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here was performed during FY92 and FY93. Related work includes Probability of Detection of
Drug Users by Random Urinalysis in the U.S. Navy (NPRDC-TN-93-2).

The opiniens expressed in this paper arc those of the authors, arc not official, and do not
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Summary
Backgreund

Since any drug abuse impacts readiness, health, and safety, continuing evaluation and
improvement of the Navy's program is required. One method of improving the Navy's program is to
develop and analyze altemative testing strategies.

The Nuclear Regulatory Commission (NRC) proposed a urinalysis testing strategy based on time
since last test. That is, the probability of a person being tested depends on the amount of time since
the person was last tested. Southern California Edison (SCE) has implemented a variation of the NRC
proposal. Urinalysis testing strategies based on tinie since last test are defined by a high testing rate
for personnel not yct tested in a given time period and a low testing rate for previously tested
personnel with negative results in a given time period.

Objective

The objective of this work is to determine if urinalysis strategics proposed by NRC and
implemented by SCE could be used to improve the Navy's drug screening program.

Approach

The probability distribution of random urinalysis tests is modeled under a gencral class of age-
test urinalysis strategies. Age-test is a particular Markov chain with the probability of being tested
defined as a function of time since last test. The NRC proposal, the SCE program, and current Navy
practice can all be modeled as age-test Markov chains. Various age-test strategies are analyzed.

Results

The age-test Markov chain was used to analyze rive different uninalysis testing strategies: two
NRC proposed altemnatives, the SCE process, and two models of the Navy's program assuming a 15%
monthly testing rate.

This age-test Markov chain has 13 states. The process is observed monthly and states 1 through
12 are defined by the number of months since an individual was last tested. State 13 includes
individuals who were tested 13 or more months ago.

Age-test urinalysis strategies car be used :0 reduce the variance of the number of tests per person
per year, while keeping the average number of tests unchanged. This allows a reduction in both the
number of people who are not tested and the number of people tested multiple times. The system also

becomes more predictable and, hence, potertially subject to gaming by drug users.




The five urinalysis stratcgics are summarized below.

Annual  Constant Probability Not Tested

Testing Monthly
Rate Rate Within Within 1 Year

Strategy (%) 1Year Given Just Tested
NRC—A 103 No .100 138
NRC—B 300 Yes 032 032
SCE 130 No 052 478
Navy—A 180 Yes 142 142
Navy—B 180 No 081 -108

Note. NRC = Nuclear Regulatory Commission, SCE = Southern California Edison.

These straiegies have widely varying annual testing rates (103-300%), and either constant or
varying monthly rates. The varying annual rates imply varying costs of the programs. A preferred
strategy should have low annual testing rates to lower costs, a low probability of not being tested
within 1 year, and a low probability of not being tested within 1 year given just tested. When this last
probability is hign, the system is subject to gaming by drug users.

Conclusions

Markov chains provide a framework for the systematic analysis of drug tesiing strategies based
on time since last test. The steady state distribution provides estimates of the number of tests per
month and the number of people who have not been tested in the past year. The distribution of the
number of wsts in a fixed tirac period (e.g., year), given any initial state, can be calculated.
Furthermore, given test or cost estimates, the relative merits of different testing strategies can be
easily calculated. In general, age-test urinalysis strategies trade off predictability for reduced rail
area. Here we mean the tail area of the distribution of the number of tests in a fixed time period.
Age-test strategies provide fewer people not tested within 1 year and fewer people tested
excessively duning 1 year. Age-test strategics are 2l1so more predictable, have lower variance in the
number of tests, and as a result are subject to yuming by drug users. Future work will quantify these
trade-offs.

