT p) have subtasks whose processes violate these rules, belonging

to p or p's parent, respectively. This is a way of having fragments of a task escape from the current pattern of valve ownerships.

20

0 0 0 6 0 0 0 0 0

It

is wait-blocked if it cannot proceed until some fluent becomes true or some time interval has passed; that

is, if all the threads derived fr.,m Casks belonging to the process are queued up waiting for a fluent or a

time. It is valve-blocked if it cannot proceed until it gets a valve. A process could be both wait-blocked and

valve-blocked. If it is neither, its threads are allowed to proceed.

My definition of "valve-blocked" was a little glib. Here is the actual truth: A process P is valve-blocked

if there is some valve V requested by a superprocess of P whose owner will not share it with P. A process

P' shares V with P if P' is a superprocess of P or a constrainee of P unassociated with V. For any two

processes, P1 and P 2 , Pi is a constrainee of P 2 if some superprocess PA of P1 is an immediate constrainee

of some superprocess Pc of P 2 ; i.e., if as a result of a (WITH-POLICY C A), two processes PA and Pc were

created such that PA is a superprocess of P1 and PC is a superprocess of P 2 . P1 is a constrainee of P2

through V if V is the valve that PA and PC compete for; otherwise, P, is a constrainee unassociated with V.

See Figure 6.

Task Network Process Hierarchy

o Request valve V

(WITH- POLICY C A) 0j -Poliq valve U

\) - - -l cyvalveU

] -
\ /\

FA 1/PA C

#%

op o
120

P1 is a constrainee of P2 through U

Po and P1 share V with P2

P0 shares V with PA

Figure 6 Process relationships

21

0 0 0 0

This rule requires some contemplation for it to make sense. Normally, if one process has a valve, others

must wait. But subprocesses are "part" of their superprocesses, and should inherit their valves. It may a,

be less obvious that processes should inherit valves from constrainees. Consider this example: P 0 has two 9

subprocesses PA and Pc, where PA is an immediate constrainee of Pc through valve U. Both P 0 and PA

have requested another valve, V, and PA owns it. Pc is now in the position that its superprocess P0 has

requested V, but no superprocess owns it. Hence Pc would be valve-blocked if processes could not inherit

from their constrainees. But that means that PA has succeeded in getting priority over its constraint. Pc. 11

See Figure 6.

Most valves are pre-emptible, which means that plans should be prepared to lose them. Valves can be

pre-empted under the following circumstances:

I A subprocess requests a valve owned by a superprocess. 0

2 A constraint requests a valve owned by a constrainee.
3 A more urgent process requests a valve owned by a less urgent process.
4 The interpreter transfers a valve to break a deadlock.

Cases 1, 2 and 3 are subsumed by saying that a process can pre-empt from a superprocess, a constrainee,

or a less urgent process. Urgency is determined by a system of numerical priorities, which is seldom used,

because the process-hierarchy rules cover most of the cases. The priority of a process is determined by the

priority in effect when the process makes a VALVE-REQUEST, as set by the RPL PRIORITY construct. (See

McDermott 1991b.) 0

Deadlocks can arise easily in this system, simply because of unforeseen consequences of combining

modular plans. But plan transformations compound the problem. When a plan is transformed, new ordering

relationships are likely to conflict with orderings imposed by valve requests. Here's an example:

(PARTIAL-ORDER ((PROCESS ONE
(VALVE-REQUEST OlE WHEELS '#F)
(STEP11)
(:TAG A (STEP12)))

(PROCESS TWO
(VALVE-REQUEST TWO WHEELS 'SF)
(STEP21)
(:TAG B (STEP22))))

(:ORDER B A))

Suppose process ONE gets the wheels. When control gets to step A, process OlE will become wait-blocked

waiting for step B to finish. But step B can't get started because process TWO is valve-blocked waiting for the

wheels.

II Actually, what usually would happen is that PC would not be wait-blocked, so it would own U, and a deadlock would

exist between PA and PC.

22

To compensate for this problem, the RPL interpreter forces valve transfers in order to eliminate dead-

locks. The state of the interpreter is kept in several queues: a,
I

ENABLED*: Threads that are ready to run
VALVE-BLOCKED*: Threads belonging to valve-blocked processes
PEIDING*: Threads that must wait for a certain time before being ready
Fluent queues: Lists of threads waiting for fluents to become true.
Process blockage lists: Lists of blockages, which specify where each process's threads are waiting

(on fluents or PENDING*)
CONTROLLING-BLOCKAGES*: Lists of blockages that "keep control" (McDermott 1991b) and hence

do not change their processes' status to "waiting."

The interpreter is in stasis if EIABLED*, PENDIIG*, and COITROLLING-BLOCKAGES* are empty. At that point,

it will stay in stasis forever, or until some sensory input causes a fluent to become true and triggers a waiting

thread. Rather than wait, the interpreter looks among the threads on the VALVE-BLOCKED* queue for a

process that could be made runnable by performing valve transfers, and performs them. Such a process P

is said to be blastable. The precise definition of blastability is:

P is not wait-blocked

and For all valves V requested by P or superprocesses of P
Either the owner of V already shares V with P
or V is pre-emptible

and there is a process C that has requested V
such that C could own V 0 *

and C shares V with P

If a process is found that fits this description, all the valves its superprocesses have requested get transferred

to processes that share with P, and P becomes runnable. (Its threads get moved from VALVE-BLOCKED* to

ENABLED*.) This procedure is called "blasting." I

It may not be sufficient to run the blasting procedure only when the interpreter is in stasis. A subset of

processes may be deadlocked, and the remaining processes might keep the interpreter busy. To compensate

for this possibility, whenever the ENABLED* queue is empty but the PENDING* queue is not, the interpreter

probabilistically decides whether to try blasting. The chance of blasting is 1 - e-t, where t is the time in

seconds until the next pending thread is to be run, and k is a parameter, about 0.03. The idea is that if the

interpreter is to be idle for a while, it might be worth it to spend some time looking for a process that can

be freed. The form of the probability expression was chosen so that the probability of blasting at least once

during several small delays is equal to the probability of blasting during one big delay of the same duration.

There is one last subtlety: given a choice between blastable processes, the interpreter picks the one that

has been valve-blocked the longest. If it did not follow some such rule, then a process could be valve-blocked

indefinitely while valves were aimlessly rotated among more recently blocked processes.

23

• • • •• • •

6

*

Ir

3 The Projector

A key component of the XFRM planning architecture is the projector, vhich provides a prediction of

what will happen when a plan is executed. This prediction is independent of the calculations of the critics

that generated the current plan, and it can take probabilistic contingencies into account, so it serves as a

"reality check" on whether the plan will work. The output of the projector is a set of projections, each of

which can be evaluated to measure the relative success of the plan.

The projector works exactly like the controller, except that instead of actually causing effects in the

world it records a prediction of effects. This prediction is encoded in two basic data sets: a description of

how the world changes; and a description of how the agent's state changes. The former is encoded as a

timeline that specifies a sequence of events and their effects. That is the subject of Section 3.1. Changes in

the agent's state are described by a variety of other mechanisms, to be described in Section 3.3. Because

the projector uses the same interpreter as the controller, it usually just consults the same dispatch table to

decide how to handle a piece of RPL code. However, when it is time to diverge from what the controller

does, it must make sure to allow handlers from its own dispatch table to override. See Section 3.2.

3.1 The Timeline

A timeline is a database that records how the world will evolve. As events unfold, the timeline gets

longer, event by event. Whenever the agent takes an action, a new event is added. When the agent uses one *
of its sensors, the timeline must be inspected to decide what is probably true, and what of the true things

are probably perceptible, at the time the perception is attempted. For example, if the agent looks around

for an object matching a description, then the projector must use its model of the world to estimate the

probability that there are n objects of that description at the robot's current location, and place n objects

there.

Often probabilities depend on previous events and states (McDermott 1982, Hanks 1990). We model

these dependencies using forward and 'ackward chaining rules. One important case is the notion of per-

sistence, or how long a state will last. Whenever an event has an effect, it is recorded in the time line as

a new occasion, or stretch of time over which a state is true. (These were called time tokens in Dean and

McDermott 1987.) Effects don't last forever, but only until they are "clipped" by later events. But even in

the absence of knowledge about clipping events, we wouldn't want to assume that a state would last forever.

Instead, the probability that the state is still true at some later time decays as time passes (Hanks 1990, Dean

and Kanazawa 1989). Rather than manipulate the probabilities explicitly, XFRM requires every occasion to

have a lifetime, after which its probability reverts to the background probability for states of that type.

Not all retrievals can be handled this way. Often we don't want to bother to create an occasion for an

effect until someone inquires about its truth value. At that point, we can check existing beliefs to judge the

probability that a fact is true.

24

0

0 0 0 00 0 0A

These considerations suggest the following representations and mechanisms for reasoning about time.

A timeline is a sequence of 1imeinstants, each of which represents a point event. (Such point events might a,

bound interval events, obviously.) The sequence is totally ordered, because we need only represent a single

execution sequence, not the totality of the agent's knowledge and commitments. Timeinstants are stored in

reverse chronological order; a tail of this list is called a timepoint, and represents a prefix of a timeline.

The timeline also includes a table of indefinite persisters, which are occasions whose lifetim-, extend

to the end of the timeline (so far). Associated with each timeinstant are four sets of occasions, known as

expired, clipped, beginners, and persisters. The expired list is the list of all occasions whose lifetimes ran out

between the previous timeinstant and this one. The clipped list is the set of all occasions that the event at

this timeinstant brought to an end. The beginners list is the list of the occasions that this instant's event

caused to become true, but which became false before the end of the timeline (i.e., were expired or clipped

later). The persisters list is the list of all occasions that were true before the timeinstant and remained true

after it (but were expired or clipped before the end). Whenever the timeline is extended by the addition

of a new event, the indefinite persisters are checked to see which expire or get clipped, and each loser gets

moved to the appropriate beginner, persisters, and ezpired or clipped tables for all the timeinstants from the

beginning of the occasion's lifetime to its end. The survivors remain in the indefinite-persisters table.

Retrieval from the timeline is set up to look like retrieval from a predicate-calculus database. We put

a pattern in, containing zero or more free variables, and we get back answers in the form of bindings for

those variables. For example, we might ask (LOC ROBOT ?I), meaning "Where is the robot?" In this query, *
?X is a free variable. The answer might be I=(COORDS 8 9). Answers do not have probabilities associated

with them. Probability comes in more indirectly, in that query handlers are allowed to make probabilistic

choices. For example. if all that is known about the robot's location over an interval is that it is in some

neighborhood, then the query might get handled by a method that picked a point in that neighborhood

randomly and reported it as the location. However, such a method is expected to make alterations to the

time line that will make sure that later queries have consistent results. To ensure consistency, the system

keeps track of queries that have already been tried at a given time point. (See below.)

Temporal inference is mediated by the use of five kinds of rule. As a timeline is built, PCAUSES and

CLIPS rules are used to generate new occasions and terminate old ones. When retrieving from a timeline,

PCAUSED rules are used to generate new occasions. COID-PROB rules are used to infer occasions that follow

(probabilistically) from others true at the same time. PROLOG rules are used for atemporal, nonprobabilistic

auxiliary deductions. In addition to the rules, we can provide procedural handlers for both temporal and

nontemporal inference.

Let's look at an example. Suppose XFRM is projecting the event (MOVE 'EAST). In our artificial world,

this action takes the robot one grid-square east. We have the following rule to specify where the robot is

after this:

25

mI

(PCIUSES (AND (FREE-TO-ROVE EAST)
CLOC ROBOT (COORDS ?I ?Y))
(EVIL (+ ?X 1) ?XIEW))

(END (MOVE EAST))
1.0 50000
(LOC ROBOT (COORDS ?XINEW ?Y)))

This rule specifies that after moving east, the robot will, with probability 1.0, be at coordinates < MIEW, Y >

if before the move it was at < X, Y > [where XNIE = X + 1], and if it is "free to move," that is, not at the

boundary of its world. The new location of the robot will last for a long time (50,000 seconds, but the

persistence time is a little bogus for an action purely under control of the robot itself).

To apply this rule after a particular time instant, XFRM needs to retrieve three things: whether the b
robot was free to move, where it was before the move, and what X + I is equal to. The first is handled by

this rule:

(COID-PROB 1.0 (FREE-TO-MOVE EAST)

(AND (LOC ROBOT (COORDS ?X ?Y))

(< ?X (- Aix-X* 1))))

which says that the conditional probability of being free to move east is 1.0 if the robot is to the west of the

east border. To apply this rule, XFRM finds the robot's location, then checks that the z coordinate is within b
bounds. This second query is handled by a procedural handler for <. The first query is more complicated,

because it can require checking past events to see how they impact on the robot's location. I will come back

to this topic later.

Assuming the robot is shown to be free to move, XFRM goes on to the next subgoal generated by the

PCAUSES rule above. As it happens, this subgoal is identical to the goal I just discussed, (LOC ROBOT (COORDS

?X ?Y)). Fortunately, the temporal projector does not have to reproduce the same backward chaining process

it performed on the previous instance of the goal. Every time instant has two slots, ESTABLISHED-BEFORE

and ESTABLISHED-AFTER, that list all queries that have been handled for the times just before and just

after that time point. If the same query comes in again, then the results are obtained just by unifying with

assertions (beginners, persisters, or indefinite persisters) whose lifespans overlap with that time point. This

caching is done for two reasons: efficiency and probabilistic consistency.

Here is how caching affects consistency: Suppose we tried the query (RAINING) in an environment with

a rule that answered the query by flipping a coin. If the coin came up heads, it put (RAINING) in the

beginners list of the time instant; if tails, it would do nothing. Here is such a rule:

(COND-PROB 0.6 (RAINING) (TRUE))

26

19 is Is 10
0lIII in um 0 m0u nn n0 0 q 0I

Now suppose we ask if it's raining, and the answer is No. To be precise, suppose that the rule decides not

to conclude (RAINING), and so returns nothing, which we interpret to mean No. If the system made no 5,

change at all in the database, then the next time the query occurred the answer might be Yes (and a new

occasion would be added to the timeline). To avoid this discrepancy, the timeline manager adds the pattern

(RAINING) to the ESTABLISHED-AFTER cache for the time instant in question. The next time the query

comes in, the system confines itself to unifying with existing occasions. It won't find any, so it will report

No again.

Let's return to our main example. The repeated query, (LOC ROBOT (COORDS ?X ?Y)), is handled by

checking for existing occasions matching this pattern. There should be exactly one, yielding bindings for

?X and ?Y. The third subgoal, (EVAL (+ ?X 1) ?XKEW) is handled by a procedural attachment, giving a

binding for ?XINEW. All three goals have succeeded, so with probability 1.0 XFRM can add (LOC ROBOT

(COORDS ?IEEW ?Y)) to the timeline as an indefinite persister that begins at the current timeinstant.

When a new occasion is added to the indefinite-persisters list, it remains there until a timeinstant is

added to the timeline that causes the occasion to expire or be clipped. Expiration is a simple matter of

checking the occasion's lifetime. Clipping depends on events, the dependence being expressed by rules like

this:

(CLIPS (FREE-TO-MOVE ?DIR)
(END (MOVE ?DIR))
(LOC ROBOT (COORDS ?X ?Y))) *

which says that the end of a MOVE action always clips occasions specifying the robot's location, if the robot

is free to move in the direction in question.

PCAUSES and CLIPS rules are used in the forward direction, as the timeline is built. Whenever the

projector adds a new timeinstant, each indefinite persister is checked to see if the timeinstant's event triggers

a CLIPS rule that clips that persister. As explained above, clipped events get moved out of the indefinite-

persisters table. PCAUSES rules are then run to compute the effects of the event, which get added to the

indefinite-persisters table.

When a query occurs (including a query generated from the left-hand side of a PCAUSES or CLIPS rule),

the system first checks to see if the query has been established at the time point in question. If not, what

happens next depends on whether we are asking about the situation just before a time instant or just after.

The latter case is primary; queries about the situation before a time instant are established by establishing

them for the situation after the previous time instant (if there is one), and then bringing the results forward,

checking for expirations and clippings, as described above.

