
NAVAL POSTGRADUATE SCHOOL
Monterey, Calffornia

AD-A263 263

2 gRia AD 00

OJTIC
"• ,, PR27 1993

THESIS APR2- i,3

FDDI INSTALLATION
AND PERFORMANCE

ANALYSIS

by

Gifford Allen Hammar

December 1992

Thesis Advisor: Professor Luqi

Approved for public release; distribution is unlimited.

93-08876

93 4 2.T" 45

UNCLASSIFIED
tECRIT CLSSIICAION OF THIS PAr

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED "b. RESTRICTIVE MARKINGS

2a SECURfTY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONWAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DAWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

S NAME OF PEFRMING ORgLANIZ6TION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
- ectrca andComputer Eng Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School EC

6c. ADDRESS (Ciy, State, and ZJP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS
PROGRAM PRCJECT TASK WO NrT
ELEMENT NO. NO. NO. ACCESION NO.

11 TITLE (include Secunty Classification)
FDDI INSTALLATION AND PERFORMANCE ANALYSIS (U)

.PE RSON/•.t.TH en(i ~li
ammar, JIorcden

ter P s REPORT 13b TME COVERED 14, DATE OF REPORT (Year, Month, Day) 15 A UNT
esis FROM._0190 TO. 9/2 December 1992 196

16. SUPPLEMENTARY NOTATIOI~he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Conbnue on reverse if necessary and ident•ty by block number)
FIELD GROUP SUB-GROUP FDDI, Ethernet, networks, high speed networks, performance, performance

analysis, network protocols, IEEE 802.3 protocol, ANSI X3T9.5 protocol

19. ABSTRACT (Continue on reverse if necessary and identi0y by block number)
This thesis discusses the theory behind collision based and noncollision based network protocols. From this basis,

a complete theoretical performance analysis is performed on both Ethernet and FDDI. The CAPSnet FDDI installa-
tion is discussed and evaluated. Actual performance tests for both Ethernet and FDDI are provided and the results are
discussed in detail. The test results are compared and analyzed. Actual performance is compared to theoretical per-
formance. An explanation is provided to explain why actual performance does not match theoretical performance.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[g UNCLASSIFIED/UNLIMITED [] SAME AS RPT, f] DTIC USERS UNCLASSIFIED

E~.NAEO qiONIL I51IDZ A2b TEEHNJnld Area Code) 12Cd B
Lql (408 ,4 275 f,/i, SY

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECI IRITY CLASSIFICATION OF THIS PAGE

All other ecdbons are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

FDDI INSTALLATION
AND PERFORMANCE

ANALYSIS

by
Gifford Allen Hammar

LT, USCG
Bachelor of Science in Electrical Engineering, U.S. Coast Guard Academy , 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1992

Author:
114ifford A~ln Hammar

Approved By: _ _ _,__....
Professor Luqi , ThesiVAdvisor

Professor Shridhar Shukla, Associate Advisor

/Y? a.T oy
Michael A. Morgan, (aairman,

Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis discusses the theory behind collision based and noncollision based

network protocols. From this basis, a complete theoretical performance analysis is

performed on both Ethernet and FDDI. The CAPSnet FDDI installation is discussed

and evaluated. Actual performance tests for both Ethernet and FDDI are provided

and the results are discussed in detail. The test results are compared and analyzed.

Actual performance is compared to theoretical performance. An explanation is

provided to explain why actual performance does not match theoretical

performance.

For

.......................................

! -- •, i•, Codes

,oriDi~t. 1 S'.c

iii

TABLE OF CONTENTS

I. INTRODUCTION ..

A. SCOPE ... 2

B. DEFINITIONS .. 2

C. COMPARISON TO PREVIOUS W ORK .. 6

D. EXPECTED BENEFITS .. 8

II. NETW ORK PROTOCOL ... 9

A. NETW ORKING THEORY ... 9

B. NETWORKING MODEL 10

1. Physical Layer ... 11

2. Data Link Layer .. 13

3. Network Layer ... 13

4. Transport Layer ... 14

5. Session Layer ... 14

6. Presentation Layer ... 14

7. Application Layer .. 15

8. Trade-offs .. 15

C. NETW ORKING PROTOCOLS .. 15

1. Software Protocols ... 16

a. TCP/IP .. 16

2. Hardware Protocols ... 25

a. Contention Protocols ... 26

iv

b. Noncontention Protocols .. 30

D. MULTICASTING AND DISTRIBUTED COMPUTING 46

1. Issues ... 46

a. Implementation ... 46

E. THEORETICAL TIMING ANALYSIS .. 50

1. IEEE Standard 802.3 .. 50

a. Physical Characteristics ... 51

b. Framing .. 52

c. Timing and Overhead Calculations .. 53

2. FDDI Standard ... 56

a. Physical Characteristics ... 57

b. Framing .. 60

c. Timing and Overhead Calculations .. 63

3. FDDI vs. Ethernet Theoretical Results ... 66

a. Comparison of File Transfer Times (without ACKs) 66

b. Comparison of File Transfer Times (with ACKs) 67

c. Comparison of Overhead .. 68

d. Comparison of Throughput ... 69

III. EQUIPMENT ... 70

A. SERVERS ... 70

1. SPARCserver 690 MP ... 70

2. SPARCserver 630 MP ... 71

V

B. W ORK STATIONS .. 71

C. CONCENTRATOR .. 71

1. Functional description .. 72

a. H ub Concentration .. 72

b. A ttachm ent Conversion ... 72

c. M aintenance Features ... 73

d. M anagem ent .. 73

2. Capabilities .. 74

a. System Design .. 74

b. Backplane Intelligence ... 78

c. D ata Paths ... 79

d. D ata Throughput ... 79

3. Purchase considerations ... 80

a. Com patibility with Sun Equipm ent ... 80

b. Com patibility with FDDI Standards 81

c. Com pany Size ... 81

d. Com pany Perform ance ... 81

e. D eliverability .. 82

D . FDD I INTERFACES .. 82

1. Sun FDDI/DX Interface Card ... 82

2. Sun FD DI/S Interface Card ... 83

E. JU STIFICATIONS FOR CHOICES .. 83

vi

F. PURCHA SE PROCESS .. 85

IV. INSTALLATION .. 86

A . CONSID ERATIONS ... 86

1. Environm ental .. 87

2. Physical .. 87

3. Links ... 8

4. Network Availability .. 88

5. Software Com patibility ... 89

B. EXPERIENCE .. 89

C. CONCENTRATOR CONFIGURATION ... 90

1. Slot Configuration ... 90

2. System Configuration .. 91

D . FUTURE GROW TH ... 91

V. PERFORM ANCE ANALYSIS ... 92

A . LOSS BUD GET ... 92

B. SY STEM THROUGHPUT ... 98

1. Clock Accuracy Verification .. 98

2. Tim ing Test Procedure .. 100

a. Test Set One .. 102

b. Test Set Two ... 103

c. Test Set Three ... 103

d. Test Set Four ... 103

vii

3. Tim ing Test Results .. 104

a. Test Set One .. 104

b. Test Set Two ... 105

c. Test Set Three ... 106

d. Test Set Four ... 107

4. M odeling Software Analysis ... 108

a. Ethernet .. 108

b. FDDI ... 109

C . BOTTLENECK IDENTIFICATION .. 110

1. Interface H ardw are .. 110

2. Protocol Stacks .. 112

3. Storage ... 115

D . ERROR RATE ... 116

E. DISTRIBUTION OF MESSAGE DELAYS ... 117

V I. CONCLU SION S .. 122

A . EXPECTED RESULTS ... 122

B. A CTU AL RESULTS ... 123

C . COM PA RISON ... 124

D . TOPICS FOR FURTHER STUDY ... 125

A ppendix A .. 127

A ppendix B ... 128

A ppendix C ... 130

vii

Appendix D ... 131

Appendix E .. 149

Appendix F .. 150

Appendix G ... 151

LIST OF REFERENCES .. 175

INITIAL DISTRIBUTION LIST .. 179

ix

LIST OF TABLES

Table 1 FRAME CONTROL FORMAT BITS ... 42

Table 2 ROUND TRIP COMPARISON .. 49

Table 3 ETHERNET THEORETICAL TRANSFER TIMES WITHOUT
A C K S .. 54

Table 4 ETHERNET THEORETICAL TRANSFER TIMES WITH
A C K S .. 55

Table 5 ETHERNET OVERHEAD BY BYTES AND PERCENT 55

Table 6 ETHERNET THEORETICAL THROUGHPUT 56

Table 7 FDDI THEORETICAL TRANSFER TIMES WITHOUT
A C K S 64

Table 8 FDDI THEORETICAL TRANSFER TIMES WITH ACKS 64

Table 9 FDDI OVERHEAD BY BYTES AND PERCENT 65

Table 10 FDDI THEORETICAL THROUGHPUT ... 66

Table 11 COMPARISON OF ETHERNET AND FDDI THEORETICAL
TRANSFER TIMEES WITHOUT ACKS ... 67

Table 12 COMPARISON OF ETHERNET AND FDDI THEORETICAL
TRANSFER TIMES WITH ACKS ... 67

Table 13 COMPARISION OF FDDI AND ETHERNET OVERHEAD 68

Table 14 COMPARISON OF THEORETICAL THROUGHPUT FOR
ETHERNET AND FDDI .. 69

Table 15 g ATX, = 1300 NM ... 94

Table 16 STANDARD DEVIATION OF LOSS CHARACTERISTICS 96

Table 17 LOSS BUDGET FOR VARIOUS LINK LENGTHS 98

Table 18 PERCENTAGE OF OVERHEAD .. 102

x

Table 19 AVERAGE TIME IN SECONDS FOR ETHERNET UNDER
N O RM A L LOAD .. 104

Table 20 DATA TRANSFER RATES IN MBPS FOR ETHERNET UN-
DER NORM AL LOAD ... 105

Table 21 AVERAGE TIME IN SECONDS FOR ETHERNET UNDER
N O L O A D ... 105

Table 22 DATA TRANSFER RATES IN MBPS FOR ETHERNET UN-
D ER N O LO AD .. 106

Table 23 AVERAGE TIME IN SECONDS FOR FDDI UNDER NOR-
M A L LO A D .. 106

Table 24 DATA TRANSFER RATES IN MBPS FOR FDDI UNDER
N O RM AL LO AD .. 107

Table 25 AVERAGE TIME IN SECONDS FOR FDDI UNDER NO
L O A D .. 10 7

Table 26 DATA TRANSFER RATE IN MBPS FOR FDDI UNDER NO
L O A D .. 107

Table 27 COMPARISON OF FILE TRANSFER TIMES IN tS 109

Table 28 COMPARISON OF FILE TRANSFER TIMES IN tS 109

Table 29 FIXED AND VARIABLE TIMES (IN SECONDS) FOR
ETHERNET AND FDDI TRANSFERS ... 114

Table 30 DUPLICATE FILE TIMES .. 115

Table 31 VALUES OF a AND h FOR RAYLEIGH DISTRIBUTION 120

Table 32 FDDI IMPROVEMENT OVER ETHERNET (NORMAL
L O A D) .. 123

Table 33 FDDI IMPROVEMENT OVER ETHERNET (NO LOAD) 124

xi

LIST OF FIGURES

Figure 2.1 ISO OSI Seven Layer Model ... 12

Figure 2.2 ISO OSI model and TCP/IP .. 17

Figure 2.3 Throughput of various contention protocols 29

Figure 2.4 FDDJ functions within ISO OSI model 35

Figure 2.5 Typical opical fiber construction .. 36

Figure 2.6 Mode field for multimrode fiber.. 36

Figure 2.7 Mode field for single mode fiber ... 36

Figure 2.8 FDDI Components Including HRC ... 40

Figure 5.1 Protocol stack ... 1 13

Figure 5.2 Rayleigh distribution function ... 118

Figure 5.3 A ctual data ... 119

Figure 5.4 Model for actual data in Figure 5.2 .. 120

Figure G.1 Test #1, Group #1, large file on Ethernet............................ 151

Figure G.2 Test #1, Group #2, large file on Ethernet 151

Figure G.3 Test #1, Group #3, large file on Ethernet 152

Figure G.A Test #1, Group #4, large file on Etiernet 152

Figure G.5 Test #1, Group #1, medium file on Ethernet 153

Figure G.6 Test #1, Group #2, medium file on Ethernet 153

Figure G.7 Test #1, Group #3, medium file on Ethernet 1j4

Figure G.8 Test #1, Group #4, medium file on Ethernet 154

Figure G.9 Test #1, Group #1, small file on Ethernet 155

xii

Figure G.10 Test #1, Group #2, small file on Ethernet 155

Figure G. 11 Test #1, Group #3, small file on Ethernet 156

Figure G.12 Test #1, Group #4, small file on Ethernet 156

Figure G.13 Test #2, Group #1, large file on Ethernet 157

Figure G.14 Test #2, Group #2, large file on Ethernet 157

Figure G.15 Test #2, Group #3, large file on Ethernet 158

Figure G.16 Test #2, Group #4, large file on Ethernet 158

Figure G.17 Test #2, Group #1, medium file on Ethernet 159

Figure G. 18 Test #2, Group #2, medium file on Ethernet 159

Figure G.19 Test #2, Group #3, medium file on Ethernet 160

Figure G.20 Test #2, Group #4, medium file on Ethernet 160

Figure G.21 Test #2, Group #1, small file on Ethernet 161

Figure G.22 Test #2, Group #2, small file on Ethernet 161

Figure G.23 Test #2, Group #3, small file on Ethernet 162

Figure G.24 Test #2, Group #4, small file on Ethernet 162

Figure G.25 Test #3, Group #1, large file on FDDI .. 163

Figure G.26 Test #3, Group #2, large file on FDDI .. 163

Figure G.27 Test #3, Group #3, large file on FDDI .. 164

Figure G.28 Test #3, Group #4, large file on FDDI .. 164

Figure G.29 Test #3, Group #1, medium file on FDDI 165

Figure G.30 Test #3, Group #2, medium file on FDDI 165

Figure G.31 Test #3, Group #3, medium file on FDDI 166

Figure G.32 Test #3, Group #4, medium file on FDDI 166

Figure G.33 Test #3, Group #1, small file on FDDI ... 167

Figure G.34 Test #3, Group #2, small file on FDDI ... 167

Figure G.35 Test #3, Group #3, small file on FDDI ... 168

Figure G.36 Test #3, Group #4, small file on FDDI ... 168

Figure G.37 Test #4, Group #1, large file on FDDI .. 169

Figure G.38 Test #4, Group #2, large file on FDDI .. 169

Figure G.39 Test #4, Group #3, large file on FDDI .. 170

Figure G.40 Test #4, Group #4, large file on FDDI .. 170

Figure G.41 Test #4, Group #1, medium file on FDDI 171

Figure G.42 Test #4, Group #2, medium file on FDDI 171

Figure G.43 Test #3, Group #3, medium file on FDDI 172

Figure G.44 Test #4, Group #4, medium file on FDDI 172

Figure G.45 Test #4, Group #1, small file on FDDI ... 173

Figure G.46 Test #4, Group #2, small file on FDDI ... 173

Figure G.47 Test #4, Group #3, small file on FDDI ... 174

Figure G.48 Test #4, Group #4, small file on FDDI ... 174

xiv

I. INTRODUCTION

The purpose of this thesis is to explore the installation and performance of an

FDDI (Fiber Distributed Data Interface) network in a laboratory environment. FDDI

is a high speed, high reliability collision-free networking protocol. The motivation

behind the FDDI installation was two-fold. First, CAPS (Computer Aided

Prototyping System), a rapid software prototyping system designed and developed

at the Naval Postgraduate School, is very software intensive. The software base

contains several megabytes of reusable code. Many of the file transfers are large

and, as a result, Ethernet can quickly become saturated if two or three developers are

working on the system at the same time. Since FDDI is not contention based and its

data transfer rate is 10 times higher than that of Ethernet, we felt that this was a good

way to increase overall network throughput. Second, CAPS is aimed at reducing

life-cycle costs associated with software development in large, distributed real-time

systems. In order to provide meaningful feasibility and timing assessments of

designs for systems of this type, the network must have a deterministic upper bound

on communication times. Ethernet does not provide that capability-FDDI does.