Boih the NRC alternative A and the SCE process have some undesirable properties. These
strategics involve large differences in the testing rates between people tested within the past year
and those who were not tested. This implies that once tested there is a high probability of not being
tested again within 1 year. These probabilities are 0.74 for NRC alternative A and (.48 for the SCE
process. The SCE process is such that almost half the tests every month are given to people who
know they will be tested. For these reasons we do not recommend cither NRC alternative A or the
STE process.
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1.6 Introduction
1.1 Background

The U.S. Navy's zero rolerance drug policy has been in etfect since 1981, Since then the Navy
has pursucd an aggressive urinalysis testing program. The objectives of this testing program have
been to deter and detect drug abuse, as well as provide data on the prevaicnce of drug abuse. All
officer and enlisted personnel are subject to randem urinalysis testing on a continuing basis.
Current policy (Chief of Naval Operations 1990), directs Navy commands to test 10 to 20% of their
members cach month. The Navy's randomi urinalysis program has been considered successtul. The
proportion of service members sampled testing positive for drugs fell from 7% to 1% between 1983
and 1991. However, since any drug abusc impacts rcadiness, health, and safety, continuing
cvaluation and improvement of the Navy's program is required. One method of improving the
Navy's program is to develop and analyze alternative testing strategics.

The Nuclear Regulatory Commission (NRC) (1988) proposed a urinalysis testing strategy
based on time since last test. That is, the probability of a person being tested depends on the amount
of time since the person was last tested. Southem California Edison (SCE) has implemented a
variation, (Murray & Talley 1988), of the NRC proposal at the San Onofre Nuclear Generating
Station. Urinalysis testing strategies based on time since last test are defined by a high testing rate
for personnel not yet tcsted in a given time period and a low testing rate for previously tested
personnel with negative results in a given time period. This strategy may provide balance among
nrogram obiectivee, including detection, deterrence, a high probability of testing some fixed
number of times, a low probability of testing more than some fixed number of times, cost
cffectiveness, ease of adminisiration, and avoidance of discrimunation. The NRC's (Nuclear
Regulation Commission, 1989) adopted rules and regulations for urinalysis do not require a fime
since last test strategy. Howcver, SCE continues to use their variation of this strategy with NRC
approval.

The advantage of a time since last test strategy is showr in the following example. Assume the
Navy's objectives at each command are: 90% of personne] should be tested at least once each year
and perscnnel already tested within 1 year should be tested at a rate of 2.5% per month. A simple
random sampling (with replacement) strategy that meets these objectives would require an average
of 2.1 tests! per person per year. However, a strategy based on time since last test could meet these
objectives with an average of 1.0 tests per person per year. An annual savings of 5.94 million
(based on a decrease of 1.1 tests per person for 600,000 people at 3G per test) could be realized by
using an age-test strategy in this example.

Markov chains provide a framework for the systematic analysis of drug testing strategies based
on time since last tesi. The current Navy simple random sampling strategy is included within this
framework. A related use of Markov chains, modeling <lasses of drug users, is given in Evanovich
(1985). Previous work (Thompson & Boyle, 1992), inciudes models of detection of drug users.

IBased on a monthly rate T, the probability of being tested at least once within 12 months is 1 - (1 - 02 =09.
Therefore Tw= (.175 and the average annual number of tests is 121= 2.1.




1.2 Objective

The ovbjective of this work is to determine if urinalysis stratcgics proposed by NRC and
implemented by SCE could be uscd to improve the Navy's drug sereening program.

1.3 Approach

The probability distribution of random urinalysis tests is modeled under & general class of age-
test urinalysis strategics. Age-test is a particular Markov chain with the probaility of being tested
defined as a function of time since last test. The NRC proposal, the SCE program, and current Navy
practice can all be modeled s age-test Markov chains with 13 states. *n this casc, states 1 through
12 correspond to 1 through 12 months since last test and state 13 is defined as over 12 months since
last test. The probability of being tested, given the current siate, defines an age-test urinalysis
strategy. Various age-test strategics are analyzed.

2.0 Markov Chains

This section bricfly develops the theory and notation that wiil be used in the remainder of the
report. Chapters 1 and 2 of Hoel, Port, & Stone (1972) are the snimary source for this materiai.