To establish a query after a timeinstant, the system uses PCAUSED and COID-PROB rules. The former

are for cases where an event starts a new occasion; the latter, for cases where a set of occasions implies the

simultaneous truth of another occasion. An example of a PCAUSED rule is

27

• • • •• • •

0

(PCAUSED 1.0 500000

(LOC ?OB (COORDS ?X ?Y))
(START)
(INVENT-SIGNPOST ?OB ?X ?Y)))

which says that, with probability 1.0, the START of a projection "causes" a signpost to appear and remain at

every location. Let me explain. In my contrived domain (see Section 5), the robot must use sensors to tell

where it is, but I have made the task easy by putting a signpost everywhere. Hence at projection time XFRM

may infer that there is a signpost at every location. However, we don't want to make any of these inferences

until someone asks. So we backward chain to a procedural handler (not shown) for INVENT-SIGNPOST that

creates an occasion of a signpost being at location < ?X, ?Y >.

PCAUSED rules that trigger off the (START) event play a special role in this inference system, because they

transfer information from the agent's model of the current situation to its model of tho initial timeinstant. In

principle, one could model the current situation using a timeline directly, but that could get clumsy. Instead,

I make no assumptions about the mechanisms used for modeling the world. The only requirement is that

on demand any given element of the current world model be convertible to an occasion that begins at the

initial timeinstant and persists for as long as the agent expects that element to remain valid. For example,

in the current domain the robots location is kept as the value of two global variables, CURREIT-I* and

CURRENT-Y*. When the projector inquires where the robot is initially, this information must be converted *
into an occasion of the form CLOC ROBOT (COORDS X Y)). The conversion is accomplished using a PCAUSED

rule and a procedural handler.

Normally, PCAUSED rules are used when the timeline system is trying to establish a query q after a

timeinstant with event e. If some rule is of the form (PCAUSED I z q' e' p), where there is a single unifier

0 of q and q', and e and e', and if the query 0(p) succeeds, then the corresponding instance of q is added as a

new occasion. To avoid unifying q and q' repeatedly, this unification is precomputed, yielding a substitution

p, and the system scans backward for an event that unifies with p(e'). Even this is wasteful in the common

case where e' =(START), because there is only one (START) event, at the beginning of the timeline. These

PCAUSED rules are handled specially, by checking if 0(p) is true now.

Whenever an occasion is generated by a PCAUSED rule, it must be checked against all subsequent events

to see if it gets clipped. This set of cherks can be optimized by preunifying the occasion's pattern with

all CLIPS rules, before scanning for events that unify with the event pattern in the rules. If none is found,

the occasion gets added to the indefinile-persislers table for the timeline; otherwise, it gets added to the

appropriate beginners, persisters, and clipped tables for the timeinstants during the occasion's lifespan.12

12 If the occasion is added to the indefinite-persisters table, the preunified clip rules are not discarded; they are saved to be

used as new timeinstants are added to the timeline.

28

6

L * * *

It

Retrieval from the timeline is accomplished (during projection and plan criticism) using the Lisp proce-

dures (TIKELIJE-RETRIEVE q I) and (PAST-RETRIEVE q t 1). Here q is a query, I is a timeline, and t is a

particular point in the timeline. TINELIJE-RETRIEVE finds answers at the end of a timeline; PAST-RETRIEVE,

from an arbitrary timepoint in the timeline. During projection, the procedure (PROJ-RETRIEVE q) retrieves

from the timeline being built. What all these procedures return is a list of occanses, or "occasion answers,"

each of which includes a list of variable bindings for the variables in q, plus a justification for the answer. A

justification consists of either a list of occasions that make the answer true, or a "now justification," which

specifies that the answer is true now for some reason encoded as a Lisp predicate. Occasions also have

justificaLions, which means that the timeline system embodies a simple "reason maintenance system." This
0

could be used to support the kind of reasoning done by Simmons's (1992) planner, which traced justifications

back to diagnose problems with plans.

There are two sorts of inference mechanism that I haven't described yet. One is Prolog rules, which

provide a simple time-independent logic-programming machine. A rule of the form (PROLOG q P1 p2 ...

pn) is used whenever a timeless query arises that unifies with q. The pi are then used to generate (timeless)

subgoals in the usual way. The process bottoms out when a query is encountered that can be handled by a

procedural handler.

That brings us to the last inference mechanism, the procedural query handlers. These come in two

varieties, time-dependent and time-independent. The latter just takes a query and list of bindings for some

of the variables in the query, and returns a list of lists of bindings, one for each answer the handler found.

An example is the handler for queries of the form (EMAL e 0), which Lisp-evaluates e, and returns zero or

one binding list, depending on whether v unifies with the result.

Time-dependent procedural handlers are somewhat more complicated. Each of these is supposed to

take a query, an "occans" representing the deduction so far, a timepoint, a boolean specifying whether the

query is to be answered before or after the timepoint, and the timeline the timepoint is drawn from. The

handler returns two lists: all the new occanses it could generate, plus a list of new occasions it added to the

timeline. (Such new occasions might be generated if the handler did any subdeductions itself.)

There is one last mechanism to be mentioned here. Not all the events in the world are under the agent's

control. The projector can model such uncontrolled events by inserting them into the timeline whenever

time passes. There is a global variable WORLD-PROJECT* whose value is a procedure that is called whenever

a new timeinstant is added to the timeline. In the current work, I did not make use of this capability.

29

0 0 0 ~0 00000 *

3.2 Action-Projection Rules 0
3)

If a plan were a sequence of events, then it could be projected just by applying forward chaining to each

event in order (plus whatever backward chaining was required to evaluate the preconditions of each forward

rule). But a plan is a program, so much of projection is just interpretation. At some point the interpreter,

running in projection mode, must make contact with the timeline. Obviously, if a plan calls a Lisp primitive

(P ...), the projector cannot call P, but must instead generate a sequence of events that correspond t3

what would actually happen if P were to be called. There are two possible ways of getting the sequence

generated. One is to associate a special projection handler with P. The other is to express P's behavior

using PROJECTION rules, of the form: (PROJECTION (P ...) condition seq outcome), where condition is a

precondition that must be satisfied for this rule to be applicable; seq is the event sequence corresponding

to the execution of (P ...); and outcome is either (FAIL -descrip-) or (FINISH -values-returned-) or

(PROJECT subact). The seq is a list of alternating time intervals and event patterns, of the form (6t1 al 5t2

a2 .. 6 tN aN), where each 5ti is a duration, and each ai is an event, or a statement of the form (LISP e),

in which case e is a piece of Lisp code to be called for its side effect. When the event sequence is complete,

one of three things happens: Action (P ...) FAILs, with the usual sort of failure description; or it FINISHes,

with the given values returned; or, in the case where outcome is (PROJECT subact), further PROJECTION rules

are sought and run for the subact in order to generate more events and an ultimate outcome.

In most cases, a primitive action will give rise to two events, one of the form (BEGIN act) and the other 0

of the form (END act). The reason for two is that most actions take a nonzero amount of time, during which

other events may intrude. Often there are separate CLIPS, PCAUSES and PCAUSED rules for the beginning and

end of an action.

Here is an example of a PROJECTION rule:

(PROJECTION (MOVE ?DIR)
(EVAL (ROBOT-GRID-TIME) ?DT)
(0 (BEGIN (MOVE ?DIR))

?DT (END (MOVE ?DIR))
0 (LISP (NOTE-TIMELINE-LOC)))

(FINISH))

which spells out how to project a task of the form (MOVE d). First call the Lisp function ROBOT-GRID-TIME

to get how long the move should take, and bind ?DT to this time. Then record two events, (BEGIN (MOVE I

?DIR)), which occurs immediately, and (END (MOVE ?DIR)), which occurs after time ?DT. Then escape to

Lisp to execute NOTE-TIMELINE-LOC (not shown), which sets the variables CURRFNT-X* and CURRENT-Y* as

they would actually be set during execution. The MOVE action always succeeds, but will fail to actually move

anywhere if the robot is against the boundary of its world. This fact will be taken into account by the I

FREE-TO-MOVE test in the rules for projecting (END (MOVE ...)).

30

• • • •• • •

0 "0 -'-0" 0-0------'0 -*

A timeinstant contains zero or more events. (There will be zero if the timeinstant is merely recording

the passage of time.) If there is more than one event, only the first is used to trigger PCAUSES, PCAUSED, and NJ

CLIPS rules. The others are there as annotations. Two important cases are the first and last timeinstants 0

in a sequence generated by a PROJECTION rule. These get annotated with happenings (BEGIN t) and (END

t), where t is the task. So the MOVE rule above will give rise to two timeinstants with these happenings:

1. ((BEGIN (MOVE EAST)) (BEGIN-TASK #<Task ... >))
2. ((END (MOVE EAST)) (END-TASK #<Task ... >))

These annotations help to tie points in the timeline to tasks.

3.3 Keeping Track of the Agent's Projected State

The timeline records what happens in the world as the plan is executed. XFRM also records how the

internal state of the plan will evolve, using two mechanisms. First, the task network generated during the

projection is saved. Second, a table is maintained with an entry for each task, which specifies the state of

the agent and the timeline before and after that task. This is called tho task effects table, which, during

projection, is kept in the variable TASK-EFFECTS*. Each entry in this table is a record containing two timeline

pointers, one to the timepoint just before the task, and one to the timepoint just after it. The remaining

fields of the record encode information about the state of the agent itself.

RPL plans are arbitrary programs, and as such they have several side effects, not just in the world, 0

but in various data structures. For example, whenever the agent is about to move in the world, the fluent

MOVE-INTENTION* is set to #T, and reset to #F when the move is concluded. Policies keyed off this register can

then trigger and make sure various things happen before the move is consummated. Now consider what has

to happen during plan projection. If the move-projector were simply to set this fluent, then the controller, I

if running simultaneously, would "feel" it, and policies could trigger for real, as well as in the projection.

We could avoid this consequence by simply rebinding the variable MOVE-INTENTION* in the projector, but

that would not solve the whole problem. Nothing prevents a plan from changing an arbitrary slot of a data

structure. If a plan executes (SETF (CAR X*) ...), then we must make sure that the actual global variable

X* does not get altered.

The solution is to copy every data structure as soon as it is touched by the projector. When X* is

evaluated for the first time during a projection, the interpreter copies it and enters it into a hash table. The

next time we evaluate X*, the copy will be found. Side effects alter only the copy. There are actually two

hash tables, PR0JECTION-GLOBALS* and PROJECTION-COPIES*. The first records the values of copied global

variables; the second records the copied versions of data structures. When a projection is complete, these

two hash tables are stored as part of the projection data structure (as is the task-effects table).

Storing things in these tables happens automatically for variables touched in RPL code. References to

global variables must be slightly more careful in Lisp code. Any reference to a changeable global entity must

81

0 0 0 0 0 0 0 0 0 *

be wrapped inside a call to the macro GLOB-EVAL. So, what in RPL code is written as (SETF (CAR X*) 5)

should be written as (SETF (GLOB-EVAL (CAR (GLOB-EVAL X*))) 5) in Lisp code.

This technique may sound expensive, and indeed one could imagine cases where its performance was

pretty bad. Imagine a vision program where an entire image had to be copied even if the image is never

side-effected. However, there are ways of cheating a little bit, which I will describe below. And in the domain

I have been exploring, the data structures do not get very large. The trickiest part of the current system

is in copying fluents. A fluent F will in general point to some inputs and some dependents. The inputs are

the fluents whose values F's value is computed from, and the dependents are the fluents whose values are

computed from F's value. When a fluent has inputs, it also has a computer, a function of no arguments that

actually does the computation. Life would be simpler if the computer took a list of arguments, the inputs'

values, but then to compute a fluent would require consing this list or doing something messy. Hence we

opt for a more complex solution. Every fluent has a copier, a function of no arguments that creates a copy

of the fluent. A typical copier for fluent F does something like this: it creates a fluent Fc with no inputs or

dependents, and enters it into the PROJECTION-COPIES* table as the copy of F. It then copies the inputs

and dependents, and stores pointers to them in F.. Of course, when it copies a dependent D of F, it will

find a pointer to F as an input to D, but it will find F. in the table and avoid generating another copy.

(Similarly for any other trails from F back to itself, which will become trails from F, back to itself.) Finally,

it generates a new computer for F,, which uses the values of the inputs of F, the way F's computer used

the values of F's inputs.

In spite of all this complexity, most fluent structures are actually quite small, and this copying costs

almost nothing.

However, there is more to the story. It is not enough to trace out the effects of operations on data

structures during projection. We must also be able to undo all these effects later, restoring the state of the

system at an arbitrary point in the computation. Plan critics must be able to ask, for example, whether in

the loop (N-TINES K .. .), K was < 5 during a particular projection (or during every projection). Sometimes

we can get away with inferring the values of such expressions indirectly; if the I-TIMES task has 5 or more

subtasks, then K was certainly not < 5. But in general we'll go crazy trying to guess the answers to such

questions. Hence I have opted for a more straightforward approach. We assume we can represent any global

side effect as a change to a global-variable value, or to an expression of the form s(b,. . .). Here b is the object

affected, and s is the affected slot of it. The "..." allows for other arguments. For example, if b is an array,

s might be AREF, and "..." would be the subscripts. We can put a global-variable reference in this form by

taking b to be a variable name and s to be VALUE. We refer to the form s(b,...) as a locative.

Whenever a global side effect to s(b,...) is logged, we record it in another hash table, called SIDE-

EFFECTS*, under b. The entries in this table are clobhistories, each specifying a locative and a history of all

the changes to it in this projection. Each change is time-stamped, using integers that are incremented with

32

• • • •• • •

• 0] q mnn mn nm m n0 nnnm I

every side effect.' 3 It would be possible to use a fancy data structure to represent clobhistories, but currently

the system just uses a linear list in reverse chronological order (except for task statuses, as explained below).

Hence, to fiLd the contents of locative s(b,) at time d, the system retrieves the relevant clobhistory from

the entry for b, then scans back until it finds an entry prior to d. In practice, this system is quite fast. ,

All of these machinations are handled automatically by the interpreter and the GLOB-EVAL macro.

During projection, SETF'ing a GLOB-EVkL'ed construct causes an entry to be made in the SIDE-EFFECTS*

table. When projection is complete, the table is stored as a slot in the projection data structure. Later,

when we ask for the value of an expression at a particular time, these entries can be retrieved. This is called

performing a clobeval on an expression. During a clobeval, calls to GLOB-EVAL are trapped and generate

searches of clobhistories. In order to retrieve the state of an agent before or after an arbitrary task, all we I

need to do is retrieve the side-effect timestamp at those times. We use the task-effects table for that job.

For every task, the projector stores in this table a record of six entities: the timeline, local variable values,

and side-effect timestamp before and after that task. Using these values, the clobeval system can restore the

state of the intepreter at any point in a projection.

Obviously, the cost of this scheme is in storage, not time. Even small projections generate a lot of side

effects that have to be recorded. One source of side effects is task-status records, which are accessible from

within a plan. A plan can execute (WAIT-FOR (END-TASK K)), where K is a RPL variable that evaluates to

a task. A critic might well ask what the value of ('!-(task STATUS) K)14 is at a certain point in the plan 0 *
in order to tell whether the WAIT-FOR had finished at that point. Task statuses are stored as the value of

fluents (so that events can be triggered off their value changes). Hence to recover the value of a task-status

fluent S at an arbitrary point, we have to make sure that all changes to S are recorded in a clobhistory for

FLUENT-VALUE(S). If you think about it, you'll see that there are a lot of fluents of this sort.

Fortunately, in a case like this we can optimize quite a bit. Task-status fluents have the feature that

they all go through the same sequence of values over their lifetimes, or almost the same. Every task starts

off CREATED, then becomes ENABLED, then ACTIVE. At this point things diverge a bit, because the task will

have one of three fates: to wind up DONE, FAILED, or EVAPORATED. Fortunately, we don't have to record the

task's final fate on its status fluent's clobhistory, because it stays recorded on the task. Hence we can boil

the entire clobhistory down to the three numbers: the time at which it became enabled, the time at which

it became active, and the time at which it ceased to be active. One can then recover its state at a particular

13 It would not do to use the current date from the timeline, because the timeline is at too coarse a time scale. The projector

assumes that the interpreter takes no time to compute what to do next, a perhaps unrealistic assumption, but one that prevents

using "projected real time" to keep track of effects.

14 In our Lisp system (McDermott 1988), an expression (0 -(t s) e) means the value of slot s of object e, of type t.

$3

• • • •• • •

time s by comparing it with these timestamps and checking the actual final value.15 We can optimize further

by storing these three numbers in the status fluent itself instead of creating an entire hash-table entry.

