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Foreword

This collection of technical reports and technical memoranda deals
with the following topics: accurate efficient evaluation of cumulative or
exceedance probability distributions directly from characteristic
functions; determination of the performance of general second-order
processors with nonstationatry Gaussian inputs; the exact operating
characteristics of a sum of an envelope-detected narrowband Gaussian
process and sine wave; the resolution of the right-left ambiguity of a
randomly moving line array; the operating characteristics of a cross-
correlator with sample mean removal; statistical characterization of the
under-ice profile; and the evaluation of densities and distributions from
knowledge of high-order moments.

Some of the material presented here is based heavily on earlier work
by the author, which can be found in the following volumes in addition
to the referenced technical reports:

Performance of Detection and Communication Systems, NUSC
Scientific and Engineering Studies, 1974;

Spectral Estimation, NUSC Scientific and Engineering Studies, 1977;

Coherence Estimation, NUSC Scientific and Engineering Studies,
1979;

Receiver Performance Evaluation and Spectral Analysis, NUSC
Scientific and Engineering Studies, 1981; and

Signal Processing Studies, NUSC Scientific and Engineering Studies,
1983.

Dr. William A. Von Winkle
Associate Technical Director

for Technology
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Technical Report 7023
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Accurate Efficient Evaluation

Of Cumulative or Exceedance
Probability Distributions

Directly From
Characteristic Functions

A. H. Nuttall
ABSTRACT

An accurate and efficient method of evaluating the entire cumulative

or exceedance probability distribution, via one fast Fourier transform

of the sampled characteristic function, is presented. The sampling rate

applied to the characteristic function results in aliasing of the
probability density function, while the limited extent of the sampling

gives rise to a systematic disturbance in the calculated probability

distribution. Both types of errors are easily recognizable and can be

controlled by a trial and error procedure whereby the calculated

distributions are plotted for observation and modification.

The size of the fast Fourier transform determines the number of

distribution values available, but has no effect on the accuracy of the
result. Regardless of the number of characteristic function evaluations

required for accurate results, the storage required is just that

corresponding to the size of the fast Fourier transform.

A program for the procedure is presented and the inputs required of

the user are indicated. Several representative examples and plots
illustrate the utility of the approach.

Approved for public release; distribution unlimited.
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ACCURATE EFFICIENT EVALUATION OF CUMULATIVE OR

EXCEEDANCE PROBABILITY DISTRIBUTIONS DIRECTLY FROM

CHARACTERISTIC FUNCTIONS

INTRODUCTION

The performance of a signal processor can often be evaluated in terms of

the characteristic function of the decision variable, either numerically or in

closed form; see for example, refs. 1 and 2. However, a closed form for the

corresponding probability density function or cumulative distribution function

is seldom available, and numerical procedures must be employed. Several such

procedures have been published in the literature, refs. 3-8. However they

have limited accuracy or they require extensive storage or analytical

manipulations and calculations.

We present a technique which is limited in accuracy only by the round-off

noise of the computer or by the errors'of the special functions required in

the characteristic function calculation. The amount of storage depends only

on the number of cumulative or exceedance distribution function values
requested and does not influence the accuracy of the final probability

values. The entire cumulative and exceedance distribution function values

result as the output of one fast Fourier transform (FFT). The size of the FFT

dictates the storage required and the spacing of the calculated probability

values, but not their accuracy.

The addition and subtraction of integrand functions given in ref. 7 can

be entirely circumvented and yet enable use of an FFT, through proper

manipulation of the origin contribution of the characteristic function.

Specific connections with past results will be noted at appropriate points in

the derivations.
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DERIVATION OF PROCEDURE

Shifted Random Variable

The primary random variable of interest is the real quantity x with given

characteristic function fx(f) which is related to the probability density

function px of random variable x via Fourier transform *

S=fdv exp(ijv) Px(v). (1)

We define secondary random variable y as

y = x+b, (2)

where bias (shift) b is a constant, chosen such that random variable y has

insignificant probability of being less than zero. However, we also pick b as

small as possible, so that the characteristic function of y,

f y(1) = fx(f) exp(iby), (3)

will vary slowly withy. In fact, b can be negative, as for example if x were

limited to values larger than some positive threshold. The approach here is

not limited to positive random variables x, as were some of the results in

ref. 7, but is applicable to any random variable distribution.

By way of example, for an exponential probability density function for

random variable x, we choose b=O; whiie for a Gaussian random variable,

bz,$s+8ax yields a probability less than 1E-15 of y being negative. The

probability density function of random variable y therefore appears as

depicted in figure 1.

Integrals and sums without limits are over (_*+%Q).

2
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V

Figure 1. Probability Density Function of Secondary Random Variable y

The cumulative distribution functions of random variables y and x are

related according to

Y

Jdt Py(t) = Py(v) = Px (v-b); Px (v) = Py(v+b). (4)

Thus we can inspect Px(v) in the .eighborhood of v=-b (the lower edge of

interest of x) by looking at cumulative distribution function Py(v) in the

neighborhood of v=O. More precisely, we will investigate P y(v) for values

of v greater than zero, since this is the region of significant variation of

Py(v); this is called the positive neighborhood of v=O.

Approximation to Cumulative Distribution Function

From ref. 4, eq. 7, we have the cumulative distribution function of

random variable y in terms of the characteristic function according to

40

P 1 v- d g(f,v), (5)Py V) - •. 0+

where we have defined auxiliary function

g(,.v) = Im exp(-i~v) (6)

Observe for later use that

g(O+,v) - lim Im 1-iyv) _____ (7)

where uy is the mean of random variable y.

3
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For v in the neighborhood of zero, exp(-i5v) in (6) varies slowly withf,

and we have the approximation, via the Trapezoidal rule, to (5) as

P(V) A g(O+,v) a g(nA,v) E C(v), (8)

n=1

where the right-hand side of (8) has been defined as C(v). Here, a is the

sampling interval in $, and is small enough to track changes in exp(-irv)*
fy(5)/5. We choose the Trapezoidal rule in (8) over other integration rules,

such as Simpson's rule, because it results in minimum aliasing for Fourier
transforms relative to all other rules; see appendix A for elaboration and

proof.

Observe from (8) that

P y(0) w C(O) means C(O) m 0, (9)

since Py(0) is insignificant by the choice of b in (2); this relatijn will

be used later.

Relationship of Approximation

Although we want to evaluate the exact cumulative distribution function

Py(v), we have instead arrived at an approximation C(v) via (8). How are

these two related? To determine the relationship, we mani;i.':te (6)-(8) as

follows:

1 I rI fd %(nAY
+ -) + Im exp(-in4v) ,n j

n=2~v IM =ep-,,) w-n(0

n=1- + a ---- 'y_ Im{ ~exp(-inav) • (10)

v-1 f (nA)
+?* '& -_ITy exp~inav) (11)

n40

4
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The renmval of the imaginary operation from within the summation in (10) is a

crucial step; it does not create a problem in divergence since n > 0. This is

in contrast with the integral of (5) and (6), where removal of the imaginary

operation would create a divergent integral. This postponement of the removal

of the imaginary operation, until after the approximation to the integral was

developed in (8), is the major difference with the results in ref. 7.

Taking a derivative of (11), we obtain

S A A
C (v) =A + T- 2exp 'inav) f (na)

n4O

= -exp(-inAv) fy(n&)=

n

; ' fdY exp(-i~v) fy(5) Ae(O )

- py(V),M 2 (v) = >py(v-n -P (v), (12)

where infinite impulse train

9A = 2g(T-nA), (13)

n

whereS denotes convolution, and where we have used the relation

1_S dt exp(-iwt) ASA(t) = 29(w). (14)
A

This last result follows from ref. 9, p. 28, rule 11, with u(t) = S(t), T=a,

F-lIT, and w-2wf. Relation (12) indicates that C'(v) is an infinitely aliased

version of the probability density function Py(v), with resultant period

2w/a in v. For small enough sampling increment A in (8), there will be very

little overlap of the displaced versions of py in (12), thereby yielding the

good approximation
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y (v) - py(v) for 0 < v < 2v/&. (15)

The situation for relation (12) is depicted in figure 2.

C' (V) (

g(V)

V

A A

Figure 2. Infinitely Aliased Probability Density Function (v)

There now follows from (12),

C(v) = C(O) + du y (u) r C(O) + (v), (16)

where C(O) is given by (10) as

C(O) Ali Imt 5 (17)

Relation (16) is an exact relation, showing that C(v) is the integral of the

infinitely aliased version of Py(v), starting at v=O, plus an additive

constant which is substantially zero; see (9).

So for v in the positive neighborhood of zero, (4), (8), (16), and (9)

yield

P (v-b) - Py(V) a C(v) - C(0) + y(v) -¶(v). (18)

Thus the quantity we want, the left-most term in (18), is

well-approximated by calculated quantity C(v), which itself is approximately

the integral of the infinitely aliased version of Py(v).

6
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Calculation of C(v)

2wk

Let v =-2wk in (10), where M and k are arbitrary integers. Then

"M 1 + k Au Im exp(-i2wnk/M) fna)
MA "T 'f - Li wnj

+ ÷•-1 Im exp(-i2wnk/M) z ( (19)A W j n
tn=O

where we define complex sequence

= •½APy for n=0

Zn =fy(na)/n for n>J (20)

Now define collapsed sequence (ref. 7, pp. 13-16) as

Zn = g Zn+Mj for 0 < n M-1. (21)

j=0

Then since zn receives the same weight as Zn+Mj in (19), regardless of the

value of k, (19) can be expressed as

M-1
C12wkI k _ 1m exp(-i2wnk/M) 2 (22)"MT'=½ B-T n=o

Relation (22) is exact and valid for all k. Since we are only interested

in tne positive neignbornood of v=O in (18), we confine attention in (22) to

0 < k < M-1.* Relation (22) can then be accomplished by an M-point FFT if M
is chosen to be a power of 2. Notice that storage only for the M complex

numbers 2n•n in (21) is required, even though the (zn' sequence in (20) is

of infinite length.

* Values for other k are available from (22) when we observe that

C. 2 =I + C for all k.

7
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Observe that the size of M in no way affects the error of the calculation of

C(Q-A) or estimation of P (v). Rather, M specifies the spacing at which C( 2k is

calculated, and can be coarse if desired. The accuracy of the estimate of

Py(v) is governed thus far by a, through the aliasing depicted in figure 2.

Reference to (18) now yields

Px( - b) for 0< k < M-1, (23)

where the latter quantity is given by (22). Thus the M-point FFT sweeps out

the argument range (-b,-b+2w/A) for the cumulative distribution function IX.

If we want the exceedance distribution function of y instead of the

cumulative distribution function, we use (18) and (22) to get

1 - C( )wk ) 1 k + 1 1 exp(-i2wnk/M) A for 0_< k < M-1. (24)
1 A- 2GM n): nj

(By the footnote to (22), we have 1-C(2w/A) = -C(O).)

Since vy must be known in (20) in order to use this approach, we need

the mean Px of random variable x, since from (2)

Py =a x+b. (25)

The quantity v x can be found analytically from characteristic function

fx(f) according to

fx(O) = iMx; (26)

see (1).

a
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In addition to the error caused by aliasing associated with nonzero

sampling increment a, an additional error occurs because we cannot calculate

all the coefficients fznj in (20) and (21) out to n=+,. Rather, we

terminate the calculation at integer n=N, such that IjZn) is sufficiently

small as to be negligible for n > N. Letting

L = NA, (27)

this is equivalent to ignoring the contribution to (5) of the tail error

440
- jd, g(f,v) =-IM f d5 exp(-iyv) Ir (28)

L L

If the asymptotic behavior of fy(F) for large f is known, this error can

sometimes be evaluated in closed form and used to ascertain an adequate value

of L. Instead, we have observed that tail error (28) causes a characteristic

low-level sinusoidal variation in the calculated cumulative distribution

function for small v near 0, and in the calculated exceedance distribution

function for large v near 2w/A. When this sinusoidal variation is deemed

excessive, L can be increased until the effect disappears or decreases to

acceptable levels. This trial and error approach avoids the necessity of

analytically upper-bounding the magnitude of error (28), which is often very

tedious and generally pessimistic.

So there are two errors to be concerned with: aliasing due to nonzero

sampling interval A and tail error due to non infinite limit L. Later

examples will demonstrate how these errors manifest themselves in the

cumulative and exceedance distribution functions and how they can be

controlled by a trial and error app-oach.

9
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Relation to Requicha's Method, ref. 5

From ref. 5, eqs. 7, 9, 10, the cumulative distribution function is given

by an expression that can be manipulated into the form (using current notation)

k 1 CM/ 2I / f (na)

F k Im exp(-i2wkn/M) Y Im . (29)

Although this is similar to the upper line of (19) here, it differs in several

important respects:

1. Fk does not use mean v y at all; it is therefore not using a
direct approximation to the specified integral in (5) and (6).

2. From (29), there follows F0 = 0, FM = 1; however, these results

are not strictly true for the actual cumulative distribution function at these

end points, thereby leading to poor estimates in the neighborhoods of these

points. This is due to the arbitrary origin established in ref. 5, eq. 6.

3. The sums in (29) utilize characteristic function samples f y(nA)

only for n < M/2, where M is the size of the FFT. This is a very severe and
unnecessary restriction; in fact, the sum on n in (29) ought to be conducted

to the point where the tail contribution, (28), is negligible, regardless of

the value of M.

4. In ref. 5, if eq. 4 is substituted into eq. 1, and the summation

limits are extended to±c, we gec exactly the second line of (12) here. When
the probability density function is integrated to get the cumulative

distribution function in ref. 5, eq. 6, the resultant cumulative distribution
function is arbitrarily set to zero at v=O. We instead have from (9) and (17),

1 AU f Y(nA)1

P (0) C(0) Im (30)
yn

which is small, but not necessarily zero. This consideration is very
important on the tails of the cumulative and exceedance distribution functions.
10
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Summary of Procedure

The cumulative distribution function of y is given by

P ( 2k C(2wk 1 + Im exp(-i21nk/M) nt

for 0 < k < M-1, (31)

where M is the size of the FFT and storage employed. Also

zn= • Zn+• for 0 < n < M-1, (32)
j-0

where

for n=0

zn = fy(n4)/n for 1 < n < N (33)

for n > N

(The value for n=N should be scaled by 112 for the Trapezoidal rule).

The zero values for Zn, when n > N, serve to terminate the collapsed sum in

(32) at a finite upper limit. The value of N is given by the integer part of

LIA, where a and L must be chosen so as to minimize aliasing and tail error,

respectively. The characteristic function of random variable y needed in (33)

is given by

f y fx(1)exp(ibf), (34)

in terms of the characteristic function of the primary random variable x,

where shift b must be chosen such that y = b+x is positive with probabilty

virtually 1. The mean o y = b+ux can be determined analytically from

knowledge of characteristic function fx(J)" Finally, the exceedance

distribution function for random variable y is obtained by subtracting (31)

from 1.

11
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EXAMPLES

Programs for the following five examples are listed in appendix B.

1. Chi-Square

A chi-square variate of 2K degrees of freedom has probability density

function (ref. 10)

p (v) =K- 2 iK-_/) for v > 0 (35)

X 2 K(K-i).:

and characteristic function

fx(f) = (1-i2.)-K. (36)

Since random variable x is obviously nonnegative by (35), we can choose shift

b=O; i.e. y=x. A plot of the cumulative and exceedance distribution functions

of random variable y obtained from characteristic function (36) with K-4 is

given in figure 3 for 0 < v < 2wla. The values of a and L have been chosen

such that aliasing and tail error are insignificant.

The ordinate scale for figure 3 is a logarithmic one. The lower right

end of the exceedance distribution function curve decreases smoothly to the

region 1E-11, where round-off noise is encountered. The exceedance

distribution function values continue to decrease with v until, finally,

negative values (due to round-off noise) are generated. For negative

probability values, the logarithm of the absolute value is plotted, but

mirrored below the IE-12 level. These values have no physical significance,

of course; they are plotted to illustrate the level of accuracy attainable by

this procedure with appropriate choices of a and L.

For this example, N=L/A=2666, while M=256. Thus collapsing, according to

(21) or (32), by over a factor of 10 has been employed and a small size FFT

has been utilized. Nevertheless the error realized for the cumulative and

exceedance distribution functions is in the 1E-12 range, the limit of accuracy
of the Hewlett Packard 9845B Desk Calculator used here. Finer spacing in the

distribution outputs is achievable by merely increasing M.

12
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2. Gaussian

The characteristic function for a zero-mean unit-variance random variable

is

fx(y) = exp(-3 2 /2), (37)

and the probability density function and cumulative distribution function are

(ref. 11, eq. 10.5.3)

Px (v) = (2w)-1/ 2 exp(-v 2 /2), Px(V) =1(v). (38)

For b = 5w/ 2 , using (4),

Py(0) = Px (-b) =1(-b) = 2E-15. (39)

which is negligible, as desired.

Plots of the cumulative and exceedance distribution functions for random

variable y are given in figure 4 for L=7, a=.3. The logarithmic ordinate

gives rise to the characteristic parabolic shape on the tails of the

distributions. Once again, the probabilities decrease to the level of the

round-off noise and fluctuate around 1E-12 near the edges of the fundamental

aliased interval (0,2w/a). The fact that the cumulative distribution function

of y starts in the round-off noise at v=O indicates that b=5w/2 was large

enough to guarantee y > 0 with probability virtually 1. Also indicated on the

figure is the origin for random variable x. We have, from (4),

Px(u) = Py(u+b); (40)

thus for example

Prob(x < 0) = Px(O) - Py(b) = .5. (41)

14
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In figure 5, the only change is to decrease limit L from 7 to 6. The

tail error mentioned in (28) et seq. then dominates the round-off noise and

has a sinusoidal variation. Aliasing is not a problem, as witnessed by the

fact that the cumulative and exceedance distribution functions of random

variable y have decayed below 1E-12 well before the edges of the interval are

reached.

When limit L is restored to 7, and sampling increment a is increased to
.5, aliasing becomes significant, as shown in figure 6. The exceedance

distribution function has not yet decayed to the round-off noise level at

v=2,1A, and the cumulative distribution function shows a large negative

probability region near v=0. Shift b has been maintained at the value 5 w/2,

corresponding to (39).

When L and a are restored to their values 7 and .3 as for figure 4, but b

is decreased to 5,/3, the probability of y becoming negative is, from (4) and

(38), C(-5x/3) = .82E-7. This is reflected in the cumulative distribution

function for y in figure 7 at v=O, where the probability value is well above
the round-off noise level. Also, the exceedance distribution function

develops significantly negative values near v = 2w/A.

Accurate evaluation of the cumulative and exceedance distribution

functions can only be achieved when L, a, and b are properly chosen. Probably

the optimum combination for the Gaussian variate is displayed in figure 8,

where A has been increased to .4, the distributions are centered on the

fundamental aliased interval (0, 2w/A) by choice of b, and L is taken at 7 to

avoid tail error.

3. Smirnov

The limiting characteristic function of a measure of goodness of fit

bdsed on the sample distribution function was derived by Smirnov and is given

by (ref. 12, eq. 30.104)

x() sin- s) where s-(1+iflV for 5>O. (42)

16
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An expansion about f=0 yields

fx(f) - 1+i 1 1 y2; i.e., ux M 1/6, a = 1/45. (43)

And since the goodness of fit is always positive, random variable x is

positive and we can choose

b=O. (44)

Since

1sin((l+i)(r)')- if exp(f(1-i)) as 4+-O, (43)

it follows that

fx() 231•1 exp (- ½IA f+ i (½trf- -1) as r*,.(46)

The phase of this term rotates according to rT12; if we were to choose bNO,

f y() would rotate faster than fx(F) (linear with Y rather than ) This

could necessitate a faster sampling rate, which is undesirable.

The cumulative and exceedance distribution functions are plotted in

figure 9. L and A have been chosen so as to avoid tail error and aliasing.

The exceedance distribution function is seen to decay exponentially until it

reaches approximately 2E-11; the bump in the curve at this point is a

manifestation of the limited accuracy of the trigonometric functions built

into the calculator employed. Larger values of v lead to round-off noise

around the 1E-12 level.

A comparison of results for this characteristic function, with Requicha's

method described in (29) et seq., is given in figure 10 for FFT size M=1024.

The plot labeled with N=L=512 is precisely Requicha's method. Aliasing is

known to be insignificant for A=1, as seen by reference to figure 9 and

observing that extrapolation of the straight line section of the exceedance

distribution function would result in probability values near 1E-13 at

v-2w/&. The dashed portion of the N=L=512 curve in figure 10 in fact
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corresponds to negative probability estimates; these grossly inaccurate

results are due to an inadequate value of limit L, leading to large tail error.

When N is simply increased to 1023, the middle curve in figure 10 results

from Requicha's method. Again, negative estimates are indicated by the dashed

portion of this curve, although two orders of magnitude smaller than above.

The reasons for these errors have been delineated in (29) et seq.

The bottom-most curve in figure 10 (solid curve) is that obtained by the

method proposed in this report for L = 1023. Exceedance distribution function

estimates in the 1E-10 range are obtained, but the error returns to the 1E-8

range at v=2w/A. No negative probability values occur. Also, by simply

increasing limit L, while keeping FFT size M fixed, the error can be reduced

significantly further, as already witnessed by figure 9.

4. Noncentral Chi-Square

Here the random variable x is given by

K= (g + dk)2 (47)

k=1

where [dkI are constants, and IgkI are independent Gaussian random

variables with zero-mean and unit variance. The characteristic function of x

is

f = (1-i2f)-K/2 exp id2T (48)

where deflection d is defined according to

K
d 2 d 2 (49)S k.

k=1

We actually consider a more general characteristic function than (48), namely
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fx (1-i2r)-v exp exp( - vfn(1-i2!), (50)

where v is an arbitrary positive real constant. Suppose that we use the

principal value logarithm for Rn(z), where the branch cut lies along the

negative real axis of the complex z plane (ref. 13, sect. 4.1.1). Then since

the argument of the logarithm in (50) never crosses the branch cut, form (50)

gives the correct characteristic function values automatically for all realf,

and any •.

The probability density function and exceedance distribution function

corresponding to (50) are (ref. 14, 6.631 4)

P (v) = Y exp dv) ( y I IV1l(dy4 v_ for v > 0,

1- P_(v) dt t exp d 2  YI) V1l(dt) Q QV(d,yV) for v > 0. (51)

Since the probability density function in (51) is never negative (ref. 13,

sect. 9.6.1), (50) is a legal characteristic function. Also because random

variable x is always positive according to (51), we choose shift b=0. Plots

of the exceedance distribution function, as determined from characteristic

function (50) are displayed for various values of d in figure 11. The values

of L were chosen for each d value so as to control the tail error below the

1E-10 level plotted. Direct calculation of the exceedance distribution

function directly from (51) would be a formidable task for arbitrary v values.

5. Product of Correlated Gaussian Variates

Let

x = st (52)

where s and t are zero-mean unit-variance Gaussian random variables with

correlation coefficient p. The joint probability density function of s and t

is
25
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Pst(UiV) 1 2~i) expE u 2+V 2_2uvj (53)

The characteristic function of x is then

fx(f) = exp(irst) _Sjdu dv exp'ifuv) Pst(U,V) -

= -i2p¶+(1-p2)1 2 f 1-i (1+0)7l1 2 [1+i (1-0)1j'12. (54)

via repeated use of ref. 14, eq. 3.323 2. The corresponding probability

density function of x is

Px (v) ~ = I ex(y' v Ko(lv•1) for all v, (55)

via ref. 14, eq. 3.478 4.

(If we transform this probability density function according to (1) and

use ref. 14, eq. 6.611 9 and ref. 13, eq. 4.4.15, we get precisely (54).

Alternatively, if we transform (54) and modify the contour to wrap around the

branch line along the imaginary axis and then use ref. 14, eq. 3.388 2, we get

(55). Or we can use ref. 14, eq. 3.754 2.)

We actually consider a more general characteristic function than (54),

namely

f xF) [1i~p4-(jP) 51T exp ( vk F 12pT+ (1-p 2) g2])w

]-

The mean of this random variable x is given by

-X M 2vp. (57)
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The probability density function corresponding to (56) is

p(v) 1 Cdf exp(-iyv) fx(P)

1Sdy =exp-w 4 + (58)

241-p? _70 ~1o e P( ' 17~

where we let

y- i (59)

We can move the contour in (58) to the real y-axis, because the branch points

of the integrand are at y = * i/fi-pi'which are outside the path of
integration, since I~1 < 1. Then using ref. 14, eq. 3.771 2 and ref. 13,

eq. 6.1.17, we obtain

1
P-(v) r(v) exp---) K • 1•(-•) for all v. (60)

Since this probability density function is never negative (ref. 13, sect.
9.6.1), (56) is a legal characteristic function. If we Fourier transform (60)

via ref. 14, 6.699 12. we get (56) directly.

There is no simple relation for the cumulative distribution function of

this random variable. Nevertheless, it is a simple matter to evaluate
directly from characteristic function (56). The jn in (56) causes no problems

since its argument never crosses the branch cut. A plot for v= 7 .7 and P=-.3
is displayed in figure 12. The rate of decay of the distribution is different

for each tail. The round-off noise is clearly visible at both ends of the

range of v values.
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APPLICATIONS

We now have the capability to handle the following type of statistical

problem in a fairly easy fashion. Consider random variable

K v

x • rk , (61)

k=1

where Irki are arbitrary random variables, statistically independent of each

other, and with different distributions. Power vk is arbitrary (except that

vk must be a positive integer for those rk that can become negative). Let

the probability density function of random variable rk be Pk(v). Then the

characteristic function of rk is

exp rk) = $dv exp(ifvk)

9k (i k/V llIk'\
=1 L_ exp(ilt) t .k (62)
vkf kttk

If (62) is not integrable in closed form, it can be evaluated by means of an

FFT (one for each k if the probability density functions or vk are all

different). Then the characteristic function of random variable x in (61) is

given by

K

fxr = T jg k Q?)3 (63)

k=1

Now the techniques of this report are directly applicable to (63).

An additional example is afforded by
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X = K V2+ KK(4

k=1 =1 k=1

where {ak•, {Bj, and {y•k are constants, and [vkj are independent

random variables with arbitrary probability density functions. The

characteristic function of x is

fx(;) = exp(irx) = {dV Pv(V) exp(i kV• + 8k) +-ykVkl), (65)

where V = (v1, V2, ... , VK). Now since

(i) 112d 2 iba2'

y exp(-iay + iby) = exp ;a) for a # 0, (66)

we identify a = 1/4, b =f 2 8kVk, eliminate the square in the exponent,

and express (65) as

f f dV pv(V) exp(i ~~V2 +ifkV()

*(~I" 2 dy exp( iry- +i~y 2 0 v)=

= (•)12{ dy exp( -TF {fdvk Pk(vk) exp(if(a kvk YkV k + YBkVk)v (67)fk=l 1v

where

KP v(V) -T -{pk(vk•" (68)

k=1

The inner integrals in (67) can either be done analytically or numerically.

Then the remaining single integral on y must be numerically evaluated to find

characteristic function fx(F)" As an example, if vk is exponentially

distributed
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Pk(V) = ak exp(-akv) for v > 0, (69)

then the inner integrals in (67) are w-functions; see ref. 13, ch. 7. A

simpler method of handling general quadratic expressions like (64) with

Gaussian V is presented in ref. 15.
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SUMMARY

An accurate method for efficient evaluation of the cumulative and

exceedance distribution functions has been derived and applied to several

examples to illustrate its utility. Choice of the sampling increment A

applied to the characteristic function controls the aliasing problem, and

selection of the limit L minimizes the tail error; the effects of both of

these parameters can be observed from sample plots of the distributions and

can be modified if needed. Additionally, shift b must be chosen so as to

yield a positive random variable with probability virtually 1. The number of

distribution values yielded depends on the size of the FFT employed and can be

independently selected to yield the desired spacing in distribution values.
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APPENDIX A. SAMPLING FOR A FOURIER TRANSFORM

Suppose we are interested in evaluating Fourier transform

G(f) =-dt exp(-i2wft) g(t). (A-I)

If we sample at interval A in t in (A-i), and use integration weighting w(t),

we have the approximation to G(f),

L. f) dt exp(-12ift) g(t) S'mt w(t)

SG(f)8 ~1 (f) 0 W(f)
A

1 G(f- a)@ ) W(f), (A-2)

n

where infinite impulse train (sampling function)

SA(t) = S(t-na), (A-3)

n

and Obdenotes convolution.

The term

(A-4)

n

in (A-2) is an infinitely aliased version of desired function G(f); this

aliasing is an unavoidable effect due to sampling at increment A. However, to

minimize any further aliasing in (A-2), we would like W(f) = S(f), which

requires w(t) - 1 for all t; strictly, all we need is

w(na) 1 1 for all n. 'A-5)

A-i
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That is, the best weighting in (A-2) is uniform.

As an example, for Simpson's rule, we have weighting

w(nA) 22 7v 1 + (-I)n or 1 (_)n (A-6)
• .. - ,, (A-6)~

which can be represented as samples of time function

+1 1w(t) - 1 + 1 exp(iwt/A) or 1 - 4j exp(iwt/A). (A-7)

The corresponding transform is

W(f) = Sdt exp(-i2ift) w(t) =

- S(f) + (f-h) or S(f)- 9(f-•j) . (A-8)

But this window function substituted in (A-2) results in an extra aliasing

lobe in G(f), halfway between the unavoidable major lobes of (A-4) at
multiples of 11A, of magnitude 1/3 as large. This effect very adversely

affects the quality of 9(f) insofar as its approximation to the desired G(f)
is concerned. Thus the best sampling plan in (A-2) is the equal weight

structure of (A-5) when one wants to approximate the Fourier transform of
(A-i). For a bounded region, this is modified to the Trapezoidal rule, i.e.,

half-size weights at the boundaries.

A-2
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APPENDIX B. LISTINGS OF PROGRAMS FOR FIVE EXAMPLES

The following listings are programs in BASIC for the Hewlett Packard

9845B Desktop Calculator. The FFT utilized is one with the capability of a

zero subscript and is listed at the end of the appendix. Mathematically, the

FFT programmed is

M-1

Zm = exp(-i2wmk/M) zk for 0 < m < M-1,

k=O

where the arrays [zk}M-1 and NZ1M-1 are handled directly, including the zero-
0 |0

subscript terms z. and Zo.

A detailed explanation of the first program below for Chi-Squared random

variables is as follows: line 20 specifies the parameter K, where 2K is the

number of squared-Gaussian random variables summed to yield random variable

x. Lines 30-60 require inputs L, A, b, M respectively, on the part of the

user. Line 110 is the input of mean vx of random variable x, as evaluated

analytically from characteristic function fx(5). Lines 180-210 specifically

evaluate the characteristic function fy(5) at general point 7. All of these

lines mentioned thus far require inputs on the part of the user and are so

noted in the listing by the presence of a single ! on each line; the comments

after a double ! are for information purposes only and need not be modified.

This convention is also adopted in the remaining listings.

Lines 220-240 accomplish the collapsing operation of (32)-(33). The

cumulative and exceedance distribution functions are finally evaluated and

stored in arrays X(*) and Y(*) in lines 400-410.

Some further elaboration is necessary for the listing of the Smirnov

characteristic function as given by (42). Since a characteristic function is

a continuous function of real f, the square root in (42) is not a principal

value square root, but in fact must yield a continuous function in 1. In

B-i
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order to achiwe this, the argument of the square root is traced continuously
from 90= (line 110). If an abrupt change in phase is detected, a polarity

indicator takes note of this fact (line 250) and corrects the final values of

characteristic function fy (f) (lines 260-270). No problems are encountered

with complex sin(z) since it is analytic for all z.

18 ! CHI-SQUARE CHARACTERISTIC FUNCTION 1/(1-i 2 xi)^4
28 K=4 ! 2K=8 degrees of freedom
38 L208 0 Limit on integral of char. function
48 Delta=.875 I Sampling increment on char. function
58 Bsu8 1 Shift b
60 M-2-8 1 Size of PFT
70 PRINTER IS 0
80 PRINT "L -";L,"Delta =";Delta,"b =";Bs,"M -";M
98 REDIM X(O:M-1),Y(O:M-1)
180 DIM X(0:1823),Y(8:1823)
118 Mux=2*K ! Mean of random variable x
128 MuyzMux+Bs
138 X<8)-1
148 Y(8)-.5*Delta*Muy
150 NoINT(L/Delta)
168 FOR Nsal TO N
178 XieDelta*Ns 'I Argument xi of char. fn.
180 C=Xi+Xi Calculation of
199 CALL Mul(1,-C,1,-CA,B) I characteristic
286 CALL Mul<(AB,RBCD) ! function fy(xi)
210 CALL Div(1,O,C,D,FyrFyi) for K=4
220 Ms-Ns MOD M H Collapsing
238 X(Ms)-X(Ms)+Fyr/Ns
248 Y(Ms)-Y(Ms)+Fyi/Ns
258 NEXT Ns
268 CALL FFtlez(M,X(*),Y(*)) 0! 8 subscript FFT

B-2
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276 PLOTTER IS "GRAPHICS"
280 GRAPHICS
290 SCALE SM,-14,0
300 LINE TYPE 3
318 GRID M/8,1
328 PENUP
338 LINE TYPE 1
348 BuBs*M*Delta/(2*PI) H Origin for random variable x
358 MOVE B,8
368 DRAW Do-14
378 PENUP
388 FOR KswS TO M-1
390 T-Y(Ks)/PI-Ks/M
488 X(Ks)m.5-T !! Cumulative probability in X(*)
418 Y(Ks)-PrP.5+T !! Exceedance probability in Y(*)
428 IF Pr>s1E-12 THEN Y-LGT(Pr)
43e IF Pr<=-IE-12 THEN Y--24-LGT(-Pr)
440 IF ABS(Pr)<1E-12 THEN Yu-12
458 PLOT Ks,Y
468 NEXT Ks
478 PENUP
480 PRINT Y(0);Y(1);Y(M-2);Y(M-1)
498 FOR Ks*8 TO M-I
588 Pr=X(Ks)
518 IF Pr>-IE-12 THEN Y-LGT(Pr)
528 IF Pr<=-1E-12 THEN Yu-24-LGT(-Pr)
538 IF RBS(Pr)<1E-12 THEN Yo-12
548 PLOT Ks,Y
550 NEXT Ks
568 PENUP
578 PAUSE
588 DUMP GRAPHICS
598 PRINT LIN(5)
688 PRINTER IS 16
618 END
628 I
638 SUB Mul(X1,Y1,X2,Y2,A,B) I ZI*Z2
648 RAXI*X2-YI*Y2
658 B-XI*Y2+X2*YI
668 SUSEND
678 I
688 SUB Div(X1,Y1,X2,Y2,AB) I Z1/Z2
690 T-X2*X2+Y2*Y2
788 Rm(XI*X2+YI*Y2)/T
718 Ba(YI*X2-XI*Y2)/T
728 SUBEND
738 1
748 SUB Fftlz(NX(*),Y(*)) 1 N <= 2-10 a 1824, NH2AINTEGER 0 subscript

B-3
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10 ! GAUSSIAN CHARACTERISTIC FUNCTION exp(-.5 xi^2)
20 L=7 ! Limit on integral of char. function
30 Delta=.3 ! Sampling increment on char. function
40 Bs=.375*(2*PltDelta) ! Shift b, as fraction of alias interval
50 M-2-8 Size of FFT
60 PRINTER IS 0
70 PRINT "L -";L,"Delta =";Delta,"b =";Bs,"M =";M
B0 REDIM X(g:M-1),Y(O:M-1)
90 DIM X(0:1023),Y(0:1023)
100 Mux-O ! Mean of random variable x
110 Muy=Mux+Bs
120 X(0)=0
130 Y(g)u.5*Delta*Muy
140 NwINT(L/Delta)
150 FOR Nswl TO N
160 Xi-Delta*Ns ! A Rrgument xi of char. fn.
170 A=EXP(-.5*Xi*Xi) I Calculation of
180 B=Bs*Xi I characteristic
190 FyrPA*COS(B) 1 function
200 Fyi=R*SIN(B) I fy(xi)
210 Ms=Ns MOD M 'I Collapsing
220 X(Ms)=X(Ms)+Fyr/Ns
230 Y(Ms)=Y(Ms)+Fyi/Ns
240 NEXT Ns
250 CALL Fftl0z(M,X(*),Y(*)) I! 0 subscript FFT
268 PLOTTER IS "GRAPHICS"
270 GRAPHICS
280 SCALE 0,M,-14,0
290 LINE TYPE 3
300 GRID M/8,1
310 PENUP
320 LINE TYPE 1
330 B=Bs*M*Delta/(2*PI) I! Origin for random variable x
340 MOVE B,O
350 DRAW B,-14
360 PENUP
370 FOR Ks=8 TO M-1
380 T=Y(Ks)/PI-Ks/M
390 X(Ks)=.5-T Cumulative probability in X(*)
400 Y(Ks)=Pr-.5+T H Exceedance probability in Y(*)
410 IF Pr>=IE-12 THEN Y=LGT(Pr)
420 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
430 IF ABS(Pr)<1E-12 THEN Y=-12
440 PLOT Ks,Y
450 NEXT Ks
460 PENUP
470 PRINT Y(0);Y(1);Y(M-2);Y(M-1)
480 FOR Ks=0 TO M-I
490 PruX(Ks)
500 IF Pr>=1E-12 THEN Y-LGT(Pr)
510 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
520 IF R3S(Pr)<1E-12 THEN Y-12
530 PLOT Ks,Y
540 NEXT Ks
550 PENUP
560 PAUSE
570 DUMP GRAPHICS
580 PRINT LIN<5)
590 PRINTER IS 16
600 END
610 I
620 SUB Fftl0z(N,X(*),Y(*)) N N <= 2A10 1024, N=2^INTEGER 0 subscri
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10 I SMIRNOV CHARACTERISTIC FUNCTION [s/sin(s)J^1/2 where s=(l+i)sqr(xi)
20 L=3000 Limit on integral of char. function
30 Delta=l Sampling increment on char. function
40 Bs=O Shift b
50 M=2A ! Size of FFT
60 PRINTER IS 0
70 PRINT "L =";L,"Delta =";Delta,"b =";Bs,1"M =";M
80 REDIM X(O:M-1),Y(O:M-1)
90 DIM X(0:123),Y(0:1023)
100 Muxu1/6 Mean of random variable x
11 R=0 Argument of square root
120 P=1 ! Polarity indicator
130 Muy=Mux+Bs
140 X(8)=0
150 Y(O)=.5*Delta*Muy
160 N=INT(L/Delta)
170 FOR Nszl TO N
180 Xi=Delta*Ns !! Argument xi of char. fn.
190 A=SQR(Xi) Calculation
200 CALL Sin(AAB,C) of
210 CRLL Div(ARpB,CD,E) characteristic
220 CALL Sqr(DER,B) ! function
230 Ro=R ! fy(xi)
248 R=ATN(B/R)
250 IF ABS(R-Ro)>1.6 THEN P=-P I

260 Fyr=R*P
278 FyitB*P i
280 Ms=Ns MOD M 1! Collapsing
290 X(Ms)=X(Ms>+Fyr/Ns
300 Y(Ms)=Y(Ms)+Fyi/Ns
310 NEXT Ns
320 CALL Fft10z(MX(*),Y(*)) 0 subscript FFT
330 PLOTTER IS "GRRPHICS"
340 GRAPHICS
350 SCALE 0,M,-14,8
360 LINE TYPE 3
370 GRID M/8,I
380 PENUP
390 LINE TYPE 1
400 B=Bs*M*Delta/<2*PI) H Origin for random variable x
418 MOVE B,0
420 DRAW B,-14
430 PENUP
440 FOR Ks=8 TO M-1
450 T=Y(Ks)/PI-Ks/M
468 X(Ks)=.5-T !! Cumulative probability in X(*>
470 Y(Ks)=Pr=.5+T Exceedance probability in Y(*)
480 IF Pr>=1E-12 THEN Y=LGT(Pr)
490 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
500 IF ABS(Pr)<1E-12 THEN Y=-12
518 PLOT KsY
520 NEXT Ks
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530 PENUP
548 PRINT Y<9);Y(1);Y<rI-2);Y(r¶-1
550 FOR Ks*S TO M-1
568 Pr-XCKs)
570 IF Pr>=IE-12 THEN Y=LGT(Pr)
588 IF Pr<n-IE--12 THEN Y--24-LGT(-Pr)
598 IF RBS(Pr)(1E-12 THEN Ym-12
608 PLOT KsY
610 NEXT Ks
628 PEHUP
630 PAUSE
640 DUMP GRAPHICS
658 PRINT LIN($)
668 PRINTER IS 16
678 END
688
690 SUB Div(XlgY1pX2pY2R,AB) 1 21/Z2
708 TnX2*X2.Y2*Y2
710 R-(X1*X2.Y1*Y2)/T
728 3=(Y1*X2-XI*Y2),T
730 SUBEND
7408
758 SUB Sqt-(X,YvR,B) I PRINCIPAL SQR(Z)
768 IF X<>9 THEN 888
778 RwB-SQR( .5*RBS(Y))
780 IF Y<9 THEN B--B
798 GOTO 918
800 FwSQR(SQR(X*X.Y*Y))
810 To.5*RTN(Y/X)
828 RUF*COS(T)
838 B-F*SIN(T)
848 IF X>8 THEN 918
1850 TuR
868 Rf-B
878 BuT
sa88 IF Y>uS THEN 918
890 A--A
9889 B--B
918 SUBEND
928 i
938 SUB Sin(X9YRB) i SIH(Z)
948 EuEXP(Y)
958 R,.5*SIH(X)*(E,1,E)
968 IF RBS(Y)<.1 THEN 998
970 Sm.5*(E-I/E)
988 GOTO 1810
998 SuY*Y
1888 SmY*(120.S*<20,S))/120
1818 SWCOS(X).S
1028 SUBEND
1038 1
1848 SUB Fft.18z(NX(*),Y<*)) I N <= 2 Ale 1824, N=2AINTEGER 8 subscril

8-6
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10 1 NON-CENTRAL CHI-SQUARE CHARACTERISTIC FUNCTION
20 ! exp(i d^2 xi / s) / s-nu where s = 1-1 2 xi
30 Nu=2.7 1 Power law nu
40 Ds=3 1 Deflection d
5s L-500 Limit on integral of char. function
60 Delta=.05 ! Sampling increment on char. function
78 Bs= ! Shift b
80 M=2-8 1 Size of FFT
98 PRINTER IS 0
100 PRINT "L =";L,"Delta =";Delta,"b =";Bs,"4M =1M
110 REDIM X(8:M-l),Y(0:M-I)
120 DIM X(8:123),Y(0:1823)
130 D2=Ds*Ds I Calculate parameter
140 Mux=2*Nu+D2 ! Mean of random variable x
150 Muy=Mux+Bs
160 X(0)=8
170 Y(8)=.5*Delta*Muy
188 N-INT(L/Delta)
198 FOR Ns=1 TO N
280 Xi=Delta*Ns 11 Argument xi of char. fn.
218 T=Xi+Xi I Calculation of
220 CALL Div(0,D2*Xi,1,-T0R,B) 1 characteristic
238 CALL Log(l,-T,C,D) 1 function
248 CALL Exp(R-Nu*C,B-Nu*D+Bs*Xi,Fyr,Fyi) ! fy(xi)
250 Ms=Ns MOD M 1! Collapsing
260 X(Ms)=X(Ms)+Fyr/Hs
278 Y(Ms)=Y(Ms)+Fyi/Ns
208 NEXT Ns
290 CALL Fftlgz(MX(*),Y(*)) !! 0 subscript FFT
300 PLOTTER IS "GRAPHICS"
318 GRAPHICS
328 SCALE 0,M,-14,8
330 LINE TYPE 3
340 GRID M/0, 1
350 PENUP
368 LINE TYPE 1
370 B=Bs*M*DeIta/(2*PI) !1 Origin for random variable x
380 MOVE B,8
390 DRAW B,-14
480 PENUP
410 FOR Ks=O TO M-1
420 T=Y(Ks)/Pi-Ks/M
430 X(Ks)-.5-T I' Cumulative probability in X"*)
440 Y(Ks)=Pr=.5+T 1! Exceedance probability in Y(*)
450 IF Pr>u1E-12 THEN Y=LGT(Pr)
460 IF Pr<=-1E-12 THEN Yu-24-LGT(-Pr)
470 IF ABS(Pr)<1E-12 THEN Yu-12
480 PLOT Ks,Y
490 NEXT Ks
500 PENUP
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518 PRINT Y(8>;Y(1);Y(M-2);Y(M-1)
529 FOR Ks-B TO Mi-1
538 Pr=X(Ks)
540 IF Pr>1IE-12 THEN Y=LGT(Pr)
550 IF Pr<-1IE-12 THEN Y--24-LGT(-Pr)
568 IF ADS(Pr)<1E-12 THEN Y-12
578 PLOT Ks,'?
580 NEXT Ks
590 PENUP
608 PAUSE
618 DUMP GRAPHICS
628 PRINT LIN(5)
630 PRINTER IS 16
648 END
658 i
668 SUB Div(X1,Y1,X2,Y2,R,B) IZI'Z2
678 TuX2*XZ+Y2*Y2
688 A=(Xi*X2+Y1*Y2)/T
698 Bs(YI*X2-XI*Y2)/T
708 SUBEND
718
728 SUB Exp(X,Y,R,B) I EXP(Z)
730 T=EXP(X)
748 A=T*COSCY)
758 BsT*SIN(Y)
760 SUBEND
7780
788 SUB Log(X,Y,R,B) IPRINCIPAL LOG(Z)
798 Am.5*LOG(X*X+Y*Y)
888 IF X<>8 THEN 830
818 Bu.5*PI*SGNCY)
820 GOTO 850
830 B-RTN(V'X)
948 IF X<8 THEN D=14-PI*(1-2*(Y<8))
858 SUBEND
868 i
870 SUB Fftl~z(N,X(*),Y(*)) N <= 2A10 1024, N=2AINTEGER 8 subscri

B-8
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10 GAUSSIAN PRODUCT CHARACTERISTIC FUNCTION (56)
20 Nu=7.7 I Power Nu
30 Rho=-.3 ! Correlation coerficient
40 L-5 Limit on integral of char. function
50 Delta=.06 Sampling increment on char. function
60 Bs=.5*(2*PI/Delta) I Shift b, as fraction of alias interval
70 M-2-8 Size of FFT
80 PRINTER IS 0
98 PRINT "L =";L,"Delta =";Delta,"b =";Ds,"M =";M
1ee REDIM X(O:M-l),Y(O:M-1)
110 DIM X(0:1823),Y(0:1023)
120 Tlm1-Rho*Rho I Calculate
130 T2=2*Rho 1 parameters
140 Mux=2*Nu*Rho Mean of random variable x
150 Muy=Mux+Bs
168 X(8)=8
178 Y(C)=.5*Delta*Muy
180 N=INT(L/Delta)
190 FOR Ns-l TO N
200 Xi-Delta*Ns 11 Argument xi of char. rn.
210 CALL Log(I+TI*Xi*Xi,-T2*Xi,A,B) I Calculation of
220 CALL Exp(-Nu*A,Bs*Xi-Nu*B,FyrFyi)! characteristic function fy(xi)
230 Ms=Ns MOD M H Collapsing
240 X(Ms)=X(Ms)+Fyr/Ns
250 Y(Ms)=Y(Ms)+FyilNs
268 NEXT Ns
270 CALL Fftlz(M,X(*),Y(*)) H 0 subsci-ipt FFT
280 PLOTTER IS "GRAPHICS"
290 GRAPHICS
388 SCALE 0,M,-14,8
310 LINE TYPE 3
328 GRID M/8,1
338 PENUP
348 LINE TYPE I
358 B-Bs*M*Delta/(2*PI) I! Origin for random variable x
360 MOVE Bo,
370 DRAW B,-14
380 PENUP

B-9
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390 FOR Ks=g TO M-1
400 T=Y(Ks)/PI-Ks/M
410 X(Ks>=.5-T !! Cumulative probability in X(*)
420 Y(Ks)=Pr=.5+T H Exceedance probability in Y(*)
430 IF Pr>=IE-12 THEN Y=LGT(Pr)
440 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
450 IF ABS(Pr)<1E-12 THEN Y=-12
460 PLOT Ks,Y
470 NEXT Ks
480 PENUP
490 PRINT Y(8);Y(1);Y(M-2>;Y(M-1)
500 FOR Ks=O TO M-1
510 Pr=X(Ks)
520 IF Pr>=1E-12 THEN Y=LGT(Pr)
530 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
540 IF RBS(Pr)<1E-12 THEN Y=-12
550 PLOT Ks,Y
560 NEXT Ks
570 PENUP
580 PAUSE
590 DUMP GRAPHICS
600 PRINT LIN(5)
610 PRINTER IS 16
620 END
630
640 SUB Exp(X,Y,R,B) ! EXP(Z)
650 T=EXP(X)
660 RuT*COS(Y)
670 B=T*SIN(Y)
680 SUBEND
690
708 SUB Log(X,Y,RB) 1 PRINCIPAL LOG(Z)
710 Ru.5*LOG(X*X+Y*Y)
720 IF X<>8 THEN 750
730 B-.5*PI*SGN(Y)
740 GOTO 770
758 B-ATN(Y/X)
760 IF X<( THEN B*B+PI*(1-2*(Y<8))
770 SUBEND
780 I
790 SUB Fftl0z(N,X(*),Y(*)) ! N <= 2-10 - 1824, N=2^INTEGER 0 subscript

B-10
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10 SUB Fftl~z(N,X(*),Y(*)) N <= 2-'10 = 1024, N=2AINTEGEP 0 subscript
20 DIM C(0:256)
30 INTEGER I1,12,13,14,IS,I6,17,18,19,Il0,J,K
40 DRlA 1, .999981175283, .999924781839, .9998305817-96, .9996988186396, .9995294175
81, .999322384588, .9990-77727-753,. 998795456205,.998475580573,.998 118112908
50 DATA .997723066644, .997290456679, .996828299291, .996312612183, .995767414468
,.995184726672, .994564578734, .993906970082, .993211949235,. 992479534599
68 DATA .991789753669, .990902635428, .990058210262, .989176589965, .988257567731
,.987381418158, .986308897245,.985277642389, .984210092387, .983105487431
78 DATA .981963869118, .980785288483, .979569765685, .978317378720, .977028142658

S. 975702130039, .974339382786, .972939952286, .971583898986, .978831253195
88 DATA .968522094274, .966976471045, .965394441698, .963776065795, .9621214842-69
,.968430519416, .95878347-4896, .956948335732, .955141168306, .953386848354
90 DATA .951435020969, .949528180593, .947585591018, .945607325381, .943593458162
,.941544065183, .939459223682, .9:3733901191:3, .9351835899319,.932992798835
108 DATA .930766961079, .928506088473, .926218242138,.923879532511, .921514039342-
,.919113851698,.916679059921,.914209755704,.911786032805,.989167983091
110 DATA .986595704515, .983989293123, .981348847046, .898674465694, .89596624975b
,.893224301196, .898448723245, .887639628403, .884797098431, .881921264348
128 DATA .879812226429, .876078894195, .873894978418, .878886991109, .867046245516
,.863972856122-, .868866938638, .857728610888, .854557988365, .851355193185
138 DATA .848120344883, .844853565258, .841554977437, .838224705555, .834862874986
,83 1469612303, .828845845258, .824589382785, .821102514991, .81758S4813152

148 DATA .814836329786, .818457198253, .886847553544, .883207531481, .799537269188
,795836984689, .792186577308, .788346427627, .784556597156, .780737228572

150 DATA .776888465673, .773818453363, .769183337646, .765167265622, .761282385484
,.7-57208846506, .753186799844, .749136394523, .745857785441, .748951125355
168 DATA .736816568877, .732654271672, .728464390448, .724247882951, .728882587961
,.715738825284, .711432195745, .707106781187, .782754744457, .698376249489
178 DATA .693971460890, .689548544737, .685883667773, .688688997795, .676092783575
,.671558954847, .666999922384, .662415777598, .657806693297, .653172842954
180 DATA .648514401822, .643831542890, .639124444864, .634393284164, .629638238915
,.624859488142, .620057211763, .615231598581, .618382806276, .685511841484
190 DATA .688616479384, .595699384492, .598759701859, .585797857456, .588813958096
,.575808191418, .578788745887, .565731818784, .568661576197, .555570233028
200 DATA .558457972937, .545324988422, .548171472738, .534997619887, .529883;624686
,.524589682678, .519355998166, .514102744193,.508830142543, .583538383726
210 DATA .498227666973, .492898192238,.487-558168148, .482183772879, .476799238863
,471396736826, .465976495768, .460538710958, .455083587126, .449611329655

ý228 DATA .444122144578, .438616238539, .433893818853, .427555893430, .422888278800
.4l6429560098,.4l0843l71058, .405241314005, .399624199846,.393992040861

238 DATA .388345046699,.382683432365, .377007410216, .371317193952, .365612997805
.359895036535,. 354163525428, .348418688249,. 342660717312, .336889853392

240 DATA .331186385760, .325318292162, .319502838816,.313681748399, .387849640042
,.302805949319, .296150888244, .290284677254, .284487537211, .278519689385
258 DATA .272621355458, .266712757475, .268794117915,.254865659605, .248927605746
,242980179983, .237023605994, .231858108281, .225083911368, .219101240157

268 DATA .213110319916,.207111376192,.281104634842,.195090322816,.189068664150
,.183839887955,. 177004228412,. 170961888768, .164913120490,. 158858143334
270 DATA .152797185258,. 146730474455, .140658239333,.134588708587,. 128498118794
,. 122418675199,. 116318638912, .118222287294, .184121633872, .988171483296E-1
288 DATA .919089564971E-1, .857973123444E-1, .796824379714E-1, .735645635997E-1,.
674439195637E-1,.613207363822E-1, .551952443497E-1,.498676743274E-1
298 DATA .429382569349E-1, .368072229414E-1, .306748831766E-1, .245412285229E-1,.
184067299058E-1, .122715382857E-1,.613588464915E-2,0
300 READ C(*)
310 K=1824'N
328 FOR JsQ TO N'4
330 C(J>=C(K*J)
340 NEXT J
350 N1=N'4 3
360 N2uN1+1
370 N3mN2+1
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380 N4=t4+N3
390 Log2n*INT(l.4427*LOG(N)+.5)
400 FOR Il1- TO Log2n
410 12=2^(Log2n-II)
420 I3w2*12
430 14=N/I3
440 FOR 15=1 TO 12
450 16=(15-1)*14+1
460 IF 16<=N2 THEN 508
470 N6=-C(N4-16-1)
480 N7=-C(16-NI-1)
490 GOTO 520
500 N6=C(16-I)
510 N7=-C(N3-16-1)
528 FOR I7=8 TO N-13 STEP 13
530 18=17+15
540 19=18+12
550 NS=X(I8-1)-X(I9-1)
560 N9=Y(I8-1)-Y(I9-1)
570 X( I-1)=X(18-1)+X(19-1)
588 Y( IB-I)=Y(I18-1)>+Y( 19-1)
590 X(19-1)=N6*N8-N7*N9
600 Y(19-1)=N6*N9+N7*N8
610 NEXT 17
620 NEXT 15
630 NEXT It
640 ll=Log2n+1
650 FOR 12=1 TO 10 2^10=1024
6S0 C(12-1)=1
670 IF 12>Log2n THEN 690
680 C(12-1)=2^(II-12)
690 NEXT 12
700 Kul
710 FOR I1=1 TO C(9)
720 FOR 12=II TO C(8) STEP C(9)
730 FOR 13=12 TO C(7) STEP C(8)
748 FOP 14=13 TO C(6) STEP C(7)
750 FOR IS=14 TO C(5) STEP C(6)
760 FOR 16=15 TO C(4) STEP C(5)
770 FOR 17=16 TO C(3) STEP C(4)
780 FOR 18=17 TO C(2) STEP C(3)
790 FOR 19=18 TO C(1) STEP C(2)
880 FOR 110=19 TO C<0) STEP C(1)
810 J=Il1
820 IF K>J THEN 890
830 R=X(K-1)
840 X(K-I)=X(J-I)
850 X(J-I)=R
860 R=Y(K-1)
870 Y(K-I)=Y(J-1)
880 Y(J-I)=A
890 K-K+I
900 NEXT 110
910 NEXT 19
920 NEXT IS
930 NEXT 17
940 NEXT 16
950 NEXT 15
960 NEXT 14
970 NEXT 13

B-12 980 NEXT 12
990 NEXT I1
1000 SUBEND
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ABSTRACT

The characteristic function of general second-order processors with
nonstationary nonzero mean Gaussian inputs is derived in closed form.
Three classes of processors are considered; in the first, the decision
variable is the sum of K independent terms, each of second-order form

involving two statistically dependent Gaussian random variables; the

second class of processor is a narrowband crosscorrelator of arbitrary

Gaussian processes, with accumulation of K independent lowpass filter
output samples; in the third class, the decision variable is a general

quadratic-plus-linear form of M random variables, all statistically
dependent on each other. Specializations to various forms of weighted

energy detectors and correlators are made. Also, the characteristic
function for the first class of processor subject to fading is evaluated.

Programs for evaluating the cumulative and exceedance distribution

functions of all three classes of processors are given and have been used

to plot representative examples of performance. A comparison with a

simulation result corroborates the analysis and program of the first

class of processor.
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EXACT PERFORMANCE OF GENERAL SECOND-ORDER

PROCESSORS FOR GAUSSIAN INPUTS

INTRODUCTION

The performance of weighted energy detectors and correlators for

processing deterministic and/or random signals in the presence of

nonstationary noise is a topic of frequent interest. Most often, a second-

moment approach is adopted, whereby the means and variances of the decision

variable under the various hypotheses are evaluated and employed in a central

limit assumption to get approximate false alarm and/or detection probabilities.

This approach is suspect for small false alarm probabilities or for cases

where the decision variable is not the sum of a large number of independent

random variables all of comparable variance.

A recent technical report [1] has presented an accurate and efficient

method for evaluating cumulative and exceedance distribution functions

directly from characteristic functions. This approach is very fruitful for

determining the performance of general time-varying second-order processors

with nonstationary nonzero mean Gaussian inputs, since the characteristic

function of the decision variable can be evaluated in closed form in these

casps.

We will consider three classes of processors and derive the

characteristic functions for all three decision variables in closed form. The

first two classes are special cases of the third, but are of interest in their

own right, since they include and immediately reduce to many practical

processors in current use. Also there is no need to solve for the eigenvalues

and eigenvectors of a general symmetric matrix that is encountered in the

third more-general class of processors. Rather, the characteristic functions

are given directly in terms of specified processor weights and input

statistics.

There has been considerable effort on this problem in the past; for

example, see [2,3] and the references listed therein. Most of the lengthy
analytical derivations and results have been aimed at getting workable

1
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expressions for the probability density function and/or cumulative

distribution function. Here, when we consider our three classes of

processors, we encounter characteristic functions which are more general than
that given in the recent paper for a filtered analog processor [3, eq. 5];

thus specialization of our results will yield those of [3] and the references

listed therein. The technique employed here to proceed directly to the

cumulative and exceedance distribution functions is a numerical one, as given

in [1], and does not require any series expansions or analytical manipulations

at all. The asymptotic behaviors of the cumulative and exceedance

distribution functions on both tails are easily observed and will be found to
corroborate the comment made in [3, p. 673] that these tails are generally

exponential rather than Gaussian; however, there can be a considerable

transition region.

The programs listed in the appendices require the user merely to input

his processor weights, signal constants, and noise statistical parameters in a
series of data statements at the top of the program, and to select values for

L, limit on integral of characteristic function,

A, sampling increment on characteristic function,

b, additive constant, to guarantee a positive random variable, and
Mf, size of FFT and storage required.

Selection of L and a is largely a matter of trial and error and is amply

documented in the examples in [1].

2
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A PARTICULAR SECOND-ORDER PROCESSOR

Before we embark on the analysis of the particular second-order processor

of interest in this section, we solve the following simpler statistical

problem. Let s and t be real jointly-Gaussian random variables wi-6 means

ms, mt, standard deviations as, at, and correlation coefficient p;
thus s and t are statistically dependent. Consider the random variable

x = as 2 + bt 2 + cst + ds + et, (1)

where weightings a, b, c, d, e are arbitrary real constants. The

characteristic function of random variable x is defined by

fx(1) = exp(iFx) = exp(iT(as 2 + bt 2 + cst + ds + et)) =

= ,du dv exp(if(au2 + bv2 + cuv + du + ev)) Pst(uv), (2)

where the joint probability density function of s and t is

kuca ~j~- ~ 2 + - m

Pst(uv) = (2 asa 4 -P - exp L s 2(1-p) s (3)

S~_J

Substitution of (3) in (2) and use of the double integral

2 2 ouxp CL 2 + -ufdx dy exp[-x _ By + 2yxy + ux + vy] -_1  e p
22

for ar > , r > O, rBr > Yr 2 (4)

* Integrals without limits are over (-,i-).

3
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(where sub r denotes the real part of complex constants a, 8, y, u, v)

yields, after an extensive amount of manipulations, the characteristic

function of random variable x as the compact closed form expression

fx) X ifD 1 •2D2'-1/2 N0 - i'Nj -' 2 N2 1
I I - -72D exp - 2 (5)

The required real constants in (5) are given directly in terms of the

processor weights and statistical parameters as

DI= 2(aa2 + bat + Cpasat)

c2)(l • 2 22

D2 = (4ab - c - p at

N = am2 + bm + cmsmt + dm + emt

N1 = (4ab - c 2 )(1 min2 2 + 1 m2.2 _ omsmta~st) +

+ (2ae - cd)as(mtas - Pmsat) +

+ (2bd - ce)at(m St - Pmtos) -

d 22 +½e2a2 + depat)

2s 2 222

N2 = - (ae2 + bd2 - cde)(1-p2 )a2t a (6)

For later reference, the mean and variance of x follow from (5), upon

expansion of Rn fx(ý) in a power series in Y, as

ux =NO + 1 D1,
0 2

D + 2NoDI - D2 - 2N (7)
x

4



TR 7035

(When D1 = 0 in (6), it can be shown that D2 < 0; thus characteristic

function (5) never possesses any singularities along the real f axis.)

Second-Order Processor

Now let x be the sum of K independent terms of the form of (1):

K

x (aks2 + b2t2 + CkSktk + dkSk + ektk) (8)
k=1

where real constants ak, bk, Ck, dk, ek can depend arbitrarily on k,

and where means msk, mtk, standard deviations ask, atk, and corre-

lation coefficients Pk are unrestricted (except that ask a 0, atk > O,
lPkI < 1). The pair of random variables sk, tk is statistically

independent of the pair Sn, tn for all k ý n. Thus random variable x is

composed of a sum of K groups of random variables, where each group is

statistically independent of every other group, but each group itself

contains two statistically dependent random variables.

This processor in (8) is the general form of interest in this section.

It can be time-varying when the weights tak, bk, Ck, dk, ekl vary

with k, and nonstationary when the statistical parameters {msk, mtk,

ask' Otk' Okj vary with k.

The characteristic function of (8) follows from (5) as

FK -1/2

f = 1[ - iDjD (k) •2D2(k *
k=1

[K (k) - ijN1 (k) - Y2N2(k) 1>xL _.N 1 - ifD1(k) - 5Z D(k) ()

* These means can be interpreted as the deterministic signal components of

the channels s and t, if desired. 5
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where the identification of Dl(k), etc., is obvious from (6). Only one

(continuous) square root and one exponential per Y value is required in (9),

regardless of the number of terms added, K. The mean and variance of random

variable x in (8) follows from (9) as

U= : [NO0k + 1 Dj(k)

k=1

K
2 2 F D2 (k)+ 2No(k) D(k) -D(k) - 2Nl(k (10)
x k=1 l 2  1 0 1 2

Any analytical attempt at determining the probability density function or

cumulative distribution function corresponding to characteristic function (9)

would be a formidable task indeed. However, it is a very simple task via the

method of [1] to get accurate numerical values for the cumulative and

exceedance distribution functions. The program listing in appendix A

accomplishes this task, based upon characteristic function (9) and the

constants listed in (6). All the weights {ak' bk, Ck, dk, e and

statistical parameters m are arbitrary. Observe

that (9) is far more general than the characteristic function considered in

[3, eq. 5], which itself required a very lengthy analytic treatment to get the

probability density function and cumulative distribution function. In fact,

there is little hope of getting any tractable analytic results for (9) when K

is greater than 2.