This thesis is divided into six chapters. This chapter provides an overview and

definitions, as well as comparisons to previous work in this field and expected

benefits. The second chapter deals with the network protocols, both hardware and

software. It also provides a very brief history of network evolution and concludes

with a comparative analysis of theoretical timing limits. The third chapter details the

actual hardware setup in the lab, including the servers, workstations and the

concentrator. The tourth chapter discusses the FDDI installation and the

concentrator configuration. The fifth chapter picks up the performance analysis

thread again, but this time focuses on actual timed observations, rather than

expected "best-case" results. Results from both Ethernet and FDDI observations are

included. Results from commercially available modelling software are included to

provide a reality check. Finally, the sixth chapter ties the actual and theoretical

results together and provides ideas for further research in this area.

A. SCOPE

The scope of this investigation was to:

"* Conduct a performance analysis on original Ethernet installation
"* Investigate the requirements for FDDI hardware
"* Recommend an appropriate hardware solution
"* Purchase and install FDDI hardware in the CAPS laboratory
"* Conduct performance evaluation on the FDDI installation

This investigation did not cover:

"• Performance analysis of concentrators from other vendors
"• Performance analysis of network protocols other than Ethernet and FDDI
"* Performance analysis of other types of processors or operating systems

not installed in the CAPS lab
"* Interface cards provided by other vendors
"* Nonstandard or high performance protocol stacks

B. DEFINITIONS

The following list of terms is a starting point for the rest of the thesis. The reader

must be familiar with the terms below to adequately digest the remaining chapters.

In many cases, they are basic, but they are also the building blocks for further

discussion.

ACK. Acknowledgment. The method a receiver uses to tell the sender the

packet was received properly.

2

Address resolution. Conversion of a software (process) address to a hardware

address. Each physical connection to the network has a unique address, but several

processes may exist on one host that has only one network connection.

ARPA. Advanced Research Projects Agency. It originally funded research that

resulted in ARPANET, which became Internet and DDN (Defense Data Network).

ARPA is now DARPA (Defense Advanced Research Projects Agency).-

Bridge. Connects networks which have the same network layer, but different

data link layers. It can also be used to connect two similar networks which require

isolation or address checking to reduce network loading.

Broadcast. Data destined for all hosts on a given network. Even though the data

gets to each host sequentially in almost all cases (ALOHA is an exception), all hosts

receive it. A single destination address is reserved for this purpose.

CAPS. Computer Aided Prototyping System. CAPS implements a rapid

prototyping system. It features reusable code libraries.

Code group. The specific sequence of five code bits representing a DLL (Data

Link Layer) symbol. Also called code-cell [Ref. 6: p. 10].

Collision-free protocol. Protocol which is based on a strictly controlled

medium access scheme, as opposed to a contention-based protocol. Each host is

allotted a specific amount of time to transmit its data.

Contention-based protocol. Protocol which is based on two or more hosts

trying to access the same medium at the same time. Hosts can randomly access the

medium and send data as long as they want.

CSMA/CD. Carrier Sense Multiple Access with Collision Detection. A

contention-based network protocol. Ethernet is one example of this standard.

IMP. Interface Message Processor. A dedicated computer which connects two

or more network segments and possibly one or more hosts. An IMP may also

3

perform bridge or gateway functions. IMP is usually used when discussing

ARPANET or DDN.

IPI. Intelligent Peripheral Interface. High performance standard for external

peripheral device communications (not network interfaces) including high speed

buffering and caching. Maximum data transfer rates for Sun IPI controllers are 6

megabytes per second. IPI controllers can control up to eight IPI devices.

Isochronous data. Data which has a constant bandwidth requirement

regardless of the actual data transfer requirement. A voice channel is a good example

of an isochronous channel.

LAN. Local Area Network. A network covering a relatively small area, usually

less than 10 kilometers in size. For example, the IEEE 802.3 standard specifies a

maximum length of 2.5 km for Ethernet.

MAN. Metropolitan Area Network. A network capable of covering a

metropolitan area, usually tens to hundreds of kilometers in size. FDDI falls into this

category.

MIC. Media Interface Connector. The plug and receptacle pair that makes the

physical connection between the optical fibers and the transmitter or receiver.

Multicast. Data destined for a specific predefined subset of all hosts on a given

network.

NAK. Negative Acknowledgment. The method a receiver uses to tell the sender

the packet was not received properly.

Port. Physical connection to a network. In the case of FDDI, the ports are

named according to their function. A and B ports are the dual ring (trunk ring)

connections which connect Dual Attach Stations (DAS's) to concentrators. M ports

are Master ports on concentrators which go to an S port (Slave port) on a Single

Attach Station (SAS). Port connections are strictly controlled to prevent twisted

rings and other types of hardware incompatibilities.

4

Protocol. A standardized way of performing a certain task. In networking

parlance, it refers to the way packets are built, machines (hosts) access the medium

and a myriad of other details that allow hosts to successfully communicate with one

another.

Protocol Efficiency. Measure of number of bits devoted to overhead versus bits

devoted to data. A 2000 byte packet with only 20 bytes of overhead is 99% efficient.

Repeater. Connects networks and/or subnets which have the same physical

layer and do not require any isolation. Usually it is used to regenerate weak signals.

Router. Connects networks that have the same transport layer but different

network layers.

SCSI. Small Computer Standard Interface. A data transfer protocol optimized

for multiuser computing. Sun's SCSI controllers handle up to four disks each (the

standard actually supports seven) with maximum data transfer rates between 2 and

5 megabytes per second. The SCSI standard supports many types of devices, but the

most common ones are hard drives, scanners and CD-ROMs.

Throughput. Actual number of user data bits transferred per unit time. This is

a more "warts and hairs" evaluation of how fast the network actually moves data

from the source to destination. It includes retransmissions due to collisions or noise

as well as delays from waiting for a clear link.

Token-passing network. A collision-free protocol which allows the host to

transmit only when it possess the token. TokenRing, TokenBus and FDDI are

examples of this network type.

Transmission Efficiency. Actual number of usable bits (including protocol

overhead) transferred per unit time divided by the maximum number of bits

transferred per unit time. For example, transferring 8 Mbps on a 10 Mbps link would

yield a 0.8 (or 80%) transmission efficiency.

Unicast. Data destined for a single host.

5

UTP. Unshielded Twisted Pair cable. A type of cable used for Ethernet

1OBaseT and standard telephone installations.

VMEbus. Versa Module Europe computer bus. Also known as IEEE 1014 bus

and LEC 821 bus. VMIE supports data transfer widths of 8, 16 or 32 bits and supports

24- or 32-bit address buses. It also supports data transfers between any two

locations on the bus as well as multiple bus masters [Ref. 1: p. 4701. Multiple bus

mastering allows more than one processor to be physically connected to the same

bus and control it without damaging any of the devices. Two other comparable bus

architectures are NuBus and EISA.

WAN. Wide Area Network. A network which spans hundreds or thousands of

kilometers. These networks can be either packet-switched or circuit-switched or a

combination of the two.

C. COMPARISON TO PREVIOUS WORK

Hasan S. ALKhatib at Santa Clara University has done some theoretical analysis

[Ref. 25: p. 1] of a token ring, star, token bus and SC [Santa Clara] ring topology

and has found that his designs are at least as good as or better than the token ring

topology [Ref. 23: p. 253]. He and his associates did not perform any actual timing

experiments nor did they consider any contention-based protocols or FDDI. Their

ideas about protocol bottlenecks did provide a basis for my analysis of the timing

differences between Ethernet and FDDI. After all, our goal for installing FDDI was

to improve throughput on the CAPSnet.

M. Cohn of Northrop Corporation discussed lightweight protocols for

SAFENET 11 [Ref. 32: p. 1511. SAFENET II is the militarized version of FDDI. His

primary area of concern was related to the eXpress Transfer Protocol (XTP) which

replaces the ISO/OSI Transport and Network Layer protocols. XTP is optimized for

real-time distributed environments and is intended to be implemented in hardware

6

rather than software to afford higher throughput. He discusses services and file

transfers but does not discuss performance except in general terms. He also does not

discuss Ethernet.

G. M. Lundy [Ref. 26: p. 3691 proposes a method for increasing the throughput

of an FDDI network by allowing dual-ring installations to transmit different data on

the two rings, and having the receiver "drain" the ring and send out a sub-token to

allow another station to use the remaining bandwidth. As with AlKhatib's work, this

technique is mainly theoretical and would have very little impact in CAPS because

the majority of the workstations are Single Attach rather than Dual Attach. Further,

his work is only concerned with FDDI.

L. Green performed analytic modeling and simulation on LANES II at NASA

Ames Research Center [Ref. 30: p. 441]. His work, as was H. AlKhatib's, is

theoretical in nature, although the simulations provide a better interactive

environment. He simulated an FDDI installation with eight to 320 stations and

varying frame sizes from 512 to 4096 bytes. His work indicates that total throughput

increases and transmission delays decrease with a larger number of stations. He did

not compare FDDI with Ethernet or compare simulated results with actual

measurements.

R. Sankar and Y. Y. Yang of the University of South Florida predict the

performance analysis of FDDI using CSIM simulation software [Ref. 37: pp. 328-

332]. Again, this was a simulation which was not backed up by actual timing tests.

At the time the paper was written, hardware was not generally available to support

timing tests. One of the important results (with respect to hard real-time systems)

from their study was that at 95% load, the access time was strictly upper bounded

[Ref. 37: p. 3311.

A. Weaver of the University of Virginia (Charlottsville) has done some timing

analyses on Manufacturing Automation Protocol (MAP) [Ref. 35: p. 75],Token

7

Ring [Ref. 33: p. 885], Token Bus [Ref. 34: p. 1253] and SAFENET [Ref. 36: p. 87].

He has not directly compared Ethernet and FDDI, although much of his work

concerns improving protocol stack performance. He is a proponent of reducing stack

overhead by eliminating layers in the ISO OSI model, thereby reducing the net

overhead, sometimes at the expense of functionality. He has proposed reduced

stacks for Token Bus, MAP and FDDI. The reduced stack for FDDI is called XTP

(eXpress Transfer Protocol) and is used in SAFENET to improve throughput.

D. EXPECTED BENEFITS

The contribution of this thesis is to provide a better understanding of the

expected performance of the FDDI implementation. Even though network speed is

not critical for CAPS in a development mode, it is critical when trying to predict

real-time system performance for applications developed with CAPS and executed

in a distributed environment. Hard real-time systems (such as SAFENET UI, which

is based on FDDI [Ref. 20: pp. 7-8]) require an a priori upper bound on all aspects

of the system, including network communications. Ethernet cannot be employed for

hard real-time systems, because there is a finite possibility, no matter how small,

that a message will take an infinite amount of time to move from one station to

another. In other words, the network has an unbounded delivery time. FDDI has a

deterministic upper bound for delivery time, as do other collision-free protocols,

and can be used for a hard real-time system.

The general results will be valid across systems, but drawing specific

conclusions from the data provided here will not be accurate on other

implementations. For example, a host which has a dedicated protocol processor will

be much faster than one which uses the main processor for that task and hands the

data off to the physical layer for transmission.

8

II. NETWORK PROTOCOL

Connecting computers to a common communication channel has been a topic

of interest since the mid-1960's. Initially, ARPA (now DARPA) funded research to

connect several hosts. Early successes have caused the scope of the network to

expand to include all six continents (excluding Antarctica). Internetworking allows

geographically dispersed collaborators a quick, easy way to share notes, ideas, data

and computing power.

In order to accomplish this, the computers need a standard way of passing

digital data between them. Protocols provide the means to support the data transfers.

Network protocols allow different machines to transfer data on the same network.

Several network protocols are in common use today: TCP/IP, AppleTalk, Novell

Netware and MAP, to name a few. In the following pages, I will discuss some of the

underlying theory and how it applies to the Ethernet and FDDI implementations in

the CAPS lab.

A. NETWORKING THEORY

A network is built on the assumption that a host can communicate with any

other host to which it is connected. The connection can be either direct or indirect

[Ref. 3: p. 111]. A direct connection is one in which the host is connected directly

to another through a LAN. An indirect connection is one in which the

communicating hosts are not physically connected as in the case of a packet-

switched WAN where the hosts have to use two or more IMPs or gateways.

This type of environment is also commonly referred to as a distributed

computing environment because, generally, there are a number of computers that

have similar capabilities that share a communications medium. A distributed

9

computing environment takes on added significance when discussing multicasting

because it means that several processors can work together over a network to

complete a common task. In general, then, a network is a collection of stand-alone

processors that share a communication medium or channel.

The physical links for the network can be guided, unguided or a combination of

the two. Guided media can either be copper (twisted wire pair, coaxial cable, etc.)

or optical fibers. Unguided media consists of radio transmissions although light

could be considered in this realm as well. Laser transmission spans the two types;

the specific application determines whether it is guided or unguided. When used

with optical fibers, lasers are guided media. When used in free space, it behaves

more like unguided media because of the propagation speed and dispersion

characteristics. Optical splitters can serve two or more sites simultaneously, but the

link is still point-to-point.

Internet, one of the largest WANs in the world, uses a combination of guided

and unguided media to transmit data. It uses leased fiber optic and coaxial cable

routes as well as satellite and terrestrial microwave routes to complete circuits.

The protocols that drive the physical links can be either contention or

noncontention based. The differences and the importance of each with respect to

performance will be discussed later in this chapter.

The following sections, Networking Model and Networking Protocols take the

general ideas expressed above and expand them into more concrete ideas. The

Networking Model section describes the ISO OSI Seven Layer Model in detail so

that it can provide the basis for the Networking Protocols section.

B. NETWORKING MODEL

In order to understand the difference between the different protocols, the overall

framework must first be clear. The ISO OSI Seven Layer Model provides tiat

10

framework even though it postdates many of the common network protocols in use

today. I will continually refer back to the Seven Layer Model in the Network

Protocols section in order to provide a clear transition from one set of standards to

another.

The ISO OSI Seven Layer Model (shown in Figure 2.1) is the International

Standards Organization Open Systems Interconnect protocol model. The seven

layer model describes a framework in which any arbitrary layer provides services to

the layer above it and uses the services of the layer below it. From bottom to top, the

layers are: physical layer, data link layer, network layer, transport layer, session

layer, presentation layer and application layer.

Each of these layers is described in sufficient detail in the paragraphs below to

support a general understanding of the model. Further details are provided by

Tanenbaum [Ref. 2: pp. 9-21] and Stallings [Ref. 4: pp. 389-399], This discussion

is intended to provide a basis for the detailed protocol analysis that follows in later

sections. I will discuss the model from the bottom up.

1. Physical Layer

The physical layer is responsible for sending data a,.ross a channel or link.

The link can be analog or digital, guided or unguided, connection-oriented or

connectionless. The physical layer deals with all the physical parameters for data

transmissions such as bit error probabilities, duty cycles, bit duration (which is

inversely proportional to the data rate), encoding techniques, signal-to--noise ratios

(SNR) and mechanical connections. An example of the physical layer is a pair of

modems and a phone line. The modem takes the digital data stream and converts it

to an analog data stream so the medium (phone line) can handle the data. The

modem also takes care of encoding multiple bits. A 2400 bps modem uses QAM

(Quadrature Amplitude Modulation) to encode four bits into one symbol. An

Application
Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.1 ISO OSI Seven Layer Model

12

external modem uses two standard connections: an RS-232 interface to the

computer and an RJ-I1 (modular phone jack) interface to the phone line. The

modem handles all of the details of the way the signal appears on the phone line. A

CODEC (coder/decoder) provides similar functionality for the telephone to ISDN

(or other digital network) connection. The CODEC changes an analog signal to a

digital signal.

2. Data Link Layer

The data link layer is responsible for taking a physical link that may have

many errors, and making it appear to be error-free to the network layer. This is

accomplished by taking a data stream and breaking it into frames or packets. The

data link layer does this to accomplish two distinct missions. The first is to ensure

that the network layer gets exactly one copy of each packet that the sender wants to

transfer. The receiver does not want to have two or more copies of the same packet

and it does not want to miss any, either. The second is to ensure that a fast transmitter

does not inundate a slow receiver. This is called flow control.

3. Network Layer

The network layer is responsible for handling connections to other hosts. In

other words, it takes care of making the connection, keeping it active and

disconnecting when it is done. This also includes routing and congestion control.