There is one other complication to discuss. We assume that during planning and projection, execution

is proceeding. That means global data structures are changing during and between projections. At one

point the planner might ask for the current robot coordinates (stored in global variable CURRErT-I* and

CURENT-Y*), and get back 3,4. If the robot is moving, the next time it asks it might get back coordinates

7,4. Within a projection, this is no problem, because the values of the global variables are copied. Projection

One might start with CURRENT-X* bound to 3, and change it to 1, even while the real variable is changing to

7. However, it is meaningless to compare projections based on differing assumptions about the state of the

world. What we really want to happen is for the planner to note just once that CURRENT-I* is 3; if at some

point the actual value diverges so far that the plan being generated is useless, planning should be aborted

and the planner should attempt to get the world into a more quiescent state before resuming. (It should

pull over to the side of the road, as it were.)

Unfortunately, I don't quite know how to get the system to do the right thing here. Clearly, we have to

distinguish between small and large divergences, and such distinctions are problem-dependent. One apprcach

might be to have critics and transformations be able to flag assumptions they are making about the global

values they refer to, but it is not clear that this can be made to work; for some speculations, see Section 8. For

now, I have contented myself with the following piece of machinery. Whenever a global variable is touched

for the first time during a planning epoch (see Section 4), it is copied; every projection then makes its own

copy of the copy. This tactic ensures that all projections agree on the world state. Furthermore, the system

can print out which objects were copied in order to inform the user as to which changed global-variable

values the current plan depends on. However, there is still one flaw in this mechanism. Suppose some time

passes between the planner's first reference to CURRENT-X. and its first reference to CURRENT-Y*. Suppose

that during this time the robot moves from 3,4 to 6,7. Then the planner will assume the robot was at 3,7. I

doubt that this is a significant problem in practice (because the hallucinated state will be "close" to the real

state, and the "correct" assumption differs from reality anyway). But it is certainly easy to contrive cases

where bizarre and impossible consequences flow from this flaw. I leave it as an exercise to construct one.

This extra layer of copying does have some advantages. We can provide hooks to make sure that some

variables' values are copied in special ways. For example, there is a global variable PROTECTIONS* that

specifies all the states currently being monitored by the controller."6 These states have no meaning inside

15 In a buggy plan, a task could become ACTIVE and never finish, so we have to be careful to check for this case. Note

also that we don't have to record when the task got the status CREATED; we can pretend it existed with that status from the
beginning of the universe,

16 It really should be bound in the controller, except that I wanted the controller to be unaware of the concept of protection.

34

• • • •• • •

0m|mmm a m mi•mm•J 0 0 0s S S 00•

the planner, and we make sure we hide them by specifying a special copier for this global variable ttnot just

binds it to (), the empty list.
p

A more devious example is the database of all known objects. In a real system, this would be stored

as an elaborate global data structure. It is used when, for example, a plan needs to get a box. It looks in

this database to see if it knows of a nearby box, and if so heads for that one instead of searching aimlessly.

For our simple domain, the database is just a list KNOWI-THIIGS* of designators. Even so, we don't want

to have to copy every designator in it the first time the projector touches it. We avoid that by having the

global-variable copy-hook for KNOWN-THINGS* generate "lazy copies" for the elements of the list. A lazy copy

is a suspended function closure that does nothing but respond to the copy operation by calling that function

and returning the resulting value. When these are copied into an individual projection, they turn themselves

into "lazy designators." Only when the system actually tries to access an element of the list does a lazy

designator get resolved by copying the designator for this particular projection. For the current application,

this elaborate choreography doesn't actually save much, but it would be quite important in a realistically

sized database of designators, where the strategy would be applied to (e.g.) buckets of designators in a

discrimination tree.

This brings us back to the specter of large images being copied every time they are touched. Let me * 0
explain why this prospect should not cause worry. To begin with, we're talking about projection here. As

explained in Sections 3 and 5, projection must "bottom out" above where real execution would. In the case

of vision, it is quite unlikely that we would actually generate hallucinated images at run time. Projection

of visual sensing could be important, but is more likely to be carried out by use of a model at a coarser

resolution. That is, instead of actually generating a picture of an apple on a table to project the result of

scanning the table for an apple, we would do better to compute the probability that there is actually an

apple, then the probability of the sensor accurately reporting what's there (Banks 1990), and finally (if it's

appropriate) the z, y, and z coordinates of the apple reported by the sensor (with noise included).

However, let's suppose that the agent has an actual image in hand, that will guide its behavior for the

next 60 seconds, and that it wants to project those 60 seconds before living them. Now the plan might

actually refer to the current image structure, raising the possibility that it would be copied. If the image is

actually going to be altered by the plan, then we have little choice to but to copy it. However, if it's only

going to be inspected, then we can cheat and tell the copy-hook for that global variable to avoid copying at

all, but just pass a lazy copy on to the projector, which, when copied, just returns the original image.

35

0

0 0 0 0 0 S 0 0 0

4 The Planner

In Section 1.1, we looked at the basic cycle of the planner: project, criticize, transform. I left out a lot a,

of details out, which I will fill in in this section.

The user sees the planner's current problem as a set of top-level commands. The planner is supposed 4'

to execute all of them. The user can add a new one or delete an old one at any time. When a top-level

command is finished, the agent can forget about it. (Top-level commands should be tropistic as explained

in Section 1.4.) The planner runs as a separate process, which communicates with the user interface on one 0

side and the controller on the other (Figure 3). Once it has received instructions from the user, it bundles

the top-level commands into a single RPL expression, of the form given in Section 1.3, and hands it to the

controller. The core of the plan is an expression (TOP-LEVEL cl ... c,), The interpreter treats this roughly

as a PAR expression, except that the failure of one ci does not cause the whole TOP-LEVEL to fail, but merely 0

results in a message being sent to the planner process (McDermott 1991b).

The planner searches through plan space for an improved version of the current set of top-level com-

mands. Whenever it finds one, it ships it off to the controller. However, the planner continues to try to

improve the plan, even as the current version is executed. It is dormant only when it can think of no way

to improve the current plan, and when it has not received any new top-level commands or failure messages

since it came up with that plan.

The planner must be restarted whenever a new command arrives, or an old one fails. The period between

restarts iv. called a planning epoch. At the beginning of an epoch, the planner's tables are all reinitialized.

The world-model-preservation apparatus described in Section 3.3 is restarted. The queue of analyzed plans I *
is emptied. The tables for adjusting bug penalties described in Section 4.2 are reset.

The overall planning algorithm is thus:

(Repeat indefinitely ; (An epoch)
Delete done or hopeless top-level tasks
Add new top-level commands
Initialize planner tables
Initialize plan-queue with current-plan
Let A = Project-and-criticize(current-plan)

(Repeat
Send current plan to controller
(Repeat ; (Search for improved plan)

Remove most promising plan P from plan-queue
New-plans := ELIIIATE(worst-bug(P), P)
For each new-plan

Project-and-criticize(new-plan)
Adjust severity of tried bug (see Section 4.2)
Add new-plans to queue and re-sort queue based on current bug scores

Until (some new-plan better than current-plan
or run out of plans
or new top-level command arrives or some old one failed))

current-plan := new-plan)
Suspend until new top-level command arrives or some old one failed)

Currently, when a plan is "projected-and-criticized," the system generates three projections. It would

be nice if it could do more, but the projector runs too slowly to allow that.

36

• • • •• • •

Ar

4.1 The Life Cycle of Bugs

Adapting XFRM to a new domain requires a substantial amount of work. With some classical planners,

all you tell the system is the physics of the domain, but with a system like XFRM we must seed the planner

with a higher level of expertise. First, we have to provide a plan library, a set of RPL routines for achieving

the goals that typically arise in the domain. The routines must be robust in the face of uncertainty and

interference. Second, as with classical planners, we must provide a set of axioms, or temporal rules, defining

what can happen in the domain. These axioms tell the projector how to predict what will happen when a

plan is executed. We can express these axioms at any convenient level of detail, not necessarily at the level

of primitive actions. For example, in the grid world we can axiomatize MOVE, the action that moves one step,

but we also provide a model of (GO r y), which gets the robot to a remote location. This model spares us

from having to generate a long sequence of moves at projection time. (See Section 5.)

Third, we have to provide domain-dependent critics that find bugs and propose fixes. Actually, there

are several routes by which bugs can be detected. The most straightforward is by inclusion of a critic in

the list STANDARD-CRITICS*. A critic is simply a procedure that takes a list of projections and returns a

list of bugs. The standard critics are those that should run after every projection. The protection-violation

detector is an example.

Another route for the generation of bugs is by the occurrence of failures during projection. A failure is

characterized by a description, called a faildescrip. The description is generated from the arguments to the

FAIL primitive. An example is (FAIL :CLASS lost-object :TARGET X), which might be generated when 0

the projector predicts that in the current timeline the agent will be searching for object X in a place where

it's unlikely to find it. The faildescrip in this case is a CLOS object of class lost-object. There is a generic

operation 17 FAIL-BUG that takes a faildescrip and produces a bug from it. To produce a nontrivial bug, we

must provide a method for handling FAIL-BUG when applied to a faildescrip of a certain class.

Before I do, let me point out a slight problem here. A standard critic examines a set of projections in

order to find a single bug. It may, and often will, judge the severity of the bug by averaging its severity

in all the projections it occurs in. But a failure-derived bug occurs in a single projection. If we have three

projections, we may wind up with three bugs that are all really the same, and we need to make sure that

they are so classified. To accomplish this, we provide a standard critic COMBINE-BUGS that extracts failure

bugs from individual projections and groups together those that are comparable.

Here and elsewhere I assume that we can test whether two bugs are "comparable." Consider the bug

"protection violation of fact P at task T." It seems intuitively reasonable that any time P becomes false

when being guarded by policy task T, we count that as the "same" bug. It is easy to think of cases where

this criterion will count two dissimilar bugs as the same, or fail to recognize the similarity of two bugs. For

17 1 use "generic" in the CLOS sense. A generic operator's behavior depends on the classes of its arguments. As explained

below, bugs are CLOS objects, organized into classes in the usual way. 0

37

10I
0 0 0 0 0f 0 00

example, if every iteration of a loop protects P, do we count a violation on iteration 98 as the same as a

violation on iteration 101? If we simply look for task identity across projections, then these will come out a,

different.

This is a tricky issue, which will not find a uniform, tidy solution. Different bugs will require different

identity criteria. We arrange for that by providing a generic operation BUG-COMPARE that handles different

classes of bug differently. Given two bugs, it returns either SAME, BETTER, WORSE, or #F. The value #F means

that the two are not comparable. The values BETTER and WORSE are for the cases where the comparer sees

that the bugs are comparable, but one is worse than the other. (These symbolic values should be consistent

with the numerical severity values stored on the bug.)

We use BUG-COMPARE to group bugs from different projections, by applying it to all pairs and collecting

those for which the result is non-#F. Each group is then turned into a single bug by applying the generic

operator BUG-LIFT to b and 1, where b is the worst bug in the group, and 1 is a list of the other bugs in the

group. The default behavior of BUG-LIFT is just to adjust the severity of b by summing the severities of b

and the elements of I, and dividing by the number of projections.

There are other, less often used paths for bug creation. The projector can add to a list of DISCOVERED-

BUGS* for the current projection. (Failure bugs are actually just a subset of the discovered bugs.) It can

also provide one level of indirection, and add to the list DISCOVERED-CRITICS*, a list of critics that are run

after the projection. Yet further critics are provided by the list of planchanges in effect in the current plan.

Every planchange can include an optional critic that can do a recheck to verify that the planchange still

makes sense.

A bug is nothing but a labeled opportunity for plan improvement. By "labeled," I mean that the

bug has some kind of symbolic signature that allows its relationship (and possibly equivalence) with other

bugs to be computed (by BUG-COMPARE). It may seem odd to declare that a bug is an opportunity for plan

improvement, but the intuition is that it is pointless to compile a list of faults with the current plan merely for

the sake of having a complete catalogue, is A bug must have an associated transformation, a procedure that

takes the buggy plan as argument and returns zero or more new versions (hopefully better). We associate

transformations with bug classes by wdy of a generic operator ELIMINATE that when applied to a bug and a

plan returns a list of 7-r- or more revised plans.

The call to ELIMINATE appears to be a sharp line between the critic that generates a bug and the

transformation that _rips to eliminate it. Before that call, the planner has not yet committed to producing

and projecting a revised plan; its only estimate of the transformation's effect is the SEVERITY slot in the

bug. However, in the critic writer's mind, the boundary is not quite that sharp. It is often the case that

to compute the severity of a bug requires doing much of the work of the eliminator. For example, if a

transformation will add steps to a plan t o acquire a box and put things in it, then the severity of the bug

18 A bug is essentially whAt the O-PLAN group calls a "flaw." Currie and Tate 1991

38

0 S 0 0 0 S

will depend on how expensive it is to acquire a box. If the nearest box is far away, then the improvement

from having a box will be canceled by the effort required to get it. Hence the computation of which box

to get, which sounds like it would be performed by the eliminator, is actually performed by the critic that

generates the bug in the first place. We can of course avoid having to repeat the work by storing the box 4

information as part of the bug representation. And in practice the overhead of computations like this is not

significant compared to the cost of projection. (Any temptation to use projection to estimate the gain from

a transformation should be resisted.) But the whole process takes some getting used to.

Another set of decisions concerns where the branching occurs in the search space. A plan can have

several bugs, and each bug can generate several plans when eliminated. So we often have a design decision

whether to think of a choice as among bugs or as among alternative ways of eliminating a bug. For example,

in classical planning a standard "flaw" is that a goal as yet has no method for accomplishing it. We can

analyze such a plan as having several bugs, one per unachieved goal, or as having a single bug, "Unachieved

goals," with several alternative ways of resolving it. Actually, in classical planning, neither of these is the

best approach; goal reductions commute in classical planning, so that the reduction order does not affect

the set of findable plans. So in that case one would want a single bug corresponding to just one of the goals

(selected by the critic); the other unachieved goals will be picked up in subsequent rounds of criticism. But

in more complex domains this commutativity will not hold.

4.2 Bug Penalties 0

The planner operates in best-first search mode. It keeps a queue of analyzed plans, sorted in order of

decreasing score. The score of a plan is its projected value plus the adjusted seve-ity of its worst bug. Let

me spell this out. The projected value of a plan is the average over all projections of Kln - K2t, where n

is the number of top-level commands that succeeded and t is the time taken in seconds. In all experiments,

K 1 = 100 and K 2 = 0.167, so that a task would have to take 10 minutes of effort to be judged not worth

the trouble. The worst bug is the one with the highest adjusted severity.

To understand adjusted severity, picture this scenario. The planner picks a bug to work on, and the

associated transformation generates two new plans. Unfortunately, neither is as good as expected. That

is, the difference in expected utility between the new plans and the old one is less than the "severity" of

the bug, which is the estimated improvement. Because we have adopted a best-first search regime, the new

plans might be worse than some other active candidates, so the planner might shift to work on one of those.

That would make sense, unless the alternative plan had the same bug as the one that just disappointed it.

Chances are that the alternative plan is sufficiently similar that the severity of the bug suffers from the same

overestimate. The planner will transform it away, only to discover that the results are even worse than what

it has now.

To avoid this problem, we adopt a strategy similar to that of McDermott (1991a). We adjust the severity

of each bug to take account of its actual performance over the current planning epoch. Whenever a bug is

39

0 0 0 S S S 0 S 0 *

I

tried (i.e., its transformation is run on the plan it occurs in), it gets added to a table of TRIED-BUGS*. This

table records, for each bug, a list of all tried occurrences of it. The adjusted severity of a bug then depends a,
I

on its entry in this table. Currently we adjust the severity thus: For each occurrence of the bug, we compute

the ratio between its severity (predicted improvement) and the actual improvement, as measured by the

difference between the value of the plan containing the occurrence and the value of its best descendant. The

adjusted severity of a new bug occurrence is then the product of its severity and the geometric mean of these

ratios. I make no claims about this formula.

The bottom line is that a plan's score depends on its actual projected value, plus the amount it could

improve if its most promising transformation were tried, where expectation for a transformation is tempered

by the performance of transformations for similar bugs in the current planning epoch.

0

5 The World

Our current world model is very simple. The agent is a mobile robot on a 20x20 grid of locations.

At each location there are one or more objects, each with a unique local coordinate. Picture a row of

positions, each of which may contain an object (as at the top of Figure 1). Some of the objects can move 0

from one location to another. Some of the objects are boxes; each box can contain an arbitrary number of

other objects. The robot is an object in the world itself, and moves in response to a ROBOT-START-MOVING

command issued by the controller. Other objects begin moving randomly (some more readily than others).