Special Case 1

Suppose weightings a, b, c, d, e in (8) are independent of k and that

statistics a., at, p are also independent of k. The decision variable x

in (8) then simplifies to

K
x • •(as' + bt2 + cktk + dsk + etk) (11)

k=1

6
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Then DI, 02, N2 are independent of k. If we define mean parameters

K K K

M20= s5 k M0 2 ý m k M = m sk mtk

k=1 k=1 k=1

K K

Mlo : msk, Mol = 2 mtk (12)

k=1 k=1

the characteristic function of x in (9) then takes the simpler form

F• . ' 2'S2 • -12 N O - • 1 - 2

fx( = - iTDI - F D2o)- exp 15 0  i- -Y2D2 N2 (13)L 1- i5D1  TD2
where D1 and D2 are still given by (6), and

IN 0= aM20 + bM0 2 + cM1 1 + dM10 + eM0 1

N1  (4ab - c2)(1 atM2 0 + I t2Mt2 tM0 2s 02 -PasatMll) +

+ (2ae - cd)as(asM0 1 - PatMl 0 ) +

+ (2bd - ce)t(a ttM10 - Os M01 ) -

2 21 2- KIda+1e at + depas a

N2 = - K(ae2 + bd 2 - cde)(1 _ 2. a 2 (14)

(The choice of K = 2 and N2 = 0 in (13) corresponds to the form given in

[3, eq. 5].) Observe that the characteristic function in (13) (and therefore

the performance) of the processor in (11) depends on the means {msk3 •nd

Zmtkj only through the parameters tMijj defined in (12). The mean and variance

7
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of random variable x in (11) follow from characteristic function (13) as

ux = No + - KD1 ,

2 1 2 '
=x 1 KD + 2NoD1 - KD2 - 2N1 • (15)

Special Case 2

Let us also assume d = 0, e = 0 in (11) above; then the pertinent

decision variable is given by

K

x > (ask' + btk2 + cskt) (16)

k=1

D1 and D2 are still given by (6), and there follows from (14),

No = aM20 + bM0 2 + cM1 1

$NI t 4 2 - 1 2 1 2
1 = (4ab t aM 20 + sM02 - PasatM11)

N2 = 0 (17)

The characteristic function of x is given by (13), with N2 = 0. The mean

and variance of x in (16) are given by (15).

Fading for Special Case 2

Let the mean parameters [Miji in (12) be subject to slow fading; i.e.,

replace

M2 0 by rM20 , M0 2 by rM0 2 , Mll by rM1 1 , (18)

where power scale factor r has probability density function

8
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"v u-i e-vU
Pr(u) = u e 1 for u > 0, v > 0;

r =1, 2 1 Xr(n) = (n-) for n > 1. (19)
V

This form of fading is encountered in diversity combination receivers; see,

for example, [4, eq. 9 et seq.] and [5, eq. 24 et seq.]. Then (13), (17), and

(18) yield the conditional characteristic function, for a specified r, as

fx(•Ir) = f-irD 1 -2D2)-/2 exp [3r (20)I - ifDj - 2 ]ý

Weighting (20) according to the probability density function in (19), and

performing the integral, there follows, for the characteristic function of the

decision variable x in (16), the result

K

f(x(T) 6 iD1  D 2 2 . (21)

(1 - if(DI + N0 /v) (D2 + N1 /vI

(The limit of (21) as v-.+ois again (13) with N2 = 0, as in (17); this

agrees with the fact that the corresponding limit of the probability density

function in (19) is p r(u) = 6(u-1).) The mean and variance of x in (16)

follow from characteristic function (21) as

Ux = NO + KD1

2 1 ' 2(22)

1•+2N0 D1  KD2 - 2N 1  N0 /v.

Observe that mean ux is independent of v, the power law in fading (19). A

program for the cumulative and exceedance distribution functions corresponding

to characteristic function (21) is given in appendix B.

9
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SPECIAL FORMS OF SECOND-ORDER PROCESSOR (8)

Before embarking on the analysis of the other two classes of processors,

we will explicitly detail some of the special forms that processor (8) reduces

to, under particular selections of the weightings and statistical parameters.

A rather broad collection of typical processors will be seen to be included.

In the following, any unspecified weights jak, bk, Ck, dk, ekj are zero,

and any unspecified statistical parameters that do not appear in the final

charzcteristic function are irrelevant.

I. Gaussian

dk -1

K

k=1

K K

f exp[Yh. ms 12 2

k=1 k=1

II. Chi-square of K Degrees of Freedom

ak 1, msk =0, sk

K
X2
x s k
k=1

0= (1 -

10
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III. Non-Central Chi-Square (QM Distribution if K = 2M)

ak= 1, ask = as

K
x -- sk

k=1

-K2 ik__ m sk

r k=1
f ( -ia ) exp 1 if~

IV. Weighted Energy Detector

ak 0, dk *0

K

x = (aks2 + dkSk)
k=1

K K kmsk +kmsk + 2y-kask j
ix kasli 1 -Pif~

I=1 k=1 k sk

V. Weighted Cros:-Correlator

ck 0

K

X 2 cCkSktk

k=1

D1 (k) = 2 CkPkoskatk,

D2 (k) -c2(1 2, 2 2
k Pk skatk,

11



TR 7035

N0 (k) = Ckmskmtk,

2 1 2 2 1 2 2Nl(k) = -Ck(7 msk atk + mtkosk - Okmskmtkoskatk),

N2 (k) = 0

Characteristic function fx(f) is given by (9).

VI. Two-Channel Energy Detector

ak ý O, bk A 0

K

x =>~ (aks z + b t 2

k=1

Dj(k) - 2(a 2 + b 2

kaksk O'tk)

D 2(k) = 4a bk~ 2 2 2at

Nok =a 2 +bm2
N0(k = kmsk k bktk,

Njk)=4ab1 2 2 1 2 2
k 07 mskatk + 7 mtas - Okmskmtkaskatk),

N2 (k) = 0.

Characteristic function fx(f) is given by (9). A simple application of this

particular processor was encountered in [6, eqs. 25-26].

12
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VII. Two-Channel Energy Detector and Cross-Correlator

ak O, bk O0, ck A O

K
2 + bkt +

x = (aksk k k CkSktk)

k=1

2 2 + C
D1(k) = 2(akask + bk tk kpkskotk)

D2 (k) = (4 akbk 2c2)(l 2 2 2
2 = - _k k ask~tk ,

No(k) = ak 2 bkmt + ckmskmtk

N =(k) =2(4akb 1 2 am2 12 2 m
k= k - ckm7 Sk tk 2 tkask - Pkmskmtkaskatk)

N2 (k) = 0

Characteristic function fx(F) is given by (9).

13
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NARROWBAND CROSS-CORRELATOR

slt n~)Lowpass Zt) Sample, Weight, v

S2t ()Filter °and Accumulate

Figure 1. Narrowband Cross-Correlator

The processor of interest in this section is depicted in figure 1. Input

signals Sl(t) and s 2 (t) are arbitrary deterministic narrowband real waveforms:

sj (t) = Re4s.(t) exp(i21rfotl = Aj(t) cos(2irfot + Pj(t)) =

= aj(t) cos(2wf 0 t) - b.(t) sin(2wf 0 t) for j = 1,2, (23)

where input signal complex envelope

s.(t) = Aj(t) exp(iPj(t)) = a.(t) + ibM(t) (24)

in terms of polar or rectangular low-frequency components, respectively.

Input noises nl(t) and n2 (t) are zero-mean correlated narrowband

jointly-Gaussian processes which may be nonstationary:

nj(t) = Refnj(t) exp(i2wfot)] = xj(t) cos(2wfot) - yj(t) sin(2wfot), (25)

where noise complex envelope

nj(J) = xj(t) + iyj(t) for j = 1,2. (26)

The statistics of the input noise complex envelopes are arbitrary:

14
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T17t) 2 2a02

2 22
1-22(; 2'

n1 (t) n_(t) = 2OLO2 Y, where y = p + i = Iylexp(iO),

nj(t) .nm(t) = 0 for all j, m. (27)

The quantities Oa, 02, y can all vary with time t, for nonstationary noise

processes. There follows, for the statistics of the in-phase and quadrature

components defined in (25),

x 2

X1X2 = YlY2 = 01a2p

x2Y1 =-x1Y2 = 0102 (28)

The reason for breaking out this narrowband cross-correlator as a

separate problem is now apparent from (28; Namely, at each time instant, a

group of four random variables are statistically dependent on each other.

This case does not fall into the framework of (8) above, since only two random

variables were dependent there.

Using the narrowband character of all the waveforms in (24) and (26), the

lowpass filter output in figure 1 may be expressed as

z(t) = ½[xl(t) + al(t)][x2 (t) + a 2(t)] + ½[Y1(t) + b1(t)][Y2 (t) + b2 (t)J. (29)

15
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The final system output in figure 1 is the weighted sum of K terms,

K

v = w(k) z(tk) , (30)

k=1

where it is assumed that the time separations between samples at instants

[tkj lead to statistically independent random variables fz(tk). The

weights and statistics can change with sample time tk, in an arbitrary

fashion.

Based upon the method in [7], we find the characteristic function of z(t)

in (29) to be given by

fLz(,t) =exp r N0 +ijN 1 (31)
1-iTD 1 + L2D2 1-irD1 + f D22J

where the constants (in their most compact form) are given by

D1 01 0 2 P ,

1 2 2 1_02_X2
D2 4 G1"l2(

N0 =½(ala2 + 1b2 )

N- i ( + b 2 + C12 (a2+ b) 2 2c,0pa~ + b1b) - 2oacv2x(a~b - alb 24

(32)
(The characteristic function and constants in (31) and (32) are not to be

interchanged or confused with any earlier results in previous sections. In

fact, observe there is no square root involved in (31).) All of the

parameters in (32) can vary with time t.

In terms of the signal polar definitions in (24) and the complex noise

correlation coefficient y in (27), alternative expressions to (32) (where we

have emphasized the t-dependence) are

16
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D= 1 (t) a2 (t) Refy(t)l = 1a(t) o 2 (t) Cy(t)I cos .

12 2 2)

N 0  7 . Ref s(t) 12(t)11 = -7 Al(t) A2(t) cos[PI(t)-P2(t)]

N1  8 P~t)(t)t + al Mt)I12(t)12 -2 aljt) Y2 (t) Re~isj(t) s2(t) y(t)j

1 [2~(t) A 2(t) + a'(t) A 2(t) - 2 al(t) a2 (t ) Al(t) A(t YIy~ ~ cos[Pi(t)-P2(t)4O(t)1](33)

The mean and variance of z(t) in (29) follow from (31) as

UZ = D I + No,

2 (34
Oz = D 1+ 2D 2 + 2D1N0 + 2N 1  (34)

Finally, the characteristic function of the narrowband cross-correlator

output v in (30) follows from (31) as

K
fv( T k fz•w(k)'tk) =

k-1

K =l -iw(k)+ 2 2 (k) ex2 K w(k) No(k) + iw 2 (k)N(ki
"L" 1 w 1-ilw(k) Dj(k) 2 fewI2M 02(k)I'k =1 k=l1

(35)
where we have allowed all the parameters in (32) and (33) to vary with time
tk. The mean and variance of output v follow from (35) as

K
Uv = ý w(k) [Dl(k) + No(k)],

k=1

"= 2 • w2 (k) D 2(k) + 2D2 (k) + 2Dl(k)No(k) + 2Nl(k). (36)
k=1 17
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A program for the evaluation of the cumulative and exceedance distribution
functions via (35) is given in appendix C.

[31 and
In comparison with earlier results inA[7], we have obtained the following

extensions here:

1. The input signals are arbitrary narrowband waveforms; they are not

limited to two sine waves at the same frequency;

2. The Gaussian input noises can be nonstationary;
3. The number of terms summed to yield the narrowband cross-correlator

output can be greater than 1;

4. The characteristic function is in its most compact form, and the

constants are expressed directly in terms of given quantities,

having eliminated all auxiliary variables.

Output Signal-to-Noise Ratio

It is sometimes desirable to have simple expressions for the output

signal-to-noise ratio of the narrowband cross-correlator in figure 1. In

terms of the lowpass filter output z(t), we observe first from (32)-(34) that

Uz(S) = Uz(s+n) -u(n) = No 1A 2 cos(P2P (37)
= zz 1 cos( 1-P2)

We then have two alternative definitions of the signal-to-noise ratio at the

lowpass filter output:

Ru(S) A1 A2 cos 2 (P1-P 2 )
z =2 2 22 2 2

Rzn (n) 2 a, o2 (1+P -A )

*2 (S) A 2 A 2 Cos 2(P1-P)
Rz(s+n) z 1 2 (38)

z*(s~n) 4(D0 + 202 + 2DIN0 + 2N1)

18
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These closed form expressions allow for arbitrary noise correlations and are

considerably simpler than [7, eqs. 41-43]. The signal-to-noise ratios of

system output v in figure 1 are K times greater than either form in (38).

Specialization to Narrowband Energy Detector

If the signal and noise parameters in (24) and (27) are chosen as

a1 (t) = a2 (t) = a(t) ,

bl(t) = b2 (t) = b(t) ,

al(t) = 02 (t) = a(t) ,

P(t) = 1, X(t) = 0 , (39)

then figure 1 reduces to identical input channels, that is, a narrowband

energy detector. There follows from (32),

D1 = a2 (t), D2 = 0 ,

No = (a2(t) + b2(t)) = 2 (t), NI =0, (40)

and (31) becomes

1 F A2(t)1
fz Mt) _ 1exp [I 1 A~2(t)| (41)

z 1~ - iO 2 (t) 1 -i a2(

Corresponding results for the system output v are easily obtained from this.

19
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REDUCTION OF HERMITIAN AND LINEAR FORM

The most general case of interest in this section is as follows:

random complex matrix

X = [xI x2 ... XM]T (42)

is Mxl; constant complex matrix

A [aa1 a2 ... aM]T (43)

is Mxl; and constant complex matrix

B =bl (44)

is MxM and Hermitian. The Hermitian and linear form we consider is

q = XHBX + 1½(XHA+AHx) =

M M

- xbnnXn + (xmam+amxm), (45)

m,n=1 m=1

which is real. Random variable q is a weighted sum of all possible products

of xm and fx ], plus linear combinations. A and B are called the

weighting matrices.

* For M=2 or 4, and real variables and weights, (45) reduces to the earlier

forms given in (1) and (29).

20
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We will concentrate in this section on reducing form (45) to a weighted

sum of squares of uncorrelated random variables. This stepping stone does not

require any Gaussian assumptions on X and is therefore useful as a separate

item.

The relevant statistics pertaining to random vector X are

X E (mean matrix),

X = X Y = X - E

Cov X = K (covariance matrix), (46)

where statistics matrices E and K are given. MxM matrix K is always Hermitian

and non-negative definite. We assume K is positive definite; otherwise

eliminate the linearly dependent components of X. We allow xm and x n to

be correlated with each other for any m and n; this situation is much more

general than the investigations above.

Let C be a constant MxM matrix and form the linearly transformed variables

W = cHx = [wI w2 ... WM]T (47)

Thei, the statistics of W are given by

CHE,

W =W -W = C HX,

Cov[W) FWH x--C = CHKc. (4R)

Also, from (47), since

X = c-Hw, (49)

21
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then we can express (45) as

q = wHC-1 Bc-Hw + 1(W HD + D HW), (50)

where we define constant Mxl matrix

D C-IA = [d1 d2 ... dM]T. (51)

We want to have, from (48) and (50),

CHKC = I (52)

and

C-IBCH =.A= diag(xl X2 "'" XM); i.e. cHB- 1C =JX-I, (53)

for then, in addition to the relation between the means,

W = cHE, (54)

we have the desirable properties

Cov{W3 = I, (55)

and

H M M
wHL W + (WHD + D HW) = X )mW2 + Re dmWm . (56)2 m=1 m m=1 l

That is, the random vector W given by (47) is composed of uncorrelated unit-

variance components, and q is a weighted sum of magnitude-squares of these

components, in addition to a linear sum.

We now have to address the problem of determining the MxM matrices C and

_Ain (52) and (53). From (8, p. 106, Theorem 2], we identify

22
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M--o K, K --0 B-1,_ - / - . (57)

then according to [8, p. 107, eq. 29], we must solve for C and.A in the

equation

B-1C = KCA- 1, i.e. BKC = CA.. (58)

So the only matrix that need be considered is the MxM product BK. C is the
modal matrix, and .A the eigenvalue matrix, of BK. Also, from (51),

D = CHA, since C-1 = CH. (59)

Letting C = [C61) ... c(M)], where eigenvector C(m) is a Mxl

matrix, (58) can be expressed as

BKC(m) = x mC(m) for 1 < m < M. (60)

Several important properties hold for&..and C:

The m are all real, but can be positive, zero, or negative.

If K and B are real, then C is real. (61)
If B is positive definite, then xm > 0 for 1< m < M.
If A = 0 and E = 0, there is no need to solve (58) for C,

because D = 0 and W = 0.

23



TR 7035

QUADRATIC AND LINEAR FORM

If random vector X is real Gaussian, if A is real, and if B is real

symmetric, then mean E and covariance K are real, and it follows that modal

matrix C is also real. Also from (47) and (59), W and D are real. Equation

(45) reduces to

T T M M

q = XTBX + X A M M (62)

m,n=l m=1

which is a quadratic form and linear form.

Letting mean W in (54) be expressed as

q = [v1 v2 ... VM] , (63)

the Gaussian character of X and the linear transformation (47) allow us to

write the probability density function of W as a product:

M

p (W) = Trf{(20)1I2 exp(~J (w2 -v~? (64)
m=l w -V)9

Here we used property (55). Since we now have, from (56),

M

q = 2 (x w' + dinwm), (65)
m=1

the characteristic function of q is

f2(f) exp(ifq) = exp@(I(mw2 + dmw))

M -- 112 FM X V2 + d + iyd212l
m m mm m

11ix - expL5 m 1 - ?Amf 66



TR 7035

where the square root must be a continuous function of , not a principal

value square root.* Notice that only one square root and one exponential is

required per f value. Observe that the characteristic function depends on the

separate values f• and fdjm , not merely on their sums. If A = E 0 0, the

exponential is unity, by virtue of (54) and (59). And if M=2, (66) reduces to

(5), while M=4 leads to form (31).

To summarize, the characteristic function f q() in (66) for random

variable q in (62) requires the constants JxmJ, fdmi, and lvmý for I < m _ M.

The initially given quantities are weighting matrices A, B and statistics

matrices E, K. We first solve the equation (58),

BKC = CA , (67)

for eigenvalue matrix.A. and modal matrix C corresponding to BK. Then

_.&= diag(x 1 x2 ... XM) ,

D = CTA [dI d2  .. dM]T

W = CTr = "1 v2 ... (68)

If the mean of input X is zero, E = 0, and if the linear weighting form is

zero, A = 0, then there is no need to solve for modal matrix C of BK in

(67). Then D = = 0 and the exponential term in (66) is unity. One only

need compute eigenvalue matrix\. of BK in this case.

A program for the evaluation of the cumulative and exceedance

distribution functions corresponding to characteristic function (66) is listed

in appendix 0. The inputs to the program are considered to be M, fXm),

• That is, the square root is the analytic continuation of the function

defined as 1 at 1=O.
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[dml, Jvm*; that is, it is presumed that (67) and (68) have already been

solved prior to use of the program.

The cumulants of q are obtained from (66) as

1_Mj1 (Xm + XmV 2 + dmm = Uq for n=i-

m=1 m mm m m Vq fr
Xq.(n) = (69)

iM /n2m x 1 n2m

n-1 n_1 X + 1 d) for n > 2

m=1

In particular, the variance of q is

M

Xq(2) = 2m1 + 2 (Xmvmm +7 d) q (70)

If another random variable is formed by the sum of several independent

random variables qj with the form (62), but with different sizes Mj, the

new characteristic function is the product of terms like (66).

Breakdown of X into Two Components

It is useful to investigate a particular version of the general results

above, because the resultant forms correspond to some often-realized practical

energy detectors and correlators. We let M = 2N, and

l ~ B 1 B121 [AM

x L= B 2 B22J A= j (71)

where U, V, AM, A(2) are Nxl real matrices, and tBij} are NxN real

matrices. Also B1 and B2 2 are syrmmetric, while 821 = B1 2 T. Then

(62) can be expressed as
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q=rBX + XA=J VTJ] [ U2 ] + [UT VT(AJ

= uTBllU + UTB1 2 V + VTB2 1U + V TB 22V + UTA() + vTA( 2 )

= UTB 1U + 2UTB1 2V + vT 522V + UTAMI + vTA( 2 ) =

N N

Sm ( nU n + 2 umn mn n m mn vn) + b vb na n nm, n=1 n1

= all possible auto and cross combinations of random

variables Lu.}N and Iv. , plus linear combinations. (72)

We also have, from (47) and (68),

KT T u T[v] (73)

Then the fundamental matrix required in (67) is expressable as

B 11 B 12  K uu K1u
BK = LB21 B 22 J K K I (74)

LB21 B2 1 Lvu Kvv

which is a 2Nx2N matrix. Also random variable (65) is now

2N 2
q - 1(AmWm + dmWm) (75)
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which has 2N terms. The characteristic function of q, in general, follows

from (66) and (68) as

-2N 1 2+ iI d2/2
fq(') 1 l-i2xm exp 1 _i2m j , (76)

[2N Lin1

where

=vN] C c D = Cd 1 d d ] C A j. (77)

(If A"1 ) - A(2) = = Ev= 0, then D = 0 and W = 0, and there is no

need to solve for modal matrix C; the exponential in fq(F) in (76) is then

unity.)

As a special case, if A = 0, B11 = 0, B22 = 0, then (71) and (73)

yield

B= 2 1 B ,2] D 0(78)

and (72) gives

N

q = 2 uTB12V = 2 u vn =
m,n=l m nn n

= all possible cross combinations of fJ• and NJ N. (79)

Then (74) specializes to

B12 [ K r 12K 1'2K
BK= uu uv vu BKvv (80)

B o2J0 ' K B21K B21K
28e u v u _
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and (75) reduces to

2N 2
q 2 xmwm (1

m=1

with characteristic function

2aN -122N X 2
fq(') = {I - i2mTm ex [ m (82)q=I P mi2lm

following directly from (76) and (78).

For the particular example of

B 2  7=2 diag(- 1  2 "'-AN) +} [g1 9 2 "'" gNIT [h1 h2 ... hN], (83)

then

N /N \n (N
q = n 4l unv n +(j gnU n=1: hnv n (84)

n=1 ~ n=1 / n=1

with the same characteristic function (82).

As a still more-special case, let B 12 11; then (79) and (81) give the

simple cross-correlator (but with correlated inputs for all time separations)

N 2N 2 (85)
n UnVn=:- Xmwm

n=1 m=l

and (80) and (77) become

BK K [ K UVI 1, 9W= CTj .E E V92N] (86)
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The important equations that must be solved are always

BKC = CA. (87)

or

BKC(m) = xmC(m) for 1 < m < M = 2N, (88)

where all matrices B, K, C,..A are 2Nx2N. The characteristic function of
(85) is again (82).

Special Case of Correlator (85)

Here we let components U and V have the same covariance and a scaled

cross-correlation; that is, let

Kuu = Ko, K =K= K = pKo , (89)

where p is a scale factor. This case corresponds, for example, to a common

signal in two independent components:

u(t) = s(t) + n 1(t),

(90)
v(t) = s(t) + n2(t).

where s(t), nl(t), n2 (t) are all independent and have a common covariance.

Then (8u) becomes

BK = 1 (91)
K 0 A 0

Now suppose that we can determine the NxN eigenvalue matrix r and modal

matrix Q of Ko, that is

30



TR 7035

KoQ = Qr ; r= diag(yl, Y2 ... YN) (92)

Then we have the standard relations [8]

Ko = QrQT where QQT 1 . (93)

We can now express the 2Nx2N matrix in (91) as

1 PrQT QrQT 1
BK = ½

Q'QT QrQTj

and 2Nx2N identity matrixQ0 rQT 01
I2N I . (95)

&.o Q j O Q

There follows
B-1 2N= [ [. 0  xI j '] (96)

But the middle matrix in (96) can be developed in detail in the partitioned
form
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1 11
•-oY1N - •I '

1 1 1

OYN -PYN

This matrix is singular when the kth row is equal to, or the negative of, the

k+N th row. This leads to the elgenvalues 2Nof matrix BK:

1l1 11

then use them as above to determine all 2N eigenvalues of BK; this is a

If also Eu = Ea =0, then W =0 from (86), and the characteristic

function of q in (85) follows from (82) and (98) as

f I L- T {1(1-i (P+1)YmV2 (1-i(P-1)Ymr" =

Kr p 2 y2 ;1(9
n-i ; + (i-P )y (9

This is a generalization of [1, eq. 54], which held for a single pair of
Gaussian random variables.
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EXAMPLES

The program listed in appendix A for the second-order processor (8) and

attendant characteristic function (9) has been employed to yield the result in

figure 2. The particular values for the number of terms K, the weights, and

the input statistics are listed in lines 20-120. There is no physical

significance attached to this particular example; rather it has been run

simply to illustrate the extreme generality that the technique is capable of.

Some negative values for the weights, means, and correlation coefficients have

been employed tc emphasize this generality. This simple example (and others

to follow) can be used as a check case on any user-written program to evaluate

cumulative and exceedance distribution functions.

The selection of parameters L, a, b in lines 130-150 is discussed in

detail in [1]; the reader is referred there for the deleterious effects that

can occur for improper choices of L, A, b. The selection of Mf, the FFT

size in line 160, is rather arbitrary; it controls the spacing at which the

probability distributions are computed, but has no effect upon the accuracy of

the results (except for round-off noise). Additional computational details on

the particular program for characteristic function (9) are given in appendix A.

The ordinate scale for figure 2 is a logarithmic one. The lower right

end of the exceedance distribution function curve decreases smoothly to the

region 1E-11, where roundoff noise is encountered. The exceedance

distribution function values continue to decrease with x until, finally,

negative values (due to roundoff noise) are generated. For negative

probability values, the logarithm of the absolute value is plotted, but

mirrored below the IE-12 level. These values have no physical significance,

of course; they are plotted to illustrate the level of accuracy attainable by

this procedure with appropriate choices of L and A.

The rates of decay of the cumulative and exceedance distribution

functions in figure 2 are markedly different for this particular example.

Additionally, since the decays are both linear on this logarithmic ordinate,

it means that both tail distributions are exponential, not Gaussian. These

attributes of the cumulative and exceedance distribution functions are easily
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and quickly discernible by use of the numerical technique in [1], for a

limitless variety of weights and input statistics, with a minimum of effort on

the part of the user.

As a check on the program in appendix A, the second-order processor in

(8) was simulated, and 10,000 independent trials were used to determine its

performance for the exact same parameters as used for figure 2 above. The

program is listed in appendix E and the results are given in figure 3. The

corroboration is excellent, even near the 1E-4 probability level.

As the number of terms, K, in the second-order processor (8) is

increased, and if the statistics are identical, the random variable x should

approach Gaussian, at least near its mean. The example in figure 4 was run

for K = 10, and all weights and statistics independent of k; the particular

choices were

a= .6, b - -. 6, c = .3, d = -. 2, e = .2,

ms= .5, mt = -. 5, as = 1, at = 1, p = .4, (100)

L = 4, a = .05, b = 20w, Mf = 256.

The cumulative and exceedance distribution functions in figure 4 both display

a parabolic shape near the mean of x, which signifies Gaussian behavior of the

random variable, as expected. However, on the tails, the distributions are

tending to linear, which means an exponential decay there. This observation

for this example confirms the comments of [7, p. 673].

The cumulative and exceedance distribution functions for an example of

the second-order processor with fading are displayed in figure 5, as

determined from characteristic function (21) and the corresponding program in

appendix B. The power law, v, for the fading probability density function

(19) is 2.7 for this example, but can be easily changed. The particular

constants employed are listed in lines 20-110 in appendix B.

An example of the distributions for the narrowband cross-correlator of

figure 1 is presented in figure 6, as evaluated from characteristic function
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(3S) and the program in appendix C. The weightings, signal components, and

noise statistics have no special values or interrelationships; the particular

values used here are listed in lines 20-110.

The distributions for the reduced quadratic and linear form (65) and

accompanying characteristic function (66) are presented in figure 7 for the

numerical example employed in the program listing in appendix D. If the given

form is instead that of (62), then (67)-(68) must first be solved before the

program in appendix D can be employed; that is, one must augment these results

with the capability for extracting the eigenvalues (and eigenvectors in some

cases) of the MxM matrix BK. The size of the FFT, Mf, has been increased to

1024 in figure 7; this results in finer spacing of the distribution values and

additional spikes in the round-off noise region centered about 1E-12.
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SUMMARY AND DISCUSSION

Closed form expressions for the characteristic functions of the decision
variables of three classes of second-order processors have been derived. The

input noise to the processors must be Gaussian, but it can be nonstationary

with arbitrary statistics. Programs for the direct evaluation of the exact

cumulative and exceedance distribution functions have been generated and then
exercised for completely general values of the weights, signal parameters, and

noise statistics. There is no assumption needed about a large number of
statistically independent contributors, nor need any signal-to-noise ratio be

either small or large. The first two classes of processors are restricted in
form, but include many of the practical devices often encountered in detection

and estimation rroblems. The third class covers the most general second-order
processor; it requires the solution for the eigenvalue and modal matrices of

an MxM matrix (where M is the size of the general quadratic form' in addition
to the program furnished here. The approach utilized here allows a user to

quickly and easily obtain accurate quantitative information about the
performance of a particular processor, and to investigate the effects of

making changes in any of the input constants or parameters.

Approximations to the performance of continuous quadratic processors are

possible by use of the above procedures. For example,

ýfdt 1 dt 2 x(t 1 ) o(t 1 , t 2 ) x(t 2) a I A2 YIx(mA1) $(mal, nA2 ) x(nA2 ), (101)

m,n

which is of the form X TBX encountered in (62). Also

ffdt1 dt 2 u(tI) B(t 1 , t 2 ) v(t 2 ) a A 2 u(mai) $(ma 1 , nA2 ) v(na 2 ), (102)
m,n

which is of the form U TB 12V encountered in (79).
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Receiver operating characteristics, that is, detection probability vs

false alarm probability, can be easily determined from the above results.

First store the exceedance distribution for zero signal strength in an array.

Then plot the exceedance distributions for nonzero signal strengths vs this

stored array of numbers, each point for a common threshold. The common

thresholds are most easily realized by keeping sampling increment a and FFT

size Mf the same throughout all the computations.
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APPENDIX A. SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution

functions of random variable (8) via characteristic function (9). The

required inputs are listed in lines 20-120 and are annotated consistently

with (8). The parameters D1 , D2, No, N1 , N2 required in characteristic

function (9) are pre-computed once in loop 290-510 for the sake of execution

time. The mean of x is entered in line 520. When we enter loop 590-830 for

the actual calculation of the characteristic function (9), the number of

computations are minimized. For example, only one complex exponential and

square root are required per I value, in lines 740-750. The square root in

(9) is not a principal value square root, but in fact must yield a continuous

function in . In order to achieve this, the argument of the square root is

traced continuously from r= 0 (line 530). If an abrupt change in phase is

detected, a polarity indicator takes note of this fact (line 780) and corrects

the final values of characteristic function fy(T) (line 790). More detail

on the selection of L, 6, b in lines 130-150 is available in [1].

18 1 SECOND-ORDER PROCESSOR
20 K=5 Number of terms summed
38 DATA .6,-.5,.4,-.3,.2 a(k) weightings
48 DATA .9,.8,.7,-.6,-.5 ! b(k) weightings
58 DATA -. 6,-.8,l,1.2,1.4 ' c(k) weightings
68 DATA .1,-.2,-.3,.4,.5 ! d(k) weightings
70 DATA -. 7,.6,.5,.4,-.3 ! e(k) weightings
8B DATA .2,.3,.4,-.5,-.6 ! Means of random variables s(k)
98 DATA .8,-.7,-.6,.5,.4 ! Means of random variables t(k)
108 DATA .1I.3,.5,.7,.9 ! Standard deviations of s(k)
118 DATR .2,.4:.6,.8,1 I Standard deviations of t(k)
120 DATA .4,-.5,.6,.7,-.8 ! Correlation coeffs. of s(k) and t(k)
138 L-25 I Limit on integral of char. function
140 Delta=.05 I Sampling increment on char. function
18 Bs=.75*(2*PI/Delta) I Shift b, as fraction of alias interval
168 Mf=2^8 Size of FFT
178 PRINTER IS 8
1S PRINT "L =";L,"Delta u";Delta,"b =";Bs,"Mf =";Mf
198 REDIM R(1:K),B(1:K),C(I:K),D(I:K),E(I:K)
208 REDIM Ms( 1K),Mt(I:K),Ss(I:K),St(I:K),Rho(I:K)
218 REDIM DI(I:K),D2(1:K),N8(I:K),NI(I:K),N2(1:K)
220 REDIM X(O:Mf-1),Y(8:Mf-1)
230 DIM AU:IO),R(I:IO),C(1:I1),D(1:I1),E(1:I1)
240 DIM Ms(l:lO),Mt(1:10),Ss(1:10),St(1:10),Rho(1:18)
258 DIM DI(1:10),D2(1:10),NO(1:10),NI(1:1O),N2(1:18)
260 DIM X(0:1!23),Y(0:1023)
270 READ R(*),B(*),C(< .D(*),E(*) ' Enter
280 READ Ms(*),Mt(*),Ss(*),St(*),Rho(*) I constants
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290 FOR Jul TO K 1 Calculation
300 TI-Ms(J)A2 of
310 T2-Mt(J)A2 parameters
320 T3aSs(J)-2
338 T4-St(J)-2
340 TS=Ms(J)*Mt(J)
35e T6-Rho(J)*Ss(J)*St(J)
368 T7*4*R(J)*B(J>-C(J)-2
378 TS=(1-Rho(J)-2)*T3*T4
388 T9=Mt(J)*Ss(J)
398 T18.Ms(J)*St(J)
400 T11=-D(J)A 2
410 TI2UE(J)-2
428 T13-D(J.*E(J)
438 Dl (J)in2*(A(J)*T3+D(J)*T4+C(J)*T6)
448 D2(J)uT7*TS
450 NO(J)inR(J)*T1+B(J)*T2+C(J)*T5+D(J)*Ms(J)+E(J)*Mt (J)
460 T-T7*(.5*(T1*T4+T2*T3)-T5*T6)
478 TmT+(2*A(J)*E(J)-C(J)*D(J) )*SS(J)*(T9-Rho(J)*T18)
488 TuT+(2*B(J)*D(J)-C(J)*E(J) )*St (J)*(TIO-Rho(J)*T9)
490 N1(J)uT-.5*(Tl1*T3+T12*T4)-T13*T6
508 N2(J)=-(R(J)*T12+B(J)*TI 1-C(J)*T13)*TB
513 NEXT J
528 PMuxSUM(NO)+.5*SUM(D1) 'Mean of random variable x
538 R-0 Argument of square root
548 Pa1l Polarity, indicator
550 Muy=tMux+Bs
568 X(S)=S
578 Y(S)=.5*Delta*Muy
588 NwINT(L/Dolta)
590 FOR Ns-l TO N
608 Xi-Delta*Hs 1 Argument xi of char. fn.
618 X2-Xi*Xi Calculation
620 Prai 1 of
638 P1-SruSi-S I characteristic
648 FOR Ju1 TO K Ifunction

658 Drn1-X2*D2(J) Ify'(xi)

668 Di--Xi*Dl(J)
678 CALL Mul(PrpPiDr,Di,A,B)
680 Pr-A
698 Pi-B
788 CALL Diy(N8(J)-X2*H2UJ),-Xi'*N1(J),Dr,Dj,A,B)
718 SruSr+A
728 Si-Si+B
738 NEXT J
748 CALL Exp(-Xi*Si,Xi*(Sr+B*),R,B)
758 CALL Sqr(Pr,Pi,C,D)
760 Ro-R
770 RuATH(D'C)
788 IF ADS(R-Ro)>1.6 THEN Pa-P
798 CALL Div(R,B,C*P,D*P,Fyr,Fyi)
888 MseNs MOD Mf 1 Collapsing
818 X(Ms)aX(Ms)+Fyr/Ns
828 Y(Ms)=Y(PMs)+Fyi/Ns
8380 NEXT H.
848 CALL Fftl~z(Mf,X(*),Y(*)) 0 subscript FFT
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850 PLOTTER IS "GRAPHICS"
866 GRAPHICS
876 SCALE OpM,-14,0
886 LINE TYPE 3
896 GRID Mf/8,1
966 PENUP
910 LINE TYPE 1
920 B=Bs*Mf*Delta/(2*PI) ' Origin for random variable x
936 MOVE B,O
940 DRAW B,-14
950 PENUP
960 FOR Ks=O TO Mf-1
970 T=Y(Ks)/PI-Ks/Mf
986 X(Ks)-.5-T I Cumulative probability in X(*)
990 Y(Ks)=PrP.5+T Exceedance probability in Y(*)
1606 IF Pr>=1E-12 THEN Y=LGT(Pr)
1016 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
1026 IF ABS(Pr)<IE-12 THEN Yw-12
1636 PLOT KsY
1046 NEXT Ks
1050 PENUP
1066 PRINT Y(O);Y(1);Y(Mf-2);Y(Mf-1)
1676 FOR Ks6 .TO Mf-1
1086 Pr=X(Ks)
1096 IF Pr>=1E-12 THEN Y=LGT(Pr)
1106 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
1116 IF ABS(Pr')<1E-12 THEN Y=-12
-1126 PLOT Ks,Y
1130 NEXT Ks
1146 PENUP
1156 PAUSE
1166 DUMP GRAPHICS
1176 PRINT LIN(5)
1180 PRINTER IS 16
1196 END
1266 I
1216 SUB Mul(X1,YI,X2,Y2,A,B) 1 Z1*Z2
1220 A=XI*X2-YI*Y2
1230 B=XI*Y2+X2*Y1
1246 SUBEND
1256
1266 SUB Div(X1,Y1,X2,Y2,A,B) I ZI/Z2
1270 T.X2*X2+Y2*Y2
1286 A=(XI*X2+YI*Y2)/T
1296 Bu(YI*X2-XI*Y2)/T
1366 SUBEND
1310
1320 SUB Exp(X,Y,AB) ! EXP(Z)
1330 T=EXP(X)
1340 R=T*COS(Y)
1350 B-T*SIN(Y)
1360 SUBEND
1370 1
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1380 SUB Sqr(X,Y',AB) !PRINCIPAL SQR(Z)
1398 IF' X<>8 THEN 1438
1400 A=BuSQR<.S*RBS(Y))
1410 IF Y<8 THEN Ba-B
1420 GOTO 1540
1430 F=SQR(SQR0X*X+Y*Y))
1440 To.5*ATN(Y/X)
1450 A-F*COS(T)
1460 BoF*SIN(T)
1470 IF X>O THEN 1540
1480 T-A
1490 Ru-B
1500 BwT
1510 IF Y>-0 THEN 1540
1520 A--A
1530 B=-B
1540 SUBEND
1550
1560 SUB Fftl~z(H,X(*),Y(*)) N <= 2^10 a1824, H-2^IHTEGER 0 subscript
1570 DIMi C(0:256)
1580 INTEGER I1,12,13,I4,15,16,I7,18,19,II8,J,K
1598 DATA 1, .999981175283,.999924701839, .999830581796, .999698818696, .9995294175
01, .9993223C4588, .999077727?53, .998795456205, .998475580573, .998118112988
1600 DATA . p97723066644, .997290456679,.996820299291, .996312612183, .995767414468

" .995184726672, .994564570734, .993986970082, .993211949235, .9924795345991618 DATA .991789753669, .990902635428,. 990058218262, .989176509965,. 988257567731
,987301418158, .986308097245, .985277642389, .984218092387, .983185487431
1620 DATA .981963869118, .980785280403, .979569765685, .978317370728, .977828142658

"* 975702130039, .9743...9382786, .972939952206,.971503890i986, .970031253195
1630 DATA .968522094274, .966976471045, .965394441698, .963776865795, .962121404269
,968430519416, .958703474896, .956940335732, .955141168306, .953306840354

16*40 DATA .951435820969, .949528188593, .947585591018, .945607325381,.943593458162

,. 941544065183, .939459223602, .937339011913,.93518,1509939, .9329927988351650 DATA .930766961079, .928506080473, .926210242138, .923879532511, .921514039342

",.919113851698, .916679059921, .914209755704, .91.706832005, .989167983091
1660 DATA .906595704515,.903989293123,.901348847846,,.898674465694,.895966249756

",.893224301196, .890448723245, .887639620403, .884797098431, .881921264348
1678 DATA .879012226429, .876070094195, .873094978418, .870086991109, .867046245516

",.863972856122,. 868866938638, .857728610000, .854557988365, .8513551931051680 DATA .848120344803, .844853565250, .841554977437, .838224705555, .834862874986

,. 831469612303, .828045045258, .824589302785,.821102514991, .817584813152
1690 DATA .814036329706, .810457198253, .886847553544, .803287531481, .799537269108

"* 795836984609, .792186577300, .788346427627, .784556597156, .780737228572
1708 DATA .776888465673,. 7730104-53363, .769103337646 .765167265622, .761202385484

,. 757208846506, .753186799044, .749136394523,.745057785441,.7409511253551710 DATA .736816568877, .732654271672,. 728464390448, .724247082951, .720002507961

10 715730825284,. 711432195745,. 787186781187,. 702754744457, .6983762494891720 DATA .693971460890, .689548544737, .68508366?773, .680600997795, .676092703575

".671558954847, .666999922304, .662415777590, .657806693297, .6531728429541730 DATA .648514401022, .643831542890, .639124444864, .634393284164, .629638238915

1*624859488142, .620057211763, .615231590581, .61038288G276, .605511841404
1740 DATA .600616479384, .595699304492, .598759701859,. 585797857456, .580813958096

",.575808191418, .570780745887, .565731810784, .568661576197, .555570233020
1750 DATA .550457972937, .545324988422, .548171472730, .5349976198873.529883624686
,.524589682678, .519355990166, .514102744193, .588830142543, .503538383726
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1760 DATA .498227666973,.492898192230, .487550160148, .482183772079,.476799238863
.471396736826,.465976495768,.460538710958, .455083587126, .449611329655

1770 DATA .444122144570,.438616238539, .433093818853, .427555093430, .422000270800
,.416429560098,.41043171058,.405241314005, .399624199846,.~393992040061
1780 DATA .388345046699, .382683432365,.377007410216, .371317193952,.365612997805
* 359895036535, .354163525420, .348418680249,. 342660717312,. 336889853392
1790 DATA .331106305760, .325310292162,.319502030816, .313681740399, .307849640042
,.302005949319, .296150888244, .290284677254, .284407537211, .278519689385
1800 DATA .272621355450,.266712757475,.260794117915, .254865659605, .248927605746
,.242980179903,.237023605994,.231058108281,.225083911360, .219101240157
1810 DATA .213110319916,.207111376192,.201104634842,.195090322016,.1890686r4150
,183039887955, .177004220412, .170961888760,. 164913120490,. 158858143334
1820 DATA .152797185258,. 146730474455,.140658239333,. 134580708507,,.128498110794
,.122410675199, .116318630912,. 110222207294,. 104121633872, .980171403296E-1
1830 DATA .919089564971E-1, .857973123444E-1, .796824379714E-1, .735645635997E-1,.
674439195637E-1, .613207363022E-1, .551952443497E-1, .490676743274E-1
1840 DATA .429382569349E-1, .368072229414E-1, .306748031766E-1, .245412285229E-1,.
184067299058E-1, .122715382857E-1, .613588464915E-2,0
1850 READ C(*)
1860 K=1024/N
1870 FOR J=O TO N/4
1860 C(J)=C(K*J)
1898 NEXT J
1900 NI=N/4
1910 N2=N1~1
1920 N3=N2+1
1930 N4=N1+N3
1940 Log2n=INT(1.4427*LOG(N)+.5)
1950 FOR Itln TO Log2n
1960 12-2-(Log2n-I1)
1970 I3=2*12
1988 14=N/13
1990 FOR 15=1 TO 12
2000 16=(I5-1)*14+1
2010 IF I6<=N2 THEN 2050
2020 N6=-C(N4-16-1)
2030 N7?-C(16-NI-1)
2848 GOTO 2078
2858 N6=C(16-1)
2060 N7=-C(N3-I6-1)
2878 FOR 17=0 TO N-13 STEP 13
20888 18=17+I5
2090 19=18+12
2100 N8=X(I8-1)-X(I9-1)
2110 N9zY(18-1)-Y(19-1)
2128 X( 18-1 )=X(18-1 )+X( 19-1)
2130 Y( 18-1 )=Y( I8-I)+Y( 19-1)
2148 X( 19-1>)=N6*NS-N7*N9
2150 Y( 19-1 )=N6*N9+N7*N8
2168 NEXT 17
2170 NEXT 15
2180 NEXT It
2190 IllLog2n+1
2200 FOR 12=1 TO 10 I2-10=1024
2210 C<12-1)-1
2220 IF 12>Log2m THEN 2240
2230 C(12-1)=2A(I1-I2)
2240 NEXT 12
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2258 Kul
2268 FOR 11-1 TO C(9)
2276 FOR 12al TO C(8) STEP C(9)
2288 FOR 13-12 TO C(M) STEP C(S)
2298 FOR 14-13 TO C(6) STEP C(7)
2388 FOR 15-14 TO C(5) STEP C(6)
2318 FOR 16-15 TO C(4) STEP C(5)
2328 FOR I7-16 TO C(3) STEP C(4)
2338 FOR I8-17 TO C(2) STEP C(3)
2348 FOR 19-18 TO C(1) STEP C(2)
2358 FOR I18-19 TO C(8) STEP C(I)
2368 J=118
2378 IF K>J THEN 2448
2388 R-X(K-1)
2398 X(K-I)-X(J-1)
2488 X(J-I)-A
2418 R-Y(K-1)
2428 Y(K-I)=Y(J-1)
2438 Y(J-I)-R
2448 KwK+1
2458 NEXT I11
2468 NEXT 19
2478 NEXT 18
2488 NEXT I?
2498 NEXT 16
2580 NEXT I5
2518 NEXT 14
2528 NEXT 13
2538 NEXT 12
2540 NEXT I1
2558 SUDEND
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APPENDIX B. FADING FOR SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution

functions for characteristic function (21), when the power fading factor r in

(18) has probability density function (19). The parameters D1, D2$ N0 , N1

are pre-computed once in lines 210-310. The logarithms in lines 430 and 440

have arguments that never cross the branch line along the negative real axis

for the principal value logarithm; hence the calculated characteristic

function is automatically continuous for all

10 ! FADING FOR SECOND-ORDER PROCESSOR
20 Nu=2.7 Power law for fading
30 K-5 I Number of terms summed
40 Rk.7 ! a(k) weighting
50 Bk=-.9 ! b(k) weighting
60 Ck=-.6 c(k) weighting
78 DATA .2,.3,.4,-.5,-.6 I Means of random variables s(k)

88 DRTA .8,-.7,-.6,.5,.4 ! Means of random variables t(k)

90 Ss=.3 1 Standard deviation of s(k)
100 Stz.2 1 Standard deviation of t(k)

110 Rho=-.4 ! Correlation coeff. of s(k) and t(k)

120 L=150 1 Limit on integral of char. function

130 Delta=.25 I Sampling increment on char. function

140 Bs=.625*(2*PI/Delta) I Shift b, as fraction of alias interval

150 Mf-2^8 I Size of FFT
160 PRINTER IS 0
170 PRINT "L =";L,"Delta =";Delta,"b =";Bs,"Mf =";Mf

180 REDIM Ms(I K),Mt(I:K),X(g:Mf-1),Y(6:Mf-1)
190 DIM Ms(1:1),Mt(1:1),X(0:1023),Y(0: 123)
200 READ Ms(*),Mt(*) I Enter constants
210 M20=DOT(Ms,Ms) I Calculation
220 M02=DOT(Mt,Mt) 1 of
238 MIDOT(Ms,Mt) > parameters
240 TI=Ss*Ss
250 T2-St*St
260 T3nRho*Ss*St
270 T4=4*Rk*Bk-Ck*Ck
280 NOp=Rk*M20+Bk*Mg2+Ck*M11
290 Nlp=T4*(.5*(T2*M20+TI*M02)-T3*M11)
3U0 DI=2*(Rk*TI+Bk*T2+Ck*T3)
310 D2=T4*(1-Rho*Rho)*TI*T2
320 DlpaDl+NOp/Nu
330 D2p=D2+N1t/Nai
340 Mux=NOp+.5*K*D1 I Mean of random variable x

350 MuyuMux+Bs
360 T=Nu-.5*K
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370 X(O)S=
380 Y(O)=.5*Delta*Muy
390 N=INT(L/Delta)
400 FOR Ns-l TO N
410 XimDelta*Ns ! Argument xi of char. fn.
420 X2-Xi*Xi ! Calculation
430 CALL Log(I-X2*D2,-Xi*D1,AB) ' of
440 CALL Log(1-X2*D2p,-Xi*Dlp,C,D) ! characteristic
450 TI=T*R-Nu*C ! function
460 T2=T*B-Nu*D+Bs*Xi ! fyxi)
470 CALL Exp(TI,T2,Fyr,Fyi)
480 Ms=Ns MOD Mf ! Collapsi.Ig
490 X(Ms)-X(Ms)+Fyr/Ns
500 Y(Ms)=Y(Ms)+Fyi/Ns
510 NEXT Ns
520 CALL FftlOz(Mf,X(*),Y(*)) ' 0 subscript FFT
530 PLOTTER IS "GRAPHICS"
540 GRAPHICS
550 SCALE 0,Mf,-14,0
560 LINE TYPE 3
570 GRID M/f8,1
580 PENUP
590 LINE TYPE 1
600 B=Bs*Mf*Delta/<2*PI) ! Origin for random variable x
610 MOVE B,O
620 DRAW B,-14
630 PENUP
640 FOR Ks$0 TO Mf-I
650 T-Y(Ks)/PI-Ks/Mf
660 X(Ks)-.5-T Cumulative probability in X(*)
670 Y(Ks)=Pru.5+T ! Exceedance probability in Y(*)
680 IF Pr>-IE-12 THEN Y-LGT(Pr)
690 IF Pr<i-IE-12 THEN Y-24-LGT(-Pr)
700 IF RBS(Pr)<1E-12 THEN Y=-12
710 PLOT Ks,Y
720 NEXT Ks
730 PENUP
740 PRINT Y(S);Y(1);Y(Mf-2);Y(Mf-1)
750 FOR Ks-0 TO Mf-I
760 Pr=X(Ks)
770 IF Pr>=1E-12 THEN Y-LGT(Pr)
780 IF Pr<=-IE-12 THEN Ye-24-LGT(-Pr)
790 IF ABS(Pr)<IE-12 THEN Y=-12
800 PLOT Ks,Y
818 NEXT Ks
820 PENUP
830 PAUSE
840 DUMP GRAPHICS
850 PRINT LIN(S)
860 PRINTER IS 16
870 END
880
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890 SUR Exp(X,Y,A,B) EXPMZ
908 T=EXP(X)
910 R=T*COS(Y)
920 B=T*SIN<Y)
930 SUBEND
948
958 SUB Log(X,Y,A,B) PRINCIPAL LOG(Z
960 R=.5*LOG(X*X+Y*Y)
970 IF X<>O THEN 1080
980 Bu.5*PI*SGN(Y)
998 GOTO 1828
1e00 B=RTN(Y/X)
1810 IF X<8 THEN B-B+PI*(1-2*(Y<8))
1828 SUBEND
10308
1e48 SUB Fftl~z(N,XC*),Y(*)) IN <= 2-"10 1024, N=2AINTEGER 0 subscript
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APPENDIX C. NARROWBAND CROSS-CORRELATOR

This program computes the cumulative and exceedance distribution

functions of random variable (30) via characteristic function (35). The

parameters D1, D2, No, N1 are pre-computed in lines 280-390 and

weighted according to (35)-(36) in lines 400-440. All the functions employed

are analytic.

10 ! NARROWBAND CROSS-CORRELRTOR
20 K-5 1 Number of terms summed
30 DATA .6,-.5,.4,-.3,.2 I w(k) weightings
40 DATA .9p.8,.7,-.6,-.5 al(k) signal 1 in-phase components
50 DATA -. 6,-.B,1,1.2,1.4 bl(k) signal 1 quadrature components
60 DATA .1,-.2,-.3,.4,.5 a2(k) signal 2 in-phase components
70 DATA -. 7,.6,.5,.4,-.3 I b2(k) signal 2 quadrature components
80 DATA .1,.3,.5,.7,.9 ! sigmal(k) noise I standard deviations
90 DATA .2,.4,.6,.8,1 I sigma2(k) noise 2 standard deviations
100 DATA .4,-.5,.6,.7,-.8 1 rho(k) noise in-phase corr. coeffs.
I1e DATA .9,-.?,-.5,.3,-.1 1 lambda noise quadrature corr. coeffs.

120 L=50 Limit on integral of char. function
130 Deltan.5 Sampling increment on char. function
140 Bs=.5*(2*PI/Delta> Shift b, as fraction of alias interval
150 Mfi2^8 I Size of FFT
160 PRINTER IS 0
170 PRINT "L -";L,"Delta =";Delta,"b =";Bs,"Mf =";Mf
180 REDIM W(I:K),AI(I:K),BI(I:K),A2(I:K),B2(1:K)
190 REDIM S1(I:K),S2(1:K),Rho(I:K),Lambda(1:K)
200 REDIM DI(I:K)pD2(1:K),NO(I:K)IHI(I:K)
210 REDIM X(0:Mf-I)Y(0:Mf-I),W2(I:K)
220 DIM 1(1:I1),RI(I:l1),BI(I:I1),A2(I:I1),B2(I:I1)
230 DIM SI(1:10),S2(1:10),Rho(1:10),Lambda(1:10)
248 DIM D1(1:10),D2(1:10),NO(1:10),NI(1:10)
250 DIM X(0:1023),Y(0:1023),W2(I:10)
260 READ W(*),AI(*),BI(*),A2(*),B2(*) 1 Enter
270 READ Sl(*),S2(*),Rho(*),Lambda(*) ! constants
280 FOR Jul TO K I Calculation
290 SissS1(J)^2 1 of
300 S2sS=2(J)^2 1 parameters
310 TI=SI(J)*S2(J)
320 Dl(J)-T2mTI*Rho(J)
330 D2(J)s.25*Sls*S2s*(1-Rho(J)^2-Lambda(J)^2)
340 T3ARI(J)*R2(J)+BI(J)*B2(J)
350 NO(J)-.5*T3
360 T4=A2(J)*BI(J)-AI(J)*B2(J)
370 T5-S2s*(R1(J)A2+BI(J)^2)+Sls*(R2(J)A2+B2(J)^2)
380 H1(J)*.125*(T5-2*T2*T3-2*T1*Lambda(J)*T4)
390 NEXT J
400 MAT W2-1.W
410 MAT D1uW.D1
420 MAT D2-=2.D2
430 MAT NGuN.NS
440 MAT NI=W2.NI
450 Mux-SUM(NO)+SUM(DI) 1 Mean of random variable v
460 MuyuMux+Bs
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470 X(8)W0
480 Y(8)=.5*Delta*Muy
490 N=INT(L/Delta)
500 FOR Niai TO N
510 Xi=Delta*NH s Argument xi of char. fn.
520 X2=Xi*Xi ! Calculation
530 Pr=1 of
540 Pi=Sr=Si=O I characteristic
550 FOR J=1 TO K f function
560 Dr=I+X2*D2(J) fy<xi)
570 Di=-Xi*DI<J)
580 CALL Mu1(Pr,Pi,Dr,Di,R,B)
590 Pr=A
600 Pi=B
610 CALL Div<NO(J),Xi*NI(J),Dr,Di,R,B)
620 Sr=Sr+A
630 Si=Si+B
640 NEXT J
650 CALL Exp(-Xi*Si,Xi*(Sr+Bs),R,B)
660 CALL Div(R,B,Pr,Pi,Fyr,Fyi)
670 Ms=Ns MOD MP I Collapsing
680 X(Ms)=X(Ms)+Fyr/Ns
690 Y(Ms)-Y(Ms)+Fyi/Ns
700 NEXT Ns
710 CALL Fftl0z(MP,X(*),Y(*)) I 0 subscript FFT
720 PLOTTER IS "GRAPHICS"
730 GRAPHICS
740 SCALE 0,Mf,-14,0
750 LINE TYPE 3
760 GRID Mf/8,1
770 PENUP
780 LINE TYPE 1
790 B=Bs*Mf*Delta/(2*PI) ! Origin for random variable v
800 MOVE B,0
810 DRAW B,-14
820 PENUP
830 FOR Ks=g TO Mf-1
840 T=Y(Ks)/PI-Ks/Mf
850 X<Ks)-.5-T ! Cumulative probability in X(*)
860 Y(Ks)=Pr=.5+T I Exceedance probability in Y(*)
870 IF Pr>=IE-12 THEN Y=LGT(Pr)
880 IF Pr<=-IE-12 THEN Y=-24-LGT(-Pr)
890 IF RDS(Pr)<IE-12 THEN Y-12
900 PLOT Ks,Y
910 NEXT Ks
920 PENUP
930 PRINT Y(g);Y(1);Y(Mf-2);Y(Mf-l)
940 FOR Ks-g TO Mf-1
950 Pr=X(Ks)
960 IF Pr>=1E-12 THEN Y=LGT(Pr)
970 IF Pr<=-1E-12 THEN Y--24-LGT(-Pr)
980 IF ABS(Pr)<1E-12 THEN Y--12
990 PLOT Ks,Y
1000 NEXT Ks
1010 PENUP
1020 PAUSE

C-2



TR 1035

1630 DUMP GRAPHICS
1640 PRINT LIN(5)
1056 PRINTER IS 16
1660 END
1678 1
1888 SUB Mul(XIY1tX2,Y2,R,B) ! 21*22
1698 RsX1*X2-Y1*Y2
1188 DsXI*Y2+X2*Y1
1116 SUBEND
1120
1130 SUB Div(X1,Y1,X2,Y2,A,B) 1 Z1'Z2
1148 TuX2*X2+Y2*Y2
1156 A=(XI*X2+Y1*Y2)/T
1160 BC(Y1*X2-XI*Y2)/T
1178 SUBEND
1188e
1190 SUB Exp(XY,RB) I EXP(Z)
1268 T=EXP(X)
1210 RuT*COS(Y)
1228 B=T*SIN(Y)
1238 SUBEND
1246
1258 SUB F'ftl0z(H,X(*),Y(*)) 1 N =2-10 - 1624, N=2AINTEGER 8 subscript
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APPENDIX D. REDUCED QUADRATIC AND LINEAR FORM

This program computes the cumulative and exceedance distribution

functions of random variable (65) via characteristic function (66). The

required inputs to the program are M and the ImQ, fdm., {vmj of (68).

The square root in (66) must again be continuous and is handled exactly as in

appendix A. The parameters required in the exponential of (66) are

pre-computed in lines 170-210, and the mean of q is entered in line 220.

10 ! REDUCED QUADRATIC AND LINEAR FORM
20 M=5 I Number of terms summed
30 DATA .2,-.3,.4,.5,-.6 I Lambda values
40 DATA -. I,.3,.5,.?,-.9 I d values
50 DATA .6,.5,-.4,-.3,.2 Nu values
60 L-800 Limit on integral of char. function
70 Delta=.08 Sampling increment on char. function
8s Ds=.5*(2*PI/Delta) ! Shift b, as fraction of alias interval
90 Mf=2^10 ! Size of FFT
100 PRINTER IS 0
110 PRINT "L =";L,"Delta =";Delta,"b =";Bs,"Mf =";Mf
120 REDIM Lambda(I:M),D(1:M),Nu(1:M),A(I:M),B(I:M),C(1:M)
136 REDIM X(8:Mf-1),Y(@:Mf-1)
140 DIM Lambda(1:10),D(l:1I),Nu(1:1B),A(1:16),B(1:10),C(1:10)
150 DIM X(8:123),Y(0:1023)
160 READ Lambda(*),D(*),Nu(*) 1 Enter constants
170 FOR Ms=1 TO M 1 Calculation
180 R(Ms)=2*Lambda(Ms) ! of parameters
190 B(Ms)=(Lambda(Ms)*Nu(Ms)+D(Ms))*Nu(Ms)
200 C(Ms)-.5*D(Ms)^2
210 NEXT Ms
220 Muq=SUM(Lambda)+SUM(B) I Mean of random variable q
230 R-0 I Argument of square root
240 P-l I Polarity indicator
250 Muy-Muq+Bs
260 X(8)=8
270 Y(O)=.5*Delta*Muy
280 N=INT(L/Delta)
290 FOR Nsul TO N
300 Xi=Delta*Ns I Argument xi of char. fn.
310 Pr=1 I Calculation
320 Pi=Sr-Si=O I of
330 FOR Msil TO M characteristic
340 Ti-A(Ms)*Xi function
350 CALL Mul(l4,,Pi,1,T,A,D) f fy(xi)
360 Pr=A
370 Pi=B
380 CALL Div(B(Ms),C(Ms)*XiI,T,A,B)
390 Sr-Sr+A
400 Si=Si+B
410 NEXT Ms
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428 CALL Exp(-Si*Xi,(Sr+Bs)*Xi,RB)
430 CALL Sqr(Pr,Pi,C,D)
448 Ro=R
458 R=RTN(D/C)
460 IF RBS(R-Ro)>1.6 THEN P=-P
470 CALL Div(A,B,C*P1 D*P,FyrFyi)
488 Ms=Ns MOD Mf Collapsing
490 X(Ms)=X(Ms)+Fyr/Ns
588 Y(Ms)=Y(Ms)+Fyi/Ns
51G NEXT Hs
528 CALL Fftlgz(Mf,X(*),Y(*)) ! 8 subscript FFT
530 PLOTTER IS "GRRPHICS"
548 GRAPHICS
550 SCALE 0,Mf,-14,0
568 LINE TYPE 3
578 GRID Mf/8,1
580 PENUP
598 LINE TYPE 1
688 B=Bs*Mf*Delta/(2*PI) I Origin for random variable q
618 MOVE Do8
620 DRAW S,-14
638 PENUP
640 FOR Ks-0 TO Mf-I
658 T-Y(Ks)/PI-Ks/Mf
668 X(Ks)=.5-T I Cumulative probability in X(*)
678 Y(Ks)-Pre.5+T I Exceedance probability in Y(*)
680 IF Pr>=1E-12 THEN Y=LGT(Pr)
698 IF Pr<=-IE-12 THEN Yu-24-LGT(-Pr)
708 IF RAS(Pr)<IE-12 THEN Yw-12
718 PLOT Ks,Y
728 NEXT Ks
738 PENUP
748 PRINT Y(O);Y(1);Y(Mf-2);Y(Mf-I)
758 FOR Ks=9 TO Mf-1
768 PrPX(Ks)
770 IF Pr>1IE-12 THEN Y-LGT(Pr)
788 IF Pr<=-1E-12 THEN Yu-24-LGT(-Pr)
798 IF RBS(Pr)<IE-12 THEN Y=-12
888 PLOT Ks,Y
818 NEXT Ks
828 PENUP
838 PAUSE
848 DUMP GRAPHICS
850 PRINT LIN(5)
868 PRINTER IS 16
878 END
888
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898 SUB Mu1(X1,Y1,X2,Y2,A,B) 1 Z1*Z2
988 A=X1*X2-Yl*Y2
910 B=X1*Y2+X2*Y1
928 SUDEND
9380
948 SUB Djy(X1,YI,X2,Y2 A,B) 1Z1'Z2
958 TzX2*X2+Y2*Y2
968 R-(X1*X2+Y1*Y2)/T
978 B-(Y1*X2-X1*Y2)/T
980 SUBEND
9908
1080 SUB Exp(X,Y,R,B) 1EXP(Z)
1810 T-EXP(X)
1828 A=T*Cas(Y)
1838 B-T*SIN(Y)
1848 SUDEND
1858
1868 SUB Sqr(X,Y,A,B) IPRINCIPAL SQR(Z)
1070 IF X<>8 THEN 1110
10888 A=BSQR(.5*ABS(Y))
1898 IF Y<8 THEN Bm-B
1188 GOTO 1228
1118 F=SQR(SQR(X*X+Y*Y))
1128 Tu.5*RTNCY/X)
1138 A=F*COS(T)
1140 BmF*SIN(T)
1158 IF X>8 THEN 1228
1168 T=A
1178 Am-B
1180 BmT
1190 IF Y>=S THEN 1228
1208 Am-A
1210 B--B
1220 SUBEND
12380
1248 SUB Fftl~z(N,X(*)OY(*)) 1 N <= 2^18 1824, N-2AINTEGER 8 subscript
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APPENDIX E. SIMULATION OF SECOND-ORDER PROCESSOR

This program simulates random variable x in second-order processor (8)

directly. The weights and statistics are entered in lines 30-130. A pair of

independent zero-mean unit-variance Gaussian random variables are generated in

lines 310-380. The sample cumulative and exceedance distribution functions

are computed in lines 510-590.