Congestion control is only a factor when more than one link is involved. For

example, Host A wants to send a message to Host B. Hosts A and B are connected

by two paths, one through Host C and the other through Host D. If Host C is busy,

the network layer routes the message through Host D instead. There are several

congestion control algorithms. Tanenbaum [Ref. 2: pp. 308-320] and Stallings [Ref.

4: pp. 274-2801 covered them in detail.

13

4. Transport Layer

The transport layer is the lowest layer at which end-to-end

communications take place. An end-to--end connection is one in which the

processes at the ends of the data stream communicate even though this may occur

across several gateways or routers. The lower layers talk to the host at the other end

of the link. The transport layer is responsible for end-to-end error correction and

flow control. It also handles the type of service (speed versus reliability issues)

provided to the session layer.

5. Session Layer

The session layer is responsible for providing the framework for

communications between applications. It also provides a means of making a

connection, keeping it active and disconnecting it when completed. It is at a higher

level of abstraction than the services provided by the network layer. These services

are end-to-end rather than link-oriented. A remote file copy executed from the shell

is an example of a task handled at the session layer.

6. Presentation Layer

The presentation layer accounts for differences in syntax between different

types of operating systems. Representations for characters, integers, floating point

numbers and other structures are stored differently on different hosts. For example,

IBM mainframes generally use EBCDIC instead of ASCII notation. Negative

numbers can be stored as 1's- or 2's-compliment binary structures. The receiving

host has to know which representation the sending host is using in order to convert

it to a meaningful display at the terminal. If data needs to be encrypted for security

reasons, it usually happens in this layer since encryption is a syntactic change.

14

7. Application Layer

This is the layer where user interface usually occurs. At this layer, the

notion of a real terminal and a network virtual terminal exists. In other words, there

is a unique mapping between the host's notion of the user's terminal and the actual

hardware that the user is operating. A good example of the application layer would

be electronic mail. The user enters the destination and the text. The protocol stack

takes care of converting to the proper character representation, making the

connection to the recipient, routing the information most effectively, managing flow

control, and taking care of error correction. The best part about all that is that the

user does not have to do that manually.

8. Trade-offs

The preceding discussion points out one of the benefits, but also one of the

biggest drawbacks of a layered protocol. The benefit is that an application that wants

to use network services only needs to call the services it requires of the application

layer (or other, lower layer). The disadvantage is that each layer adds its own header

(and trailer in the case of the physical layer) which increases overhead. Overhead

will be explored more completely in the theoretical timing analysis section.

C. NETWORKING PROTOCOLS

There are many network protocols and each takes a different approach to

provide network services. As we get into the discussion further, some of the

distinctions will be confusing because of the various timeframes when the standards

were proposed or approved. Some of the more popular protocols are SNA, TCP/IP,

Novell Netware, AppleTalk, TOPS and Banyan Vines. SNA is the Standard

Network Architecture devised and supported by IBM. Novell Netware, AppleTalk,

15

TOPS and Banyan Vines are commercial LAN solutions. Since we only use TCP/IP

in CAPSnet and the CS backbone, I will not discuss any of the others further.

The ISO OSI Seven Layer Model provides a common framework for describing

network functionality and is best viewed as an umbrella because it covers not only

hardware issues but software ones as well. The IEEE and ANSI standards only

implement the lower layers of the ISO OSI model, while TCP, UDP and IP only

implement the upper layers of the ISO OSI model. Again, the main provisions of the

ISO OSI Seven Layer Model will be used as the basis for discussing TCP/IP,

Ethernet and FDDI.

The first part of the discussion will center on software protocols, specifically

TCP/IP, while the second part will focus on the different hardware protocols. I will

discuss the derivation and evolution of the various protocols, with considerable

emphasis on Ethernet and FDDI.

1. Software Protocols

The only software protocol suite I will discuss is TCP/IP. In our switch from

Ethernet to FDDI, it remains constant. TCP/IP is the software protocol of choice for

military applications.

a. TCP/iP

TCP/IP stands for Transmission Control Protocol/Internet Protocol. In

reality, it is a suite of protocols. TCP and I' are the two most commonly used and

therefore the most widely discussed. The model which includes TCP and IP is a four

layer model. From bottom to top, the layers are: network interface, internet (IP),

reliable stream transport service (TCP) or user datagram (UDP), and application. As

I did with the ISO OSI model, I will discuss each layer and the functionality it

provides. I will also discuss the mapping from the TCP/IP suite to the ISO OSI

Seven Layer Model which is shown in Figure 2.2.

16

Application i
Layer Application

I

Presentation Layer

Session Layer TCP

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Interface

Figure 2.2 ISO OSI model and TCP/IP

17

(1) Network Interface. As with the physical layer of the ISO OSI seven

layer model, this is where the host connects to the communications link. The same

characteristics apply here as in that model. The network interface takes care of

converting computer symbols into symbols that the link can handle. All of the

physical and mechanical requirements are taken care of by the communications link.

This roughly corresponds to the top portion of the Physical Layer in the ISO OSI

model.

(2) Internet Protocol. The internet protocol was designed to connect

many heterogeneous networks. The primary assumption was that the different

networks would not have the same type of physical data transfer or similar operating

systems. The IP layer is responsible for the following functions: flow control,

routing, error reporting, fragmentation and congestion control [Ref. 3: pp. 111-130].

These functions roughly correspond to those provided by the ISO Data Link and

Network Layers. The next few paragraphs provide the details.

IP specifies a connectionless packet delivery service [Ref. 3: p. 90]

which means that the link provides unreliable, best-effort delivery service. It may

send duplicate packets, lose others and deliver some (or all) out of sequence. We will

see why this is not as bad as it sounds when we talk about TCP in the next section.

(a) Flow Control. IP provides link-level flow control. It is only

concerned with flow control from one host or IMP to the next host or IMP, not

between the hosts at the endpoints. This implementation ensures that a fast host does

not overwhelm a slow one.

(b) Routing. IP handles routing for the TCP/IP suite. Functionally,

routing can be divided into two different types, direct and indirect [Ref. 3: p. 111].

Direct refers to the case where the router or gateway is on the same physical network

as the source or destination host or the hosts themselves are on the same physical

18

network. Indirect routing refers to the case where the routers or gateways at the

endpoints of the link are not the source or destination hosts. On a connection with n

links, the direct cases are links I and n, while the indirect ones are n + I through n -

1. IP routing is normally performed with routing tables. Comer [Ref. 3: p. 113]

provides details on the process. CAPSnet uses direct routing, so I will not discuss

indirect routing further.

(c) Error Reporting. Error reporting is accomplished with Internet

Control Message Protocol (ICMP). ICMP provides a mechanism for reporting errors

back to the source, not the previous router or gateway [Ref. 3: p. 1251. ICMP is an

important part of the congestion control process.

(d) Congestion Control. Congestion occurs when one router or

gateway along a specific path gets more information than it can handle [Ref. 3: p.

130]. If the situation goes unchecked, the input buffers would overflow and the host

would start to discard packets. This would cause senders to time-out and resend their

lost packets which would further exacerbate the problem. Eventually, the network

would not be able to transfer any more data and throughput would drop to zero.

ICMP is used to reduce the chances of that happening. The ICMP packet can tell the

source, among other things, to stop sending traffic (QUENCH) or change the route

(REDIRECT) [Ref. 3: p. 127].

(e) Fragmentation. Since the model we are dealing with assumes a

heterogenous network, it is reasonable to expect that the Maximum Transfer Unit

(MTU) may not be the same for all of the links. If every link used Ethernet, the MTU

would be 1500 bytes and the discussion would end. Not all networks use a 1500 byte

MTU, though. A public packet switched network like SprintNet may use an MTU

of 512 or 576 bytes. When a packet must go through a network with a smaller MTU

than to one that originated it, the packet must be cut into smaller pieces, or

19

fragmented. Fragmentation is not desirable because it adds overhead and delays the

transmission process. If the routes are known in advance, IP can adjust the packet

size such that the fragmentation effects are minimized. An additional problem with

fragmentation is that if one fragment is damaged, the whole frame must be

retransmitted, not just the damaged fragment.

(f) Framing. The IP frame consists of the following fields: VERS,

HLEN, SERVICE TYPE, TOTAL LENGTH, IDENTIFICATION, FLAGS,

FRAGMENT OFFSET, TIME TO LIVE, PROTOCOL, HEADER CHECKSUM,

SOURCE IP ADDRESS, DESTINATION ADDRESS, IP OPTIONS, PADDING

and DATA. The 4-bit VERS field contains the version of IP that created the packet.

This ensures that the receiver can decode the packet. The 4-bit HLEN field specifies

the header length in 32-bit words. This is necessary because the header length can

vary from five to 16 words (20 to 64 bytes). The 8-bit SERVICE TYPE field

contains priority information and the type of service the sender wants: high or low

delay, high or low throughput, or high or low reliability. The 16-bit TOTAL

LENGTH field gives the total packet length in octets (bytes). This limits the packet

length to 65,536 octets including the header. The IDENTIFICATION, FLAGS and

FRAGMENT OFFSET fields deal with fragmentation. The IDENTIFICATION

field identifies the fragment number. The FLAGS field controls fragmentation. The

FRAGMENTATION OFFSET field specifies where the fragment starts. The first

fragment always starts at offset 0. Successive fragments begin at some integer

multiple of the MTU-header size. The TIME TO LIVE field specifies the number

of seconds a packet may be forwarded around the internet. Every gateway

decrements the field and when the field reaches zero, the packet is discarded. The

gateway that discards the packet sends an ICMP to the source. An expiration time is

an easy way to reduce the chances of clogging the net with old traffic. The

20

PROTOCOL field indicates which higher level application or process created the

data. The HEADER CHECKSUM field provides a 16-bit checksum for the header

to allow for error detection. The SOURCE and DESTINATION ADDRESS are the

4--octet IP source and destination IP addresses, respectively. The OPTIONS field is

between 0 and 44 octets long and is used for various special functions such as

recording the actual route taken, specifying a route to follow and timestamping [Ref.

3: pp. 92-1061. Usually, the IP header is 20 bytes long which leaves a maximum of

65,516 bytes for data. The Sun implementation uses the MTU for the IP packet size.

For Ethernet, the MTU is 1500 bytes and for FDDI, the MTU is 4478 bytes.

(3) User Datagram Protocol. The User Datagram Protocol provides

unreliable connectionless service using IP [Ref. 3: p. 161]. In this respect, UDP is

just a simple extension of IP. The UDP provides a simple way of determining which

port on a particular host is sending the data and which port on the destination host is

supposed to receive the data. Because of its simple functionality, it only needs four

16-bit fields: UDP SOURCE PORT, UDP DESTINATION PORT, UDP

MESSAGE LENGTH and UDP CHECKSUM. This gives UDP an 8-byte overhead

versus the 20-bytes that TCP needs. Lower overhead means faster processing. For

this reason, many UNIX functions (such as riogin and cp) use UDP as the

transport protocol. I will briefly mention UDP again in the Performance Analysis

chapter.

(4) Transmission Control Protocol. The Transmission Control

Protocol (TCP) is properly called the Reliable Stream Transport Service. It takes the

connectionless service provided by IP and makes it a reliable, end-to-end data

transfer session. It roughly provides the same services that the presentation, session

and transport layers provide in the ISO model. TCP exhibits five general properties:

stream orientation, virtual circuit connection, buffered transfer, unstructured stream,

21

and full duplex connection. The roles that these properties play will be discussed in

the following paragraphs.

(a) Stream Orientation. A stream orientation is best described as a

First-In-First-Out (FIFO) queue. The user at the destination receives the data in the

same order that the source sent it. Since TCP uses IP, which only promises to make

an effort to deliver the data, how can we ensure that the users have a reliable data

flow? TCP keeps track of each packet it sends and requires an acknowledgment. The

most basic form of this protocol is known as stop and wait because the sender

transmits a packet, then stops and waits for the destination to send an

acknowledgment before it sends the next packet. If the source and destination are

widely separated, this protocol is very inefficient. An incremental improvement is

the Alternating Bit (AB) protocol. This protocol is better in that the sender can send

one packet, pause and send the second packet. When the sender receives the first

acknowledgment from the destination, it can send the next packet, and so on. Again,

this protocol is not very efficient for hosts that are widely separated. The final

improvement is to allow the sender to send up to n packets without waiting for an

acknowledgment. This is known as the sliding window protocol. When the

acknowledgments arrive, the sender can send more packets. From this perspective,

the stop-and-wait and AB protocols are special cases of the sliding window

protocol with n set to I and 2, respectively. Increasing the window size improves

efficiency to a point. Maximum throughput occurs when the window size is just

larger than the time it takes for one round trip. For example, ff we have a 1 km

Ethernet link between two hosts, the window size would be 1. The following

equations show the process:

22

1526bytes/packet . 8bits/byte = 12208bits/packet

(12208bits)/10 x 106Mbps = 1.2208 x 10-3 s/packet

(2000m)/2 x 10 M/s = lox 10-6 s

10 x 10- 6s/1.2208 x 10-3s/packet = 0.008packet

The Ethernet packet is 1526 bytes long and data is transmitted at a

rate of 10 Mbps. Propagation speed in the cable is 2 x 10H m/s. We apply the ceiling

function to 0.008 to get 1. It could be larger than that and not adversely affect ihe

network operation. If we apply the same equations to a 5000 km link over a TI

circuit (1.544 Mbps) using a 512 byte MTU, the window size is 19. This is not a very

helpful heuristic when the connections can be as short as 50 m or as long as 5000

kmn. In a Sun server or workstation, a memory device driver stores the buffer size for

the TCP sending and receiving buffers. The number of bytes dedicated to each

buffer effectively determines the window size because the maximum TCP packet

size is known in advance. The default buffer size is 4096 bytes for Ethernet and

24576 bytes for FDDI [Ref. 14: p. 10].

(b) Virtual Circuit Connection. The second distinguishing feature of a

TCP connection is the virtual circuit. When an application on one host wants to send

data to an application on another host, TCP "calls" the other host to set up the circuit.

In an abstract way, this is similar to making a phone call. The difference is that the

data may take several paths and the path is not dedicated to one transaction. TCP

makes the connectionless IP look like a real connection.

(c) Buffered Transfer. The third distinguishing feature of a TCP

connection is the buffered transfer. This means that several characters or strings may

23

be held until TCP can build a reasonably-sized packet. When the packet is built,

TCP sends it. Buffering also means that large pieces of data will be fragmented into

pieces that the network can handle. A good example of this would be when one is

logged into a remote host via File Transfer Protocol (FTP). After the remote host

processes a file listing, the file names appear on the screen. While they are being

displayed, the local host pauses at different places in the file name list. The remote

host is building packets that contain a predefimed number of bytes and the end of a

packet will rarely occur at the end of a line of text.

(d) Unstructured Stream. The fourth distinguishing feature of a TCP

connection is the unstructured stream. An unstructured stream is one which has no

special formatting applied. If TCP is transferring a database data file, the transfer

does not occur one record at a time. TCP takes the entire data set to be transferred

and fragments it according to the MTU size. This concept is very closely related to

the buffered file transfer for sending large pieces of data. In other words, there is no

way to force TCP to transfer exactly one record at a time.

(e) Full Duplex Connection. The fifth distinguishing feature of a TCP

connection is the full duplex connection. Full duplex means that the connection will

allow two-way communications simultaneously. This feature permits the receiver

to acknowledge receipt for a packet without the sender having to stop transmitting

to get it.