When an object arrives at a location, it may take the place of an object that's already there, pushing it to 6

a new position. The robot can see only objects at its current location. At every location there is a signpost

that has the current X and Y coordinates printed on it.

The robot has K hands (K is 2 in all the experiments I have run). Objects in the hands are attached to

the robot, and move where the robot moves. (Other objects can be attached to each other also). Each hand

is associated with two sensors. The array HAID-MOVED* consists of one fluent per hand, which gets pulsed

when any motion of the hand is complete. Another fluent array, HAID-FORCE*, consists of fluents that report

the current pressure being sensed by the hands. If a hand is empty, its fluent's value is 0. (Figure 2 shows

how these values are displayed to the user.) 0

The world simulation runs as an asynchronous process. (Currently, it is a lightweight Lisp process,

but it could exist on a completely separate processor.) It keeps an ordered queue of events, each with an

associated world time. Each event is associated with a procedure, which is called in order to make the event

"happen." The procedure returns a new time and procedure if the event is part of a cyclical process. It 0

returns #F if the event is the last or only member of a series.

Defining such an asynchronous simulator is made problematic by the fact that we are specifically in-

terested in studying the relation between planning and execution. World time cannot be allowed simply to

advance at the fastest rate allowed by the computations performed by the simulator. If a series of eight 0

events occurs with two-second delays in between, then the planner should be given 14 seconds of time to

40

I

think as the events unfold. To arrange for this loose synchronization, the simulator is governed by a pararn-

eter WORLD-SPEED* that determines the ratio between world time and real time (the time of the planner). 0

Whenever the world time is advanced, the real-time clock is recorded as LAST-REAL-TIME*. The next event

is not allowed to occur until the following amount of real time has passed since the last advance:

(NEXT-WORLD-TINE* - WORLD-TIME*) x INTERNAL-TIME-UUITS-PER-SECOND
WORLD-SPEED* 0

The world process sleeps until this amount of real time has passed since LAST-KEAL-TINE*.

To make sure that real time and world time are synchronized fairly often, the world queue contains, in ad-

dition to other events, a cyclical series of time-calibration events, whose sole purpose is to reset WORLD-TIME*

and LAST-REAL-TIME* every 10 or so seconds. Because WORLD-TIME* advances regularly, it is convenient to 0

use it as the clock for the controller. One should always be suspicious when data are piped directly out of a

simulation (Hanks and Badr 1991), but this device seems justified; we can pretend that the controller's clock

is a "physical object" in the simulated world. The advantage of using such a clock is that the controller

can never timeout just because it is waiting "too fast" for an event in the world; the disadvantage is that 0

it becomes impossible for the controller to divide time more finely than the simulator. (E.g., a tight loop

to perform an action every twentieth of a second could put 200 copies of the action on the PEBDING* queue

during each iteration of the time-calibration cycle, which will be run all at once at the end of the itera-

tion.) Of course, any attempt to do precision timing on either the controller side or the world-simulation 0 -

side is doomed to fail anyway when the two processes are implemented as lightweight Lisp processes being

timeshared with a quantum of 333 milliseconds.

Here is a complete catalogue of the actions available to the robot. In each case, the time that elapses

between when the action begins and when it ends is measured as world time. The real time that passes I

depends on WORLD-SPEEDS, as explained above. To reset the world speed, use the Lisp procedure (WORLD-

SPEED-SET v), where v is a floating-point number (default 1.0) that is the ratio of world seconds per real

second.

For each action, there is a Lisp procedure that starts the action, then returns before the action termi- 0

nates. Action termination is detectable by testing whether some fluent has been set. In the description of

each action, I indicate how termination is detected, and through what channels the results of the action are

sent back to the agent.

(ROBOT-START-NOVING dx dy): Begin moving to an adjacent location. dx and dy indicate the direction of 0
movement, and are equal to one of (-1,0), (0, 1), (1,0), or (0,-1). If the movement would take the
robot to a nonexistent location, nothing happens. Otherwise, termination is signaled by a pulse on
the fluent ROBOT-OVED*. Movement takes time proportional to (!-(robot V) ROBOT*), which is the
number of moves to an adjacent location the robot can execute per second. The default is 0.33 (i.e.,
it takes 3 seconds to make a move). The speed can be changed with (ROBOT-SPEED-SET v).

(HAID-MOVE i z): Move hand i < K to local coordinate z. Takes time proportional to the distance from its 0
current location to z. (The coefficient is the reciprocal of HAID-SPEED*, default 1.0 positions/second.)
Puts a pulse on fluent (AREF HAND-MOVED* i) when completed.

i41

0 0000 0 0 0

(BAND-IN 0): If there is a box at the same position as hand i, the hand goes inside it. Takes time GRASP-
TINE* (default 3.0 seconds). Puts a pulse on fluent (AREF HAND-KOVED* i) when completed.

(HAND-BACK i): Moves hand i out of any box it contains, taking time GRASP-TIKE* and pulsing (AREF
RAND-KOVED* i) when completed.

(GRASP i): If hand i is already holding something, it just resets the value of the fluent (AREF HAND-FORCE*
i), taking zero time. Otherwise, if hand i is in a box, and the box contains some objects, then one of
those objects becomes held by hand i with probability 1 - q", where n is the number of objects in the
box, and q = 1-BOX-GRASP-PROB* is the probability of failing to grasp a single object; the default value
of BOX-GRASP-PROB* is 2. If hand i is not in a box, but the robot is stationary, and there is a stationary3.
object at the same local coordinate, that object gets picked up with probability FREE-GRASP-PROB*
(default 1). In any case, the operation tak.s time GRASP-TINE*, and (AREF HAND-FORCE* i) is set to
reflect the force exerted by the grasped object, or 0 if no object was grasped.

(UNGRASP i): If hand i is holding something, the object leaves the hand, after UNGRASP-TIME* (default 2.0
seconds), and the fluent (AREF HAND-FORCE* i) is reset. If the hand is in a box, then the object
stays in the box. Otherwise, it remains at the local coordinate of i. If there was already an object
there, some jostling will take place, preserving the invariant that there is just one object at each local
coordinate.

(LOOK-FOR-PROPS I): l is a list of pairs, ((pI v1) (P2 v2) ...), where pi is a key such as CATEGORY, COLOR,
TEXTURE, or FINISH, and vi is one of its possible values. For CATEGORY the possible values are BOX,
BLOCK, BALL, PYRAMID, ROBOT, and SIGNPOST. For COLOR the possible values are BLACK, WHITE, LIGHT-
GRAY, KEDIUM-GRAY, DARK-GRAY. For TEXTURE, the possible values are HORIZ-STRIPES, VERT-STRIPES,
CHECKED, and #F. For FINISH, the possible values are SHINY and #F.
After time proportional to N x LOOK - TIME*, where LOOK-TIME* has a default value of 1.0 second,
and N is the number of objects at the current z, y location, the global variable OB-POSITIONS* is set
to a list of local coordinates of objects whose property pi has value vi for all pi in the list 1. Then the
fluent VISUAL-INPUT* is pulsed.

(POS-PROPS z I): For this action, I is a list of property names, like COLOR, TEXTURE, etc. After time LOOK-
TIME*, if there is an object at local coordinate z, then global variable OB-SEEN* is set to #T, and a list
is created of its corresponding values for each property in 1, and this list is made the value of global 0
variable OB-FEATURES*. If there is no object, OB-SEEN* is set to #F, and OB-FEATURES* is set to (.
In either case, the fluent VISUAL-INPUT* is pulsed.

(BAND-PROPS i 1): Just like POS-PROPS, except that hand i is scanned instead of a local coordinate.
(LOOK-FOR-FREE-SPACE): Returns the smallest local coordinate that does not contain an object. Takes

time proportional to the product of LOOK-TIME* and the size of that coordin;e. After that time,
OB-POSITIONS* is set to a list containing just the coordinate. The fluent VISUAL-INPUT* is pulsed.

5.1 Some RPL Plans and Plan Models

The plan library for the grid world is divided into two files, each about 1000 lines of RPL and Lisp code.

One contains "low-level" plans, the other "high-level." The distinction between "levels" is roughly this: A

low-level action is one that the projector handles using projection rules and procedural handlers; high-level

actions are represented as RPL procedures in both the interpreter and the projector. However, as explained

in section 5.1.2, there are exceptional high-level actions that are modeled using projection rules.

As explained in Section 2.1, objects must be referred to using designators, often abbreviated "desigs."

The agent's current beliefs about a designator are stored on its property list. The properties currently used

are CATEGORY, COLOR, TEXTURE, FINISH, X-COORD, Y-COORD, and Pos. All but the last three are perceptual

properties, in that they can be perceived directly. CATEGORY has values like BLOCK or BOX. COLOR has values

WHITE, BLACK, or various shades of gray. TEXTURE has values PLAIN, CHECKED, HORIZ-STRIPES, and VERT-

STRIPES. FINISH has values SHINY and DULL. The last three properties are the coordinates of the object,

42

0 0 0 0 0 0 0

litn

x-COORD and Y-COORD being its location on the grid, and POS being its local coordinate, except that if the

object is believed to be in a hand or box, the POS is that hand or box. (If POS is not an integer, the I-COORD a1
and Y-COORD are not required to be the actual location of the object, but only the location the last time the

object was on the ground.)

If a property has value #F, that means it is unknown. However, the plans described below do not always

trust stored property values. If the agent arrives at a location where it saw an object at POS=3, it assumes

that the object will have to be found again. It does so by looking for a similar object, and EQUATE-ing the

new desig with the old one. At that point the old desig inherits a probably valid POS value from the new

one. (Cf. Section 2.1.) A designator with a reliable POS value is said to be "fresh" in what follows. Finding

and freshening a designated object is called "acquiring it."

5.1.1 Lower-Level Plans

A key issue in applying XFRM to a domain is where projection departs from execution. Actions like

GRASP, documented in section 5, can obviously not be executed at projection time. At some point in the

projection of a plan containing a grasp, the projector must switch to PROJECTIOI rules. If it switches at a 0

high level in the task network, it will generate projections faster, but sacrifice some "resolution." It would

be nice if the grain size of projections were controllable, dependent on (among other things) the temporal

proximity of the tasks being projected, but, in the current implementation, we do not have that control. The

grain size of projections has been chosen based on design decisions about the kinds of bugs that it is worth *
any effort to predict and cope with. For example, at projection time, the planner never tries to predict the

local coordinates of objects. It does, however, keep track of the grid coordinates.

Here's an example:

(DEF-INTERP-PROC EMPTY-HAND-PICKUP (OBJ HAND)

(LET ((HAND-INDEX (!_(HAND ID) HAND))
(P (DESIG-GET OBJ 'POS)))

(SETF (FLUENT-VALUE (AREF HAND-NOVED* HAND-INDEX)) '#F)
(HAND-MOVE HAND-INDEX P)
(EVAP-PROTECT

(SEQ (WAIT-WITH-TIMEOUT (AREF HAND-MOVED* HAND-INDEX)
(WORLD-SPEED-ADJUST (/ 100 HAND-SPEED*))

:KEEP-CONTROL)
(SETF (FLUENT-VALUE (AREF HAND-MOVED* HAND-INDEX)) '#F)
(N-TIMES GRAB-CHANCES*

(GRASP HAND-INDEX)
(WAIT-WITH-TIMEOUT (> (AREF HAND-FORCE* HAND-INDEX) 0)

(WORLD-SPEED-ADJUST (* 2 GRASP-TIME*))
:KEEP-CONTROL)

UNTIL (> (AREF HAND-FORCE* HAND-INDEX) 0)))
(IF (> (AREF HAND-FORCE* HAND-INDEX) 0)

(SEQ (SET-VALUE (!-(HAND HELD) HAND) OBI)
(SETF (DESIG-GET 0BJ 'POS) HAND))

(SEQ (SET-VALUE (!-(HAND HELD) HAND) '#F)

43

• • • •• • •

0 mlmu m mm0m n n m n mmm m -0 ,

Ar

(FAIL :CLASS failed-to-pickup :0B 0BJ :HAND HAND))))))

This plan gets the object designated by OBJ into the given HAND. The designator OBJ must be fresh, as

explained above, so that its P0S value is accurate (and the POS must not be a hand; and the object must

be at the same z, y location as the robot). The robot must already have made sure the hand is empty.

The plan contains lots of little steps, which mostly compensate for noise and timing errors. It moves the

hand to where the object is believed to be. Then it grasps the objects, trying several times. (The variable

GRAB-CHANCES* has default value 3.) If it succeeds in grasping something (the hand force sensor registers

nonzero), it assumes that the grasped thing is the object, so it resets the POS of the object, and the fluent

0 -(hand HELD) HAND). If nothing got grasped, it sets the HELD fluent to #F, and generates a failure. These

model-update steps are carried out inside an EVAP-PROTECT, so that even if the plan is evaporated, the model

will be updated correctly.19

During projection, we omit most of this detail, in favor of the following coarse-grained model:

(DEF-FACT-GROUP PICKUP-PROJECTIOI

If the object is not where the robot is, the robot will fail to get it.

(PROJECTION (EMPTY-HAND-PICKUP ?OB ?HAND) 0

(THNOT (AND (LOC ROBOT ?WHERE)

(LOC ?0B ?WHERE)))
()

(FAIL : CLASS manipulating-faraway-object
:OB ?OB))

Otherwise, it'll succeed
(PROJECTION (EMPTY-HAND-PICKUP ?OB ?HAND)

(AND (LOC ROBOT ?WHERE)
(LOC ?OB ?WHERE) 0

(EVAL (WORLD-SPEED-ADJUST GRASP-TIME*)

?GT))
(0 (BEGIN (PICKUP ?OB ?HALD))

?GT (END (PICKUP ?OB ?RAND))

0 (LISP (PROJ-SET-HAND-FORCE ?HAND)))

(FINISH)))

19 One might wonder what happens if a failure occurs in an evaporated plan while tidying up after an EVAP-PXOTECT. The

answer is that such a failure is ignored. 0

44

SI • I -

The Lisp procedure PROJ-SET-HAND-FORCE performs the model-update function, which is just as im-

portant at projection time as at run time:
I

(DEFPROC PROJ-SET-HAND-FORCE - void (HAID - hand)

If, after the action, ..
(LET ((AISL (PROJ-RETRIEVE '(LOC ?X ,(BE sexp HAND)))))

(COAD ((NULL AISL)
nothing is projected to be in the hand, change the

relevant fluents to indicate that
(SET-VALUE (HAID-FORCE-FLUEJT (•.ID HAND))

0)
(SET-VALUE (!EEL HARND) '#F))

(T
Otherwise, let OR be the object in the hand, and note
that you believe it to be there.
The notation ?(v 0_ BDGS a)) looks up variable v in the
bindings of occans a; in this case, we're finding the X in HAND

(LET ((OB (BE desig ?(X (!.BDGS (CAR ANSL))))))
(SET-VALUE (HAID-FORCE-FLUENT (!ID HAND))

1)
(SET-VALUE (LEELD HAIND) OB)
(SETF (DESIG-GET OR 'POS) HAND)))

The purpose of PRO#-SET-HAND-FORCE is to make the projected robot beliefs congruent with what will

actually be true (as reflected in the timeline). PROJ-RETRIEVE looks in the timeline to deduce what will 0

actually be true. In the present model, we do not allow the robot's beliefs to diverge from the truth; in other

cases, we do. Note also that the the values of OR and HAND will be copies of data structures, as explained in

section 3.3, so that altering them has no effect outside the current projection.

Here are the other low-level plans in the delivery domain:

1 (MOVE d): Move one step in direction d, where d is one of EAST, SOUTH, WEST, or NORTH. (See Section 5.1.2
for a glimpse of how this action is projected.)

2 (LOOK-FOR property-list): The property-list is a list of property-value pairs. Look around for an object
matching that description. Return a list of fresh designators for all the objects seen.

3 (EXAMINE ob props): The ob must designate an object believed to be in the hand or at the same
location as the robot, with a known coordinate. Uses HAND-PROPS or POS-PROPS to find the values of
the given props of that object, and returns a list of them, in the same order as the props.

4 (PICKUP ob hand): First empty the hand, if necessary, by moving it to an empty space and opening it.
Then do an EMPTY-HAND-PICKUP, described above.