10 SIMULATION OF SECOND-ORDER PROCESSOR
20 Tt=10000 Number of trials
30 K-5 Number of terms summed
40 DATA .6,-.5,.4,-.3,.2 1 a(k) weightings
5 DTA .9,.8,.7,.6,.5 ! b(k) weightings
60 DATA -. 6,-.8,1,1.2,1.4 ! c(k) weightings
70 DATA .l,-.2,-.3,.4,.5 ! d(k) weightings
80 DATA -. 7,.6,.5,.4,-.3 ! e(k) weightings
90 DATA .2,.3,.4,-.5,-.6 Means of random variables s(k)
100 DATA .8,-.7,-.6,.5,.4 ! Means of random variables t(k)
110 DATA .1,.3,.5,.7,.9 ! Standard deviations of s(k)
120 DATA .2,.4,.6,.8,1 Standard deviations of t(k)
130 DATA .4,-.5,.6,.7,-.8 ! Correlation coeffs. of s(k) and t(k)
140 REDIM A(I:K),B(I:K),C(I:K),D(1:K),E(I:K>
150 REDIM Ms(I:K),Mt(I:K),Ss(I:K),St(I:K),Rho(I:K)
160 REDIM Al(l:K),Be(I:K),X(I:Tt)
170 DIM R(I:l1),R(I:I1),C(I:I1),D(I:I1),E(I:I1)
180 DIM Ms(1:10),Mt(1:10),Ss(1:10),St(1:10),Rho(1:10)
190 DIM Al(1:10),Be(1:10),X(1:18000)
200 READ A(*),B(*),C(*),D(*),E(*)
210 READ Ms(*),Mt(*),Ss(*),St(*),Rho(*)
220 FOR J-1 TO K
230 RI(J)-Ss(J)*Rho(J)
240 Be(J)-Ss(J)*SQR(1-Rho(J)^2)
250 NEXT J
260 RANDOMIZE SQR(.6)
270 L-LOG(.25)
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280 FOR I=i TO Tt
290 X-0
300 FOR J=l TO K
318 VI=RND-.5 1 GENERATE TWO
320 V2uRND-.5 INDEPENDENT
330 S=VI*VI+V2*V2 ! GAUSSIAN
340 IF S>.25 THEN 310 ! RANDOM
350 0=(L-LOG(S))/S ! VARIABLES VIA
360 Q=SQR(Q+Q) ! ACCEPTANCE
370 GI-VI*Q AND
388 G2-V2*Q ' REJECTION
390 Sals(J)+AI(J)*GI+Be(J)*G2
400 T-Mt(J)+St(J)*G1
410 X-X+A(J)*S*S+B(J)*T*T+C(J)*S*T+D(J)*S+E(J)*T
420 NEXT J
430 X(I)wX
440 NEXT I
450 MAT SORT X
468 PLOTTER IS "GRAPHICS"
470 GRAPHICS
480 SCALF -30,10,-4,0
490 GRID 5,1
500 PENUP
510 FOR Iml TO Tt
528 Y-LGT((I-.5)/Tt)
530 PLOT X(I),Y
540 NEXT I
550 PENUP
560 FOR I-I TO Tt
570 Y=LGT(I-(I-.5)/Tt)
588 PLOT X(I),Y
590 NEXT I
600 PENUP
610 END
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EXACT OPERATING CHARACTERISTICS FOR LINEAR SUM OF

ENVELOPES OF NARROWBAND GAUSSIAN PROCESS AND SINEWAVE

INTRODUCTION

The operating characteristics for a linear envelope-detector of a

sinewave in narrowband Gaussian noise, followed by summation of M independent
envelope samples, were presented in [1] and [2, sect. 8.3]. That approach was

based upon evaluation of the first 31 moments of the envelope variate and
their use in a type A Gram-Charlier series approximation, or in modified

approximations involving averages over different numbers of terms in the

series [1, pp. 758-9]. However, there are possible pitfalls to the above

approach. First, evaluation of very low exceedance probabilities, like
10-10, may be inaccurate; see [1, Fig. 1]. Second, the effect of a

systematic error would be hard to detect, if present, since the method yields

only an approximation to the exceedance distribution function, and not its

exact value.

We will use an exact approach here, based upon evaluation of the

characteristic function of the envelope detector output, from which the

exceedance distribution function can be precisely evaluated numerically

[3,4]. In this fashion, we avoid moment evaluations altogether; we can

evaluate false alarm probabilities in the 10-10 range easily (with double

precision computer arithmetic); and we can control truncation and aliasing
errors to any desired degree; see [3] for details. The results of [4] can not

be applied here because each independent envelope sample is the result of a
nonlinear operation, namely a square root, applied to a sum of two squares of

Gaussian random variables with non-zero means.

In the plots of detection probability vs. false alarm probability to be

presented herein, both abscissa and ordinate use the same normal probability

scales, regardless of the number of envelope samples M considered. This allows

for easier interpolation, and is in distinction to [1], where a different
false alarm probability abscissa was used for each M [1, pp. 759-62]. Also,

the parameter employed here for indexing the curves is a, a voltage signal-

to-noise ratio which is equal to the ratio of the sinewave amplitude to the
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rms noise level, rather than the dB parameter employed in [1]. This leads to

curves that are more nearly equally spaced, and therefore to easier and finer

interpolation capability.

Finally, we present five figures for the required input signal-to-

noise ratio per sample required to realize specified false alarm and detection

probabilities, as a function of M, the number of envelope samples added. The

five figures correspond to detection probability PD=.5, .9, .95, .99, and

.999 respectively, and each figure contains false alarm probabilities

PFA=1O-n for n=1(1)8. This total of 40 curves greatly augments the 2

cases presented in [1, Fig. 16] and [2, Fig. 8.18].

A program for the evaluation of the input signal-to-noise ratio

required for a specified set of values of M, PFA' and PD is furnished,

along with an explanation of its use. In this fashion, values of M, PFA'

and PD intermediate to those considered here can be easily investigated.

2
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METHOD OF EVALUATION

Characteristic Function Details

In [3,4], a method of calculating the cumulative and exceedance
distribution functions directly from a given characteristic function was
presented. To utilize those results here, we need the characteristic function

of summation random variable

M
x=5; em ,(1)

m=1

where em is the envelope of a narrowband filter output with a sinewave
2signal of amplitude A and Gaussian noise of power a2. Through proper

normalization, the probability density function of envelope em takes the

familiar Rice form

Pe(u) = u exp( u-• ) I0 (au) for u > , (2)

where the single parameter

AA =- (3)a

is a voltage measure of signal-to-noise ratio per envelope sample. The power

measure of signal-to-noise ratio per sample is

S A2 /2 2

The quantities in (3) and (4) will be referred to as input signal-to-noise

ratios, since they are per-sample measures, prior to the summation in (1)
which yields the output or decision variable x.

The characteristic function corresponding to random variable e in (2) is
given by Fourier transform

3
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+u +

e =Sdu exp(itu) Pe(u) du u exp=;u - I2o( 10(u) (5)
-09 0

and will be called the Rice characteristic function. A series expansion for

(5) is developed in appendix A, and has been programmed in double precision

for numerical use here. As a particular special case, for a=0, no signal, we

have the Rayleigh probability density function and characteristic function:

p C)(u) = u exp(-u 2 12) for u > 0

f)()= exp(_J 2/12) [F 1( 1~; f~ - ~.$ (6)

The latter follows by use of [5, 3.896 3,k4] and via manipulation of the

hypergeometric function series along with Kummer's transformation [5, 9.212 1].

Formula (6) is particularly attractive numerically, since the series expansion

of IF1 contains all Ileptive terms except for one. It should be observed

that the imaginary part of Rayleigh characteristic functione ( ) in (6)

decays very rapidly with t; this useful feature will also be shared by the

Rice characteristic function, fe 1 ) , and is due to the fact that the odd

part of the Rice probability density function in (2) is smooth for all u, and

is in fact entire in u, for any a. By contrast, the even part of the Rice

probability density function in (2) has a discontinuous derivative for real u,

thereby leading to slow decay of the real part of f

The characteristic function of output variable x in (1), for

statistically independent envelope samples temi, is given by

fx (f = [fe()] M (7)

in terms of the Rice characteristic function (5). This relation could be used

directly to find the exceedance distribution function of x according to

[3, (5)-(6)]

Qx(u) = jdt px(t) =1 dT Immxp(-iu?) fj-r (8)
u 0+

4
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However, the slow decay of Reffx(Y1 prompts us to use a modified version

given in [6, (15)]:

Q (u) = cos(ur') Imf'fx(y)1 for u > 0 .(9)

This form is applicable to positive random variables, of which x, as given by

(1) and (2), is certainly a member.

To see why form (9) is preferred over (8), we develop (7) as

x) = [fr(V) + ifi(f)]M = M (M) im [fi(f] m [fr(F)]M- (10)
m=O

where fr(T) and fi(r) are the real and imaginary parts of Rice

characteristic function fe(l). Then

M nm-1(
Imfx(7) = 2 (- 1 )' (M) [fi()] m [fr(T)]M-m (11)

m=1
m odd

contains fi(5) to at least the first power in all terms, thereby yielding a

rapid decay with T.

Development (11) has been used to show why Imtfx(rT) decays rapidly

with r. However, when we employ (9) in a numerical evaluation, we simply take

the imaginary part of the power in (7), and do not use (11) at all; (11) is an

alternating series of large terms for large M.

Actual numerical evaluation of (9) proceeds as follows [3]: for the

Trapezoidal rule with sampling increment A in •,

2do
Q (u) L fxa + 2 - cos(unA) Imtfx(na)3 (12)

n=l
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where we used fx(?).f1 + iu as 140. Then, restricting the u values to

a particular selection,

W = am+ 2 21 cos(2wmn/N) Imffx(nA)I]n=l1

N-1

= 2 Ren zn exp(-i2wmn/N) , (13)
n-0

where collapsed sequence jz is defined as

Z 1 A+ •f 1 x(JNt)

j=1

Zn = 1 mffx((n+jN)A) for 1 < n < N-I (14)zn = n Im- x(n'j

j=0

Form (13) is particularly attractive since it can be accomplished via an

N-point FFT. It can be shown that only the values for 0 < m < N/2 are useful
in (13); the remainder are heavily aliased anJ wust be uiscarded. Thus there

is a trade-off: use of only the imaginary part of fx(j) results in aliasing

twice as coarse. However, the rapid decay of the imaginary part far outweighs

the aliasing.

The summations in (12) and (14) cannot be conducted to infinity. Rather

the integral on f in (9) is terminated at limit L, where the truncation error

is guaranteed to be sufficiently small. A trial and error procedure [3]

yielded the following rules which control the truncation and aliasing errors:

L = min (9, 171Y),

a .121M,

b = min (0, -MY,/2'+V"M6). (15)

The inverse Vrdependence of L and A for large M can be anticipated by
observing that the characteristic function of random variable x in (1) then
6
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approaches a Gaussian function with argument proportional to Me. The bias

(or shift) b is added to random variable x in order to yield a new random

variable that remains just positive, even for large M; this allows us to take

maximum advantage of the fundamental aliasing interval (0, w/A) in u in (12)

and (13). The linear term (in M) of b in (15) is due to the mean of the

Rayleigh variate (for a=O) which is "wIe; the algebraic term in i/mis due to

the fact that the standard deviation of random variable x in (1) increases

according to M.

In order to use this characteristic function approach, we also need the

mean of random variable x in (1). Using (2), this is given by [5, 6.631 1]

S= MPle = Mf du u2 exp I 0oiU) =

0

= M() exp( F ; ; . (16)

This non-alternating series yields accurate values for the mean.

Special Cases

For general M, the characteristic function approach described above must

be used. However, for M = 1 and 2, closed form expressions for the false

alarm and detection probabilities are possible. Specifically, from (1) and

(2), for u > 0,

PFA = fdt Pe(t) = fdt t exp(-t 2 /2) = exp(-u 2 /2

u u

Sfor M = 1. (17)

P D =fdt t x( l,(cat) = Q(ca,u)

And for M = 2, the false alarm probability can be determined by convolving two

Rayleigh probability density functions of the form of (6), to give, for u > 0,

7
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PFA - exp(-u / 2) + Yv" u exp(-u 2/4) for M - 2. (18)

Here, ý is the cumulative distribution function of a normalized Gaussian

random, variable:

U

f(u) = Idt (2w)-1/2 exp(-t212) (19)

The detection probability of random variable x in (1) is not available in

closed form for M > 1.

Asymptoti: Performance for Large M

For large M, decision variable x in (1) is approximately Gaussian. The

mean of x was given in (16); a similar approach for the mean square of x

yields the variance as

2  22(20)
ax e e

The probability density function of x is then approximately

1 (U-Ux)2 1PXu a exp 2a " (21)

with exceedance distribution function

Qx(U)" • x-U\ (22)eU

For input signal-to-noise ratio S/N=O, we have a=O from (4), and (22),

(16), and (20) specialize to

PFA .(FV-u) (23)

8
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On the other hand, for S/N>O, (22) yields the detection probability PD" We

now use the inverse functionI to definition (19) and solve (23) and (22)

according to

M1 %-u 1 U (PFA) , e e (pD) (24)

Eliminating threshold u in (24), we have

ae--PD) ( )PFA) (25)

But also, for large M, the required per-sample input signal-to-noise ratio u

will be small, giving

ue 1; ; 2-) 41/'(i+•

2 =2c2 2 m~
e2 + a2 e a2 -- (26)oee

Substituting these results in (25) and solving for a, we have the required

per-sample input signal-to-noise ratio measures for large M in the alternative

forms

at .N.2 1/4 81/2 1 1/2a -- • =1.446M-.Tg

2I12 __-_ 1.045 o -7

d8 -1o log u 10 log(2r )÷r PO log(s)-5 log(M) - .193+10 log(s)-5 log(M), (27)

where the single parameter

f(PO) - (PFA) (28)

9
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incorporates the specified false alarm and detection probabilities. (27)
displays the familiar 5 log M decibel decay for large M associated with the
incoherent addition in (1); see also [2, p. 279, Ex. 8.8].

10
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RESULTS

For a given value of M, the output variable in (1),

M
x = em (29)

m=1

will exceed threshold u with false alarm probability PFA when signal-to-noise

ratio a is zero. That is

PFA = Prob(x>ul a=0; M). (30)

For specified values of M and PFA, this relation can be solved numerically

for u; the values of normalized threshold u/M are listed in table 1 for

M=2n, n=0(1)13 and for PFA=IO-n, n=1(1)8.

The detection probability depends on threshold u, M, and signal-to-noise

ratio a(>O):

PD = Prob(x>u j a; M). (31)

For specified values of M, PD' and u, this relation can be solved

numerically for the required input signal-to-noise ratio a. When the

threshold results in Table 1 are employed, the results yield the required

input signal-to-noise ratio for specified false alarm probability and detectioh

probability at a particular M. These are plotted in figures 1-5 for

PD = .5, .9, .95, .99, .999, (32)

respectively. The abscissa is log2 M, and the ordinate is in decibels, as

defined in (27). The fit of (27) is very good for large M, especially for

the larger PFA values. These results in figures 1-5 greatly extend the one

in [1, Fig. 16] and [2, Fig. 8.18].

11
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Table 1. Normalized Thresholds Required for Specified M and PFA

M FA 1E-1 1E-2 1E-3 1E-4

1 2014596603 3.03485426 3#71692219 4*29193205
2 1#87154046 2.46578168 2.92459903 3.31372579
4 1.68491649 2.08494224 2.39281962 2.65432267
8 1.55592564 1.82779134 2.03544098 2.21134522

16 1.46605729 1.65246898 1.79362769 1.91266565
32 1.40314416 1.53192213 1.62866385 1.70984877
64 1.35896377 1.44846093 1.51524477 1.57104117

128 1.32787317 1.39035933 1.43673968 1.47534630
256 1.30596258 1.34974198 1.38210498 1.40896493
512 1.29050601 1.32125803 1,34392160 1.36269942

1024 1.27959472 1.30123656 1.31715039 1,33030674
2048 1,27188832 1.28713956 1.29833595 1.30758095
4096 1.26644357 1.27720181 1.28509047 1.29159844
8192 1,26259560 1.27018998 1.27575385 1,28034098

M'IFA 1E-5 1E-6 1E-7 1E-8

1 4.79852591 5.25652177 5.67769243 6.06970852
2 3.65817L49 3.97074674 4.25904998 4.52806135
4 2.88639585 3.09755766 3.29282208 3.47544423
8 2.36734857 2.50933650 2.64073862 2.76376208

16 2.01795589 2.11363367 2.20209577 2,28487698
32 1.78141625 1.84629005 1,90615996 1,96210527
64 1.62006566 1.66438962 1.70520835 1,74328423

128 1.50917003 1.53967893 1.567 1937 1.59383081
256 1.43244246 1.45357776 1.47297026 1.49100181
512 1.37906412 1.39378248 1.40726893 1.41979378

1024 1.34176981 1,35206123 1.36148146 1,37022180
2048 1,31562790 1,32284604 1.32944798 1.33556910
4096 1.29725887 1.30233301 1.30697131 1,31126956
8192 1.28432858 1.28790149 1,29116614 1.29419029

12
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The results in figures 1 through 5 only cover a selected set of detection

and false alarm probability values. A more complete description is afforded

by the receiver operating characteristics, namely detection probability vs.

false alarm probability, with signal-to-noise ratio as a parameter. In

figures 6 through 19 are given these operating characteristics for

M = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, (33)

respectively. The false alarm probability covers the range 10-10 to .5,

while the detection probability covers 10-10 to .999. Both abscissa and

ordinate in these figures employ the inverse function to the Gaussian

cumulative distribution function I defined in (19); thus, a truly Gaussian

random variable would plot as a series of equally spaced parallel straight

lines (with parameter a). Observe that the curves are neatly equally spaced

with parameter a, except for very small a, where the nonlinear envelope

operation causes small signal suppression and a crowding together of the

curves.

If the decision variable x is presumed Gaussian, and the operating

characteristics overlayed on the exact results in figures 6-19, it is found
that the two sets of curves for M=8192 are virtually identical in the range of

PFA and PD plotted. However, for M=16, the Gaussian approximation is

somewhat optimistic; for example, the exact curve for a=2.75 is well-

approximated by the Gaussian approach for a=2 .6 2 . For small M, the Gaussian

approximation is overly optimistic for small PFA; however, the two sets

cross near PFA=.5, which is not a practical range of interest anyway.
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SUMMARY

A method for exact evaluation of th( exceedance distribution function, of

a linear sum of M envelopes of a narrowband Gaussian process and sinewave, has

been utilized to determine the receiver operating characteristics for a wide

range of values of M and signal-to-noise ratio. Also, the required input

signal-to-noise atio vs. M has been determined for a selected set of false

alarm and detection probabilities. Programs are also supplied by which other

values of the various parameters can be investigated by the user.

Agreement between the current results and those in [1,2] is very good

over the range of common values plotted. For M larger than 8192, the

approximation given in (27) and (28) is recommended, since the summation

variable is then well represented by a Gaussian random variable.

33134
Reverse Blank
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APPENDIX A. DERIVATION OF RICE CHARACTERISTIC FUNCTION

The normaliied probability density function of a Rice random variable was

given in (2) as

Pe(U) = u exp 2a 1 u0-2)Io(aU) for u > . (A-i)

The corresponding characteristic function is
+00 +06

fe() =du exp(ifu) pe(u) =Jduu exp (iuYu - 10 (0u)

= exp(-r) (r/2) du un+ exp(iu-u /2)

n=O 0

where we have expanded Io in a power series [5, 8.447 1] and defined power

signal-to-noise ratio

r =c/2 . (A-3)

(If desired, a power series in • could be developed by expanding exp(i'u) in a

power series instead of Io.)

We define

Cn(•) - 2 n(nI)2 du u2n+1 exp(ilu - u2 12) for n > 0 (A-4)

and get the characteristic function series

@0f e(r) = exp(-r) ýF r n C n(T) (A-5)

n=O

In order to get a recurrence on Cn(f), we also define

Bk(8r) = fdw wk exp(irw - w2/2) for k >0 (A-6)

0
A-1



TR 7117

for then

C ~B 2n+l(f)(A7

n) 2n(n!)2A-

By integrating by parts on (A-6), there follows

Bk = ifBk-1 + (k-1)Bk_2  for k > 1 . (A-8)

This recurrence can be started with [5, 3.896 3t4]

B0= ep-212 +i(A-9)

By looking at three adjacent terms of recurrence (A-8), we can generate

the alternative recurrence

Bk = (2k-3- 2 )Bk_2 - (k-2)(k-3)Bk- 4  (A-l0)

By means of (A-7), this translates into

Cn 1• (2n - Cn_1 - _7Cn_2 for n > 2 . (A-11)

Starting values are (via manipulation of hypergeometric series and Kummer's

transformation) expressable as

CI = exp(-F12) [,F,(- 2; -1; f) + i (3- (A-12)

Each of the series for 1 F1 consists of terms of the same polarity, except

for one term, and are therefore useful for obtaining very accurate initial
values. CO is the characteristic function of the Rayleigh probability

A-2
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density function. Relations (A-11)-(A-12) constitute recurrences on both the

real and imaginary parts of Cn.

It was found that the terms exp(-r) rn in (A-5) became very large for

large n, while the Cn(f) terms became very small. In order to avoid

overflow and underflow, we defined the total term

An = exp(-r) rn C n . (A-13)

Reference to (A-11) readily yields the recurrence on An, and (A-12)

furnishes corresponding obvious starting values for A0 and A1 .

A-3/A-4
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APPENDIX B. DESCRIPTION OF PROGRAMS AND LISTINGS

Overview

Information obtained via evaluation of the Rice characteristic function

may be displayed in three formats.

FORMAT 1: Display PD vs. PFA

The user defines the number of samples M and the range of values for

alpha, a voltage signal-to-noise ratio measure. An algorithm then utilizes

the Rice characteristic function for alpha=O and for the alphas specified by

the user. This results in the production of a threshold vs. PFA and M

(alpha=O) and threshold vs. PD and M (alpha>O) tables. These two tables are

stored on an output file. For each user-defined M, a plot routine displays PD

vs. PFA for the set of user-defined alphas.

FORMAT 2: Display SNR vs M

The user supplies the input which specifies a PD. The algorithm then

solves for the threshold values corresponding to PFA=1O**(-IPFA),

(IPFA=1,..,8) and M=2**IM, (IM=O,...,13) and alpha=O. A root finding

technique is then employed to solve for the SNR defined by a threshold value

and user-defined PD. An SNR is found for each threshold value. The results

are stored in an output file. A plot routine displays the required SNR vs. M

for PFA=1O**(-IPFA), (IPFA=1,2,...,8).

FORMAT 3: Print SNR

The user specifies a value for PD, PFA, M. The program solves for the

threshold corresponding to PFA and M. A root finding technique is then

employed to determine the SNR corresponding to this threshold and user-defined

PD and M. The results are printed.

B-1
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Description of Input

Inputs to the program consist of cards which either specify values

(PARAMETER CARDS), activate the reading of tabularized values (TABLES), assign
files (FILE NAME CARDS), process data (COMMAND CARDS), or specify a plot

device (PLOT DEVICE CARDS). The basic format of a card is

CARD NAME = value units

where CARD NAME is an alphanumeric expression from Tables 2-6. The
alphanumeric must begin in column 1, value is a floating point or integer

number, and units is an alphanumeric.

Parameter cards, file names, and tables constitute the data upon which

commands operate. If two cards with the same name specify different data,
then the last entry overrides the other.

For the programmers convenience, FORTRAN variable names associated with
file names or parameters may be located in the Tables 2 through 6. Since

input and values stored represent the same physical quantity, it is convenient

to refer to both in this paper by the same variable name. The convention

adopted is to express the variable by the lower case letters and reserve upper
case letters for constants.

Parameter Cards

Parameter cards are used to specify an axis length or assign a range of

values to a parameter. These cards are shown in Table 2. For example,

NUMBER OF SAMPLES MINIMUM = 1.

NUMBER OF SAMPLES MAXIMUM = 8192.
NUMBER OF SAMPLES FACTOR = 2.

implies that the program will process data for M=1,2,4,8,16, ..... ,4096,8192.

B-2
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Table Cards

A table card contains the values that are to be assigned to a variable.

The last card that must appear in a table is an EOF card. This card

terminates the reading of the table. Table cards exist for PD and PFA only.

A list of the table cards appears in Table 4. For example,

PROBABILITY OF DETECTION TABLE

.5

.7

.99

EOF

This table assigns values of .5, .7, .99 to PD.

Files Cards

A file card allows for dynamic assignment of all mass storage files.

This is accomplished by linking internal FORTRAN unit numbers to files during

execution. The file card is shown in Table 4. Two of the three algorithms

use files. They are

Display PD vs PFA : A file is used to store output.

Display SNR vs M : A file is used to store output.

For example,

OUTPUT FILE = PDFILE

directs the output of a program to a file called PDFILE.

Command Cards

Command cards are utled to compute, plot, or terminate a run stream.

Command cards are given in Table 5.

B-3
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Plot Device Cards

Plot device cards direct the plot output to either a TEKTRONIX, FR80, or

a CALCOMP plotter. The cards necessary for that operation are shown in
Table 6.

Examples of Output

Example 1: Display PD vs PFA

The input deck for the first example appears in Table 7. This deck

designates that PD vs. PFA data will be computed for M=1 and

alpha=.5,1.0,1.5,...,9.5. The output is stored on a file called FILEl. The

plot corresponding to the data is shown in figure 6. The second half of the

run stream computes PD vs. PFA data for M=2 and alpha=O.,.4,.8,...,7.2. The

output is stored in FILE2. The plot of the data appears in figure 7.

Example 2: Display SNR vs. M

The input deck for the second example appears in Table 8. The first half

of the input deck designates that the SNR vs.M plots will be computed for a

value PD=.5. The output is displayed in figure 1. The parameter cards

specify that the axis will be scaled as follows: -19 DB (minimum), 13 DB

(maximum), 2 DB (increment), and 5 inches long for the SNR axis and 6.86

inches long for the number of samples axis. It should be noted that the

limits for the number of samples axis are predefined by the program to be 1

(minimum), 8192 (maximum), 2 (factor). The output is stored in a file called

PDFILI. The second half of the run stream computes SNR vs. M fqr a value

PD=.9. The axis limits for SNR were changed to -17 DB (minimum), 15 DB

(maximum), 2 DB (increment). Alpha curves were computed for

alpha=O.,.4,.8,...,7.2. This output is stored in file PDFIL2. A plot of this

data appears in figure 2.

Example 3: Print SNR

The input deck for the third example appears in Table 9. The output

appears in Table 10.

B-4
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TABL.E 2. PARAMETER CARDS

INPUT CARDS UNITS

SNR AXIS LENGTH = snraxs IN
SAMPLE AXIS LENGTH = smPaxs IN
PD AXIS LENGTH =Pdaxs IN
PFA AXIS LENGTH = Pfaa>xs IN
SNR MINIMUM = snrmin DB
SNR MAXIMUM = snrmax DB
SNR INCREMENT = snrinc DB
ALPHA MINIMUM = alpmin
ALPHA MAXIMUM = alPmax
ALPHA INCREMENT = alpinc
NUMBER OF SAMPLES MINIMUM = smPmin
NUMBER OF SAMPLES MAXIMUM = smPmax
NUMBER OF SAMPLES FACTOR smpfct

TABLE 3. TABLE CARDS

INPUT CARDS VARIABLE

PROBABILITY OF DETECTION TABLE PD
PROBABILITY OF FALSE ALARM TABLE PFA

TABLE 4, FILE CARDS

INPUT CARDS

OUTPUT FILE = name

TABLE 5, COMMAND CARDS

INPUT CARDS

RUN MAIN
COMPUTE PD VS PFA
COMPUTE SNR VS M
PLOT PD VS PFA
PLOT SNR VS M
END

B-5
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TABLE 6. PLOT DEVICE CARDS

INPUT CARDS OPTIONS

BAUD RATE = 960.
PLOT DEVICE = device FRSOTEKTROCALCOMP
RESET PLOT DEVICE

TABLE 7, SAMPLE INPUT DECK FOR PD VS PFA

RUN MAIN
BAUD RATE = 960.
PLOT DEVICE = TEKTRO
RESET PLOT DEVICE
PD AXIS LENGTH = 6.86 IN
PFA AXIS LENGTH 5. IN
OUTPUT FILE = FILE1
NUMBER OF SAMPLES MINIMUM = I
ALPHA MINIMUM = .5
ALPHA MAXIMUM = 9.5
ALPHA INCREMENT = .5
COMPUTE PD VS PFA
PLOT PD VS PFA
OUTPUT FILE = FILE2
NUMBER OF SAMPLES MINIMUM = 2
ALPHA MINIMUM = O0
ALPHA MAXIMUM = 7.2
ALPHA INCREMENT = .4
COMPUTE PD VS PFA
PLOT PD VS PFA
END
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TABLE B. SAMPLE INPUT DECK FOR SNR vs M
RUN MAIN
BAUD RATE = 960.
TEMPORARY FILE = FALSE
PLOT DEVICE = TEKTRO
RESET PLOT DEVICE
OUTPUT FILE = PDFIL1
SNR MINIMUM = -19. DB
SNR MAXIMUM = 13. DB
SNR INCREMENT = 2. DB
SNR AXIS LENGTH = 5, IN
SAMPLE AXIS LENGTH = 6.86 IN
PROBABILITY OF DETECTION TABLE
.5
EOF
COMPUTE SNR VS M
PLOT SNR VS M
OUTPUT FILE PDFIL2
SNR MINIMUM = -17# DB
SNR MAXIMUM = 15, DB
SNR INCREMENT = 2o DB
PROBABILITY OF DETECTION TABLE
.9
EOF
COMPUTE SNR VS M
PLOT SNR VS M
END

TABLE 9. SAMPLE INPUT DECK FOR PRINTING SNR

RUN MAIN
PROBABILITY OF DETECTION TABLE

*9

EOF
PROBABILITY OF FALSE ALARM TABLE
,1

,001
EOF
NUMBER OF SAMPLES MINIMUM = 1,
NUMBER OF SAMPLES MAXIMUM = 2048.
NUMBER OF SAMPLES FACTOR =: 2.
PRINT SNR
END

B-7
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Listing of Program

This section contains a listing of three master programs and associated

subroutines. Subroutines which read input and plot the output have been
omitted. Table 11 contains a list of the subroutine names and a brief

description of the pertinent subroutines.

B-9
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TABLE 11, DESCRIPTION OF SUBROUTINES

NAME DESCRIPTION

CMPDVA MASTER PROGRAM FOR COMPUTING PD VS PFA
CMPSVA MASTER PROGRAM FOR COMPUTING SNR VS M

PRTSNR MASTER PROGRAM FOR COMPUTING AND PRINTING SNR
FFT COMPUTES THE FAST FOURIER TRANSFORM OF A FUNCTION
RDC COMPUTES AN APPROXIMATE S/N FOR A GIVEN PD, PFA, M

(SEE REF 7)
FNPD COMPUTES THE PROBABILITY OF DETECTION FOR A GIVEN

My S/N, AND THRESHOLD
FNPF COMPUTES THE PROBABILITY OF FALSE ALARM FOR A GIVEN

M AND THRESHOLD
FNF11 COMPUTES THE CONFLUENT HYPERGEOMETRIC FUNCTION
RICE COMPUTES THE CHARACTERISTIC FUNCTION OF A RICE

VARIATE
FNIPHI COMPUTES THE INVERSE OF THE CUMULATIVE GAUSSIAN

DISTRIBUTION
DIST COMPUTES THE EXCEEDANCE DISTRIBUTION FUNCTION FOR

A GIVEN M AND S/N
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SUBROUTINE FFT(NPXivY)
IMPLICIT DOUBLE PRECISION (A-HO--Z)
DIMENSION C(0:256) PX(0*1023) ,Y(O:*1023) FL(0:9)
DATA P1/3. 14159265358979324D0/

T=2 .DO*P I/N
Jl=N14
DO 100 J=0pJi
C(J)=DCOS(T*tIFLOTJ(J))

100 CONTINUE

Ni=N/4
N2=Nl+l
N3=N2+i
N4=N3+Ni
L2=JIDINT(1.4427D0*DLOG(DFLOTJ(N))+.5D0)
DO 600 11=1,12
12=2**( 12-Il)
I3=2D0*12
14=N/13

DO 500 151,1I2
16=I4*( 15-1 )+1
IF( 16#LE*N2 ) GO TO 350
V6=-C(N4-16-i)
V7=-C( 16-NI-i)
G0 TO 375

359 V6=C(I6-1)
V7=-C(N3-16-i)

375 L3-N-13

DO 400 17=0PL3pl3
I18=17+15
19=18+12
'J8=X(Ie-i )-X( 19-1)
V9=Y( 18-1 )-Y (19-i)

X(19-i )=V6*VB-V7*V9
Y(19-1 )=V6*V9+V7*VB

400 CONTINUE
500 CONTINUE
600 CONTINUE

l1=12+1
DO 700 12=lvl0
L( 12-1)=I#,.DO
IF( 12*OT#L2 ) GO TO 700

700 CONTINUE
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ICO=L(O)
ICl=L(1)
IC2=L(2)
IC3=L(3)
IC4=L(4)
IC5=L(5)
IC6=L(6)
IC7=L(7)
ICS=L(8)
IC9=L(9)

K=1
DO 1900 I11=1IC9
DO 1800 12=IlICBPIC9
DO 1700 I3=I29IC7,IC8
DO 1600 14=I3,IC6,IC7
DO 1500 I5=14PIC5yIC6
DO 1400 I6=I5,IC4,IC5
DO 1300 17=16,1C3,IC4
DO 1200 I8=17,vC2,1C3
DO 1100 I9I=8,IC1,IC2
DO 1000 I10=19,ICOICI
J=I10
IF( K.GT.J ) GO TO 900
A=X(K-1)
X(K-1)=X(J-1)
X(J-1)=A
A=Y(K-1)
Y(K-1)=Y(J-1)
Y(J-1)=A

900 K=K+1
1000 CONTINUE
1100 CONTINUE
1200 CONTINUE
1300 CONTINUE
1400 CONTINUE
1500 CONTINUE
1600 CONTINUE
1700 CONTINUE
1800 CONTINUE
1900 CONTINUE

RETURN
END
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SUBROUTINE FNPD(ALPHAvVvAMvALYADvABSvPD)
IMPLICIT DOUBLE PRECISION (A-HrO-Z)
DATA PI/3*14159265358979324D0/

SNR=#5 DO*ALPHA*ALPHA
CALL FNFl1(1 .5D0v,1 DOSNRpF11)
FAC=DSORTC .5D0*PI)*EXP(-SNR)*Fll
AMUY=AM*FAC+ABS
AM2=AM/2,DO
VD=V*,AD
EXC=#*5*AD*AMUY
NS1=;JIDINT(AL/AD)
DO 100 NS=IPNSI
XI=AD*NS
CALL RICE(XIPSNRYFRYFI)
A=DATAN2(FI ,FR)
FYI=:DSIN(AM*A+ABs*xI)*(FRCF'R+FI*FI)*c*AM2
ADD=FYI*DCOS(VD*DFLOTJ(NS))/DFLOTJ(NS)
EXC=EXC+ADD

100 CONTINUE
PD=2 .D0*EXC/PI

RETURN
END

SUBROUTINE FNPF(VYAMYALYADYABSPPF)
IMPLICIT DOUBLE PRECISION (A-HPO-Z)
DATA PI/3.14159265358979324D0/

FAC=DSORT( .5D0*Pl)
A?1UY=AM*FAC+ABS
AM2=AMI2.DO
VD=V*AD
EXC=7* 5*AD*AMUY
NSI=JIDINT(AL/AD)
DO 100 NS=IPNSI
XI=AD*NS
X2= SDO*XI*XI
E=EXP(-X2)
CALL FNFll(-.5D0p.5D0YX2pF11)
FR=E*F1 1
FI=E*FAC*Xl
A=DATAN2(FI vFR)
FYI=DSIN(AM*A+.ABS*XI >*(FR*FR+FI*FI >**AM2
ADht=FYI*DCOS(VD*DFLOT.J(NS))/DFLOTJ(NS)
EXC=EXC+ADD

100 CONTINUE
PF=2.*DO*EXC/PI

RETURN
END

B- 13



TR 7117

SUBROUTINE RDC(AMYPFYPDYALPHA)
IMPLICIT DOUBLE PRECISION (A-HYO--Z)

A=DLOG( .62D0/PF)
B=DLOG(PD/(1 .D0-PD))
F'ACT=6.2110 + 4#54D0/DSORT(AM+.44D0)
SNRDB=-5.D0*DLOGI0(AM) + DLQG1O(Ad.1200*A*B+1t700*B)*FACT
ALPHA=DSQRT(2.E'0*10.DO**( .100*SNRDtB))
RETURN
END

SUBROUTINE FNFI1(APBYXPF11)
IMPLICIT DOUBLE PRECISION (A-HFO--Z)

Fl1:::l I DO
T=1 .00
DO 100 Kn:ly300
U=K--1
T=T*(A+U)*X/( (B+U)*K)
FIl=Fll+T
IF( DAPS(T).LE.DABS(Fll)*1.D--18 )GO TO 200

100 CONTINUE
PRINT 101

101 FORMATC2XP'300 TERMS IN FNF11')
200 CONTINUE

RETURN
END

SUBROUTINE FNIPHI(XFPHI)
IMPLICIT DOUBLE PRECISION (A-H-O-Z)

100 Y=DMAX1(Xv1.D-12)
Y!.DMIN1 (Yv'1 .0-1 .- 12)
D=X-.5D0
IF( DABlS(D).GT, O01DO ) GO TO 250
PHI=2,,50662827463D0..Dlc(1,DO+D,*D*1.04719755120DO)
GO TO 300

250 PHI=Y
IF( Y#GT. .500 ) rHI=,5D0-(Y-.5D0)
PHI=DSORT(-2#DO*DLOG(PHI))
T=1.DO+PHI*(1.432788D0+PHI*(.18926900+PHI*.001308D0))
PHI=PHI-(2 ,51551700+PHI*(.80285300+PHI*010O3280D) )/T
IF( Y.LT* .5D0 ) PHI=-PHI

300 RETURN
END
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SUBROUTINE ItIST (AMyALH MFyXiY)
IMPLICIT DOUBLE PRECISION (A-HPO-Z)
DIMENSION X(0:1023)y Y(0:10;13
COMMON /PDVPF/ALYADYABS
DATA PI/3.141592653589793214D0/

SNR=.5 DO*ALPHA*ALPHA
CALL, FNFll(1.5D0,1 .D0vSNRvF11)
AMU=DSQRT( .5t1*PI)*DEXP(-SNP)*FlI
AMUS=AM*AMU+ABS
AM2=AM/2 .DO

DO 100 I=091023
X( I)=O.DO
Y( I)=ODO

100 CONTINUE

X (0) = 5DO*AMUS*AD
NS1=JIDINT (AL/AD)
DO 1000 NS=lPNSI
XI=AD*NS
CALL RICE(XI ,SNRPUYV)
T=DATAN2 ( VU)
FI=DSIN(AM*T+ABS*Xl)*(U*U+V*V)**AM24
JIS=JMIDDCNSYtIF)
X(MS) -X(MS)+FI/NS

1000 CONTINUE

CALL FFT(MFFXPY)

FAC 2 .DO/PI
KS1 =MF/2 .DO
DO 2000 KSz=OPKSI
T=X(KS)*FAC
X(KS)= .DO-T
Y (KS) =T

2000 CONTINUE

RETURN
END
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SUBROUTINE RICE(XPSNRYFRYFI)
IMPLICIT DOUBLE PRECISION (A-HrO-Z)
DATA PI/3.1415926535e?79.32.4D0/

X2=.5 DO*X*X
E=DEXP (-X2-SNR)
.CALL FNF'11(-,5D0r.5D07X2pFll)
AOR=E*Fll
AOI.-E*DSORT(#5D0*PI)*X
CALL FNF11 (-1 .5t'0, 5DOPX2jFll)
ANR=E*SNR*F1 1
ANI=SNR*(1 .SDO-X2)*AOI
FR=AOR+ANR
FI=AOI+ANI
BR=ItMAX1 (DAEFS(AOR) ?DABS(FR))
EtI=DMAXl(DABS(AOI) vDABS(FI))
T= * 5t1+X2

SNR2=SNR**2
DO 100 N=2Y2OO
FD=N**2
Fl =SNR* (N+N-T )/FO
F2=SNR2*(N-.5D0)/( (N-I )*FO)
R=F1*ANR-F2*AOR
V=FI *ANI -F2* AOI
A OR -AN R
AOI=ANI
ANR=R
ANI=V
FR=F'R+R
FI=FI+V
BR=DMAX1 (BRYDABS(FR))
BI=DMAX1 (BIfDABS(FI))
IF( DABS(V).LE.5*D-19*DAPS(FI) .AND. DAF4S(R).LE.5.D-19*DABS(FR))

1 GO TO 200
100 CONTINUE

PRINT 101
101 FORMAT(2XY'200 TERMS IN RICE')
200 DR=18*-DLOGiO(DABS(BR/FR))

PI=18.-DLOS10(DABS(BI/FI))
RETURN
END
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SUBROUTINE CMPDVA R71
PARAMETER MF=2**1O
PARAMETER FBDNUM=18
DOUBLE PRECISION ALPADPABSYBSAPAMALPHAPALFAX(0:1023) ,Y(0:1023)
PARAMETER (NUMFIL=30)
CHARACTER*6 FILES(NUMFIL)
COMMON /FILEC/FILES
CHARACTER*6 PBDNAM
EQUIVALENCE

1 (PBDNAMPFILES(18))
PARAMETER (NUMPAR=200)
COMMON /PARAMC/PARAMS(NUMPAR)
EQUIVALENCE

1 (SMPMINYPARAMS(187))p
1 (SNMINPPARAMS(184))# (SNMAXYPARAMS(185))p (SNDELPPARAMS(186))
COMMON/PDVPF/AL ,AD ,ABS
DOUBLE PRECISION PI
DATA PI/3,14159265358979324tIO/

C
C OPEN THE FILE

CALL OPNFIL(PBDNUMPBDNAM)
C
C COMPUTE THE NUMBER OF SNR CURVES
C

NSN=(SNMAX-SNMIN)/SNDEL+1

C
C STORE HEADER INFO

WRITE(PBfINUM) SflPMINPSNHINPSNM1AXYSNIlELYNSN

AM = SMPMIN
AL = EIMIN1(9.DO,17,D0/DSQRT(AM))
AD = #12D0/DSORT(AM)
BSA =--DSQRT(PI/2.D0)*AM + 6.DO*DSORT(AM)
ABS = DMIN1(0.DOYBSA)

C
C COMPUTE SNR VS PFA

ALFA=0 #D0
CALL. I:IIST(AMsALFAgMFsXsY)

C
C STORE THE SNR VS PD

WRI7E(PBDNUM) ('((I) ,I=0,512)

DO 1000 ISN=1.,NSN
SNR= SNMIN + SNDEL*(ISN-1)

ALPHA =SNR
CALL DIST( AM, ALPHAPMFPXYY)

C
C STORE THE SNR VS PD

WRITE(PBDNUM) (Y(I)PI10v512)

1000 CONTINUE

2000 CONTINUE

RETURN 
B1
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SUBROUTINE PRTSNR
IMiPLICIT DOUBLE PRECISION (A-HYO-Z)
DIMENSION PFA(10) ,PD(10) PV(i4p8)P~SNR(14P8)
DATA PI/3.14159265358979324D0/
REAL SMPMINYSMPMAXPSMPFCTrPARAMS
PARAMETER NUMPAR=200
COMMON/PARAMC/PARAMS(NUMPAR)
EQUIVALENCE
I(SMPMINPARAMS(187)),(SMPMAXFARAMS(188)), (SKPFCTYPARAMS
COMMON/PDPF/NPD, NPFAPPDV PFA

MMAX=ALOG1O(SMPMAX/SMPMIN)/ALOGIO(SMPFCT) + 1

F1=DSORT( .5D0*Pl)
F2=DSORT( 2,DO-t* DO*PI)
DO 1000 IM=IYMMAX
AM=SMPMIN*SMPFCT**( IM-1)
AL = DMIN1(9.D0pI7,D0/DSQRT(AM))
AD = 12D0/DSORT(AM)
BSA = -DSORT(PI/2#DO)*AM + 6#DO*DSQRT(AM)
ADS = DMIN1(0.DOPBSA)
AMU=F1*AM
SIG=F2*DSORT (AM)
DO 900 IPF=lPNPFA
PF=PFA( IPF)
IF( AM.GT, I-DO ) GO TO 250
YN=DSORT(-2**DLOG(PF))
GO TO 750

250 CALL FNIPHI(PFYYF)
Vl=AMU--SIG*YF+ABS
IF( IPF.GTI ) V1=DMAX1(VIYVN)
V2=Y1+ .5D0
IF( Vl.NEVN ) GO TO 300
Pl=PN
GO TO 325

300 CALL FNPF(VIPAMYALPADPABSvPP)
325 CALL FNPF(V2pAMvALvADpABSvP2)

IF( DABS(P1-PF),LT.DABS(P2-PF) )GO TO 350
VO=V1
PO=P1
VN=V2
PN=&2
GO TO 400

350 VO=V2
PO=P2
VN=V1
PN=Pl

400 CALL FNIPHI(PO7YO)
0O TO 550

500 CALL FNPF(VNPAMPALYADYABSYPN)
550 CALL FNIPHI(PNPYN)

IF( DABS(PN-PF)*LE#1D-9*PF ) GO TO 750
T-(YO*(YN-YF)+VN*(YF-YO))/(YN-YO)
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VO=VN
YO=YN
VN =T
GO TO 500

750 V(IMPIPF)=VN
900 CONTINUE
1000 CONTINUE

DO 4000 IPD=1,NPD

CALL FNIPHI(PD(IPD)~YYl)
DO 3000 IM~lPMMAX
AM=SMPMIN*SMPFCT**(CIM-1)
AL = DMINl(9,D0'17*DO/DSQRT(AM))
AD = #12D0/DSORT(AM)
BSA = -DSORT(PI/2.DO)*AM + 6,D0*DSORT(AM)
ABS = DMIN1(0OtI0YBSA)
DO 2900 IPF=1,NPFA
PF=PFA( IPF)
CALL RDC(AMPPFPPD(IPD) FAI)
A2=A1*1 .0100
VV=V( IM, IPF)
CALL FNDAYVAP~APPpl
CALL FNDAyVAPLAYBP2
IF( DABS(P1-PD(IPD)).LT.DABS(P2-PD(IPD)) )GO TO 2350
AO=Al
P0=P1
AN=A2
P N =P2
0O TO 2400

2350 AO=A2
PO=P2
AN=A1
PN=Pl

2400 CALL FNIPHI(P0PY0)
GO TO 2550

2500 CALL FNPD(ANFVVFAMPALPADPABSYPN)
2550 CALL FNIPHI(PNYYN)

IF( DABS(PN-PD(IPD)).LE.10-6*PD(IPD) )GO TO 2750
T=(AOIC(YN-YD)+AN*(YD--YO))/(YN-YO)
AO=AN
YO=YN
AN=T
GO TO 2500

2750 SNR(IMPIPF)=10.*DL0O10(.5D0*AN*AN)
2900 CONTINUE
3000 CONTINUE
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DO 3200 IPF=IPNPFA
PRINT 3001

3001 FORMAT(2(/))
PRINT 3011, PD(IPID)PFA(IPF)

3011 FORMAT(2XP'PD =rFl0.ý3v5Xv'PFA ='PD10,3)
DO 3100 IM=IPMMAX
M=SMPMIN*SMPFCT**( M1K-)
PRINT 3021Y MFSNR(IMPIPF)

3021 FORMAT(2XP'M ='PI,5?XP'SNR ='YF7,2)
3100 CONTINUE
3200 CONTINUE

4000 CONTINUE

RETURN
END

SUBROUTINE CMPSVS
IMPLICIT DOUBLE PRECISION (A-HYO--Z)
PARAMETER MMAX=14
PARAMETER NUMFIL=30Y PBDNUM=18
CHARACTER*6 FILES( NLMFIL)
COMMON/FILEC/FILES
CHARACTER*6 PBtDNAM
EQUIVALENCE (PBt'NAMPFILES(18))
DIMENSION PFA( 10) ,PD( 10),V( 14,8) YALPHA( 14,8)
DIMENSION THRS(14v8)
DATA PI/3,14159265358979324D0/
COMMON/PDPF/NPDYNPFAPD ,PFA

CALL OPNFIL(PBDNUMPPBDNAM)
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F1=DSORT( .SDQ*PI)
F2=DSLIRT(2#D0- .5D0*PI)
DO 1000 IM=1vMMAX
AM=2#**( Il-i)
AL = IIMIN1(9.DO,17.DO/DS0RT(AM))
AD = 12D0/DSQRT(AM)
BSA = -DSORT(PI/2.DO)*AM + 6.DO*DSORT(AM)
AEBS = DMIN1(0#D0,BSA)
AMU=F1 *AM
SIG=F2*DSQRT (AM)
DO 900 IPF=lpB
PF=10.**(-DFLOTJ(IPF))
IF( AMGT. 1,DO ) GO TO 250
YN=DSORT(-2.*DLOG(PF))
GO TO 750

250 CALL FNIPHI(PFPYF)
Vi =AMU-SZG*YF+ABS
IF( IPF'#GT.1 ) V1=t'MAXI(VIYVN)
V2=Vl+,5t'0
IF( V1.NEVN ) GO TO 300
Pl=PN
GO TO 325

300 CALL FNPF(VIYAMPALPADPABSYP1)
325 -CALL FNPF(Y2pAMvALPADFADSYP2)

IF( DABS(P1-PF)#LT.DABS(P2--PF)) GO TO 350
V0=V1
P0=P1
VN=V2
PN=P2
GO TO 400

350 VO=V2
PO=P2
VN=Vl
P = P 1

400 CALL FNIF'HI(P0PY0)
GO TO 550

500 CALL FNPF(VNPAMPALYADYABSYPN)
550 CALL FNIPHI(PNYYN)

IF( DARS(PN-PF).LE*1D-9*PF ) 6O TO 750
T=(VO*(YN-YF)+VN*(YF-YO) )/(YN-YO)
VO=VN
YO=YN
YN =T
GO TO 500

750 V(IMi'IPF)=VN
THRS( IM, LP-F)=(VN-ABS)/AM

900 CONTINUE
1000 CONTINLIý
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WRITE(PBDNUM) NPDY(PD(I)yl~lp10)
DO 4000 IPD=1PNPD

CALL FNIPHI(PD(IPD)YYD)
DO 3000 If1=IPMMAX
AM=2.DO**( IM-1)
AL = DMINlMSD0y17vD0/DS0RT(AM))
AD = &12D0/DSORT(AM)
BISA =-DSORT(PI/2,DO)*AM + 6,D0*DSQRT(AM)
AEIS = DMNIi(0.DOPBSA)
DO 2900 IPF=178
PF=i0.I30**(-DFLOTJ(IPF))
CALL RDC(AMYPFYPD(IPD)PA1)
A2=AI*i 1 O1DO
VY=V( IM, IPF)
CALL FNPD(A1 ,VVYAMPALPAEIABSYPI)
CALL FNPD(A2vVVPAMPALYADYAEISPP2)
IF( DABS(P1-PD(IPD)).LTDABS(P2--PD(IPD)) ) 0 TO 2350
AO=Ai
PO=Pi
AN=A2
PN=P2
GO TO 2400

2350 AO=A2
P0 P2
AN=A1
PN=Pi

2400 CALL FNIPHI(POPYO)
GO TO 2550

2500 CALL FNPD(ANPVVPAMPALPADPABSPPN)
2550 CALL FNIPHI(PNPYN)

IF( DABS(PN-PD(IPD))oLE*ID-6*PD(IPtt) 00G TO 2750
T=(AO*(YN-YD)+AN*(YEI-YO) )/(YN-YO)
AO=AN
Y0=YN
AN=T
GO TO 2500

2750 ALPHA(IMYIPF)=AN
2900 CONTINUE
3000 CONTINUE

WIRITE(PBDNLJM) ((ALPHiA(IMPIPF)PIPF=lu8),IM=19,MMAX)

4000 CONTINUE

RETURN
END

$
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right-left ambiguity of a line array attempting to estimate the angle of
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INTRODUCTION

A line array inherently has a cone of ambiguity in its response. When

the array lies in the horizontal plane, and a source is located in that same

plane, the ambiguity reduces to a right-left uncertainty, which cannot be

resolved without some manuevering on the part of the source or array. If the
line array is moving randomly, unintentionally or uncontrollably, this

movement can serve as a means of making a high quality decision about the

source direction, if the array angle, as well as the source angle relative to

the line array, are measured.

Towmi5 J)re~'

/

Figure 1. Geometry of Line Array and Source

The situation of interest here is described in figure 1. The line array
is being towed due north; however, it is undergoing rigid bar rotation about

this direction in a random manner, as described by random process a(t), which

is the actual antenna angle relative to the towing direction.

The actual source angle, relative to the line array end-fire direction,

is s(t). Furthermore, the actual source angle, relative to the towing

direction, is e, an unknown constant; it is presumed that Q is constant
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throughout the observation interval. Reference to figure 1 reveals that these

various quantities are interrelated according to the alternatives

f (t) + s(t) for hypothesis 1, HI1
1 . (1)

a(t) - s(t) for hypothesis 2, H2

However, it is unknown which hypothesis is correct; nevertheless, it is

desired to make a reliable decision, so that an accurate estimate of the

source direction can be made. From (1), observe that we can express

Q- a~t) for H1s(t) = , (2)+ a(t) for H2 J

which will be needed in later developments.

2
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NOISY MEASURED ANTENNA ANGLE

In this section, the measured antenna angle is not a(t) as desired, but

rather is

x(t) = a(t) + m(t) , (3)

where m(t) is an unavoidable additive noise process. Also the measured source

angle is not s(t), but instead is

y(t) = s(t) + n(t) , (4)

where n(t) is likewise an undesirable additive perturbation, due to limited
observation time, array length, ambient noise, etc. The three random

processes a(t), m(t), n(t) are presumed to be zero-mean Gaussian processes,
independent of each other.

Combining (2)-(4), the situation is as follows: the available
measurements upon which a decision must be reached are the two waveforms

x(t) = a(t) + m(t)

for H1  (5A)
y(t) = e - a(t) + n(t)

or

x(t) = a(t) + m(t)

for H2  (5B)

y(t) = -9 + a(t) + n(tj

On the basis of waveforms x(t) and y(t), what is the best decision and what is

the corresponding estimate of 9?

3
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Derivation of Generalized Likelihood Ratio

Let a be the time sampling increment applied to measurement waveforms

x(t) and y(t); assume that the samples of the three processes are

statistically independent at this rate. Denote

xk = x(kA) for 1 < k < K ,

(6)

Yk = y(kA) for I < k < K ,

where KA is the total observation time, and let the collections of samples be

denoted by

X = x1 , x2, ... , X, 'Y = Y1 Y2 " ...' YK' A = al, a2 , ... , aK . (7)

Then for a fixed A and a hypothesized value Gh for the source angle, the

conditional probability density function under H1 , of the total set of

measurements X, Y, is

PI(X, IOhlh A) = k{1 kmam nl (Yk nn , (8)

where the normalized Gaussian probability density function is

0(t) = (2w)-1/2 exp(-t 2/2) . (9)

Here we used (5A) and the Gaussian character of processes m(t) and n(t) with

standard deviations am and an respectively.

We now must weight (8) by the Gaussian probability density function for

process a(t) and integrate over A, to determine the unconditional probability

density function of X, Y, for hypothesized value Oh. Carrying out the

integrals and simplifying the result, we obtain

4
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p1(X, Yjlh) = (2a nn 3 I) *

* exp 2 R am 2 21 2 (10)
a2 xk 2 1 2xk(Yk2h2R3om 2R3on 3 aun

where we define

1 1 R+1 R 1 +1 +1 (1
RamT= •7' Ran =7• ' 7 3 07

0a Cm a an a m n

and use the shorthand notation

K

k k=1

In a similar fashion, the unconditional probability density function of X, Y

under H2, for hypothesized value Gh, is given by

P2 (X, YJ h) = ( a'jamon R3/2) *

* Ran 5 x2  Ra 2 1 X (13)
Sexp[ . k j3kh R3c-n --

Now if Gh were known, we could evaluate the likelihood ratio by taking

the ratio of (10) and (13). However, we must resort instead to a generalized
likelihood ratio, by computing the two values of Gh that maximize (10) and

(13) respectively, and then taking the ratio of the two maxima [1, p. 92].
This procedure is not optimum in any sense; however, it often leads to

physical processors that perform well.

The values of Gh that maximize (10) and (13) are given respectively by

5
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2

-y + Ga l~:m xk for H1  (14A)el = k 2 02 K k

2

0 G+ a 2 7 xk forH2 , (14B)2 -K Yk a + kk

These results have a reasonable physical interpretation: From (5A), the sum
x(t) + y(t) would eliminate the random process a(t), and the sample mean of
the sum would give an estimate of 9 under HI. However, m(t) contaminates

the a(t) contribution according to (3); thus the scale factor ao/(o0 + 02)in

(14A) indicates how trustworthy the sample mean of x(t) is. The noise n(t) in
y(t) is unavoidable but is partially suppressed by the inherent averaging of
the sample mean of y(t). A similar argument holds for x(t) - y(t) under H2.

The logarithm of the generalized likelihood ratio is (proportional to)

T =1 R 2 a2mIn =XY02)
7 3~ Ram 2( A T +' ")

~1 02 + 1)2 1(.5

Ram am (Yk + 1 k(Yk + Q2) +

+ Ram • •(yk - Q1) )'71+½ xk(Yk - 01) ,1!5

where we used (10) and (13) with 01 and 02 substituted for 0h. Now let

Sx =-Xk, Sy= 2yk P = XkYk . (16)

Then (15) becomes, upon use of (14) and simplification and cancellation of
various terms,

6
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T =P --k SxSy =

=~kk ~ 2~ya (1 (7A)
2ky

= JxkYk , (178)

where

k =Xk - .YlXm for 1 k <K ,

Yk = Yk Yn for I < k < K , (18)

are defined as the sample ac components of measurements X and Y; that is, the

sample means are subtracted from the measurements.

The generalized likelihood ratio test in (17) says to cross-correlate the

sample ac components of both measured waveforms and to compare with zero

(assuming H1 and H2 are equally likely apriori). That is, the test is

K _ - H2
T = xkyk 0. (19)

k=1 H1

Observe that this decision rule makes no use of the variances of any of the

processes a(t), m(t), n(t), although this information was presumed known in
the above derivation. Of course, the source angle estimates in (14) do

require knowledge of the signal-to-noise ratio aa/am in the x(t) measurement

of the antenna angle a(t). Once the decision of H1 vs H2 is made via (19),

the corresponding estimate of the actual source angle e is taken from (14).

7
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On the Performance of Test (19)

From (5) and (6), we find that

2 for H2

XmY 0 for m ý n . (20)

Then (17A) yields the mean value of the generalized likelihood ratio test

statistic as

-ýK1) a2 forHaaH

T =a3 (21)L(K-1) c2 for H

Since the statistics of T are desired different under the two hypotheses,

(21) indicates that large K and ua are desired. That is, a large

observation time and a widely-moving antenna give better performance of the

test; both of these conclusions are physically plausible.

Although generalized likelihood ratio test (19) does not require

knowledge of any variances, the performance (in terms of the error

probability) does depend on all the variances. However, the performance does

not depend on the actual value e of the source angle. To see this, we employ

(5) in (18) to obtain

ak + nk ( Sa + Sn)/K for H,

where

8
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Sa = ak, Sn nk (23)

Thus G is absent from (22), ard since e is not involved in x(t) or xk, test

statistic T is independent of e.

If we develop (19) in more detail and make use of (18) and (5), we find

we can express

T, = -[(ak + mk)(ak - nk) - a n for H1

k• + mk k k(aK k + mk• l

T2 = [(ak + mk)(ak + nk) - 2(a+ nk] for H2  (24)

Thus the statistics of T1 are identical to those of -T2.

Based upon the results in [2,3], an exact analysis of the cumulative and

exceedance distribution functions of test statistic (17A) is possible and will

be documented in a NUSC technical report shortly; in fact, a more general

processor, where the sample means term is scaled prior to subtraction, will be

analyzed.

9
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NOISELESS MEASURED ANTENNA ANGLE

In this section, the noise m(t) in the antenna angle measurement is zero;
thus, from (3),

x(t) = a(t) (25)

under H1 and H2 . We also remove the Gaussian assumption on the statistics

of antenna movement a(t), and allow a(t) to be completely general.
Furthermore, we allow any statistical dependence among the samples A of a(t)

in (7). However, we retain the Gaussian assumption on the additive noise
process n(t) in (4) and (5), and keep the statistical independence of its

samples {nkAJI)K

Derivation of Generalized Likelihood Ratio

Based upon these premises, the conditional probability density function

under H1 of measurements X, Y, for a fixed A and hypothesized Gh, is

p1 (x, Y 'h, A) = f-s(xk - ak) nn () . (26)

(This is also the limit of (8) as om-*O+.) Then letting joint probability

density function Pa(A) represent the arbitrary statistical dependence of

samples A, the unconditional probability density function under H1 of X, Y is

Pl(X, Y10h) =$dA Pa(A) pl(X, Ylh, A) =

= (V -nK n[J (Yk - h+ Xk) Pa(X) , (27)

using (26), (9), and the sifting property of delta functions. (If measurement

noise m(t) in (3) were non-zero, this simplification of the probability
density function in (27) would not be possible.)

10



TM No. 831150

The value of oh that maximizes probability density function (27),
regardless of the form of the probability density function Pa, is

I= 1 + Yk ) ' (28)

which is simply the sample mean of the sum waveform x(t) + y(t). This result
is consistent with the earlier one in (14A), for am = 0, and the ensuing

discussion.