Consider a system that can be in any one of a finite number of states. This set of states is
denoted Iand is called the srare space of the system. The system is observed at discrete points in

timen =012 __ and X denotes the ctate of the system at time n. For our purposes X, ic a
;

random variable; that is, the system is not deterministic.

Systems with the property that only the present state influences the future are called Markov
chains. In such systems, knowledge of the path taken to reach the present stzte cannot help predict
the future.The Markov chain is a simple generalization of systems of independent random
variables.

The Markov property is defired by
P(XrH 1= X4 | XO = Age .. -:Xn -—_xn) - P(Xn+l = Xnw I Xn = «\.n).

The conditional probabilities P(X,, ,, = x,,.1 | X,, = x,;) arc called transition probabilities. When
the transition probabilities are independent of time n, they are called szationary transition
probabilitics. The model developed in this paper has random variables that satisty the Markov
property and have stationary transition probabilitics. We represent the transition probabilities by
the matnix P, where

P(x.y)=P(X,.1 =y | X, = x).

The product of P with itself » times yields the n-step transition matrix where

P'ix,y)=P(Xy, o=y IXk = x).




Given a stationary transition matrix P and an mitial distribution Iy all probabilitics associated
with the chain are unigucly determined. In particular, the distribution of X, is

N, = IyP".

Hitting times arc random variables which play an important rolc in the thcory of Markov
chains. For y €L, the hiiting time 7, is defined as the first positive time the chain resides at state
y, i.c.,

Ty=min(n21:X,=y)

Define

Py = AT, < 20) = P(Ty< 00| Xy

as the probability that a Markov chain starting at x will hit 3 in finite time. A statc y is transien? it
Pyy < 1, or if starting at y therc is some pusitive probabiiity that the chain wili never retum to y. A
state is recurrent if oy, = 1. Furthermorc, ail recurreni states in a finite statc Markov chain have the
property that the mean retum time m,, is positive and finite, where

m, = E(T,) = ET, | Xo=y).

Such states arc called positive recuneni. A fundamenial theorem of finite Markov chains states
that the class of positive recurrent states, L,, is nonempty and is partitioned into closed irreducible
subclasses. A class of states C is closed irreducible if, once in C, a chain cannot leave C and all states
in C lead ic each other with positive probability.

Associated with certain Markov chains are special distributions which satisfy

E )P, y)=Tl(y),ye L.
x

Such a distribution 1 is called stationary and a chain with a stationary initial cistribuiion will
have the property that

P(Xn-y)-ri(.Y)’yE L

for all 2 > 0. When a stationary distribvition T1 satisfies

i " y) - :
nl_t)nl)P (xy)=TI(y),x,y€ L

then IT is called a steady state distribution. This i~ a strong condition and implies that IT is the
unique stationary distribution and

lim (X, = y)=1lim Z g (x) P, y) H(y),a,ve L )
a0 n—o~™ x

n—




tor an arbitiary initial distribution T, Equation 1T mcans that, regardless of the chain’s initial
distribution, for large a the distribution of X, approximates the stcady state distribution. It is
important to xknow when stationary distributions exist and when a stationary distribution is stcady
state. Theorem 5 (Hoel et al,, 1972, p. 64) states that an ireducible positive recurrent Markov chain
has a unique statiopany distribution given by

) 1
M(y) = T yelL )
Theorem 7 (Hocl et al,, 1972, p. 73) states that when such a chain is aperiodic the stationary
distribution defined by equation 2 is steady state. A sufficient condition for aperiodicity is that
Py, 4) > 0 for atleastone x € L.
It is also necessary to define the concept of occupation times and their associated probabilities.