5 (UNHAND hand): Open Lhe hand, allowing whatever is in it to be released.
6 (HAND-INTO-BOX hand box-desig): Put the hand into the box (for which the designator must be fresh.)
7 (HAND-OUT-OF-BOX hand): Pull the hand out of a box, if it's in one.
8 (GRIB-SONETHIEG-FROK-BOX box hand): Reach into box and try to grab something a few times (the

number of times is the value of GRAB-CHANCES*). Fail if nothing was grabbed. If something was, set the
value of global fluent SOMETHING-TAKEN-FROH-A-BOX* to a pair (d, box), where d is a designator for the
object grabbed.

Another low-level activity is to maintain the robot's belief about its current grid location. The global

variables CURRENT-I* and CURRENT-Y* maintain this information, and are updated whenever the robot

45

0 0 0 00 0

I

moves. The global fluents I-REGISTER* and Y-REGISTER* contain the same values in a form convenient for

triggering behavior. Higher-level policies, described in the next section, cause the robot to look around for

signposts when the dead-reckoning information might be out of date.

5.1.2 Higher-Level Plans

Here is an example of a plan that the projector executes rather than project with rules:

This is the plan to get a given object into a given hand.
(DEF-IiTERP-PROC ACHIEVE-OB-Il-BAID (OB HAID)

(IF (lOT (0BJ-Il-HAID OB HAID))
If the object is not already believed to be in the hand,

(PROCESS ACH-Il-HAID
(VALVE-REQUEST ACH-IN-HAND WHEELS '#F)

Find it and refresh its local coordinates
(ACQUIRE-AND-NAYBE-EXAJIIE-OB OB)
(LET ((P (DESIG-GET OB 'POS)))

(IF (IS hand P)
If it is now believed to be in some hand,

(LET* ((C (FREE-SPACE-UUHAND P)))
;put it down.

(IF (= C (DESIG-GET OB 'POS))
(FIND-OB-AT-POS OB C)
(FIID-OB-HERE OB)))))

While staying at the putative location of the object,
(AT-LOCATIOI (DESIG-GET OB '1X-COORD)

(DESIG-GET OB 'Y-COORD)
... pick it up.

(PICKUP OB HAND))
(VALVE-RELEASE ACH-IN-HAND WHEELS)

This plan is quite typical in several ways. It uses VALVE-REQUEST to signal and avoid potential resource

conflicts with other plans. (Most low-level plans assume that valve requests have already been made, and do

not repeat them.) It "acquires" objects to be manipulated. "Acquiring" means going to within sensing range

of the object (possibly finding it in the robot's hands), so that it has a fresh designator with an accurate

P0S value. Low-level plans like PICKUP depend on that. Above all, the plan is context-sensitive. It checks

lots of cases, looking both in its world model and in the actual world. It has a flavor similar to Schoppers's

(1987) "universal plans," in that it can be started in many states and still achieve its goal. (This property

is crucial given that we need to be able to restart plans at any point, as explained in section 1.4.)

ACHIEVE-OB-IN-HAID uses the (AT-LOCATION z y -body-) construct, a macro defined as follows:

(LET C(DEST-I z) (DEST-Y y))
(GO DEST-X DEST-Y)
(WITH-POLICY (LOOP

(WAIT-FOR (OR (> (ABS (- X-REGISTER* DEST-I))
0)

46

• • • •• • •

0dI nN lIlIl~l n un nnn0 m m S0

I

(> (ABS (- Y-REGISTER* DEST-Y))
0)))

(WITH-TASK-BLOCKED A

(GO DEST-X DEST-Y)))
(:TAG A (SEQ -body-))))

where A is a new tag. The intent is that body be carried out in the context of a policy to keep the robot at

x, y. If the location-maintenance system should detect that the robot has moved away from that point, it

suspends the execution of body and moves back.20

AT-LOCATION plays a role in many plans in this domain. For example, the plan for getting an object to

a location, after checking to see if it is already believed to be there, looks like this:

(DEF-INTERP-PROC CARRY-OB-TO-LOC (OB X Y)
(PROCESS CARRY-OB

(VALVE-REQUEST CARRY-OB WHEELS 'IF)

(WITH-POLICY (SCOPE (NOW)

(BEGIN-TASK LET-GO)

(KEEP-TAKING-OB OB (BEGIN-TASK LET-GO) CARRY-OB))
In a nutshell: While "taking" the object,

(PROCESS GO-TO-LOC p
(VALVE-REQUEST GO-TO-LOC WHEELS 'IF)

(AT-LOCATION I Y
go to the destination and put the object down:

(:TAG LET-GO (ACHIEVE-OB-ON-GROUID OB)))

(VALVE-RELEASE GO-TO-LOC WHEELS)))))

"Taking" an object is a key concept in this domain. An object is "being taken" if the robot does not

move without it. This constraint is expressed as a protection, with proposition (TAKING object optional-

box-fluent). The box-fluent is non-IF only if the object is being carried in a box.

The policy plan KEEP-TAKING-OB is a linchpin of the whole plan library. Unlike the plans displayed so

far, this one is not intended to achieve or do something; instead, it is intended to be used as a policy (as it is

in CARRY-OB-TO-LOC). That is, it maintains a state of affairs indefinitely, and runs until it fails or evaporates.

Here is what it looks like, together with its main subroutines:

20 The astute reader may have noticed that the AT-LOCATION macro does not request the wheels. Use of the macro normally

requires that wheel requests be made before the macro begins.

47

• • • •• • •

," I i i l lU iiSu n S 0 , ,

0
Take OB until fluent UNLESS become true, on behalf of process PRC

(DEF-INTERP-PROC KEEP-TAKING-OB COB UNLESS PRC)
(LET ((CARRYING-HAND '#F) (OWl-HAND '#F)

(BOX-FLUENT (STATE '(CARRYING-BOX ,OB)))
(TAXING (STATE '(TAKING ,OB))))

(PROCESS KEEP
Get ahold of the object

(IF (NOT (OR TAKING UNLESS))

(SEQ (0= < CARRYING-HAND OWN-HAID BOX-FLUENT >
(TAKE-OS O KEEP PRC))

(CONCLUDE TAKING)))
In parallel, protect the TAKING proposition

(PAR (PROTECTION :HARD '(TAKING ,OB ,BOX-FLUENT)
(OR TAKING UNLESS (NOT MOVE-INTENTION*))

(repairing lapses by calling TAKE-OB again)
(SEQ (!= < CARRYING-HAND OWN-HAND BOX-FLUENT >

(TAKE-OB OB KEEP PRC))
(CONCLUDE TAKING)))

while monitoring the hand so that if the object is dropped,
its coordinates will be properly recorded, and the TAKING fluent
will be set to #F

(PROCESS-OUT PRC ; (Avoid being blocked by PRC's valve requests)
(WHENEVER TAKING

(IF BOX-FLUENT
(SEQ (KEEP-OB-IN-BOX

0B (FLUENT-VALUE BOX-FLUENT) (NOT UNLESS))

(CONCLUDE (NOT TAKING)))
(SEQ

(WAIT-FOR (EMPTY CARRYING-HAID))) 0
(IF OWN-HAND

(VALVE-RELEASE
PRC (!-(hand IN-USE) CARRYING-HAID)))

(SET-OB-COORDS (OR (FLUENT-VALUE BOX-FLUENT)
OB))

(CONCLUDE (NOT TAKING))))))))))

This plan takes the object in the first place, by putting it
in a box if a box is "being taken" already, otherwise in a hand.

(DEF-INTERP-PROC TAKE-OB (OB KEEP PRC)
(LET ((CARRYING-HAND '#F) (CARRYING-BOX '#F) (OWN-HAND '#F))

(IF (NOT (EQL (DESIG-GET O 'CATEGORY) 'BOX))
(!= CARRYING-BOX (BOX-BEING-CARRIED)))

(IF CARRYING-BOX
(IF (NOT (SAME-OB (DESIG-GET OB 'POS)

CARRYING-BOX))
(TEST (FIND-OB-IN-HANDS OB)

(GET-OB-INTO-BOX OB CARRYING-BOX)
(AT-LOCATION (DESIG-GET OB 'X-COORD)

(DESIG-GET OB 'Y-COORD)
(GET-OB-INTO-BOX OB CARRYING-BOX))))

(!= < CARRYING-HAND OWN-HAND >
(CARRY-IN-HAND OB KEEP PRC)))

(VALUES CARRYING-HAND OWN-HAND CARRYING-BOX)))

48

II

S S S SS S 5

Carry the object in a hand:
(DEF-IITERP-PROC CAREY-Il-HAND (OB KEEPER PRC)

(LET* ((CARRYIWG-HAND (FIND-OB-IN-RANDS OB)))
If it's already in a hand, keep it there:

(IF CARRYING-RAID
(VALUES CARRYING-BAID '#F)
(SEQ

(VALVE-REQUEST KEEPER WHEELS '#F)
(1= CARRYING-HAND (FREE-HAND GB))
(VALVE-REQUEST PRC (C!(hand IN-USE) CARRYING-HAID) '#F)

Otherwise, use ACHIEVE-OB-IN-HAND to get it in a convenient hand.
(ACHIEVE-OB-IN-HAND OB CARRYING-RAND)
(VALVE-RELEASE KEEPER WHEELS)
(VALUES CARRYING-HAID '#T)))))

Here are some of the other plans to be found at the high level. Some are modeled by rules during

projection, as indicated.

1 (CHECK-SIGNPOSTS-WHEN-NECESSARY): A global policy that reacts to pulses of the signal fluent NEED-
LGCATIOI-FIX* by looking around for a landmark. In our world, there is always a signpost that tells
the robot exactly where it is. New values of CtRRENT-X*, CURRENT-Y*, X-REGISTER*, and Y-REGISTER*
are read off the signpost. The global fluent I-Y-CURRENT. is set to #T afterward (and to #F after every
robot motion); by reading this fluent, plans can avoid asking for a location fix unnecessarily.

2 (FIND p): p is a list of property-value pairs, such as ((CATEGORY BOX) (COLOR BLACK)). This plan
looks around for an object matching the given description. If no object is visible, it explores for a while
(making about EXPLORE-NUN* moves) until it finds an object. FIND is modeled during projection by *
rules that estimate how long it will take to find an object, without projecting all the moves in detail.

3 (KEEP-OB-OGBOARD b f proc): A policy like KEEP-TAKING-OB, but uses a hand, never a box, for trans-
porting object b. (This is necessary in the case b is a box.)

4 (TAKE-OGE p c r): p is a list of property-value pairs. Acquire an object matching this description, then
keep it on board, on behalf of process r. If c is #F, then just keep some object on board that meets the
description; if #T, try to keep the same object on board.

5 (ACQUIRE-GNE p): Get a fresh designator for an object matching property-values p. If the robot knows
of an object fitting this description, it goes to the location of the one it believes to be closest, and looks
for it.

6 (ACQUIRE-OB ob): Get ob "in the robot's sights," as it were. If the object is believed to be in a hand,
check if it is or accept that it's there (with probability 0.8). If the object is believed to be in a box,
take it out. Otherwise, go to where the object is believed to be, and look around for it. In the end, the
agent will have a fresh designator for ob.

7 (ACQUIRE-ANID-MAYBE-EXAMINE-OB ob): This variant is useful when the agent plans to do something
with the object after acquiring it, and cannot afford to confuse it with other objects. (Example: ob may
be a box it intends to carry things in.) After acquiring the object, the object should be examined if
necessary to learn all its perceptual properties (color, texture, etc.).

8 (GET-OB-INTO-BOX ob box): Get the object and box together, if necessary, and put the first into the
second. To get the two objects together, the agent must move one to the other, but we don't want to
commit to an ordering in the plan library. The plan says, roughly, "Acquire ob and acquire box, in any
order, but once one is acquired, keep it onboard until the other is acquired. At this point b)th objects
will be in view; put ob into box using THIS-INTG-BOX."

9 (THIS-INTG-BOX ob box): Given two fresh designators for the objects in question, pop ob into box.
(This plan is simulated with projection rules; see below.)

10 (GET-OB-OUGT-OF-BOX ob box): Pull objects out of the box until one matching the description of ob is
found. EQUATE it with ob.

49

0 0 0 0 0 0 0 0 0 0

11 (KEEP-OB-II-BOX ob box putback): Set up a soft protection of a proposition (TRACKING-GB-FROM-BOX
ob box OB-OUT putback), where OB-OUT is a fluent to be set true whenever the ob is believed to be out
of the box. All such protections are monitored by the following plan.

12 (CHECK-OBS-REMOVED-FROK-BOXES): A global policy to maintain all TRACKING-OB-FROM-BOX protec-

tions. Whenever something is taken from a box, it is compared against all objects being "tracked."
If it might be two objects, a "perceptual confusion" failure occurs. If there is just one candidate, the
candidate is EQUATEd with the object just taken from the box. (See Section 6.5.)

13 (ACHIEVE-GB-ON-GROUND ob): If the object is believed to be in a hand, put it down; if it's believed to
be in a box, take it out; otherwise, it's already on the ground.

As promised, I have indicated where projection rules are used to simulate plans. A good example is

THIS-INTO-BOX. The actual plan contains steps to put the box on the ground if necessary, pick up the object,

move the hand into the box, and release it. Rather than project all these steps, we write rules like

(PROJECTION (THIS-INTO-BOX ?OB ?BOX)

(AND (LOC ROBOT (COORDS ?X ?Y))
(LOC ?OB (COORDS ?X ?Y))
(LOC ?BOX ?BOXLOC)
(OR (LISP-PRED IS-A-HAND ?BOXLOC)

(== ?BOXLOC (COORDS ?X ?Y)))
(EVAL (WORLD-SPEED-ADJUST

(+ (* 2 GRASP-TIME*) UNGRASP-TIME*
(/ 3 HAND-SPEED*)))

?DT))
Note artificial event sequence:

(0 (BEGIN (OB-JUMP-TO-BOX ?OB ?BOX))
?DT (END (OB-JUMP-TO-BOX ?OB ?BOX))

Also r.ote Lisp code to update agent state:
0 (LISP (SETF (DESIG-GET ?OB 'POS) ?BOX)

(IF-HAND-PROJ-SET-FORCE ?BOXLOC)))
(FINISH))

The artificial event OB-JUMP-TO-BOX has as effects things like the box being on the ground, the object being

in the box, etc. But these effects happen all at once, and we save several steps of projection.

Why not apply the same tactic to GET-GB-OUT-OF-BOX? This plan must remove objects one at a time

from a box until it thinks it has the one it's looking for. Which objects get removed is random. It must set

a global signal fluent SOMETHING-TAKEN-FROM-A-BOX* so that policies like CHECK-OBS-RENOVED-FROM-BOXES

can react. (See Section 6.5.) It would certainly be possible to simulate all this with projection rules, but

would be important to preserve all the subevents, so it doesn't seem worth it.

A somewhat different example is provided by the action (GO x y), which is implemented by the following

iterative plan:

(DEF-INTERP-PROC GO (XG YG)
(LET ((XS 0) (YS 0) (IN 1000) (YM 1000)

(E 0.5) (IMPROVING '#T) (BAD-ITER 0))
(LOOP

(LET ((X '#F) (Y '#F))

50

• • • •• • •

(LOOP
(!= < X Y > (COORDS-HERE))

UNTIL (AID X Y))
(X= xS (- xG X))
(• YS C- YG Y)))

(IF (OR (< (ABS XS) XK) 4
(< (ABS YS) YE))

(SEQ
(:= IMPROVING '#T)

(! BAD-ITER 0)
;= (Mix U (ABS KS)))

(,= YM (MIN YK (ABS YS)))

(1= E (MII E (MAX XM YE))))
(IF IMPROVING

(IF (OR (> (ABS XS) XK)
(> (ABS YS) YE))

(SEQ
C!= IMPROVING '#F)
(!= E (MII 2 (MAX XM YM)))))

(SEQ (!= BAD-ITER (+ BAD-ITER 1))
(IF (> BAD-ITER 2)

(.!= E (+ E W))))))

UNTIL (AID (=< (ABS XS) E) (=< CABS YS) E))
(GO-NEARER XS YS))))

(DEF-INTERP-PROC GO-NEARER (XS YS) *
(IF (> (ABS XS) (ABS YS))

(IF (> KS 0)
(MOVE 'EAST)
(IF (< KS 0)

(MOVE 'WEST)
(No-OP)))

(IF (> YS 0)
(MOVE 'SOUTH)
(IF (< YS 0)

(MOVE 'NORTH)

(NO-CP)))))

The key idea is to repeatedly scan the environment for signposts, see how far you are from the goal,

and execute GO-NEARER in order to get closer. Much of the complexity inside the GO plan is to compensate

for errors in reading the signposts. If the robot starts to get further from the goal, it eventually relaxes its

tolerance for error and settles for getting to within Manhattan distance E. 0

The system could simulate all of this complexity when projeccing GO, but it would not often be worth

the trouble. The projector would have to predict the presence of signposts at every point along its route.

and generate a long sequence of signpost-reading events. The resulting clutter would be of some value if

the projector could anticipate problems in reading the signposts in certain places, but, as things stand now.

it can't. So, to avoid all this wasted work, we supply a GO handler that behaves as follows: An event of

51

0•

the form (BEGIN (GO r y)) is added to the timeline, and an occasion of the form (TRAVELING (COORDS

zinit &fnit) (COORDS r y)) begins as a consequence, with a, short lifetime, only as long as the time to travel

from a grid point to its neighbor. An iterative RPL thread is created that checks to see if this occasion

is about to expire, and if so, extends its lifetime. If the occasion already has expired, the thread BEGINs

again. If uninterrupted travel is allowed to go on for the estimated travel time, an (END (GO x y)) event

is added. During this whole process, the appropriate signal fluents (MOVE-INTENTION*, ROBOT-MOVED*, etc.)

are repeatedly pulsed as if a series of motions had occurred.