In a similar fashion, the probability density function of X, Y under H2

is

P2(X, YIGh) = an) KexpF 7ý _(yk + Gh - xk)l Pa(X) (29)
Sen

and the maximizing choice of Gh is

- (30)
Q2 = !Ký(Xk - Yk) '(0

which is the sample mean of difference waveform x(t) - y(t).

There follows, from (27)-(30), the logarithm of the generalized

likelihood ratio as

2a2n p2(X' Y12) + x) 2 + _(y - G+ x•d2 (31)

The generalized likelihood ratio test for the two hypotheses in (1) is

therefore

11



TM No. 831150

H2  2 (32)5(xk - )(xk - yk- 2)
H1

or upon substitution of (28) and (30), and use of (18), simply

xkYk H2 . (33)
k HI

As in the previous section, the cross-correlation of the sample ac components

of the measurements X, Y should be compared with zero. This decision rule

holds for any statistics of antenna movement a(t).

The alternative form in (32) has an interesting interpretation:

Reference to (27)-(28) reveals that 6I is the best constant fit to

tXk + YkJl in a least squares sense. Thus the left side of (32) is

the actual value of the least squares error of a constant fit to the sum

waveform. Similarly, the right side of (32) is the least squares error of a

constant fit to the difference waveform. Whichever error is smaller, that

hypothesis is selected. This decision rule, (32), is consistent with the

observation from (5) and (25) that

x(t) + y(t) = o + n(t) under H1 ,

x(t) - y(t) = G - n(t) under H2 . (34)

That is, except for zero-mean measurement noise n(t), the sum waveform is

constant under HI, whereas the difference waveform is constant under H2 .

An alternative form for (32) and (33) is

12
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1 H2

T=2XkYk- 2Xm1Y 2 2 0 (35)
HI

just as in (17A). All the ensuing discussion there through (24) is directly

relevant for this case as well.

13
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SUMMARY

The generalized likelihood ratio test statistic, for both the noisy as
well as the noiseless antenna angle measurement, is a cross-correlator of the

sample ac components of the measured antenna and source angle waveforms.
Exact performance of this processor can be accomplished, since the test

statistic is a quadratic form of correlated Gaussian random variables; in
fact, the complete cumulative and exceedance distribution functions of the

quantity

K K KS1XkYk- 2 Xm YR' (36)

k=1 m=1 n=1

for any scaling y, is capable of exact analysis and will be presented in a
future NUSC technical report.
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Operating
Characteristics of

Crosscorrelator
With or Without

Sample Mean Removal

A. H. Nuttall
ABSTRACT

The characteristic function of the output of a crosscorrelator, with
the sample means removed from each channel, is derived in closed
form. More generally, if scaled versions of the sample means are sub-
tracted prior to multiplication of the channel inputs and summation, a
closed form for the characteristic function of the correlator output is
derived. These results are used to plot the exact operating characteris-
tics of the crosscorrelator, as functions of the threshold, the general

scaling factors applied to the sample means, the number of terms, N,
summed to yield the output, the actual means at the inputs, and the
signal-to-noise ratios of the rane •m signal components at each of the
system inputs. Programs for the various cases considered are
documented and exercised. Comparisons are made with a Gaussian
approximation, which can be used to extend the results to larger values
of N than considered here, if needed. Asymptotic results for the
exceedance distribution functions also have been derived, but they are
not too useful for large N.
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OPERATING CHARACTERISTICS OF CROSSCORRELATOR

WITH OR WITHOUT SAMPLE MEAN REMOVAL

INTRODUCTION

The detection of weak signals in two channels is often accomplished by

crosscorrelating the two waveforms and comparing with a threshold. For the

case where a large number of independent products are added to yield the

correlator output, the central limit theorem is often employed, with

questionable validity for low false alarm probabilities, i.e. large thresholds.

Also, this approximation may not be valid for intermediate numbers of terms

added.

Here we wish to get exact operating characteristics for the

crosscorrelator, namely detection probability vs. false alarm probability,

even for probabilities as low as 1E-10. In particular, we desire results for

an arbitrary number of products summed, for any degree of correlation between

corresponding individual samples of the two channel inputs, and for any input

signal and noise power levels.

Furthermore, it sometimes happens that the two input channels contain dc

components, which can be considered either desirable or otherwise, depending

on the application. Here we will consider these dc components as nuisance

terms and will subtract them out prior to crosscorrelation. More precisely,

since the actual values of the dc components in each channel will generally be

unknown, we will estimate them via the sample means (over the available record

lengths) and subtract these estimates from the available data. This

subtraction feature creates new random variables, all of which are

statistically dependent on each other, and thereby significantly complicates

the analysis. Nevertheless, this crosscorrelation of the sample ac components

of the input channels is encountered in practical situations, and in one recent

study [1], it was in fact the generalized likelihood ratio detector under two

different realistic scenarios. Accordingly, it merits study and accurate

quantitative evaluation of performance capability.

I
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More generally, we consider subtraction of scaled versions of the sample

means of each channel prior to multiplication and summation. Then as special

cases, we can investigate the crosscor-elator with or without sample mean

removal, or any intermediate case of interest.

The major analytical result here is a closed form for the characteristic

function of the correlator output, in the most compact form involving only two

rooting operations and one exponential. Although this processor could be

analyzed by the general method given in [2], in terms of the eigenvalues and

eigenvectors of a correlation matrix, it would be less accurate and

considerably more time consuming, even with computer aid, especially for a

large number of terms summed. The actual numerical procedure adopted here for

proceeding from the characteristic function to the exceedance distribution

functions (false alarm and detection probabilities) is that given in [31, and

utilized to advantage in [2,3,4].

2



TR 7045

PROBLEM DEFINITION

INPUT STATISTICS

The two channel inputs to the crosscorrelator are synchronously sampled

in time, yielding random variables (un and {vn,, where N is

the total number of data samples taken in each channel. These random

variables are Gaussian with the following statistics:

means un = P%, Vn- 4 = Pv,

2 -2 2 all
variances (u nun)2 , (vn-vn) 2 independent (1)n n U n n) of n.

covariances (un-In)(vn-T'n) = Pauav,

(An overbar denotes a statistical average.) That is, the means and variances

in each channel, although different, do not change with time, and the degree

of correlation between channels is constant. Also

um is statistically independent of un if m~n,

vm is statistically independent of vn if m~n, (2)
um is statistically independent of vn if m~n.

However, un and vn are statistically dependent on each other, for all n,

to the extent P indicated in (1).

A SIGNAL AND NOISE MODEL

To better fix the mathematical definitions above, consider in this

subsection the following possible signal and noise model:

Un = Ju + Us(n) + ud(n)

forV 1 < n <N, (3)

Vn W Uv v5(n) + vd(n)J

3
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where random signal components us(n), vs(n) are zero-mean and partially

correlated with each other:

u5 (n) - 0, vs (n) = 0,

for all n. (4)

(n s,, n = s,, usn) vs~fl = ,,(s s,

Thus Su, Sv are the powers of the random signal components in each channel.

Also, the random noise disturbances ud(n), vd(n) in (3) are zero-mean

and independent of each other:

UdTfl = 0, v-(n) = 0,

for all n. (5)

u--d(n) = DU, v d(n) = Dv, ud(n) vd(n) = 0

Thus Du, Dv are the powers of the random noise disturbances in each

channel. Finally, except for the statistical dependencies indicated in (4)

between us(n) and vs(n), all the 4N random components in (3) are

independent of each other.

For this particular signal and noise model in (3)-(5), the master

parameters in (1) take the special form

2 2 112~~)(6
u = Su+Du, Gov = Sv +Dv 9PuOv = Ps(SuSV)I/ (6)

from which there follows

""TRu (7)

4
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where the signal-tG-noise ratios (per sample) of the random components in (3)
have been defined as

Su 2 (n) Sv (nRu = u ,(n R S v for all n. (8)

D u u Ud(f) v D0 v 2 (n)
d Vd

Thus the parameters au, av" p in (1) depend only on the statistics of the
random components in model (3), and not on the dc components vu and u..
Observe that even if ps-1 and Rucoo, P would still be less than 1; the one
noisy channel prevents full correlation between inputs.

CROSSCORRELATOR OUTPUT

We define the sample ac components of each channel of the crosscorrelator

as

1 N- 1~
Un =Un -- • U
un un N u m,n=1

for < n< N, (9)
N

m=1

where we have subtracted the corresponding sample means from each and every
data sample. Thus

completely independent of the unknown actual values of input means pu, ov"
However, in trade, we now must deal with a new set of 2N random variables, all
of which are statistically dependent on each other; this is the feature which
complicates the ensuing analysis. The test statistic (decision variable) of
interest is the crosscorrelator output after sample mean removal,

N N N N

q 2*__ *Un n 2 unvn -4 Umr vn, (10)
n=1 n=1 m=1 n-1

5
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which is independent of the actual unknown values of input means pu and pv"

If we knew the input means, we cou;d subtract them directly and not have to

resort to sample means.

More generally, we consider the modified channel components

N

un= Un - u m
m=1 for < n < N 

(11)
N

v n = Vn - v
m=1

and the crosscorrelator output

N N N N

q = j UnvVnU - Ur N v (12)

n=1 n=1 m=1 n=1

instead of (9) and (10). Scale factors a and/or o in (11) may De unequal to 1;

the final parameter y in (12) is given by

y = a + 0 - 00 = 1 - (a-1)(8-l). (13)

The case of y=O in (12) obviously corresponds to the case of no sample mean

removal. On the other hand, if either* 4=1 or $=1, then y-1, and we have

removal of the sample mean; i.e., (12) reduces to (10). We shall be interested

here in the analysis of the general case represented by (12), for arbitrary y.

* It is demonstrated in appendix A that if scale factor a-1 but B~l,

correlator output q is completely irdependent of u, l, B.

6
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CHARACTERISTIC FUNCTION OF CROSSCORRELATOR OUTPUT

DERIVATION

We express the collection of random variables in (1) and (2) in column

matrix form according to

U- [uI u2 .. N uN]T V = .v1 v2 ... vN] , (14)

where superscript T denotes transpose. The crosscorrelator output q in (12)

can then be written as quadratic form

q = UTQ V , (15)

where: NxN matrix

11T
N (16)

I is the NxN identity matrix, and

1 = [I 1 ... 1IT (17)

is a Nxl column matrix of ones.

Since U and V are Gaussian, their joint probability density function is,

in terms of the parameters in (1),

p(U,V) = 1,Ov-1D)- [
(U -- exp 1 T

*•l (u _ u,u)T(u _ •uu ) +-1 (V _ uv )T(V _ ",j) _ 2.--(U _ u,o)T(v _ uvl .(18)
.u a UV

The characteristic function of correlator output q in (15) is then given by

the statistical average

7
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f q( ) = exp(iq) = exp(iTUTQV)

= SjdU dV p(U,V) exp(ifUTQV) =

= ircoav (1-P 2)l/-] SfdU dV exP[ifUTQV- 1 *

-~ lu)T(U _ I1ul) + -p _ lv)T(V _ 1v) - ~ (U - u,)T(V P, (9
a 2U 2v auv

u 0v

At this point, in order to evaluate this 2N-fold integral, we employ the

general integral result (B-2) and (B-6) in appendix B, identifying the

matrices there as

A- = I, B = 2_2 1 , C = ijQ + 2
u (1-P2) a(1 )auav (1-P2)

PJ -01 P YPa11 - Pa P

D =v u - v 1, E u 1. (20)a2a1- 2a2 (1P20uav(l-02) 0uav(l-P )

We also need the following auxiliary results for special matrix forms; namely,

for arbitrary scalars ci, c2 , the matrix determinant

det(cll + c 1 1 T) = Ni (cc + Nc2), (21)

and the matrix inverse

T 1 c2 c T(CI + c 2 11 1 1 2I(22)1 2 1 Cl(CI + Nc 2)

Employment of appendix B and (20)-(22) then yields, after a very considerable

amount of effort, a closed form for the characteristic function in (19) (in

its most compact form)

8
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exp 31- i•F 1 +~ 2F2 J (
fq(V) = ex[

q N-1

- iE 1 +i2E ) i F1 + 2F) 7

where

E, -2pa~, a 2a2 (102
AEu v 2  2Uv

F1 = El(1-y), F2  E2(1-Y) 2 2

N1 2, 2 2 + 2 2 (24)G1= N(1-y)•u uV, G 2 = N(1-y) (auuv + vju -2paucv~ulv). (4

The square roots in (23) are principal value, being +1 at f=O. This

characteristic function has four branch points and two essential singularities

which overlap two of the branch points; the complexity of this characteristic

function of q precludes tractable analytical results for the probability

density function or exceedance distribution function of the correlator output,

except in very special cases. Nevertheless, since the characteristic function

in (23) is easily numerically evaluated with computer aid, it readily lends

itself to the procedure presented in [2,3]. A program for the evaluation of

the cumulative and exceedance distribution functions corresponding to

characteristic function (23)-(24) is given in appendix C for arbitrary values

of

N, number of terms summed

y, scale factor in sample mean removal

Uu, mean in u-channel

Uv, mean in v-channel

Ou, standard deviation in u-channel

av, standard deviation in v-channel

p, correlation coefficient between channels.

9
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A sample plot of the cumulative and exceedance distribution functions for a

typical selection of numerical values for the above parameters is also

presented in appendix C.

CUMULANTS OF CORRELATOR OUTPUT

By taking the natural logarithm of the characteristic function in (23)

*and expanding in a power series in ?, the cumulants of random variable q can

be extracted:

.qn) - n l (Ou)n(Sn + On) +

+ 1nN(l-y)n(,uv )n-I Puv(Sn-I + Dn-1) +

+ 1 l n n-2 + 2 22)(Sn-1 - Dn-1) (25)
4n!~l-) (Uu,) (aUmv a Viu D(5

where here

S = o +1 O1 = p - 1 (26)

In particular, the mean and variance of q are available by using n=1 and 2

respectively in (25):

pq = (N-y)pOUav + N(1-y)uuiv,

2 2=. 2 2 2 •222 2
2= (N-2y+y2 )(1+0p 2)Uv + N(1-y) 2(a2P + 0V2uP + 2 paUaVuV). (27)

SPECIAL CASE OF y-l. SAMPLE MEAN REMOVAL

For y.l, the general characteristic function in (23) reduces to

N-1

fq(0; y-1) . -ijE1 E (28)

10
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where E1 and E2 are still given by (24), and are independent of means u

and iv, as shown earlier. The cumulants in (25) reduce to

1 n[ +In +,,n,
Xq(n) (n-1)(N-1)( ov)+ (-) (29)

and in particular, the mean and variance of q are

Uq = (N-1)Pauav,

2 2+ 2 2
2q = (N-1)(l)p 22u v (30)

SPECIAL CASE OF y=O, SAMPLE MEAN NOT REMOVE-,

For y=O, the characteristic function in (23) reduces to

-/G(o) +A(o)1
fq (;Y=O) = 1 -iE 1 +j E2 ) exp 5 12 (31)

where

E1 2pauav E 2 a 2u (1-0 2)
1~uv E2 2 2 2 2

The cumulants are obtained by setting y=O in (25), and in particular, the mean

and variance of correlator output q are

"Pq = N(pauav + "uuv)'

2 N [(1+02)0202 + 22 + 2 U2 + 2pauav9 v1 (33)
Oq = v U vu u v vu u v V).
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INTERRELATIONSHIP OF TWO SPECIAL CASES

Let the general characteristic function in (23) be denoted by

fqF; N, y �,ug uv). We have already seen the expression for

fq(j; N, 1, mug uv) in (28). At the same time, from (23) and (24), there

follows

N-1

fq(; N-i, 0, 0, 0,) = i - iEE1 +2E 2) 34)

which is identical to (28). That is,

fq(Y; N, 1, u us ) = fq(F; N-i, 0, 0, 0). (35)

Thus the characteristic functions of the two following random variables are

identical:

(1) Sum of N terms with sample mean removal, and the true means

arbitrary,

(2) Sum of N-1 terms without sample mean removal, but the true means

zero. (36)

The removal of the sample means has eliminated the dependence of the correlator

output on the unknown means but has reduced the number of degrees of freedom by 1.

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL

For general scaling factor y and arbitrary input means pu, uv, and for

the model introduced earlier in (3)-(6), the general characteristic function of

the correlator output is still given by (23), but with the parameters in (24)

now specialized to the form

12
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El = 2o 5(SuSv) 11 2 , E2 = DuDv+DuSv+DvSu+SuSv(1-0),

F1 E=1(1-), F2 W E2 (1-Y) 2 ,

G1 U N(1_y)u Uv' G2  (1IY)J2 US+Du )I2+(S +Dv )M-22o (SuSv 1/2 3v (37)

The general n-th cumulant is still given by (25); however, the use of (6)

allows for determination in terms of the fundamental quantities of the signal

and noise model, namely Su, Sv, Du, Ov* ps defined in (4)-(5). In

particular, the mean and variance of correlator output q are

Uq = (N-y)Ps(SuSv) 11 2 + N(l-y)uuuv,

2q = (N-2y+y 2)EDu +DuS +D Su+(1+p2)SuSv]+

+ N(1-y) 2 [(Su+D )M 2 (Sv +Dv)P 2+s(SuSv) 1/2  (38)

13/14
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ANALYTIC RESULTS FOR y=l, SAMPLE MEAN REMOVAL

In this section and the next, we will confine attention solely to the

case of scale factor y=l. The characteristic function of the crosscorrelator

output q follows from (28) and (24) as

N-I N-1

f () =[1 - iE 1 +1 2 E21 = (I - ii2auv + r2av2(1-0 2

q

N-1

- {[1+irauCV(1P)] [1lifouav(1+p)• -F for yl , (39)

where we must have N>2. We observe, for later numerical use in appendix D,

that since 11 ± ifbj = (1 + 2 b2 )11 2 is monotonically increasing for yO,

then Ifq(;)l is monotonically decreasing for all >20 and any N, out Ov, 0.

GENERAL PROBABILITY RESULTS

The cumulants of q have already been listed in (29) and (30). The

probability density function corresponding to characteristic function (39) is

given by [5, 6.699 12]

p (u) /N=1 112 (1-2 )1/2 C 1 l *

(Kilu')exp (cua( 2) for all u, y=1 (40)

where Kv(z) is a modified Bessel function of the second kind [6, section 9.6].

If the number of terms added, N, to yield correlator output q, is odd, simple

relations for the probability density function in (40) can be obtained
N-3

[6, 10.2.15 and 10.1.9, last equation]; letting n - --- for N odd, we find the

exact result

15
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p (u) ) (1..0) exp ( O U-lul 5Z t~-) 2 1u1 \m

"u v . on

N-3for all u; n =T' N = 3, 5, 7, .... (41)

For example, for N=3, we have n=O, yielding

pq(u) = 1-• e uv for all u. (42)

The corresponding cumulative distribution function for N=3 is

u
Pq(u) = dt pq(t) = 2 'exp a -) for u<-, (43A)

while the exceedance distribution function is

+00

1 - Pq(u) = dt pq(t) = .12 exp(..u for u>0. (43B)
u

This dichotomy, of presenting the'cumulative distribution function for

negative arguments, and the exceedance distribution function for positive

arguments, turns out to be notationally convenient and physically meaningful

and will be adopted throughout this report.

Although closed form expressions for the exceedance distribution function

corresponding to probability density function (40) are not available for

general N, the use of [6, 9.7.2] on (40) leads to the dominant term in the

asymptotic expansion of the exceedance distribution function:

N-3

1 - Pq(U) ex( as u-* . (44)

For N-3, this is precise; see (43B).

16
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POSSIBLE NORMALIZATIONS OF q

If we define a normalized random variable

x = E2- = ) , (45)

E2 a 0 (i-P 2)

then the characteristic function of x is given by (39) as

N-1

f(F) f (IE 1E 2 ) -/ [ifE 1iEI2 +5 -

x q 212

N-1

= -if2p(1-o 2)-1 +5 ,1- (46)

which has only two fundamental parameters, namely, N and p.

A second possibility is the random variable defined by

y q (47)

u av

for which characteristic function

N-1
fy) f 1 - if2p + 21-2•-

= q (UO)= E- T (1P (48)

also depends only on N and p. However, neither of the normalizations, (45) and

(47), are of interest to us here; an alternative normalization and reasons for

its selection are given below.

17



TR 7045

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL

For the model presented earlier in (3)-(8), the original El, E2

parameters in (24) take the form already given in the upper line of (37).

Let a normalized random variable, relative to the additive random noise

disturbances, be defined according to

h=(DuD)/2 (49)

u v

see (5). This normalization for the particular signal model (3) is different

from both x and y in the general case above. The reason we employ h is that

the normalization depends only on the power of the additive noise

disturbances, and not on the signal strengths or correlation coefficients;

this is consistent with a system which monitors the noise-only background and

sets a threshold for a desired false alarm probability.

The characteristic function of the normalized random variable h in (49)

is given by

N-1

E E1  2 E2

N-1

= 1- i,2a *+ 2(02-021- (50)

where we define auxiliary parameters here as

s =s(RuRv)I 2V , B = [(1+R u)(l+Rv)]12 (51)

Here we used (39), (37), and (8). This characteristic function in (50)

depends on the four fundamental parameters N, ps, Ru, Rv, where the

latter two quantities are the signal-to-noise ratios per sample of the random

components of model (3); see (8),

18
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Reference to (40) reveals that the probability density function of h

corresponding to characteristic function (50) is given by

*KN

K KN (jui'2) mx(u 2) for all u. (52)
S-1( )

For N odd, alternative forms are available from (41), if desired. The

asymptotic behavior of the exceedance distribution function of h follows in a

manner similar to that used for (44):

N-3

1 - Ph(u) 1+Q/O / -exp(z+u-A as u-&+o . (53)

The cumulants of h follow from (29), (26), and (6)-(8):

Xh(n) = ½(n-1)!(N-1)[(,+,)n + (a-B)n, (54)

and in particular, the mean and variance of h are

11h - (N-1)a = (N-1)o s(Ru R v)1/2

2 2 2
h (N-1)(a 2+2) = (N-1)(1 + Ru+ Rv+ RuRv (1+0s)] ' (55)

The two parameters, a and o, are given here by (51), in terms of the

fundamental quantities Ru, Rv, Os of the signal and noise model.

REDUCTION TO IDENTICAL SIGNAL COMPONENTS

At this point, we will further specialize the results for the signal and

noise model in the above subsection. We presume that
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Ru = Rv = R and ps=1, (56A)

giving, from (51),

S=R, 1= I+R; (56B)

that is, the signal-to-noise ratios in the two channels are equal, and the two
channel signals are fully correlated. This corresponds physically to a case
where the random signal components in (3) are identical, us(n) = Vs(n),
and the independent random noise disturbances have the same power level. This
situation will hold for the rest of this section and all of the next section
where the graphical results are presented.

Equations (50) and (56B) then yield the characteristic function for
normalized random variable h in (49) as

N-I

fh(f) = [1 - if2R +2 (1+2R)] 2

N-1

= [(1 + i?)(1 - iT(1+2R))]-2 (57)

The cumulants in (54) reduce to

Xh(n) = ½T1(n-1)!(N-l)[(+2Rn , (58)

and in particular, the mean and variance become

= (N-1)R, a = (N-1)(1+2R+2R) . (59)

All the above statistical descriptions depend only on the two parameters R,
the per-sample signal-to-noise ratio, and N, the number of terms added to

yield the correlator output.
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The probability density function for h follows from (52) as

N

Ph(u) =[() 12(1+2R)1/1j 78 - 1 *

* KN (1+R Iu exp(for all u , (60)

and the asymptotic exceedance distribution function from (53):

N-3

1 - Ph(u) 2(1+R)p/ ) expt-R) as u + . (61)

An important word of caution must be mentioned at this point: when N is large,

(61) is inadequate for evaluating small false alarm and detection

probabilities, since the succeeding terms in the asymptotic expansion

contribute significantly. For example, when R=O, the maximum value of the

dominant term (61) occurs when u = (N-3)12 which, for N=128, yields false

alarm probability 3.86E-21, a value far below those of interest. Thus (61)

has limited applicability, being best for small N; in fact, the first

correction term to (61) yields the multiplicative factor

1 + -+2R (N-3)(N+3+4R) (62)

It indicates that, for large N, u must be of the order of N2 in order for

the dominant term (61) to be fairly accurate.

Although for N odd, an alternative closed form to the probability density

function (60) of h is available from (41), the exceedance distribution function

will generate a double sum and be rather cumbersome for large N. On the other

hand, the characteristic function in (57) decays rapidly with ? when N is large

and yields very nicely to the numerical approach given in [2,3]. The only diffi-

cult cases are in fact those for small N; accordingly, some analytic results for

N = 2, 3, 4, 5 will now be presented, based on characteristic function (57).
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GENERAL DISTRIBUTION INTEGRALS

Suppose a random variable y has characteristic function fy(F). The

cumulative distribution function of y can be written as a contour integral

[3, (4 (6

P (u) = - • d? exp(-iuT) for all u (63)
C+

where C+ is a contour along the real axis of the complex ;-plane, with an

upward indentation at the origin 7=0, to avoid the pole of the integrand there.

Similarly, the exceedance distribution function of random variable y can

be expressed as

1 - j df " exp(-iur) for all u , (64)1 - u PU) = f

C

where C_ is a contour along the real r axis, with a downward indentation at

r=o.

For u<O, both contours can be InoveJ ini th3 upper-half I-plane, since the

exp term furnishes rapid decay there. Similarly, for u>O, both contours can

be moMA Ito the lower-half ?-plane, to realize exponential decay on the

circular arcs tending to infinity.

DISTRIBUTIONS FOR N=2

From (57), the characteristic function of normalized correlator output h

is

fh(;) = [(1+if)(1-i5(1+2R))- 1 1/2, (65)

and the probability density function follows from (60) as
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Ph(U) (+ 1/2 Ko (l i)u exp(/ Ru for ill u . (66)

There is no closed form for the indefinite integral of a Ko function; see

[6, 11.1.8 and 11.1.9]. Instead, we use (65) in (63) and move the contour

upwards until it wraps around the branch point at f=i and extends vertically LqW~d

from there; this is in fact the steepest descent direction for the

exponentialA The contributions of the small and large circular arcs tend to

zero as the radii tend to zero and infinity, respectively. Under a change of

variable, there follows the cumulative distribution function in the form

Ph(U) = 2• • dt exp[u(l+t 2)]hlu)w 2 2 1/2 fr..(7
W (1+t2)[1+(l+2R)(l+t2)l2 fru•0.(7

This is a useful exact result for several reasons: the integrand decays

rapidly, has no cusps, and involves only elementary functions which are easily

computed; also the integral is a sum of positive quantities and retains

significance even for large lul.

In a similar fashion, if characteristic function (65) is substituted in

(64) and the contour moved down and wrapped around the branch point at

-il(1,2R) and along teAvertical steepest descent direction for the

exponentialA the exceedance distribution function becomes, upon a change of

variable,

+06
1 - Ph(U) 2•(1+2R) exp/-Ru) f dt exp(-ut 2) 2 12 for u > 0. (68)

o [ l+(1+2R)t221[1+(1+2R)(l+t2 
)i

This is useful for the same reasons given above.

There is one closed form result possible; namely, for u=0, direct

integration of probability density function (66) yields [5, 6.611 9]

11 1+
Sarc cosit•) l arc cosl1RR2 (69)
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DISTRIBUTIONS FOR N=3

Use of (6, 10.2.17] on (60) immediately yields probability density

function

1

2 (1m T exp(u) 
for u 

< _

Ph(U) = (70)

-2-Tp exp for u>0

The cumulative and exceedance distribution functions easily follow as

1
Ph(u) = exp(u) for u < 0

(71)

1- Ph(U)= 1+2R exp- for u > 0.h u 2 ( 1 +R )MU

This latter result corroborates (61) and (62).

DISTRIBUTIONS FOR N=4

The only closed form result possible is obtained by direct integration of

probability density function (60) to get origin value

Ph(0) = 1 rc cos(/R (- + 1R)12 (72)
hI... 1 (1+R) 2

This follows by use of the integral

fdx e-ax x KI(Bx) = B arc cos(al0) a for B > -a (73)

0(8 2_ 2 ) -37ý -s(a 2_c&)

which follows from [5, 6.611 91 by applying a/as to both sides.
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DISTRIBUTIONS FOR N=5

Use of [6, 10.2.17) on (60) immediately yields probability density

function

I2R- +R)u exp(u) for u < 0
4(1+R)3

Ph(u) =,(74)

I+2R+(I+R)u exp 7---M for u > 0
L4(1+R)3'+R

The cumulative and exceedance distribution functions follow as

Ph(U) 2+3R-(I+R)u exp(u) for u < 0,

4(1+R)3

1 - Ph(u) = 1+R)3 [(1+2R)(2+R)+(I+R)u] exp(luR) for-u > 0 (75)

This latter result corroborates (61) and (62). Also, this example was used as

a check on the numerical procedure [3) applied directly to the characteristic

function, which is used in the following section; the agreement was ten

decimals for numerous values of R and u.
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GRAPHICAL RESULTS FOR Y=l, SAMPLE MEAN REMOVAL

SUMMARY OF PARTICULAR CASE CONSIDERED

We first summarize here the particular case that will be considered

quantitatively in this section. The input samples are

Un I=U + us(n) + ud(n)

for < n < N, (76)

n= 1v + vs(n) + vd(n)

where these Gaussian random variables have statistics

u (n) =v 5 (n) U~lV~lO

us(n) Su, v (n) = Sv, u (n)v (n) = (S Sv)1/2
- s v s s u v

u v2(n) = ud(n)vd(n) = 0 (77)

We presume that the simultaneous signal components us(n), vs(n) in the two

channels are fully correlated, that all other random variables are

independent, and that the two channel input signal-to-noise ratios

Su SvIu = U- = R (78)

u v

have a common value R. More general situations have been considered in

earlier sections; however, only this special case will be numerically

evaluated here.
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The normalized crosscorrelator output, with sample mean removal (y.l), is

N -
N un vn (79)

(uv) n=1

where the sample ac components

N N

Un =Un um Vn = Vn Vm (80)

m=1 m=1

The characteristic function of h is given by (57) as

N-1

f = [(1+if)(1-ij(1+2R))]-T (81)

and depends only on signal-to-noise ratio R and number of terms N. We must

have N>2.

If R=O and we evaluate the exceedance distribution function corresponding

to (81), we then have the false alarm probability. But when R>O, the

exceedance distribution function corresponding to (81) is the detection

probability. In the following, we plot the detection probability vs. the

false alarm probability, with signal-to-noise ratio R as a parameter;

different values of N are handled in separate plots.

OPERATING CHARACTERISTICS FOR y=1

A sample program for evaluation of the cumulative and exceedance

distribution functions corresponding to characteristic function (PI), and

thereby the detection probability vs. false alarm probability operating

characteristics of the crosscorrelator with sample mean removal, is given in

appendix D. It is heavily based on the technique developed and explained in

[3].
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In figures 1-14 are presented the operating characteristics for the

crosscorrelator with sample mean removal, for values of

N = 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 256, (82)

respectively. The case of N=2 was accomplished by use of (67)-(69); results

for N=3 relied on (71); and the remainder for N>4 employed a numerical

procedure [3J proceeding directly from characteristic function (81) to the

exceedance distribution function. False alarm probabilities PF in the range

1E-10 to .5 and detection probabilities PD covering 1E-10 to .999 are

presented. The abscissa and ordinate on these plots are according to a normal

probability transformation, as explained below. Values of signal-to-noise

ratio R are taken as R=2n, where n assumes values appropriate for each plot

in order to cover the full range of probabilities of interest.

GAUSSIAN APPROXIMATION

Suppose the decision variable of a processor is Gaussian with mean and

standard deviation mio, ao respectively when the input signal is absent,

and ml, a, when signal is present. Then for threshold), the false alarm

probability and detection probability are

+06

SfduL 0(

P0  fdu 1 0U )=M(1)-) (83)

respectively, where 0 and ý are the normalized Gaussian probability density

function and cumulative distribution function:

0(u) = (2w)-11 2 exp(-u 2
1 2), J(u) =Jdt 0(t) . (84)

If we let kbe the inverse function to§, and define

x = IPF) y = I(PD), (85)

*See peS ti e%. 29
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then threshold-. can be eliminated from (83) to yield

mI - mo + 0 0XY = 0• (86)
01

Equation (85) corresponds to the transformation to normal probability

coordinates; thus a plot of PD vs PF on normal probability paper is the

straight line (86) when the decision variable is Gaussian under both

hypotheses of signal absent as well as present.

Reference to (59) reveals that, for our application,

mo = 0, m, = (N-1)R, o2 - N-1, 2, (N-1)(1+2R+2R2 ) , (87)

since setting signal-to-noise ratio R=O corresponds to hypothesis 0, signal

absent. Substitution in (86) yields

(N-) 1/2 R + x

(1+2R+2R2 
)I12

that is, if normalized crosscorrelator output h were Gaussian, the operating

characteristics would be straight lines dictated by (88). These straight
lines are superposed as dashed lines in figures 12-14 for N=96, 128, 256

respectively. Despite the large value of N=96 in figure 12, the Gatussian
approximation is not that accurate, especially for small false alarm

probabilities and large detection probabilities. The exmct curve (solid) and

the Gaussian approximation (dashed) cross each other, and are labelled at the

crossing with the corresponding value of n in signal-to-noise ratio R=2n.

For N=256 in figure 14, agreement is better and the Gaussian approximation is

probdbly adequate for larger N. If not, an additional term or two in an

Edgeworth expansion could be investigated with the aid of the cumulants given

in (58).
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An obvious shortcoming of the Gaussian approximation (88) may be seen

immediately:

lim y = < 1 for any x . (89)

Reference to (85) then yields the interpretation

lim = P ((_112)< 1 for any PF " (90)

That is, as input signal-to-noise ratio R tends to infinity, the approximate

detection probability saturates at a value less than 1, regardless of the

false alarm probability. Thus the Gaussian approximation must certainly

deteriorate for large R; the exact discrepancy for probabilities of practical

interest is displayed in figures 12-14.
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ANALYTIC RESULTS FOR y=O, SAMPLE MEAN NOT REMOVED

In this section and the next, attention will be confined solely to the

case of scale factor y=O. The characteristic function of the crosscorrelator

output q is then given in (31) and (32), and the mean and variance of q are

listed in (33). Due to the complexity of the exponential term in

characteristic function (31), there are no general probability density

function or cumulative distribution function results for arbitrary N, like

those given earlier in (40), (41), and (44) for y=l. Here, we can have N>1.

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL

For the model presented earlier in (3)-(8). the original parameters in

(24) take the form already given in (37), but now with y=O. Specifically,

characteristic function (31) is

-N/ I Gfo) 1 fGo
fq()= V-irE1 "+F2 E N2) exp if i E1  2 (91)

where

E1 = 2P (S Sv) 1 1 2  E2 = D D +DuSv+D Su+SuS (I-) 2

2+ +2 2_ 112

G(0) Nlu v, °) = N[(S÷+DH) V+(Sv+ )2U2P UuU (92)
1 uv 2 u i 2 Dv u ~2s(SuSV)1  'u v (2

The mean and variance of crosscorrelator output q follow from (38) according to

q ( N[o (SuS)1/2 + ]
q Nro u v u v

2 = N[DuDv+D.Sv+D.S.+(I+o2 )SuSv +aq uv v v u v

2+0 ( 2+ 293)
u u v v v u s u v u v
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NORMALIZED CROSSCORRELATOR OUTPUT

As in (49), and for the same reasons, we define a normalized

crosscorrelator output, relative to the additive random noise disturbances

ud(n) and vd(n) in (3) and (5), according to

h - (94)(DuDv)l/

The characteristic function of h is available from (91) and (92):

fh(T)= fq(•/(DuDv)i1/2 =

2 (0-2 --a 2 2 ]2-NI2 ? a+i~b (95)
- a+2 -)] exp2 ( 2( a 22

where

=s(RuRv)
1 12  [(l+Ru )(1+Rv )]1/2

a = Nrr, b = 1N[(1+R )r 2 + (1+R )ru2 - 2P (RRv)l 2 rr] , (96)

and where we have defined

Su Sv iu

Ru , Rv =v r Du r v (97)
Vu v

The characteristic function in (95) depends on six fundamental parameters,

namely N, ps, Ru, Rv, ru, rv. The mean and variance of h follow from

(94), (93), and (97):
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h = N[Ps (Ru R V)112 + ru r v]

2 N[(1+Ru)(I+R )+2 R R +(l+R )r +(l+R )r 2+21 (R R )/2 r r . (98)
hu v s uv u V V U S u v u v

ru and rv are referred to as normalized means.

REDUCTION TO IDENTICAL SIGNAL COMPONENTS

In order to prepare for numerical evaluation of the operating

characteristics of the crosscorrelator with y=O, we further specialize the

signal and noise model to the case vwhere

Ru = Rv =R, ps = 1, ru =r =r ; (99)

see (56) et seq. This leads to

a = R, B=I+R, a = b = Nr2

via (96). The characteristic function in (95) then reduces to

fh = (l+i)(l-iF(l+2R))]-N/2 expl il 2 R)j, (100)

and the mean and variance in (98) become

= N(R+r 2), 2• = N[1+2R+2R2 +2(1+2R)r 2] . (101)

The characteristic function in (100) has a branch point atr= i, and another

branch point at f = -iI(1+2R) which overlaps an essential singularity; this

complicates some of the analytical development to follow.

There are three fundamental parameters in (100), namely N, R, r. Since

normalized mean r appears only through its square, we can presume r>O without

loss of generality. Furthermore, if r=O, characteristic function (100)
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reduces to (57) if N-1 there is replaced by N. Thus the curves for r=O here

can be obtained from the earlier curves for y=l in figures 1-14 by looking at

a value for N there which is one greater; accordingly we can confine attention

to r>O in this and the next section.

When the random signal components us(n), vs(n) in model (3) are

absent, then R--O, and the exceedance distribution function corresponding to

characteristic function (100) becomes the false alarm probability. However,

(100) still depends on r, meaning that the false alarm probability must,

likewise. Thus, a non-zero mean in (3), i.e. r>O, is not considered a signal

attribute here, but rather is a nuisance quantity; it may, in fact, degrade

the operating characteristics if not removed.

For notational convenience in the following, we define

S= 1+2R . (102)

The magnitude of the exponential term in characteristic function (100) then

can be expressed as

exp -12 w N r2 (103)

which is monotonically decreasing for >0. Coupled with the observation

immediately under (39), it is seen that ifh(O) in (100) is monotonically

decreasing for all 7>0 and any N,R,r. This property allows for a convenient

termination procedure in the numerical transformation [3] of characteristic

function (100). It should however be observed that (103) does not decrease to

zero, but saturates at value exp(-NrA, regardless of how f increases to

infinity; thus the eventual decay of the characteristic function (100) is

furnished only by the leading factor.

36



TR 7045

ASYMPTOTIC BEHAVIOR OF CUMULATIVE AND EXCEEDANCE DISTRIBUTION FUNCTIONS

In appendix E, it is shown that if characteristic function (100) is

substituted in (63) and (64), and the contours moved appropriately in the

complex f-plane, then the following asymptotic behaviors obtain. The

cumulative distribution function

-1NN
[h_(N 22 N2(I+R)N12] (0)-1 [p - FR "

P + hNu+2R) + Nr- Nur

u 2
4(1+R)

We see again, in similar fashion to (61) and (62), that in order for the

correction term in the second line of (104) not to be too significant, we must

have u < -N2 . For reasons elucidated in (61) et seq., (104) is not useful

for large N.

As checks on (104), we note that for r=O and N=2, (104) reduces precisely

to the upper line of (71); this latter result pertains to y=l, N=3 and is

consistent with the observation already made in the paragraph below (101). In

addition, if we let r=O and N=4 in (104), it reduces to the upper line of

(75); this latter result holds for y=l, N=5 and is likewise consistent.

Also given in appendix E are a variety of asymptotic expansions for the

exceedance distribution function; the simplest one is

N- N+1

1 -Phu) ~ 112 2N/2 (1+R)NI 2 (Nr2) (1+2R) *

N-3 (l2 12)
* uFexp 1+2R as u- +; r>O . (105)
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However, the same reservations as above, regarding u large relative to N2 ,

are again in order.

DISTRIBUTIONS FOR N=1

If characteristic function (100) with N=1 is substituted in (63), and if

the contour is moved as indicated under (66), there follows the exact result

for the cumulative distribution function

F, 2 2 1
P 2 ý dt e ,p t2  r2(1+t) for u<O. (106)
hu 21/2 (lýte2 1+w(i+t 2 ) f(1t2(1 J(+t2))

(This reduces to (67) for r=O, as it must.) This integral form possesses all

the desirable attributes listed under (67).

If characteristic function (100) with N=1 is substituted in (64) in an

attempt to get the exceedance distribution function, the analysis becomes

rather difficult, due to the overlapping essential singularity and branch

point of the integrand at 7 = -i/w. This problem is treated in detail in

appendix F, with the result that the exceedance distribution function can be

found via the characteristic function approach in terms of two integrals; see

(F-21)-(F-23). However, a better numerical procedure for the exceedance

distribution function is the direct result derived in (F-33); this latter

integral is the one actually used here to generate the operating

characteristics for y-O, N=1.

DISTRIBUTIONS FOR N=2

The characteristic function is available from (100):

fh(=) (1+i•) 1*(l-iFw)- exp f 1(V*f2() (107)
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where m = 1+2R. The probability density functions corresponding to these two

characteristic functions are [5, 6.631 4]

p1 (u) = exp(u) U(-u)

1 1 exp/ u+2r2 ) lo(r(2u)I2) U(u)1  (108)
p2(u) w x ~~~(u ~Uu

where U is the unit step function

U(u) 0 for u01. (109)
1 for u >0

The probability density function of h is given by convolution

Ph(U) f dt pl(t) P2 (u-t) for all u . (110)

Substitution of (108) in (110) yields

1  exp - 2r2) for u < 0

Ph(U) = (111)

1 2\ 2 21+' 112\i u illQ 2r C21w) I/2

+-•+ exp - Q-) 1(1+mrl' 2 1 1 " for u > 0

where the Q-function is defined in [7] and the two integrals encountered have

been evaluated by use of [5, 6.631 4] and [7, (9)], respectively. The

cumulative and exceedance distribution functions of h readily follow from

(111), the latter by means of [7, (42)]:
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1 1u 2r 2
Ph(u) = exp u for u < 0,

U (2- /2u -

I exp• 2r2• (• 2r (•+)~ /1 1 -Ph -) Q i for u > 0. (112)

(As a check, for r=O, then (111) and (112) reduce to (70) and (71)

respectively, as they must.)

DISTRIBUTIONS FOR N=4

The characteristic function is available from (100):

= (1+iV'V2*(1-iywV 2 expt•j F _ f 1 ()*f 2 (f) , (113)

where = 1+2R. The probability density functions corresponding to these two

characteristic functions are [5, 6.631 4]

Pl(u) = -u exp(u) U(-u)

p1(u) = exp ( u+4r2) u1 2 1 (4ru1/2/w) U(u) (114)

The probability density function of h is given by convolution (110). In

preparation for that result, we use the shorthand notation

qM(u) = QM (2r(-- /2 , (2u+w)1+ 2)

q =(u) . QM r , (-2- (115)
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where the QM-function is defined in (8]. We also present a new integral

result that will be needed in the sequel,

dx x QM(b, ax) 1
2 [- b2 QM+l(b,ac)+2M QM(b,ac)-a 2 C2 QMl(b,ac)], (116)

which can be interpreted as the limit of [8, (31)] as p-eO+. Substitution of

(114) in (110) yields probability density function

1 expu rJ- [r2+2w(1+)-+w)w)2u] for u < 0

Ph(U) = (117)

-• exp r2q 3(u)+2w(l+w)q 2 (u)-(l+w)2uql(u)] for u > 0

where (115) has been used; the upper line employed [5, 6.631 4], while the

lower line used (116) and an integration by parts procedure to be elaborated

below ai the exceedance distribution function evaluation.

The cumulative distribution function for u < 0 follows readily by

integration of (117):

1/ 4r2 2 21 • for u < 0. (118)

Ph(u) _ 4 exp u- ir +(1+w)(1+3w)-(1+w)

For u > 0, a modified approach is required. Integration of (110) yields

cumulative distribution function

4%6

Ph(u) = fdt P2 (t) P1 (u-t) . (119)
-06

Probability density functions P1 and P2 are available in (114), and

cumulative distribution function P1 follows as
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(1-u)exp(u) for u < 0

Pl(U) = 0(120)

1 for u >0J

Substitution of (114) and (120) in (119) yields, for u > 0,

u 1 / t+4r 12\11a

P It tTl-I
Ph(U) = d -2 r exp +1r 4rtll / •

0

+ S 1~ x ( t+4r 2 .)tI/ 2  
1(4rtl12/w) (1-u~t) exp(u-t) -

++co

1 1 4r2 )C 1/2 / 1 4 rtl12/ lu= 1-q2 (u) exp L d t exp t I ( ) (121)

u

via [8, (22)]. We now integrate by parts, letting U(t)=l-u+t, and the
remainder dV(t). Then using [8, (22)] again, we find

V(t) = (1•- exp( +))q 2 (t) . (122)

Combining these results, (121) and (116) yield

12) 4r 21-q hU2(u) + e u exp - T q2 (u) - ,fdt q2 (t) =

U

=q•2 (U) (l~)1exp( -T -)44r2 )f 2q 3 (u )+(l+w) (l+3w)q2(u)-(l+w) 2 uql(u)1

for u > 0. (123)
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The final results for N=4 are given by (115), (118), and (123). This case was

used as a numerical check on the computational approach [3] proceeding

directly from characteristic function (100) to the exceedance distribution

function, with excellent agreement for numerous values of R, r, and u.

43144
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GRAPHICAL RESULTS FOR y=O, SAMPLE MEAN NOT REMOVED

SUMMARY OF PARTICULAR CASE CONSIDERED

The situation of interest has already been summarized in (76)-(78); in

addition, we have a common value for the normalized means,

D u- = D- = r , 
(124 )

and the normalized crosscorrelator output is not (79)-(80), but rather is, for

N

h 1 2 u nVn (125)
(Du D V)I2n=1

The characteristic function is given by (100):

fh(f) [(l+i?)(I-iTW)-N/2 e ixNr(2

where w = 1+2R. When the signal is absent, then R=O; however the false alarm

probability corresponding to this characteristic function still depends on r.

Thus since the sample mean has not been removed, the operating characteristics

will also depend on r. Since results for r=O can be found from an earlier

section, we only consider r>O here.

OPERATING CHARACTERISTICS FOR Y=O

A sample program for evaluation of the cumulative and exceedance

distribution functions corresponding to characteristic function (126), and

thereby the detection probability vs. false alarm probability operating

characteristics of the crosscorrelator without sample mean removal, is given

in appendix G. In figures 15-35 are presented the operating characteristics

for values of

S ot P 3e 6 T ce?.45
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N = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, (127)

and for various values of r. The case of N=1 was accomplished by use of (106)

and (F-33); results for N=2 employed (112); and the remainder for N>3 employed

a numerical procedure [3] proceeding directly from characteristic function

(126) to the exceedance distribution function. False alarm probatilities PF

in the range 1E-10 to .5 and detection probabilities PD covering IE-10 to

.999 are presented. The abscissa and ordinate on these plots employ a normal

probability transformation, as explained earlier in (84)-(86).

Values of signal-to-noise ratio R are taken as R=2n, where n assumes

values appropriate for each plot in order to cover the full range of

probabilities of interest. Values of normalized mean r in (124) have been

taken as r=1 and 2, with the exception of figure 19 where one example for r=4

was added.

Without exception, increasing r from zero degrades the operating

characteristics of the crosscorrelator. For example, figures 17, 18, 19 give

a succession of operating characteristics for r = 1, 2, 4 respectively, and

for common values of signal-to-noise ratio R. (In order to determine the

operating characteristics for r=O here, we can look at the earlier results in

figures 1-14, but for a value of N which is one greater there.) Thus, not

removing the sample mean from the crosscorrelator output requires a larger

threshold setting for a specified false alarm probability and thereby lowers

the detection probability and degrades performance.

GAUSSIAN APPROXIMATION

If the crosscorrelator output is Gaussian, for both signal absent as well

as present, the earlier derivations in (83)-(86) pertain. Now reference to

(101) yields statistics

2 2m0  Nr , mI = N(R+r2)

2  2 2 2 2

a0 N(1+2r y1 = N[1+2R+2R +2(1+2R)r2], (128)
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since setting signal-to-noise ratio R=O corresponds to hypothesis 0, signal

absent. Substitution in (86) yields the normal probability approximation

y = N 112 R+(1+2r 2) x (129)

[1+2R+2R 2+2(1+2R)r ]I12

These straight lines are superposed as dashed lines in figures 32-35 for N=128

and 256. The Gaussian approximation is moderately good for large N such as

256, and in fact crosses the exact curves (solid) at a point which is labeled

with the corresponding value of n in signal-to-noise ratio R=2n.

An obvious shortcoming of the Gaussian approximation (129) is apparent:

lim y = N)112  for any x, r . (130)

Reference to (85) then yields the interpretation

lim PD = < 1 for any PF1 r . (131)
R-Pa

That is, as input signal-to-noise ratio R tends to infinity, the approximate

detection probability saturates at a value less than 1, regardless of the

false alarm probability and normalized mean r. Thus the Gaussian

approximation must certainly be inaccurate for large R; the exact discrepancy

for probabilities of practical interest is displayed in figures 32-35.

47/48
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SUMMARY

A closed form expression for the characteristic function of the output of

a crosscorrelator, with or without sample mean removal, has been derived in

(23)-(24) for general values of: the number of terms added to yield the

correlator output, the means and variances in each of the two input channels,

the degree of correlation between the two channels, and the scale factor

employed in the sample mean removal. A program for the evaluation of the

cumulative and exceedance distribution functions of this general case has also

been presented. These results can furnish the basis of a study of the error

probabilities of a correlator required to decide between alternative

hypotheses on the input statistics [1]; this problem will in fact be the

subject of a future technical report by this author.

The general results were first specialized to a signal and noise model,

and then to the two distinct cases of sample mean removal (y=l) and no sample

mean removal (y=O). Plots of the operating characteristics for numerous

values of N and signal-to-noise ratio R were then displayed for a wide range

of detection probability vs false alarm probability. Some new analytic

results for cumulative and exceedance distribution functions, especially for

small N, were derived and used as checks on the general numerical procedure.

Comparisons with a Gaussian approximation indicated quantitatively when that

simplification is valid. Asymptotic results derived were useful for small N,

but not for large N except in the region of probabilities too small to be of

practical importance.
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APPENDIX A. CORRELATOR OUTPUT INDEPENDENCE OF MEANS

If we let scale factors a=1 but o@I in (11), we still get y=l from (13).

This means that correlator output q in (12) is independent of pus Uv, a.

To see this directly, let

Un = Pu + Yn, Vn = uv + Zn , (A-i)

where means

Yn =Zn = 0 . (A-2)

Then (11) yields, with a=l,

N
Un = Y Z Ym , (A-3)

m=1

which is obviously independent of the actual value of mean uu. Also, (11)

yields

N

vn = zn - N zm v(1-) , (A-4)

m=1

which still depends on pv and s. When (A-4) is substituted in (12), we get

correlator output

N N
q 2 U-n + :ý(i8v(l-) (A-5)

n=1 m=L

But since

N

SUn = 0 (A-6)
n=A-

A-I
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from (A-3), (A-5) reduces to

NNN
q = UnZn : n - Y Zn

n=l n= (M )

N N N
n _ y n(A-7)

n=1 m=l n=l

in terms of the ac components defined in (A-i) and (A-2). Correlator output

(A-7) is obviously independent of means vu, pv and scale factor s in (11).

A-2
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APPENDIX B. A USEFUL INTEGRAL OF EXPONENTIALS OF MATRIX FORMS

For symmetric KxK matrix M, with det M>O, the following K-fold integral

is well known (see for example, [9, section 8-3]):

K K112

{dX exp[- xTMX+NTX] = ý2 exP7½ NTM-IN]. (B-i)

Here X and N are Kxl column matrices. We wish to extend this result to the

case of double integral

I = ( 2 )-K ffdU dV exp[- UT AU- VTBV + uTcv + DATu + ETv , (B-2)

where A and B are symmetric without loss of generality, and the integral

converges; here, matrices A, B, C are KxK while U, V, D, E are Kxl. Notice

that if we had the apparently more-general term

uTcIV + v = U T (C + CT)V , (B-3)

we would simply let C = C1  2 T and thereby immediately have form (B-2).

To accomplish the evaluation of I in (B-2), identify M = B, NT = uTc + ET,

X = V in (B-i), and thereby evaluate the V-integral in (B-2), with result

fdV ... = [.I exp [(UC + ET)B-(CTU + E (B-4)

Substituting (8-4) in (B-2), regrouping, and using the symmetry of B (and

therefore B-1 ), -there follows

I~~~~ E 2w-/2.iUd=t )112 fdU exp uT(A-CB1cT)u + (DT+ETB-IcT)U + 2 ETB1E . (B-5)

B-i
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Now reemploying (B-I) with identifications M = A - CB-1CT, N D +CB-E,

X - U, we get a closed form result for (B-5):

I = [et(AB- CBcTBexp E E +
-1ex TETBT-1E-

+-½(D+CB-E)T(A-CB-CIT)-(D+CB- Ej. (B-6)

This is the desired general result for integral (B-2).

As an aside, there is probably a more symmetric closed form result than

(B-6), since if we represent (B-2) by I(A, B, C, D, E), we quickly see, by

interchange of dummy variables U and V, that

I(A, B, C, D, E) = I(B, A, CT, E, D). (B-7)

However, we have not discovered the symmetric form of (B-6). The present form

follows as a result of the sequential integration of (B-2), first on V, ther,

on U.

B-2
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APPENDIX C. PROGRAM FOR CUMULATIVE AND EXCEEDANCE DISTRIBUTION

FUNCTIONS VIA CHARACTERISTIC FUNCTION (23)-(24).

The numerical procedure employed in appendices C, D, and G here is

heavily based on [3]. The choices of L, A, b in lines 90 to 110 to control

truncation error and aliasing are also made according to the method of [3].

The parameters in (24) are evaluated once in lines 210-260 so as to minimize

computation time. The FFT subroutine used in lines 1030 et seq is listed in

[3, pp. B-11 - B-12], and employs a zero-subscripted array. A sample plot of

the cumulative and exceedance distribution functions follows the program.

10 CFR 0SS,-C!)'FPELATF':F WITH SARMFPLE ME FRN PEOFIL; fLLNUTC TFR 7045
210 N=5 -umber of err, s ar, , E ed t. ,. c _ ,:
:30 Garata=. 5 34 ale factor in -- amp1 ri, e r, � e • cd 1
40 Mu=-. 4 U c harrne e.- at-,
50 Mv=.'3 V ,:harnel mean
0 = U chant, el .t ard.ard de,.. i -at iot,
70 S..,.,: 'V channel st a-,,d-ar d de, .i at 1 co:r.

80 Rho=. 6. Corre 1 at- i on c,:,ef'fi, c i ent

90 L=60 Limi.t onr, i ntegral ,f ' char . furct. ior,
I00 D'e 1t .=-a . 12 S am I i n'g i nrc r er- r t on ch a r. fua rc t. ion
110 B-.s 215-.*f. 2wPI. -te I t a) Shi ft t., as fract- i on of al ias inte r t j E l
120 Mf=2."8 Size of FFT
130 PRINTEiR. 1:-. 0
140 PRINT "L =";L,"Delta =";Delta,"b :";B%"Mf =:";Mf
150 'EDIrM1 '0 : M '-i * k , .0:FMf'-j ')
160 DIM X.,T3; I02-,,0: 1023>
170 Su2=Su4S-su Calculate
180 S S *'.:;,, I paramet er.r
1'90 T1:l-Gawifa,

200 T2=TI*T1
210 E 1=2*Rhc,*'Su*S.v
220 E2=Su2*•..2* (1 -- Fho *Rho
230 FI=EI*TI
240 F2=E2*T2
250 G 1=N *Mu+M,-*T I
260 G2=. 5*Nl ( 11u2 M11.; rlv+ Sk2*rlu**Mu-E 1 Mu :' T2
270 N1=. 5*(1- 1
2:-30 Muq=: I + ,N- •Ga,•. :'*Pho*Su*S., Mlear, of random var i.ablE q
290 Mu='uq+BS ! Mean of shifted var'iable
:300 ,0
310 (0:. 5*Del t ,*M'-,.
320 FOR P.N-=. TO INT(L,.'Delta)
:330 Xi =De 1 t.a*Ns A rggument. v: i -,"f c , ar. fan' 1 t in r

340 X2=X i *X i Cal c u I at. i on
350 TI=-Xi*FI of"
360 T2=1+X2*F2 ' character.i s.t irc
370 CALL .,'.'2rG2,Xi*GiT2, T 1A) func t. i on
380 CALL Log( l+X2*E2,-Xi*EI,C,D) fV(xi 2
390 CALL Log<T2,T1,E,F)
400 CALL -

C-1
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410 Mrs=Nr M'OD t l ' Col lap-.=16

420 XY ' Ms ) K Ms ) +Fvr.Ns

440 NEXT Ns.
450 CALL Ff, t • fM * 0 .fYK*). 0 subscript FFT
460 PLOTTER IS "GRAPHICS"
470 GRAPHICS
480 SCALE 0• lf,14,0
490 LINE TYPE 3
500 GRID Mf/8, 1
510C PEi4UP
520 LINE TYPE I
5:30 B=Bs*MfD*Elt. 2*.--,:'*P ' . Origin for r-ndor, variable q
540 MOVE B,0
550 DRAW B,-14
560 PENUP
570 FOR Ks=Li ru M'- i
580 T=Y(Ks)/PI-Ks-IM.
590 X(K )=,5-T Cumul at i .e probabi Iii y n X" •

600 Y(Ks)=Pr=. 5+T E:x<ceedance probability in Ye.*)
610 IF Pr>=lE-12 THEN Y=LGT(Pr)
620 IF Pr.-- THEN Y=-24-LGT,-Pr)
630 IF ABSPr.<1E-12 THEN Y=-12
640 PLOT K-,Y
650 NEXT 1;s
660 PENUP
670 PRINT Y ('.);Y,K1);Y(Mf-2) ,:;Y'MJf-l .:'
680 FOR Ks..0 TO H'P-1
690 F'r=XK(Ks)
700 IF PrK>=IE-12 THEN Y=LGT(Pr)
710 IF Pr-<=-1E-12 THEN Y=-24-LGT(-Pr)
720 IF ABS(Pr')<IE-12 THEN Y=-12
730 PLOT Ks,Y
740 NEXT Ks,
750 PENUP
760 PAUSE
770 DUMP GRAPHICS
780 PRINT LINe'5)
790 PRINTEF IS- t16
800 END
810
820 SUB Div.,j(X1,Y1,X2,Y2,A,B) i _211/Z2
830 T=X2*X2+"'Y2*Y2
840 A=(XI*X2+YI*Y2)."T
850 B=(i * 4-- -.- I -',I T
860 SUBEND
870
880 SUB Log(X,Y,VA,.>) PRINCIPAL LOG(Z)
890 A=.5*LOG('-*X+Y*Y )
900 IF X-:>0 THEN 930
910 B=.5*PI*SGtPY)
920 GOTO 950
930 B=ATN(Y/X)
940 IF X<g THEN B=B+PI*(1-2*(Y<B))
950 SUBEND
960

C-2
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970 SUB Exp(,Y.8,B) I EXP'Z.'
980 T=EXP(:)
998 A=T*COS.AY)
1000 B=T*SiNk(Y)
1010 SUBEND
1020

*1030 SUB FfttI 0z, (N!~(.',Y N 2-10 =1024, N=2.' ItITECER USRP

C- 3
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APPENDIX D. PROGRAM FOR EVALUATION OF OPERATING

CHARACTERISTICS FOR y=1

The comments in appendix C are relevant here also. The characteristic

function used as the starting point is given by (81). Sampling increment a

employed on the characteristic function can be coarse for small signal-to-noise

ratio R, but must be finer for larger R. The quantity DeltaO, Ao, in line

30 is that used for R=O; all other a values are sub-multiples, as indicated by

lines 110-130. A table follows.

N 4 6 8 12 16 24 32 48 64 96 128 256

Ao .10 .09 .08 .06 .05 .05 .05 .05 .04 .03 .03 .02

Table D-1. Values of A0 for y=1

Let A1 denote the sampling increment employed for a particular value of

signal-to-noise ratio RI>O. The cumulative and exceedance distribution

function values are available at spacing s .2w/(MfA) in general, where Mf

is the FFT size. If, for example, A1 = AO12, then s, = 2sO, meaning

that probability values occur twice as coarsely for R1 as for R=O. Then in

order to plot detection probability PD vs false alarm probability PF
without interpolating points, it is necessary to skip every other PF point

available, and only plot those PF, PD pairs corresponding to the same

threshold. More generally, if 6I : /K, where K is an integer, then

sI = Kso, and we plot only every K-th point of the available PF values.

Here we hava chosen K to be a power of 2, for the purpose of ease of plotting.

We choose bias (shift) b in line 40 in order to give a random variable y
which is virtually always positive for R=O; see [31. We then keep b fixed as

R increases, which makes the probability of y>O even greater. This feature of

choosing the same b for all R>O enables an easy comparison of PD and PF,

since common threshold values are then conveniently realized.

D-1
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It was observed under (Z)) that the characteristic functions (39) or (81)

have monotonically decreasing magnitudes for all 1F>0. This makes the choice

of L, the truncation value on the characteristic function integral in (63) or

(64), rather simple; all we need to do is monitor Ifh(f')l of (81) until it

decreases below a tolerance, here taken as 1E-12. There is no zrial-and-error

procedure required as in [3] to guarantee negligible truncation error.

Subroutines Exp and Log have already been listed in appendix C, and so

are not relisted here.

10 ltIMMR= 1 FS'AMFLE MEAFN REMOVAL
20 : N, Nur mbe r of t er r, 1. r, re -,
30 11elt =-I - .3:`' I I itiaI delta
413 0 B=P I .De I taO Bias b

50 M'1=2 Ii Size of* FFT
60 OUTPUT i;"G F!il;li 1"= I " ="Nc
79 OUTPUT v;.
80 DATA --2,-1 .,0 1 1 .. _5,2,2.59,.,-:3.5,4,5
90 PErLb -. * S HPR =2" r,
100 OUTPUT 0;N_.,
110ki DATA 1 , 2,2,2, 4,4, '4,8, 16, 16, 32,64
120 READ Ide.t.,*.
1313 MAT Deel a=,:DEt I ta0 Ide. lta
14 0 OUTPUT C1. Dýel t -4-)
150 DATA IE-I10, IEE lE , 1E-7 7 1E-6, 1E-5, 1E-4. .4001. 01, . ,.5, .9,5' 9,
160 PEAD E.-*'
17I DI M N 1:121• d-It E,0:12 ,D 0lta,:12.'.2 (l:14;
180 DI1 >: 0 : i1 , ', , C' 0':, 1'9; 1
190 FOR I=1 TO 14
280 S, - f I ,F ' T , , I
210 NEXT I
220 S=Sc 1
230 B=S (k14 .
240 S$Ca I We = ,(. 1-;, - " l-s .