(f) Framing. The TCP frame, like the IP frame has a maximum length

of 65,536 bytes. The standard header size is 20 bytes, but it can be as large as 64

bytes. The fields for the TCP frame are: SOURCE PORT, DESTINATION PORT,

SEQUENCE NUMBER, ACKNOWLEDGEMENT NUMBER, HLEN, CODE

BITS, WINDOW, CHECKSUM, URGENT POINTER, OPTIONS and DATA. The

16-bit SOURCE PORT field is the process identification of the application that

24

wants to use TCP to send data. The 16-bit DESTINATION PORT field specifies the

recipient port for the data. Notice that this is not the host address, but a process on a

particular host. This allows different end users (like mail, news and SQL, to name a

few) to have distinct addresses and avoid data incompatibilities. Port addresses also

support multicasting because several ports reside on any given host. The 32-bit

SEQUENCE NUMBER field identifies the sender's pointer in the stream. It is the

byte number of the first byte in the data field. The 32-bit ACKNOWLEDGEMENT

NUMBER field specifies the byte number that the receiver expects to set next. This

is the mechanism that allows the sliding window protocol to work properly. The 4-

bit HLEN field specifies the header length in 32-bit words. This is necessary

because the header length can vary from five to 16 words (20 to 64 bytes). The 6-

bit CODE BITS field tells the recipient whether or not entries are valid in certain

fields. Some of the functions are: urgent pointer field is valid, acknowledgment field

is valid and sender has reached end of byte stream. Others are described in Comer

[Ref. 3: p. 184]. The WINDOW field tells the recipient how much buffer space is

available for incoming traffic. The CHECKSUM field provides a 16-bit checksum

for the header to allow for error detection. The URGENT POINTER field specifies

where the urgent data ends and the normal data resumes. Urgent data provides a

mechanism for aborting unfinished jobs. The OPTIONS field can be from 0 to 44

bytes long and handles functions such as end-to-end flow control.

2. Hardware Protocols

As mentioned earlier, protocols can be either collision (or contention) based

or collision-free (non-contention) based. Pure ALOHA and slotted ALOHA are

examples of primitive contention protocols. Theoretical analysis showed that these

protocols could be improved and "smarter" protocols were developed. These

improvements can be classified as the carrier sense protocols.

25

The driving force behind improving the hardware protocols is to improve

the transmission efficiency. The higher the transmission efficiency, the larger the

percentage of the available bandwidth that is used. The goal is to approach 100%

efficiency.

The following sections discuss contention protocols first, then the

noncontention protocols.

a. Contention Protocols

Contention protocols contend for the transmission medium. As the

protocols developed, more enhancements were added to reduce the wasted

bandwidth associated with collisions. I will go through the evolution of contention

protocols, discussing the following protocols in order: ALOHA, slotted ALOHA,

CSMA, CSMA-CD, p-persistent CSMA-CD and CSMA-CA.

J1) ALOHA. No network discussion would be complete without

mentioning ALOHA, the network system set up at the University of Hawaii to serve

its geographically remote campuses. Transmissions from the remote locations to the

master (host) were on one radio frequency while the replies were on another. The

protocol was very simple: if you have something to send, send it.

ALOHA pays for this simplicity in performance. Because there are

two chances for a collision for each frame (once toward the beginning and once

toward the end), the highest possible efficiency is 18.4%, excluding protocol

overhead. By using queueing theory with Poisson distributed arrival times, the

equation is:

S = Ge- 2 G

where

S = carried load (throughput)

26

G = offered load

The maximum (0.184) occurs when G = 0.5. Tanenbaum [Ref. 2:

pp. 122-123] provides a complete derivation.

(2) Slotted ALOHA. The major revision to ALOHA is called slotted

ALOHA. With this method, a station can only start to transmit at the beginning of a

slot (frame time). Because there is the possibility of only one collision per frame

time, this improves efficiency to about 36.8%, again excluding protocol overhead.

The equation describing transmission efficiency is similar to the

one above. The maximum (0.368) occurs when G = 1.0.

S = Ge-G

(3) CSMA. The next major improvement was Carrier Sense Multiple

Access (CSMA). The concept was pretty simple, but revolutionary. In essence, the

protocol said, "Listen to the medium before transmitting. Transmit if no other

station is using the medium; wait if another station is transmitting." Although the

change is relatively minor, the performance improvement over ALOHA is not.

CSMA was further enhanced by adding ccilision detection and collision avoidance

options.

(4) CSMA/CD. CSMA/CD (Carrier Sense Multiple Access with

Collision Detection) took carrier sensing a step further. Since the host could listen

before it transmitted, it could also listen while transmitting to see if the received

signal is significantly different from the one it is transmitting. If it differs, that means

there must have been a collision and the host stops transmitting the message. It then
transmits a short error burst and initiates a binary exponential backoff algorithm

which will determine how soon it attempts to sense the medium and begin to

27

transmit again. The other transmitting host executes the same algorithm. After the

first collision, they each select a delay from the 2' available. If they collide again,

they each select from the 22 available, and so on up to 210. From that point on, the

available number of delays remains the same and the stations try six more times. If

they all fail, they stop trying and report a network failure to the data link layer. IEEE

802.3 is thne CSMA/CD standard.

(5) p-persistent CSMA-CD. Although CSMA-CD represents a

dramatic improvement over both incarnations of ALOHA, pure CSMA-CD is still

far from ideal. In order to overcome some of the limitations in CSMA-CDI a series

of p-persistent CSMA-CD protocols were developed. The p denotes transmission

probability. Common variants are non-persistent, 0.01-, 0.1-, 0.5- and I-

persistent. The basic protocol is that the sender listens to the medium and if it is

busy, it waits. At this point, the various protocols diverge slightly.

Non-persistent CSMA-CD waits a random period of time before

sensing the medium again. If the medium is clear, it sends its message. All the

remaining variants continually sense the medium. The 0.01-, 0.1-, 0.5-persistent

variants are slotted which means that there is a specified time increment and each

will attempt to transmit in that time slot with probability p. In this discussion, p =

0.01,0.1 or 0.5. If the sender does not transmit in the first slot, it senses the medium

and again attempts to transmit with probability p. The frame is transmitted after

some delay. The 1-persistent variant constantly senses the medium so that it can

transmit as soon as it is clear. It transmits with a probability = 1.

Channel efficiency is worst for 1-persistent CSMA-CD and

improves as the value of p decreases. Nonpersistent CSMA-CD falls between the

0.1- and 0.01-persistent variants. IEEE 802.3 specifies I-persistent CSMA-CD in

spite of the poor channel efficiency (maximum of approximately 53%). The reason

28

1.0 0.01 -pesmiste CSMA

.9

.8 Nonesistent CSMA

.7

6 0. I-pesisteat CSMA

S
.4

.2]-persistent CSMA 05-persistent CSMA

.1

0
0 1 2 3 4 G 5 6 7 8

Figure 2.3 Throughput of various contention protocols

is that the transmission delay is inversely proportional to the transmission

probability. While the 1-persistent CSMA-CD protocol will transmit immediately

when it senses a clear channel, the 0.01-persistent CSMA-CD will wait an average

of 100 time slots. A chart showing the throughput for various types of CSMA and

ALOHA networks is shown in Figure 2.3 [Ref. 4: p. 304].

(6) CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance) takes a slighdy different approach. Listening before transmitting is the

same as with CSMA/CD, but the similarities end there. The collision avoidance

scheme uses a dynamic "memory" to produce a seed for a random delay befoie

transmission. In other words, the host waits for a specified minimum time and some

additional pseudorandom time. If there is a large amount of traffic on the network

and there are many collisions, the seed is larger, which causes the pseudorandom

29

delays to be larger. The converse is true for a lightly loaded network. CSMA/CA

depends upon this pseudorandom delay to try to prevent collisions in the first place.

Because of the delays associated with collision processing,

random transmissions and retransmissions, CSMA/CD and CSMAICA are only

suited for relatively short distances, typically less than 2.5 kin.

b. Noncontention Protocols

Noncontention protocols are based on the idea that transmissions could

be more efficient if the physical layer did not have to use precious bandwidth to

process collision information. While contention protocols are easier to implement

and can be relatively efficient at low loads, they all reach a saturation point and

eventually efficiency and throughput drop to zero.

The problems associated with wasted bandwidth and network grid lock

led to several slotted implementations. Unfortunately, some of the slotted

implementations are as wasteful as the protocols they were designed to replace.

Early slotted protocols allowed a host to transmit for a specified period of time at a

specified time. The drawback with these schemes was that if a particular host did not

have any traffic to send, the bandwidth was wasted because no other host could use

that time slot.

Eventually, two token passing schemes were developed. They were

developed at approximately the same time in response to concerns about the ability

to have a deterministic upper bound rather than one described by a random process.

Primarily, these networks were to support manufacturing processes which required

strict temporal control. One protocol was the token passing bus and the other was

the token passing ring.

(1) Token Passing Bus. IEEE 802.4 describes the token passing bus.

It was designed for installations which had a manufacturing process that used a bus

30

architecture. The token passing bus constructs a virtual ring. Each station has a table

which indicates the next and previous station in the structure. Because the structure

is in routing tables, hosts can join and leave the net at will and, eventually, the

network will reconfigure itself [Ref. 2: p. 149].

This reconfiguration feature is implemented by attempting to pass

the token to the next station. If the station does not answer, the sender generates

another token and tries to pass it to the station it thinks is the successor. If the

successor is active, it responds by seizing the token, otherwise, the originating

station sends a solicit_successor message naming the station that was supposed to

be the successor. The station after the successor sees that the successor is his

predecessor, updates his table and responds. The originator updates his routing table

and passes the token to the new successor [Ref. 2: p. 152].

New stations are added in a similar way. Occasionally, the token

holder will ask if a host wants to join the network by sending a solicit_successor

message. If a station answers, it becomes the token holder's successor. The original

successor updates its routing tables and traffic begins anew [Ref. 2: p. 152].

Collision detection or avoidance schemes do not need to be

implemented because a station can only transmit when it possesses the token. Since

it is a bus structure, all stations get every message simultaneously (neglecting

propagation delays).

(2) Token Passing Ring. In contrast to the stations on a token passing

bus, stations are hardwired into position on the token passing ring and stations

receive messages sequentially. No overhead is lost for ring maintenance, except in

the case where the electronics unit fails, but the station is still powered.

31

Electrically, the token passing ring is much easier to set up because

each station originates and terminates a point to point link. The transmitter for

station I sends to station 2's receiver. Stations 2's transmitter sends to station 3's

receiver and so on. To simplify wiring and troubleshooting, many token passing ring

installations are wired in a star configuration with mechanical bypass relays in a

central location (such as a wiring closet).

As defined in the 802.5 standard, the originating station is

responsible for "draining" traffic off the ring. This means that the station that

originates the message does not copy it through to the transmitter and send it again.

Obviously we would not want the originating station to interfere with its own signal.

For example, a 1 km ring operating at 4 Mbps data transfer rate (with propagation

speed of 2 x 108 m/s) will hold 20 bits if we neglect the one bit delay built into each

station. Number of bits = ring length / propagation speed * data transfer rate. Since

the token passing ring data packet is much larger than 20 bits, the originator is still

putting data on to the ring when it starts to receive the beginning of its packet. After

the originating station receives the last of its message, it sends the token on to the

next station. This is known as Release After Reception (RAR). The data packet is

not limited in size as are 802.3 (1500 bytes) and FDDI (4478 bytes), but there is a

default limit of 5000 bytes based on a 10 ins token holding time and 4 Mbps data

transfer rate.

In addition, a monitor station keeps track of ring performance as

far as the originator removing traffic from the ring. When a packet passes the

monitor station, it sets the monitor bit. If the originator drains the packet, the monitor

does nothing. If the originator does not drain it for some reason, the monitor will.

(3) FDDI Standard. While the Ethernet standard is defined by IEEE,

the FDDI standard is controlled by ANSI (American National Standards Institute).

32

The formal ANSI designation for FDDI is X3T9.5. As was the case for 802.3, the

FDDI standard contains all the details necessary to implement the protocol including

timing, framing and physical and electrical characteristics.

Currently, FDDI is a 100 Mbps medium, but standards committees

within ANSI are working on an FFOL (FDDI Follow-on) which will push the

standard to 400 Mbps and beyond. Even though FDDI was originally developed for

optical fibers, the standard does not require its use. Several vendors support FDDI

on copper wires.

FDDI uses a token passing technique similar to that of IEEE 802.5

to keep track of which station can transmit. The token grants a station the right to

transmit and is 22 symbols (88 bits) long. It consists of the Preamble, Start

Delimiter, Frame Control and End Delimiter which are described in detail under the

Theoretical Timing Analysis section. The station holding the token can transmit

until it has no more traffic, the token holding timer expires (asynchronous mode) or

the station's synchronous bandwidth allotment is exhausted, whichever comes first.

The actual protocol is more involved and will be explained in detail later.

FDDI describes the interactions of the physical layer, data link

layer and network layer of the ISO OSI Seven Layer Model. The actual standards

are broken down into the following documents: FDDI-PMD, FDDI-PHY, FDDI-

PHY-2, FDDI-MAC, FDDI-MAC-2, FDDI-HRC, FDDI-LLC and FDDI-SMT.

The FDDI-PMD, FDDI-PHY and FDDI-PHY-2 make up the physical layer, the

FDDI-MAC, FDDI-MAC-2, FDDI-HRC and FDDI-LLC make up the data link

layer and the FDDI-S MT straddles both the physical and data link layers. Figure 2.4

shows these relationships. Each will be described in detail below.

(a) FDDI-PMD. The FDDI-PMD document describes the Physical

Layer Medium Dependent features of the FDDI standard. It describes the minimum

33

transmitter power requirements and the minimum receiver sensitivity requirements

as well as bit error probability. It also describes the physical interfaces between the

medium (optical fibers or copper wire) and the electronics. Currently, two different

PMD standards exist-one for multimode fibers (MMF) and another for single mode

fibers (SMF). The most common implementation for FDDI is 62.5/125 micron

multimode fiber (the optical fiber is 62.5 microns in diameter and the cladding is 125

microns in diameter). The fiber is diagramed in Figure 2.5. Multimode fiber is the

preferred medium because it is less expensive to manufacture the fiber and the

transceivers. Multimode fiber is also less technologically challenging, hence the

lower cost. Multimode installations are limited to shorter link lengths because of the

lower power output from the transmitters.The LEDs used in MMF transceivers emit

light in a frequency band. The bandwidth and intensity vary, but must still satisfy

the power budget, i.e., if the LED doesn't put out enough power, the receiver may

not be able to pick up the signal at the other end. The center frequency for 62.5/125

micron fiber is between 1300 and 1310 rim. The fact that the LED is polychromatic

(simultaneously transmits light at different frequencies) makes the system a

multimode variant. Multimode fiber reflects and refracts the light internally to guide

the light to the receiving end. The losses associated with reflection and refraction

coupled with the relatively lower power output from the LED limit the link length

to 2 km or less (assuming that the bit error probability remains the same). The

MMF-PMD addresses four areas of concern, namely: Optical power budgets using

both active interfaces and bypassed interfaces, MIC (Media Interface Connector)

mechanical mating requirements, multimode optical fiber requirements and the

services provided to PHY and SMT.

Single mode fiber, on the other hand, uses a monochromatic laser

LED as the light source. The laser LED has a higher output power and the optical

34

Application
Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer LLC

SMT MAC

Physical Layer PHY

PMD

Figure 2.4 FDDI functions within ISO OS model

35

Core

Cladding

Figure 2.5 Typical optical fiber construction

Core

Mode Field

Figure 2.6 Mode field for multimode fiber

Mode Field

Core -

Figure 2.7 Mode field for sing.. mode fiber

36

fiber has a much smaller mode field diameter. The single mode fiber mode field

diameter is from 8.7 to 10.0 microns ± 0.5 microns [Ref. 5: p. 34]. By comparison,

the mode field diameter of MMF is between 50 and 100 microns, depending on the

fiber used. Figure 2.6 shows the multimcde fiber mode field while Figure 2.7 shows

the single mode fiber mode field. The extremely small mode field diameter ensures

that only the fundamental wavelength is propagated down the fiber. This

phenomenon is the same as radar ducting, in which atmospheric conditions trap SHF

frequencies causing ship radars to detect other vessels at ranges in excess of 60

nautical miles. (The normal radar horizon is 20 to 25 nautical miles.) The higher

output power and single propagation path combine to enable link lengths of up to 20

km.

(b) FDDI-PHY. The FDDI-PHY document describes the Token Ring

Physical Layer Protocol. It deals with specifics concerning services provided to the

MAC, services required of the PMID, services provided to the SMT, coding,

transmitter and receiver operations, ring latency, line states, buffers, smoothers and

filters.

One of the most interesting subjects covered in this document is

the 4B/5B encoding scheme. 4B/5B encoding takes a hexadecimal symbol (four

data bits) or a control symbol and encodes it with five transmission bits (on the

physical medium). In reality, the data rate on the optical fiber is 125 Mbps, but the

effective data transfer rate is 100 Mbps because of the 4B/5B encoding. Details of

the 4B/5B code are provided in Appendix C. FDDI uses two layers of coding

between the MAC and fiber. The first layer is the 4B/5B which takes a hexadecimal

symbol and converts it to a code-group using the mapping shown in Appendix C.