Dectine the occupation time

n

N, o) = 2 1K) 3)

ma=1
as the number of tinies the chain is in state y in n time periods, where 1, is the indicator function
Tifze=y
]”(") Oifz4v.
Thie occupation Ume piobabititics are

P, (N (y)=m)=PN, (y)=m | Xo =) @

form=0,1,.. ., # This is the probabiliiy of m visits o state y in 7 time periods ziven that tac chain
startcd in state a.

3.6 Age-Test Model

Using the previously described notation and theory, we now define a class of age-1est Markov
chains whcre the states arc defined by time since last test. The transition matrix is

[ ppoq 0 0... O
P ¢ q, 0 ... Ol
P, ¢ 0 gq ... 01

P=
) &)

r, 0 0 0. q,

r ¢ ¢ 0... 4,

L__d'l a.l_J

FiS




A similar model, called age-replacement, where p,; ., = 1 is presented in Taylor and
Karlin (1984). Later we will be primarily interested in the case d = 12 and testing is conducted
monthly. In general, an individual is in state iif last tested itime periods ago. An individual resides
im state d +1 if last tested o + 1 or more time periocs ago. For each state an individual is either tested
with probability p,, in which casc the individual moves to state 1, or the individual ages 1 time
period with piobability g; = 1 - p, .Hence, the chain is named age-test. For exampie, the Navy
program with testing unrelated to time since last test and a 15% monthly testing rate would have
all the p,’s equal t0 0.15.

When the restrictions 0 <p. - gy< 1 and 0 <y, | < 1 are Bplaced on the transition matrix in
equation 5, all states lead 1o all other states with posiiive probability. Hence, the chain constitutes
a single irreducible positive recurient class and there is a unique stationary distribution. Let I1
- (R,. Ty.. M®,,)- Solving IT = [TP with X ;. = 1 will give the stationary distribution I'L Writing
out the equations we have the following

T o= pm P + ...+ pgTy + Pde1Tde
T, = 4qm
g
nd + 1 - qdnd + qd+]nd+l
1 = T, 4 n, + ... + Ry + nd#l

5olving in terms ¢f T, we obtain

M o- x,
T 9™
1t3 -
9%~ 9T
Tfk -

T 1™ Gk-2- - - 9T

Mg =~ Gy 1=G4.194-2--- N,

Tgor = G/ Pas))u=Quqar- -1/ Py M

Since X = 1 then

n, = 1/{l+q+qq24qq29:+ ... +(q192- - - 4a- )+ (9192 --94/ Py 1))

Since py > 0, the chain is aperiodic and IT is steady state with, according to equation 2, it, = Ym,.
This is the reciprocal of the mean return tme to state i .




In Section 4 we calculate the cccupation time provabilitics for state 1 using the age-test model.
The occupation time probabilities for 12 time periods provide the distribution of the annual numter
of tests. A visit to state 1 is cquivalent to being tested. Observe that from any ipitial state there are
2'2 possiblc paths over 12 perieds. The probability of each path is calculated and the tesults are
aggregated to get the conditional probabilitics in equation 4. The unconditional distribution of the
number of tests in 12 time periods, (N, (1)), with initial distributicn equation 6 is detcrmined by

13
PNy, (1) = ) =3, 7, P,(N,; (1) = m).

i=1
We also observe the average annual number of tests 1s

12 N

ENg () =E: 2,1, (Xn)
G

12
-3 P(Xp=1)

m=1
=12 m

since IT is stavionary.
Finally. note the probability of not  ing tested within 1 year is
P(N3 (1) =0) =15 (7
Specifically, the event Ny, (1) = Qis equivalent to the chain being in state 13 at time 12. Because

the initial distribution is stationary, all distributions are stationary and P (X, = 13) = 7, ;. See Sellke
(1984) for further details.

4.0 Applications

The age-test Markov chain was used to analyze five different urinalysis testing strategies:’two
NRC proposed alternatives, the SCE process, and two models of the Navy's program assuming a
15% monthly testing rate.