This GO projector is quite complicated, and was not easy to debug, but the effort was worth it. The

program duplicates the expected events during a GO at a high level, and allows GOs to be interrupted by

wheel seizures, just as a real GO does, without simulating the details of exactly where the robot is at any

given point. (If someone asks about the location of the robot during its trip, COND-PROB rules are used to

pick a place for it to be.)

6 Bugs and Transformations

In this section, I will list some of the bugs and transformations that have been studied so far. Except

for those described in Section 6.6, these have all been implemented.

6.1 Utilities 0

Transforming a plan inevitably means changing its text. Some changes do considerable violence to the

code. and others do less. Where possible, XFRM tries to "modularize" changes. For example, in order

to impose an ordering on two tasks, it suffices to add an :ORDER clause to a PARTIAL-ORDER construct

somewhere above the two tasks. The advantage of making the change that way is that it can be undone

later by deleting the :ORDER clause, without having to undo subsequent changes.

Unfortunately, not all changes are this simple. Some require augmenting, deleting, or rearranging pieces

of the plan. For example, suppose there is no PARTIAL-ORDER construct above the two tasks we wish to
0

order. (E.g., suppose they're inside the body of a loop.) Then some piece of the plan, call it a, has to be

replaced by (PARTIAL-ORDER (W)) before the :ORDER transformation can be effected.

Syntactically. this operation is straightforward. The rpl-codu tree for a occurs as a .ubtree of the rpl-code

tree for the whole plan (Section 2.2), and XFRM must embed it as the sole subtree of a new PARTIAL-ORDER

rpl-code tree. See Figure 7, right-hand transformation. The tricky part is that any tag that refers to a

subtree of a must be adjusted to refer to the same subtree in its new location under the PARTIAL-ORDER

construct. We provide a basic code-transformation utility cailed CODE-REPLACE that does this bookkeeping.

It takes three arguments: a rpl-code tree R, a path P through this tree, and a new subtree S. It returns a

new rpl-code tree that is the same as R %ith the subtree designated by P replaced by S. The basic syntactic

52

0 0 0 0 0 0 0 0 0 0

4

RPL Code Tree R R" 006
K-AE-IP R) (CODE-REPLACE R' P S) 0

15TEP 2\ TP 2) = ee (STEP 2)

(BB 6)(EXPANDED-P
(EXmPANDED- OC New Code Tree (BB 6)

From procedure library MR 6) .) sPROC - AOE \
(PROC-BODY) O1OY

(STEP 1)(PARTIAL-ORDER
/ \STEP 1) 1 \ORDER T2 T1))S\ /

/ (:TAG TO a)

0 0

(:TAG T1 C:TAG T2
A) B)

Figure 7 Transforming Code Trees

manipulation performed by CODE-REPLACE is trivial. The interesting job it does is to keep all tag references

correct behind the scenes.

The system is thus set up to keep tags working smoothly. But there is no way for it to be able to catch

an arbitrary name-path expression and edit it. Hence any transformation that depends on the ability to *
refer reliably to a piece of the plan even after future edits must wrap a : TAG around that piece and use the

tag.

So far. so good, but there is a snag. Code replacement and subtree tagging can run afoul of code trees

that derive from RPL-procedure bodies. A call to a procedure expands into a task network for the procedure

body. The name prefix for this task network is PROC-BODY. Hence a critic might well produce a task name

path containing a segment "... (STEP 1) (PROC-BODY) (STEP 2) ," meaning "the first step of the body

of the procedure called in step 2 of the plan." This path might have been used to navigate through a code

fragment of the form (SEQ (AA 5) (BB 6)), where we're referring to step 2 of the body of BB. As explained,

such name paths are unstable; future plan edits might move the procedure call, so its first step would get

a new name (e.g., ((STEP I) (PROC-BODY) (STEP 3) ...), if the fragment were changed to (SEQ (CC 7)

(AA 6) (BB 5))). But we cannot fix this problem by wrapping a :TAG around a piece of the procedure.

because the procedure body is shared by all calls. Instead, XFRM must expand the call to BB, so that in

our example the plan fragment might become

(SEQ (AA 6)

(EXPANDED-PROC (BB 6) f -body-))

53

• • •• • •• •

0igmnnll uma~m mmm 0 0 0 0 --

where f is the formal parameters of BB, and body is its body. The utility procedure TASK-PATH-SIMPLIFY 6
carries out this transformation. It takes as arguments a path P and a rpl-code tree R, and returns a new a,

tree R' with procedures expanded along P. It also wraps a tag (TO in Figure 7) around the subtree P points

to, and returns a new path equivalent to P that uses the new tag to achieve as much immunity as possible

to future transformations. (If there are loops along the path, tags will be introduced as needed to refer to

them.)

The interpreter treats the new code tree exactly the same as the the original, so that the task for body

still has the path expression ((PROC-BODY) (STEP 2) ...). The system is now free to edit the copy of BB's

body. In Figure 7, substeps A and B have been tagged with Ti and T2, as part of embedding them under a

PARTIAL-ORDER.

6.2 Giving Up

If a user's top-level command is projected to fail, then the system applies a transformation that simply

deletes it from the plan. This transformation will improve the plan if the effort required to attempt the

command is nonzero.

For various technical reasons, XFRM cannot simply delete the command from the plan. The planner

assumes that every top-level command corresponds to a :TAG'ed task, as shown in the schema of Section 1.3,

and it may crash if no such task can be found. So what the transformation really does is wrap a REDUCTION

around the plan, so that the task for the command is reduced to a quick FAIL. To avoid having this failure *
cause a pointless further round of transformation, it is given a special class ("graceful resignation") for which

the give-up transformation is suppressed.

This transformation comes in especially handy when the system is given an impossible problem that is

projected to fail no matter what. An example appears in Section 7.

6.3 Scheduling

In our delivery domain, the only optimization that is currently performed is to schedule errands. That

is, if the robot is committed to going to six places, the planner tries to order those errands to minimize

expected travel time. The hard part is not finding the optimal ordering, but figuring out where the six

places are at all.

Suppose we want tell the planner (among other things) to take a black ball from location 2,3 to location

12,1. Given our conventions, the way to do that is write a RPL program and tell the robot to execute it.

Fortunately, most of the subroutines involved are already written, so we can write this program as

(LET* ((BB (FIND-AT 2 3 '((CATEGORY BALL) (COLOR BLACK)))))
(CARRY-OB-TO-LOC BB 12 1))

where FIND-AT looks like this:

54

6
(DEF-IITERP-PROC FIND-AT (X Y PL)

(AT-LOCATION X Y
(LET* (ML (FIND PL)))

(CAR L))))

Here we use the AT-LOCATION macro defined in Section 5.1.2. The intent is that the robot should remain

near location I,Y while it looks for an object with property list PL. 0

A person looking at the call to FIND-AT can immediately see that it commits the robot to going to

location 2,3. The call to AT-LOCATION mentions X and Y, and you have to know that X and Y will have values

2 and 3 at that point to extract the commitment to being at 2,3. The reasoning is straightforward: X and Y

are given values 2 and 3 initially, and nothing going on can possibly change those values, so they'll still have 0

them when the AT-LOCATION is reached.

Unfortunately, although the reasoning is straightforward it is quite difficult to automate. The catch

is that verifying that "nothing can possibly change the values" requires a rigorous analysis of all possible

traces through the program. Typically, the call to FIND-AT will occur as part of the execution of a top-level 0

command, and other top-level commands will be going on concurrently. Our rigorous analyzer will have to

verify that no matter how those commands are interleaved with this one, no side effect will change where

FIND-AT will take the robot. Because X and Y are local variables, this conclusion is not difficult to reach

(although a general algorithm may take quite a while to reach it). But consider the locations CARRY-OB- p

TO-LOC commits the robot to going to. It must acquire the object BB at its location, which is recorded as

designator properties X-COORD, Y-COORD of BB. These properties are set by FIND-AT, presumably to 2,3. But

now the possibility must be investigated that some concurrent plan could set these slots to something else.

All that is required for that to happen is that a concurrent plan find an object EQUATEd to BB, move it, and

record its new coordinates. Verifying that that cannot possibly happen could be quite difficult.

Because of these difficulties, I have (after a lot of preliminary attempts) given up the idea of a "partial

evaluator" capable of finding the largest possible set of predictable expression values in a plan. Instead, I

have opted for a scheme based on the use of projection. The scheduler generates some number (2 in most

experiments) of scenarios for execution of the plan. It then walks through the plan, looking for occurrences

of the AT-LOCATION macro (roughly speaking). If we ignore loops for a second, then each such code is

associated with a single task, which will have been projected once per projection. In each case, it will have

an associated variable-binding environment. The scheduler evaluates the location arguments to AT-LOCATIONI

in each such environment. If the values are all the same, then it concludes that the arguments will always

have those values, and record a task-to-schedule. When the entire plan has been traversed, the resulting

collection of tasks to schedule forms a Traveling Salesman problem. If the values differ from projection to

projection, then currently the scheduler just gives up, although there are clearly more intelligent strategies

the algorithm could use in most circumstances.

55

0

0 00 0 01 0 0 0 0 *

Let me say more about how the errand-extraction algorithm works. It does a data-driven walk through

the task network. Each RPL construct is handled in its own way. For example, (IF e A1 A2) is handled a]

by evaluating e in each projection. (See Section 3.3 for a discussion of how expressions are evaluated with

respect to projections.) If e has the same value in all projections then either A1 or A2 was taken in all

projections. The errand extractor pursues the corresponding part of the task network, discarding the other

branch. If e evaluates to true in some projections and false in others, then the errand extractor tries both

branches. If it finds no errands in either, then it continues. Otherwise, it aborts, on the grounds that the

set of tasks at various locations cannot be predicted. The handling of loops and other constructs presents

similar subtleties.

As I said, what the errand extractor is looking for is occurrences of the macro AT-LOCATION. To be

precise, it is looking for tasks with rpl-codes of the form

(SEQ ...
(GO z y)

(WITH-POLICY (LOOP ...
(WAIT-FOR (OR (> (ABS (- X-REGISTER* DEST-X))

0)
(> (ABS (- Y-REGISTER* DEST-Y))

0)))

(GO z y) *

a))

which is a slightly generalized version of the expansion of (AT-LOCATION z y a) (Section 5.1.2). Both

occurrences of the z's and both occurrences of the y's must evaluate to the same numbers in all projections. I

Those numbers are used to construct an instance of the datatype task-to-schedule, with coordinates r, y

and task path tagging this piece of the task network.

The scheduler ignores all occurrences of GO outside this context. The reason is that it is not enough

to know that the plan calls for going somewhere. To impose task-ordering constraints, the planner must I

know what is supposed to take place once the location is reached. Because of the possibility of concurrent

activity, a RPL plan must actively work to keep the robot at the errand location in order to be sure that the

entire activity takes place there. Hence the planner looks for a surrounding policy whose effect is to keep

the robot near z, y for a while. The current check is probably too specific, but there has as yet been no need

to generalize it.

What the errand extractor returns in the end is a list of tasks-to-schedule, each with an associated

location. These are handed to a traveling-salesman algorithm which finds a good ordering of the tasks,

and that order is imposed on the plan (by adding :ORDER clauses). However, the tasks are not completely

unordered to begin with. If a task has action (SEQ S1 S2 83), any tasks-to-schedule extracted from S2 must

56

I At

I

follow those for s, and precede those for S3. The scheduler handles this case by having the extractor for SEQ

record these ordering dependencies in predecessor and successor fields of the task-to-schedule data type.
I

There is another subtle interaction that must be taken into account. Suppose that a task network

contains two errands, el =(AT-LOCATION x, y, al) and e2 =(AT-LOCATION Z2 y2 a2). Suppose that a,

and a2 are themselves complex actions, with tagged subtasks. Some subtask s, of a, might be constrained

by a superior PARTIAL-ORDER to precede some subtask S2 of a2. In that case the scheduler must not allow e2

to precede el. This case is handled by scanning the task network below a,, and finding all subtasks whose

predecessors or successors lie outside that subnetwork. But for that to work, the task network being traversed

by the errand extractor must have task predecessors and successors set up correctly, which means that when

the extractor examines a (PARTIAL-ORDER a (: ORDER t, t2)), it must actually install the ordering between

t, and t2. It can't do that unless the expressions t, and t2 each evaluate to the "same" task in all projections.

(That is, there is a task-name path P such that the value of ti in every projection is a task with name path

P.)

When the smoke clears, the errand extractor will have computed a partially ordered set of tasks-to-

schedule, whose predecessor and successor slots encode the ordering. The final schedule is computed by a

variant of the cheapest-insertion algorithm (Rosenkrantz et al.1977).21 The algorithm starts with an empty

schedule, and adds tasks to it one by one, keeping it totally ordered, until all tasks have been scheduled. On 0 -

each iteration, it chooses a random task all of whose successors have already been scheduled. It then inserts

this task at the point in the schedule before all the task's successors that minimizes the travel time in the

schedule so far. This algorithm is very fast; given all the other computation going on, its cost is unnoticeable.

When the tasks to schedule are unordered, the algorithm produces answers that are within a factor of 2 of

optimal. We conjecture that it does no worse with further orderings, but have not proved it.

The scheduler is a transformation without a critic. It needs to run whenever the plan could be optimized.

In our domain, we assume that the plan can always be optimized - but the only way to be sure is to run the I

scheduler. Hence at the outset the planner is given a dummy bug "Plan never optimized," which forces it

to run the scheduler. After that, the orderings imposed by the scheduler become part of the plan, and there

is no need to run it again, until some critic changes the ordering. In that case, what the critic must do is

discard the orderings made by the scheduler, impose its new orderings, then call the scheduler to re-optimize

the plan subject to these new ordering constraints.

21 The original version of this algorithm was written by Yuval Shahar.

57

It

6.4 Protection Violation

In Section 1.2, I sketched how protection violations are handled in XFRM. In this section, I will fill I
in the details. Recall that a protection violation occurs when a fluent becomes false that is supposed to

be kept true. When a violation happens during projection, then a data structure is added to the global

variable PROTECTION-VIOLATIONS*. The standard critic NOTICE-PROTECTION-VIOLATIONS checks this list.

Actually, like all critics, it's given a list of projections, and so must check the protection-violation list for

each projection. As explained in Section 3.3, if a global variable was altered during projection, it is entered

in a table stored in that projection, and it is this table that the critic consults.

The first problem the critic faces is finding multiple occurrences of the same violation in different projec-

tions. Two violations are taken to be the same if they have the same predicate, the same protecting task, and

the same violating task. The predicate of a violation is just the predicate of the protected proposition, that

is, P in (PROTECTION rigidity (P ...) fluent repair). When comparing tasks from different projections,

the critic compares their name paths.