The format for this data is NRZ, which is Non Return to Zero, and means that a 1-

bit is represented by a high voltage level and a 0-bit is represented by a low voltage

37

level. The second layer of coding converts the NRZ format to a NRZI (Non Return

to Zero Inverted). NRZI encoding is distinguished by a transition (either high to low

or low to high) for each 1-bit and no transition for each 0-bit. Decoding occurs in

the reverse order; the incoming code group is decoded from NRZI format to NRZ

format and are then decoded from the NRZ format code group to hexadecimal

symbols [Ref. 6: p. 21]. NRZI encoding directly supports the self clocking

mechanism described next.

To successfully operate as a serial baseband system, FDDI is self

clocking. The self clocking mechanism will only function properly if there are at

least two transitions per symbol and no more than three consecutive zeros in each

code-cell. The run length requirement also ensures that the maximum cumulative dc

balance does not exceed ±10% [Ref. 6: p. 21]. Minimizing the dc balance makes

interface components and circuit design easier.

In addition to extracting the clock signal from incoming data,

encoding and decoding the symbols and buffering, PHY also takes care of detecting

the line state and passing that information along to the MAC or SMT. PHY uses

PMSIGNAL.indication (a primitive from the PMD which indicates whether or not

the received signal is above the detection threshold) as well as signals from Receive

Function (Clock-Detect) and Elasticity buffer errors to determine the current line

state [Ref. 6: p. 24]. PHY updates the line state when it changes. In the event that

PHY can not immediately determine the line state, it reports Line-State_Unknown

or NoiseLine-State.

(c) FDDI-PHY-2. The FDDI-PHY-2 [Ref. 7: pp. 1-2] document

describes the Token Ring Physical Layer Protocol. It contains all of the information

from the PHY document, but adds additional services to support HRC (Hybrid Ring

Control) in addition to the standard MAC. PHY-2 can be used in place of PHY for

38

standard MAC implementations, but PHY can not be used to support HRC. I will

explain HRC more in later paragraphs.

(d) FDDI-MAC. The FDDI-MAC document describes the Token

Ring Media Access Control protocol, The MAC is the lower sublayer of the ISO

OSI Seven Layer Model data link layer. Specifically, the MAC takes care of tokens,

framing, timers, priority messaging and error detection and recovery. I will discuss

each of the major issues below. Some of the details follow in later sections.

The token gives a station the right to transmit. To get the token, a

station must have traffic in either transmission queue. What happens next depends

upon the specific implementation. If the ring is using synchronous scheduling, the

station can send out its allocation of synchronous traffic. When the synchronous

traffic is finished or the synchronous time allotment expires, the station may send

asynchronous traffic provided that the token is early and the outgoing frame has a

higher priority than the threshold. The station may transmit until the THT (Token

Holding Timer) expires or there is no more asynchronous data in the queue, which

ever comes first. For the case of a ring using only asynchronous scheduling, the

token can be either restricted or nonrestricted. The nonrestricted token is considered

the "'normal" method. Time is dynamically allocated among all stations on the ring.

A restricted token is used for an extended dialog between two stations. One example

is an extended burst data transfer from a hugh speed device. Typically, this data

transfer would last several times the TTRT (Target Token Rotation Time) [Ref. 8:

p. 36].

Frame composition and size are discussed in depth in the

Theoretical Timing Analysis section. The MAC is also responsible for maintaining

timers to ensure that the ring functions properly. The most important timers are TRT

(Token Rotation Timer), THT, TVX (Valid Transmission Timer) and TIRT. A little

39

Circuit Logical
Switching Link
Multiplexer(s) Control
(CS-MUX) (LLC)

L

Comonnt Iochronous Media Access
Components Control

Data Hybrid Multiplexei (H-MUX) S
Link StationLave anagemen)

Phys cal
Laye Physical Layer Protocol (PHY)

or• or •dic

T SONET [Single Mode- MysiecDn Layerl

Physical | [Fiber PMD Medium
SLayer Mapping [(SMFf-PMD) Dpnent

to (SPM) . PD
SOM--
(STS 3C7

Figure 2.8 FDDI Components Including HRC

40

background will help explain the interactions between the timers. During ring

initialization, each station sends out a frame with a requested token rotation time

which is between that station's T_Mm (default < 4 ms) and TMax (default =

167.77216 ms). The MAC in each station looks at all of the requests and picks the

lowest value. This value becomes TOpr for the ring and once ring initialization is

complete, TOpr is copied into TTRT. TTRT is a constant during normal ring

operation. This is the upper limit on how long it will take data to get from one station

to another. TRT is used to time how long it takes for the token to reach the station

again. When the station captures a token, it resets and restarts TRT. It then releases

the token and times the rotation. If the timer rolls over, LateCt is incremented. TRT

and LateCt determine whether or not thetoken is early, which determines if the

station can send asynchronous traffic. THT determines how long a station may

actually transmit asynchronous traffic. The mechanism works this way: if the token

is early, the st, -.;n copies TRT into THT, then copies ITRT into TRT and starts

both timers running. The station actually gets the difference between TRT and

TTRT to send asynchronous traffic. The station must stop transmitting when THT

expires. It then releases the token. TVX allows transient ring error recovery. The

default value is normally 2.62144 ms.

Priority messaging is accomplished by setting the three low order

bits in the Frame Control field. Frame Control at the MAC layer is eight bits long

and determines the type and class of service for the frame. The C bit (MSB) indicates

the class of service, 0 for asynchronous and 1 for synchronous. The L bit indicates

the address length, 0 for 16 bit addresses and 1 for 48 bit addresses. The ZZ bits

together with the C and L bits determine the frame format. Table I provides the

details (X indicates a Don't Care case, P indicates Priority and r indicates Reserved).

41

Table 1: FRAME CONTROL FORMAT BII'S

CLFF ZZZZ to ZZZZ Frame type

OX00 0000 Void Frame

1000 0000 Nonrestricted Token

1100 0000 Restricted Token

OXOO 0001 to 1111 Station management frame

1XO00001 to 1111 MAC frame

XXOI rOOO to rll LLC frame

0X01 rPPP LLC frame, asynchronous priority use

IX01 rmrr LLC frame, synchronous use

XX10 rOOO to rl 11 Reserved for implementer

XX 11 rrrr Reserved for future standardization

The low order four bits are the hexadecimal control symbol and are

used to describe different types of frames. The 0X01 rPPP series describes the

priority system used for asynchronous frames. The lowest asynchronous priority is

000 and the highest asynchronous priority is 111 [Ref. 8: pp. 25-27]. Synchronous

frames do not have a priority system because they are of equal priority and receive

guaranteed service.

Error detection and recovery are accomplished using MAC Beacon

Frames (IXO 0010) and MAC Claim Frames (IXO 0011). The MAC Beacon

Frame tells stations on the ring that corrective action is required. The MAC Claim

Frame is used during error recovery to determine which station gets to generate the

token and send its traffic first [Ref. 8: p. 26].

(e) FDDI-MAC-2. The FDDI-MAC-2 document describes the

Token Ring Media Access Control protocol. It contains all of the information from

42

the MAC document, but adds additional services to support HRC (Hybrid Ring

Control) in addition to the standard MAC [Ref. 9: pp. 1-2]. MAC-2 can be used in

place of MAC for standard MAC implementations, but MAC can not be used to

support HRC. Specifically, some of the enhancements add primitives which

interface with the Hybrid Multiplexer (H-MUX) and associated primitives which

support H-MUX operations like requesting specific classes of service.

(f) FDDI-HRC. FDDI-HRC describes the Hybrid Ring Control

protocol. HRC was designed to support a mode of operation in which both packet

switched and isochronous data are transmitted within the same frame structure.

HRC consists of the Hybrid Multiplexer (H-MUX) and Isochronous Media Access

Control (I-MAC). The H-MUX integrates the packet data and isochronous data into

cycles which it transfers to PHY. I-MAC provides individual transmission channels

for user isochronous data streams [Ref. 10: p. 1]. CAPSnet does not require this type

of support and I will not provide any further details. HRC and its relationship to the

rest of the FDDI Components is shown in Figure 2.8.

(g) FDDI-SMT. FDDI-SMT describes the FDDI Station Management

functions. Specifically, SMT addresses the following areas: SMT services, SMT

facilities, connection management and ring management. There must be exactly one

SMT entity in each node, but there can be more than one PHY/PMD combination

[Ref. 11: p. 13]. Two instances would be in the case of a DAS or a concentrator

where there are two or more PHY/PMD combinations, but only one SMT that

interfaces with all of them. The current version of SMT is 6.2 and is fully

implemented in the LANplex 5012 concentrator.

Services. SMT provides services to PMD, PHY and MAC (it will

also provide services to H-MUX when the standard is closer to completion) within

a specific node. It also specifies services provided to System Management. The

43

services that SMT provides take care of initializing the MAC protocol, controlling

the MAC, gathering MAC status information, directing MAC to capture the next

token, requesting line status from PHY, gathering PHY status information,

providing control information to PHY, providing control information to PMD,

directing PMD to join or leave the net and requesting optical signal strength from

PMD [Ref. 11: pp. 21-30]. SMT services to System Management primarily consist

of maintaining the Management Information Base (MIB).

Facilities. SMC facilities can best be described as a set of frames

which support network management features as opposed to those services provided

internally to a specific node. The first type of frame is the Neighborhood

Information Frame (NIF) which SMT periodically sends to inform other SMT's of

the sender's address and basic configuration. The Neighbor Notification protocol

uses NIF's to find the logical upstream neighbor address (UNA) and, optionally, its

logical downstream neighbor address (DNA) [Ref. 11: p. 129]. The next group of

frames SMT sends are Status Information Frames (SIF) which are used to request

and provide responses to requests from other SMT's regarding a station's

configuration and operating information. The SIF Configuration request and SIF

Operation request can be a unicast, multicast or broadcast [Ref. 11: p. 131]. The next

group of SMT frames is an ECHO Frame (ECF) which is used for SMT-to-SMT

loopback testing [Ref. 1i: p. 134]. The next type of SMT frame is a Resource

Allocation Frame (RAF) which is used to allocate resources, specifically

synchronous bandwidth. Future expansion capability is provided for follow-on

network services [Ref. 11: p. 135]. The next type of SMT frame is a Request Denied

Frame (RDF) which is sent when any of several unsupported options or frame types

have been requested from another SMT. The next type of SMT frame is an Extended

Service Frame (ESF) and is used for extending and exercising new types of SMT

44

frames [Ref. 11: p. 1361. The next type of SMT frame is a Status Report Frame

(SRF) which a station uses to periodically announce Station Status which could be

used by FDDI ring management software [Ref. 11: p. 137]. The last group of SMT

frames is Parameter Management Frames (PMIF) and it allows FDDI ring

management software to actually alter entries in the MIB [Ref. 11: p. 138]. Some

SIF's, some ECF's, the ESF and all PMF's are optional.

Connection Management. Connection management (CMT)

consists of managing resources associated with PHY. CMT performs the following

functions [Ref. 11: p. 151]:

" Establishing and initializing physical connections
"* Invoking a Path Test
"* Controlling the Optical Bypass Switch
"* Connection Continuity Test
"* Withholding undesirable or illegal connections
"* Signalling physical topology information
"* Providing local loop configuration with neighbor MAC

"* Station configuration control
"* Placement of available MAC entities
"* Support for configuration policies

"* Detecting faults at the physical layer
"* Continuous link error monitoring
"* Reconfiguration around physical layer faults

"• Support for logical fault tracing function
"* Removing orphan MAC PDU's (Protocol Data Units)

Ring Management. Ring Management (RMT) performs a similar

suite of services for the MAC entities that CMT performs for the PHY entities. RMT

performs the following functions [Ref. 11: p. 151]:

"• Detecting faults at the MAC layer
- Identifying stuck beacons
- Detecting duplicate addresses
• Resolving duplicate addresses that prevent Ring.Op

"• Initiating the logical fault tracing function
"* Notifying MAC availability for data services

45

D. MULTICASTING AND DISTRIBUTED COMPUTING

Multicasting is a means of sending the same message to several recipients

without having to send the same message repeatedly. A broadcast message is a

special kind of multicast. At first, the distinction may sound trivial because each

station on the network "listens" to all the data. In a macro sense, this is true, but in

reality, the station only "listens" long enough to determine whether or not that

particular data stream is for it.

1. Issues

Multicasting can occur at any of the upper five layers of the ISO-OSI Seven

Layer model. The data link layer performs the address resolution function. Many

distributed applications can use multicasting to more efficiently use available

bandwidth. Algorithms are available for resource (or process) location, fault

tolerance, redundant information storage and message delivery (in dynamic

multicast groups).

a. Implementation

Each host has a unique numeric hardware address that identifies it as a

valid entity on the network. Both FDDI and Ethernet use a 16- or 48-bit hardware

address. The 32-bit IP address is uniquely bound to the hardware address. Each host

also has a common or alpha name, or the complete domain name for a TCP/IP

network. There is a one-to-one correspondence between the alpha name and the

numeric address. If one host wants to send information to another, it must

unambiguously identify the recipient.

Within each host, there may be one or more applications that need to

access the network. These applications can operate in layers four through seven of

the OSI Seven Layer Model. We will assume that all applications that need to access

46

the link operate from the Application Layer. From the human point of view, this

assumption makes sense because this is where the human interfaces with the

machine. If we were to consider a real-time tactical data system, this assumption

might not be valid because a sensor could be feeding raw data to layer six or five.

(1) Bit Structure. Each frame needs to know where to go when the

source releases it. In a general way, broadcasting and unicasting are simple

implementations because they only use one address in each case. For FDDI or

Ethernet using 48-bit addressing, the broadcast address is -FFi-t-t-Fl--,. All the

unicast addresses are in the range 000000000001, to 7FFF1-FFFFFFF, (remember

that 000000000000, is not a valid machine address). This leaves the range of

multicast addresses as 800000000000, to -tFH-H--1I- -H,. This equates to

approximately 1.4072 x 1011 addresses for unicast and 1.4072 x 1011 addresses for

multicast. FDDI further restricts this range by half because bit 46 (bit 0 is the LSB

and bit 47 is the MSB) indicates whether an address is locally or universally

assigned. If 16-bit addressing is used, only 32767 addresses are available for unicast

and 32767 are available for multicast. (There is no similar universal versus local

distinction when using a 16-bit addressing scheme.) Using 16-bit addresses does

not present a problem for a small subnet like the CAPSNet, but in a large distributed

system, it could be !iTnting

Even though we've discussed the mechanics or constraints in

general terms, we have not really talked about the way multicasting is really

implemented. In the next section, we discuss how hosts send messages to multicast

addresses.

(2) Multicast Tables. In order for multicasting to work correctly, we

must have some way to identify where a particular process resides. If we cannot

locate the process, it will be impossible to implement multicasting. Usually, the data

47

link layer holds the multicast table which cross references a process with a particular

multicast address. Ahamad presents an algorithm which performs this resource

finding. His performance analysis (cost in CPU time) showed considerable

improvement when using multicasting instead of broadcasting for large numbers of

multicast addresses (few processes per address) [Ref. 27: p. 199].

The most common way of implementing a multicast table is to

have a list of addresses at each destination. This reduces traffic on the net. Even with

FDDI, efficiency is an important consideration; it is always expensive to waste

bandwidth [Ref. 27: p. 193]. Since we know that the destination address field of each

message gets to all the hosts on the net, it is reasonable for each one to have a "guard

list" of those addresses they are supposed to copy. Each host knows which messages

it is supposed to get and it only needs to look for specific addresses in addition to its

broadcast and unicast addresses [Ref. 27: p. 195].

In order for this to work, there must be some mechanism which

sets up the multicast table in the first place. To provide maximum flexibility, the

multicast table must also be dynamic. Spanring tree algorithms have been used in

routing messages to static multicast groups. This method, Wall's algorithm, is an

inefficient method in a dynamic environment. Belkier and Ahamad proposed an

algorithm for incrementally updating subgraphs in the tree rather than

reconstructing it entirely. Incremental updating provides a cost saving when a high

percentage of the members change in the multicast groups [Ref. 28: p. 110].