This age-test Markov chain has 13 states. The process is observed monthly and states | through
12 are defined by the number of months since an individual was last tested. State 13 includes
individuals who were tested 13 or more months ago. Age-test urinalysis strategies can be used to
reduce the variance of the number of tests per person per year, while keeping the average number
of tests unchanged. This allows a reduction in both the number of people who are not tested and
the number of people tested multiple times. The system also becomes more predictable and, hence,
potentially subject to gaming by drug users. The specific exampies follow.




4.1 Nuclear Regulatory Commission Proposals (NRC)

Two uriralysis testing alternatives proposed by the NRC (1988) are analyzed in this section.
Altemative A required that at least 90% of the individuals are tested each year and that testing rates for
individuals already tested with negative results be at least 2 1/9% per month. The age-test model with

p. 20025,i~1,..,12
n; 0.1 (8)

satisfics these requirements. Minimizing? mt,, the average number of tests per month per person,
subject to eauation 8 yields a solution with p, = p, = . . . = p,, = (0.025 and p,; = 0.6338. See the
Appendix for a detailed analysis. Results are summarized in Table 1 and Figure 1. The last column
in the table and the figure were calculated using equation 4 and enumerating all possible transitions
over 12 months. The advantages of this alternative include: (1) the average number of tests per
person per year is 1.03, (2) 90% of the people are tested at least once per year, and (3) 12% of the
people are tested more than once. The major disadvantage is that once tested, people have a 74%
chance of not being tested for the next 12 months.

Table 1

Probabilities From Age-Test Mode! of NRC Aiternative A

Brobability
Tested Steady Not Tested

State This Month ~ State  Next 12 Months
1 025 086 738
2 025 084 277
3 025 082 104
4 025 080 039
5 025 078 015
6 025 076 006
7 025 074 002
8 025 072 001
9 025 070 000
10 025 068 000
11 025 067 000
12 025 065 000
13 634 100 .000

Note. NRC = Nuclear Regulatory Commission.

2This and subsequent optimization problems were solved using the Microsoft Excel Solver, Microsoft
Corporation (1991), on an IBM compatible personal computei.
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Figure 1. Steady state distribution of number of tests within
12 monihs for age-test model of NRC alternative A.

Alternative B required hat tests must be administered throughout the year at an annual rate
equivalent 10 300% of the popuiation. The zge-test mode] with

pp >0 i=1..,13
n, = 300% /12 months = 0.25 )]

meets these requirements. Letting p, = p; = . . . = p;3= 0.25 satisfies equation 9. Results are
summarized in Table 2 and Figure 2. The advantages of this alternative include: 97% of the people

are tested at least once and the current state provides no information on the future of the process.
Any strategy with all the p, equal has the latter advantage. When the p,'s are equal, the distribution
of the number of tests in 1 year is simply the binomial. A disadvantage of altemnative B is the high
cost of three tests per person per year.




Table 2

Probabilities From Age-Test Model of NRC Alternative B

Probability
Tested Steady Not tested
State This Month State Next 12 Months
1 25 250 .032
2 25 .188 .C32
3 .25 .141 032
4 25 .105 032
5 .25 079 .032
6 .25 059 .032
7 25 044 .032
8 25 033 032
9 .25 025 .032
10 .25 019 032
11 25 014 032
12 25 011 032
13 25 032 032
Natg. NRC = Muclear Regulatory Commission.
1.0+
81
= 6 -
E ol
- 232 '258\ Mean = 3.00
24 127§ \\\\: \ -lg Variance = 2.25
P o NN\ o
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o HLHMMMEMENN
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Note. NRC = Nuclear Regulatory Commission.

Figure 2. Steady state distribution of number of tests within

12 months for age-test model of NRC alternative B.