230 X1=30
260 >2= i
270 Y1=35
280 ('2=Y 1 +C.2-'1 : *-- I I
29 0 PLOTTER 1, "% "
300 LIMIT 1,',,'1, 2
310 OUTPUT 705. "',:' "
:324 SCALE S, , ,B
3330 FOR 1=1 TO 14
340 MOVE :;, S:( I
:.50 DRAW (,5,' I
360 NEST I
370 FOP 1I= TO 11
380 MOVE Sc; I:', S

390 DRAW Sci: I ),B
400 NEXT I
410 MOVE ', -
420 DRAW 0,0
430 PEIUF'
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440 1=11=If -1
450 "2 = H f 2
460 FOR ln=_ TO 12
470 IF In-•0 THEN 500
480 Rc=C
490 GOTO 510

=-500 R"C =2NS I n SNR R 2.-"-
510 OUTPUT 0;"' =";,:. Delta =";DeIta(Inri
520 R0-ASS I GN #I TO BPCP_:C I Terfporar) -st.r-.age f'or
530 Del t a=tD.zI t-ai. In., false alI ar ni p.rc, babi ityt.
540 R2P- +:
550 R21=R2+1
5608 N12-::N c -1 ."2-

57.0 1, u.=..(Nc--1 c Rc .R.earn of randorn var-iabIe h
58`0 Muk';Iua::.:+Bs Mean of shifted ,.ar'iable
590 REDIr (0':0: M I W,"`: M I
600 MAT ;
610 MAT Y=ZER
b21E X k:. 0' =
6:.:10 Y,<: :=. 5 *te I t a,1' .t .
640 Ls=O
650 L.-=Ls+1
660 Xi =Del ta*LLs IArgument xi of char. ft-.
670 CALL Log(I+Xi*:.i*R21,-Xi *R2, ,Bi ) Calculat ion
68 0 CALL E:p -NI2 ,.*Ai i EBs-NI12*Bi , F' F.i I of
690 Ms=Ls HOD Mf characteri.s.tic
7800 Fr" =F'r.-, Ls I furic t i on
710 A i = F L f
720 X(Mr. =- ) +Ar.
73`8 Y (Ms-. - Mt- ) +Al i
740 Hag.. Hq=Ar" *Ar+ A i A i
750 IF Mag-.=qi.E-24 THEN 650
760 OUTPUT P); "',i =";::.1 i;" iag =";SQR.Magsq)
770 CALL F 31•f'1.,-, YK*.
780 FOR l1s.--- TO III
790 T=Y , Ms) "P I -Ms.M"f
800 X(MS-) ,5-T Cufftulati*.,e di.stribut. ic, r fLnct, ,or-i
810 Y(Ms::,.5+T Exceedance distribut. ion funr:ction
820 NEXT Ms
830 OUTPUT 0; Y `*:, ; Y(1); Y(F1- 1:; Y<M1)

A 840 PLOTTER IS "GRAPHICS"
850` GRAPHICS
860 SCALE 0,1r1f,-14,0
870 LINE TYPE :3
880 GRIID f.'18, 1
890 PENUP
900 LINE TYPE 1
910 FOR Ms=s TO III
920 Pr=Y(M .,
931 IF Pr.=IE-12 THEN Y=LGT(Pr)
940 IF Pr-'::=-iE-12 THEN Y=-24-LGT(-Pr)
950 IF ABS(Pr.:'(IE-12 THEN Y=-12
960 PLOT Ms,Y
970 NEXT Ms
980 PENUP
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990i FOR ri1C=O TO rN1i

1010 IF FrP -IE--12 THE.N L GT(Pr
1020 IF Pr :.=-IE--12 THEN Y=-4-"4-LGT(-PF)
10.3 0 IF A:BS.F'r ).-IE-12 THEN Y=-12

1040 PLCI liz.,
1050 NEEX T M1:s
106c0 PENUP
1070 DUMP GPRF PH I C'-
1080 OUTPUT 0;'...
I1390 IF It, 'n>V THEN 1200

1100 FOR MH=M-=2 TO M'l
1110 IF /MS K.=0 THEN 1i30
1120 NE:XVT rm_
1 130 M3=r1 =l- I
1140 REDIM ,.M2: H:S,
1150 FOP MN=M-Iý' T' M3

1168 X('FNrIuhi ( V1 s F
11 70 NEXT Mst
118'0 PRINT r-;2..*. etorE f 9sL I e aar n pr ob.,ab i lit
1190 GOTO 1380

120 0 0 REDIM X,:iM2:Pl3)
1210 READ ;1,;' PCad in fal.e alawrr, probabil1,V
1220 Id=Ideltao. In)
1230 12=M2-/I d
1240 *J3= INT": M.!I d :'+ I

1250 FOR J=J2 TO J:3
I 2:w 60 Y ( J) = F NtI phi J,..))
1270 NEXT J
128 0 PLOTTER IS "9872A"
1290 LIMIT X1 , X2, <2l , Y2
1300 OUTPUT 705; "vS:3"

1310 SCALE S,O,S,B
1:320 FOR j=T2 TO T'
13:30 T=J*ld
1:340 IF T>::M3 THEN I1370
1350 PLOT X T , Y ,JI:
1360 NEXT J.

1370 PENUP
1:380 NEt ;T Itri
1:39 0 END
1400
1410 SUB Exp (XY,A,B B EXP(Z

1460
1470 SLIB Log XYAF' PRINCIPAL LOGu.Z)
1550
1560 DEF FIri u) phi: INVPHI(X) v. ia AMS 55, 26.2.23
1570 IF A>0. AND ;.. I;, THEN 1600
1580 P ='=. 9'99'9.9'999'9E 90- *: 2*X- 1)
1590 GOTO 1670
1600 IF X-=.5 THFH RETURN 0
1610 P=':
1620 IF X>.5 THEN P=.5-(>::-.5)
1630 P=SQP.(-2*LOG('P))
1640 T=1+P*(1.432783,*DP*(. 189269+P*.001308))
1650 P=P-(2.515517+P*(,.80 2853+P*.010328))/T
1660 IF X, THEN F=-P
1670 RETURN P
1680 FNEND
1690
1700 S.UB Fftl3z(N,X'4),Y(*)) N <= 2' 13, N=2"NINTEGER, 0 SUBSCRIPT
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APPENDIX E. ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS WHEN r>O

The characteristic function of interest is given by (100) and (102):

h(?) = (1+i,)-T (1-ifw)-v exph2J•T-1, (E-1)

where for notational convenience in this appendix, we let

N, n = N 1+2R (E-2)

The cumulative distribution function is obtained by substitution of (E-1) in

(63):

Ph(U) =d? f_+d •l (1+iE)-v (1-iw)-v exp y - iuf]. (E-3)
+

The v-th powers are principal value, being positive real where C+ crosses

the positive imaginary axis.

Now let z = 1+iT in (E-3), yielding

Ph(u) = ~ 5dz (z-1)-1 zV (1+w-wz)-• expr- u(z-1 . (E-4)

L 1

The contours C+ and C1 in (E-3) and (E-4) are depicted as dashed lines in
figure E-1. The pole at 1=0 is moved to z=1; the remaining singularities are

branch points (v non-integer); the v-th powers are positive real where C1

crosses the positive real axis. For u<O, an equivalent contour to CI is
that indicated by C2 in figure E-1, since the exponential in (E-4) furnishes

rapid decay in the left-half z-plane. We write (E-4) in the form

Ph(U). exp(u) dz z-v exp(-uz) g1 (z) , (E-5)

C2

where

E-1
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gl (z) = (1-z) 1 (1+w-wz)- expLz-1Ljn . (E-6)

Ct 7

Figure E-1. Contours of Integration for Cumulative Distribution Function

In order to get the asymptotic development of (E-5), we expand g1 (z) in

a power series in z,

gl(z) = gl(O) + gj(O) z + ... , (E-7)

where

gl() (1ig(O) +V n,1 o = ( 1 W - (i+x) (E-8 )

Appeal to [10, p. 96, (4)] then yields (for all v)

Ph(u) - exp(u4,) V gl(0) + v 2- i()

-l~u r --- { T'-

= F (v (+w)-v (-u) v-i exp + . W +

as u- - . (E-9)

Substitution of (E-2) in (E-9) then yields result (104).

E-2



TR 7045

When (E-1) is substituted into (64) instead, we obtain the exceedance
distribution function in the form

1,- Ph(U) = i' (1+ii)-v (1-ifw)-v expri.4.n- iu . (E-1O)

C

Iw

Now let z =-- i•, to get

-1 C 1 -1 I - V1 -Ph(u) W j dz (zW-) (1 +--z) (wz)V*

C3

•exP(1-coz)z + u(z (E-11)

W x 2 Z(E-l1)

The contours C and C3 in (E-1O) and (E-11) are depicted as dashed lines

in figure E-2. The pole at y=0 is moved to z = 1/w; the remaining

singularities are branch points.

C

L\

Figuire E-2. Contours of Integration for Exceedance Distribution Function

For u>O, an equivalent contour to C3 is that indicated by C4 in
figure E-2, since the exponential in (E-11) furnishes rapid decay in the
left-half z-plane. We write (E-11) in the form

E-3
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l-Ph(U) = a (I+w)-y exp + Tng dzzv exp z + g2 (z) , (E-12)

C4

where

g (Z) ( - V (E-13)

As above, we expand g2 (z) in a power series in z,

I

g2 (z) = 1 + w(1 + ••-v) z + ... (E-14)

and substitute it in (E-12); employment of [10, p. 105, (2)] now yields (for

all v)

1 - Ph(U) ~) (1+w)-V exp(--t) *

•, U -+ (n (1 +V2

as u-- +a, (E-15)

where I (z) is the modified Bessel function of the first kind. This is the

general result for the exceedance distribution function; the various

parameters given in (E-2) relate it back to the problem of interest in the

main text.

As a check on this result, we let r-bO; then n-oO, and (E-15) reduces,

via [6, 9.6.7], to

1 h(u) - r(v) (1UF u x(uw Ij-a(+Wf)

as u- + o; r=O. (E-16)

Employing the identifications in (E-2), there follows from (E-16)

E-4
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N-2

1 - Ph(U) ~ 2 exp( *

S1+2R (N-2)(N+4+4R) a• 1+R 8u as u-b+'4 ; r=O . (E-i7)

In order to compare this result with that for y=l, sample mean removal, we

must replace N here by N-i; see the paragraph under (101). When this is done,

(E-17) reverts precisely to (61) and (62).

Returning to the general result for the exceedance distribution function

in (E-15), if we keep n>O and use [6, 9.7.1] for large arguments of I (z),

there follows the simpler (less accurate) result

1 - Ph(u) l12 - 1

, u exp 1/2 1 ' as u + 0. (E-18)

When (E-2) is substituted in (E-18), the result quoted in (105) follows.

As a special case of (E-18), if v=1 (i.e. N=2), then

~ w 1/2/2

1 - Ph(u) i1/2, n1/4 exp -1/ - n i1)J as u-.+a ; v1=. (E-19)

E-5IE-6
Reverse Blank
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APPENDIX F. EXCEEDANCE DISTRIBUTION FUNCTION FOR y=O, N=1, r>O

CHARACTERISTIC FUNCTION APPROACH

When characteristic function (100) with N=1 is substituted in (64), the

expression for the exceedance distribution function becomes

1T (l+iC)-1/2 (l-iyw)-12 (F-1)
1 h(u) = - df (i) (1i!)-/2exp r2 iuf]

where w = 1+2R as in (102). The square roots are taken as +1 at ý=O. For

u>O, the contour C_ can be modified to that indicated in figure F-i, where

the contributions of the large circular arcs in the lower-half 5-plane tend to

zero. The small circle of radius p centered at branch pointf= -i/w must have

0 < p < lI/, since the latter is the distance to the pole at the origin.

f- -• - ,-i

i '3

Figure F-i. Equivalent Contours for (F-I)

It is easy to show that the two vertical contributions in figure F-1 are

equal. Under the change of variable

1i +t-2  (F-2)

F-i
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the sum of the two vertical contributions to exceedance distribution function

(F-i) becomes

exp 2 S dt (1+t2)-1
W (WP 1/2

(i+w+t 2  exp Rt2 _ (F-3)

This integral remains convergent even as p-*O+. Furthermore, the integrand

decays rapidly, has no cusps, and involves only elementary functions; also the
integral is a sum of positive quantities and retains significance even for

large u.

On the small circular contour C in figure F-i, let

1it= - _ p exp(ie), (F-4)

to obtain, for the circular contribution to the exceedance distribution

function, the quantity

C(o) exp12 P do (1-woE)- *
-w i

*( k E) -12exp + AE* + PUE (F-5)

where we define in this appendix

x = 2 = , E = exp(ie) . (F-6)

F-2
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The exceedance distribution function is given exactly by the sum of (F-3)
and (F-5), for any 0 < p < 11w. It would be advantageous numerically to let
p-*O+ in these two equations; however, the limit of (F-5) is not obvious and
can easily be done incorrectly.

AN ERRONEOUS APPROACH FOR C(p)

It is tempting to let pO+ in those locations in (F-5) where it will "do
no damage", obtaining for the integral with scale factor p1/2 the quantity

I a112 5d exj + X exp(-i7 . (F-7)

(The fallacy of doing this for a residue cal -lation with an essential
singularity is demonstrated in the next subsection.) Furthermore, the limit
of (F-7) as p4O+ can in fact be deterrmiined in closed form, as follows.
Observe that the integrand of (F-7) has a saddle point in the complex 9-plane
at

s = -iL, L =tn(2_•) ; (F-8)

this is in fact the only saddle point in the (-w,w) strip in the 9-plane. Now
let z = a-es, getting for (F-7)

-R+i L

I = (20)112 dz exp + exp(-iz (F-9)
-/+iL

The radius p now appears only in the limit L of the integral, and the
integrand has a saddle point at z=O.

F-3
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The straight line contour for (F-9) can be deformed into contour C,

depicted in figure F-2, which goes through the saddle point at z=0. Now if

0 L-

Figure F-2. Equivalent Contours for (F-9)

p-*O+, then L-*+-d, and (F-9) yields

W+ioW

10 = (2x)I/2 dz exp z + ½ exp(-iz (F-10)

-1T+i-o

where the contour is the limit of C in figure F-2 as L-#+@; that is, the

integral is between the two valleys at *w+ioo and is connected by the saddle

point at z=0.

The steepest descent curves out of the saddle point of the integrand of

(F-10) are given explicitly by

y-An(•-in-x) for -, < x < . (F-11)

Thus if we let

F-4
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z . X+ iy x A(sin x)
z:x +iy =x- i . .,

dz (Cos X - 1) (F-12)
s-in x ,x

on the steepest descent curves in (F-10), there follows

1!

I0= (2x) 1/ 2  dx - i cos x + i exp + n sin xexp(ix5 sin( ) x) . . -x) Y sin x

--W

(2x) d ex sin x

-- IT

= (2x) 1 / 2 25dx x A Cos A=(2x)p 2(21)( . (F-13)

0

(The integral value of (2w)1/2 in (F-13) was deduced by numerical integration.)

Recalling the definition of I. in (F-7), we then have the dubious

result for the limit of (F-5):

C(O) ?f (2I1 expu• (F-14)

( 2)1/2 r Iu~r2)I (1+R)17/2 (T-

where we employed (102) and (F-6). Actual numerical evaluation of (F-14),

combined with V(O) from (F-3), gives incorrect results for the exceedance

distribution function (F-i); thus the replacement of p with 0 in (F-5) is

invalid. The explanation for this pitfall is the essential singularity of

(F-i) at ;= -i/w; a simpler illustration follows.

F-5
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RESIDUE OF ESSENTIAL SINGULARITY

The function

exp( 1)=1 + 1+ 1 + (F-1)z z 2S2 z +F-5

has an essential singularity at z=O, with residue 1, as exemplified by this

Laurent expansion. Now consider the function

f(z) = exp(.) g(z) , (F-16)

where g(z) is analytic at z=O. Then

f(z) + ... ) (0o) + g (o) z + (2) (0) z2 + ... . (F-17)

The coefficient of liz in (F-17) is the residue of f(z) at z=O; namely

Res = g(O) 1 + (1) 1 (2)(0) + = n.(0) (F-18)

n=O

Thus the residue of f(z) at z=0 depends on the behavior of g(z) in a
neighborhood of z=O, and not just the value g(O).

A couple of examples yield the following:

g(z) = (1-az)- 1 , Res exp(a)-1
a

g(z) = exp(a2 z) , Res = a) (F-19)

F-6
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CORRECT APPROACH FOR C(P)

Reconsider the integral in (F-5) plus the scale factor p112; making the

substitution z - o+iL, where L is given in (F-8), there follows for this quantity

1+iL 1(221 2  eiZ)l2Xi

(20I1/2 dz (1-2 e) (I1 -  e2

-w+iL

• exp[i Z + 1 e-iz + eiz] (F-20)

The uppermost singularity of the integrand in the z-plane (within the -w, w

strip) is a pole at zp = i Jn(2wx); however, the straight line contour in

(F-20) remains above this pole because p < l/w; see (F-8). Furthermore, the
total integrand of (F-20) has a saddle point on the imaginary axis of the

z-plane above the pole location Zp, because the integrand is infinite at the

pole and at z = 0 +io. Thus the straight line contour in (F-20) can be
modified so as to pass through the saddle point, and yet remain above zp.

Finally, letting p-PO+, then L-l+,, and (F-20) combined with (F-5) yields the

exact result for the circular component

W+ iab

C() ) 112 r 1/2 exp dz (1-2wx e iZ)-I

--I+ ij

• -1_ 2-e2 e1z)-i/2 exp z+ 1eiz + 2xu e i , (F-21)

where the two valleys of the integrand at *w+io are joined with a contour

through the saddle point lying above the pole at Zp = i li(2wx). Here

= 1+2R.

F-7
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The other component of the exceedance distribution function,

corresponding to (F-21), is given by (F-3) at p = 0+:

V2(O) 2 w exp + I dt (l+t) *

0

• (1+W+t 2)1/ exp t2 - r . (F-22)

Thus for u > 0, (F-i) and figure F-1 yield exceedance distribution function

1 - P (u) = C(O) + V(O) = (F-21) + (F-22) . (F-23)

Computationally, (F-21) is not too attractive, because of the complex

integrand and/or the need to determine the steepest descent paths to *w+io

numerically. Accordingly, an alternative direct procedure for determining the

exceedance distribution function of random variable h is now presented.

DIRECT EVALUATION OF EXCEEDANCE DISTRIBUTION FUNCTION

For y=O, N=1, (12) and (3) yield the crosscorrelator output for the

signal and noise model as

q = uIv 1 = [uu + us(s) + ud(l)] [uv + v,(1) + vd( 1 )] . (F-24)

The normalized crosscorrelator output is then, from (49) and (97),

h = q = (ru + us' u+ ) (r + vI + vP)x xy (F-25)

where x and y are joint Gaussian random variables with statistics [

F-8
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x=ru , Y rv,

S2 2 1/

ax = 1 + Ru, ay I + Rv, (x-i)(y-7) - Ps(R uRv)12* (F-26)

We now make the same assumptions as in (99); see also (56) et seq. Then

(F-26) specializes to

2 2 2 Rx = y = r, = 1 + R = 1IR (F-27)

The joint probability density function of x, y is then given by

] i 2 (i 2 I/2]-1 I (x-r)2 + (y-r) 2 - 2o (x-r)(y-r)
S P2(x(y) = [2 px)y J exp2a+22(1 - (x r. (F-28)L 4(1- px )

We now have cumulative distribution function

Ph(u) = • dx dy P2 (xy) for u < 0 , (F-29)

R2 +R4

and exceedance distribution function

S- Ph(u) i f dx dy p 2 (xy) for u > 0 , (F-30)

R1 +R3

where regions R1 , R2 , R3, R4 are indicated in figure F-3.
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F?2

00

Figure F-3. Regions of Integration

If we now rotate axes according to

t + (F-31)

and employ (84) and (F-27), there follows (after scale changes of the

variables)

Ph(U) = dv 0(v- r(2/0)1I/9 (-v2-2u)I/1 for u < 0 (F-32)

and
1*dv r Fu+ =v r - U+'V212 ]

1 - P+(u) 2 fdv O(v Vc a - uto 2 r u j> 0 (F-33)

Here , 1+2R. These real integrals are very useful for the evaluation of the

distributions of h when y=O, N=1. In fact, (F-33) is preferred over

(F-21)-(F-23); but (106) is preferred over (F-32) since i need not be

evaluated in (106). This is in fact the procedure utilized here to obtain

numerical results for this case of y-O, N=1.

F-I0
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APPENDIX G. PROGRAM FOR EVALUATION OF OPERATING CHARACTERISTICS FOR y=O

The comments in appendices C and D are relevant here also. The

characteristic function used as the starting point is given by (100). It was

observed under (103) that Ifh(P) for (100) is monotonically decreasing for
all T_> 0; thus the choice of truncation value L is simplified; see appendix 0
comments. A table for sampling increment &o (when R=O) follows.

N A 0 for r=1 A 0 for r-2

3 .07 .05

4 .07 .05

8 .05 .03
16 .04 .02

32 .03 .02

64 .025 .015

128 .020 .010

256 .012 .007

Table G-1. Values of A 0 for y=O

10 GAril1A = 0 NO SAMPLE r*1E6N REMOVAL
20 Nc=32 N N, Number of t erms added
30 PR= 1 r, Normalized rmean
40 DeltaO=.03 I Initial delta
50 Bs=2*PI/Delta0*.375 1 Bias b (depends on r)
60 Mf=2"1,3 I Size of FFT
70 OUTPUT 1;"t,! = 0";" N =";e; r =";Rs
so OUTPUT 0;""
90 DATR -4,-3,-..5,-2,-1.5,-1,-.5,0,.5,1,1.5,2
100 READ Nz(*:) I SNR R=2"n
110 OUTPUT O;Ns(*);
120 DATA 1 ,2,2,2,2,2,2,2,2,4,4,4,8
130 READ Idelta(*)
140 MAT Del t a= (De ItaO t ,.-. I de I t a
150 OUTPUt 0;De!ta(*);
160 DATA IE-10, IE-9,IE-8,IE-7, IE-6, E-5,1E-4,.001,.01,. 1,.5,.9,..99,.999
170 READ Sc(*)
180 DIM -t(1:12),Id-eita(0:12),Det.ao(:12),Sc(1:14;,
190 DIM X(0:8191),Y(0:8191)
200 FOR 1=1 TO 14
210 Sc (I)=FNInvphi (Sc (I))
220 NEXT I
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2:30 S=SC~
240 B=S$c 14.
250 S,: a Ie= O)(1-S)
260 X I=30c
270 X2= 170
*2 80 Y I=:-,9
290 Y 2 = Y I+:(X2 -X)*I aL e
3 00 PLOTTER IS 'R
310 LIMIT XKY
320 OUITPUT 7-05; "VS53D
330 SCALE S,,~

F40 FOIPý- 1 T 0 14A
350 MOVE S~-1
360 DRAW 0,Sk.1I
:370 NE'X-T I
3E0 FOR 1=1 TO 11
390 MOVE Sc (I),s
400 DRAW Sc.I),B
410 NEXT 1
420 MOVE S,S
430 IDRA14 0, 0
440 PENUF'
450 MI=Mf-I
460 t42=Nc'2
470 Rsn=Nc*Rs*R-s N r-2
480 FOR 1ns0 TO 12
490 IF In>;0 THEN4 520
500 Rc=O
510 GOTO 53-0
520 Rc 2-N;B( Iri) SNR R=2'-n
530 OUTPUT 0;"R =" ;Pc," Delta =":.Delta'1ln)
540 ASSIGCH #1 TO "ABS-CIS" Temporary storage
550 Delta=flelt~a<Irj for false' alarm probability
560 R2=Rc*2
570 R21=R2+1
580 Mux=Nc*Pc+Rs.n Mean of random variable h
590 Muy=Mu-ý+EBs Mean of shifted variable V
600 REDIM X(:M.'ol4::, ('(0:M1 )
610 MAT X=ZER
620 MAT Yr=7EP
630 X(O:,=O
640 Y(0)=.5*Dilta*Hu~y
650 Ls=O
660 Ls=Ls+l
670 Xi=Delt~a*Ls Argument xi of char. fn.
680 Ei=Xi~P21 ! Calculation
690 CALL Log(1+Xi*Ei,-Xi*R2,8i,Bi) of
700 CALL Div(0,Xi*Rsn,1,-Ei,Ci,Di) 1 characteristic
710 CALL E>xpýCi-N2*Ai,Di+Xi*Bs-N2*Bi,Fyr,Fyi) function
720 Ms=Ls MOD Mf fy~xi)
730 Ar=Fyr/Ls
740 Ai=Fy'/Ls
753 =~sX, ýMs) +Ar
760 Y(Ms>=Y('I1')+Ai
770 Magsqs=Rt*Ar4Aii #-Ai
780 IF Magsq>1E-24 THEN 660
790 OUTPUT o:'"Xi =";Xi;" Mag =";SQR(Magsq)
800 CALL Fft 13z(Mf, X(*) ,Y(

G-2
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810 FOR Ms=O 10 MI
820 T=Y<Ms)/PI-Ms/•f
830 X(is)=,5-T Cumulative diztribution functiont
840 Y( Ms) =.5 + T ' Exceedance distribut on function
850 NEXT Ms
860 OUTPUT @;0)vY"lI>;Y(rI-I.*Y'M1)
870 PLOTTER IS "GRAPHIC.S"
880 GRAPHICS
890 SCALE 0 . -14,0
900 LINE TYPE 3
910 GRID Mf/8,1
920 PENUP
930 LYNE TYPE 1
940 FOR Ms=@ TO MI
950 Pr=YIM)
968 IF Pr>=1E-12 THEN Y=LGT(Pr)
970 IF Pr'%-IE-12 THEN Y=-24-LGT(-Pr)
988 IF ABS3'Pr)<IE-12 THEN Y=-12
990 PLOT Ms,Y
1000 NEXT Ms
1010 PENUP
1828 FOR Ms=O TO MI
1030 Pr=:N(Ms)
1040 IF Pr>=IE-12 THEN Y=LGT<Pr)
1050 IF Pr<=-IE-12 THEN Y=-24-LGT(-Pr-)
1068 IF PBS(Pr)1E-12 THEN Y=-12
1078 PLOT Ms,Y
1088 NEXT Ms
1098 PENUP
1108 DLIMP GRAPHICS
1118 OUTPUT 0;...1
1120 IF In)'O THEN 170
1130 FOR Ms=O TO M1
1140 IF Y(Ms)'..7 THEN 1168
1158 NEXT Ms
1168 M2=-s-1
1178 FOR Ms=M2 TO M1
1188 IF Y(Ms)<=Ei THEN 1280
1198 NEXT Ms
1288 M3=Ms-I
1210 REDIM X(M2:M3)
1228 FOR Ms=M2 TO M3
1238 X(Ms)=FNInr.'phi(Y(s.))
1248 NEXT Ms
1250 PRINT #1;X<*) Store false alarm probability
1268 GOTO 1468
1278 REDIM X(M2:M3)
1288 READ #1;X(*) ! Read in false alarm probability
1290 Id=Idelta(In '

1380 J2=INT(M2/Id)
1318 J3=INT(M3/Id)+1
1320 FOR JzJ2 TO 33
1330 Y(J)=FNInvphi(Y(J))
1340 NEXT J
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1350 PLOTTER IS ")03728"
1360 LIMIT YI,X2,YI,Y2
1370 OUTPUT 705;"VS3"
1380 SCALE S,0,S,B
1390 FOR J=J2 TO J3
1400 T=J*Id
1410 IF T<M2 THEN 1440
1420 IF T>M3 THEN 1450
1430 PLOT X(T),Y(J)
1440 NEXT J
1450 PENUP
1460 HEXT In
1470 END
1480
1490 SUB Div(NI,Y1,N2,Y2,A,B) I DIV(Z)
1540
1550 SUB Exp(XYA,B) I EXP(Z)
1600
1610 SUB Log(X,Y,A,B> I PRINCIPAL LOG(Z)
1690
1700 DEF FNlnvphi'X IHVPHI(X) via AMS 55, 26.2.23
1830
1840 - Fftl3z(oNX(*),Y(*)) N <= "213, N=2"INTEGER, 0 SUBSCRIPT
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Under-Ice Roughness:
Shot Noise Model

A. H. Nuttall

ABSTRACT

The one-dimensional roughness of an under-ice profile of elliptical

bosses is modeled in the time domain by a shot-noise process of ellip-
tical pulses of random amplitude, duration, and time of occurrence. A
sample realization of 8000 data points is generated and plotted for
visual comparison with experimental under-ice data. Also, theoretical
and simulation results for the power density spectrum, the auto-
correlation function, the characteristic function, the cumulative
distribution function, and the probability density function of the shot-
noise process are plotted and compared.

Approved for public release; distribution unlimited.
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INTRODUCTION

The under-ice profile has been observed to appear like a random

collection of superposed elliptical bosses, each of random amplitude, length,

and location. An analogous model in the time domain is shot noise composed of

overlapping pulses of random amplitude, duration, and time of occurrence.

Accordingly, we have generated a sample realization of a shot noise process

for visual comparison with experimental under-ice data, and tor possible

corroboration of this model. The particular realization generated has 8000

data points, although the number of effectively-independent samples is far

fewer, as will be demonstrated.

A number of analytical results for shot noise have been derived in the

past [1]; however, they did not cover the case of random duration modulation.

We have extended the analyses to include random durations (as well as random

amplitudes and random time occurrences) and evaluated the spectrum of the shot

noise process, as well as the autocorrelation function and the first-order

characteristic function of the instantaneous amplituue. From the latter, the

first-order probability density function and cumulative distribution function

of shot noise have been evaluated via a generalized Laguerre expansion

employing 32 cumulants or moments. Comparisons of all these theoretical

results with the corresponding sample quantities, obtained from the 8000 data

point realization above, reveal excellent agreement.

1--5
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A REALIZATION OF A SHOT-NOISE PROCESS

Shot noise is characterized by a superposition of pulses, each located

independently and uniformly on the time scale. A sample pulse is illustrated

in figure 1. The time of occurrence tk (center of symmetrical pulse, for

a F

t

Figure 1. Sample Pulse of Shot Noise

example) is uniformly distributed in time t, with an average number of pulses

per second, v. The amplitude ak and half-duration 1k of an individual

pulse are also all independent and are each identically randomly-distributed

with arbitrary probability density functions. Finally the fundamental pulse

shape F in figure 1 is arbitrary.

A realization of shot noise is given by

1(t) a~ ak (1

where the summation extends over all k. The particular data we generate here

employs the following example; unscaled pulse shape F is circular:

F(x) 6 . (2)
0 for jxi> 1

6
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This pulse is continuous; however, it has cusps (infinite slope) at x = ,1.

The reason for this selection will become apparent when we discuss the

spectrum of shot noise process (1).

The amplitude probability density function for random variable ak is

Rayleigh,

p(a) a exp( ) U(a) (3)2\2o
a a

and the duration probability density function for random variable k is also

Rayleigh,

pot) = I exp(2•-• U(t) . (4)

Here, step function

I for x >o0
U(x) = 1. (5)

0 for x <)

The mean values of random variables ak and )k are given respectively by

I = Y (6)

in terms of the parameters oa and 5 of probability density functions

(3) and (4). Alternatively, the mean square values are given by

a T 2 .7 7 2
a =ak20aa, A 4= 2(jr (7)

Three typical component pulses are depicted in figure 2, and can range

from circular through various elongated elliptical shapes. The total length

of an individual pulse is Lk = 24. An important parameter of this time-

7
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4a5

Lk-

ylts tS

i~ 3

Figure 2. Three Component Pulses

limited pulse shape in figures 1 and 2 is the (dimensionless) overlap factor

v= 2Tk v = 2 . (8)

This is the average number of pulses that are overlapping at any one instant

of time, and is a partial measure of the applicability of the central limit -

theorem. A more meaningful measure are the cumulants, fuf probability density

function (3) and pulse shape (2), the normalized third and fourth cumulants are

1.017 and 1.2 , (9)

respectively. In the sample realization generated here, the overlap factor in

(8) was 6.2, leading to normalized cumulant values in (9) of .58 and .39,

respectively. Since a Gaussian probability density function would lead to

zero cumulants above second-order, the shot noise realization dealt with here

is distinctly non-Gaussian.

8
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In the three parts of figure 3, a realization of shot noise model (1) is

given for parameter values

aa = sec, = 20 sec, v = .124 pulses/sec. (10)

The waveform (1) is sampled at unit time increments and connected by straight

lines; thus the initial 100 data points illustrated in figure 3A have a jagged

appearance for those component pulses with small Ak as for example at time

instants 67-68. The larger duration pulses, like the one centered at t = 29,

have a smoother appearance.

In figure 3B, the initial 1000 data points illustrate the very erratic

character of shot noise; the waveform consists of some very sharp spiky pulses

and other broader smooth components. The appearance of a downward trend in

these 1000 data points is erased when the entire 8000 data point sequence is

viewed in figure 3C. The possibility of shot noise process (1) reaching a

zero value (when no pulses overlap) is confirmed by the waveform values near

t =6400.

9
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CORRELATION AND SPECTRUM OF SHOT NOISE PROCESS

The derivations of the correlation and spectrum of the shot noise process

(1) are given in appendix A; from (A-12), we have, in general, the correlation

function at delay t,

RI Va f'i~ 0 ',+(a dc

where the dc component of I(t) is, from (A-13),

Idc a V a- Jdx F(x) , (12)

and

(Y) f dx F(x) F(x-y) (13)

is the (aperiodic) correlation of an individual pulse F. (All integrals are

over the range of non-zero integrand.)

Also, from (A-16), the general spectrum of process I(t) is, at frequency

f,

A G1(f)- V 4.~PCI) )2 lS(#tf)I 2 + j~c 5(f) (4

where

S(f) - Sdx exp(-i2wfx) F(x) (15)

is the voltage density spectrum (Fourier transform) of pulse F. Thus

ýS(f)12 is the energy density spectrum corresponding to pulse F.

13
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It should be observed that the entire probability density function p()

of half-duration random variable 4k is required in order to evaluate the

correlation or spectrum of shot noise. However, only the first two moments,

and a2, are required known about probability density function p(a) of

amplitude random variable ak. The only way that the dc term Idc can be

zero is if random variable ak has zero mean (T = 0), or if pulse F has zero

area (S(O) = 0).

Example

V

The example of interest here was given earlier in (2) and (4), namely a

circular pulse F and a Rayleigh probability density function for random

variable *k" The spectrum Gi(f) in (14) is evaluated in (A-17) through

(A-22), with the results

S(f) = , S(O) J 2

1dc V

2 -a 2 2 exp(-z) ,l(z) 3 2 2 2S

with z = (2w5 f) 2 . (16)

The asymptotic behavior of spectrum (16) is [2, eq. 9.7.1]

Gi v a- f 3  as f-+-v . (17)

'44(2w)

14
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That is, the spectrum decays at a -30 dB/decade rate at large frequencies;

this is due to the square root singularities at x = *1 of pulse F given in

(2). This decay rate has been observed in some spectral analyses of under-ice

profiles, and was one of the reasons for choosing the specific circular pulse

in (2) for this investigation.

The spectrum in (16) is plotted in figure 4, for the choice of parameters

earlier in (10), as a dashed line, normalized to 0 dB at f = 0. Superposed is

a linear-predictive spectral analysis result with predictive order 10, for the

8000 data points of figure 3C. The two results are in excellent agreement,

even at the -50 dB level, with the inevitable 3 dB aliasing effect at the

Nyquist frequency, as indicated.

The correlation RI(C) in (11) is evaluated in (A-23) through (A-33),

for the example (2) and (4), with the result

R(-) = 4(2s) • s exp(-s) [(1+4s) Kl(s) - (3+4s) Ko(s)] +
-3

+ V a2 a with s. (18)

This quantity, exclusive of the dc term, and normalized at the origin, is

plotted in figure 5 as a dashed line, for delays (lags)t up to 100. It is

seen to decay monotonically to zero as 'T increases, and reach its l/e value at

approximately C= 30.

15
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The remaining solid curve on figure 5 is the normalized sample

autocorrelation function of the 8000 data point sequence in figure 3C, where

the sample mean was subtracted from the given data. The agreement with

theoretical result (18) is excellent. The dotted horizontal lines at *2a in

figure 5 are the *2 sigma values of the correlation eatimate at delays where

the true correlation is presumed zero; the details of this analysis are given

in appendix B.

This procedure is duplicated in figure 6, where the correlation function

estimate out to lag -= 1000 is plotted. The drifting of the estimate outside

the *2 a limits (at '= 470 and 820) is consistent with an occasional excursion

of a random variable outside its *2a range. The correlation estimate (used

for figures 5 and 6) at time separation k is

N

Rki ; X Xn for k > 0, (19)n=k+ln

where x•njis the available data in figure 3C, with its sample mean removed.

16
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AMPLITUDE STATISTICS OF SHOT NOISE

The first-order characteristic function of shot noise process I(t) is

derived in appendix C; it is given by (C-9) as

f I) exp [vlfdxIfat[F(x)J-13] . (20)

Here fa is the first-order charact.ristic function of amplitude random

variable ak. Observe that the probability density function p(R) of

duration 1k is irrelevant to characteristic function fI, except for its

mean 7; this is in contrast to the spectrum and correlation results in (11)

and (14), where p(a) was irrelevant except for parameters a and a2 . (For

= 1 for all k, (20) reduces to a simplified version of [i, eq. £.5-4].)

The characteristic function of the amplitude random variable ak can be

expanded in terms of its moments

Aa (n) = a fSda an p(a) for n > 0, (21)

according to

S= n: ?O Pa (n)(iT)nln' (22)

This result is useful if the kn of (20) is expanded in a series in .; namely

ýn f IM) V •1 ua(n)(ij)nfdx Fn(x)/n; (23)

giving immediately the cumulants of I(t) as

=ti(n) v 1 vaon) J dx Fn(x) for n 1 . (24)

20
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That is, the n-th cumulant of I(t) is proportional to the n-th moment of

random variable ak as well as the n-th "moment" of pulse F. (For .k = 1

for all k, (24) reduces to [1, eq. 1.5-2].)

The normalized cumulant of I(t) is

YI(n) =X,(n) =-1-1 "a (n)Sýdx Fn(x) . (25)
ZI(h] 11 La( 2) j dx Fn(x)

(v~n X= (25)r

In particular, the coefficients of skewness and excess [3, pp. 184 and 187]

are

1 ua(3) {dx F3 (x)

Yi(3) = 1 a- T (26)

(VA a(2) fdx F2(x)
and

yi(4) = 1 ua(4) jdx F4 (x) (27)

v I a (2) Sdx F2(x

These quantities are very important measures of the approach of I(t) to a

Gaussian process; if v1 is very large, the normalized cumulants yi(n) are

all substantially zero for n > 3, meaning that I(t) is nearly Gaussian. Thus

although probability density function pO) is not directly relevant to thp

probability density function or characteristic function (20) of I(t), the

exact probability density function of I(t) is critically dependent on the

mean I through the dimensionless parameter J. More precisely, (26) and (27)

are the critical quantities; see also [1, eq. 1.6-3].

21
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If either the third moment of random variable ak is zero, or if the

third moment of pulse F is zero, then y,(3) = 0. In that case, yi(4) is

the most important statistic measuring the applicability of the central limit

theorem; y,(4) can never be zero for shot noise, since neither the fourth

moment of random variable ak or pulse F can be zero (except in a trivial

case).

The first moment of shot noise I(t) is the mean

=dc ITTE"= (1) - v a"dx F(x) (28)

and has already been encountered in (12). It can be zero only if the first

moment of random variable ak or of pulse F is zero.

Example

Numerous cases have been considered in appendix C; in the main body here,

we limit attention to example (2) and (3) presented earlier. We find

n
Ila(n) 2 2_' (+ I) an for n_> 0,

2 n+1F 2 (1+ 1dx Fn(x) F 2 for n > 0 . (29)I d ( = f,(n+2)

Then (26) and (27) yield result (9) quoted earlier.

The realization of shot noise process I(t) in figure 3C employed the

parameters in (10). The sample cumulative distribution function of these 8000

data points is depicted in figure 7, on a normal probability ordinate; thus a

22
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truly Gaussian random variable would have the straight line character

indicated. The significant deviation of the sample cumulative distribution

function from the Gaussian line is due to the small value of the overlap

factor in (8), namely

v = 2 'k v = 6.2 (30)

The moments in (29) are all positive and are easily numerically evaluated

via recursion; hence the cumulants in (24) can be accurately evaluated for

high-order n. When these cumulants are employed in a generalized Laguerre

expansion of the cumulative distribution function of I(t), using 32 moments of

(29), the solid curve in figure 8 is obtained. The sample cumulative

distribution function of figure 7 is duplicated here, although the abscissa is

scaled differently. The agreement between theory and experiment in figure 8

is excellent, considering the fact that we only have about 8000/30 = 270

effectively independent samples of I(t) in figure 3C; the denominator factor

of 30 here is the effective correlation duration, previously identified in

figure 5 at the lie point.

Finally, when the same 32 moments are used in a generalized Laguerre

expansion of the probability density function of I(t), the result in figure 9

is obtained. The small bump near the origin is real and accurate; it and the

non-symmetric tails of the probability density function confirm the distinctly

non-Gaussian character of I(t). The method for the determination of the

cumulative distribution function and probability density function in figures 8

and 9 will be presented in a NUSC Technical Report [4] by the author; the

programs are listed here in appendix D, along with an example of the sequence

of Laguerre coefficients.

23
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APPENDIX A. DERIVATION OF SPECTRUM AND CORRELATION

The method employed below follows that given by Rice [I, sections 1.4 and

1.5] rather closely. We generalize [1, eq. 1.3-1] to the current form

introduced in (1):

IK(t) 7 ak F - ) 2 (A-i)
k=1X

where takk, tS {k1P3 are all independent random variables. K is the

presumed number of pulses to occur in a large time interval T, and ak is a

random amplitude as in [1, eq. 1.5-1]; but random duration Rk is new. Then

product

IK(t) IK('--t) k= k~ F(k F ~

+ ii a k amF f F ~- jk=1 m--1 am tr-m
k#m

Holding random variables jael and ý(kj fixed for now, the statistical

average of (A-2) over etký is

K t k Itk (tr-t k
a k T dtk F H•dk F k d -k-1

K K 1t-tk\ 
I (t r tm)

+~ ~a m r dtk F-r 4Jdtri Ff ým

k=1 m=1
k"n

K K K

ý_ k~ 4 (rl)k) + 2a k am A P~m 2(),(A-3)
k=1 T k-1 m-.1

kfm

27
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where T is an arbitrary large (but finite) time interval, and

= {dx F(x) F(x-y) (A-4)

is the aperiodic autocorrelation of pulse F, while

S(f) = fdx exp(-i2wfx) F(x) (A-5)

is the voltage density spectrum of F.

The remaining averages over independent random variables fakj and

141 in (A-3) now yield

1 Tf7~ 2 -

-K a dR P(Q)A ý(tIA) +-L (K2-K) [aQ S(O)]2, (A-6)

where p(Q) is the probability density function of random variable Ak-

Now K is itself a random variable, with discrete probability

(in an interval T) of L1, eq. 1.1-3]

K! exp(-vT) for K = 0, 1, 2, .... (A-7)

There then follows the characteristic function of random variable K as

fK(T) = exp (vT[exp(if) - I]), (A-8)

with series expansion

f fK() = vT (exp(ir)-1] = vT 2 (iT)nIn . (A-9)

n=1

Thus the cumulant• of random variable K are all equal,

XKK(n) = vT for n > 1 , (A-10)

giving in particular the first two moments

- vT, K = vT(vT + 1) . (A-I1)

28
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The use of (A-li), to perform the remaining average of (A-6) with respect

to random variable K, then yields the correlation function of the shot noise

process I(t):

RI(C) v a-7 fd p(Q )A + (•l•t) + [v aY S(O)] 2 . (A-12)

The dc component of I(t) is

Idc = a S(O) =V aYT dx F(x). (A-13)

The spectrum of 1(t) is the Fourier transform of (A-12):

Gl(f) v a A df + Idc S() A-14)

where

((f) = S dt exp(-i2wft) +(1) -

= 5dtexp(-i2wfT) S dx F(x) F(x-t) = IS(f)4 2  (A-15)

by use of (A-4) and (A-5). Thus (A-14) can be expressed as

GI(f) -v a dd (A.-16)tf12 +

JS(f)1 2 is the energy density spectrum of pulse F.

Example

The example of interest here is given in (2) and (4):

F(x) - (4 for 1:t <

pQs) ~exp-A) U(Q). (A-17)

29
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Then from (A-5) and [5, eq. 3.752 2],

SA • J1(2"rf)

S(f) = dx exp(-i2wfx) (1-x J. (2- (A-18)

Substitution of (A-17) and (A-18) in the integral in (A-16) yields, by use of

[5, eq. 6.633 2],

I 4. e 2~) ~(2wf) 1 2 exp(-z) 11(z) (A)--exp w2 (A-19)
a 4f2 t z

where

z = (2 wf)2. (A-20)

Then the spectrum (A-16) is given by

2 2 exp(-z) 11 (z) 'dc £(f) (A-21)Gi(f) =2,2 va2 2• +z2(-1

z d

where

Idc Va S(O)= va (A-22)

by means of (A-13), (A-18), and (6).

To determine the correlation of shot noise process I(t), we consider

first the continuous portion of the spectrum in (A-21):

G~ (f) = 21 2 v a72 2 exp(-4, 2 2 f2 ) Ii(4w252 f2 ) (A-23)c 4 2 2f 2
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The corresponding correlation is

R c(t) = f df exp(i2,ft) Gc(f) =

Cx(4-f 5-f4 O f

4w2 v a OR jdf 2 cos(2wf-r) e( 4w 2 2f2)1(w f)=

2• exp(-z) 11(z)
=~ 2wvadz cost-z

ZII) z

= 2 v v a exp(-s) W (2s) (A-24)

where we employed (A-20) and [5, eq. 6.755 2], and defined

2 . (A-25)

The W-function in (A-24) is the Whittaker function [2, p. 505].

Now by [5, eqs. 9.232 1 and 9.222 1], we have

W 1(2s) W 3 1(2s) - ie p(3-2 dt exp(-2st) tY2 (1+t) "/1

2 exp(-s) dt exp(-2st) 1  ' 1 (A-26)

But according t,) [5, eq. 3.364 3],

Sdt exp(-2st) = exp(as) K0(as) (A-27)

t Y2(a+t)
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Partial differention with respect to a then yields

d e / - s exp(as) [Ko(as) - K1 (as)] (A-28)

0 t (a+t)

and (repeated)

3~d ep(-2s) ~2 r - +K(as)]. (-94_ dt e12 sI 2 = s exp(as) L2Ko(as) - 2Kl(as) + asA-29)
0O t (a+t)

Here we used [2, eq. 9.6.28] in the forms

Kb)(z) - I(z), K,(z) = - K(Z) z(A30)

1 z

If we now set a I in (A-28) and (A-29), and then employ these results

in (A-26), we obtain

22

w3 1 (i2s) = r~a ' [(1+4s)Kl (s) - (3+4s)K0(s)] (A-31)

Finally, the use of (A-31) in (A-24) yields

R (JO) = Y(2w)' v a 2 a,, s exp(-s)II(1+4s)K1(s) - (3+4s)Ko(Sfj. (A-32)

The Fourier transform of the impulsive part of the spectrum in (A-21) is simply

the constant

= 2 2 2

'-- ,2) (A-33)

which must be added to Rc(t) in (A-32) to obtain Ri(t). Here s is given by

(A-25).

As ",00, there follows from (A-32),

lim R (M) = E( 2 w) v a7 (A-34)
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APPENDIX B. VARIANCE OF CORRELATION ESTIMATE

Let the available data be txnIN, with zero mean and variance o2:

1

-7 2"xn =0, xn = for 1 < n < N (B-i)

The autocorrelation estimate at delay k is defined here as

= 1 for k > 0. (B-2)

At delay 0, the mean value of estimate R is

N
1o 2 2

0 = xn=X= • (B-3)

We now want to evaluate the standard deviation of estimate Rk at delays

k large enough that xn and Xn-k are statistically independent. We have

mean value

N
Rk =...Ixn xn-k = 0, (84)

N n=k+l

using the independence at separation k. The mean square value of estimate

Rk is

N

N k m,n=k+lxm xn Xm -k Xnlk (B-5)

For the large separation values k of interest here, the only statistical

dependence that contributes non-trivially to the double sum is the following:
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N N"R Xm Xn 4 a2 "(m-n)
kk = T-2 mnnl Xm-k xn-k =;2 m,n=k+l

= 7 4 (N-k-In ) p2(n)'" 4 (N-k).;j 02(n) (B-6)
Inj <N-k N (

Here p is the correlation coefficient of data fxn3, and we have assumed that

N is moderately larger than the effective correlation length of p. The ratio

of the standard deviation of estimate Rk to the mean value at k=O is then

the normalized standard deviation at separation k:

2I
Nn

Notice that no Gaussian assumptions on data fxn1 have been employed in this

analysis; however, p(k) is essentially zero at the k values of interest.

As an example, for an exponential correlation of effective length Ke,

there follows

o 2 (n) = 2.. x e-- 2n|xLý K (B-8)

n n . J- x exp ) ie e e

where we assume that Ke is moderately larger than unity. Then (B-7) yields

,-4
k (N k)Kel (B-9)

These results hold only for those values of k where p(k) has substantially

gone to zero. Larger values of Ke lead to larger relative standard

deviations; this is consistent with the fact that there are then a lesser

number of effectively-independent samples in the limited data set of length N.
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For the 8000 data pciiit example of interest here, inspection of figure 5

reveals that Ke • 30. Thus

+ =o 00" (8-10)k 730 "(-O

These confidence limits are superposed as dotted lines on figures 5 and 6.
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APPENDIX C. PROPERTIES OF CHARACTERISTIC FUNCTION OF SHOT NOISE

Derivation of Characteristic Function

The method of derivation of the characteristic function of I(t) presented

here parallels that of Rice [1, sections 1.4 and 1.5] very closely. We

generalize [1, eq. 1.3-1] to

K t t

I K(t) a ak F( -~ (C-i)

k =1 (R

where jak), ftk}, Jjk' are all independent random variables; see (A-i)

and the ensuing discussion. The characteristic function of an individual

component in (C-1) is

fl(r) = exp ak F•}t 'tk (C-2)

where the statistical average is over ak , tk ,,k " The average over

tk (for fixed ak, Ak) is, for T a large but finite time interval

[1, p. 152],

1 f dtk expl'ak Fj.kk j

0

1 ýj dtkfexp r~ak F(1 i-it i

0

! 4Sdt~exp ýak F -r ~ + 1 (C-3)
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for large T, where we have used the fact that

F(x)-. 0 as x-. *o. (C-4)

Let x = (t-Tk)/)k in (C-3) to get

4-~ fdxtexp~if ak F(x)]-1} + 1 . (C-5)

Now performing the averages on random variables k and ak, we have, for the

characteristic function of an individual component of (C-1),

f1() TX 4 fda p(a)J'dxlexpti Ta F(x)]-1I+ (C-6)

where p(a) is the probability density function of random variable ak.

Interchanging integrals, (C-6) becomes

f 3) -1 Jdxff [jF(x)-1J + 1 ,(C-7)

where fa is the characteristic function of amplitude ak. Then from (C-1),

since all the individual random variables are independent, the characteristic

function of IK(t) is

fIK l [fl(y)]K (C-8)

Finally, the characteristic function of total shot noise process (1) is, by

use of discrete probability distribution (A-7) for random variable K, given by

the average
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fi(r) = K 'exp(-vT) fI (T)
K=O

= exp[-vT + vT fl(r)] =

- expC vjdxfaL'F(x)]-11] (C-9)

The (imprecise) large time interval T has dropped out of the general

result (C-9). Also, the only parameter required about the duration random

variable A is its mean. The exact characteristic function fa of

amplitude ak and the exact pulse shape F directly affect the characteristic

function of I(t). For.k = 1 for all k, (C-9) reduces to a simplified

version of [1, eq. 1.5-4].

Cumulants of I(t)

The characteristic function of random amplitude ak can be expanded in a

power series

f T) ~(n) OF)f n (C-10)
n=O

where ma(n) is the n-th moment of ak:

Va(n) = an= n da an p(a) . (C-li)

Then from (C-9), we develop
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,n fI(r) =vý-fdx {fa,[F(x)j-1}

=V. x ia n ! ?4. F' (x) ,(C-12)

n=1

allowing for immediate identification of the cumulants of I(t) as

Xi(n) - vF1a(n) Jdx Fn(x) for n >1; -I(O) = 0 .(C-13)

ForRk = 1 for all k, this reduces to [1, eq. 1.5-2].

The normalized cumulants of I(t) are

y-I(n) 1 "a(n) fdx Fn(x)
yi(n) = (2) Jdx . (C-14

These quantities tend to zero rapidly for v! >> 1; see also [1, eq. 1.6-3].

Thus vI has a prorounced effect on how Gaussian 1(t) is.

Behavior of characteristic function fi(F) at Y= *o

If pulse F(x) is non-zero only over(x 1, x2),we have

x2

Jdx f f TF(x)>l}1 = ,ý dx ýf a F(x)]-f1.1C5
1

Now if random variable ak has a characteristic function fa with the property

that

fa(*) 0 (C-16)
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then

x2
(C-15)-- dx 10-1} = -(x 2 - x1 ) as - *•, (C-17)

in which case (C-9) yields

fl(**) = exp[-vX(x 2 - X1 )0 " (C-18)

If pulse extent x2 - x1 is infinite, as f3r the Gaussian or exponential

pulses,

F(x) = exp(-x2) or exp(-x)U(x) , (C-19)

then (C-18) is zero. On the other hand, if x2 - xI is finite, as for circular

pulse

F(x) -x , (C-20)

0 for lxi >

then

fI(*va) = exp[-J72] 0 for circular pulse. (C-21)

This non-zero characteristic function value corresponds to an impulse at the

origin of probability density function p,, with area (C-21). Physically,

this means that there are occasionally regions of the t-scale where no pulses

overlap, and there I(t) = 0. The probability of this happening is, generally,

PO = Prob [I(t) = OJ = fI(*.) = exp[- v(x 2 - xI)] . (C-22)
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On the other hand, for the Gaussian or exponential pulses cited in

(C-19), x2 - x1 = +4', and fi(*o) = 0, meaning that there is no impulse

at the origin of probability density function PI. Physically, the infinite

tails (even if single-sided, as for the exponential pulse) disallow I(t) ever

from becoming zero.

Cumulants of Continuous Portion of P1.

The impulse at the origin means that probability density function p,

and cumulative distribution function PI can be expressed respectively as

P1 (u) = IS S(u) + pc(u)

U
0

P1( P0 +Sdt p C(t) for u > 0, (C-23)

where pc(u) is a continuous function of u, with area 1-PO. The

characteristic function relation corresponding to (C-23) is

flIM = PO + f c(T) (C-24)

and the moments are related according to

I0) - PO for n=0C

pc(n) = UI(n) for nfl) (C-25)

The cumulants of fc or pc can then be found from these moments (C-25), by

recursive relations; see [4] or [6]. This procedure is necessary to get

accurate series expansions for the probability density function pc and its

cumulative distribution function, without having to approximate a delta

function.
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Overlap Factor

In the case where pulse extent x2 - x1 is finite, it is possible to

find the average number of overlapping pulses at any one time instant; this

statistic, denoted by K1 , is called the overlap factor. In order to

determine it in a simple fashion, we concoct a very special shot noise

process: let

ak = 1 for all k

F(x) = 1 for xI < x < x2 . (C-26)

Then I(t) is a step function with amplitudes limited to the values

0, 1, 2, .... Then obviously, the average number of overlapping pulses at

one time instant is just

K-= (t) = U (1) 3 dx F(x) v vJ(x2 - xi) , (C-27)

upon use of (C-13) with n-i and (C-26). If we let

J= (x2 - xl) (C-28)

denote the average pulse duration, we have the overlap factor in the form

= " (c-29)

For the Gaussian or exponential pulses in (C-19), we have

x2 - x1 = +a&, giving'[ = +00, K = +0. This is in fact true, since

all the infinite tails overlap; however, it is not then an informative

statistic.
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Closed Form Characteristic Function Examples

There are a couple of examples of the circular pulse shape F and

amplitude characteristic function fa' where (C-9) can be evaluated in closed

form. This furnishes an alternative to the moment approach [4] used here.

Consider the circular pulse in (C-20); then the integral in (C-9) is

(using (C-15))

1

dxf2 d oofa coo 2(C-30)-1 d~[(-~1

which holds for any characteristic function fa* Now first let the

probability density function of ak be exponential:

p(a) = a1 exp -a U(a) f = (I - a (C-31)
"Pa (.Pa) 'a(' (1 a .(-

Substitution in (C-30) yields

2 Ido cos 2 (C-32)f 1-i1va cose

0

But we know that 2 do coso w 4
2 cose F + arc tan20 1-Z C~ c-s Z- (~Z {1_

S+ 2
+ arc cos(-z) , (C-33)z -Z

via [5, eqs. 2.554 2 and 2.553 3]. Then letting z - ip a and using

[2, eqs. 4.4.2 with 4.4.26], (C-32) becomes
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-2Afn(S-pal) + i"(s-1) wCs2 Y

as -, with s +(C-34)

Combining these results in (C-9), the closed form characteristic function is

fs 2v +n(s-paa)- !(s- , (C-35)
f1(y)Pa - exJ 'a15  aI~T 2 ( - 5

which holds for a circular pulse F and an exponential probability density

function p(a).

The second example is the one considered in detail here, namely the

Rayleigh probability density function p(a) given in (3). First substituting

(C-30) in (C-9), we have characteristic function

fl(f) - exp[2vl(J(V)-l)] , (C-36)

where integral J(r) is defined as

J(r) - do coso faLr cos.] . (C-37)

For Rayleigh probability density function (3), (C-37) can be expressed as

follows:

W

do cosa da exp(ial cose) a exp(a 2  (C-38)
.ra -2°F2

Transform to rectangular coordinates according to a cos 0 = aa x,

a sin 0 = Oa y, and obtain

J()- dx dy x exp Ca5x (C-39)
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But the integral on y here is, via y - x u , equal to

du ex x exp( /2\ = 1x2' (C-40)

o u2 (1 •ui4 --

the latter by means of [5, eq. 3.364 3]. Thus (C-39) becomes

dx x exp(oaX 1 - exp(-) Ko0 () =
oox

= du exp(i 2% al u) u exp( ~ K&~.9 (C-41)

At this point, we have two alternatives. First, (C-41) could be

efficiently evaluated for all Y' via an FFT; the decay of the integrand is

according to exp(-u2) for large u. Secondly, J(') can be expressed in a

closed form in terms of a hypergeometric function; specifically

J(•) = 2 F2 (3, 1; _2, 7 -2 2 ) +

+ b exp -b2 ) [10 (b2 ) - 11(b2 )) , (C-42)

where b = a ai/ 2. The upper line follows from [5, eq. 6.755 6], while the

lower line used [5, eq. 6.755 9] with an application of partial derivative

alaa to both sides. The characteristic function fI is finally obtained by

employing (C-42) in (C-36).

Still another alternative is afforded by use of the closed form for the

characteristic function of the Rayleigh probability density function, as given

in [7, eq. 6].
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Moments for Some Particular Pulse Shapes F

The moments of pulse shape F were encountered in evaluating the

cumulants ?-(n) of shot noise I(t), according to (24) or (C-13) as

PF(n) = {dx Fn(x) for n > I . (C-43)

For circular pulse (C-20), [5, eq. 3.621 1] yields moments

1(n) = _% dx 2'•/i= de n+1 2 n+1r2n

"PF (n)(1-x = 2J (fos) = ' r(n+2 ) (C-44'

-1 0

a result already quoted in (29).

More generally, for

x2 for IxI <
F(x) = , (C-45)0 for jxf >1

[5, eq. 3.621 1] yields, with a trigonometric substitution,

PF (n) r 2 r2 (C-46)

For

cos x)a for IxI < 7 (C-47)
F(x) 2 (C-47

0 for IxI >

[5, eq. 3.621 1] yields directly

,..2/nam+l\

PF(n) = 2ne I krt . (C-48)
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For

F(x) - xO exp(-x) U(x)

,UF~n)I r = na+l , (C -49)

while for

F(x) = x' exp(-x 2 /2) U(x)

na-1 d(2nG+l

F F(n) = -na+i 2 (C-50)

Both relations follow directly from the definition of the F function.

Some Probability Density Functions for Amplitude a

For probability density function

p( a/))( exp(-a/a) U(a) (C-51)

we have characteristic function

f = (1-ifca)'- (C-52)

with moments

Ua(n) = (+l)n a n for n _> 0 (C-53)

and cumulants

/(a(n) = (n-1)'. (y+l) an for n > 1 . (C-54)

This example subsumes the exponential probability density function, upon

setting y . 0.
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For probability density function

p(a) = 2(a/a)y exp(-a2/2) U(a) , (C-55)(+)a

we have moments

n +11
a (n) +- 2 n for n _ 0. (C-56)

This example subsumes respectively the one-sided Gaussian for y=O, the

Rayleigh for y=1, and the Maxwell probability density functions for y=2. The

result in (29) follows immediately by setting y=l, a= 2%a.

Convergence of Series for bn fi(f1

A power series expansion for ýn fl(f) was developed in (C-12), namely,

,~nf 1T) ~ ~n)1A(n) (if) ; (C-57)

n=1

here we employed (C-43). Since the moments in (C-57) can be easily evaluated

via recursion, according to results in the above two subsections, it might be

thought that (C-57) could be employed to evaluate the characteristic function

of I(t) directly, without recourse to the more difficult approaches required

in (C-9) or (C-35) or (C-36)-(C-42).

To see the drawbacks of this approach, consider first a circulae pulse F

and a generalized exponential probability density function p(a) as in (C-51);

then a combination of (C-44) and (C-53) yields, for the n-th term of the sum

in (C-57),
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2 (y+lnr 2 +l)

S(' (n+l)(i2)n (C-58)

T n n .(n+1 * ()c

Then ratio

Tn (n+y)(n+-f-l) 2a2 2 2

Tnn -2 n21= as n (C-59)

regardless of the value of y. Therefore

T1TnI " as n-+ , (C-60)

meaning that series (C-57) only converges for I'I < 1/a. So (C-57) is not a

viable approach for the calculation of the characteristic function in this

case.

As a second example, we consider the circular pulse F with the

generalized Rayleigh probability density function in (C-55). Combination of

(C-44) with (C-56) yields for the n-th term of series (C-57),

2f12(fn+1) F n+y+1NV =-2- (ira2 )n .(C-61)
Tn -0n,1 (n +1) ••

Then ratio

T ~2 2 22
Tn- n2 _ '%P- 2n as n* +(C-62)

Tn 2  n2 1 2 2n

regardless of y. Therefore

TT• n),• as n.- + e-0 (C-63)
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meaning that series (C-57) converges for all. However, direct numerical

evaluation of (C-57) via (C-61) and (C-62) loses all its significant digits

for large f, long before kn fi(j) reaches its final value of -2.v + iO, due

to the alternating character of the series. So (C-57) is not a useful

approach for evaluation of the characteristic function, except for small T.