(3) Example. Let's say that Host A has processes 1,2, 3, and 4 running,

Host B has processes 1, 3, 5 and 6 running, Host C has processes 2, 3, 4 and 6

running and Host D has processes 2, 4 and 6 running. Further, we will assume that

Host A is the primary host for process 1. Host A needs help with process I because

it and Host B are getting data faster than they can process it. Host A will send a

48

message to Host D telling him to add 90000000000A, (the multicast address for

process 1) to his multicast table. Host D adds this address to his multicast table and

tells the data link layer to make sure it gets messages with that address. Host D tells

Host A that the multicast address is in his table and is ready to accept data. The next

time Host D sees $9000000000A. in the destinE tion address, he reads the message

and processes the data. In the same vein, when an object associated with a certain

multicast address migrates, the original processor tells its data link layer to reject the

address and the new processor tells its data link layer to accept the address [Ref. 29:

p. 425].

This method works well, but there are limitations. Each host has a

limited amount of memory. This means that the multicast tables are limited in size

[Ref. 27: p. 1943. If the multicast table is limited to 10 entries, what happens when

process 1 is the 1 lth process? The host can check on all active processes and delete

those that have not had any activity over the past n seconds, or it can send the

multicast to another host which will "forward" the data to the appropriate host. Of

course, the other hosts may experience the same problem.

Several methods exist for process identification, namely:

broadcasting, using mailboxes, forwarding agents, message routers and other hybrid

schemes. The comparison of round trip packet times for these techniques versus

multicasting is provided in Table 2 [Ref. 29: p. 429].

Table 2: ROUND TRIP COMPARISON

Technique Round trip time (seconds)

No migration 1 Migration 2 Migrations

Mailbox 11.89 11.84 11.86

Broadcast 6.75 6.74 6.73

Forwarding 6.71 8.77 11.16

49

Table 2: ROUND TRIP COMPARISON (Continued)

Technique Round trip time (seconds)

No migration 1 Migration 2 Migrations

Inform clients 6.78 6.76 6.78

Message router 11.78 10.89 11.77

Delayed informing 6.73 6.73 6.73

Name server 6.75 6.79 6.79

Multicast 6.71 6.73 6.74

E. THEORETICAL TIMING ANALYSIS

As discussed in section 11.B.2, Ethernet data transfers represent a random

process with a hard lower bound, rather than a deterministic process. FDDI data

transfers represent a random process as well, but transfers in this case have a hard

upper and lower bound. When analyzing an FDDI net, the maximum transfer time

can be computed a priori, provided that the network specifics (number of nodes,

length of links, etc.) are known. The same is not true for Ethemet as the experimental

data in Chapter V seems to suggest.

The next several sections will cover the 802.3 and FDDI protocols, and provide

the basis for calculating the ideal (theoretical) values for data transfers for each

protocol. In section V.B, these values will be compared to the experimental results.

1. IEEE Standard 802.3

Ethemet is one implementation of IEEE standard 802.3. The standard

describes all of the aspects of the network including physical connections,

tolerances, primitives that support higher layers, electrical specifications and a host

of other details.

50

a. Physical Characteristics

IEEE standard 802.3 specifies a transmission bandwidth of 10 MHz

which corresponds to 10 megabits per second (Mbps) data transmission rate. When

data is placed on the physical medium, it leaves at 10 Mbps. Because of the

bandwidth requirements, special cabling must be used for all but the shortest links.

Three types of media are available: thick, thin and twisted pair. Thick and thin cables

refer to coaxial (called 'coax') cables that have specified characteristics.

Thick coax, also called l0Base2, is usually yellow (as the standard

recommends) and is marked every 2.5 meters for transceiver taps. The distance

between transceiver taps is specified to reduce interference (reflections) and

improve performance. The following equations derive the distance between taps for

Ethernet. The frequency (or bandwidth) isf (in Hertz), c is the propagation speed in

a guided media (in meters per second) and X is the wavelength (in mrters).

f = 10.106

c = 2-108

C

= 20

From the equations above, it is clear that one wavelength is 20 meters.

Because of physical properties of transmission lines, best performance is realized

when taps are located at binary fractional intervals. One eighth of 20 is 2.5 meters.

Therefore, taps are at 1/8k, 1/4k, 3/8k, 1/2k, etc.

Unshielded twisted pair, similar to modular telephone cable and called

1OBaseT or UTP, is the least expensive of the alternatives, but is limited to short

runs in areas with relatively low levels of background RF (radio frequency)

radiation. The limitations are due to the gauge of the wire (usually 24 or 26 ga.) and

51

the fact that it is unshielded. The signal level also tends to be lower than the coaxial

versions because of the lower bandwidth available.

b. Framing

As with other protocols, 802.3 has specific frame parameters. The next

several paragraphs will cover the various parts of the 802.3 frame. These details are

important when we calculate the theoretical data transfer times. The frame itself is

divided into several parts which are: preamble, start delimiter, destination address,

source address, length of data field, data, pad and checksum.

(1) Preamble. The preamble is a minimum of seven bytes. The

sequence is AAh (1010101%). This allows the sender and receiver to synchronize

their clocks. Clock synchronization is important because the transmission delays are

random. The other important reason for synchronization is that 802.3 uses

Manchester encoding which specifies data-bearing transitions in the middle of bit

times.

(2) Start Delimiter. The start of frame delimiter is a one byte field that

tells the receiver that the frame is beginning. The sequence is AB, (1010101 1b).

(3) Destination Address. The destination address field is either two or

six bytes long. For CAPSnet, the destination address is a full six bytes.

(4) Source Address. The source address field is two or six bytes. As

for the destination address, it is also six bytes long.

(5) Length of Data Field. The length of data field indicates how many

bytes of data follow. Valid entries are in the range 0 to 1500, inclusive. Because of

propagation delays and sensing requirements, the minimum data field length is 46

bytes. Any deficiencies in the data field are corrected in the pad field.

52

(6) Data Field. As explained above, the data field can be from 0 to

1500 bytes long.

(7) Pad Field. The pad field is only used when the length of the data

field is less than 46 bytes. Consequently, the pad field can be from 0 to 46 bytes long.

If the data field exceeds 46 bytes, this field is ignored.

(8) Checksum. The final field is the checksum. It is a 32-bit CRC

(Cyclic Redundancy Check) code that detects and corrects all burst errors of length

16 or less, all errors with an odd number of bits and all single and double errors. It

can also detect 99.997% of all 17-bit burst errors and 99.998% of all 18-bit and

longer error bursts. It uses a generator polynomial of degree 16 and is called CRC-

16. The polynomial is x"6 + x" + x1 + 1.

c. Timing and Overhead Calculations

Now that we have covered the overhead associated with 802.3, we can

compute the overhead associated with each 802.3 frame. As we shall see, in some

cases, the overhead is excessive. Each frame must have the fields described above.

Total overhead for each frame is 7 bytes (preamble) + I byte (start delimiter) + 6

bytes (destination address) + 6 bytes (source address) + 2 bytes (data field length) +

4 bytes (checksum) = 26 bytes. Other 802.3 implementations that use 2-byte vice

6-byte address fields would have an 18 byte overhead.

Based on everything to this point, we can determine how long 802.3

should take to transmit a message of arbitrary length. From our discussion on TCP/

IP, we know that they will use the MTU associated with the physical transmission

system in use. The MTU for 802.3 is 1500 bytes. Backing up through the protocol

stack, we find that the size of the IP header is 20 bytes, which leaves 1480 bytes for

data from the TCP layer. TCP also adds a 20 byte header leaving 1460 bytes of data

for each TCP packet. This becomes our jumping off point. Assume that only the

53

sender has a message to send, there are no transmission or noise losses, propagation

delays are negligible, the receiver does not acknowledge any of the frames until it

receives the last one and that the message is 58080 bytes. Our goal is to find out how

long it will take to transmit this message and how much overhead is inc!uded.

Since the message starts at the TCP layer, we need to divide the total

message size (58080 bytes) by the effective packet size (1460 bytes) which gives us

39 full packets with 1180 bytes left over. The 1500 byte packet that IP gives to 802.3

fits in the data field and the 26 header bytes must be included. When the packet

actually moves on the cables, it is 1526 bytes long. The time to transmit one packet

is 1.221 mis (1526 bytes x 8 bits/byte 1 10 Mb/s), which means that the time to

transmit all 39 full packets is 47.611 ms. Similarly, it takes 0.965 ms to send the last

packet. We add the two figures to get 48.576 ms to transmit the message. Now we

must include the delay between subsequent transmissions while the sender listens to

the link. The minimum delay is 51.2 pts between each packet, of which there are 39.

The total delay is 1.997 ms which gives us 50.573 ms for the entire transfer. Similar

calculations are used to find the theoretical transfer times for the large and small

files. Table 3 summarizes the results for large, medium and small file transfers.

Table 3: ETHERNET THEORETICAL TRAINSFER TLIES W1THOUT ACKS

File size Time (s)

Large (1155959 bytes) 1.007084

Medium (58080 bytes) 0.050573

Small (11 bytes) 0.000062

A more realistic figure would include the time it takes for the receiver

to send back the ACKs for the packets received. To fimd out how much additional

time that will take, we will further assume that the ACK will fit in a 72 byte 802.3

packet and that ACKs are sent after every fourth incoming packet. Each ACK takes

54

0.1088 ms to transmit (including the 51.2 gIs delay) and there are 10 ACKs for a total

of 1.088 ms. The total transmission time is now 51.661 ms. As above, similar
calculations are used to find the theoretical transfer times for large and small files

with ACKs. Table 4 summarizes the results for all three file transfers.

Table 4: ETHERNET THEORETICAL TRANSFER TIMES WITH. ACKS

File size Time (s)

Large (1155959 bytes) 1.028626

Medium (58080 bytes) 0.051661

Small (11 bytes) 0.000170

Calculating the number of overhead bytes is relatively straightforward.

We will continue to use the 58080 byte file for our calculations. From our discussion

above, we know that there are 39 1526-byte blocks and one 1206-byte block. This

gives us a total of 60720 bytes. Overhead is everything that is not part of the original

message. In this case it is 2640 bytes or 4.55%. Again, we follow a similar process

with the large and small file. Table 5 summarizes the results.

Table 5: ETHERNET OVERHEAD BY BYTES AND PERCENT

File size Bytes Percent

Large (1155959 bytes) 52272 4.521960

Medium (58080 bytes) 2640 4.545455

Small (11 bytes) 66 600

Notice the excessive amount of overhead associated with the small file

transfer. This is a direct result of the size of the TCP, IP and Ethernet headers. With

TCP and IP "tuned" to the Ethernet packet size, the least percentage of overhead

achievable is 4.52055%. Transferring any file larger than 1460 bytes will result in

at most 9.035% overhead. Now consider the case of a protocol stack based on the

55

full ISO OSI Seven Layer Model. We can safely assume that the Ethernet portion

will remain the same, but instead of two layers which will add 20 bytes of overhead,

there are now five! The result is nearly 1200 percent overhead. Obviously, this is an

extreme case because many of the applications that people use (e.g. E-mail or file

transfers) move relatively larger chunks of data around. One application that is

adversely affected by large overhead is a distributed, real-time system.

One final area for consideration is throughput. Throughput is best

defined as the number of user data bits transferred per second. Calculating

throughput is simple (we will continue with the previous example). We divide the

message size (in bits) by the calculated delivery time. We sent 464640 bits in 51.661

ms (time calculated with ACKs) which gives our system a throughput of 8.994

Mbps. Table 6 summarizes the theoretical throughput values for the large, medium

and small file sizes.

Table 6: ETHERNET THEORETICAL THROUGHPUT

File size Mbps

Large (1155959 bytes) 8.990312

Medium (58080 bytes) 8.994054

Smafl (11 bytes) 0.516432

Unfortunately, as we know from our previous discussion on I-

persistent CSMA-CD, Ethernet's maximum throughput is only slightly better than

5 Mbps.

2. FDDI Standard

The next few sections describe various aspects of FDDI including the

physical characteristics of the optical fibers and drivers, topology, framing and

timing characteristics.

am Physical Characteristics

The most common FDDI implementation is on 62.5/125 micron optical

fibers, as discussed in the FDDI-PMD section.

(1) Topology. FDDI is implemented as a ring topology. Actual

installations may look like a star because of other factors, such as concentrators and

physical constraints such as wiring closets. Concentrators will be discussed in the

next section. The FDDI standard defines two distinct options for implementation: a

single ring structure and a dual ring structure. Usually, the dual ring structure is

installed in areas where increased bandwidth or network availability is crucial. The

single ring structure is installed in other cases.

(a) Single ring structure. The single ring structure supports 100 Mbps

data transfer rates between a host (a SPARCstation 2 in the case of CAPS) and a

concentrator. Traffic flows in only one direction on the optical fiber. A host

connected to a single ring is called a Single Attach Station (SAS). The port on the

concentrator is called a master while the one on the remote host is called a slave.

Each port is configured with a duplex receptacle which connects the entities to the

optical fiber. One side of the receptacle is the transmitter and the other is the

receiver. Polarity is important because the ring topology must be maintained; the

plugs and receptacles are polarized for this reason. Polarized plugs and receptacles

also provide an added benefit-the network is easier to install and modify. I will

discuss topology and the ring vs. star layout in the concentrator section.

(b) Dual ring structure. The dual ring structure is composed of two

counter-rotating rings. In locations where availability is critical, both rings carry the

same data, but in different directions. One ring is designated as the primary (whose

ports are labelled A) and the other is the secondary (whose ports are labelled B). The

plugs and receptacles are polarized the same way as the ones for the single ring

57

structure. Hosts on the dual ring are called Dual Attach Stations (DAS). If either ring

fails, network integrity is maintained because the hosts switch to the alternate ring.

In the case of a hardware failure, the hosts "upstream" and "downstream" stop

sending traffic to the failed station and electronically connect the primary and

secondary rings. This condition is known as a "wrap" because the ring wraps along

itself. This combination of dual counter-rotating rings and wrapping provides a

robust implementation for critical networks. In cases where the two rings are

carrying different data (higher throughput), the rings will still wrap, but the data rate

will be cut in half. The network will still continue to function, though.

(2) Concentrators. A concentrator takes the dual ring structure and

converts it to a single ring structure. DAS's require two ports on the concentrator,

one for each of the A and B connections, while SAS's only require one port. The

following example should be helpful to get a feel for how this works. The Port I

transmitter is associated with the A ring and sends traffic to Server 1. The server I

transmitter passes the traffic to the Port 1 receiver. Port I passes the traffic to Port

2. The Port 2 transmitter sends traffic to Server 2. The Server 2 transmitter sends

traffic to the Port 2 receiver. Port 2 sends its traffic to Port 3 and so on. Eventually,

Port n will send its traffic to Port 1 and the whole process starts over. Notice that

station n is connected to Port n (with a duplex optical fiber). This is why the network

will look like a star even though it is a ring.

In addition to providing a convenient building block for fiber optic

networks, many concentrators support more than one type of physical layer

protocol. For example, concentrators from Synernetics and Cabletron allow

switching between FDDI and Ethernet networks. Two types of concentrators are

available: smart and dumb.

58

(a) Smart Concentrators. Smart concentrators include a

microprocessor which allows it to perform network management tasks as well as

providing an easy expansion path for either DAS's or SAS's. These models are more

expensive because of their added functionality. Smart concentrators allow for hot-

swapping modules and automatic reconfiguration for failed stations.

(b) Dumb concentrators provide a common connection point for

SAS's and allow easy expansion. These are commonly called hubs.

(3) Cable Lengths. The maximum length of an uninterrupted

multimode fiber is 2 km (approximately. 1.2 miles). This ensures that the Probability

of Bit Error (P,) is less than 2.5 x 10-10. Even though the optical fiber is an excellent

transmission medium, the LEDs have a maximum output power and there is some

loss due to boundary layer diffusion and multimode effects. Single mode optical

fibers used with lasers extend the single link limit to 20 km (approximately 12

miles). Again, the limit is imposed to ensure that the worst-case P, remains less than

2.5 x 10-0.