4.2 Southern California Edison (SCE)

SCE has implemented a composite random sampling (Murray & Talley, 1988), approach to
urinalysis. Their approach is based on a sampling scheme that is part sampling with replacernent
and part sampling without replacement. The entire population is sampled at a specified rate with
replacement. People who have not been sampled within the past year are sampled at another
specificd rate without replacement. SCE states a 5% annual chance of not being tested and a 130%
average annual testing rate. The process in use at SCE can be modeled as an age-test Markov chain.
An age-test model with

130% / 12 months = 0.1083
0.05(10)
P = pPx=...=pDp2

<
<

meets the specifications of the SCE sampling scheme. There is no feasible solution to equation 10.
The following two optimizations were performed to find an age-test sirategy as close to meeting
equation 10 as possible. Recall that &, the steady state probability for state 1, represents the
average monthly testing rate, and mw;,, the steady state probability for state 13, represents the
average annual not tested rate. Minimizing 7, subject to the 1estrictions oa p; and ;5 in equation
10 yields py = p, = . . . = p;;, = 0.0645, p;; = 1.0 and x; = 0.1113. Minimizing =, subjeci to the
resuictions on p;and 7, in equation 10 yieldsp; =p,=...=p,,=0.0596, p,;= 1.0 and rt,, = 0.0518.
The solutions from both of these optimizations are close to the resuits given by SCE (Murray &
Tallcy, 1988). Results from the latier optimization are summarized it Table 3 and Figuie 3. A
problem with this process is that every mionth almost one half (0.052/0.108 = 0.48) of the tests are
given to people who are in state 13 and, therefore, know they are being tested that month.

Table 3

Probabilities From Age-Test Model of SCE’s Process

Probability

Tested Stcady Not Tested

State This Month State Next 12 Months
06 .108 478

05 162
096
990
085
080
075
070

—

?

O 0N AW R

062
059
055
052

——
Ll =

S
N N N NN N-E-E-N-N-R=

88888238 8¢%
g

13
Note. SCE = Southern Californis Edison.
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Mean « 1.30
\\N Variance = 0.462
%\\ .049
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NN .007 .00 1
Number of Tests
Notg. SCE = Southern Calitornia Edison.

052

7

Fignre 3. Steadv dtote dictribution of number of tecte within

12 months for age-test model of SCE’s process.
4.3 United States Navy (U.S. Navy)

U.S. Navy policy, Chief of Naval Operations (1990), directs commands to test 10 to 209 of
their personnel each month. Age-test models with

010 < p, < 020, #1,...,13 an

meet this rcquiremcnt3. Two different strategies consistent with equation 11 are presented here. In
the first strategy (Navy-A), let py = . . . = p;; = 0.15. Choosing the p; all equal is consistent with
current Navy practice. In this model testing is independent of time since last test. The value 0.15
was chosen because it is the midpoint between 0.10 anid 0.20. Results are summarize 1 in Table 4
and Figure 4.

3Slrictly speaking 0.15 < =} < 0.20 is sufficient to meet this requirement.
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Table 4

Probabilities From Ag.-Test Model of Navy Program
At 15% Monthly Testing Rate (Navy-A)

Probability
Tested Steady Not Tested
Statc This Month State Next 12 Months
1 .15 150 142
2 15 127 142
3 .15 .108 142
4 15 .092 142
5 .15 078 .142
6 15 067 142
7 .15 057 .142
8 15 048 142
G 15 041 142
10 15 .035 142
11 15 .030 142
12 15 028 .i42
13 15 142 142
1.0+
8
2 64
5 1
[+
L
[&]
& b~ Mean = 1.80
301 292 Variance » 1.53
e \\.\ \
i \\W 172
2+ 142 \\ \\ \
0 LMY, 005
0 1 2 3 4 5 6+
Number of Tests

Figure 4. Steady state distribution of number of tests within 12 months for age-test
model of Navy program at 15% monthly testing rate (Navy-A).