By contrast, the series expansion technique employed in [4] uses the moments

to directly estimate the desired probability density function and cumulative

distribution function of interest, for large arguments as well as small.
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APPENDIX D. PROGRAMS FOR CUMULATIVE DISTRIBUTION FUNCTION

AND PROBABILITY DENSITY FUNCTION

The programs used here to evaluate the cumulative distribution function

and probability density function of shot noise are listed below. The n-th

coefficient in a generalized Laguerre expansion of orthonormal polynomials is

denoted by bn and is plotted in figure D-1 for n = 0(1)70. It is seen to

oscillate and decay with n until n = 32, at which point round-off error

becomes important; however, by this time, lbnl has decayed below the 1E-5

level. The round-off error is so dominant beyond n = 35, that no useful

results for bn can be obtained then. The particular parameter values (a, a)

used for the Laguerre weighting are indicated in the listinys.
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940 IF P'.O. AND P<A. THEN 570
550 PENUP
560 GOTO 580
570 PLOT ,J,FNMIrt.phi,.P
580 NEX:>-,'T I
590 PEHUP
600 GOTO 300 55
610 END
620



1IM No. 841208

6 30 DEF FN Invphi (X.) INVFHI (X) via 26. 2.23 'iit h rmodi f cat ioni
640 D=X-. 5
650 IF ABS(D:.>.01 THEN 6ts
f-60 P=2-.50662-S'2ý7463*D*1l.+fl*D*1.04719"5512.:-,)
676 RETURN P
680 P=X
690 IF X> .5 THEN P=1.-X
700 P=SQR(-2.*LOG(P))
710 T=1.+P*(1.432788+P*(. 189269+P*.681368))
720 P-P-(2.515517+FP*(.802853+P*.010328))/T
738 IF X<.5 THEN P=-P
740 RETURN P
-50 FNEND
760
770 DEF FNGarnriatX.) Gammra(X) via HA~RT, page 282, #52143
780 DOUBLE N,K
790 N=INT(X)
800 R=X-N
8-10 IF N>0 OR P .-'>. THEN 848

PR -NT 'iFNG-arfma X") I S NOT DEF INEDL FOR X
8:30 STOP
8,40 IF R.:'. THEN 870
850 G artirtsa2 =I.
860 GOTO 940
870 P-439.3304440E.0025676+P*(50. 10869:375297'809530:,+R*E. 744950ý72-45?21528,99>'
$88 P=8762.71082978521489E+R*'(2008.52740130727912+R*P')
890 P=42353. 5895097440896+R*(20886. 861789'2698874.R*P)
900 Q'=499.028526621439048-R*(189.49823:4157028016-R*(2ý,3.081551-1524580125-,))
910 c0=9940. 30741508277090-R*(1528.60727377952202+P*Q)
9'210 O=42:353.689509?440900+R*(2980.:38533092ý)664;9-R*iQ)
9:30 Garnna2=P/IQ Gamrna(2+R) f~or 8 < P < 1
940 IF N>2 THEN 986
958 IF N<2 THEN 1838
960 Gaftiha=Gamma2
976 RETURN Gammrra
980 GamnaL=Gammra2
998 FOR K=l TO N-2

1000 Gamrna=Camrna*(X-K)
1818 NEXT K
1020 RETURN Gammina
1030 P=1.
1340 FOR K=O TO 1-N
1058 R=R*(X+K)
1868 NEXT K
1070 Gammrga=G-arnrna2./R
1080 RETURN Gamma
1090 FNEND
1100
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1110 DEF FNF11(RI 1 X)
1120 DOUBLE K
1130 T=S=1.
1140 FOR K=1 TO 2800
1150 T=T*X/(Al+K)
1160 S=S+T
1170 IF T<=1.E-17*S THEN RETURN S
11se NEXT K
1190 PRINT "200 TERMS IN FNFII AT";R1;X
1200 RETURN S
1210 FNEND
1220
1230 SUB Laguerre(DOUBLE N,REAL Alpha,X,L(*),) Lr,"-a~phaL(X)
1240 DOUBLE K
1250 Rl=Rlpha-1.
1260 L(0>=1.
1270 L(1)=Alpha+1.-X
1280 FOR K=2 TO N
1290 L(K)=((K+K+A1-X)*L(K-1)-(K+Al)*Ld*,--2),-*K
1388 NEXT K
1310 SUBEND
1320
1330 SUB Momnt.. vi a c umtfl(DOUBLE M. REAL Guu ( *) , orn'1'. *)
1340 DOUBLE K,J
1.350 REAL MomO
1360 Mom (0)=Mom0=EXP ý um (0::')
1370 FOR K=1 TO M
1380 T=I.
1390 S=Cum(K)*MomO
1400 FOR J=1 TO K-i
1418 =*K-J/
1420 S=S+T*Cum(K-J)*Mom(J)
1430 NEXT J3
1440 Mom(K)=S
1450 NEXT K
1460 SUBEND
1470

57
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1480 SUB Coeff1d via mom(DOUBLE ; REAL Alpha, Beta, Mo A<**)',A ),
1490 ALLOCATE B(O:M)
1500 DOUBLE K,K1,J,M>x
1510 T=1.
1520 FOR K=1 TO M
1530 T=T*(Rlpha+K)*Beta
1540 Mom(K)=Mom(K)..T NORMALIZED MOMENTS, RELATIVE TO Alpha AND Beta
1550 NEXT K
1560 Q=1.
1570 R(O)=B(o)=Mom<o)
1580 FOR K=1 TO M
1590 KI=K+I
1608 T=1.
1610 S=Mom(3)
1620 FOR J=l TO K
1630 T=T*(J-KI)/J
1640 S=S+T*Mom(J)
1650 NEXT J
1660 0Q=*(Alpha+K)/K
1670 R(K)=S
1680 B(K)=S*SQR(Q)
1690 NEXT K
1700 Mx=Mx+10
1710 IF Mx.M THEN 1700
1720 Thrteshold=-7.
1730 T2=Threshold*2.
1740 V=10.^Threshold
1750 GINIT
1760 PLOTTER IS "GRAPHICS"
1770 GRAPHICS ON
1780 WINDOW O.,FLT(Mx),T2,0.
1790 LINE TYPE 3
1800 FOR J=O TO Mx STEP 10
1810 MOVE JT2
1820 DRAW J,O.
1830 NEXT J
1840 FOR J=T2 TO 0
1858 MOVE O.,J
1860 DRAW Mx,J
1870 NEXT J
1880 PENUP
1890 LINE TYPE 1
1900 IMAGE 4D,2(4X,M.17DE)
1910 PRINT " K B(K) Sum"
1920 Sum=O.
19:30 FOR K=O TO M
1940 B=B(K)
1950 Sum=Sum+B*B
1960 PRINT USING 1900;1<,B,Sum
1970 IF B<V THEN 2000
1980 Y=LGT(B)
1990 GOTO 2040
2000 IF B>-V THEN 2030
2010 Y=T2-LGT(-B)
2020 GOTO 2040
2030 Y=Thr-eshold
2040 PLOT K,Y
2050 NEXT K
2060 PENUP
2070 SUBEND

58 2080
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2090 SUB Coefflr via mom(DOUBLE M,REAL Alpha, Beta, Mom<* ,A(*))
2100 ALLOCATE B(0:M)
2110 DOUBLE KKI,J,Mx
2120 T=I.
2130 FOR K=1 TO M
2140 T=T*(Alpha+K)*Beta
2158 Mom(K',=Nom(K)*.'T NORMALIZED MOMENTS, RELATIVE TO Alpha AND Beta
2160 NEXT K
2170 Q=I.
2188 Ao=R(o)=B(@)=Mom(o)
".2190 FOR K=I TO M
2200 KI=K+I
2210 T=I.
2220 S=Mom(K)-AO
2230 FOR J=l TO K-I
2240 T=T*(J-K1)./J
2250 S=S-T*A(.J)
2260 NEXT J
2270 IF K MOD 2=1 _N S=-S
2280 Q=Q*(ARpha+K)/K
2290 A(K)=S
2300 B(K)=S*SQR(Q)
"2310 NEXT K
2320 Mx=Mx+10
2330 IF Mx<M THEN 2320
2340 Threshold=-7.
2350 T2=Threshold*2.
2368 V=10..Threshold
2370 GINIT
2380 PLOTTER IS "GRAPHICS"
2390 GRAPHICS ON
2400 WINDOW 0.,FLT(M::.),T2,0.
2418 LINE TYPE 3
2428 FOR J=O TO Mx STEP 10
2430 MOVE J,T2
2440 DRAW J,0.
245 NEXT J
2460 FOR J=T2 TO 0
2470 MOVE O.,J
2480 DRAW Mx,J
2498 NEXT J
2500 PENUP
2510 LINE TYPE 1
2520 IMAGE 4D1,24X,M.17DE)
2530 PRINT " K B(K) S ur"
2540 Sum=0.
2550 FOR K=O TO M
2560 B=BBK)
2570 Sum=Sum+B*B
2580 PRINT USING 2528;KB,Su1r
2590 IF B(V THEN 2620
2600 Y=LGT(B)
2610 GOTO 2660
2620 IF BY-V THEN 2658
2630 Y=T2-LGT(-B)
2640 GOTO 2660
2650 Y=Threshold
2660 PLOT K,Y
2670 NEXT K
2680 PENUP
2690 SUBEND 59
2708
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2710 SUB Mormrents(DOUBLE MREAL PO,Mom(*)) SHOT NOISE
2720 O,.,,er.lap=6.2 R AV. NO. PULSES/SEC * AVERAGE PULSE DURATI
2730 Sigraa=l. PARAMETER OF RAYLEIGH AMPLITUDE PDF
2740 P0=EX'P(-O,..,erlap> I PROBABILITY OF ZERO AMPLITIUDE OF SHOT NOISE
2.'750 ALLOCATE Cum(O:M-., ARRAY FOR CUMULANTS
2760 DOUBLE K
2770 S=Si g(ita-a*S i gm a
2780 Cum( 0)=0.
2790 Cure( 1) =Over I ap*S i gm'aa*. 25*P I*SQR. 5*P.I
2800 Cum (2) =Over IapS*4. 3.
2810 FOR K=3 TO M
2820 Curm (K) =Curm ( K-2) *$*K,. '. K+ 1 )
2830 NEXT K
2840 CALL Mornnt ,ia ,uc ,r1 t (M r Cu t * M MorC u( * ) )
2850 Mo0 rni ,: =rMorni , 0) -)P0
2-860 SUBEND

10 I CONTINUOUS PART OF SHOT NOISE PDF, pc(u), VIA
20 GENERALIZED LAGUERRE EXPANSION AND MOMENTS
:30 M=90 Q MA'X,.:IMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED
40 DOUBLE t, I, N, K INTEGERS <231 2,147, 48:,648
50 REDIM Mom,0:M),A,::NM L(0: N)
60 REAL M,',m0: 100 ::,A(0: 100), L :0: 100::,
70 CALL MorPOer-t-.(M,POMor,':1*) I P8 IS STEP AT ORIGIN
80 : ernt. er-Morf, ( 1 ) 1'Mor(0:: I CENTER OF ?t_ (u:< '
90 P2= Mo, r(,:2: -,-'Morr, .0. -Cer, t er.Cent, er r MEAN SQUARE SPREAD OF pc k u.'

100 R ifI';E.:'=,-;I,.R ( R2, RMS SPREAD OF pc(u)
110 A) phaO=Ceter*Ceter...pR-I. THE CHOICES AlI pha=A phaO AND
120 Beta0=R2..'e:nt er. Beta=Beta , IOULD MA.E A(K1E=-q2=0
130 Alpha=.74
140 Beta=2. 1
150 CALL Coe ff1 di ia_mom(, M ,Al pha, Bet a, Morn K .) , A(* )) ) DIRECT MOMENTTS
160 CALL Coeff'1ria mom.(M:Al, ha, Bet.a,.Mor(K*:, A ( )) RECURSIVE MOMENTS
170 PRINT "Cent er " ;Center
180 PRINT "Rrfis ="Pros
190 F 1 . ' Bet .*FNGa•mma, Al pha+ 1, ',)
200 INPUT "ORDER AND LIrMIITS:",N,U1,U2
210 PRINT "ORDER AIND LIMITS:",HN;U1;U2
220 Du=(U2-UI).."100.
2:30 H=4 ..... (U2-U1)

240 PLOTTER IS "GRAPHICS"
250 GRAPHICS ON
260 WINDOW III,IJ2,-H*.I,H
270 GRID :U2-U1::,*.a,H*.1
280 PLOT O.,O.
290 FOR I=1 TO 100

00 U=UII+Du*I
310 T :U.'- Bet a
320 CALL Laguerref.t, Al pha, T , L ( * ))
3:30 Su3 U, = A ( 0)
340 FOR K=I TO N
350 SumSum+A (K) *L (K)
:360 NEXT K
370 P=FI*EXP(-T+Al,:h.a*LOG(T);)*Sum PDF OF RV AT U
380 PLOT U, P
390 NEXT I
400 PENUP
410 GOTO 200
420 END 60
430
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ABSTRACT

High-order series expansions of probability density functions and cumu-
lative distribution functions, in Hermite as well as generalized Laguerre
orthogonal polynomials, have been obtained, where the weighting functions in
both cases can have arbitrary (mismatched) parameter values; that is, the two
free parameters a and B in the weightings

w(u) = 1 exp (u a) for all u, Hermite

w u) u exp(-u/aý
w(u) = a + 1) for u > 0, generalized Laguerre

B r( +lI)

need not be chosen so that the first two expansion coefficients b, and b 2 in
the orthonormal series are zero. (The zero-th order expansion coefficient b0
is never zero.) Nonetheless, all the available N lowest-order moments of the
approximating probability density function are maintained identical to those
of the given probability density function, regardless of the weighting employed
and any of its free parameter values.

It has been discovered that deliberate mismatch of a and B results in
faster-decaying coefficient sequences (bn IN than when a and B are chosen to
make bi = b2 = 0, which is a common choice. For example, the central limit
theorem is just such a case, where a and B in the Hermite expansion are taken
as the mean and standard deviation, respectively, and the number of moments
employed is limited to just order N = 2.

A fast trial-and-error procedure is used in general to determine good
values of weighting parameters a and B. The only statistics needed about the
given probability density function or cumulative distribution function are
either its moments or cumulants, through order N. Furthermore, all the results
presented actually apply to functions which have arbitrary area (not necessarily
equal to unity) and to functions which can become negative. In fact, one of
the applications considered is to a shot noise process where the continuous
part of the probability density function has area less than 1, and which is
well approximated by a generalized Laguerre series expansion.

The high-order expansion coefficients for both the Hermite and generalized
Laguerre series can each be obtained by any one of three fast recursive proce-
dures (all of which have been programmed, and for which program listings are
presented):

(a) recursively via cumulants,

(b) directly via moments,

(c) recursively via moments.

a
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The forms of these three recursive procedures differ in the Hermite versus
Laguerre cases; however, they are basically either convolutions or finite
alternating series with binomial coefficients. The occurrence and quantitative
value of round-off error for large N is easily discerned in a plot of the
expansion coefficient sequence for each choice of a and a, and for each of the
three procedures, as well as for both types of series expansions.

Comparisons of the accuracy of the three alternative recursive procedures
reveals that expansion coefficients determined recursively via cumulants are
generally most accurate and least susceptible to round-off error. Numerous
examples of series expansions of probability density functions and cumulative
distribution functions are given, including one with N = 150 terms, where the
last expansion coefficient is of size 1E-lO relative to the leading coefficient
b0 . Estimates of the error associated with the approximations obtained by the
Hermite and generalized Laguerre series are derived and compared with results
of several examples.

b
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EVALUATION OF DENSITIES AND DISTRIBUTIONS VIA HERMITE AND GENERALIZED

LAGUERRE SERIES EMPLOYING HIGH-ORDER EXPANSION COEFFICIENTS

DETERMINED RECURSIVELY VIA MOMENTS OR CUMULANTS

INTRODUCTION

In the theoretical analysis of performance of some systems with

nonlinearities and/or memory, it often happens that the only statistics about

the decision (or output) random variable of interest that can be easily found

are the moments, or in other cases, the cumulants. Explicit relations for the

low-order expansion coefficients in Edgeworth or Gram-Charlier series are

available in terms of the available moments or cumulants [1, pp. 172 and 191],

[2, pp. 223 and 226], [3, pp. 157 and 159]. However, for higher-order moments

and cumulants, these explicit nonrecursive relations are very tedious to

derive, become extremely lengthy, and are not practical to use.

We will address the problem of obtaining accurate high-order series

expansion approximations of the probability density function and cumulative

distribution function of a random variable of interest, in terms of the

available moments or cumulants of that random variable. The necessity of

being able to approximate probability density functions and cumulative

distribution functions from knowledge of either the moments or the cumulants,

is that some physical problems have these particular statistics as natural and

convenient starting points. For example, if a physical processor sums

together a number of independent Rician random variates, the characteristic

function and cumulants of the individual random variables or their sum are not

available in any useful analytic form; however, the nigh-order moments of an
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individual Rician variate can be easily and accurately evaluated by

recurrence, and thereby the moments of the sum can be obtained. Conversely,

for shot noise with random amplitude and duration modulation, the probability

density function is not readily available, whereas the characteristic function

is, and the cumulants are simple to evaluate [4, appendix C].

The particular series expansions we employ are based on the two special

classes of weighting functions

W(U) =(2, exp I "- 2 for all u Hermite (1)

and

w(u) = ua p(-u/I) for u > 0 generalized Laguerre. (2)

0 + '(a+l)

The orthonormal polynomials associated with these weightings are directly

related to the Hermite and generalized Laguerre polynomials, respectively

[5, 22.2.15 and 22.2.13]. The weightings each have two free parameters, a and

s, which can be manipulated to advantage in obtaining finite (high-order)

series expansions which well approximate a given (unknown) probability density

function and cumulative distribution function.

The question of when a set of moments uniquely determines the probability

density function is a difficult one; see, for example, [3, pp. 109-112 and

179]. Also, the convergence of the series is very involved [2, pp. 223 and

258], [3, pp. 161-163]. But, even if the series is divergent, use of a

limited number of expansion coefficients often gives a satisfactory

approximaLlon to the desired probability density function [3, p. 167]. We

2
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presume here that the moments do uniquely determine the probability density

function and are buoyed in that respect by the comment [3, p. 87] that most

distributions in statistical practice do possess this property.

The main idea in the series expansion approach here is not necessarily to

get as many terms as possible, but rather to get as rapid convergence as

possible of the series. If a particular choice of weighting parameters a and

B results in sufficiently small expansion coefficients, say, at order 10, this

is better than another choice of a and B where 20 or 30 terms are required for

the same size coefficients. In fact, if * and a could be chosen such that the

series terminated (zero coefficients) after a few terms, that would be ideal;

however, this is not the case, and in fact, the choice of a and B requires

some trial-and-error to achieve rapidly decreasing coefficients.

The expansion coefficients of a given probability density function, in an

orthonormal set of Hermite or generalized Laguerre polynomials, are denoted by

Jbnjo, where N is the number of available or known moments or cumulants.

Very often, the choice of a and s in (1) or (2) has been made such that

bI = 0 and b2 = 0, for purposes of analytic simplicity and for hopeful

early termination of the series; see for example [1, pp. 171 and 191],

[2, p. 223], [3, p. 159]. However, it will be demonstrated that this is

generally not the best choice, and that more rapidly decaying coefficients can

be achieved by other (mismatched) values of a and B, which must be searched

for numerically; this possibility is also mentioned in [3, p. 164]; In fact,

an example will be given which illustrates that the choice of parameters a and

s to make expansion coefficients bI and b2 zero, can in fact, lead to a

divergent Hermite series.

3
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Depending on the available information1 about the probability density

function, i.e., moments or cumulants, a variety of methods will be given for

determining the expansion coefficients [bnj. In particular, for both the

Hermite and generalized Laguerre series, we can get the coefficients by three

different procedures:

(a) recursively via cumulants,

(b) directly via moments,

(c) recursively via moments.

The reason for having these alternatives is that the calculation of expansion

coefficients [bnj for high-order n invariably runs into large round-off

error. In order to reduce this round-off error, the amount of

number-crunching on the computer should be minimized, and any spurious

transformations between moments and cumulants should be avoided if possible.

Thus it is desireable to have techniques which can accomplish the desired goal

of evaluating expansion coefficients {bnj as directly as possible from the

available information. The use of different alternatives also enables

comparisons of the computed expansion coefficients and thereby furnishes

quantitative assessment of the amount of round-off error. Recursive

inter-relationships between moments, central moments, and cumulants are given

in [6], including cases of two dependent random variables.

4
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FUNDAMENTAL EQUATIONS

DEFINITION OF STATISTICS

Suppose a function p has known moments*

On = f du un p(u) for 0 < n < N .(3)

The function p need not have unit area, i.e., P0 # 1 is allowed, and p can

become negative at some arguments u. Nevertheless, for convenience, and since

most of our applications are to random variables, we shall refer to p as a

probability density function, and to its running integral
%.

P(u) f f dt p(t) (4)

as a cumulative distribution function. We shall presume that P0 > 0 in all

cases.

The characteristic function corresponding to probability density function

p is the Fourier transform

MTi) = du exp(iju) p(u) (5

When f is expanded in a power series, the result is

fit) = An n(if)nl/n! (6)

n=O

* Integrals without limits are over the range of nonzero integrand.

5
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in terms of the moments in (3). Alternatively, if h' f is expanded in a power

series,
00

)en f(ij)= • (i)n/n! ' (7)

n=O

wher equantities n are the cumulants of p or f. Observe that

generally, to the lowest three orders,

= )n f(O) = ýn uo 4 0

P1 =0

"2 1',2(8);e2 °A " (Io -\0 B

The available information on probability density function p will be

either

moments •UnON or cumulants (9)

Whichever is available, we wish to get high-order accurate approximations to p

and cumulative distribution function P in (4); that is, values of N in the

order of 10 to 100 are of interest.

6



TR 7377

WEIGHTING FUNCTION PROPERTIES

We select a nonnegative weighting function w such that

w(u) > 0 at least where p(u) # 0 . (10)

We also disallow any impulses in w. The moments of weighting w are defined

analogously to (3) as

V = fdu un w(u) for n > 0

it is presumed that these quantities can be evaluated for as large n as

required.

Suppose weighting w has r free parameters (plus a scaling parameter). It

might then seem beneficial to choose them such that the moments of w and p are

approximately equal,

Vn = 'n for 1< n< r (plus v 0 ?IA) , (12)

for then the abscissa scales of w and p would tend to match. However, (12)

will turn out to be not so desireable, and the choice of the r weighting

parameter values should be based on another criterion. The ordinate scale of

w is actually immaterial, since the expansion coefficients {bnj will absorb

this scaling; so henceforth we presume that v0 = 1 with no loss of

generality.

7
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APPROXIMATION PROCEDURE

Let Qn be any n-th order polynomial, and approximate probability

density function p by function

N
PN(U) w(u) ;> bn Qn(U) where w(u) > 0 , (13)

n=O

where ýb N are the expansion coefficients. Define weighted squared

error

EN = Sdu y(u) Lp(u)-PN(u)] =

= du y(u) [p(u)-w(u) > b Qn(u)] (14)Jn• n

where error-weighting I is nonnegative. If we minimize EN by choice of

expansion coefficients {b , there follows the set of linear equations

(15)

b nSdu y(u) w2(u) Qk(U) Qn(u) = du y(u) w(u) p(u) Qk(u) for U < k < N.
n=O

In order to use only the available information in (9) about p, the right-hand

side of (15) must simplify according to the selection

y(u) = where w(u) > 0 (and arbitrary elsewhere). (16)

Furthermore, since constant K merely scales error EN, and appears on both

sides of (15), we can set K - 1 without loss of generality. Then (14) becomes

8
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EN = du w(u) 3- bn Qn (u where w(u) > 0 ,(17)
LW U T n=O

and (15) reduces to

n_ bnjdU w(u) Qk(u) Qn(u) = fdu p(u) Qk(u) for 0 < k < N. (18)

In general, this is N+1 simultaneous linear equations in the N+1 unknowns

{b0. The choice Qk(u) = u would lead to an apparently simple set

of equations, when (11) and (3) are used. However, a few numerical examples

quickly reveals that they are very ill-conditioned, due to the character of

the nondiagonal matrix with elements

T du w(u) Qk(u) Qn(u) for 0 < k,n < N (19)

that appears on the left-hand side of (18). In order to avoid the significant

round-off error associated with solving such a system for large N, we choose

I U to be a set of orthonormal polynomials with respect to weighting

w; i.e., (19) is 1 for k = n, and 0 otherwise. Also recall that

V0 = du w(u) = 1 without loss of generality.

Equation (18) then reduces to an explicit relation for the expansion

coefficients:

bk fJdu p(u) Qk(u) for0< k•<N, (20)

and (17) for the error becomes merely

ENSdu J ) -I . b. (21)
EN ' du J n= n "

9
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It will be presumed that the integral in (21) is finite; otherwise, the

error would be infinite, which is a meaningless problem. This will put some

restrictions on the parameter choices of weighting w, since this error

integral depends on these parameters as well as on the given probability

density function p. The sum of squares in (21) must then be bounded, and in

fact affords a measure of the adequacy of approximation (13), by saturating

(at an apriori unknown value) for large N.

As N increases, the values of the lower-order expansion coefficients

{bkj in (20) do not change. Therefore they only have to be computed once

and do not have to be revised as more terms are added in series approximation

(13), i.e., larger N.

EQUALITY OF PROBABILITY DENSITY FUNCTION MOMENTS

A very important property of expansion (13) is obtained as follows:

du Qk(u) PN(u) = Jdu Qk(u) w(u) ni bn n(u)

= bk = ,fdu Qk(u) p(u) for 0 < k < N , (22)

where we used, in order, (13), the orthonormality of (19), and (20). But

since Qk is a k-th order polynomial, relation (22) states that approximation

PN has exactly the same moments as given probability density function p,

from order 0 through order N. This matching of moments between probability

density functions PN and p has been achieved regardless of the weighting w

and its particular parameter values. Furthermore, (22) holds independently of

whether the weighting-moment equalities in (12) are satisfied or not.

10
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The cumulative distribution function corresponding to approximation PN

is defined as

Lk N L
PN(u) m dt PN(t) = 2 bn dt w(t) Q n(t) (23)

Its utility depends on getting closed forms and simple recursions for the

general integral on the right-hand side.

PARAMETERS OF GIVEN PROBABILITY DENSITY FUNCTION p

The moments of p were defined in (3). It is useful to define three

important parameters of p:

Area A = Sdu p(u) = vO (PO > 0, but need not be 1);

Idu u p(u) 'I

Mean Location M = =

2-M pu) F0'2 _(
RMS Width R L Ldu Pu I - (O)2] (24)

(Conversely, •O = A, Pl = A P2 = A(M2+R2 ).) These parameteri

depend on the probability density function p that we are trying to approximate

and can be computed from the available information (9). They are useful for

determining where the major concentration of p(u) lies on the u-scale, and

have obvious physical interpretations.

In terms of the cumulants of p defined in (5)-(8), we have the

alternative expressions

11I
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1/2
A = exp(yO), M X 1, R = X'2  (25)

or conversely
2

I-nij 0 =ýnA, 01= - M X2 - _ ( _ . 2 (26)

GENERAL RESULTS FOR THREE LOWEST-ORDER POLYNOMIALS Q

The weighting function w and associated orthonormal polynomials satisfy

the following equation:

S du w(u) Qk(u) Qn(u) =akn . (27)

Also we have weighting moments

Vn = f du un w(u), with v= 1 . (28)

It is then a straightforward matter to evaluate the three lowest-order

orthonormal polynomials:

QO(u) = 1

Q1 (u) = f(u-V1 )

Q2 (u) 1 2(. 2) - u(V 3- 2VI) + (V 3Vi 2) (29)

where

12
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D 2/0I = (v 2 -v•) ,

2 v2) v2)_((30)

2= 2-ýVi (v4-v 2("2-• )-3-v2 v1)2]

The general expansion coefficients in (20) then become

bo=p0•

bI= •1(o - •0

b 1

b v2) +(31)
= [112(v2-) - A1(v3-v2vl) +O(v3vl-v2

All these results above are general and make no presumption about weighting

moment equalities such as (12).

SPECIAL CHOICES OF WEIGHTING PARAMETERS

Suppose that weighting w has free parameters that can be varied so as to

make the mean locations of w and p coincide (see (24)); that is,

let vi = 1 (32A)

(The reason for the discrepancy with (12) is that we have set v0 = 1 but

have allowed u0 1.) Inspection of (31) gives the following:

then b 0 and b2 = 2 - v2 2 (328)

13
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Conversely, (31) shows that requiring b, = 0 forces the choice in (32A) for

V1. Thus equality of the first weighting moment v, of w with the first

(normalized) moment of probability density function p implies (and is implied

by) the vanishing of the first expansion coefficient b1 . This may or may

not be a useful choice, but, whether adopted or not, has no bearing on the

equality of probability density function moments already demonstrated in (22).

As a second special choice, suppose that weighting w has enough free

parameters that we can vary, so as to make the mean locations and rms widths

of w and p coincide (see (24)); that is

let vl = L0 and v = OA2 (33A)

(Again we have used v0 = 1.) Manipulation of (31) yields the following

conclusion:

then bI = 0 and b2 = 0 . (33B)

Conversely, imposition of (338) implies the results in (33A), as may be seen

by reference to (31). (The apparent additional solution
2 2 2

v2 = Pl/ti 2 v would yield an impulse for w and is disallowed.) Thus

equality of the first two weighting moments of w with the first two

(normalized) moments of probability density function p implies (and is implied

by) the vanishing of the first two expansion coefficients bI and b2 . This

common choice of weighting parameter values can be made if desired, but is not

necessary (or recommended) for series approximations by orthonormal

polynomials. The equality of probability density function moments in (22)

will hold whether (33) is true or not.

14
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EXAMPLE OF DIVERGENT ERROR INTEGRAL FOR bI = 0, b2 = 0

As a demonstration of what forcing expansion coefficients bI and b2

equal to zero can do, consider probability density function

p( 2 uY exp(-u 2/W2 for u > 0 (Y > -1, W > 0) (34)p~~u) - rty.+l\F11

with moments

This class of probability density functions includes the one-sided Gaussian,

Rayleigh, and Maxwell as special cases, for y = 0, 1, 2, respectively.

Consider also the Hermite weighting given in (1), which has moments

(11) equal to

V0 =, V1 = 0, V2 = 2+2. (36)

If we now insist on property (338), then (33A) yields

82 2 1~+1 r i)PO 1"p() P'0

But the leading integral in minimum error EN in (21) is convergent only if

p2 (u)Iw(u) decays sufficiently rapid for large u. We have from (34) and

(1), the dominant behavior

p2 (u)/w(u)• exp 2u 2 + u 2) for large positive u , (38)

wherec denotes proportionality, but disregards the exact scale factor and

subdominant behavior. Thus the integral in (21) is convergent only if

15
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42 +1 4< 2 .2(y+1) 4 ~__ (39)

However, calculation of (39) reveals that this inequality is never satisfied

for any value of y > -1; the function on the right-hand side starts at 0 when

y = -1, and increases monotonically towards 1 as y +, behaving like

1 - 1/(4y) in this limit.

Thus expansion of probability density function (34) according to a

Hermite weighting has an infinite error integral (21) (and perhaps a divergent

series expansion) regardless of the values of y and w in the true probability

density function, if we insist on expansion coefficients bI = b2 = 0. Yet

if we relax requirement (338), and choose B according to (39) such that

B > w/2 , the error integral in (21) is certainly finite, regardless of a.

However, making the error integral in (21) finite is not the whole story,

in so far as realizing useful approximations to the probability density

function or cumulative distribution function. An example of probability

density function (34) was taken with y = 3, w = 1. When a and B were chosen

according to (33) and (37) (giving s = .48 < .5 = w12), the expansion

coefficients [bn initially decreased to approximately 1E-3 at n = 40 terms,

and then diverged; yet a plot of the approximate exceedance distribution

function obtained by a Hermite expansion overlaid the exact answer down to the

1E-16 level. On the other hand, when the weighting parameters in the Hermite

expansion were chosen as* a = 0, B = .7 > .5 = w/2 , giving bI 4 0 and

*This is example B in a later section

16
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b2 0 0, the expansion coefficients {bn} decreased to the 1E-4 level at

n - 70 before round-off error became dominant; despite this apparent

improvement in coefficient level, the approximate exceedance distribution

function overlaid a plot of the exact result down to the IE-1O probability

level, which is several orders of magnitude worse than the above result. Thus

emphasis on getting a convergent error integral in (21) may not always be

desired.

For Hermite weighting (1) and the class of probability density functions

which decay as exp(-uq) as u * +ab, the error integral is always convergent

if q > 2, and always divergent if q < 2. So an exponential probability

density function, like uy exp(-ulw) for u > 0, always yields a divergent

error integral when expanded in a Hermite series.

For generalized Laguerre weighting (2), it is necessary to consider

u = 0+ and u = +4b separately. If probability density function p behaves like

uy as u * 0+, then a finite error integral requires that we choose

: < I + 2 y. Coupled with the finite area restriction on weighting w, a range

of values of a is allowed, namely, -1 < a < 1 + 2 y; this range always exists

since y > -1 is necessary for the probability density function itself to have

finite area.

If also the probability density function behaves as exp(-u/w) as u * +0,

then a finite error integral with generalized Laguerre weighting requires that

we choose 8 > w/2. So the range of choice of o is open on the large side,

whereas that for a is a limited one, for this particular class of probability

density functions.

17
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HEF4ITE EXPANSION

In this section, we will deal exclusively with weighting (1),

w(u) = 4 for all u (0 > 0) (40)

where

O(x) = (21)-A exp(-x 2 /2), J(x) =_jdt 4(t) . (41)

This weighting has two free parameters, a and B, and moments

V 0
1 , 0 v 1' v2 11 CL+ " (42)

If vi and v2 are specified, the parameters must then sa'isfy m v1,

(v2 - vi)1 2  However, we shall keep a and B general and unspecified.

PROPERTIES OF POLYNOMIALS AND EXPANSIONS

The orthonormal polynomials associated with weighting (40) are the

Hermite polynomials [5, 22.1.2 and 22.2.15]

Q (u) = He n(-') (ni) for n > 0 . (43)

The expansion coefficients are given by (20) as

bn=Sdu p(u) Qn(U) = (nt)- 11 2 cn for nO , (44)

18
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where we define

= Jdu p(u) •n-• for n >0 . (5
fn n(4u)

The approximate probability density function then follows from (13) in the form

N N
PN(U) = w(u0)1 - n an V- )

n=O n=O

where we used (40), (43), (44), and defined

(n.)1/2 an = bn = (n!)-1/ 2 cn for n > 0. (47)

These three different coefficients in (44)-(47) are introduced for convenience

in further equation manipulations. Expansion coefficient bn is the

geometric mean of auxiliary coefficients an and cn (with polarity).

Expansion (46) is also called a Gram-Charlier series of type A [2, p. 222],

[3, p. 156].

The approximate cumulative distribution function corresponding to (46) is

U N
PN(U) = fdt PN(t)= an 5- - Hen (t0=

- 0 n=O -0

N TN
= an Y dx O(x) He n(x) = ao (T)- J(T) 5 an He n-(T), (48)

n=O -00 n=1

where

T = u-._ (49)

and we used (41) and [5, 22.11.8].
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The Hermite polynomials kHei satisfy the recurrence [5, 22.7.14]

Hen (x) = x Hen- 1 (x) - (n-i) Hen- 2(x) for n > 2 , (50)

with starting values Heo(x) = 1, Hel(x) = x [5, 22.3.11]. The highest-

order term in Hen(x) is xn, with coefficient 1 [5, 22.1.2 and 22.3.11].

The magnitude of the term multiplying bn in (46) has an envelope that decays

approximately as n-1/ 4 with n, regardless of argument u. This may be seen

by using (47) and (49) to get

an Hen (T) = bn (n!)- 1 / 2 Hen (T),C bn(nn+1/2 en) (n1e) 2 = bn

as n *+<*, for all T, (50A)

where we also used [5, 6.1.39 and 22.5.18] and [7, 8.22.8]. Here,oC denotes

proportionality and we have taken the magnitude of the terms; the exact scale

factor of proportionality will be presented in a later section where the

errors of the approximations are estimated. So if bn were to decay faster

than n-3/4, the probability density function series in (46) would converge

absolutely.

Conditions are better for the cumulative distribution function series in

(48); namely, based on the above result, there follows (for the envelope)

an He n-l(T) = bn (n,')-1 1 2 Hen-l(T) - b n-1/ 2 [(n-1)]- 112 Hen-1(T) =

Sbn n-1 / 2 n-1/ 4 = bn n-3/ 4  as n * +00 for all T . (50B)

Thus if bn decays faster than n-1/4, the cumulative distribution function

series converges absolutely. Furthermore, if the leading error integral in
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(21) is finite, the sum of b2 must be fioite, meaning that bn must decay

faster than n-1/ 2 . So we can conclude that if the error integral is finite,

the Hermite series for the cumulative distribution function in (48)

converges. (Notice that this particular decay n-1/ 2 of bn is not

sufficiently fast to make the same conclusion about the Hermite series for the

probability density function in (46).) The above are sufficient conditions on

expansion coefficients Jbnj, and are not necessary.

EXPANSION OF CHARACTERISTIC FUNCTION f

The coefficients an and cn were defined in (45) and (47). Then the sum

00 00

• an wn= .i wn. wn fdu p(u) Hen(7_)

n=O n=O n=O

= nup(u) HenQA-)= $du p(u) exp(UL0w 1w2)

n=O

exp(1w2 f( , (51)

where f is the characteristic function, and where we used (45), [5, 22.5.19

and 22.9.17], and (5). Letting w = oz, we have

f(z) exp CIZ 2z 2 = n (z)n ' (z)n (52)2 n' C0~n! (3~ "(2

n=O n=O

Thus [a ni and {cn) are the coefficients in these power series expansions

of the function f(z) exp(-uz - o2z 2 /2), where f is the characteristic

function corresponding to probability derisity function p, and a and o are

arbitrary. A special case of (52) is given in [2, 17.6.10].
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Collecting (46) and (52) together for comparison, and assuming that

Pn * p as N + +, we have

p(u) = • •(0 an Hen a

n=O

f (iT)= exp~c7 0. Y~) cII a (iOT)n (53)
n=O

Thus expansion of probability density function p in an infinite Hermite series

is equivalent to an expansion of a modified form of the characteristic

function in a power series, according to (53). Equations (51)-(53) will serve

as very convenient starting points for the derivation of several alternative

recurrences for the expansion coefficients ýanj. Notice that weighting

parameters a and o are completely unrestricted in (52) and (53), except that

S> 0.

An analogous result holds for N finite, but must be derived in a

different fashioi, because we no longer can use infinite sum [5, 22.9.17].

Define the Fourier transform of (46) as the N-th order approximation to the

characteristic function:

fN(if) = Sdu exp(iju) PN(u)

N

= an du exp(i5u) • ) Hen( =

= an £dt exp(iyIs + iVst) 4(t) Hen (t) =

n.0

N

-exp(icy) an S dt exp(iolt) 0(t)-

n.O
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N

= exp(iat) :§ an (i )n jdt exp(io3t) O(t) =

n=O

= exp MT + 1 B2(i0)2 an (iO)n, (54)

n=O

where we used [5, 22.11.8] in line 4, and repeated integration by parts in

line 5. This result is the leading N terms of (53). As a by-product of this

derivation, we have

Sdt exp(zt) 0(t) Hen (t) =exp( z 2)zn . (55)

COEFFICIENTS RECURSIVELY VIA CUMULANTS

We are now in a position to obtain some useful recursive relations for

the expansion coefficients tan) in (51)-(54). The first one is obtained by

taking the ." of (51):

,ý _1w a w nj} (56)

Then using (7) and identifying the right-hand side of (56) as a new power

series, we have

man n tn1! Xn Ka -• w- - -Wn Wn 2(57)
n-=0 n =0
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There follows immediately

X n for n 4 1,2

h I4 for n 1 (58)n

1) for n =2

But equality of the right-hand sides of (56) and (57) also requires that

an wn = exP{n2 hn wnJ" (59)

It is shown in appendix A that a recursive solution to (59) for the JanI is

given by

n

a 1 m h a for n > 1, a =exp(hO)an n m an-m _(0

m=1

Then eliminating jhmj by means of (58),

n Xm
an C-•a"•) +' 1a -2+ a n for n > 1,an -• - n_1 - n_ m=3 ( 4m n

a0 = exp(.), (61)

where an -0 for n < 0, and the sum is zero for n < 3.

Now define normalized cumulants (excluding n=0) according to

A ____ for n >1. (62)

n (n-l) Bn
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Then (61) becomes

1 A
a a a + )(m+ a for n > 1an=• n-1 an-2 ÷ • an

m=3

a0 = exp(XO') . (63)

This convolution is the desired recursion for expansion coefficients fanj

via cumulants.

As particular cases, we have

a1 -1 ao, a2  + a0 . (64A)

Parameters a and o (>0) are completely arbitrary in the above three equations,

and P•n} N are the available cumulants of the probability density function

under consideration.

Observe that if we choose a = X-- M and B =;/2 = R (see (24)-(25)),

which is a very common choice, we have a1 = 0 and a2 = 0; this is a

special case of the general property (33) stated earlier. This special choice

of a and o corresponds to choosing the mean location and rms width of Hermite

weighting (40) identical to those same parameters of the given probability

density function. There then also follows, in this special case,

1A

1 1/2 •Aa0

[--3
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COEFFICIENTS DIRECTLY VIA MOMENTS

Before we begin this derivation, we present the following useful

expansion [5, 22.9.17 and 22.5.19]:

exp(1 Y2+ X 1 He (x) yn (65)

n=O

We now again refer to (51) and expand the terms as follows:

n=O

=00~ (&k0
Ld He, ) w Iium~ (66)

k--O m=O

where we utilized (65) and (6). Equating coefficients of wn on both sides

of this equation, we have

n

an 1 r Hek -- )( n-k).nk for n >0 (67)n 'W. n k n:-k- •

k=O

We now define, for convenience, the normalized Hermite polynomials

A I

Hen (x) = n. Hen (x) for n >0 , (68)

and the normalized moments

A n n for n > 0. (69)
n' B

(Notice the difference with the definition of the normalized cumulants (62).)

Then (67) becomes
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n

an ~ He k(-f) Unlk for n > 0 (70)

k=0

which gives expansion coefficients Jan3 directly in terms of the

(normalized) moments of the given probability density function. The

recurrence in (50) can be used to generate the Herrnite factors needed in

convolution (70). Parameters a and o (A0) of weighting (40) are arbitrary.

He.\ M e =x, H. e,6)-H' ,.( for A ?2.

As particular cases, we have

ao =1go, a, =A au 9 G A2 Up4-( 2_02  .g (71)

These agree with (64) which utilized cumulants. If we make the special choice

of ullu and oa2 = u2/PO - (~1I/O&2, then a, = 0 and a2 = 0.

An alternative more direct derivation of (67) is possible: from (47),

(45), (B-3) in appendix B, and (3),

an =.iICn rjdu p(u) HenfuT)

711 ýdu p(u) 2 (k) Re kt /)un

n

2 1r Hek (-) n-k =k for n >0. (72)
k=0 ! k (nk!o
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COEFFICIENTS RECURSIVELY VIA MOMENTS

Before we begin this derivation, we replace x * -ix, y * iy in (65) to get

exp y2 + x = - Hen(-ix) (iy)n r Hin(X) y (73)
n=O nnO

where Hi (x) is a real n-th order modified Hermite polynomial in x defined by

Hin(x) = in Hen(-ix) for n > 0 .(74)

The recursion for these polynomials follows immediately from (50) as

Hi (x) = x + (n-i) Hin_2(x) for n > 2 , (75)
Hn(X) 1(x) Hin l(x)

with starting values Hio(x) = 1, Hil(x) = x. The difference with (50) is

the polarity of the last term; thus for example, Hi2 (x) - x2 + 1,

Hi3 (x) = x3 + 3x, versus He2 (x) = x2 - 1, He3 (x) = x 3- 3x.

We nn~j rewrite (51) in the following form:

f(wl = exp w2+. ) a W (76)
m=O

Expanding in power series by means of (6) and (73),

n; n(']nw k! Hik( wk 2 mwm (7

n=0 k=0 m=0

Equating coefficients of w n, there follows

n = 1 Hik ()ank for n > 0, (78)

or

28



TR 7377

n n

=n = Hik an-k an + Hik) anlk for n > 0 , (79)

k=O k=1

where we have used normalized moments (69), and defined the normalized

modified Hermite polynomials

AI
Hin(x) Hin(x) for n > 0. (80)

Finally, the desired recursion for expansion coefficients janj in terms of

the moments follows as

n
an =in- • Hik(S)ank for n > . (81)

k=1

Parameters a and s (>0) are arbitrary in (81) and (69).

SUMMARY

The approximations to the probability density function and cumulative

distribution function are given by (46) and (48), respectively, where a and 0

are arbitrary constants, except that 0 > 0. The functions 6 and I are defined

in (41), while the Hermite polynomials {Henj are available via (50). The

expansion coefficients Janj are given by the three alternatives (63), (70),

(81), in terms of normalized cumulants (62), normalized moments (69),

normalized Hermite polynomials (68), and normalized modified Hermite

polynomials (80) and (74). Programs for all three alternative procedures for

determining expansion coefficients [anI are listed in an appendix. The

basis for these relations is the characteristics function expansion in

(51)-(53).
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GENERALIZED LAGUERRE EXPANSION

This section will treat weighting (2), namely,

w(u) = Gexp(-ulo) for u > 0 (z > -1, 0 > 0). (82)

This weighting is a special case of the three-parameter weighting

(u-y)* exp (-u for u > (83)

which is the most general scaled linear shift of the generalized Laguerre

weighting 15, 22.2.12]

xe exp(-x) for x > 0. (84)

We will consider only y = 0 here. For a probability density function Po(u)

which is known to be nonzero only for u > uo, we would consider the modified

probability density function p(u) = p0 (u+uo), because then

p(u) 4 0 only for u > 0, and the simpler weighting (82) would be directly

applicable. This procedure is equivalent to choosing y = u0 in the

three-parameter weighting (83) above, and requires knowledge of uO. We

presume that p(u) 4 0 only for u > 0 henceforth in this section, and that any

necessary shifting has already taken place.

Weighting (82) has two free parameters, a and B, and moments

V n (Qa+1) nn for n > 0. (85)
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In particular,

v 1, v1 " (G+)B, v2 - (e+2)(a+1) 2. (86)

If v, and v2 are specified, then the parameters must satisfy

2 2"1I "2 -"1
-i , = (87)

v2 -v1 Il

However, we shall keep a and a general and unspecified except for the

conditions in (82).

PROPERTIES OF POLYNOMIALS AND EXPANSIONS

The orthonormal polynomials associated with weighting (82) are the

generalized Laguerre polynomials [5, 22.1.2 and 22.2.12]

Q (u) = L (a+1)nf l for n > 0, u > 0 . (88)

The expansion coefficients are given by (20) as

bn= -dU p(u) Qn(U) = (2 /)Cn for n > 0 ,(89)

where we define

n •du p(u) L(a) W, for n >0 . (90)

The approximate probability density function follows from (13) according to
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N

PN(U) = w(u) • bn Qn(u) =n=O

N an L(eN(m) for u > 0 , (91)

where we used (82), (88), (89), and defined

+l) an = bn = cn for n > 0 . (92)

These three different coefficients in (89)-(92) are introduced for convenience

in further equation manipulations. Expansion coefficient bn is the

geometric mean of auxiliary coefficients an and cn (with polarity).

The approximate cumulative distribution function corresponding to (91) is

NNu~.d aNt =t t' exd Zt/L 0 L~ a)(t') =
0 d a1,t) n~ B c L (+1) n

1 an In for u > 0 (93)

where we define

In(Y) = dx x' e-x L(a)(x) for n_> 0, y > 0 . (94)
n n

These quantities are evaluated in appendix C; when substituted in (93), they

yield (95)

PN(u) u/$) + exp(-u/L) 1 F1 (1;a+2;.) + - Ln(1) for u >0,=(U - (a+l) --x• n-1 n forn n-> O,

where 1F1 is the confluent hypergeometric function.
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The generalized Laguerre polynomials ýL(n)0 satisfy the recurrence

[5, 22.7.12)

L(a) =-• a-1+2n-x) LnQl(x) - (%-1+n) Ln_2(x for n > 2 (96)

with starting values L(0)(x) = 1, L(1)(x) = a+1-x [5, 22.4.7]. The highest

order term in L(n)(x) is (-x)n/n' [5, 22.1.2 and 22.3.9]; this is distinctly

different from the coefficient 1 for the Hermite polynomials. Yet the

envelope decay with n of the generalized Laguerre series for the probability

density function and cumulative distribution function are identical to those

of the Hermite series, for u > 0. To prove this, use (91) and (92) to get

1 1
aL()(u) = bIn' N L(1().c b -a) n - = bn n

an LWn b,' __n:a L nn n r.,3j)C b n( n -

as n +0, for u > 0, (97)

where we also used [5, 6.1.39] and [7, 8.22.1]. Again, 9Cdenotes

proportionality with n only; the exact scale factor will be presented in a

later section where the errors of the approximations are estimated. So if

bn decays faster than n- 34, the probability density function series in

(91) converges absolutely.

For the generalized Laguerre series of the cumulative distribution

function in (95), we have, for the envelope of the general term,
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1 an L(m+l)(u) - b1 /n L(+l)
1 n n- 1  n b n-1

C bn - (n-) (n-I) 2 4_- bn -314 as n + + for u > 0. (98)

Thus if bn decays faster than n- 14, (95) converges absolutely. And if

the error integral (21) is finite, this property of the [bnj is true. So if

error integral (21) is finite, the generalized Laguerre series for the

cumulative distribution function converges absolutely for u > 0; this is a

sufficient, but not necessary, condition.

For zero argument, the generalized Laguerre polynomials behave

differently for large n. From [5, 22.4.7 and 6.1.39],

L- n.(0) (n+a) n as n (99)

Then (97) and (98) are both replaced by bn nG1 2 as n • +•. However, for

a > 0, the probability density function in (91) is zero at u = 0 due t3 the

uO term, so there is no need to perform the sum then. And the cumulative

distribution function is always zero at u = 0, again eliminating the need to

evaluate the sum in (95). So the difference in behavior at u = 0 is of no

consequence.
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EXPANSION OF CHARACTERISTIC FUNCTION f

The coefficients an and cn for the generalized Laguerre series were

defined in (90) and (92). Then the sum

c wn = nO wn Cdu p(u) L(o)(u/o) =

n=O n=O 0

= du p(u) , n L(a)(u/0) = du p(u) (1-w)' 1 exp ( L)

= (1-w)-- 1 fl(/), (100)

where f is the characteristic function, and where we used (90), [5, 22.9.15],

and (5). Thus fcnj are the expansion coefficients of the right-hand side of

(100) in powers of w. If we let w ,we have the expansion for the

characteristic function

f(z) -- (1-0z)'1:- Cn/'4azz(1)
n=O

corresponding to given probability density function p. Weighting parameters a

and s are arbitrary in (100) and (101).

Collecting (91) and (101) together for comparison, and assuming that

P p as N * +o, we have, upon use of (92),

PN0

. u0 exp(-u/1) 5 an L(0)1. for u > 0 ,

p)a +~l) n=O n n(W)

- (0+l) n is n
for•) = (1i2-- an -n-' "1f (102)

n=O
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Thus, expansion of probability density function p in an infinite generalized

Laguerre series is equivalent to an expansion of the corresponding

characteristic function in the series of the particular form in (102).

Equations (100)-(102) will serve as very convenient starting points for the

derivation of several alternative recurrences for expansion coefficients

ýanj. We reiterate that a and s are arbitrary in the above, except that

= > -1, 0 > 0.

An analogous result holds for N finite, but must be derived differently

since we can no longer use infinite sum [5, 22.9.15]. Define the Fourier

transform of (91) as the N-th order approximation to the characteristic

function:

fN = Jdu exp(ifu) PN(U) =

£du exp(iru) -- x(-u+I )" j an n( =8 6(=÷ 0 n n

n~N an•
= _ a Nt exp(i oft) t= e-t L(Oit) W (103)

In appendix D, it is shown that
Cd F'~ (tL I(G*t~n)nA

dt ei~t ta e-t L((,)t)= gn ( )_iw) n (104)

Substitution in (103) then yields

N (_+1) n N105)

fN(i5)= an a n -i= cn (-+n1

where the last relation follows by use of (92). This result is the leading N

terms of (102).
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COEFFICIENTS RECURSIVELY VIA CUMULANTS

We can now obtain some useful recursive relations for expansion

coefficients ianl and/or Icnl in (100)-(105). We start by takiny the -n

of (100):

hn c w = -(a+1) .Qn(1-w) +.n fl /). (106)

Identify the left-hand side as a new power series, and use (7) and [5, 15.1.8]

to yield

~h wn(c+l) • 1 wn +--x

n=O n .nl _ k k (=w

=((-1) k 0 (k

(w+)n + k=Ow k 2 M (k) m (107)
n=1 k=O k

Equating coefficients of wn, there follows h0 =X 0 , while for n > 1,

nh(-i) k+k (k) n-k
n k=O k; sk 8

1 +1+ (_1)k () (108)n• k Xk

where we used the normalized cumulants defined in (62).

But since the left-hand sides of (106) and (107) are equal, we have

"- n = hn (109)
n=O n n=O n

or via appendix A, the recurrence
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n m h c for n > 1, co = exp(h0 ) (110)

Finally, define

dm = m h. for m> 1 (111)

for notational convenience and thereby obtain

S= + + (-1)k (m) for m > 1

C = m dm c for n > 1, co exp(XO) (112)Cn n M= ml Cn-m-=

by means of (108) and (110), respectively. Equation (112) is a recursive

relation for expansion coefficients ýCr in terms of cumulants [nl and

auxiliary variables {dm}. The Ian) are immediately available via (92).

As particular cases, we have, employing (62),

=i (a )cO

1 2(*t2)ZL + X2  (113)c2 = 0 82 c0 . (113)

Parameters a and o are completely arbitrary in all the above equations, except

that a > -1 and o > 0, and ýh' are the available cumulants.

Observe that if we

let "1 2O-• R,

- 2

and 1== 00 = (114)
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then c1 = 3 and c2 = 0 (here we also used (8) and (25)); this is a special

case of general property (33) stated earlier. Since the probability density

function p(u) is nonzero only for u > 0, then - > 0 and 02 > 0, giving

allowable solutions to (114) in all cases. There then also follows, along

with d= d2 = 0 in this special case, the explicit results

co exp(Xo), c1 = 0, c 2 = 0,

-X2i

C3 -3! (2 - X, X1 ) Co'
_4 (1 23XX 2 o

2
C 4 = 5! 8X5 (144 X3  2 41 1 co,

2

1 (40, + 2 ( 2 2 X• • co
C5 = 2--0

6! 2
C6 ~~ ~ x 2 x2 - 3ox 1)X2  1o4+

X 2~

1 2 2 40X -1 1444)3

c7 =! 7 (10800s + 1260? ;512 12600Y3 X2 X - X20) X
2

+ 43 DX 2  4 + 420OOX X2  ~ 2 4 - 31 -r

S(115)
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These relations have been confirmed by numerical comparison with (112).

These results greatly extend those of [1, (129)-(131)], where the

equivalent of our c 3 is given (in terms of moments instead of cumulants, and

with X0 = 0), along with the comment that "the higher-order coefficients are

so complizated that the whole value of this type of series seems to depend on

the fact that the first term alone (co) is often a good approximation." We

find, on the other hand, that not only can we avoid the special choice in

(114) and the corresponding complicated special results in (115), but we can

handle any as pair and get very high-order coefficients cn, simply by using

the recurrence in (112), which is easily programmed. The only thing we lose

are explicit results of the type given in (115); however, the latter are so

complicated that they are of limited utility anyway.

COEFFICIENTS DIRECTLY VIA MOMENTS

We will need the following expression [5, 22.3.9]:

a+ I T  n() + - n1 75; n- :-5 I -
n n k' k--O"

Then (92), (90), and (3) yield, for n > 0,

a n += = n~ r)du p(u) L(')/!=O n n o n()(.

(n 1 ~du p ,, _uok n 'k
k)u k-,8 K -1 (117)

k= 0 T' k J k--O (0+1)k B

It is useful, in this generalized Laguerre series case, to define an

alternative set of normalized moments
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(o+1)for n > 0. (118)n ( n n

(Although this seems to be very different from the earlier normalization in

(69), (118) actually reduces to (69) for the a here equal to zero.) When

(118) is utilized in (117), we have the desired expression for expansion

coefficients Janj, directly in terms of (normalized) moments, in the

surprisingly simple form
n

n= -(' )k)k for n > 0. (119)

Parameters m and a in (118) are arbitrary, except that a > -1, a > 0.

As particular cases, (117)-(119) yield

a+ (GV1)aG2y)12 (120)
ao = PO' Il = PO -' '7T - a2 = U0 - T(.+-I)o (%+1) ((+2) o2"

These agree with (113) which utilized cumulants. If we make the special

choices of az+1 = v 1/(uP2110 - 211 and o = ( N - 21 1(0 V)

then a1 = 0 and a2 = 0; this is a common approach to the approximation

problem, but totally unnecessary.

An alternative derivation of the direct moment relation (117) is

possible: from (100), (6), and [5, 15.1.8],
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c = n -w/o k

n=O k=O

k=011-W) (121)
k = O O .. P k ( 1 -w) - -k = O k ` km m ! '"/

Equating coefficients of wn, we have, for n > 0,

_n k (a+1+k)n-k (2+1) n ( nN knn _=k() '
cn -k k 1 k)..i T n! k 1 k k (122)k=O 

k--O (m+1)k

which is equivalent to (117).

COEFFICIENTS RECURSIVELY VIA MOMENTS

The starting point for this case is the characteristic function expansion

in (101):

f(z) = cm (-BZ)m (1-Bz)- 1l- = cm (-Bz)m (.z)( k (123)
m=O mM k=O

by use of (5, 15.1.8]. Now expand the left-hand side of (123) in powers of z,

according to (6), and equate the coefficients of zn to get, for n > 0,

n )m (a+l+m)n-m n-m n n Cm(-l)m (Q+l)n
n 0 '7n c()m___ (124)

nT un = C cm (n-m)'- = '-; (n-m)' (cz+mm

Therefore

n n = -M) am for n > 0 (125)(al n :-5 (n+i)m (m25
(0+I) 0 m=0 m m=O
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by use of (92). Then using normalized moment definition (118), (125) can be

expressed as

F.. n-i
an = (-_)n M;n - u(-!(n am] for n > 0 . (126)m=nO(1)111

This is a recursive relation for expansion coefficients tanj in terms of

(normalized) moments. The parameters a and a in (118) are arbitrary, except

that a > -1, o > 0.

SUMMARY

The approximations to the probability density function and cumulative

distribution function are given by (91) and (95), respectively, where a and B

are arbitrary constants, except that a > -1, o > 0. The generalized Laguerre

polynomials are available via (96). The expansion coefficients fanj are

given by the three alternatives (112), (119), (126), in terms of normalized

cumulants (62) and normalized moments (118); in the case of (112), the

interrelationship between expansion coefficients a and ýn) is given in

(92). Programs for all three alternative procedures for determining the

expansion coefficients [a n are listed in an appendix. The basis for these

relations is the characteristic function expansion in (100)-(102).
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EXAMPLES OF HEIR1ITE EXPANSION

EXAMPLE A

The first example is one which can be handled analytically, and thereby

furnishes checks on numerical procedures and results. Consider the Gaussian

probability density function

p(u) ( > 0) (12;A)

with cumulative distribution function and characteristic function

P(u) = ( , f(if) = exp y - • ,) . (1278)

The cumulants are

y•0 Z= 0 4- X 2 _w2 X=n 0 for n > 3, (128A)

while the moments are most easily evaluated by the recurrence

tn = Y Un-1 + (n-i) (2 n-2 for n > 2, U0 I 1, Pi = Y (1288)

It is obvious in this Hermite expansion case that the best choice of

weighting parameters would be a = y, i w, for then weighting w would match p

perfectly and there would follow bn = 0 for n > 1. We consider a mismatched

choice of a and B to illustrate rapid decay of the expansion coefficients and

some conditions on convergence.

Expansion coefficient cn follows from (45) and (127A) according to
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Cn du p(u)en- = Hndx p(a+ox) He n(x) =

n
= a Jdx 0 t Hen (x) = He , (129)

n n

the last step via use of [5, 22.5.18] and [8, 7.374 10]. Then from (47),

n

bn =(n) Hen for n > 0 (130)

This equation is correct for all positive values of o and w. However, for

o < w, a more convenient form can be obtained by use of (74), if desired:

b- = (n ) Hin(Y- . (131)bn n (n)n 2 )

where Hin is the modified Hermite polynomial. For B = w, a limit of (130)
yields bn = (n')-112((y-,) /,)n.

If B > w, we can use the result in (50A) on (130) and obtain

(j--*

bn CC fIJZ n-/ as n ) + (132)

Since the quantity in parentheses is always less than 1 in this case of B >,

we have b n * 0 as n * +o0.

For B < w, we use [7, theorem 8.22.7] and find now that

b OCexp(VI2  A)n as n +b, (133)
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where A is the absolute value of the argument of Hen in (130). This

quantity (133) tends to zero with n, regardless of A, when 0 > W,,[/1.

Combining with the result above, we can conclude that

bn - 0 as n • +4o for -- 0< s < + (134)

Furthermore, bn behaves as an n-th power, which is faster than n-1/4

thereby guaranteeing convergence of the probability density function and

cumulative distribution function series, according to the discussion in (50A)

et seq. On the other hand, Jbnj diverges when 0 < 0 < w'IV, as may be seen

from (133).

The error integral in (21) is, for Hermite weighting (40) and probability

density function (127),

J du exp - if 2_< , (135)

by use of [8, 3.323 2]; this integral is divergent if o < wiyT. Thus, for

this particular example, the error integral and expansion coefficient

sequence kbnl converge or diverge together, depending on the condition

1>.c wI•?. The choice of * is irrelevant in this case.

A numerical example of sequence {bn) for

y = 1.1, w = 2.3 - 1.14, 0 = 2.34 (136)
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is plotted in figure 1 on a logarithmic ordinate. Values of bn less than

1E-7 in absolute value are all plotted at the *1E-7 line. The critical ratio

1•-•/8 in (130) is .184 for this example, leading to rapid decay of

expansion coefficients ibnJ. The three sets of expansion coefficients in

figure 1 are labelled according to the shorthand notation

RC: Recursively via Cumulants,

DM: Directly via Moments,

RM: Recursively via Moments. (137)

It is seen that the expansion coefficients determined recursively via

cumulants, namely, the RC plot, decay rapidly and never encounter round-off

error, whereas the DM and RM procedures both are subject to large round-off

error for n > 70, as indicated by the large increasing oscillations. This

example can be rather misleading, however, since all the cumulants (128A) of

Gaussian probability density function (127A) are zero, except for

X1 = Y9 ?ý= .2; this leads to a very special form of the RC procedure

unique to the Gaussian case.

In figure 2, the cumulative distribution function and exceedance

distribution function, 1-P(u), as determined by Hermite expansion (48) using

N = 50 terms, are plotted. The exact result, (127B), overlapped these curves

over the full range plotted. The three procedures, RC, DM, and RM, all

yielded identical distributions in figure 2, as inspection of figure 1

confirms, since the three sets of expansion coefficients are virtually the

same for n < 50. Even though the three sets of expansion coefficients differ

significantly for n > 60, the corresponding approximate probability density
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functions and cumulative distribution functions for N - 70, say, would not be

very different, because the relative differences in p and P are very small,

somewhere in the 1E-5 range; see figure 1 for n = 70, and recall that b0 = 1

for this example.

EXAM4PLE B

The probability density function of interest here is the one previously

considered in (34) et seq.:

p(u) = 2 uY exp(-u2/W2 for u > 0 (y > -1, w > 0) (138)

This class of probability density functions includes, for y = 0, 1, 2,

respectively, the one-sided Gaussian, Rayleigh, and Maxwell as special cases.

The characteristic function and cumulants are not easily determined directly

for this function. However, the moments, as given already in (35), are

readily evaluated via the simple recursion

Un = Un-2 " (y-l+n) for n > 2, )0 = 1, U1 = W " (139)

An example of the expansion coefficients for

y= 3, W= 1 = 0, 0 = .7 (140)

is depicted in figure 3. The values of bn for n = 0, 1, 2, 3 are 1, 1.90,

2.18, 1.63, respectively, and lie above the top of the plotted region. The
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coefficients obtained directly via moments, DM, decay to approximately 1E-4

near n = 70 and then encounter round-off error. The expansion coefficients

corresponding to RC and RM are more noisy. The procedure used for RC was to

determine the moments via (139), transform directly to cumulants according to

(A-7), and then use (63).