The critic produces one bug for each class of equivalent protection violations. The severity of the bug

is the total of the times spent in each projection repairing the violation, divided by the total number of

projections. As explained in Section 1.2, this number is only a rough estimate. The bug also includes

the name paths for the protector, the violator, the PARTIAL-ORDER task that encloses them, and the tasks

comprising the scope of the protection. The scope of a protection is the interval over which the protection * .
applies. This interval is not necessarily coextensive with the PROTECTION task. We often write

(WITH-POLICY (SCOPE b e (PROTECTION ...))
a)

where b and e are fluents such as (BEGIN-TASK t) or (END-TASK t), whose values depend on the execution

status of various tasks. Typically the ts will be subtasks of a, allowing us to limit the protection to apply

only over some segment of the execution of a. SCOPE is not a primitive, but is defined as a RPL macro:

(SCOPE b e q) expands to

(SEQ (WAIT-FOR b)
(WITH-POLICY q

(WAIT-FOR e)))

If q is a protection, then its scope depends on the task network above it. To find e, it looks for a supertask

of the form (WITH-POLICY ... (WAIT-FOR e) ...). To find b, it looks for a supertask s whose subtasks

have names of the form step(i, s), where the path down to the protection is step k, and a previous task

step(j, s) for some j < k is of the form (WAIT-FOR b). Once the scope fluents are found, they are analyzed

and name paths for the tasks they refer to are extracted. A single task-status fluent - i.e., one of the form

58

• • • •• • •

(BEGIN-TASK t) or (END-TASK 0) - is a common case, but b and e can be more complicated; if they are

boolean combinations, their arguments are analyzed to extract sets of task-status fluents. (Other fluents

are ignored.) If one or both ends of the scope are missing (e.g., b or e is a constant true or false), then the

corresponding ends of the PROTECTION task itself are taken as its scope. 4

The bug packages up a!l the information required to eliminate the protection violation. If the planner

chooses to try it, then the eliminator for the bug returns a transformation that generates two new plans, one

with the violator before the beginning of the protection scope, and one with the violator after the end of the

protection scope. It imposes these orderings by adding :ORDER clauses to a PARTIAL-ORDER construct that

dominates the protector and the violator. (If either end of the scope is comprised of a set of task boundaries,

then there will have to be one new ordering per task, not necessarily all added to the same PARTIAL-ORDER.)

Getting the bookkeeping right here is tricky. First, we may have a choice of PARTIAL-ORDER tasks

from which to hang an ordering. We take the one that most tightly encloses both the tasks to be ordered.

However, it is possible that a LOOP lies between the PARTIAL-ORDER and one of the tasks being ordered. For

example, the plan might look like:

(PARTIAL-ORDER
(... (LOOP ... v ...)..

-orderings-)

where one iteration of v caused the protection violation. What the system would like to do is tag just that •

iteration and add a reference in the orderings. But RPL will not allow that. Rather than try something

complex, we fall back on the simplest way out: we apply the tag and the ordering to the entire LOOP. Hence,

what the critic must do is find the narrowest taggable task above the two points it wants to order, and

the narrowest PARTIAL-ORDER above those two taggable tasks. (If there is no PARTIAL-ORDER, one can be

introduced at this point.)

However, there is more to it than that. The new ordering is likely to conflict with orderings imposed

by the scheduler. Hence, what the critic must actually do is (a) undo all transformations performed by the

scheduler; (b) impose its new ordering; (c) call the scheduler to reschedule. The last step requires projecting

the plan two or three times (as explained in Section 6.3), and that time dominates the time to eliminate the

bug. (On top of that, the planner will project the plan again after criticism to see how well the new version

performs.)

Tossing a new ordering into a reactive plan can introduce cycles in the links between tasks, so that

the plan cannot complete. The projector will predict this fate when it detects an unbustable deadlock (see

Section 2.3).

There is another subtlety to be mentioned, if not resolved. Although in the abstract protections are

described by the propositions they claim to protect, a violation actually occurs when their fluents become

false. The critic assumes that the violator is the task that ends just before the fluent becomes false for

59

• • • •• • •

It

the first time. Some careful search is required to find that task. As explained in Section 3.3, with each

fluent is associated a clobhisiory recording all changes to its value during a projection. These changes are

time-stamped with integers that count total side effects during a projection. The timeline keeps track of time 0

at a coarser scale; each task or event typically covers many side effects. Hence for the protection-violation

handler to find the task whose end coincided with a fluent-value change, it must find a happening of the

form (END-TASK t) in the timeline, and recover the time stamps before and after t using the TASK-EFFECTS

table described in Section 3.3. The violator is taken to be the task in the timeline such that the fluent was

true from the beginning of the protection to some point in that task.

This procedure is useful, but more needs to be done to find a really good protection handler. One problem

is that the handler is just guessing that the task "on duty" when the fluent became false is to blame for its

becoming false. A proper solution would require a more elaborate diagnosis process to figure out to what

degreee the agent was really to blame for the fluent's becoming false. It is not hard to find examples where the

current process makes a mistake. In the delivery world, the system protects the proposition (TAKING b ...)

by keeping the fluent (OR TAKING (NOT MOVE-INTENTION*)) true, where TAKING is set false when the hand

carrying the object becomes empty. (I'm simplifying somewhat.) The reason to mention MOVE-INTENTION*

is that we don't want the agent picking up an object the moment it is dropped; if the goal is to take the

object somewhere, then there is no need to pick it up until travel resumes. The fluent MOVE-INTENTION*

is set to #T when a move is about to occur. The result is that the protected fluent does not become false

until the robot moves, so the task that is blamed for the violation is the MOVE task! To a human observer, 0 0
the task that ought to be blamed is the one that emptied the hand, because it set in motion a process that

made it "inevitable" that the fluent would become false. The current algorithm gets it wrong, although the

orderings it introduces are often sufficient to make the violation go away.

1

6.5 Carrying Things in Boxes

In the delivery domain, the robot can carry only two things at a time. This constraint limits the

usefulness of scheduling, because most schedutes will introduce overloads into the system. One way of

avoiding the problem would be to tell the scheduler about this constraint. There are two reasons not to do

that. The first is that it is haiý , t.:tracting a -- T of errý.nd, -rom the plan; for the scheduler to reason

about what's being carried, it would also have to see what pickup operations the plan is committed to at

those places. The second reason is a matter of research tactics. I am interested in the interactions between

lots of different critics (cf. Kambhampati et al. 1991). In the current system, the problem of hand overload 0

is dealt with by specialists that propose changes independent of the changes proposed by the scheduler. The

question is whether that strategy works.

One of the specialists is the protection-violation handler. When an object b is put down so that another

object may be picked up, a violation of the protection (TAKING b ...) occurs. As explained in Section 6.4, 0

the critic that fixes it recommends installing new orderings and redoing the schedule.

60

I

Unfortunately, it may take several applications of this critic to make all the violations go away, and the

net result at best is that the schedule is stretched out to avoid overloads. In the delivery domain, we have

an alternative, namely, to use a box to carry objects in. A box can hold an indefinite number of objects, so |

in some sense it is a hand with an unlimited capacity. There is a catch, though. Once an object has been

put in a box, the only way the robot can get it back is to pull objects out of the box until it reappears, and

there is a danger that it will be fooled by a similar object.

The plan for carrying an object in a box is similar in structure to the plan for carrying an object in

a hand: Find the object; go to the destination while keeping the object in the box; put the object on the

ground. (See Section 5.1.2.) Getting the object in the box is easy. But keeping it in requires carrying out the

following policy, called CHECK-OBS-REKOVED-FRON-BOXES (Section 5.1.2): Whenever an object is removed

from the box, examine it to see if it is perceptually identical to the object we're tracking. If so, EQUATE the

two (Section 2.1). If the object is not allowed out of the box yet, put it back in before moving anywhere.

This policy must have a high priority. The check for whether the object has just been removed from the

box must be executed as soon as any object is pulled out of the box, lest the object be lost. The object must

be put back in before the robot goes anywhere, or there will be no point in carrying the box. To get this high

priority, the planner must wrap the policy around the whole plan. Individual tasks then communicate with

the policy through several fluents. Whenever an object is removed from a box, the fluent SOMETHING-TAKEN-

FROM-A-BOX* is set to a pair of designators, one for the object, one for the box. The policy waits for this

signal, then takes the thing-box pair and queues it up. As it gets the opportunity, it removes pairs from the 0 *
queue, and checks to see what objects it knows it is carrying in boxes. All such objects must be mentioned

in protected propositions of the form (TRACKING-OB-FROM-BOX a b s w), where a is a designator for an

object, b is the designator for the box that a is supposedly in, s is a fluent that the policy can use to signal

when a is believed to be out of b, and w is a fluent that is true if and only if the object must be put back in I

b before the robot moves.

Hence what the policy needs to know when an object c has just been removed from a box 6 is whether

the proposition (TRACKING-OB-FROH-BOX a b s w) is currently being protected, where a and c could be the

same based on what it knows so far. If so, it seizes the wheels to prevent any lower-level task from causing I

motion, and uses the camera to examine c more closely. If there is just one a that c could be, it EQUATEs

them. If there are more than one, it generates a perceptual-conf usion failure (McDermott 1992a). It sets

to #T the s fluent from the protected proposition, to let the lower-level task know that the cat is out of the

bag. If the w fluent is #T, then it sets up another task to wait for the MOVE-INTENTION* flag to become true.

At that point, if w is still #T, then it puts c back into b.

This policy is in effect all the time. (If no objects are being carried in boxes, it remains dormant.)

Furthermore, inspection of TAKE-OB in Section 5.1.2 shows that the plan for taking an object always takes

advantage of a box that is also being taken. Hence all ithe box transformation needs to do to get an object

carried in a box is make sure that a box is being taken. That is, it must add a policy of the form (SCOPE b

61

• • • •• • •

e (TAKE-ONE '((CATEGORY BOX)) '#T ...)) to the plan. Here b and e are task-status fluents that bound

all the protection violations of TAKING protection that the critic is trying to eliminate. The TAKE-ONE policy

finds a box, gets it on board, then makes sure that the robot never moves without picking it up again.

6.6 Declarative Notations

RPL is basically a procedural language, which gives us considerable freedom in what we ask our agent

to do. However, there are good reasons to want independent "declarative" specifications for its behaviors

when possible. These enable the planner to understand the intent of plans when transforming them, and to

test whether that intent is satisfied.

In the current system, the principal use of declarative specifications is in protections (Section 6.4).

A protection provides a proposition that summarizes what it is that is being protected. There is no way

to test the truth of this proposition directly at run time, so we also provide a fluent that is supposed to

track the proposition (and a plan to enforce the tracking, if necessary). However, the proposition does have

an important use at run time. A plan can use MATCH-PROTECTIONS (McDermott 1991b) to check which

protections are currently in force. This check would be useless if not for the proposition, which often serves

as a communication channel from one part of a plan to another. For example, as discussed in Section 6.5,

the plan TAKE-OB that gets ahold of an object in order to carry it checks to see if a box is currently being

taken that the object could be carried in. It performs this check by matching protections until it finds one

of the form (TAKING b #F), where b is a box. 0

We are currently attempting to enlarge the role of declarative specifications in plans. Michael Beetz

(Beetz and McDermott 1992) has added new constructs ACHIEVE, BELIEF, and PERCEIVE to the language.

(ACHIEVE p) means to make p true. (BELIEF p) is a predicate, which is intended to check whether p is

currently believed to be true. (PERCEIVE p) looks for the set of all objects satisfying predicate p. Propo-

sitions and predicates cannot be tested directly, of course, so each of these constructs must get translated

at some point into a more executable form. ACHIEVE does the translation by retrieving a default plan and

reducing itself to it; critics can improve on this plan after projecting its effects. BELIEF operates by running

PROLOG rules that use backward chaining to break its propositional query down into Lisp tests.

In an independent project, Chi-Wai Lee has been extending the protection-violation detector so that

violations of a protected proposition P are detected at projection time whenever P gets clipped in the

timeline, even if the associated fluent does not become false. The idea is to predict protection violations that

will not apparently be caught by the fluent assigned to track P. The planner can then try to remove them

the way it removes the traditional kind. See Section 6.4.

Another area in which there is a need for declarative notations is in writing critics transformations. In

the work reported here, all the transformations are written in Lisp. That makes them bulky and impene-

trable. That's why my descriptions of transformations in this section are all in English. Michael Beetz has

been developing a logic-programming notation call "XFRM-ML" ("XFRM Meta-Language") for expressing

62

• • • •• • •

transformations concisely. The idea is to codify standard predicates about the entities manipulated by critics

and transformations, entities including task networks, timelines, projections, and code trees. a,
I

7 Results

The major result of this work is the development of a set of algorithms and data structures for trans-

formation of reactive plans, including

"* a task-network interpreter with integrated concurrency and deadlock-breaking;
"* A plan notation (EVtP-PROTECT) that enables plans to tidy up before being replaced by im-

proved versions, thus providing a simple model of plan swapping (Section 1.4).
"* an efficient temporal database for representing execution scenarios;
"• a method of saving and reconstructing the interpreter's state at any point;
"• a set of tools for modifying plans;
"* a strategy for searching the space of transformed plans.

Many of these techniques are novel, and will stimulate further study and refinement.

However, it is not enough just to point to this structure of algorithms. I claim that put together they

make a difference. This claim has two parts:

1 The Reactive Plan Language (RPL) allows the expression of flexible reactive plans that cope with

realistic environments and sensors.
2 The transformational planner (XFRM), when run at the same time as the plan interpreter (the "con-

troller"), can succeed in finding an improved plan and installing it; the agent then progresses faster
towards its goal.

These two claims have been tested by experiments of the following kind: A set of top-level commands I *
is chosen. This set is given to the controller several times (with the world reinitialized each time), and its

performance is scored. Then we repeat the trials, with the planner running. Plan executions are evaluated

as described in Section 4.2.

The planner uses three projections to evaluate and criticize plans. The scheduler uses two projections I

to guess values for expressions. There are probably ways of speeding the projector enough to make these

numbers higher.

Plan-execution time is measured from when the tasks are first given to the system, so that in planning

mode it is possible (and often happens) that the steps taken before the planner finds a good plan are wasted

or even counterproductive. Of course, it can often happen that these steps push the agent in the right

direction, so the final plan adopted gets a boost. All the times cited below are measured with respect to the

world simulation. Actual run times and wall clock times are higher.

These experiments test Claim (1) as well as Claim (2), because plan swapping naturally tends to crejate

situations in which a plan must begin execution in a world state where the objects being manipulated have

been rearranged in unpredictable ways. Occasionally, the plans cannot cope, and a task fails.

Experiment 1. The situation is as shown in Figure 1, except that the agent is at 0,9 with no box in its hand.

The problem is to take object A to location 15,10, and objects B and C to 18,18. We give the planner three

"top-level commands":

63

0 0 0 0 0 0 0 0 0 0

(ACRIEVE-OB-AT-LOC WHITE-BILL* 15 10)
(ACHIEVE-OB-AT-LOC GRAY-BALL* 18 18)
(ACHIEVE-OB-AT-LOC BLACK-BALL* 18 18) 0

4'

On four trials without planning, the system took execution time 917 (seconds) on the average; the low

was 880. the high 969. The variance is mainly due to the choice the agent has of the order in which to deliver

the balls. Seven trials were attempted with the planner turned on. The average execution time was 633; the 0

low was 519 and the high was 727. The times are lower, but the variance is higher. The reason is that the

planner arrived at new plans at unpredictable times, and the agent would have to start each new plan from

wherever it was at that point. Even so, scheduling and protection violation still made the overall plan much

better.

For this example, it is worth showing how the plan gets transformed in a typical case. Starting from

the top-level commands given, the system creates this:

(WITH-POLICY (CHECK-SIGNPOSTS-WHEN-NECESSARY)
(WITH-POLICY (CHECK-OBS-REMOVED-FROM-BOXES)

(PARTIAL-ORDER
((:TAG MAIN

(TOP-LEVEL (:TAG COMMAND-4
(ACHIEVE-OB-AT-LOC WHITE-BALL* 15 10))

(:TAG COMMAND-S
(ACHIEVE-OB-AT-LOC BLACK-BALL* 18 18)) 0 *

(:TAG COMMAND-6
(ACHIEVE-OB-AT-LOC GRAY-BALL* 18 18))))))))

This plan consists of three tagged commands with two standard policies wrapped around them, one to

look for a signpost when the location becomes unclear, and one to exmaine objects when they are removed

from boxes (Section 6.5).