Recall m,, the steady state probability of being in state 1, is the average monthly testing rate. A
sccond strategy (Navy-B) with i, equal to Navy-A is presented for comparison purposes. The
following minimnization problem was solved: minimizc w,; subject to ;= 0.15 an- equation 11.
Note 7}, is the probability of not being tested within 1 year. Theretore, this strategy has the same
average monthly tesiing rate and minimizes the probability of uot being tested within 1 year. The
solution is {p, = p, =p; = 0.1, p,=0.1145, p; = . . . = p;; ~ 0.2}. Results are summarized in Table
5 and Figure 5. In this case m,; = .81 as compared to 1y, = . 142 for Navy-A. Therefore, with an
equal number of monthly tesis and keeping the wronthly testing rate between 10 and 20%, strategy
Navy-B reduces the number of people not tested in a given year by 43% ([.142 - .081]/.142 x 100).

Table §

Probabilities From Age-Test Model of Navy Program at
180% Annual Testing Rate

Probability
Tested Steady Not Tested
State This Month State Next 12 Months
1 10 150 .108
2 HY 135 056
3 10 122 086
4 11 109 076
S .20 097 069
6 .20 077 069
7 .20 062 069
8 .20 050 069
9 .20 040 069
10 .20 032 069
11 .20 025 069
12 .20 020 069

13 .20 081 069
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Figure 5. Steady state distribution of number of tests within 12 months for age-test

model of Navy nrogram at 1809 annunl testing rate (Navv.R).
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The five urinalysis strategies presented in this section are summarized in Table 6. These
strategies have widely varying annual testing rates (103 to 300%). This, of course, implies widely
varying costs of the programs. A preferred strategy shouid have low annual testing rates to lower
costs, a low probability of not being tested within 1 year, and a low probability of not being tested
within 1 year given just tested. When this last probability is high, the system is subject to gaming
vy drug users.

Table 6

Summary of Age-Test Markov Chain Analysis of Five Urinalysis Strategies

Annual Probability Not Tested
Testing  Within  Within 1 Year
Strategy ~ Rate{%) 1 Year  Given Just Tested

NRC-A 103 1100 738

NRC-B 300 032 032

SCE 130 052 478 2
Navy-A 180 142 142 T
Navy-B 180 081 108
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5.0 Conclusions

Markov chains provide a framework for the systemaiic analysis of drug testing stratcgics bascd
on time since 1ast test. Under mild conditions on the transition probabilitics, these Markov chains
converge to stcady statc. The steady state distribution provides estimates of the number of tests per
month and the number of peopic who have not been tested in the past year. Since this steady state
solution can be expressed in closed form, optimization problems involving steady state can be
formulated and solved.The distribution of the number of tests in a fixed time periad (c.g., year),
given any initial state, can be calculated. Furthermore, given test or cost estimates, the relative
merits of different testing strategics can be casily calculated.

In general, age-test urinalysis strategies trade off predictability for reduced rail area. Here we
mean the tail area of the distribution of thc number of tests in a tixed time period. Age-test
strategies provide fewer pcople not tested within 1 yecar and fewer people tested excessively during
1 year. Age-test strategies are also more predictable, have lower variance in the number of tests,
and as a result are subject 10 gaming by drug users.

Both the NRC alternative A and the SCE process have some undesirable properties. These
strategics involve large difterences in the testing rates between people tested within the past year
and those who were not tested. This implies that once tested there is a high probability of not being
tected again within 1 year. These probabilities are 0.74 for NRC alternative A and 0.48 for the SCE
process.The SCE process is such that almost one half the tests cvery month are given to people who

Ly Avt tarall ban ¢antad
IBIUVY ULy Vil UL ibownu,

Currently, extensions to the age-test model are under development. These include drug usage
patterns and their impact on the probability of detection.This will help quantify the trade-off
between predictability and the reduced tail area in the distribution of the number of tests menticned
above.




References

Chict of Naval Operations (1990). Alcohol and Drug Abusc Preveation and Control,
OPNAVINST 5350.4B.