A plot of the distributions using N = 65 terms is given in figure 4; the

results are the same for all three sets of expansion coefficients, as may be

seen by reference to figure 3. Furthermore, the exact cumulative distribution

function, P(u) = 1 - (1+u 2 ) exp(-u 2 ) for u > 0, overlays these results

except for the bow in the exceedance distribution function below 1E-11 near

u = 5.5. Values of the cumulative distribution function for u < 0 as

determined by series (48) are not zero, although they should be for this

example; the generalized Laguerre series would fit this example better, since

it is nonzero only for positive arguments.

EXAMPLE C

Consider the class of Bessel-function probability density functions

p(u) =.Xuy exp(-u 2 /W2) IY(eu) for u > 0 , (141)

which includes the Rice and generalized QM distributions, for example. The

n-th moment is [8, 6.631 1]

A a Z 1F.) n. + h;S+1; w &2) for n > 0 (142)

2 1 -l,1
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with h = (y+S+1)/2; in order for PO to be finite, we must have h > 0. The

IF1 function in (142) can be evaluated via recursion; this leads to a

recursion for the moments (see appendix E).

We consider here only the special case of the Rice probability density

function, namely,

.A=4exp( w2e , y 1= , S=0 , (143)
w

for which

p(u) = uU exp a I0(o) for u > 0. (144)2ep 2 4, 10(SW/

The moments in (142) then reduce to

qn :Fn 2 n;,;- .26,2 (145)

and can be easily determined by the recurrence presented in (E-5). The

cumulative distribution function corresponding to (144) is the Q function [1]

P(u) = 1-Qi -U) for u >0 ; (146)

the characteristic function is given in [9, appendix A] as an infinite series,

meaning that the cumulants cannot be determined directly, except via the

moments.

The particular example we consider here for the Hermite expansion is a

sum of 8 independent random variahles, each with Rice probability density

function (144). For direct comparison with the exact results in [9], we also

consider the normalized form of (144), namely w2 = 2. Furthermore, we limit
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numerical consideration in this particular example to evaluation of the

cumulative and exceedance distribution functions for e = 0, which corresponds

physically to the false alarm probability for the sum of eight normalized

envelopes of narrowband Gaussian noise (i.e., a Rayleigh probability density

function for the individual random variables).

For a = 4, s = 2.15, the expansion coefficients fbr are displayed in

figure 5 for the RC, OM, and F44 approaches. All the Jbn1 for 1 < n < 20 are

bigger than 1; the biggest is b6 = 12.25. The {bnj, for both moment

approaches, have not been plotted for n > 60 because they continue to

oscillate well beyond the *1 limits, while the RC coefficients decay

exponentially with n. Despite the fact that the moments were the initially

determined qupntities for this example, the RC method far outperforms the DM

and RM methods, as seen in figure 5. The reason for this is as follows: for

the RC method, the procedure was to obtain moments via (145), cumulants via

(A-7), cumulants of the sum of 8 independent random variables by simple

scaling by a factor of 8, and then expansion coefficients via (63). For the

DM and RM methods, the moments of the sum of 8 random variables were

determined via [6, (14)] which progressively determined the moments of a sum

of 2 random variables, then 3, 4,..., 8 in order, and then employed (70).

This iterated procedure for moments requires more number-crunching and leads

to considerably larger round-off error than the simple scaling required for

the RC procedure. Thus it appears that when the random variable of interest

is obtained as a sum of several independent random variables, the RC approach

will be the prime candidate for expansion coefficient evaluation; this applies

also if the individual random variables have different statistics, but remain

independent.
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The cumulative and exceedance distribution functions for this sum of 8

normalized Rayleigh variates are plotted in figure 6, for the N = 140

expansion coefficients of the RC procedure in figure 5. In order to make a

precise determination of the accuracy of this Hermite series approach, the

false alarm probabilities were computed at the eight thresholds listed under

M = 8 in [9, table 1]. To the precision given in that table, the computed

probabilities were exactly the specified values IE-m for m = 1(1)8. Thus, as

anticipated by figure 5, very accurate evaluation of false alarm probabilities

are possible by this series approach.

A short search of values of the best weighting parameters a and o, to use

with the DM approach, led to a = 5.84, o = 2.28 and expansion coefficients

bn near 1E-4 at n = 28, before round-off error became dominant. This is

better than the result of DM in figure 5 for a = 4, a = 2.15. Evaluation of

the false alarm probabilities at the thresholds in [9, table 1] gave 7 decimal

accuracy at .1, and 4 decimal accuracy at 1E-8. This is adequate for most

purposes, but is not as good as the RC approach.

EXAMPLE D

In [4, appendix C], the characteristic function for shot noise with

random amplitude, and duration modulation, and arbitrary individual pulse

shape, is derived. (This result is then specialized to elliptical pulses and

Rayleigh amplitude modulation [4, (C-36)-(C-42)].) Also, the cumulants are

extracted, with general result [4, (24)], where v is the average number of

pulses/second, Xtis the average length of the duration modulation, ua(n) is
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the n-th moment of the amplitude modulation, and F(x) is the individual pulse

shape of the shot noise. Thus shot noise is a case where the cumulants are

directly capable of evaluation, whereas the moments must be found indirectly.

For the special case of elliptical pulses and Rayleigh amplitude

modulation, there follows for the cumulants [4, (29)]:

3

2•n r 3 (3 1)/(n+2) for n > 1, 3Q 0 . (147)

These quantities are easily evaluated via recurrence

X)2 22 h 8 -2

; n I(n+1) for n > 3, X i V aa I(

This procedure was used in [4, appendix D] to obtain the probability density

function and cumulative distribution function results given there.

There is a nuance that arises in shot noise for pulse shapes of finite

duration; see [4, pp. 40-42]. Namely, there is an impulse in the probability

density function, at u = 0, of area

PO = exp[-v,!(x 2 - x1)] , (149)

where (xlx 2 ) is the non-zero extent of an unmodulated individual pulse.

Since an impulse is very difficult to approximate by a finite series of

continuous functions, the effect of this quantity should be subtracted from

the statistics (moments or cumulants), and the continuous portion of the

probability density function should be approximated. Similarly, the
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corresponding step in the cumulative distribution function at the origin

should be eliminated from the approximation procedure.

This feature is easily incorporated if P0 is subtracted from the

zero-th order moment [4, p. 42]. The only undesireable side-effect of this

manipulation is that the initially computed cumulants must be transformed to

moments, then PO corrected, and then all the new cumulants evaluated. This

double transformation is necessary because the correction (subtraction)

procedure can only be accomplished in the moment domain. Of course, when the

DM or RM procedures are employed instead of RC, the last transformation to

cumulants is unnecessary; this was, in fact, the procedure used in [4, p. 60].

When the individual pulse F(x) has infinite duration, as for an

exponential or Gaussian waveform, then x2 - x1 is infinite and P0 in

(149) is zero. In that case, the considerations in the last two paragraphs

can be disregarded, and the cumulants generated via (148) used as is. It is

then very likely that even better accuracy in the expansion coefficients will

be achieved than for this current example.

For overlap factor [4, p. 43]

F1 = v!(x2 - x1) = 6.2, P0  exp(-6.2) = .00203, aa = 1 , (150)

and for weighting parameters a = 6.1, s = 4.3, the expansion coefficients

N1 are displayed in figure 7 for the three recursive procedures. The R4

results are considerably poorer than the RC and DM coefficients, which are

57



TR 7377

4> .01
C

I .E-3

I. 1E-4

o ±IE-5

C -IE-4
0

""i i _ _ _ _ ____

-10 10 20 30 40 50 60 70 80

n, sequence number

Figure 7. Hermite Coefficients for Example D

.01 cumu at v

I E-3
,.• ex ceedai 'ce

I 1E-4

IE.-5

1E-6
Q - I E-7

IE-?

IE-8 - _ _ - _ _ _ _

1 E-10______ __

8 -4 0 4 8 12 16 20 24 28 32

u, threshold

Figure B. Distributions for Example D

58



TR 7377

comparable for n < 65. However, even here, the coefficients have only decayed

to the 1E-3 level, which may not be sufficiently small for accurate results.

The distributions using N = 65 terms and the RC expansion coefficients

are given in figure 8. Although the actual cumulative distribution function

is zero for u < 0, the approximation oscillated around zero, reaching a

positive peak of value .22E-3 at u = -2. Similarly, significant wiggles

develop in the exceedance distribution function below the 1E-4 level. The

reason for the inadequacy of these Hermite expansions near u = 0 is the abrupt

zero behavior of the true probability density function for negative arguments,

a feature inherently difficult to approximate by means of smooth continuous

functions. The error of the approximations in figure 8 is estimated in a

later section and superposed on the plot, for ease of ascertaining the

reliability of the curves. The corresponding approximations for the

generalized Laguerre series are better for this type of probability density

function, as will be demonstrated in the next section.

The approximate probability density function for this example, again with

N = 65 terms, is given in figure 9 on a linear ordinate. It reaches a

negative peak of -8E-4, and crosses the u = 0 axis with value .004; both of

these values should be zero, and will be for the generalized Laguerre series.

To see how the approximate probability density function behaves for larger

arguments, the logarithmic plot in figure 10 is used. Wiggles develop near

the 1E-4 level and become large enough that negative values of the density are

yielded near u = 28 and 31. It will be worthwhile to compare this Hermite

series with the generalized Laguerre series to be presented in the next

section. The estimated error associated with figure 10 is developed in a

later section.
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EXAMPLES OF GENERALIZED LAGUERRE EXPANSION

EXAMPLE E

As with the earlier Hermite expansions, the first generalized Laguerre

example here is one that can be evaluated analytically, for purposes of

checking numerical procedures and results. Namely consider the Chi-square

probability density function of 2 (y+l) degrees of freedom (which need not be

integer):

p(u) = uY exp(-u/w) (y > -i, W > O) . (151)p W) yl r(-y~l)

All probability density functions and approximations are limited to u > 0 in

this section, since they are zero for u < 0; this restriction will be presumed

in the remainder of the presentation.

The exceedance distribution function is related to the incomplete Gamma

function [5, 6.5.3]:

1 - P(u) = fdt p(t) =r(y+l, u/w)/ F(y+l) . (152)

The characteristic function follows from (151) as

f(iy) = (1 - if)-Y-l , (153)

with cumulants

Xk = (k-1).' (Y+1) k for k > 1, Z = 0 , (154)

and moments

uk (Y+l)k k for k > 0 . (155)
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Thus either set of statistics can be used as a starting position. The error

integral in (21) is finite if

-1 < a < 2 y + 1 and B > 12. (156)

We will find the expansion coefficients by means of the characteristic

function expansion (100), developed earlier for the generalized Laguerre

series. Specifically, we utilize the power series expansion

( - )- a - 1 f£ /- W ( -w) Y -0 -Y =

(1-) -if(-J-) (l-w) (I
~m (-mwm • (-+l)k • k w 1

2 . (-) m (157)

=m=O k=O k!

where we used (153) and [5, 15.1.83 twice. The coefficient of a general term

wn is then immediately given by the closed form

n (a-Y)m (Y+ 1 )n-•r n-n•
C n M! (n-m) W for n > . (158)

Alternative expressions for the expansion coefficients are

(yln ) F y-.-n;-n-y; =Cn - n'

Cn+= 1n (•)n' F (-n,-n-m;-n-y;W) =

1)n F " for n >0 , (159)

obtained by means of [5, 15.1.1, 15.3.5, 15.3.7] respectively. In fact, the

last result can be obtained directly by using [8, 7.414 7] on (90) and (151):
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Cn = du r(T+1, / n L(V (160)

However, the latter two results in (159) are not numerically stable, whereas

(158) and the first line of (159) are stable for large n, without encountering

round-off error.

Some special cases of (158) are as follows:

(y+l)n •)n

if a=Y, then cn
n

if 8 = , then cn = ni ;

if a = y and 8= w, then cn = 6nO . (161)

The last case is to be expected, since the weighting exactly matches the

probability density function (151) then.

A numerical example of sequence tbnj for

y = 1.1, w = 2.3 a = 1.105, 8 = 2.1 (162)

is shown in figure 11, using the three recursive procedures developed earlier

for the generalized Laguerre series in (112), (119), (126). In addition,

exact result (158) is plotted for comparison. The expansion coefficients have

a rapidly decaying transient for n < 10, and then a decay approximately

proportional to n-3/ 2 for large n. The abrupt change of character Ot n = 5

does not signify the onset of round-off error; rather, the latter is indicated
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by an erratic behavior, typically increasing exponentially with n (linear

growth on a logarithmic ordinate).

A different plotting strategy will be adopted henceforth for the

expansion coefficients fbnl, in order not to clutter the diagrams with large

oscillations as in figures 1, 3, 5, 7. Specifically, when the expansion

coefficient bn first exceeds the *1 limits, the remainder of sequence Ibnl

will not be plotted, since this is a region of large round-off error. Thus,

although the RM curve in figure 11 returns to the ,1 limits briefly at

n = 52,53, these values are not displayed.

Round-off error for the RC procedure does not become as significant as

for the two moment approaches until n has increased by almost 10, for this

example in figure 11. In fact, the expansion coefficients for the RC

procedure overlap the exact values until n = 40. The corresponding

approximate distributions, using N = 40 terms in expansion (95) as determined

by RC, are plotted in figure 12. The exact result (152) overlays these

results over the entire range plotted.

EXA14PLE F

The following probability density function corresponds to a noncentral

Chi-square variate of 2v degrees of freedom:

p(u) = -1 exI I _(d') (V > 0) ; (163)
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d is the noncentrality parameter, and 2v need not be integer. The

characteristic function is [8, 6.631 4]

/id2ff(i?) = ( 2f)-2 exp\id2 I. , (164)

and is the same as the one considered in [10, (50) et seq.]. The exceedance

distribution function is the generalized Q-function:

00 1 /t- d t T V-1
1 - P(u) = dt 7exp I)_I (d1T) =

; ' dx x exp ( . - I v_1(dx) = Qv(d,Yl') . (165)

By expanding the kn of (164) in a power series in it, the cumulants

follow as

X = 2n(n-1) - +½1d2 n) for n > 1, X.0 . (166)

And the moments are obtained from (163) as

On = 2 n (v)n 1 F1 (-n;v;-d 2 12 =

- 2n n! L(vn1) (-d 2 12) for n > 0 , (167)
n

by use of [8, 6.631 1] and [5, 13.6.9]. Both (166) and (167) lend themselves

to simple recurrences which involve only positive quantities; thus the

starting statistics can be quickly and accurately evaluated.

The numerical example we consider here will be compared with the exact

results in [10, figure 11], namely,
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= 2.7, d = 3 1.7, = 5.5 . (168)

Since the probability density function in (163) behaves as uV-1 as u * 0+,

it is reasonable to choose weighting parameter a in (82) as v-1, as indicated

in (168). And since (163) tehaves as exp(-u12) as u * +o, we must choose

a > 1 in order that the error integral in (21) is finite. The particular

values in (168) approximately minimize the sum of tbnjO in (21).

The expansion coefficients Jbnj as determined by the three available

recursive procedures are displayed in figure 13. The RC coefficients decrease

to values less than 1E-10 near n = 50, before round-off error becomes

significant. The two moment approaches deteriorate near n = 30, which is

markedly poorer than the cumulant approach. The distributions, as determined

by N = 50 terms of the RC approach, are given in figure 14, and agree with the

d = 3 curve of [10, figure 11]. When the approximate probability density

function for N = 50 was compared with exact result (163), 10 decimals of

agreement were obtained; this is due to the ability to get very small ýbni

in figure 13 via the RC method.

EXAMPLE G

This example is the Rice probability density function given in (144),

with moments (145) and cumulative distribution function (146). The starting

statistics are the moments as determined by recurrence (E-5)-(E-6).
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The particular numerical case of interest is

a = 3, w2 = 2 a= 1, 0 = 1. (169)

The values of a and 8 were found by the usual trial and error search procedure

of observing plots of expansion coefficients {bnj, looking for rapid decay

and small round-off error; results for this example are displayed in figure

15. The iRM procedure deteriorates rapidly at n = 30, whereas DM and RC are

useable up to n = 55 and 65 approximately.

The cumulative and exceedance distribution functions for N = 65 terms of

the RC procedure are plotted in figure 16, along with exact result (146). The

approximate exceedance distribution function overlaps the exact one until

slightly below the probability level 1E-4, which corresponds to the level of

reliability of bn in figure 15 at n = 65. Then the exceedance distribution

function makes a positive (upward) turn below IE-6, which is impossible for a

physical density function which must remain positive; thus the approximation

deteriorates rapidly for u > 7.

EXAMPLE H

This is a follow-on to the previous example, in that we consider a sum of

8 Rice variates, each with the statistics in (169). The exoansion

coefficients for

e = 3, w2 = 2 = 26, 8 = 1 (170)
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are displayed in figure 17. Whereas both DM and RM are useless beyond n = 25,

the expansion coefficients determined by RC decay down to the 1E-10 level at

n . 150 before round-off error becomes significant. The corresponding

distributions in figure 18, using N = 143 terms of the expansion via RC,

reveal accurate results down to the 1E-12 level of probability, except for a

slight flare in the exceedance distribution function below 1E-11.

We also checked the example of the sum of 8 normalized Rayleigh variates

considered earlier via a Hermite series in example C. For a 10, a = .9, the

expansion coefficients Jbn} decayed to the 1E-11 level at n = 100 for the RC

approach and agreed with the false alarm probabilities calculated exactly in

[9, table 1] for M = 8. By contrast, the DM expansion coefficients were

subject to significant round-off error by the time n reached 30, and were

useless for small probability calculations.

EXAMPLE I

We return to the shot noise process previously considered via a Hermite

series in example D. The equations and discussions there should be reviewed,

since they are directly relevant to the generalized Laguerre expansion here.

For the choice of parameters in (150), the selection of generalized Laguerre

weighting parameters

a .74, 8 2.1 (171)

leads to the expansion coefficients plotted in figure 19. The DM and RC

results agree to n = 32, and then begin to diverge from each other. By way of
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contrast with the Hermite expansion coefficients in figure 7, where values in

the 1E-3 range were achieved, values in the 1E-6 range can be obtained here

for the generalized Laguerre expansion, for n in the mid-30s. The DM result

was previously given in [4, figure D-1].

The distributions for N = 32 terms of the RC procedure are plotted in

figure 20. This result is considerably better than the Hermite expansion in

figure 8; instead of the wiggles which developed at 1E-4 in figure 8, the

curve in figure 20 is smooth down to the 1E-8 probability level, and then

develops a bump. Also, the cumulative distribution function is accurate at

u = 0, where it takes on the value PO = .002 given in (150), and is zero for

u < 0. This cumulative distribution function was previously given in

[4, figure 8].

The probability density function for N = 32 terms of the RC procedure is

given in figure 21; this result was previously given in [4, figure 9]. It is

significantly better near the origin than the Hermite approximation given

earlier in figure 9, which developed negative values for u < 0. In order to

see what the probability density function does for larger u values, the same

probability density function is plotted on a logarithmic ordinate in figure

22. It is accurate to the 1E-9 leVE but then develops a hook that is

incorrect; however, this approximation remains positive even at this very low

value of the density, whereas the corresponding result via a Hermite expansion

in figure 10 developed negative values. The estimated errors in figures 20

and 22 are evaluated in a later section.
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EXA4PLE J

This last example is for probability density function

p(u) = exp-U for u > 0 , (172)

for which the moments are

Un = (2n+l)! " (173)

The characteristic function and cumulants are not available in any convenient

analytic form.

This is a particularly difficult example, since the characteristic

function expansion in (6) has a zero radius of convergence; thus the moments

do not uniquely determine the probability density function or cumulative

distribution function. Also, the error integral in (21) is always infinite;

in fact, regardless of the choice of weighting parzmeters a and o used in the

generalized Laguerre series, the expansion coefficients ýbnj always

diverged. Nevertheless, a search of parameter values led to a pair of

selections, namely,

S= -. 35, 8=30, (174)

for which the expansion coefficients had an initial decay to the 1E-2 level

before divergence took over; see figure 23. In fact, the identical same

results were obtained for all three methods, RC, OM, RM; this is probably due

to the fact that divergence of jbnj dominated before round-off error became

significant.
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nu Iat y 7e

>, .01-

I -3

I-E-

IE-6 -_t __ I

0 20 40 60 80 100 120 140 160 180 200
u, threshold

Figure 24. Distributions for Example J
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The distributions are plotted in figure 24 for N = 15 terms of the

generalized Laguerre series. Comparison with the exact exceedance

distribution function

1 - P(u) = (1 + u1/2) exp (-u 1/) for u > 0 (175)

reveals that the approximation is decent down to the .01 probability level,

but then oscillates more and more violently as u increases. Thus even in this

non-unique example, a limited-quality approximation is achieved by the

generalized Laguerre series; this example confirms the comment in [3, p. 167]

that, even for a divergent series, a limited number of expansion coefficients

often gives a satisfactory approximation.

The exact and approximate probability density functions are plotted on a

linear ordinate in figure 25, and on a logarithmic ordinate in figure 26,

using N = 15 terms of the generalized Laguerre series, when the expansion

coefficients were determined by the DM method. The approximate probability

density function is negative for 150 < u < 190, around the 1E-6 level. The

estimated errors of the approximations in figures 24 and 26 will be developed

in the next section.
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Figure 26. Log Density for Example J
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ESTIMATED ERRORS OF APPROXIMATIONS

When the cdlculations of the approximate cumulative or exceedance

distribution functions or the corresponding probability density function are

made, it would be very useful to have a rough estimate of their reliability.

One way, as discussed in the previous sections, is to look for nonsmooth or

anomalous behavior on the tails of the functions. Here, we will develop a

more quantitative estimate of the error and superpose it on sorre of the

previous examples, for confirmation.

Both the Hermite and generalized Laguerre orthonormal polynomials

oscillate with n and decay slowly. The same general behavior is true of

expansion coefficients Jbnj. This leads to summations for the various

functions with terms that also oscillate and decay. A rough estimate of the

error is afforded by the envelope of these oscillations, evaluated at the

first neglected term of the summation. This procedure will be pursued for

both types of expansions; how useful it is will be indicated by numerical

examples.

HERM4ITE EXPANSION

The following result for the envelope of the Hermite polynomial is

obtained from r5, 6.1.39 Ind 22.5.18] and [7, 8.22.8]:

Env n') Hen(x - exp(x 214) (7n-)V+ as n + (176)

Also, from (46) and (47), the n-th term of the approximate probability density

function is
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, • b~n (n• Hen 'u--.(17

Then the magnitude of the error of the probability density function

approximation, if the n-th term is the first one neglected, is roughly

E ;P) a - Envbn Env {(n.) Hen =

[2 1/4 x-' p- (U-3L2) n Env~bnj as n *+-. (178)1%,2

Here we used (176).

As for the cumulative distribution function, we have from (47)-(49), the

n-th term of the approximation as

-@ (-•)bn (nb') Hen 1 (u-) . (179)

The magnitude of the error for the cumulative and exceedance distribution

functions if the n-th term is the first one neglected, is then defined as

En(u;P) _ Env Jbnj Env fin!)-'/Z HenI (U-0A

exp U 2) -3/4

[2 W 3/ exp C n Env 0bn. as n * 6 (180)
4• /

Again. (176) was of crucial importance in getting this result.
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Since the above estimates are asymptotic in n, they will be most reliable

for n large; their use for small n could be very misleading. The way to use

these error estimates for the density and distribution approximations is as

follows. First, a search on a and s, to find the fastest decaying expansion

coefficients fb,., is conducted. The weighting parameter values, a and a,

and the corresponding envelope value of the expansion coefficients 1bnj at

the point, n, where round-off error becomes dominant, are then noted. (For

example, for figure 7, we observe that Envb• 2E-3 at n = 65, when

a = 6.1, a = 4.3; see example 0.) Then (178) and (180) can be computed and

plotted in the ranges of u of interest.

An example of this procedure for the shot noise process in example 0 is

given in figures 27 and 28. In particular, the approximate results are

repeated from figures 8 and 10, and error measures (180) and (178),

respectively, are superposed as dashed lines, each on the appropriate figure.

Just where the approximations develop large wiggles, the errors are of

comparable magnitude, indicating unreliable estimates there.

It should be observed from these figures (or from (178) and (180)) that

the absolute error is maximum at u = a, but that the relative error is a

minimum in that neighborhood. Also, although the absolute error decays with

u, the correct answer decays faster, leading to an increasing relative error,

which eventually becomes so excessive in the tails of the various functions

that the approximations are useless.
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Figure 27. Estimated Error of Figure 8

I

.01

S1E-3

I IE-4
> erro-rSIE-5 .....

I E-6

t IE--7

IL IE-

I E-9

IE-10 0  5 o' . 15 20 25 31 35

u, threshold

Figure 28. Estimated Error of Figure 10
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GENERALIZED LAGUERRE EXPANSION

The details for the generalized Laguerre series are very similar to those

above and so will be abbreviated. The envelope of the generalized Laguerre

polynomial is [7, 8.22.1]

1x 1 ci

Env L(Q)(x? T e~ x 7 as n : +, for x > 0 . (181)

From (91) and (92), the n-th term of the approximate probability density

function is

bn (1c+4n L n ()

Then the magnitude of the error of the probability density function

approximation is, for u > 0,

(UP)Env jbtj EYnv ~ L(a) (
n n(+l)

~ i(1+l) exp u n Env Jbn as n * +00, (183)

where we used [5, 6.1.47] and (181). This quantity peaks at u = 8(a-j).

With regards to the cumulative distribution function, the n-th term of

the approximation is, from (95) and (92),
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u +l exp (-ur(+ bl n L (a+l) i (184)
81 l(I+1) 1n n-1 "

Then the magnitude of the distribution error, for both the cumulative and the

exceedance distribution functions, is roughly

En,(u;P)_ ua+lexp(-ulB) Env ýbn} Env{i ( ) nn• L( RO)(i/)} =

+ _ 1 3

~1rF 4 exp u n Env I nI as n * + for u > 0, (185)

upon use of (181). This quantity reaches its peak at u =(a+•.

An application of these results to the shot noise process, which was

re-investigated in example I via the generalized Laquerre series, is given in

figures 29 and 30. Specifically, the approximate results from figures 20 and

22 have been repeated, and error measures (185) and (183), respectively,

superposed as dashed lines. They confirm the earlier observations that the

distribution and density approximations are reliable until the anomalous

behavior on the tails manifests itself.

The difficult example J is considered in figures 31 and 32. Since the

expansion coefficient sequence {bnl in figure 23 diverged for large n, the

selection of n = 15, as used in figures 24-26, is not the large value needed

to justify the use of (183) and (185). Thus, the dashed curves on figures 31

and 32 must be considered only as ball-park estimates; in general, the

approximate error appears to be too conservative in these two figures.
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Figure 29. Estimated Error of Figure 20
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Figure 30. Estimated Error of Figure 22
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Figure 31. Estimated Error of Figure 24
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Figure 32. Estimated Error of Figure 26
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Finally, the Rice variate of example G is re-considered in figure 33. We

took Envfbnlz 3E-4 at n = 65, by extrapolating in figure 15 from smaller n,

since round-off error is becoming significant by this value. It verifies the

unreliability of the approximation in figure 33 for u > 7.

Although all the examples in this report have the capability of

evaluating either the moments or the cumulants via recursion, this is by no

means necessary. Any method whatsoever of accurately calculating the starting

statistics, be they moments or cumulants, is acceptable. For example, if a

random variable with known probability density function q is passed through a

complicated nonlinearity g, the moments of the output are given by

= f du gn(u) q(u) . (186)

These quantities could be evaluated for 0 < n < N by brute-force numerical

procedures if necessary. The limit value N will depend on the accuracy with

which g and q can be evaluated; if g(u) _> 0 for all u, these integrals can be

accomplished to a high degree of accuracy, thereby allowing large values of N

to be employed.
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Figure 33. Estimated Error of Figure 16
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DISCUSSION

Several alternative methods have been presented for obtaining either

Hermite or generalized Laguerre series expansions of probability density

functions or cumulative and exceedance distribution functions, by means of

recursive relations involving either moments or cumulants. Furthermore,

estimates of the errors of the approximations are furnished so that the

reliability can be assessed. Comparisons between approximations obtained by

either the Hermite or the generalized Laguerre series afford an assessment of

the accuracy of each; also, the availability of three alternative recursive

procedures for the expansion coefficients allows for selection of the best

method and results, and determination of the amount of round-off •-or.

The key feature to this approach is the rapid calculation and observation

of the orthonormal expansion coefficients fbnl for each particular guess of

weighting parameters a and s. A trial and error procedure is suggested for

determining a and a values that yield the set of fastest-decaying expansion

coefficients. From observation of the expansion coefficients, the number of

terms to retain in the series expansions is ascertained, being sure to avoid

the effects of round-off error which dominates the calculated expansion

coefficients Jbn1 for large n. Since the amount and location of round-off

error on the plot of expansion coefficients also depends on a and 8, a

judicious search may be required to find acceptable weighting parameter

values. Of course, a computer with a larger number of significant digits

would greatly alleviate this drawback; the particular computer used for all

the calculations reported here is the Hewlett-Packard 9000 Model 520 which
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devotes 52 bits (15.65 decimal digits) to the mantissa and 11 bits to the

exponent. Failure of the technique is indicated by divergence of the

expansion coefficient sequence Ibn}.

Programs for the shot noise process considered in examples D and I are

presented in appendix F. Times of execution are as follows. For the Hermite

series, the 80 cumulants or 80 moments required as input for figure 7 took .7

or .35 seconds, respectively. The calculation, plotting, and display of the

80 expansion coefficients in figure 7 took 1.6 seconds via the RC approach and

1.75 seconds via the two moment approaches. The computation and display of

the 100-point plots of the cumulative distribution function in figure 8 and

the probability density function in figure 9, each using 65 terms in the

series expansion, took 1.1 and .95 seconds, respectively.

For the generalized Laguerre series, the 70 cumulants or 70 moments

required as input for figure 19 took .54 seconds or .28 seconds,

respectively. The calculation and display of the 70 expansion coefficients in

figure 19 took 1.8 seconds via the RC approach and 1.5 seconds via the two

moment approaches. The computation and display of the 100-point plots of the

cumulative distribution function in figure 20 and the probability density

function in figure 21 took 1.1 and .7 seconds, respectively. These execution

times are short enough to allow a human observer to conduct a rapid

trial-and-error, search of aj srF ce, determine adequate parameter values, and

assess their accuracy.

Alternative exact procedures for determination of cumulative and

exceedance distribution functions via characteristic functions have been

presented in [9, 10, 11]. Those methods generally have the potential for
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greater accuracy, are less subject to round-off-error, and would be preferred

if possible. However, analysis of systems with nonlinearities and memory

sometimes precludes or greatly hinders their application; in such cases, the

current approach is a very good candidate for consideration.

The two weightings in (1) and (2), namely the lHermite and generalized

Laguerre, have been investigated rather intensively here, because so many

properties and recursions are available for the corresponding (orthonormal)

polynomials. These properties have been utilized to derive simple recursive

relations for the expansion coefficients and density and distribution

functions, thereby realizing quick efficient procedures for numerical

evaluation and observation.

It would be extremely useful to be able to extend these results to the

weighti ng

u C exp(-u 21/032) for u > 0, (187)

since this class of probability density functions is often encountered in

nonlinear systems with Gaussian inputs. However, there are several pivotal

recursive relations for the corresponding orthonormal polynomials that would

be needed, and it is questionable if a fast procedure could be devised without

them. Also, it is unknown if recursive procedures for the expansion

coefficients in terms of moments or cumulants could be derived, as was done

here for the Hermite and generalized Laguerre weightings. This is a topic

worthy of further investigation.
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APPENDIX A. COEFFICIENT RECURSION FOR EXPONENTIAL OF POWER SERIES

00

Suppose power series 2 hn zn converges for some IzI > 0, and we
n=O

exponentiate it, getting a new power series

gn zn = exp hnn z . (A-1)

n=O z=(

Then the lowest order coefficient is

go = exp(ho) ' (A-2)

while for k > 1, we have

1 d k-1 n hn zn- exp
gk ~ ~ z=O)n =

=1  k n-1 ( p -

= E (p+1) h1-p - k- m hm gk (A-3)
pIO hm= 1

Thus we have the recursion for coefficients lgk'x in terms of the {hm•:

gk = • m= m hm gk- for k_>1, go =exp(ho) . (A-4)

k-1

p=0 (~l)!hp~l(k-lp)! k-93
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If we now refer to (6) and (7) and identify

gn = U/n.' , hn ='Xn/n' , (A-5)

there follows the moments in terms of the cumulants according to

k-1
= (_ k-.m )( m for k > 1, u0 = exp(XO) . (A-6)

This is a slight generalization of [6, (10)]. This equation is inmediately

inverted, to yield the cumulants in terms of moments:

'k =P0 k k - m(km k m] for k_> , = n U., (A-7)

which generalizes [6, (11)].

In terms of the normalized cumulants and moments defined in (62) and

(69) respectively, we have

Ik-1 A^1k for k > ., -k = exp(X-O) (A-8)

k Yk m -4r k>1M=0

and

k-i1A Ak-mmR fork > 1, =jn , . (A-9)
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APPENDIX B. EXPANSION OF He n(x+y)

The quantity Hen (x+y) is a polynomial of degree n in y. Therefore we

can expand

Hen(X+Y) n Ym Ym'

where ym will also depend on n and x. In fact,

I ( m [He y=O [H3\([H( 3) [ t t] t=x

=()U1[ Hen_l(t)l = n(n-1) ... (n-m+1) He n-r(x) =

n! He (x) (B-2)
(n'n-). n-m

where we used [5, 22.8.8] repeatedly. Using (B-2) in (B-i), we have the

alternative forms for the expansion,

He (X+y) = (n Hene(x) ym =

n ~ ;? n Hen,() m =

n
=() He (y) xm =

n n--

n= ( Hek(Y) xn-k for n > 0 . (B-3)
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APPENDIX C. EVALUATION OF In(Y) IN (94)

We have, from (94),

1 (y) dx x' e-x L(_)(x) for n > 0 . (C-1)

Then
A yI+l e-y

Io(Y) , dx x' eX 1 = y(a+l,y) = 1F (1;cz+2;y), (C-2)

using [5, 22.4.7, 6.5.2, and 6.5.12]. Also, we have from [5, 22.116],

C1 -x (X 1 'd"n -xC9
xG ex L(c)(x) -. e x (C-3)

n n dx/

Then for n > 1, (C-1) can be developed as

I(Y)= ~dx41(~. d\ X -x n91

1 1 d d\n1 -y (a~n d1n1)ey ,x

1 ya+1 e-y L(0+l) ) (C-4)n• n-1 '

where we set the lower limit of the evaluated integral to zero since

a+n > a+l > 0.
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APPENDIX D. FOURIER TRANSFOF44 OF GENERALIZED LAGUERRE POLYNOMIAL

We wish to evaluate transform

00

A(W) = dt eiwt to e-t L(n)(t) . (D-I)

Now

n.- t e L n( ) nt Le to for n > , (0-2)

according to [5, 22.11.6]. Therefore for n > 1,

n! A(w) = dt eiwt (d_ n jet tc+n3 .oGO

- $eiwt d/ n-l e-t to+n} =
=-i• •~dt )it-~- an

- -'w "dt eiwt () ie-t t*flj (D-3)

where we used integration by parts with the fact that the integrated part is

zero at t = 0 and to, since a+n > m+l > 0. Repeated integration by parts then

yields

n! A(w) = (-i.)n f dt eiwt e-t to+n F(G+l+n) (li-)n)1+n (0-4)

This is the result quoted in (104).
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APPENDIX E. RECURRENCE FOR EXAMPLE C

The starting point is the moment expression in (142):

.F +h ~n+2h

n 2+ P (1+1) IFIZ)

where h = (y+Y+l)/2, z = w2e2/4. Denote the 1F1 term in (E-1) by

Fn, and the leading factor by Gn; thus On = Gn Fn" There follows

immediately

S= G n 2  (2a++h-1) for n > 2. (E-2)

For the 1F1 function, we refer to [5, 13.4.1] to get

Fn= R n2 + nF4 ](

2

If we substitute (E-2) and (E-3) into u n = Gn Fn, and then re-apply

(E-2) in the second term, we obtain

n= w 2 (n+y-2+z) un-2 - [(+ -3)n-4 2 (E-4)

we also eliminated h. Starting values for On can be obtained from (E-1).

For the special case (143) and (144), (E-4) reduces to

1n = w 2n-1+z) vn-2 - w 4 (n-2) n-4 (E-5)
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with starting values

1 /2 e-Z 3
MO ý Itv, 1=2 w FI FI(;

P=2 (l+Z)' 3 w 2 w F . (E-6)

Kummer's transformation [5, 13.1.27] was employed in this last equation; these

forms afford accurate starting values for recursion (E-5).
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APPENDIX F. PROGRAM LISTINGS

Eight programs are listed in this appendix. They are given in BASIC for

the Hewlett Packard 9000 Model 520 computer. For ease of reference, a

shorthand notation is adopted:

P denotes cumulative or exceedance distribution function

p denotes probability density function

H denotes Hermite expansion

L denotes generalized Laguerre expansion

RC denotes recursively via cumulants

DM denotes directly via moments

RM denotes recursively via moments

Table F-i. Shorthand Notation

Then, for example, the combination PHRC means that this program yields the

cumulative or exceedance distribution function in terms of a Hermite

expansion, by means af expansion coefficients determined recursively via

cumulants. The eight programs listed here are, in order,
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PHRC Figures 7 and 8

pHRC Figures 7, 9, and 10

PHDMandRM Figures 7 (and 8)

pHDMandRM Figures 7 (and 9, 10)

PLRC Figures 19 and 20

pLRC Figures 19, 21, and 22

PLDMandIR Figures 19 (and 20)

pLDMandRM Figures 19 (and 21, 22)

Table F-2. Program Abbreviations

The combination DMandRM means that this program gives the expansion

coefficients directly via moments as well as recursively via moments; the user

must select the procedure of interest.

The only input statistics we have given a listing for here is the shot

noise process used in examples D and I; in particular, the cumulant and moment

routines are listed at the very end of PHRC and PHDMandF4, respectively. The

figure references given in table F-2 indicate where each particular program

was used in this report; the parenthetical references are alternative ways of

generating those figures. The remaining figures in this report require that

the cumulant and moment subroutines be replaced by the appropriate statistics

of interest.
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To save space, no subroutines are listed more than once; instead,

comments are made indicating where the needed routines are located, according

to the coding in table F-2. For example, in program PHDMandRM, function

subprogram FNPhi, line 570, the comment is made that this routine has already

been listed in PHRC.

We now explain some of the details of the PHRC program, as an example, so

that a user can apply these techniques and routines to his particular

problem. The user must specify M in line 30, which is the maximum order of

approximation desired, or the number of cumulants or moments that can be

calculated. The notation DOUBLE in line 40 denotes INTEGER variables. The

user must select a and s in lines 130,140; if they are chosen equal to

a0,00 which have been computed in lines 110,120, then expansion

coefficients a1 = a2 = 0, or equivalently bI = b2 = 0. However, this

choice is recommended only as a starter on the search in a,o space.

The CALL in line 150 is to the subroutine which calculates the expansion

coefficients for a Hermite series, recursively via cumulants, as can be

deciphered from the abbreviated subroutine title. The expansion coefficients

[bnlare calculated and the running sum of b2 is calculated, both of

which are printed on the CRT vs n. Also, a plot of the expansion coefficients

ýnlis made in this subroutine, from which the user must decide on the order,

N, to employ in the approximate cumulative and exceedance distribution

function; alternatively, he can reject the sequence ofb b• so obtained, and

re-run the program with different a,o values.
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When a satisfactory %,0 pair is obtained, the limits ulU 2 on the

range of arguments of the distribution must also be specified; this selection

is aided by the print-out of the center and rms width of the density under

investigation. A plot of 100 values of the cumulative and exceedance

distribution functions is then made on a logarithmic ordinate. The various

subroutines are self-explanatory and are keyed to the equation numbers in this

report.
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PROGRAM PHRC

0o STEP PLUS CONTINUOUS PART OF SHOT hOI:SE CDF, Pc KU TR -37'.', FIGIPE -
20 COEFFICIENTS OF HEH.MITE EXPANSION FOUND RECURSIVELY VIA CU.ULFIT

p30 l=80 MAXIMUM ORDER OF APPROX IMAT ION; NUMBER OF CUMULiNTS F'E'J UIRFED

40 DOUBLE MI,N,KI I NITEGERS -1 .3 1 2 , 147 4: •;,,4-'
50 REDIM Cu, : M ,: 1.* >, He (0: M)
60 REAL Cum(O:100., RO:100),He.O:100),P.O: 100>
70 CALL C:umul .atits.,M,PO,,Cumr(*)' ! P0 IS SrEP AT ORIGIN
80 Centezr=Cum( I CENTER OF PDF r
90 R2=C:unm 2) MEAr.N SQUARE SPRFFPED OF rF u

100 Rms=SQR(R2` I RMS SPREAD OF pc(u'
110 A I phaO=Cent er THE CHOICES AlI=phaAIh a AND
120 BetaB=Rms Beta=Beta0 WOULD MAKE A, 1 R,.2'=0
1:30 Alpha=Center
140 Beta=Rms*1.•
150 CALL Coeffhr -via curriKM,Alpha, Beta, Cum( A),(*, PC:

160 PRINT "Center = ";Cent.er
170 PRINT "Rms =";Rms
180 FI=1./SQRK2.*PI)
190 INPUT "ORDER AND LIMITS:",NU1,U2
200 PRINT "ORDER AND LIMITS:",N;UI;U2
210 Du=(U2-UI ).100.
220 PLOTTER IS "GRAPHICS"
230 GRAPHICS ON
240 WINDOW U1,U2,-10.,O.
250 GRID Du*10.,I.
260 FOR 1=0 TO 100
270 U=UI+Du*I
280 T=(U-A I '-'.Bet a
290 CALL P. te(N,T,He(*))
300 Sun=o.
310 FOR K=1 TO N
:320 Sum='Sum+A(K) *He (K- 1)
:330 NEXT K
:3 40 P=A('O I'*FNPhi(T ' -FI*EY, P(-.5*T*T>*Surm PFROBABILITY THAT P,' U
350 IF U>=0. THEN P=P+PO ADDITION OF STEP AT OCPICIN

360 P<I)=P
370 IF P>., THEN 400
380 PENUP
390 GOTO 410
400 PLOT U,LGT(P)
410 NEXT I
420 PENUP
430 FOR I=0 TO 100
440 U=UI+Du*I
450 P1=I.-P(I)
460 IF PI>0. THEN 490
470 PENUP
480 GOTO 500
490 PLOT ULGT(PI)
500 NEXT I
510 PENUP
520 GOTO 190
530 END
540
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TR 7377

PROGRAM PHRC (cont'd)

550 DEF FNPhi(X) HART, page 140, #5708 &< #5725 eq. 41
560 Y~=ABSSQR(5)*,)
570 SELECT Yi
580 CASE <8.
590 P=1631.76026875:3?1470+Y*<.456.2614587060926:31+y(*i86.oiS2762ýi,::-2119:4ssý951+'-*

(.18. 8648589749095425+Y*. 564189586761813614))
6ll88r P =372 3. 508798 1554806 7'2+Y* (7 113. 6632 469540 493 7+* (6 758. 2 16E:,64 110 845C394+',

( 4032. 267101883004974+ Y*P ))
6.10 Q=7-542.47951019:347576+Y*(2968.00490148230872+Y*(817ý.622:356,.-ý,i-3'4544077,+Yý*

(153. 87771875036221 6+Y*(1'. 8394984391I395565+Y))))
620 0=:372 3. -50798 155480654+Y*( 11315. 1920818544055&'*( 15802. 535'99'48-24')425+Y*

630 Phi=.5*EXP(-Y*Y)*P/Q
640 CASE <'26.6
650 P=2. 97886562639:399289+Y* 7. 40974860596474 179+Y*(6. 16020985310963054+Y*'-

(5.0 19049,72678426746+Y*(1.27536664472996595+Y*.5641895835471755074',).)))
660 0=:3.36907520698275277+Yi*(9.60896532719278787+Y*(17.0814407-'ý474-16884- I

(12:. 04893519278551290+Y(*(9. 39603401623505415+Y*(2. 26052852876--732697+Y) ).' ,
670 Phi=.5*EXP(-Y*Yi*Pr'Q
680 CASE ELSE
690 Phi=0.
700) END SELECT
710 IF X'>0. THEN Phi =1.-Phi
720 RETURN Phi
7:30 FNEND
740
750 SUB Herrnit~e(DOUBLE N,REAL X,He(*>' He/'n<X) eq. 50
760 DOUBLE K
770 He(0)=1.
780 He(1)=X
790 FOR K=2 TO N
800 He(K)=X*He(K-1 )-(K-1 )*He(K-2)
810 NEXT K
820 SUBEND
830
840 SUB Momnt _'via -cumnrt(DOUBLE M,REAL Cum(*),Mom(*)) !eq. R-6
850 DOUBLE K,J
860 REAL MomO
870 Morn(0)=Mom0=EXP( Curn(0).)
880 FOR K=l TO M
890 T=1.
900 S=Cum(K)*MomO
910 FOR J1l TO K-1
920 T=T*(K-J).'J
930 S=S+T*Cumf(K-J)*Mom(J)
940 NEXT J
950 Morn(K)=S
960 NEXT K
9'70 SUBEND
988
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TR 7371

PROGRAMW PHRC (cont'd)

990 SUB Cumrnrt Yi a rnornt('DOUBLE M, REAL Mom (*), Curn( *Y eq. A-7
1000 DOUBLE K,J

P 1010 REAL MornO
1020 Mmomo~om(o)
10:30 Cum(O)=LOG'(Mom0)
1040 FOR K=1 TO M
1050 T=l.
1060 S=Mom(K)
1070 FOR J~l TO K-1
1080 =*KJ/
1090 S=S-T*Mom(J)*Cum(K-J)
1100 NEXT J
1110 Cum(K)=S/MomO
1120 NEXT K
1130 SUBEND
1140
1150 SUB Coef'fhr, via cum(DOUBLE M,REAL R1pha,Beta,Cunt(*),A(*)`,
1160 ALLOCATE B(8j:M)-
1170 DOUBLE K,J,Mx
1180 F=Beta*Beta
1190 Cum(1)=(Curn(1)-A1pha)/Beta MODIFIED NORMALIZED
1200 Cum(2)=Cum(2)/F-1. CUMULANTS FOR K=1 & 2; eq. 63
1210 FOR K=3 TO N
1220 F=F*Beta*(K-1)
1230 Cum(Ký=Cum(K)./F NORMALIZED CUMULANTS; eq. 62
1240 NEXT K
1250 A(0)=B(0)=EXP(Cum(8))
1260 F=l.
1270 FOR K=1 TO M
1280 S=o.
1290 FOR J=1 TO K
1300 S=S+Cum(J)*A(K-J)
1310 NEXT J
1320 A(K)=S/K
1330 F=F*K
1340 B(K)=A(K)*SQR(F)
1350 NEXT K
1360 Mx=Mx+10
1370 IF Mx<M THEN 1360
1380 Threshcjld=-7.
1390 T2=Threshold*2.
1400 V=10.-Threshold
1410 GINIT
1420 PLOTTER IS "GRAPHICS"
1430 GRAPHICS ON
1440 WINDOW O.,FLT(Mx),T2,0.
1450 LINE TYPE 3
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TR 7377

PROGRAM PHRC (cont'd)

1460 FOR J=O TO Mx STEP 10
1470 MOVE J,T2
1488 DRAW J,O.
1490 NEXT J
1500 FOR J=T2 TO 0
1518 MOVE O.,J
1520 DRAW Mx,J
1530 NEXT J
1540 PENUP
1550 LINE TYPE I
1560 IMAGE 4D,2(4X,M.17DE)
1570 PRINT " K B(K) Sum"
1580 Sum=O.
1598 FOR K=O TO M
1600 B=B(K)
1610 Sum=Sum+B*B
1628 PRINT USING 1560;K,B,Sum
1630 IF B<V THEN 1660
1640 Y=LGT(B)
1658 GOTO 1700
1668 IF B>-V THEN 1698
1670 Y=T2-LGT(-B)
1680 GOTO 1700
1690 Y=Threshold
1780 PLOT KY
1710 NEXT K
1728 PENUP
1730 SUBEND
1748
1750 SUB Cumulants(DOUBLE M,REAL PO,Cum(*)) SHOT NOISE eqs.. 147-150
1760 Overlap=6.2 ' AV. NO. PULSES/SEC * AVERAGE PULSE DU•,ITION
1778 Sigmnaa=1. PARAMETER OF RAYLEIGH AMPLITUDE PDF
1788 PO=EXP(-Overlap) PROBABILITY OF ZERO AMPLITUDE OF SHOT tiISE
179-, ALLOCATE Mom8O:M) 1 ARRAY FOR MOMENTS
1800 DOUBLE K
181"' S=Siginaa*Sigmaa
1820 Cum(8)=8.
18:38 Curm(1)=verlap*Sigmaa*.25*PI*SQR(.5*Pl)
1840 Cur,(2)=Overlap*S*4./3.
1850 FOR K=3 TO M
1868 Cum(K)=Cum(K-2)*S*K*K/.(K+I>
1870 NEXT K
1.888 CALL Monint vi a_cumnt(M,Cum(*),Mom(*))
1898 Mon(8>=Mom78)-Po ! MOMENT CORRECTION FOR IMPULSE AT O!RGIN
1900 CALL Cumnt._via womnt( M,Morn(*),Cum(*))
1918 SUBEND
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TR 7377

PROGRAM pHRC

10 CONTINUOUS PART OF SHOT NOISE PDF, pc'u) TR 7377, FIGURE 9

20 COEFFICIENTS OF HERMITE EXPANSION FOUND RECURSIVELY VIA CUMULANTS

30 M=80 ! MAXIMUM ORDER OF APPROXIMATION; NUMBER OF CUMULANTS REQUIRED

40 DOUBLE M,IN,K I INTEGERS < 2,31 = 2,147,483,648
58 REDIM Cum(O:M),A(O:M),He(G:M)
60 REAL Cum(O:100),A(O:lOO),He(O:100)
70 CALL Cumu1ants(M,PO,Cum(*)) PO IS STEP AT ORIGIN

80 Center=Cum(1) CENTER OF PDF pc(u)

90 R2=Cum(2) ! MEAN SQUARE SPREAD OF pc~u.>

100 Rms=SQR(R2) ! RMS SPREAD OF pc(u)
110 AlphaO=Ceenter THE CHOICES Alpha=AlphaO AND

120 Bet.aO=Rms ' Beta=BetaO WOULD MAKE A(I)=A,2=0
130 Alpha='enter
140 Beta=Rmr*1.5
150 CALL Coeffhr via cum(M,Alpha-" t 1a,Cum(*),A(*)) PC

160 PRINT "Center = ";Center
170 PRINT "Rms =";Rms
180 FI=I./(Beta*SQR(2.*PI))
190 INPUT "ORDER AND LIMITS:",N,U1,U2
200 PRINT "ORDER AND LIMITS:",N;UI;U2
210 Du=(U2-UI)/,00.
220 PLOTTER IS "GRAPHICS"
230 GRAPHICS ON
240 WINDOW UI,U2,0.,.15
250 GRID 6.,.03
260 FOR I=0 TO 100
270 U=UI+Du*I
280 T=(U-Alpha)/Beta
290 CALL Hermite(N,T,He(*))
300 Sum=A(O)
310 FOR K=1 TO N
320 Surm=Sum+A(K)*He(K)
330 NEXT K
340 P=FI*EXP(-.5*T*T)*Sum PDF OF RV AT U
350 PLOT U,P
360 NEXT I
370 PENUP
380 GOTO 190
390 END
400 USE ROUTINES IN PHRC
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TR 7377

PROGRAM PHDMandRM

10 STEP PLUS CONTINUOUS PART OF SHOT NOISE CDF, Pc(u); COEFFICIENTS OF
20 HERMITE EXPANSION FOUND DIRECTLY VIA MOMENTS OR RECURSIVELY VIA MOMENTS
30 M=80 ! MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED
40 DOUBLE M,I,NK ! INTEGERS < 2-31 = 2,147,483,648
50 REDIM Mom(O:M),RA(:M),He(O:M)
60 REAL Mom(0:100),A(0:100),He(0:100),P(0:100'.
70 CALL Moments(M,PO,Mom(*)) ! PO IS STEP AT ORIGIN
80 Center=Mom(1)/Mom(0) I CENTER OF PDF pc(u.
90 R2=Mou,(2)/Mom(0)-Center*Center ! MEAN SQUARE SPREAD OF pcu>

100 Rms=SQR(R2) ! RMS SPREAD OF pc(u)
110 Alpha0=Center , THE CHOICES Alpha=AlphaO AND
120 Beta0=Rms ! Beta=BetaB WOULD MAKE A(1)=R2>=
130 Alpha=Center
140 Beta=Rms*1.5
150 CALL Coeffhdviamom(M,Alpha,Beta,Mom(*),A(*)) DM
160 CALL Coeffhrvia mom(M,Rlpha,Beta,Mom(*),A(*)) RM
170 PRINT "Center = ";Center
180 PRINT "Rms =";Rms
190 FI=I./SQR(2.*PI)
200 INPUT "ORDER AND LIMITS:",N,U1,U2
210 PRINT "ORDER AND LIMITS:",N;U1;U2
220 Du=(U2-UI)/100.
238 PLOTTER IS "GRAPHICS"
240 GRAPHICS ON
250 WINDOW UI,U2,-10.,O.
260 GRID Du*10.,I.
270 FOR I=0 TO 100
280 U=UI+Du*I
290 T=(U-Alpha)/Beta
300 CALL Hermite(N,T,He(*))
310 Sum=O.
320 FOR K=i TO N
330 Sum=Sum+ARK)*He(K-1)
340 NEXT K
350 P=A(O)*FNPhi(T)-FI*EXP(-.5*T*T)*Sum ! PROBABILITY THAT RV < U
360 IF U>=O. THEN P=P+PO ADDITION OF STEP AT ORIGIN
370 P(I)=P
380 IF P>B. THEN 410
390 PENUP
400 COTO 420
410 PLOT U,LGT(P)
420 NEXT I
430 PENUP
440 FOR 1=0 TO 100
450 U=UI+Du*I
460 PI=I.-P(.I)
470 IF P1>0. THEN 500
480 PENUP
490 GOTO 510
500 PLOT U,LGT(P1)
510 NEXT I
520 PENUP
530 GOTO 200
540 END
550
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TR 7377

PROGRAM PHiDMandRM (cont'd)

568 DEF FNPhi(X) HART, page 140, #5788 & #5725
570 LISTED IN PHRC
740 FNEND
758 i
760 SUB Hermite(DOUBLE N,REAL X,He(*)) He/n(X)
770 LISTED IN PHRC
830 SUBEND
840
850 SUB Hermitei(DOUBLE N,REAL X,Hi(*)) Hi/n(X)=(-i)-n He/n(iX) eq.74-5
860 DOUBLE K MODIFIED HERMITE POLYNOMIALS
870 Hi(O)=l.
888 Hi(1)=X
898 FOR K=2 TO N
900 Hi(K)=X*Hi(K-I)+(K-I)*Hi(K-2)
910 NEXT K
920 SUBEND
930
940 SUB Momnt via cumnt(DOUBLE M,REAL Cum(*),Mom(*))
950 ! LISTED IN PHRC

1070 SUBEND
1080
1090 SUB Coeffhd via mom(DOUBLE M,REAL Alpha,Beta,Mom(*),A(*))
1188 ALLOCATE He(O:M),F(O:M),B(8:M)
1110 DOUBLE K,J,Mx
1120 CALL Hermite(M,-Rlpha/Beta,He(*))
1138 T=F(B)=I.
1140 FOR K=I TO M
1150 F=F(K)=F(K-1)*K
1160 T=T*Beta
1170 He(K)=He(K)/F ' NORMALIZED HERMITE POLYNOMIALS; eq. 68
1188 Mom(K)=Mom(K)/(F*T) ! NORMALIZED MOMENTS re Beta; eq. 69
1190 NEXT K
1280 FOR K=8 TO M
1218 S=o.
1220 FOR J=B TO K
1230 S=S+He(J)*Mom(K-J)
1240 NEXT J
1250 R(K)=S
1260 NEXT K
1270 MAT F=SQR(F)
1280 MAT B=A.F
1298 Mx=Mx+10
1300 IF Mx<M THEN 1290
1318 Threshold=-7.
1328 T2=Threshold*2.
1330 V=10.^Threshold
1340 GINIT
1350 PLOTTER IS "GRAPHICS"
1360 GRAPHICS ON
1378 WINDOW O.,FLT(Mx),T2,0.
1380 LINE TYPE 3
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TR 7377

PROGRAM PHDMandRM (cont'd)

1390 FOR J=O TO Mx STEP 10
1400 MOVE J,T2
1410 DRAW J,0.
1420 NEXT J
1430 FOR J=T2 TO 0
1440 MOVE O.,J
1450 DRAW Mx,J
1460 NEXT J
1470 PENUP
1480 LINE TYPE 1
1490 IMAGE 4D,2(4X,M.17DE)
1500 PRINT K B(K) Sum"
1510 Sum=O.
1520 FOR K=O TO M
1530 B=B(K>
1540 Sum=Sum+B*B
1550 PRINT USING 1490;K,B,Sum
1560 IF B<V THEN 1590
1570 Y=LGT(B)
1580 GOTO 1630
1590 IF B>-V THEN 1620
1600 Y=T2-LGT(-B)
1610 GOTO 1630
1620 Y=Threshold
1630 PLOT K,Y
1640 NEXT K
1650 PENUP
1660 SUBEND
1670
1680 SUB Coeffhr via mom(DOUBLE M,REAL AlphaBeta,Mom(*),A(*))
1690 ALLOCATE Hi(O:M),F(O:M),B(O:M)
1700 DOUBLE K,J,Mx
1710 CALL Hermite i(M,Alpha/Beta,Hi(*))
1720 T=F(0)=I.
17 0 FOR K=I TO M
174(o F=F(K)=F(K-1)*K
1750 T=T*Beta
1760 Hi(K)=Hi(K)/F I NORMALIZED MODIFIED HERMITE POLYNOMIALS; eqs. 80 & 74
1770 Mim(K)=Mom(K)/(F*T) NORMALIZED MOMENTS re Beta; eq. 69
1780 NEXT K
1790 FOR K=O TO M
1800 S=Mom(K)
1810 FOR J=l TO K
1820 S=S-Hi(J)*A(K-J)
1830 NEXT J
1840 A(K)=S
1850 NEXT K
1860 MAT F=SQR(F)
1870 MAT B=A.F
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TR 7377

PROGRAM PHDMandRM (cont'd)

1880 Mx=lMx+1o
1890 IF Mx<lM THEN 1880
1900 Threshold=-7.
1910 T2=Thre-shold*2.
1920 V=10.^,Threshold
1930 GINIT
1940 PLOTTER IS "GRAPHICS"
1950 GRAPHICS ON
1960 WINDOW O.,FLT(Mx),T2,0.
1970 LINE TYPE 3
1980 FOR J=O TO Mx STEP 10
1990 MOVE J,T2
2000 DRAW J,O.
2010 NEXT J
2020 FOR J=T2 TO 0
2030 MOVE O.,J
2040 DRAW Mx,J
2050 NEXT J
2060 PENUP
2070 LINE TYPE 1
2080 IMAGE 4D,2(4X,M.17DE)
2090 PRINT " K B(K) Sum"
2100 Sum=O.
2110 FOR K=O TO M
2120 B=B(K)
2130 Sum=Sum+B*B
2140 PRINT USING 2080;K,B,Sum
2150 IF B<V THEN 2180
2160 Y=LGT(B)
2170 GOTO 2220
2180 IF B>-V THEN 2210
2190 Y=T2-LGT(-B)
2200 GOTO 2220
2210 Y=Threshold
2220 PLOT K,Y
2230 NEXT K
2240 PENUP
2250 SUBEND
2260
2270 SUB Moments(DOUBLE MRERL PO,Cum(*)) ! SHOT NOISE eqs. 147-150
2280 Overlap=6.2 AV. NO. PULSES/SEC * AVERAGE PULSE DURATION
2290 Sigriaa=l. I PARAMETER OF RAYLEIGH AMPLITUDE PDF
2300 Pe=EXP(-Overlap) I PROBABILITY OF ZERO AMPLITUDE OF SHOT NOISE
2310 ALLOCATE Cum(O:M) I ARRAY FOR CUMULANTS
2320 DOUBLE K
2330 S=Sigmaa*Sigmaa
2340 Cum(O)=O.
2350 Cum(1)=Overiap*Sigmaa*.25*PI*SQR(.5*PI)
2360 Cum(2)=Overlap*S*4./3.
2370 FOR K=3 TO M
2380 Cum(K)=Cum(K-2)*S*K*K/(K+I)
2390 NEXT K
2400 CALL Momnt via cumnt(M,Cum(*),Mom(*))
2410 Mome()=Mom(e)-Po MOMENT CORRECTION FOR IMPULSE AT ORIGIN
2420 SUBEND
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TR 7377

PROGRAM pHOMandRM

10 tCONTINUOUS PART OF SHOT NOISE PDF, pc(u); COEFFICIENTS OF HERMITE
20 EXPANSION FOUND DIRECTLY VIA MOMENTS OR RECURSIVELY VIA MOMENTS
30 M=0o MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED
40 DOUBLE M.I,NK INTEGERS < 2"31 = 2,147,483,648
50 REDIM Mom(O:M),BA(O:M),He(O:M)
60 REAL Mom(0:100),A(0:100),He(0:100)
70 CALL Moments(M,P0,Mom(*)) PO IS STEP AT ORIGIN
80 Center=Mom(1)/Mom(0) CENTER OF PDF pc(u)
90 R2=Mom(2)/Mom(O)-Center-*Center MEAN SQUARE SPREAD OF pc:(u.