After planning, the plan looks like this:

(WITH-POLICY (:TAG LOCATION-TRACK (CHECK-SIGNPOSTS-WHEN-NECESSARY))
(WITH-POLICY (:TAG MONITOR-BOX-REMOVALS

(CHECK-OBS-REMOVED-FROM-BOXES))
(:TAG PARTIAL-ORDER/3

(PARTIAL-ORDER
((:TAG MAIN

(TOP-LEVEL
(:TAG COMMAND-4

(ACHIEVE-OB-AT-LOC WHITE-BALL 15 10))

(:TAG COMMAND-5
(ACHIEVE-OB-AT-LOC BLACK-BALL 18 18))

(:TAG COMMAND-6
(ACHIEVE-OB-AT-LOC GRAY-BALL 18 18)))))

(:ORDER GO/8 GO/9 SCHEDULER)
(:ORDER GO/4 GO/S SCHEDULER)

64

• ~ ~~ ~ 0

(:ORDER GO/1O WITH-POLICY/11 PROTECTION-SAVER))))) 0
The asterisk in front of the calls to ACHIEVE-OB-AT-LOC indicate that these are actually EXPAIfDED-PROCs

(Section 6.1); the actual code consists of three slightly edited versions of ACHIEVE-OB-AT-LOC's body (as

well as expanded versions of its subroutines). The edits involve adding the tags that are used 'i the :ORDER

clauses. GO/8 is defined as the occurrence of AT-LOCATION in the body of the call to CARRY-OB-TO-LOC that

occurs inside the plan for COMA•ND-S. (See Section 5.1.2 for the text of CARRY-OB-TO-LOC.) GO/9 tags the

corresponding substep of COMMAIND-6, and G0/10 tags the corresponding substep of COMMAID-S. GO/4 and

GO/S are labels on substeps for acquiting the gray and black balls, respectively. WITH-POLICY/!i is also

from the expanded CARRY-OB-TO-LOC for the gray ball (COMANID-6); it's essentially the whole body of that

procedure. I

When you put all this together, the plan says to put the white ball down before doing anything with

the gray ball, and to pick up the gray and black ball before putting either down. The result is to visit the

locations in order

0, 10 - 15, 10 - 9, 0 - 10, 0 - 18, 18 -- 18, 18 &

which is presumably optimal.

Of course, the system does not always come up with this plan; when it does come up with it, it sometimes

considers and even begins worse plans first. (It always finds and begins the inferior plan to pick up all the

balls before delivering any.) On at least one occasion, it decided to use a box, although usually the projector 0

reported, accurately, that this idea was inferior to the simple plan given above.

Experiment 2: The situation is as for Experiment 1 (and Figure 1), except that the robot is at 8.1. The

problem is to move three objects to 1,18 and two to 2,18. The three are initially at 12,8, 12,4, and 9.0; the

two, at 10,1 and 16,8. The agent starts at 8,1. There are several boxes around, including one at 7,3, and

the optimal plan requires using a box to carry all the objects.

Results: In two trials without planning, the low time was 1679, the high 1691. In four trials with

planning, the average was 1430; the low was 1294, the high 1513.

The point of these experiments is not to claim that (e.g.) there is an average improvement of 20% with

planning. Several factors make such direct numerical comparisons meaningless. The world simulator could

not keep up with the planner when the planner was running, which helped the planner by cutting down the

drift of the world state from the model it assumed (as discussed in Section 3.3). Garbage collections caused

both the world and the planner to suspend for a time varying from 10 to 30 seconds; garbage collections are I

much more frequent with the planner running, so this helped the planner, too. On the other hand. the times

taken for robot actions are set quite low. The robot could scan its environment, find objects, and move from

place to place in time periods measuring seconds.

Ezperment 3: In this experiment, two identical objects (both checked gray pyramids) were placed at 15,17, 0

and the agent was told of their existence. It was told to take one to 1,18 and the other to 2,18:

65

0

00 0 0 0 0 ID 00

1

(ACHIEVE-OB-AT-LOC TWEEDLEDEE* 1 18) •

(ACHIEVE-OB-AT-LOC TWWEDLEDUM* 2 18) 0

This problem is impossible, because the agent has no way of telling the objects apart. (It may seem as if

it doesn't matter which goes where, but for all the system knows there may be some crucial but imperctptible

difference between the two objects.) On one trial without planning, with the robot starting at location 8,1,

it took 179 secon is of world time to get to 15,17 and fail (with a failure of clas, "perceptual confusion").

With planning, it took 22 seconds for the system to realize that the commands were impossible, and give up

(as described in Section 6.2). By that time, it had moved only a short distance toward the goal.

8 Conclusions and Future Work

This work may be viewed as an exploration into the problem of planning behavior in worlds that are

changeable, incompletely known, and imperfectly controllable. Although such worlds are in direct contrast

to the worlds of classical planning, I have pursued as conservative an approach as possible. That is, I have

started with classical techniques, and extended them only when necessary. Not surprisingly, many extensions

have been necessary:

I In dynamic worlds, plans must be reactive. By the time all the consequences, of thiE fact have
been taken into account, the plan notation has become a complete programming language.
"RPL." 0

2 It does not seem possible to generate realistic plans on the fly from scratch. Hence we assume a
preexisting library of plans that are competent to solve problems taken in isolation. PFanning
then becomes a process of improving such plans, anticipating and eliminating bugs. The
improvements are revisions of already executable platns, not refinements of abstract plans to a
concrete form (McDermott 1991a).

3 Plans are too complex for it to be possible to prove interesting properties of them quickly. (In
fact, most questions about reactive plans aie undecidable.) We have to settle for answering
questions about plans by projectzng them, that is, generating some execution scenarios, and
then inspecting those scenarios for potential problems.

4 In addition to the classical information about the effects of each task in a projection, the
planner must store information about the state of the agent itself before and after every task.
Much of this information is in variables and data structures, and the planner must be able to
reconstruct the states of those entities at arbitrary points. For example, to optimize the order
in which deliveries are made, the planner must be able to recover where the agent was trying
to go for each delivery task in each projection.

5 Revising reactive plan. requires being able to edit complex code structures. For example, just
to order two steps may require expanding calls to the procedures the steps occur in. (Contrast
the completely straightforward insertion of new orderings in a planner like SNLP (McAllester
Lad Rosenblitt 1991).)

6 It is important that the plans produced by the planner actually get executed, and that the
total time spent planning and executing be smaller than the time that would be spent with no
planning. In the absence of a reliable model of the gains from planning for a while (Boddy and
Dean 1989), the agent commits to executing the best plan it has thought of so far. Whenever
it finds a better one, it swap it in. Hence plans must be written in such a way that they can
cC.pe with sudden aborts and restarts.

66

The preliminary conclusion is that all these extensions actually work. Even under optimistic assumptions

about robot speed, the planner is often able to keep up with the controller and feed it new plans before it

has changed the world so much the-t the new plan is worthless or harmful. Even when the world situation is

not what the planner assumes, new plan can usually cope.

The fact that the algorithm wors in a few cases must be interpreted cautiously, for the reasons men-

tioned in Section 7, and for a more sweeping reason: As the system now stands, its transformations cast a

very specific beam into a very generally stated problem. To go beyond the present work, we must broaden

the beam, and, just as important, narrow the problem.

Some of our ongoing and future research agenda is spelled out in Section 6.6. But there are lots of other

loose ends to tie up. Currently, almost all projected plan failures give rise to bugs for which the "give up"

transformation is the only remedy. In many of these cases, it is not hard to come up with more specific

transformations. An important case is the perceptual confusion failure, which arises when an object the

agent needs to manipulate becomes hopelessly confused with nearby objects. Some preliminary discussion

may be found in (McDermott 1992a), but it's clear that it only scratches the surface.

An important goal for future work is to develop an improved model of synchronizing planning with

execution. As discussed in Section 3.3, the current system ensures that all projection and criticism over a

planning epoch take place with respect to the same world model, which is roughly the same as the world

model at the beginning of the planning epoch. As the world changes, this model becomes increasingly out

of date. Currently, we ignore this drift, and hope that an out-of-date plan is better than no plan at all. 0
In many cases, this hope pans out, although sometimes for the wrong reason. For example, in the second

problem discussed in Section 7, all projections of the plan for getting a box assume that the best box to

get is at location 7,3, because the robot is initially at location 8,1. When the plan is adopted, it picks the

nearest box at runtime, and at that point a different box may be the nearest.

It would be nice to find a less hit-or-miss approach to this kind of problem. There are several possibilities.

One is to have the agent sit still until the planner has planned for a while. Boddy and Dean (1989) have

made some detailed proposals along these lines. The problem is that "sitting still" is not really a well-

defined concept, especially if some plan is already in progress when a new set of top-level tasks arrive. What

is "sitting still" for an autonomous helicopter - hovering or landing?

A more elegant idea is to detect when the current world model has drifted too far from the planner's

assumed world model, abort the planning process, and restart the planner with the world stabilized in the

relevant respects. Detecting having drifted "too far" will require having plan transformations post demons

to do the detection. For example, the scheduler can create a demon that fires when the agent moves closer

to some other errand site than the one that was picked to be first. At that point, the system will know that

further planning is probably pointless unless the X. Y coordinates of the agent can be stabilized.

What I am visualizing here is a special kind of plan transformation, so that the current plan P (or the

parts that are sensitive to agent motion) can get rewritten as

67

(WITH-POLICY (STABILIZE X,Y)

(RUt-TIME-PLAI P))

where "RUN-TINE-PLAN" means "Do P after looking for a good plan for it," To make this work requires

answering several ques~ns: Can we quickly retrieve good plans for stabilizing parts of the world model?

What are the semantics of RUN-TINE-PLAN? How do we fit this special rewrite rule into the basic transfor-

mational cycle (or do we abandon that cycle in this case)? How much time do we allot to planning before

resuming normal execution?

The notation just presented woald have more general application as well. It would require extending

the system so it was able to project and transform pieces of a plan, instead of treating the entire plan as

a monolith, as XFRM does now. When the system encountered a (RUN-TIME-PLAN P), it would have to

generate projections of alternative ways of doing P, in the context of everything else it was doing. This idea

raises several technical problems.

A standard obstacle to work in the field of planning is lack of a realistic world simulator (Hanks et

al. 1993). The current world simulator has much to recommend it, except in the area of navigation. Re-

cently, Sean Engelson has produced a much more interesting simulated world, without discrete locations and

effortless travel (Engelson and Bertani 1992). We hope to transfer much of the current system to such a

realistic world without too much effort.

The approach embodied in XFRM will not really be proven, however, until it is applied to domains

other than those we make up. One idea we hope to pursue is to apply it to domains in which detailed

geometric reasoning is central, such as reasoning about grasping perceived objects. Grasp plans could be

projected, and certain standard collision bugs could be anticipated and transformed away. In such a domain,

it would be natural to restrict the generality of the current XFRM system, because the plans would tend to

be stylized and short.

Acknowledgements: This work was supported by DARPA and the Office of Naval Research, under contract

number N00014-91-J-1577. Thanks to Michael Beetz, Sean Engelson, Chi-Wai Lee. and Amy Wang for

advice and ideas. Belated thanks to Livingston Davies, who convinced me, ten years ago, that plans were

actually programs.

68

* 0 0 0 0 0 0• 0 0• I

9 References E
1 Philip E. Agre and David Chapman 1990 What are plans for? In Maes 1990

2 Michael Beetz and Drew McDermott 1992 Declarative goals in reactive plans. In James Hendler (ed.)

, Proc. First Int. Conf. on AI Planning Systems, San Mateo: Morgan Kaufmann, pp. 3-12

3 Mark Boddy and Thomas Dean 1989 Solving time-dependent planning problems. Proc. Ijcai 11,

pp. 979-984

4 David Chapman 1990 Vision, instruction, and action. MIT AI Lab Tech Report 1204

5 Ken Currie and Austin Tate 1991 O-Plan: the open planning architecture. Artificial Intelligence 52

(1), pp. 49-86

6 Thomas Dean and Keiji Kanazawa 1989 A model for reasoning about persistence and causation. Com-

putational Intelligence 5(3), pp. 142-150

7 Thomas Dean and Drew McDermott 1987 Temporal data base management. Artificial Intelligence 32,

no. 1, pp. 1-55

8 Mark Drummond and John Bresina 1990 Anytime synthetic projection: maximizing the probability of

goal satisfaction. Proc. AAAI 8, pp. 138-144

9 Sean P. Engelson and Niklas Bertani 1992 Ars Magna: the abstract robot simulator manual. Yale

Computer Science Department Report YALEU/DCS/TR-928

10 R.J. Firby 1989 Adaptive execution in complex dynamic worlds. Yale University CS Dept. TR 672

11 Michael Georgeff and Amy Lansky 1986 Procedural knowledge. Proc. IEEE Special Issue on Knowledge I

Representation 74(10), pp. 1383-1398

12 Kris Hammond 1990 Explaining and repairing plans that fail. Artificial Intelligence 45, no. 1-2,

pp. 173-228

13 Steven Hanks 1990 Projecting plans for uncertain worlds. Yale Yale Computer Science Department

Technical Report 756

14 Steven Hanks and Badr Al Badr 1991 Critiquing the tileworld: agent architectures, planning bench-

marks, and experimental methodology. University of Washington Computer Science and Engineering

Department Technical Report 91-10-31

15 Steven Hanks and Drew McDermott 1993 Modeling a dynamic and uncertain world I: symbolic and

probabilistic reasoning about change. To appear, Artificial Intelligence.

16 Steven Hanks, Martha Pollack, and Paul Cohen 1993 Benmarks, testbeds, controlled experimentation.

and the design of agent architectures. Submitted to AI Magazine.

17 Leslie Pack Kaelbling 1988 Goals as parallel program specifications. Proc. AAAI 7, pp. 60-65

18 Leslie Pack Kaelbling and Nathan J. Wilson 1988 REX programmer's manual. SRI Technical Note

381R

19 Subbarao Kambhampati, Mark Cutkosky. Marty Tenenbaum, and Soo Hong Lee 1991 Combining

specialized reasoners and general purpose planners: a case study. Proc. AAAI 9, pp. 199-205

69

20 D.M. Lyons, A.J. Hendriks, and S. Mehta 1991 Achieving robustness by casting planning as adaptation

of a reactive system. Proc. IEEE Conf. on Robotics and Automation, pp. 198-203 a

21 Patti Maes (ed.) 1990 New architectures for autonomous agents: task-level decomposition and emergent I

functionality, Cambridge: MIT Press

22 David McAllester and David Rosenblitt 1991 Systematic nonlinear planning. Proc. AAA] 9, pp 634-639

23 Drew McDermott 1982 A temporal logic for reasoning about processes and plans. Cognitive Science 6,

pp. 101-155

24 Drew McDermott 1985 Reasoning about plans. In J. Hobbs and R. Moore (eds.) Formal theories of

the commonsense world, Ablex Publishing Corporation, pp. 269-317

25 Drew McDermott 1988 Revised NISP Manual. Yale Computer Science Department Report 642

26 Drew McDermott 1991 Regression planning. Int. J. of Intelligent Sys. 6 (4), pp. 357-416.

27 Drew McDermott 1991 A reactive plan language. Yale Computer Science Report 864

28 Drew McDermott 1992 Transforming plans to reduce perceptual confusion. Working Notes, AAAI

Spring Symposium on Computational Considerations in Supporting Incremental Modification and Reuse,

pp. 31-35

29 Drew McDermott 1992 Robot planning. AI Magazine, Summer

30 Nils J. Nilsson 1988 Action networks. In Proc. Rochester Planning Workshop, pp. 20-51

31 Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis II 1977 An analysis of several heuristics

for the traveling salesman problem. SIAM J. Comput. 6, no. 3, pp. 563-581 1 *
32 Earl Sacerdoti 1977 A structure for plans and behavior. American Elsevier Publishing Company, Inc.

33 Marcel Schoppers 1987 Universal plans for reactive robots in unpredictable environments. Proc. Ijcai

10, pp. 1039-1046

34 Marcel Schoppers 1992 Building plans to monitor and exploit open-loop and closed-loop dynamics.

Proc. AIPS-92, pp. 204-213

35 Reid G. Simmons 1992 The roles of associational and causal reasoning in problem solving. Artificial

Intelligence 53 (2-3), pp. 159-207.

36 Gerald J. Sussman 1975 A computer model of skill acquisition. American Elsevier Publishing Company

37 Austin Tate 1975 Project planning using a hierachic non-linear planner. University of Edinburgh AI

Dept. Memo. No. 25

38 Robert Wilensky 1983 Planning and understanding. Reading, Mass.: Addison-Wesley

0

70

j • •• • • •• •