(4) Token Passing. FDDI uses a system similar to the one used by

IEEE 802.5 (token passing ring) to designate which host on the network gets to

transmit. Exactly one token exists on the ring at one time and the station that

possesses the token may transmit. If synchronous traffic is not supported, the host

which has the token may transmit until the token holding timer (THT) expires

provided that the token is early and the outgoing frame priority is higher than the

threshold. This is similar to IEEE 802.5, but the remaining ring characteristics which

follow are quite different. The THT varies for each station and between successive

token receipts for any arbitrary station, depending upon the instantaneous value of

TRT. The station must pass the token on after it can no longer transmit.

59

If synchronous traffic is supported, the station can transmit its

allotment of synchronous traffic before enabling THT. Synchronous traffic provides

guaranteed bandwidth. If the token was early, that is if TRT is less than TTRT and

Late_Ct is zero, and the priority for the queued frame is higher than the TPri

threshold, the station may then transmit asynchronous traffic until the THT expires.

The station must then pass the token to the next one on the ring. If the token was late,

the station must pass the token on after sending its allocation of synchronous traffic.

FDDI specifies a Release After Transmission (RAT) method of

passing the token. Again, this characteristic differs from the 802.5 ring which uses

the Release After Reception (RAR) method. This ensures that the maximum amount

of bandwidth is available for data and was instituted because of the larger ring sizes

involved with FDDI.

(5) Each station on the FDDI ring introduces a 15 symbol (60 bit)

delay into the ring. This allows each station to check the first three fields of each

frame to determine if it is a valid token. If so, and the station has frames to send, the

station removes it from the ring (by not propagating it) and sends the frames.

b. Framing

In many respects, the FDDI frame definition is like the 802.3 frame

definition. In order for the network to provide useful services, many of the same

components are required. The following paragraphs describe each of the fields in the

FDDI frame [Ref. 8: p. 25].

(1) Preamble. The preamble is a minimum of 16 symbols. The

sequence is 1111 lb. It is transmitted as five bits because FDDI uses 5B/4B encoding

to improve reliability and DC balance. The preamble allows the receiver to

synchronize its clock with the incoming data stream. Clock synchronization is

60

required to reduce the probability of losing data. The other important reason for

synchronization is that 802.3 uses Manchester encoding which specifies data-

bearing transitions in the middle of bit times.

(2) Start Delimiter. The start of frame delimiter is a two symbol field

that tells the receiver that the frame is beginning. The sequence is JK (1100010001Jb).

(3) Frame Control. The frame control field provides important control

information. Specifically, it describes the frame class, address length and format.

The frame class bit indicates either a synchronous or asynchronous frame. The

address length bit indicates either a 16- or 48-bit address field. The format bits, in

conjunction with the frame class and address length bits describe the frame type.

The frame types available are:

"• Void frame
"• Nonrestricted Token
"• Restricted Token
"* Station management frame
"• MAC frame
"• LLC frame
"* Reserved frame types

(4) Destination Address. The destination address field is either four or

twelve symbols long. For CAPSnet, the destination address is a full 12 symbols. All

stations must be capable of recognizing and acting on 16-bit (four symbols)

addresses. Stations which operate on a 16-bit addressing scheme must also be

capable of recognizing 48-bit address frames and correctly reacting to the following

conditions:

* Repeating 48-bit address frames
* Recognizing 48-bit broadcast address
* Claim Frames with 48-bit addresses
* Beacon Frames with 48-bit addresses

61

Stations which use the 48-bit addressing scheme must have a minimum

16-bit address capability which allows:

"• Fully functional 16-bit address
"* Recognizing 16-bit broadcast address

(5) Source Address. The source address field is either four or twelve

symbols long. As with the destination address, it is also 12 symbols long.

(6) Data Field. The data field can contain 0 or more symbol pairs, i.e.

an even number of symbols. Since the whole FDDI frame is limited to 9000

symbols, the data field can not be larger than 8956 symbols (4478 bytes).

(7) FCS. The next field is the Frame Check Sequence or checksum. It

is a 32-bit CRC (Cyclic Redundancy Check) code that detects and corrects all burst

errors of length 16 or less, all errors with an odd number of bits and all single and

double errors. It can also detect 99.997% of all 17-bit burst errors and 99.998% of

all 18-bit and longer error bursts. It uses a generator polynomial of degree 32 and is

called CRC-32. The polynomial is x11 + x6 + x23 + x22 + x16 + X12 + x1 + XI° + xS + x7

+ xI + x 4 + x2 + x + 1.

(8) Ending Delimiter. The ending delimiter is a two symbol field

consisting of two T symbols (01 10b) for the Token and only one T symbol for the

data frame.

(9) Frame Status. The frame status field is a minimum of three symbols

long and conveys information to follow-on •..tions or the originating station. The

three indicators in the frame status field are:

"• Error detected
"• Address recognized
"* Frame copied

Their functions are relatively self-explanatory.

62

c. Timing and Overhead Calulations

Now that we have covered the overhead associated with FDDI, we can

compute the overhead associated with each FDDI frame. As was the case with

802.3, in some cases, the overhead is excessive. Each frame must have the fields

described above. Total overhead for each frame is 8 bytes (preamble) + I byte (start

delimiter) + 1 byte (frame control) + 6 bytes (destination address) + 6 bytes (source

address) + 4 bytes (checksum) + 0.5 bytes (end delimiter) + 1.5 bytes (frame status)

= 28 bytes. FDDI implementations that use 2-byte vice 6-byte address fields would

have a 20 byte overhead.

Based on everything to this point, we can determine how long FDDI

should take to transmit a message of arbitrary length. From our discussion on TCP/

IP, we know that they will use the MTU associated with the physical transmission

system in use. The MTU for FDDI is 4478 bytes. Backing up through the protocol

stack, we find that the size of the IP header is 20 bytes, which leaves 4458 bytes for

data from the TCP layer. TCP also adds a 20 byte header leaving 4438 bytes of data

for each TCP packet. This becomes our starting point. Assume that only the sender

has a message to send, there are no noise losses, propagation delays are negligible,

THIT is 5 ms, and that the message is 58080 bytes. Our goal is to find out how long

it will take to transmit this message and how much overhead is included.

Since the message starts at the TCP layer, we need to divide the total

message size (58080 bytes) by the effective packet size (4438 bytes) which gives us

13 full packets with 454 bytes left over. The 4478 byte packet that IP gives to FDDI

fits in the data field to which 28 header bytes are appended. When the packet

actually moves on the fiber, it is 4506 bytes long. The time to transmit one packet is

0.3605 ms (4506 bytes x 8 bits/byte + 100 Mb/s), which means that the time to

transmit all 13 full packets is 4.6865 ms. Similarly, it takes 36.32 ps to send the last

63

packet. We add the two figures to get 4.72 ms to transmit the message. Since the

entire message can be sent without THT expiring, there are no token rotation delays.

In the case of a larger file transfer, or a shorter THT, we would have to take the token

circulation time into account. Similar calculations are used to find the theoretical

transfer times for the large and small files. Table 7 summarizes the results for large,

medium and small file transfers.

Ihble 7: FDDI THEORETICAL TRANSFER TIMES WITHOUT ACKS

File size Time (s)

Large (1155959 bytes) 0.093740

Medium (58080 bytes) 0.004722

Small (11 bytes) 0.000062

A more realistic figure would include the time it takes for TCP at the

receiver to send back the ACKs for the packets received. To find out how much

additional time that will take, we will further assume that the ACK will fit in a 68

byte FDDI packet and that ACKs are sent after every fourth incoming packet. Each

ACK takes 9.04 VIs to transmit (including the 3.6 pts station delays) and there are four

ACKs for a total of 36.16 pts. Now we must add the 0.00088ms for each token of

which there are seven. The total transmission time is now 4.764 ms. As above,

similar calculations are used to find the theoretical transfer times for large and small

files with ACKs. Table 8 summarizes the results for all three file transfers.

Table 8: FDDI THEORETICAL TRANSFER TIMES WITH ACKS

File size Time (s)

Large (1155959 bytes) 0.094318

Medium (58080 bytes) 0.004764

Small (11 bytes) 0.000063

64

Calculating the number of overhead bytes is relatively straightforward.

We will continue to use the 58080 byte file for our calculations. From our discussion

above, we know that there are 13 4506-byte blocks and one 454-byte block. This

gives us a total of 59032 bytes. Overhead is everything that is not part of the original

message. In this case it is 952 bytes or 1.64%. Again, we follow a similar process

with the large and small files. Table 9 summarizes the results.

Table 9: FDDI OVERHEAD BY BYTES AND PERCENT

File size Bytes Percent

Large (1155959 bytes) 17748 1.53534857

Medium (58080 bytes) 952 1.63911846

Small (I1 bytes) 68 618.181818

Notice the excessive amount of overhead associated with the small file

transfer. This is a direct result of the size of the TCP, IP and FDDI headers. With

TCP and IP "tuned" to the FDDI packet size, the least percentage of overhead

achievable is 1.532%. Transferring any file larger than 4438 bytes will result in at

most 3.06375% overhead. Now consider the case of a protocol stack based on the

full ISO OSI Seven Layer Model. We can safely assume that the FDDI portion will

remain the same, but instead of two layers which will add 20 bytes of overhead,

there are now five! The result is nearly 1200percent overhead. Obviously, this is an

extreme case because many of the applications that are commonly used (e.g., E-mail

or file transfers) move relatively larger chunks of data around. One application that

is adversely affected by large overhead is a distributed, real-time system.

One final area for consideration is throughput. Throughput is best

defined as the number of user data bits transferred per second. Calculating

throughput is simple (we will continue with the previous example). We divide the

message size (in bits) by the calculated delivery time. We sent 464640 bits in 51.661

65

ms (time calculated with ACKs) which gives our system a throughput of 8.994

Mbps. Table 10 summarizes the theoretical throughput values for the large, medium

and small file sizes.

Table 10: FDDI THEORETICAL THROUGHPUT

File size Mbps

Large (1155959 bytes) 98.047796

Medium (58080 bytes) 97.531486

Small (11 bytes) 13.924051

Luckily, we do not see the same problems with FDDI that we see with

Ethemet as far as throughput is concerned. Rather than continue to discuss these

theoretical results in a vacuum, the next section is devoted to comparing the two sets.

3. FDDI vs. Ethernet Theoretical Results

In general, we should expect to see a one-order-of-magnitude

performance increase when we compare FDDI and Ethernet. Because of differences

in the protocols, this may not always be the case. I will compare file transfer times,

both with and without ACKs, overhead, and theoretical throughput, and provide

comments where appropriate.

a. Comparison of File Transfer Times (without ACKs)

The results in Table 11 show what we expect to see from a theoretical

point of view: FDDI transfers are between 8.7 and 9.7 times faster. When viewed

strictly from the physical layer point of view, this is correct because FDDI transmits

data at 10 times the rate of Ethernet. One big drawback with only looking at transfers

from this perspective is that it does not include any processing time required by the

layers above the Physical Layer in the protocol stack. This comparison also does not

66

include ACKs, which higher layers will need to ensure that the file transfer is

completed properly.

Table 11: COMPARISON OF ETHERNET AND FDDI THEORETICAL
TRANSFER TIMES WITHOUT ACKS

Percentage
Time (s) Time (s) Improvement

File size Ethernet FDDI

Large (115595 bytes) 1.007084 0.093740 974.33

Medium (58080 bytes) 0.0505728 0.004722 971.00

Small (11 bytes) 0.0000616 0.00000632 874.68

We can improve the model slightly by adding acknowledgments into

the picture. The next section discusses that comparison in detail.

b. Comparison of File Transfer Times (with ACKs)

Table 12 shows the comparison between FDDI and Ethernet with

ACKs. There is a modest improvement for the large and medium size files because

the ACK takes less than 10% of the time on FDDI than it does on Ethernet. This is

a result of the smaller packet size used on FDDI and the shorter time between token

arrival and ACK departure. The FDDI ACK packet is six bytes shorter than the

Ethernet ACK packet because of the 46 byte minimum data field size.

Table 12: COMPARISON OF ETHERNET AND FDDI THEORETICAL
TRANSFER TIMES WITH ACKS

Time (s) Time (s) Percentage
Improvement

File size Ethernet FDDI

Large (115595 bytes) 1.0286264 0.094318 990.60

Medium (58080 bytes) 0.0516608 0.004764 984.40

67

Table 12: COMPARISON OF ETHERNET AND FDDI THEORETICAL
TRANSFER TIMES W1ITH ACKS (Continued)

PercentageTime (s) Tune (s) Improvement

File size Ethernet FDDI

Small (1t bytes) 0.0001704 0.0000114 1394.74

This is about as far as we can take the theoretical analysis without

resorting to a probabilistic description. File transfers can not take place any faster

than what has been shown here. This model does not address the situation where

more than one station is ready to send traffic at a time. It also does not iJdress

collisions and the subsequent resolution process for Ethernet. That said, I will now

move on to an overhead comparison.

c. Comparison of Overhead

Table 13 shows that for larger file transfers, FDDI offers less overhead

because of the larger data field in the packet. For data transfers of less than 1460

bytes, FDDI actually incurs a penalty because of the frame status field at the end of

the packet which allows physical layer ACKs. The figures shown agree with

common sense because the FDDI data field is almost three times larger than the

Ethernet data field.

Table 13: COMPARISION OF FDDI AND ETHER-N-ET OVERHEAD

Ethernet FDDI Percentage

Improvement

File size Bytes Bytes

Large (115595 bytes) 52272 17748 194.52

Medium (58080 bytes) 2640 952 177.31

Small (11 bytes) 66 68 -2.94

68

The final topic of interest is a comparison of throughput, which is

discussed next.

d. Comparison of Throughput

The final area of interest is that of throughput. As with the transmission

times, we should expect an improvement of approximately 10 times. Table 14 shows

that for the large and medium size files, that there is almost that much improvement.

As with the transmission times, the Ethernet throughput does not take collisions and

collision processing into account. What this illustrates is that theoretically, FDDI

represents a 10-fold performance increase. Under normal network operating

conditions, as the EPA warns, "Actual mileage may vary."

Table 14: COMPARISON OF THEORETICAL THROUGHPUT FOR ETHER-N`ET
AND FDDI

Ethernet FDDI PercentageImprovement

File size Mbps Mbps

Large (115595 bytes) 8.99031174 98.0477958 990.59

Medium (58080 bytes) 8.99405352 97.5314861 984.40

Small (11 bytes) 0.51643192 13.9240506 2596.20

Conducting this analysis is not a total waste of effort because it is a

starting point for trying to determine where the protocols break down and how much

time they add to a "normal" file transfer. To be able to determine some of the other

un.,,nowns in the equation, we will next look at the equipment and discuss how

quickly or slowly each piece interacts with the others. In Chapter V, I will again pick

up the performance thread and compare the actual results with those presented in

this chapter.

69

III. EQUIPMENT

The CAPS project hardware consists of two Sun servers and five Sun

SPARCStation 2's. As discussed earlier, this equipment and the Synernetics

LANpIex 5012 concentrator form an FDDI network. In the following sections, we

will look at the hardware aspects of this project in detail.

All of the computers in the CAPS lab are SPARCs which means that they are

RISC (Reduced Instruction Set Computers) based systems. RISC technology

enables the processor to work faster because it has fewer choices and the internal

circuitry is therefore simpler. The processors are all CMOS (Complementary Metal

Oxide Semiconductor) construction which uses less electrical power and generates

less heat. The servers and workstations operate at a 40 MHz clock speed.

A. SERVERS

The servers are different multiprocessor models from the same Sun line. I will

cover the larger one first and the smaller one second. In this case, larger refers to the

physical size rather than processor power.

Both servers are built around a dual S-Bus and VMSE bus architecture. This

architecture provides extra capabilities as far as expansion is concerned. It also

allows us the flexibility of using vendors other than Sun to support further upgrades

to the equipment.

1. SPARCserver 690 MEP

The SPARCserver 690 MP is a four processor server which can support 640

megabytes of main memory and 52 gigabytes of IPI disk storage space. The 690

used to support CAPS has 128 megabytes of memory and approximately 8.9

70

gigabytes of disk storage. The SPARCServer 690 MP is called suns7 and is

operating in the single processor mode under SunOS 4.1.2 in order to maintain

software compatibility with ONTOS 2.2. ONTOS 2.2 is the design database engine

for CAPS and is not yet compatible with multiprocessor machines.