100 Rms=SQR(R2) RMS SPREAD OF pc(u)
110 AlphaO=Center TwF CHOICES AIph.a=A1phaL0 AND
120 Beta0=Rms -,et a=BetaO WO"Lu ilHfVE A(l)=A(2,=0
130 Alpha=Center
140 Beta=Rms*1.5
150 CALL Coeffhd via mom(M,R,Beta,Mom(*),A(*)) DM
160 CALL Ccef'fhrvia mom(M.A '. -ta,Nom(*),R(*)) RM
170 PRINT "Center = ";Center
180 PRINT "Rms =";Rms
190 FI=I./(Beta*SQR(2.*PI))
200 INPUT "ORDER AND LIMITS:",N,UI,U2
210 PRINT "ORDER AND LIMITS:",N;U1;U2
220 Du=(U2-U1)/100.
230 PLOTTER IS "GRAPHICS"
240 GRAPHICS ON
250 WINDOW UIU2,0.,.15
260 GRID 6.,.03
270 FOR 1=0 TO 100
280 U=UI+Du*I
290 T=(U-A1pha)/Beta
300 CALL Hermite(N,7,.:
:310 Sum=RA()
320 FOR K=I TO N
330 Sum=Sum+A(K)*He(K)
340 NEXT K
350 P=FI*EXP(-.5*T*T)*Sum PDF OF RV AT U
360 PLOT U,P
370 NEXT I
380 PENUP
390 GOTO 200
400 END
410 USE ROUTINES IN PHDM&RM
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TR 7377

PROGRAM PLRC

10 STEP PLUS CONTINUOUS PART OF SHOT NOISE CDF, Pc(u); TR 7:77, FIGURE 2-0
20 COEFFICIENTS OF GEN. LAGUERRE EXPANSION FOUND RECURSIVELY VIA C:UMULANTS
30 M=70 MAXIMUM ORDER OF APPROXIMATION; NUMBER OF CUMULANTS REOUIRED
40 DOUBLE M,I,NK INTEGERS 2 2"'31 = 2,1471,4S3,648
50 REDIM Cum(0:M),A(0:M),L'0:M)
60 REAL Cum(0:100),R(0:l00),L(0:100),P(0:100)
70 CALL Cumulants(M,P0,Curii(*)) PO IS STEP AT ORIGIN
80 Center=Cum(l) ! CENTER OF PDF pc(u)
90 R2=Cum(2) MEAN SQUARE SPREAD OF pc:u)

100 Rms=SQR(R2) I RMS SPREAD OF pc(u)
110 AlphaO=Center*Center/R2-1. THE CHOICES Al pha=Al phaO ANDI
120 Bet a0=R2./Center Beta=BetaO WOULD MAKE A I)A(2L=0
130 Alpha=.74
140 Beta=2.1
150 CALL Coefflr via cum(M,Alpha,Beta,Cum(*),A(*)) PC
160 PRINT "Center = ";Center
170 PRINT "Rms =";Rms
180 Al=Alpha+l.
190 01=1./Al
200 Fl=l./FNGamma(Al)
210 iNPUT "ORDER AND LIMITS:",N,UI,U2
220 PRINT "ORDER AND LIMITS:",N;UI;U2
230 Du=(U2-U1)/100.
240 PLOTTER IS "GRAPHICS"
250 GRAPHICS ON
260 WINDOW U1,U2.-11.,O.
270 GRID 4.,1.
280 P(o)=PO
290 PLOT O.,LGT(PO)
300 FOR 1=1 TO 100
310 U=UI+Du*I
:320 T=U/Beta
330 CALL Laguerre(N-1,A1,T,L(*))
340 Sum=A(O)*FNFI(A1,T)*OI
350 FOR K=1 TO N
360 SurM=Sum+A(K)*L(K-1)/K
370 NEXT K
380 P(I)=P=-+fI*EXP(-T+RI*LOG(T))*Sum 1 PROBABILITY THAT RV K U
390 IF P>O. THEN 420
400 PENUP
410 GOTO 430
420 PLOT U,LGT(PP)
430 NEXT I
440 PENUP
450 FOR I=0 TO 100

460 U=UI+Du*I
470 PI=I.-P(I)
480 IF P1>0. THEN 510
490 PENUP
500 GOTO 520
510 PLOT U,LGT(PI)
520 NEXT I
530 PENUP
540 GOTO 210
550 END
560
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TR 7377

PROGRAM PLRC (cont'd)

570 DEF FNGamrna(X) 'Gamma(X) via HART, page 282, #5243 eq. 2
580 DOUBLE N,K
590 N=INT(X)
600 R=X-N
610 IF N>O OR R<>0. THEN 640
620 PRINT 'FNGamma(X. IS NOT DEFINED FOR X = ;
630 STOP
640 IF R>0. THEN 670
650 Gamma2=1.
660 GOTO 740
670 P=439.330444060025676+R*(50. 1086937529709530+P*6.74495072459252899:)
680 P=8762.71029785214896+R*<2008.52740130727912+R*P)
690 P=42C39:3. 6895097440896+R*(20886. 8617892698874+R*P)
700 Q=499.028526621439048-R*(189.498234157028016.R*(2:3.08155152-ý4580125-R"))
710 Q=9940.30741508277090-R*(1528.60727377952202+R*Q)
720 0=42353. 6895097440900+R'4,C2980. 385:33092566499-R*Q)
730 IGamrna2=F,-U Garna<2+R) for R < 1
740 IF N>2 THEN 780
750 IF N<2 THEN 830
760 Gamma=Gamma2
770 RETURN Gamma
780 Gamma=Gamma2
790 FOR K=i TO N-2
800 Camma=Gamma*(X-K)
8le NEXT K
820 RETURN Gamma
830 R=1.
840 FOR K=O TO 1-H
850 R=R*<X+K)
860 NEXT K
870 Gamra=Gamma2/R
880 RETURN Gamma
890 FNEND
900
910 DEF FNFI<AI,X) 1F1(1;A1+1;X) eq. C-2
920 DOUBLE K
930 T=S=1.
940 FOR K=1 TO 200
950 T=T*X/'(R1-K
960 =T
970 IF T<=1.E-17*S THEN RETURN S
980 NEXT K
990 PRINT "200 TERMS IN FNF1 AT";A1;X
1000 RETURN S
1010 FNEND
1020
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TR 7377

PROGRAM PLRC (cont'd)

10830 SLIB Laguerre (DOUBLE N, REAL Al phaL,X, L(*)) eq. 96
1040 DOUBLE K
1050 A1=Alpha-1.
1060 L8>)=1.
1070 L(1)=Alpha+1. -X
1080 FOR K=2 TO N
1090 L(K)=( (K+K+A1-X::*L(K-1)-(K+R1 )*LKf.,-2) )/.K
1100 NEXT K
1110 SUBEND
1120
1130 SUB Flarnrt via cumnt(DOUBLE MREAL Curn(*)Morn(*))
1148 LISTED IN PHRC
1260 SUBEND
1270
1280 SUB Cumnt via mr,-'n-t<DOUBLE M,REAL Mom(*),Cum(*))
1290 LISTED IN PHRC
1420 SUBEND
1430
1448 SUB Coe~fflt via-cum(DOUBLE M9REAL AlphaBeta,Cum(*),A(*I))
1450 ALLOCATE B(8:M),C(8:M),D(1:M)
1460 DOUBLE K,J,J1,Mx
1470 T=Beta
1488 Cun(l)=Cum(1)/T
1498 FOR K=2 TO K
1588 T=T*Beta*<K-1)
1510 Curn(K)=Cum(K)/T ! NORMALIZED CUMULANTS; eq. 62
1520 NEXT K
1530 Al=Rlpha+1.
1540 FOR .1=1 TO M
1550 J1=J+1
1568 T=I.
1578 S=A1
1580 FOR K=1 TO J
1598 T=T*(K-J1)/K
1688 S=S+T*Cum(K)
1610 NEXT K
1620 D(J)=S
1630 NEXT J
1640 A<0)=B(8)=C(0)EXP(CumO0))
1650 Q1I.
1660 FOR K=1 TO M
1670 5=8.
1680 FOR J=l TO K
1690 S=S+D(J)*C(K-J)
1700 NEXT J
1718 C(K)=C=S/K
1728 Q=Q*K/(Alpha+K)
1730 A(K)=C*Q
174e B<K0=C*SQR(Q)
17510 NEXT K
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PROGRAM PLRC (cont'd)

1768 Mx=Mx+18
1778 IF Mx<M THEN 1768
1788 Threshold=-7.
1790 T2=Threshold*2.
1888 V=I0.lThreshold
1810 GINIT
1820 PLOTTER IS "GRAPHICS"
1838 GRAPHICS ON
1840 WINDOW 8.,FLT(Mx),T2,8.
1850 LINE TYPE 3
1860 FOR J=O TO Mx STEP 10
1870 MOVE J,T2
1880 DRAW J,O.
1890 NEXT 3
1900 FOR J=T2 TO 0
1910 MOVE O.,J
1928 DRAW Mx,J
1930 NEXT J
1940 PENUP
1950 LINE TYPE 1
1960 IMAGE 4D,2(4X,M.17DE)
1970 PRINT " K BKK) Sum"
1988 Sum=o.
1990 FOR K=O TO N
2000 B=B(K)
2810 Sum=Sum+B*B
2808 PRINT USING 1960;K,B,Sum
2830 IF B<V THEN 2868
2048 Y=LGT(B)
2858 GOTO 2100
2060 IF B>-V THEN 2090
2070 Y=T2-LGT(-B)
2880 GOTO 2108
2098 Y=Threshold
2108 PLOT K,Y
2110 NEXT K
2120 PENUP
2130 SUBEND
2140
2150 SUB Cumulants(DOUBLE M,REAL PO,Cum(*)) SHOT NOISE
2160 I LISTED IN PHRC
2318 SUBEND
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PROGRAM pLRC

10 CONTINUOUS PART OF SHOT NOISE PDF, pc~u) TR 73771, FIGUPE 2l
121A COEFFS. OF GENERAL. LAGUERRE EXPANSION FOUND RECURSI.V'ELY VIA CUMULANTS_
30 M=70 ! MAXIMUM ORDER OF APPROXIMATION; NUMBER OF CUMULANTS REQUIRED
40 DOUBLE MI ,N,K I INTEGERS 2,-,-3,, 1 = 2,147,4 3,,648
50 REDIM Cuum(O:M), AO:M),L(B:M)
60 REAL Cum(O:100), A(O:10),L(O:100)
70 CALL Cumul ants(M,PO,Cum(*)) ! PO IS STEP AT ORIGIN
80 Center=Cum(1) CENTER OF PDF pc,.'u'
90 R2=Cum(2) MEAN SQUARE SPREAD OF pceu>

100 Rm.=SQR(R2) i RMS SPREAD OF pcku.

110 A I phaO=Cert er*Cent er-/R2- 1. THE CHOICES A 1 pha= lA Fh.aO ANDI
120 BetaO=R2.-Center Beta-BetaO WOULD MAKE A I:=A 2:=0
130 Alpha=.74
140 Be.a=2.1
150 CALL Coeflr Qvia cum(M,Alpha,Beta,Curr,(*),A(*) )) RC
160 PRINT "Center =";Center
170 PRINT "Rms -";Rms
180 F i=I./ (Beta*FNGamnta(Alpha+I.))
190 INPUT "ORDER AND LIMITS:",N,UI.
200 PRINT "ORDER AND LIMI T

:'-" ,N;U1;U4*

210 Du= U2-U 1 100.
220 PLOTTER IS "GRAPHICS"
230 GRAPHICS ON
240 WINDOW UI,U2,0.,.15
250 GRID 6.,.03
260 FOR I=0 TO 100
270 U=UI+Du*I
280 IF U<(. THEN 400
290 IF U>O. THEN 320
300 PLOT 0.,0.
:'10 .OTO 400
320 T=U.Beta
:3:; 4 CALL Laguerr-e(N,A1lfrha,T,L *))
310 Suif=A (0)
:3i0 FOR K=I TO N
360 Sum=Sum+AkK)*L(K)
:370 NEXT K
380 P=FI*EXP(-T+Alpha*LOG(T))*Sum I PDF OF RV AT I.
390 PLOT U,P
400 NEXT I
410 PENUP
420 GOTO 190
430 END
440 USE ROUTINES IN PLRC
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PROGRAM PLDMandRM

10 !STEP PLUS CONTINUOUIS PART OF SHOT NOISE CDF, Pc(u. ý; Cc'EFFICIEHT'. OiF
20 'GENERALIZED LAGUERRE EXPAN. FOUND DIREC:TLY AND RECUJR-7SIVELY VIR rIOMENT;-:
:30 M=70 'MAXIMUM ORDER OF APPROXIMATION; NUMBER: OF MO-MENTSi PEOUI FED
40 DOUBLE MIN,K !INTEGERS <'2-31 = 2,147.48?.iý48
50 REDIM M-om<0: M) .A(0: Mi,L(8:M)
60 REAL Mlom(0:100¾AFi0: 100)ý,L('0:100).P(0: 100?
70 CALL tMorfaerits(M,P0,Mornl'~*)) PO IS STEP AT ORIGIN
80 Cenv er=Mom (1 " Morra(0) CENTER OF PDF p: (a):
90 R2=Mom(2) -Moi(0 -Cent~er*Cent~tr !MEAN SQIJARE S;PREAD OF c'
100J Rrn.=SQR(R2) RMS SPREAD OF pc(u".
110 Al pha0O=Center*Cent~er/R2-1. THE CHOICES A IF.h a=AlIp h 0 F, t 4
120 Beta0=R2/'Center Bet aBe1 ao WOULD M1AKE A'ý I -Ac.,-
130 Alpha=.74
140 Beta=2.1
150 CALL Coeffld v iaL - om (M, ri pha, Be ta,Mom 8 <,(*DM
160 C:ALL CoffIrvi o (M, AlIpha, Bet a, Morn )A(*) PM
170 PRINT "Cenater =";Cerit~er
18so PRINT "Rrns =1;Rms
190 AI=Rlpha+1.
200 01=1./Al
210 F11l./,FNAGanmaL(A1)
220 INPUT "ORDER AND LIM1TS:",N,U1,U2
230 PRINT "ORDER AND LIMITS:',N;Ul;U2
240 Du=(U2-Ul)/100.
250 PLOTTER IS "GRAPHICS"
260 GRAPHICS ON
270 WINDOW U1,U2,-11.,0
'2 80 GRID 4.,1.
290 P(0)=PO
300 PLOT O.,LGT('.PO')
310 FOR 1=1 TO 100
312 0 U=U1+Du*I
:3130 T=U..'Bet a
340 CALL La'guerre(N-1 .A1,T,Lr(*'.)
350 SurfiA(0)*FNF (Al, T)*O1
360 FOR K=l TO N
:370 Surm=Sum+A(K)*L(K-l)/K
380 NEXT K
:390 P( I')P=PO+F1*EXýP(-T+P1*LOG(T))*Surr pRflBABILITY THAT P'%,' U
400 IF PA0. THEN 430
410 PENUP
420 GOTO 440
4:3A PLOT U,LGT(P)
440 NEXT 1
450 FENUP
460 FOR 1=0 TO 100
470 ULII+Du*I
480J Pl=l.-P(I)
490 IF P1>A. THEN 520
500 PEN4UP
510 GOTO 5:30
520 PLOT U,LGTr:P1)
530 NEXT 1
540 PENUP
550 GOTO 220
560 END
570
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PROGRAM PLDMandRC (cont'd)

580 DEF FNGamma(X) ' Gamma(X) via HART, page 282, #5243
59e ' LISTED IN PLRC
900 FNEND
910
920 DEF FNF1(A1,X) IFI(1;RI+I;X)
930 LISTED IN PLRC

1020 FNEND
1030
1040 SUB Laguerre(DOUBLE NREAL Rlpha,X,L(.)) ! Ln\alpha<X)
1858 LISTED IN PLRC
1120 SUBEND
1130
1140 SUB Momnt via cumnt(DOUBLE MREAL Cum(*),Mom(*))
1150 LISTED IN PHRC
1270 SUBEND

'1280
1290 SUB CoeffId via_ mm(DOUBLE M,REAL Alpha,Beta,Mom(*),A(*))
1308 ALLOCATE B(6:M)
1318 DOUBLE K,K1,J,Mx
1320 T=I.
1330 FOR K:1 TO M
1348 T=T*(Alpha+K)*Beta ! NORMALIZED MOMENTS re
1:350 Mom(K)=Mom(K)/T Alpha and Beta; eq. 118
1360 NEXT K
1378 Q=1.
1380 A(o)=B(o)=Mom(o)
1390 FOR K=1 TO M
1400 KI=K+I
1410 T=1.
1428 S=Mom(8)
1430 FOR J=1 TO K
1440 T=T*(J-KI)°.J
1450 S=S+T*Mom(J)
1460 NEXT J
1470 Q=Q*(Alpha+K)/K
1488 A(K)=S
1498 B(K)=S*SQR(Q)
1500 NEXT K
1510 Mx=Mx+1I
1528 IF Mx<M THEN 1510
1530 Threshold=-7.
1548 T2=Threshold*2.
1550 Y=10.1-Threshold
1560 GINIT
1570 PLOTTER IS "GRAPHICS"
1580 GRAPHICS ON
1590 WINDOW O.,FLT(Mx),T2,0.
1600 LINE TYPE 3
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PROGRAM PLDMandRM (cont'd)

1610 FOR J=O TO Mx STEP 10
1620 MOVE J,T2
1630 DRAW J,O.
1640 NEXT J
1658 FOR J=T2 TO 0
1660 MOVE O.,J
1670 DRAW Mx,J
1688 NEXT J
1698 PENUP
1780 LINE TYPE 1
1718 IMAGE 4D,2(4X,M.T7DE)
1720 PRINT K B(K0 Sum"
1730 Sum=O.
1740 FOR K=O Tn M
1750 B=B(K)
1760 Sum=SuB+B*B
1770 PRINT USING 1710;K,B,Sum
1780 IF B<V THEN 1810
1798 Y=LGT(B)
1888 GOTO 1858
1810 IF B>-V THEN 1840
1820 Y=T2-LGT(-B)
1838 GOTO 1850
1840 Y=Threshold
1850 PLOT K,Y
1868 NEXT K
1870 PENUP
1880 SUBEND
1890
1900 SUB Coefflr viamom(DOUBLE M,REAL Alpha,Beta,Mom(*),A(*))
1910 ALLOCATE B(0:M)
1920 DOUBLE K,K1,J,Mx
1938 T=1.
1940 FOR K=1 TO M
1950 T=T*(Alpha+K)*Beta NORMRLIZED MOMENTS re
1960 Mom(K)=Mom(K)/T Alpha and Beta; eq. 118
1970 NEXT K
1980 Q=1.
1990 A(0)=B(o)=Mom(O)
20880 FOR K=1 TO M
2010 KI=K+I
2028 T=1.
2030 S=Mom(K)-A(R)
2040 FOR J=1 TO K-I
2050 T=T*(J-K1)/J
2068 S=S-T*R(J)
2070 NEXT J
2080 IF K MOD 2=1 THEN S=-S
2090 A(K)=S
2100 Q=Q*(Alpha+K)/K
2110 B(K)=S*SQRýQ)
2128 NEXT K
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PROGRAM PLDMandRM (cont'd)

2130 Mx=Mx+10

2148 IF Mx<M THEN 2138
2150 Threshold=-7.
2168 T2=Threshold*2.
2178 V=10.-Threshold
2180 GINIT
2190 PLOTTER IS "GRAPHICS"
2200 GRAPHICS ON
2218 WINDOW 8.,FLT(Mx),T2,8.
2228 LINE TYPE 3
2238 FOR J=8 TO Mx STEP 18
2240 MOVE J,T2
2250 DRAW J,8.
2268 NEXT J
2270 FOR J=T2 TO 0
2280 MOVE O.,J
2298 DRAW Mx,J
2388 NEXT J
2318 PENUP
2328 LINE TYPE I
2?38 IMAGE 4D,2(4X,M.17DE)
2348 PRINT " K B(K) Sum"
2358 Sum=8.
2368 FOR K=8 TO M
2370 D=B(K)
2388 Sum=Sum+B*B
2398 PRINT USING 2330;K,B,Sum
2400 IF B<V THEN 2438
2418 Y=LGT(B)
2428 GOTO 2478
2438 IF B>-V THEN 2468
2448 Y=T2-LGT(-B)
2458 GOTO 2478
2468 Y=Threshold
2478 PLOT KY
2488 NEXT K
2490 PENUP
2500 SUBEND
2510
2520 SUB Moments(DOUBLE M,REAL PO,Mom(*)) SHOT NOISE
2538 ! LISTED IN PHDM&RM
2678 SUBEND
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PROGRAM pLDMandRM

10 CONTINUOUS PART OF SHOT NOISE PDF, pc(u); COEFFICIENTS OF GENERALIZED
20 LAGUERRE EXPANSION FOUND DIRECTLY AND RECURSIVELY VIA MOMENTS
30 M=70 MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED
40 DOUBLE MI,NqK INTEGERS < 2.. 31 = 2,147,483,648
50 REDIM MomfO: >), A(O: M), L(O: M)
60 REAL Momrn:l10),A(O:l0O),L(3:180)
70 CALL Mo-nments(MPO,MrK*)) PO IS STEP AT ORIGIN
80 Center=Mom(1)/Mom(O) CENTER OF PDF pc(u)
90 R2=Mom<2)..'Mom(O)-Center*Center MEAN SQUARE SPREAD OF pc(u)

100 Rms=SQR(R2) ! RMS SPREAD OF pc(u)
110 AlphaO=Center*Center/R2-1. THE CHOICES Alpha=AlphaO AND
120 BetaO=R2/Center Beta=Beta0 WOULD MAKE A(1)=A(2)=B
130 A1lpha=.74
140 Beta=2.1
150 CALL Ccieff'ld vi m n',om(MRAlpha, Beta, Mom(*),A(*)) ! DM
160 CALL Coef'flr via r,,om(MRlphaBeta,Mom(*),A(*)) RM
170 PRINT "Center = ,";Center
180 PRINT "Ruis =";Rms
190 F1=1./(Beta*FNGarmnra(ARlpha+I.))
200 INPUT "ORDER AND LIIIITS:",N,U1,U2
210 PRINT "ORDER AND LIMITS:",N;U1;U2
220 Du=(U2-U1)/100.
2.30 PLOTTER IS "GRAPHICS"
240 GRAPHICS ON
258 WINDOW UI,U2,0.,.15
260 GRID 6.,.03
270 PLOT 0.,0.
280 FOR 1=1 TO 100
290 U=UI+Du*I
380 T=U/Beta
310 CALL Laguerre(N, Alpha, TL(*))
320 Sum=A(O)
330 FOR K=I TO N
340 Sum=Sum+R(K)*L(K)
350 NEXT K
360 P=FI*EXP(-T+AIph-,a*LOG(T))*Sum PDF OF RV AT U
370 PLOT U,P
380 NEXT I
390 PENUP
400 GOTO 200
410 END
428 USE ROUTINES IN PLDM&RM
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Error of Zero-Crossing
Location for Straight-Line
Interpolation of Sampled

Sinewave in Noise

A. H. Nuttail
ABSTRACT

The maximum error, rms error, and the average-magnitude error are
evaluated for the approximate zero-crossing location obtained by using
linearly-interpolated values of a sampled sinewave. If the sampling rate
is greater than four times the sinewave frequency, all three errors are
less than 1.1 percent of the period of the sinewave. In the presence of
additive noise, the rms error is derived and plotted for different signal-
to-noise ratios and noise-bandwidth to signal-frequency ratios.
Limitations on the approximate analytic result are pointed out and
compared with simulation results.

Approved for public release; distrbution unlimited.
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INTRODUCTION

Sampling of a bandlimited waveform, at a frequency greater than twice the

highest frequency contained in the waveform, loses no information according to

the sampling theorem. However, perfect reconstruction of the original

waveform from the samples requires that two conditions be met: all the samples

over (-*,+0) must be available, and sin(x)/x interpolation must be used. The

first condition can never be met exactly and the second is often too

time-consuming to be practical. Furthermore, determination of the zero

crossings requires solution of a transcendental equation, which is very

time-consuming. Accordingly, simpler schemes for waveform reconstruction,

such as sample-and-hold or linear interpolation, are often employed.

Here we investigate the error incurred by using linear interpolation of

the samples, in order to determine the zero-crossing locations of the original

waveform. In particular, we first consider a pure sinewave and sample it at a

rate greater than twice the sinewave frequency. The error in zero-crossing

locations, afforded by linear interpolation between adjacent samples, is

evaluated as a function of the ratio of sampling period to sinewave period.

When noise is added, the error depends additionally on the signal-to-noise

ratio and the noise correlation. Plots of the maximum, rms, and mean-

magnitude errors are given in the noise-free case, whereas the rms error is

presented for the noise-present cases.
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NOISE-FREE ZERO-CROSSING ESTIMATION

A sinewave of amplitude A and frequency F is sampled at intervals T

seconds apart. The sampling is not synchronous with the sinewave frequency;

thus a random phase is associated with the occurrence of sampling relative to

the sinewave. The situation is depicted in figure 1, where we are trying to

estimate the actual zero-crossing of y(t) at t=(2F)-l; we must have

y(b) < 0 < y(a) for this plot to be relevant.

(a)e

T

Figure 1. Estimated Zero-Crossing Location z

The interval between the samples at t=a and t=b is

T = b-a. (1)

Since the sampling is not synchronized with the sinewave, the sampling

instant, a, is uniformly distributed in an interval such that

14 i1. 1
a < b = T + a, i.e., 1"- T< a < 1 (2)

The zero-crossing location, z, obtained by linearly-interpolating between

the sample values at a and b, is

z b(a) - a X(b) b sin(2wFa) - a sin(2wFb) (3)

y(a) - y(b) sin(2wFa) - sin(2wFb)

2
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where the sinewave amplitude cancels out. If we eliminate b via use of (1),

(3) becomes

z = a + T sin(2,Fa)

sin(2wFa) - sin(ZwF(a+T)) (4)

in terms of sampling interval T.

Instead of using the non-symmetric interval for a as given by (2), we let

1 T
2Fc , (5)

where now c is uniformly distributed in the interval

T T (6)

Physically, c is the displacement of the midpoint of interval (a,b) from the

true zero-crossing at (2F)- 1 . Under the substitution (5), (4) simplifies to

1 T tan(2wFc)Z = 7g+ c T• ta•wT (7)

The error in estimation of the true zero-crossing location is then

e1 T tan(2Fc) (8)

It is seen from (8) that the error e is odd in c. Furthermore, e is zero

for c=0 and c= * T/2. A plot of error e in (8), normalized relative to the

sinewave period, is given in figure 2 for different values of FT. It will be

observed that the error increases significantly, for all c, as FT approaches

.5-. Also, the maximum error, e = .25/F, occurs for FT = .5-, which corre-

sponds to two samples per period. For small FT, the error is given from (8) by

e , c (1 for FT << 1 . (9)

3
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The maximum error in (9) occurs at c m T/11 with value

2

a (FT)3 .633 (FT) 3  for FT << 1 . (10)

Thus the maximum error behaves as the cube of FT for small FT; FT is the ratio

of sampling period T to sinewave period 1/F.

.25

.2

.1

-7F

.05

0

Figure 2. Error e, Relative to Sinewave Period 1/F

Since c is a random variable and uniformly distributed over * T/2

according to (6), we can compute rms or mean-magnitude errors. But first
observe from (8) that the average error, e, is zero, since (8) is odd in c,
which is itself symmetrically distributed about c=O.

4
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We are interested in the following three error measures:

e(max) - max<T 2 lei

e(rms) = dc e 2 P(c)
L-T/2

T/2

e(mag) - S dc lei p(c) (II)

-T/2

where p(c) is the uniform probability density function of random variable c.

These are respectively the maximum error, root-mean-square error, and
mean-magnitude error. We always have

e(mag) < e(rms) < e(max); (12)

the first inequality follows from use of Schwartz's inequality on (11).

Maximum Error

To determine the location of the maximum of the error e in (8), we

differentiate with respect to c and set the derivative equal to zero, getting

location c0 where

cos 2 (2wFc) = a(13)0 tan~a) (3

and where

wFT .(14)

Then the location is explicitly

co = arc tan(fr-l) (15)

where

r• tan(m) =tanw (16)

5
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Substitution of (15) in (8) now yields

e('m =x) 1 rc-

1/- N [arc tanff?-) -f jr (17)

As FT-+O, r-'1+, and the bracket of (17) approaches

2 (r-1)3/2 - ) , (18)

the last step via use of (16). Then (17) yields

e(N2 (FT) 3 = .633 (FT) 3 as FT-.0 (19)

in agreement with (10).

As FT-..5-, r-P+*, and (17) yields

eF- asFT-s.5- (20)

in agreement with figure 2.

RMS Error

We have already shown that 1=0 by use of (8) and (6). The mean-square

value of e is

T/22
2 dc[c T tan(2Fc)(

0

Alternatively, using (14),

2#EsdX& -aui (22)

6
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This integral cannot be evaluated in closed form, due to the cross-product

term in the integrand; see ref. 1, eq. 2.646 1.

For small FT, we have a << 1, and then

tan( x) -1 a2x(lx2) (23)x - tan(a) ~ 23

leading to

e(rms) , 2F 3i305

1IF 3-" (FT) = .454 (FT) 3  as FT-*O. (24)

Just as for e(max) in (19), this is cubic in FT; however, the scale factor is

smaller here, as anticipated in (12).

As FT-4.5-, a-*w/2-, and tan(a)-*+o0 in (22); then

-r= .144 as FT-P.5- (25)

Mean-Magnitude Error

The mean-magnitude error is, from (8) and (6),

-Fe 2T/2 T a(wc

-2 (26)

0

Alternatively, using (14) and ref. 1, eq. 2.526 17,

=- dx x - t'an() =1[ + - laný ) (27)

0

We are able to eliminate the absolute value, by reference to figure 2.

For small FT, a << 1, and we use (23) again to find

~~ 23

~e-( (FT) 3 = .411 (FT)3 as FT-sO (28)

7
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The scale factor is smaller than in (24), in keeping with (12).

And as FT-e.5-, a-wi/ 2 -, tan(a)-*+,", giving rise to

S-, as FT-.5- . (29)

Plot of Three Error Measures

A plot of the three errors (normalized by the sinewave period) as given

by (17), (22), and (27), is given in figure 3. The errors are monotonically

increasing in FT, the ratio of sampling period to sinewave period. They are

all cubic in FT for small FT, and increase rapidly as FT-•.5-. For FTw.25,

the errors are 1.13%, .81%, and .73% of the sinewave period; thus increasing

the sampling frequency to double the minimum required for the sampling theorem

allows for linear interpolation with an error in zero-crossing location only

about 1%,of the sinewave period.

8
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.257

w~¶ue Y_ -d o- = r-FT.

.02-r

0

.i,

aoei

0 12_____ .3_____ 14_____ 5'_____

FT, RjoV 0*p5m kiJt -Ieoz;Via
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ZERO-CROSSING ESTIMATION IN ADDITIVE NOISE

The observed waveform in this case is

y(t) = s(t) + n(t) = A sin(2,Ft) + n(t), (30)

where the additive independent noise n(t) is stationary and zero-mean. The

noise need not be Gaussian; in fact, the only statistics required of the noise

are the noise power and correlation coefficient respectively:

2=2 1
= n-t , p(t) = --. n(t) n(t+T) . (31)

(Actually, these are sufficient only for the high signal-to-noise ratio case

considered below.)

The estimated zero-crossing is still given by the first equation in (3).

When (30) is substituted, there follows, for the zero-crossing, the nonlinear

functional

z = [b s(a) - a s(b)] + Lb n~a) - a n(b)] au + v1
is(a) - s(b)j + Ln(a) - n(b)j - u2 + v (32)

The signal terms are ul, u2, while the noise terms are v1, v2. Since

random variables vI and v2 can take on any value, there is no limit on the

maximum error, as there was in the noise-free case. And since the rms error

is intermediate to the three errors considered above and easier to evaluate

than the mean-magnitude error, we will concentrate solely on the rms error in

the noise case.

We begin by making a high signal-to-noise ratio assumption; that is, we

assume

signal power A2/2 (33)
noise power= - R> 1

10
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Then (32) becomes approximately

1 UI +v1Iu1 ft U 1 ( ,v

U2 V 2U U2  VI ulV 2

u 2 1 u u U- --- 0(34)

The Ul/U2 term in (34) is exactly the last term in (3) et seq.; the

additional two terms in (34) are noise terms that are linearly dependent on
the noise samples n(a) and n(b), under the high signal-to-noise ratio

assumption. If we did not make this assumption, we would need the joint

probability density function of the noise at the two sample instants a and b.

To evaluate the mean and variance of z in (34), we will temporarily hold

sample times a and b fixed, and average over the noise statistics, getting

conditional properties. Then we will employ (1), (5), and (6) and average

over random variable c which reflects the random nature of the sampling

mechanism. The preliminary average over the noise will be denoted by a wavy

overline; thus from (34), the conditional mean

u._i u 1 Ul1
S1u*u- 1~

-+ W -vi- '2  u (35)

since noise n(t) has zero-mean for all t. Then appeal to (3)-(7) gives

-- 1 (36)

2F

just as in the noise-free case; this conclusion is heavily based on the high

signal-to-noise ratio assumption.

We now consider the zero-mean random variable

11
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W E z T c tan(2wFc) + vl UlV2
2 tan(a) u2 u2

22

vI UlV= e 1- 12 (37)

2 u2

which is the perturbation of the estimated zero-crossing location from the

true value (2F)F 1 ; here we used (34), (36), (7), (8), and (14). The

conditional mean-square value of w is

w =e2+ 12 + (38)
U 2  U2  U2

since v, and v2 have zero-mean. Now from (32),

vi = b n(a) - a n(b), v2 =n(a) - n(b) . (39)

Therefore

U2(b2 2202 +i0 1 2 + T2
v = (b + a 2 - 2abP) = 2+

Vl-V = a2(b - bo - ap + a) = o2 (1-p)(a+b) = 2a2(1- / , (40)

V2 = o2 (b + 1 - 2p) = 2a2(1 - p)

where we used (31), (1), (5), and defined

p n(a)n(b) =-'n(a)n(a+T) = p(T) (41)
0 0

Before substituting (40) in (38), we derive simpler expressions for u,

and u 2 . From (32), (1), (5), and (30), we find

12
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U1  2A (c + 7 sin(a) cos(2wFc) - AT cos(a) sin(2wFc),

u2 2A sin(a) cos(2wFc) . (42)

Then expressing (38) as the sum of four terms,

w =T 1 + T2 + T3 + T4  (43)

and defining

B=2wFc . (44)

we have, upon use of (33),

T tankaB

1 (1-P) ( C

2='" sin2 (a) cos 2 (8)

13 4) [2(c + sin(a) cos(B)- T cos(a) sin(Bs)
sin3 (Q) cos3(()

IP (c+ sin(.) cos(s) - T cos(a) sin()
T TR 4, 4 (5

sin (a) cos (45

We now have to average the sum of the four terms in (45) over the

symmetric distribution for c given in (6). However, each of the terms T2,
T3, T4 have even and odd components in c. and the odd components will

average to zero. When we retain only the even functions of c in (45) and then

add them together, a number of terms cancel, after considerable manipulation,

leading to the significantly simpler expression

evenT 2 I-P) Cs 2 ) sin2 (B) + (l+p) sin 2 (a) cos 2(a) . (46)
2 3 41 j T sin4 (a) cos4 (8)

13
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When we employ (44) in (46) and average over c, we find, upon use of ref. 1,

eqs. 2.526 30 and 2.526 10, the mean-square error of the zero-crossing

location (due to the additive noise) as the surprisingly brief expression

e2 (noise) 1 1 2+P(T) a (47)I/2 74-- sin(2a)
1/F 4 wi~ L I

upon simplification and use of (41). To this term must be added the averaged

T1 term in (45), which is simply the square of (22). The total normalized

rms error is then

F~m)121212pT 1 1/2

/F dx (x -a2+3x) 2  )T)]a (48)
0

Here signal-to-noise ratio R and parameter a are given by

A 2 /2R a, = FT .(49)

We must emphasize that (48) is only valid for large signal-to-noise ratio,

R >> 1, so that approximation (34) is valid.

As FT-'.5-, 2a-.ww, and the sin(2a) term in the denominator of (48)

approaches zero. This appears to cause the rms error to tend to t÷ at

FT = .5-. However, this obvious shortcoming of (48) is due to a breakdown of

the approximation in (34). Specifically, (34) presumes that u2 is not zero

and that it is large compared to v2 ; but (32) and (42) show that this

quantity, given exactly by

u2 = s(a) - s(b) - 2A sin(a) cos(2wFc) = 2A sin(wFT) cos(2wFc) , (50)

can be small for some values of c. In particular, the minimum of u2 is

min = 2A sin(rFT) cos(wFT) = A sin(2rFT) (51)
C

14
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which tends to zero as FT-O.5. Thus the occasional values of c near * T/2

cause u2 to be small if FT is near .5, and the approximation in (34) to be

invalid. Thus (48) is invalid as FT-'*.5, regardless of the signal-to-noise

ratio.

At the same time, we observe that the sin(wFT) term in (50) reaches a

maximum of 1 at FT=.5, but becomes small for FT near zero. Thus approximation

(34) is not expected to be valid, nor (48) too accurate, for small FT. In

fact, the maximum value of the minimum in (51) is A, at FT=.25. Thus (48) is

expected to be most accurate in the neighborhood of FT=.25. Simulation

results bear this conclusion out. Furthermore, FT values in the region about

.25, like (.15, .35), encompass the range of most practical interest anyway;

we cannot get away with two samples per cycle and we don't want to oversample

if we don't have to.

As T-O-0, the fir3t term in the bracket of (48) tends to zero; see (24).

However, the second term does not, and we get

e(rms) -1 1
-- as T--O (52)

This term constitutes a lower bound on the zero-crossing error, even as

sampling period T tends to zero. (Notice that the error decays inversely with

the square root of the signal-to-noise ratio R.) However, the precautionary

note in the above paragraph makes (52) suspect, since u2 -'O then.

Plot of RMS Error

In order to plot (48) versus FT, we must have a functional form for the

noise correlation coefficient P(T). We take here the example of a Gaussian

correlation:

P(=) - exp(-, 2W22) . (53)

The spectrum corresponding to (53) is proportional to

exp(-f 2 /W2) . (54)

15
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Thus at f = * W, this low-pass spectrum has dropped to l/e of its peak value

at f=O. Other correlations and spectra are possible, including bandpass cases
if desired.

Equation (48) requires the quantity

p(T) = exp(-V 2W2 T2 ) = exp(-u 2W2/F2 ) , (55)

where a is given by (49) as usual. The parameter W/F measures the ratio of
the noise bandwidth (at the l/e point) to the signal frequency and must be

specified in order to plot (48) vs FT. In figures 4-6 are plotted the
normalized rms error (48) for W/F = .1, 1, and 10 respectively, for various

signal-to-noise ratios.

The accuracy of the analytic results in figures 4-6 for the relatively

low signal-to-noise ratio of R = 10 = 10 dB is not too good, because (34) is a

marginal approximation in this situation. Simulation results in the next

section verify that (48) is a good approximation for R=20 dB and an excellent

approximation for R=30 dB, provided that FT is not near 0 or .5.

The reason for the Jip near the origin in figure 6 is that p(T) in (48)

decreases rapidly when the signal bandwidth is large. The eventual rise of

the a/sin(2a) term has not taken effect before p(T) has essentially decayed to

zero. Physically, noise samples that are highly correlated cause more of a

zero-crossing perturbation than uncorrelated noise samples. However, the
region near FT=O in figures 4-6 is not expected to be reliable because the

approximation in (34) is invalid.

16
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SIMULATION RESULTS

A program for simulation of exact relation (32) is given in the

appendix. A result for the noise-free case for F=1, T=.3, and 100,000 trials

in given in table 1, and compared with the analytical results in (17), (22),

and (27) respectively. The agreement is excellent for all three error

measures.

Error Analytical Simulation

Maximum .020936 .020936

RMS .014978 .014995

Mean-Magnitude .013553 .013572

Table 1. Noise-Free Comparison for F=1, T=.3, 100,000 trials

When noise is added,,a simulation result for F=1, T=.3, p=.4, R=1000=30

d8, and 100,000 trials is given by (see arendix)

e(rms) = .015621 . (56)

WTF

The correspondiqg analytic result from (48) is .015634.

A check on (52) is afforded by a simulation with F=1, T=.O01, P=1, R=30 dB.

The contribution of the first term in (48) is .454 (.001)3 = .454E-9, as

given by (24), and is negligible compared with the second term. Whereas (52)

yields .0035588, the simulation yielded .0035660, which is excellent

agreement, considering that FT << 1 for this example. The saving feature here

is the very large signal-to-noise ratio of R=1000.

Several simulation results, at 100,000 trials each, are displayed as Xs

in figure 6. They were run at signal-to-noise ratio R equal to 10 dB, 20 dB,

and 30 dB, for values of FT equal to .05, .1, .25, .4, and .45. The agreement

between analysis and simulation is: excellent for all R=30 dB results; very

good for R=20 dB except when FT is very small or near .5; and poor for R=1O dB

except when FT is near .25. In fact, the R=10 dB results for FT=.05 and .45

were off the graph, and those for FT=.1 and .4 are rather inaccurate. These

20
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results are consistent with the expectations given above for the approximate

analytical result.

Finally, a simulation result for F=1, T=.5, W/F=.5, R=30 dB, and 100,000

trials gave 1.9488, which is much larger than any of the ordinates in figures

4-6. There is no check on this result since (48) is not valid at FT=.5. The

value of p in this case is, from (55), exp(-(w/2) 2 (112) 2 ) = exp(-w 2 116) = .54.
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SUMMARY

In the noise-free case, the maximum error, rms error, and mean-magnitude

error have been derived, and the normalized error has been plotted (in figure

3) as a function of FT, the ratio of sampling period T to sinewave period

1/F. The normalization is with respect to the sinewave period.

For the additive noise case, the rms error has been evaluated and plotted

(in figures 4-6) for a variety of signal-to-noise ratios and ratios of noise

bandwidth to signal frequency. The result is not correct for small signal-to-
noise ratio or as FT-O0 or .5-, due to approximations adopted in the analysis,

in order to obtain a tractable result. Simulation results corroborate the

analysis for FT values not near 0 or .5, and for large signal-to-noise ratio.
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APPENDIX. PROGRAM FOR SIMULATION

10 T=.3 SAMPLING PERIOD; TAKE F=I
20 Rho=.4 CORRELATION COEFFICIENT
30 R=1000 SIGNAL-TO-NOISE RATIO
40 Tt=100000 NUMBER OF TRIALS
50 Th=.5*ACS(Rho)
60 Ct=COS(Th)
70 St=SIN(Th)
80 Fac=SQR(6/R)
90 Tm=.5-T'2
100 Tp=.5+T/2
110 T2=2*PI
120 MI=M2=M3=M4=0
130 FOR It=1 TO Tt
140 C=(RND-.5)*T
150 A=Tm+C I SAMPLING
160 B=Tp+C TIMES
170 GO TO 240 INSERT THIS LINE FOR NOISE-FREE CASE
10 X=(RND-. 5)*Fac
190 Y=(RND-. 5)*Fac
200 Tc=Ct*X
"-10 Ts=St*Y
220 G=Tc+Ts ADDITIVE NOISE WITH DESIRED
230 H=Tc-Ts LEVEL AND CORRELATION
240 Ya=SIN(T2*R)+G
250 Yb=SIN(T2*B)+H
260 Z= B*Ya-A*'b)/'Ya-Yb. ZERO-CROSSING ESTIMATION
270 E=Z-.5 ! ERROR
280 MI=MI+E AVERAGE ERROR
290 M2=M2+E*E SQUARED ERROR
300 M3=M3+ABS(E) MAGNITUDE ERROR
310 M4=MAX(M4,ABS(E>*) MAXIMUM ERROR
320 NEXT It
330 PRINT T; MI1Tt ; S'R(M2/Tt :, ; M:3iTt ; M4
340 END

.3 -1.11951611792E-05 1.5E208258187E-02 1.38:355727005E-02 .0302450328
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ABSTRACT
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of each line. When each array is extended to be planar, the degradation
in stability is lessened, tending towards the sum array performance as
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INTRODUCTION

A planar array with a grid structure of M1 x M2 elements requires a

large number of receivers and considerable signal processing when all the

elements are employed and actively utilized. In an effort to conserve on the

number of elements and amount of signal processing, the possibility of using a

sparse array seems to have merit. In particular, it has been found that an
equi-weighted planar array has the same auto spectral density response as the

cross spectrum of a pair of perpendicular lines of double the length and with

triangular weighting on each line. However, without investigating the

variances of these sum and cross-line arrays, respectively, it is impossible

to decide on their relative merits.

Here we will consider two arbitrary planar arrays (which may have some
common elements and may even be linear arrays), both of which are steered to

the same look direction and employ weightings for sidelobe control. The

sample cross-spectral density of the two array outputs is the output variable

of interest. Thus the combination of arrays is resolving in both spatial
angles (wavenumber) as well as in temporal frequency. We will evaluate the

mean and variance of the cross-spectral density estimate at the system output

in terms of the statistical properties of the impingent noise field and the

array parameters, such as look direction and weighting.

As a special case, by choosing the two planar arrays identical in element

usage and weighting, we will reduce to the sum array since the cross-spectrum

then becomes the auto-spectrum. Thus we can compare the performances of

product arrays and sun arrays in terms of the mean and variance of their

responses.
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CROSS-SPECTRAL DENSITY ESTIMATE

Let x(t) and y(t) be any two array outputs which are stationary in time,

zero-mean, and have auto-spectra and cross-spectrum Gx(f', G y(f), Gxy(f),

respectively. f is temporal frequency in Hz. Sections of each waveform are

gated out by multiplying by temporal weightings and then subjected to Fourier

analysis according to*

Xm(f) =fdt exp(-i2wft) wm(t) x(t) for 1 < m < N,

Yn(f) =fdt exp(-i2nft) wn(t) y(t) for 1 < n < N. (1)

These temporal weightings are generally taken as delayed versions of a basic

weighting w(t) according to

Wn(t) = w(t-nS), (2)

where S is a shift or time delay; however, we keep the more general case in

(1) for the time being.

The cross-spectral density estimate at frequency f is obtained by

multiplying outputs (1) and averaging in time according to

N
v r : Xn(f) Yn(f). (3)

n=1

This is the product array output; it has resolution capability in the spatial

angles by virtue of each array output being steered to the same desired look

direction, and it has frequency resolution governed by the lengths of the

weightings in (1) or (2).

The mean of a general product term of components of (1) is

*An integral without limits is over the entire range of its non-zero integrand.

6
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Xm(f)Yn(f) = *fdt du exp[-i2wf(t-u)] wm(t) W (u) R (t-u)m n i m n xy

= fdrexp(-i21fr) Rxy(t) Omn(r) = Gxy(f)O mn(f)

= fdu Gxy(u) §mn (f-u), (4)

where

R (C) = x(t) y(t-t) (5)xy

is the cross-correlation of array outputs,

mn(•) = Jdt wm(t) Wn(t-t) (6)

is the aperiodic correlation of wm and wn, 0 denotes convolution, and

Imn(f) = jdr(exp(-i2wft) 0m(r) = Wm(f) W*(f) (7)

is the product of windows of the individual temporal weightings.

If cross-spectrum Gxy does not vary significantly in the width of

window ýmn, (4) yields approximation

Xm (f)Yn(f) G xy(f) fdu fmn(f-u) = Gxy(f) mn(O). (8)

Now we apply these results to find the mean of the system output cross-spectral

density estimate in (3):

N N

Uv = V = Gxy(f) (0) = Gxy(f) M fdt w2(t), (9)

n=1 n=1

which is proportional to the true cross-spectral density Gxy between the two

array outputs.

7
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In order to evaluate the variance of system output v in (3), we need

magnitude-square value (suppressing f)

Iv- Xm Y Xn Yn" (10)
m,n=1

We assume that the filtered outputs Xm and Yn in (1) are complex Gaussian

(as, for example, if x(t) and y(t) were Gaussian). We then observe that

XmYn = ffdt du exp[-i2wf(t+u)] wm(t) wn(u) Rxy(t-u) -

= fdv Gxy(v) Wm(f-v)Wn(f+V). (11)

Now for f removed from zero by at least the reciprocal of the segment length,

the two windows in (11) do not overlap, and we get

Xm Yn g 0 for f ý 0. (12)

Then using the factoring property of zero-mean Gaussian random variables,

(10) becomes

)V=I IXm YM1m Xn Yn + Xm Xn Ym Yn '

m,n=1

where we used (12). The variance of random variable v is

N
Sv _ IV[ IV12 X*YFY

Xm Xn Ym Yn=
m,n=1

- ,• [Gx(f)*~mn(f)][IGy(f)O mnf) =

mm~n~l

N
-G(f) Gy(f)o (fmn(0) (14)

8 m,n=l
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where we used (9), (4), and (8).

We now specialize the general weightings in (1) to the particular case in

(2), obtaining from (6)

Omn(O) = fdt w(t-mS) w(t-nS) = dw((n-m)S), (15)

where

ow(C) = fdt w(t) w(t-r) (16)

is the aperiodic correlation of basic temporal weighting w. Then variance

a in (14) becomes

N N-1
a = Gx(f) Gy(f) 0_ ((n-m)S) = Gx(f) Gy(f) • (N-IpI) 0w(PS) . (17)

m,n=l p=1-N

We are now in position to formulate a quality ratio for the output of the

product array. Namely we define the complex (voltage) quality ratio

-1/2

""V (f) -M(l\ (PS) (18)
-Txy (0 J .2

where we define the complex coherence between the array outputs as

G (f)
Yxy (f)M x- Gy(f)]17 , (19)[Gx(f)G

and have employed (9), (17), and (15). The quantity in (18) is desired large;

it has leading factor 'YW, which however is partially compensated by the last

factor of (18) if shift S is less than the segment length of temporal weighting

w. A detailed investigation of the temporal processing factors in (18) is

given in [1]; for present purposes, the factor is nearly maximized if shift S

is taken about 50% of the segment length.

9
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However, the most important quantity in quality ratio (18) is the complex
coherence at frequency f, yxy(f). It is always bounded in magnitude by 1,

and can be significantly less than 1 if the two array outputs x(t) and y(t)

are incoherent at frequency f of interest.

On the other hand, for 'dentical arrays and array weightings, we have
y(t) = x(t), and the quality ratio is again given by (18), where yxy(f) is

replaced by

Yxx(f) = 1. (20)

That is, the sum array and product array differ in their complex quality
ratios simply by the factor yxy(f), which is the complex coherence of the
two arrays in the product formulation. Thus the relative performance of a
product array can be investigated by determining the coherence of its component

array outputs.

With this information, we can now give a qualitative measure of

performance of the cross-line array. Consider two line arrays lying along the
horizontal and vertical axes, respectively. Suppose both lines are steered to

the same look direction in three-dimensional space. Since a line array must
inherently have maximum response everywhere in a cone of symmetry centered on
the line, the two cones will intersect at the desired look direction, but will
have largely non-overlapping cones at other angles. Thus only a small fraction

of the output of each array is in common; in fact, most of each array output
comes from uncommon arrival angles.

Thus the two line array outputs will be largely independent of each

other, meaning low coherence. Furthermore, the longer the line arrays, the
finer becomes the angular resolution, and the common intersection volume of

the cones decreases. Thus the performance of the product array relative to
the sum array becomes poorer as the line arrays become longer. In the next

section, these conclusions will be verified by a detailed quantitative
analysis of the coherence between two general array outputs.

10
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CROSS-SPECTRUM OF INDIVIDUAL ARRAY OUTPUTS

Let the pressure field at time t and general location x,y in a planar

array be denoted by p(t,x,y). Let the field be stationary and homogeneous,

with temporal-spatial correlation

p(tl,xlY1 ) P(t 2 ,x 2 ,y 2) = Rp(t 1-t 2,xl-x 2,yl-y 2 ) . (21)

The frequency-wavenumber spectrum corresponding to Rp is 1p(f,u,v), where

Rp(r,u,v) = fffdf do dv exp(i2fffr+iup+ivv) p(fU,v) . (22)

We also define a partial transform of (22) as

"qp(f,u,v) = Sfdo dv exp(iuu+ivv) p(f,u,v) • (23)

This mixed function of temporal frequency and spatial separations will be of

prime importance later, especially if it can be evaluated in closed form.

The grid structure of the planar array is such that the elements are

equi-spaced, being located at positions md,nd in the x,y plane, for m,n
integer. If a particular element is absent or is not used in an array output,

the weighting of that element output is simply set equal to zero. For polar
angle 0 as measured from the z-axis, and azimuthal angle G as measured from

the x-axis, the time delay nmn employed at location md,nd, in order to
steer in desired look direction 6,(, 5is [2, Appendix A]

r = - 4 (am+Bn) , (24)

mn c

where d is the element spacing, c is the speed of propagation, and

= sinO cos5 , B = sinO sine . (25)

NA 't

Broadside to the planar array correspouiJs to = 0.

11
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Array output x(t) is synthesized by choosing a particular subset of

elements in the planar grid structure, weighting their outputs, and time-delay

steering to the desired look direction . Thus

x(t) ~wx(k,) kd, .d) (26)

By simply setting some weights to zero, a line array or a cross-line, or any

desired array configuration, can be realized. Similarly, a second array

output, which may employ some or all of the same elements, is

y(t) = 2 wy(mn) p(t-Mn , md, nd). (27)

mn

The cross-correlation of array outputs (26) and (27) is, upon use of (21),

Rxy (T) = xt)y(t-FT= , Wx(k,.t) w (m,n) R (t+t,(28)
xy x y p n Vk-d.tnd (8

kVmn

Using (23) and (24), the cross-spectrum of x and y is

Gxy(f) w w (kj) wy(m,n) exp[i2wf(Tmn-Z•)]kp(f,(k-m)d,(JL-n)d) =

ktmn

wx(kj) wy(m,n) exp[i2wf-(ak+8t -am-sn)]Lp(f,(k-m)d,(j-n)d) =
xy ckj~mn

= xy(q,r) exp 2nfd(aq'r) fp(f,qd,rd) (29)

qr

where we let q=k-m, r= -n, and defined

Oxy(q,r) =2 wx(kJ) wy(k-q,.-r) (30)
k•f

*A summation without limits is over the entire range of its non-zero summand.

12
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as the two-dimensional cross-correlation of t:,e weight structure employed to

yield array outputs x(t) and y(t).

As the first special case of the above, a pair of perpendicular cross-

lines can be realized by setting

Wx(k,,) = 0 except for .: 0,

Wy(mn) = 0 except for m 0 0; (31)

in this case, (30) yields

Oxy(q,r) = wx(q,O) wy(O,-r), (32)

and (29) becomes the cross-spectrum of the cross-line array,

G(C)(f) - (q,O)Wy(O,-r) exp[i2wf!(aq+Br)].A(fqdrd). (33)xy WYc(3
qr

A second special case is obtained by considering the sum array, which

corresponds to setting

W x(k,I) = wy(kJ) = w(k,j), (34)

thereby getting from (30)

Oxy(q,r) = :w(k,ý) w(k-qA-r) s OS(q,r) , (35)

kk

and from (29), the auto-spectrum of the sum array,

a(S)(f) 0s(q,r)exp[i2wf-(mq+Br)] b (fqd,rd) (36)
xyc p

qr

Comparison of special cases (33) and (36) reveals that the mean responses

of the cross-line and sum arrays can be made equal by setting

13
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wx(q,O) w y(0,-r) = •s(q,r) =j w(k,L) w(k-q,,-r) for all q, r (37)

So, for example, if the sum weighting w(kj) is flat over a rectangle,

Os(q,r) is triangular in q as well as r, over a rectangle twice the size.
Thus, if line weightings wx(q,O) and wy(0,-r) are each triangular over

this double-length, (37) is satisfied, and Gxy(f) = Gxy¼f). This conclusionxy xy

holds irrespective of the pressure field statistics *p (fqd,rd).

Returning now to the general case of (29) and (30), the auto-spectrum

Gx(f) of array output x(t) in (26) is easily obtained by replacing w y by

wx in (30) and using that result for Oxy in (29). A similar procedure,
but now replacing w x by Wy, yields the auto-spectrum Gy(f) of array

output y(t) in (27). Combined with (29) itself, we now have the capability of

calculating coherence yxy(f) as given earlier by (19).

An alternative illuminating form for cross-spectrum G xy(f) is obtained

by substituting, for A in the second line of (29), the expression (23) and
interchanging summation and integration:

Gxy(f) = fj{dp dv §p(f'uIV)*

d d d
*W x 2f~~p 21tf--B+dv) W y(2irf~t+d4,t 2irf-ý:B-4dv) ,(38)

where

Wx(a,b) = ; Wx(k, ) exp(ika+iAb),

Wy(ab) = w y(m,n) exp(ima+inb) , (39)

mn

are the response patterns of the x and y arrays. Since the patterns in (39)

peak at a = b = 0, the integral in (38) is dominated by the contribution at

spatial frequencies

14
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f = LsinO cose

=2 f 2w sinO sine (40)

That is, the cross-spectrum in (38) is influenced mainly by frequency-

wavenumber spectrum value fp(f.,.v) at the values given by (40). x=c/f is

the wavelength at the frequency f of interest.

15
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EXAMPLES OF FREQUENCY-WAVENUMBER SPECTRA

Square Support

Suppose that at some frequency f=fol the frequency-wavenumber spectrum

is flat over a square:

91(f) 12 for Jul < kL" )vJ < kL
Ip (fo,01,v) L (41)

0 otherwise

where kL is the comnmon limit of wavenumbers in v and v. Then from (23),

~A (f ,uv) ~(f) sin(kLu) sin(kLV) (42)•p 0oU,) = 1l(fo) kU L kL v

This closed-form expression is separable in u and v and will lead to

worthwhile simplifications when employed in (29), and especially cross-line

result (33).

Circular Support

Suppose instead that

•l(fo 1 for u2 + 2 < kL

p (fo ,%,) = (43)

0 otherwise

Then (23) yieldt

•p (fo0,u,v) = l(fo) 2 I --J- _ (44)

16
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which has circular symmetry in separation space u,v. Although in closed form,
it is not separable in u and v, and is more time-consuming to evaluate than

(42).

17
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CROSS-LINE ARRAY WITH SQUARE-SUPPORT SPECTRUM

In this section, we specialize to a cross-line array as depicted in

figure 1 and couple it with the square-support frequency-wavenumber spectrum

Md

-Md

Figure 1. Cross-Line Array of 4M+1 Elements

of (41). The cross-line array has one element at the origin and M elements in

each of the four perpendicular legs protruding from the origin, for a total of

4M+1 elements. All elements are spaced by d in both directions, cons'stent

with (24)-(27).

The cross-spectrum at frequency fo, between the two perpendicular

lines, is given by (33) with (42):

G fO) =Tl(fo) 2w(q,O) wy(O,-r) exp[ikod(aq+Br)] sin(kLdq) sin(kLdr)

Xy 00kL dq kL

qr

M sin(k dq) M sin(kLdr)
= 41(fo):ý qwx(q,O)cos(kodaq) kLdq £rWy(O,r)cos(kodsr) - kLdr (45)

q=O r=O

where

S112 for q = 0
_ 2f /q, (46)

for q >

18
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and the weight structure on each line has been assumed real and symmetric

about the origin. The quantities in (45) are all real and require only two

single-summations of size M at each value of the three dimensionless

parameters kOda, kodB, kLd. Here, kL is the common limit on allowed

wavenumbers in square-support spectrum (41), and ko is the wavenumber

corresponding to frequency f0 of interest. Quantities a and B are given in

terms of the look direction according to (25).

To find the auto-spectrum of line-array output x(t), we replace wy by

wx in (30) and use the upper line of (31):

oxx (q~r) =2Wx (k,O) w x(k-q,-r) = rxx(q) 6 ro, (47)

k

where

"rxx(q))- wx(k,0) wx(k-q,O) (48)
k

is the auto-correlation of the x-array weights. Substitution of (47) in (29)

yields

G~c)(f) = *-;xx(q) exp(ikodaqh,Q (f ,qd,0)x 00
q

2M sin(k Ldq)

= 2 1 (fo) J q x(q) cos(kodq L (49)
q=O k~dq

where we used (42) and (46). In a similar fashion, the auto-spectrum of

line-array output y(t) is given by

G(C)(f ) = 21(f) 2M sin(kL dr)
y 0 1 e ryy(r) cos(kodsr kLdr (50)

r=O

where

19
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wyy(r) Wy(O,) Wy(0,.e-r) , (51)

in keeping with (31). The auto-spectral results in (49) and (50) each require

real single-sums of size 2M. No double summations are required in the cross-

spectral result of (45) or in the auto-spectral results of (49) and (50),

although in the latter cases, the auto-correlations and must be
(c)fo bewnpre-computed. The complex coherence at frequency fo0 Yxy ((f 0) between

individual array outputs x(t) and y(t) of the cross-line, is given by ratio

(19) as usual; the factor • 1 (fo), as well as the absolute scales of the

weight structures {wx(k,0)i , fwy(O,,) 1 , will cancel out in the ratio. The

fundamental parameters are kOda, kodB, kLd.

For broadside steering of the cross-line array, we have = 0 and (25)

yields s = B = 0. Then (45), (49), (50) are independent of ko, and the

coherence depends only on kLd.

20
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CROSS-LINE ARRAY WITH CIRCULAR-SUPPORT SPECTRUM

By combining (33) with the circular-support frequency-wavenumber spectrum

of (44), and using assumed symmetry of the line-array weights, we obtain cross

spectrum

M M 211(kLdkq-+rT
Gxy(C(f) = 4jl(fO) > cqwx(qO)cos(kodaq) 2 Crwy(Or)cos(kodBr) k1 _. (52)

q=O r=O

This double sum can no longer be separated into the product of two single

sums, as (45) was, due to the coupling caused by the Bessel function.

However, the Bessel function need only be computed in a 45° sector of the q,r

plane and then reflected about the 450 line; i.e., the same value is attained

for q,r = m,n as for q,r = n,m.

The auto-spectrum of the x-array output is obtained by utilizing (44) in

the top line of (49):

G(c)(f) 2 2M c2M 21-(k) dq) (53)X o0 -1(fo) a e xx~q ko~~dq L
q=O

where *xx is again given by (48). In a similiar fashion, there follows

2M 2J 1 (kLdr)
G(c)(f 2 1 ~ +r o~ der) (r) os~k(54)
y 0o)0 2 f erlyy o k L dr

r=O

The coherence is now available from (52)-(54). This example was not pursued

numerically.
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RESULTS

A program for the calculation of the coherence of a cross-line array, via
(45)-(51), is given in appendix A. It was exercised to give the following

results in figures 2-6. Although these plots look virtually identical, closer
inspection of the numerical values (not included) reveals that there are small
(insignificant) differences, even for the widely different values of kod,

S, e• considered here. The degradation of the cross-line array relative to

the sum array is virtually independent of the particular look angle •, e.

This can be partially explained by virtue of the fact that at broadside

steering, a line array has a narrow beam but covers a full 360° angular sweep,

whereas at endfire, the beam is broad but exists at only one angle. rhus the

total angular coverage is essentially constant.

The overriding impression of figures 2-6 is that the degradation of the

cross-line array is significant, relative to a sum array, in terms of the

stability of the cross-spectral estimate. This is particularly so as the size

of the array (4M+1 total elements) grows, or as kLd increases above .5.

Further examples of interest may be obtained from the program in appendix A.
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SUMMARY

When the horizontal line array in figure 1 is time-delay steered to look

in some desired direction O, e, it must also respond in a cone of symmetry

centered on the axis of the line. Similarily, although the vertical line is
steered to look in the same direction 9, e, it too has a cone of equal

response, but now centered on the vertical axis. These two cones will
intersect at , • and thereby lead to some common power at frequency f at

their respective array outputs, prior to multiplication and averaging
according to (3). However, both arrays also respond to uncommon (i.e.

uncorrelated) power contributions from other directions, each within its own
cone of response. The sharper the beams of each line array, the less common

power will be intercepted, leading to less coherence between the two line
outputs. Thus the stability of the cross-line array, relative to the sum

array, degrades as the size of each line array increases.

If each of the product arrays were made of a parallel pair of lines

(separated by some integer multiple of d), the responses of each would be
ratner complicated. However, there would again be some common overlap at

i, a , but a great deal of uncommon response at other sidelobe regions, still

causing a decreased coherence and unstable estimates. As more parallel lines

are added to each product array, the performance should monotonically approach

that of the sum array, being actually realized when all of the available

parallel lines are employed, since the outputs of the horizontal and vertical

arrays are then identical.
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APPENDIX A. PROGRAM FOR CROSS-LINE ARRAY

The following program calculates the coherence of a cross-line array by

means of (45)-(51). M is the number of elements in each of the four

perpendicular legs protruding from the origin. The weighting in line 60 is

assumed the same for both lines and is triangular. The autocorrelation of the

weight structure is computed and stored in line 130. Inputs of kod, ,

are required in lines 160-180 respectively. When these latter inputs are

desired changed, the program can be continued at line 160 instead of 10,

provided that the array weights have not also been changed. The input of

kLd occurs in line 320. The dB output in line 520 is according to

dB= 10 loglo jYxy(fo)j 2 ,

since y xy is proportional to the voltage quality ratio.

tWi'E i: +
-" r( i tl: +. 0 T] r

IU, F' V -: -- T t
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