Evanovich, P. (1985). A Model for Drug Testing (CRM 85-33). Alcxandria, VA: Center for Naval
Analyscs.

Hocl, P. G, Port, S. C., & Stone, C. J. (1972). Introduction to Stochastic Processes, Boston:
Houghton Mifflin Company.

Microsoft Corporation (1991) Microsoft Excel Solver User's Guide, Redmond, WA: Microsoft
Corporation.

Murray, L. C., & Talicy, A. E. (1988). Composite Random Sampling, Rosemead, CA: Southem
California Edison.

Nuclear Regulatory Commission (1988). Fitness-for-Duty Program: Proposed Rules, Federal
Register, 53, (184).

Nuclear Regulatory Commission (1989). Fitness-for-Duty Program: Rules and Regulations,
Federal Register, 54, (108).

Selike, T. M. (1992). Memo on ISAG Froblem 92T: Occupation Time Probabilitics for a Markov
Chain, Stanford, CA: Stanford University Department of Statistics.

Taylor, H. M., & Karlin, S. (1984). An Introduction to Stochastic Modeling, Orlando, Fl.:
Academic Press, Inc.

Thompson, T. J., & Boyle, J. P. (1992). Probability of Detection of Drug Users by Random
Urinalysis in the U.S. Navy (NPRDC-TN-93-2). San Dicgo, CA: Navy Personnel Rescarch and
Development Center.




Appendix

Derivation of Optimal Conditions




Derivation of Optimal Conditions

i This appendix develops the solution to the following probiem:

1

Minimi - (A1)
MIMZET = 14 g+ @z + o + 9197 - Gu 1+ (9192 - 4d-194) | Bus s
Subjcct to |y, 4 = 919y dd-194 n <o
» Pd
p2B i=12,....d
whete 0 < a, B < 1. Clearly, the problem is equivalent to
L 9192 - 9d - 194
Minimize 1 + ¢, + ¢ g2 +--- + @12+ - - Gg. 1+ (A2)
Pi+

subject to 92 ;d' qld' 94 msa (A3)

pi?—B; i-l,z...,d.

Foy yiven values of g, and p, , . the objective function (A2) is largest at g, =g, = .. = g4, =1 -PB.
Hence, we wish o solve:
q (Ad)
Pdi

Maximize x=

Subject to X <Q (A5)
[1/QL-BF-I-(1 - BFYBY+x

p2 B

where (A%} is the result of manipulating (A3) and noting that 1 +(1- B)+...+(1- B '=[1-(1- B)¥)/
B. Finally, solving (AS) for x we have the equivalerice

Maximize x = —34
Fd+1
Subject to xx a 1-a-B
ubject to xx< T o 8 y(a, B)

ra2B.




Choosing x = y(x, B) with p, > B yields a solution. This reduces to

- 1 . Pa
Pd+1 )’(33) )’(“:B) ’ PdBB

and (p,, ps,1) must lie on a line. Figure A-1 illustrates the situation. When («, B) = (a,, B,), there
are multipie solutions lying on L, to the right of the vertical line p, = B. In such a configuration a
unique solution can always be obtained by cheosing the intersection of L, and the 45%line L : p,

= P4, - The case (&, B) = (a,, B,) implies p, , , < p,. In this configuration a unique sclution can be
obtained by letting p, = B and taking p,, , on Ly atpy=Borp,, = (1 - B y(o, ).

Pd+ A

1/ y(a, By) \
1

=Pd .t

1/ (@, By)

Lz\
'

0 pa=B 1 P4

Figure A-1. Geometric interpretation of optimal region.

For any optimal solution, the minimum value of &, is obtained by substituting y(a., B)
forq,/ ps,yin (Al) and setting g, = g, = ... = g,_; = 1 - . This yields

1
1+(1-B) +..+(1- P T +(1- B y(a, B

1 (c, B) -

- _Bl-o
1-(1-B)
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