2. SPARCserver 630 MIP

The SPARCserver 690 MP is a four processor server which can support 128

megabytes of main memory and 26 gigabytes of SCSI disk storage space. The 690

used to support CAPS has 80 megabytes of memory and approximately 5.2

gigabytes of disk storage. The SPARCServer 630 MP is called suns5 and is

operating in the multiprocessor mode under SunOS 4.1.2M. Suns5 is also the YP

master for the CAPSNet.

B. WORKSTATIONS

All five workstations are Sun SPARCstation 2 models. The processor is a Sun

proprietary RISC design, as are those of the SPARCServers. Each SPARCstation

has 64 megabytes of main memory (expandable up to 128 MB) and between 1.2 and

1.9 gigabytes of SCSI disk storage space. All of the workstations have color

monitors. They all operate on SunOS 4.1.1 which is a superset of BSD Unix 4.

C. CONCENTRATOR

As described earlier, the concentrator is an intelligent hub which supports

connections for both Single- and Dual-Attach Stations. In addition to taking care of

physical connections, it also provides protocol conversion, intelligent management

and numerous other administrative capabilities [Ref. 38: p. 3]. A complete

functional description will be provided below. M. Coden et. al. provide a good

overview of hub concentration [Ref. 21: pp. 22-391.

71

1. Functional description

Functionally, the LANplex 5012 performs the following tasks: hub

concentration, attachment conversion, maintenance features and management. Each

of these functions will be described in the paragraphs below.

a. Hub Concentration

Hub concentration brings all of the network connections to a single

point rather than spreading them out along a backbone. It allows the network

administrator to more easily perform his duties by having all the network

connections in one place rather than distributed throughout a floor or an entire

building.

Hub concentration also has a more profound impact on FDDI; it

changes the physical network topology from a ring to a star. The FDDI network

maintains the logical ring structure. The advantages to this type of system are that

network maintenance and installation are greatly simplified. Adding or removing a

host is as easy as plugging or unplugging a duplex optical fiber. Other advantages

will be discussed in subsequent sections. A disadvantage is that fiber links tend to

be longer than necessary because they all go to a common connection point. For

example, adjacen1 workstations (1 to 2 m apart) are not connected with a 3 or 5 m

fiber, but two 20 m fibers. This increases the propagation delay between eight and

13 times.

b. Attachment Conversion

Attachment conversion refers to the ability of the concentrator to accept

connections from both Single- and Dual-Attach Stations and handle each properly.

This feature is important because SAS interfaces cost about $2000 each while DAS

interfaces cost about $10,000 each. Pricing aside, a DAS interface is more

72

complicated than a SAS interface and a DAS requires twice as many fibers per

station.

The concentrator allows much more flexibility in this regard. Both

DAS's and SAS's can be connected to the concentrator provided that they are not

connected in an illegal configuration. In general, valid connections are: A to B, B to

A, S to S, S toM, M to A, M toB, M to S and M toM, where A is an A port, B is a

B port, M is a master port and S is a slave port [Ref. 11: p. 18]. This can be easily

controlled by the management capabilities built into the concentrator.

c. Maintenance Features

Maintenance features refer to the ability to repair the concentrator or

modules without completely disabling the network. Modularity is the main feature

which permits this type of functionality. Power supplies, processors, ports and

interface units are all modular and can be duplicated or replaced easily. The ability

to "hot-swap" modules is discussed under Backplane Intelligence in the following

section.

Modules are easily replaced by unlocking the retaining handles and

pushing outward. The fan module is also easily replaced or repaired.

d. Management

Management refers to the ability to control the network once it is

operational. Management features include designating which port attaches to a

particular network structure, port loading, error detection and analysis and fault

isolation.

The management system allows the processor to detect new stations

added to the ring or old stations which have been removed. In the same general

scheme, the management system designates which .MAC is currently in use on

which data path.

73

2. Capabilities

After evaluating the capabilities of several different systems, we decided

that a concentrator needed to perform several functions and have some basic
capabilities. 'We broke these requirements into four different areas of concrn:

system design, backplane intelligence, data paths and data throughput. We will

discuss each of these areas in the following paragraphs.

a. System Design

The following items were considered essential to our needs for an FDDI

concentrator: third generation modular system, scalable bandwidth, integrated

management and fault tolerance. Specifically, we wanted FDDI modules which

would support both DAS's and SAS's, optional ethernet multiplexing capability,

campus FDDI connectivity, dual NMAC structure, robust system processor and a

standby system processor.

Ethernet connectivity was an issue because of the installed Ethernet

base. We also did not want to give up our ability to interface with the rest of the

campus or outside world via our electronic links. Because of FDDI's bandwidth, we

did not want to waste bandwidth on overhead. Ethernet connectivity had to be

"intelligent." Rather than encapsulating an Ethernet package inside an FDDI packet,

we wanted the Ethernet packets to be converted to FDDI packets. This type of

implementation is better for our installation where many users remotely login to the

subnet to work.

The system processor module is particularly important because it

provides the foundation for the concentrator's functionality. In addition to providing

services to support integrated management and fault isolation (discussed below), it

is also needed to support a remote update capability, control system configuration,

and provide at least two out-of-band management channels. The remote update

74

capability permits uploading new software to RAM to check system operation. If

there are no problems, the RAM can be written to flash EPROMs for future use. In

this way, updates can be provided electronically (via FTP or other binary file

transfer) by the vendor, rather than waiting for conventional methods. The out-of-

band management capability allows the network administrator to remotely login to

the concentrator from an Ethernet, RS-232 or other serial line connection to correct

problems or update the configuration. These are functions that would normally be

performed remotely in our installation.

Each of the general system requirements will be discussed in detail in

the following paragraphs.

(1) Third Generation System. The third generation system is one

which includes network management functions, a dedicated processor for operating

the concentrator, and switching and translation technology. It also refers to the

scalability and expandability available to the end user. By comparison, first

generation systems were passive or active devices that only provided concentration

for one type of physical layer implementation. These devices did not include a

processor. They were simple hubs. Second generation systems included a processor

to add network management capabilities to the hub. Network management includes

some kind of port management in the form of diagnostics and routing. This means

that individual ports can be attached to specific data paths, within the constraints of

the concentrator. For example, if the concentrator has two internal data paths, ports

A, B, D, F and G could be attached to data path 1, while ports C, E and H could be

attached to data path 2. If data path 2 failed for some reason, the concentrator could

be quickly reconfigured to add ports C, E and H to data path 1. Third generation

systems, take the second generation capabilities and expand them by providing

additional management capabilities, additional physical layer protocols, switching

75

technology and translation. The biggest changes revolve around the additional

physical layer protocols and translation, and switching technology. Adding more

physical layer protocols means that the concentrator can be used as an intelligent

bridge. Adding translation capabilities on top of that means that packets coming

from one physical layer and going to another are transmitted in the native protocol

rather than encapsulated in the destination protocol format. This distinction directly

impacts network performance. For example, consider many Ethernet packets going

to a host attached to the FDDI subnet. The data portion of the Ethernet packet is

1500 bytes while that of the FDDI packet is 4478 bytes. Nearly three Ethernet

packets will fit in one FDDI packet, which in turn reduces the overhead by nearly

three times. Switching technology incorporates high-speed switching for those

cases where data must be transferred internally between modules or data paths.

(2) Scalable Bandwidth. Scalable bandwidth refers to the ability to

change the scope or scale of the network fairly easily. Three basic areas concerned

us: increasing the number of hosts attached to the FDDI concentrator, allowing

several independent networks and the ability to support FDDI data transfer rates in

excess of 100 Mbps. We wanted an FDDI concentrator that would support more

than the five SAS's and two DAS's (seven or nine FDDI ports, depending upon

configuration) that are currently connected to the subnet when the time came to

increase its scope. We expected host migration to the FDDI subnet, in much the

same way that NPS has migrated from mainframes and large minicomputers to

powerful workstations. Simplicity was also a factor that we considered when we

looked at adding hosts. It would be unrealistic to expect to have to buy a new chassis

to add more stations, within reason, of course. An ideal concentrator would allow

interconnections between the four most common types of networks available. The

minimum requirement for us was to be able to support FDDI and Ethernet on

76

independent internal data paths. The concentrators on the market do that to varying

degrees. The job of increasing network throughput had to be relatively easy. In other

words, we did not want to reengineer or replace the concentrator's backplane to

handle data rates higher than 100 Mbps when the FDDI standard changed. The

ability to support higher bandwidth is designed into the system from the ground up

and is not a feature that can be added later.

(3) Integrated Management. Integrated management is the ability to

provide network management as a built-in function rather than an afterthought. For

example, the ability to isolate a module or a port for testing should be relatively

unobtrusive, except for the hosts attached to that module or port, and should be

relatively easy to perform. It is also important to be able to isolate a single host for

testing and/or network administration. We did not want to take the subnet down

every time we added or removed a host from the subnet. The integrated management

function also ties in very closely with the fault tolerance requirement discussed in

the next paragraph.

(4) Fault Tolerance. Fault tolerance is important from the aspect of

network availability. The concentrator must be able to provide fault isolation at the

very least. In this scenario, the concentrator removes the offending host from the

subnet by "wrapping" the ring. A more capable concentrator removes the offending

host from the ring by transferring it to another connection for testing and informs the

network administrator that there is a problem with that host. The concentrator also

must be able to diagnose internal failures (data path failures, module or functional

failures within modules and primary processor failures). As with the integrated

management capabilities, these features must be relatively easy to set up ind use,

and must provide for "graceful" degradation.

77

b. Bcckplane Intelligence

The requirements for backplane intelligence were: "hot-swap"

capability, module slot independence, identical diagnostic and configuration control

for each slot and supporting network addressing.

(1) "Hot-swap" Capability. The ability to "hot-swap" modules is

important for providing maximum availability. This means that the concentrator

does not have to be off to insert and remove modules. If one of the interface modules

failed, we wanted to be able to replace it without turning the concentrator off and

disabling the entire subnet. Hot swapping is supported by several ASIC's

(Application Specific Integrated Circuits) which detect which slots are active and

which are not. When a module is removed, the ASIC's connect the data path on the

backplane rather than allowing it to go through the module. When the rr .e is

replaced, the ASIC's reroute the data so that the data path goes through the module

again.

(2) Module Slot Independence. This simply means the ability to put

any module in any slot and have it work properly. As the network grows in size and

complexity, we did not want to be burdened with moving boards around in the

concentrator to make sure each was "in its proper place."

(3) Identical Diagnostic and Configuration Control. Each slot must

have the same diagnostic and configuration capabilities. This ties in very closely

with the ability to put any module in any slot. The system would not meet our needs

very well if only two slots provided FDDI diagnostic support (our installation

requires a minimum of three FDDI modules) and three slots provided Ethernet

diagnostic support, etc.

78

(4) Supporting Network Addressing. The ability to support network

addressing is important for providing in band or out of band management for the

concentrator. Although the concentrator can be operated from the front panel,

operations from a console are much easier. In band management refers to the ability

to telnet to the concentrator from a station attached to the concentrator (FDDI in this

case) and perform management functions. Out of band management refers to the

abiilty to use a local console or a workstations from a network other than the one

under the concentrator's control.

c. Data Paths

As a minimum, we wanted to have three FDDI data paths in the

concentrator. This type of configuration would allow us to have an internal dual ring

architecture with an additional ring that could be used for local testing or as a backup

for a failed data path.

Ethemet connectivity was also required for backwards compatibility.

Again, three data paths were specified to permit a one-to-one mapping with the

FDDI data paths. In this way, we could dedicate one Ethernet data path for each

FDDI data path to support rapid reconfiguration.

Support for other networks was a plus, but not a requirement.

d. Data Throughput

The backplane had to support an aggregate data transfer rate of 800

Mbps. Essentially, this meant that the manufacturer had to build-in extra capacity

to support higher data rates than ,what is currently specified. Even though the current

FDDI standard only supports a 100 Mbps data rate, future improvements to FDDJ

will push that to 400 Mbps and beyond.

79

3. Purchase considerations

Several important issues were discussed prior to deciding which company

we would use to supply the equipment. The issues we addressed were: compatibility

with Sun equipment, compatibility with FDDI standards, company size, company

performance (i.e., track record), and deliverability. I will discuss each of these issues

in detail below.

a. Compatibility with Sun Equipment

Our initial concern was with compatibility. A. Kahn of AMD discusses

interoperability issues between different vendors using the AMD FDDI chipset, but

does not specifically discuss the vendors [Ref. 19: p. 266]. We had purchased the

VME cards for the SPARCServer 690 and SPARCServer 630 and were in the

process of purchasing the S-bus FDDI cards for the SPARCStations. At the time,

there were no otr:•r vendors which could deliver an S-bus FDDI card for the

SPARCStations. With those basic decisions made, we moved on to other

considerations. To ensure compatibility, we contacted the OEM's that Sun had used

[Ref. 24: p. 5] to conduct their tests. Sun used the following OEM's to test the S-

bus FDDI cards:

"* AT&T
" DEC
"• Timeplex
"• Synoptics
"• Sumitomo
"* Synernetics

This narrowed our initial search effort and allowed us to choose an

OEM that we knew, in advance, had completed a successful compatibility test. Sun

was not in a position to offer a recommendation on which concentrator they

80

preferred. I contacted each of the companies listed above and received detailed

product information from DEC, Timeplex, Synoptics and Synernetics.

b. Compatibility with FDI Standards

We were not interested in purchasing a concentrator which did not

implement FDDI properly or in accordance with the published standards. We also

wanted to make sure that the concentrator supported TCP/IP, NFS and all other

services that our Ethernet currently supports.

TimePlex, one of the vendors we originally contacted, removed theL-

equipment from the market before the close of the bidding process. They were

unable to have their equipment function reliably.

c. Company Size

Company size was an issue because we did not want to purchase a piece

of equipment, have the company go out of business and have an orphan on our

hands. On the other hand, we did not want to purchase equipment from a company

that would not be responsive to our requests or queries. We were also not interested

in a company that was so small that we would not receive adequate support because

of a lack of manpower or resources. Of all the companies contacted, Synemetics was

the only small one. All the others were much larger in terms of operating capital,

name recognition and sales.

d. Company Performance

Company performance was important because of concerns about

product availability and compatibility. The OEM's track record was considered

essential in deciding which company we thought would give us the best value.

Several companies had working versions of their hardware operating at InterOp in

the summer of 1991. Another issue was software support and software production.

81

e. Deliverability

Finally, availability was considered. The OEM that we selected had to

have a sufficient quantity of concentrators on hand to allow 30 day delivery. The

concentrators must be in production. Even though Sun may have been able to use a

prototype for their compatibility tests, we wanted to have a production model so that

as many bugs had been worked out as possible. Synernetics was producing one of

the few concentrators on the market and the only third generation concentrator.

D. FDDI INTERFACES

Having an FDDI concentrator without the proper interfaces would have left us

in an impossible situation. Shortly after I began researching FDDI concentrators,

Sun announced their S bus cards for the SPARCStations. The interface cards

provide the conversion between the light signals on the optical fibers and the

electrical signals the computer needs to operate properly. The interface card also

provides clock signal retrieval, signal strength indications and appropriate

buffering.

1. Sun FDDIIDX Interface Card

The Sun FDDIIDX interface card provides dual FDDI attachments (A and

B ports) for the SPARCServer 600 series servers and other VME bus based products.

The interface card is built around Motorola's 68020 32-bit microprocessor and

interfaces with the VME bus. The 68020 is responsible for managing the card,

providing supervisory functions, controlling Direct Virtual Memory Access

(DVMA) and providing real-time network data processing.

The interface card includes 256 kilobytes of dedicated RAM for processing

incoming and outgoing FDDI packets and an additional 256 kilobytes of RAM

dedicated to input and output buffers for the FDDI transceivers. These functional

82

areas are connected by local system and data buses to reduce loading on the VME

bus.

2. Sun FDDI/S Interface Card

The Sun FDDI/S interface card provides a single FDDI attachment (S port)

for the SPARCStation 1+ and 2 series workstations. It will also work in the

SPARCServer. The FDDI/S card connects to the SBus using a custom ASIC chip.

DMA transfers are also supported. Each FDDI/S interface card has its own MAC to

allow it to function without a concentrator when connecting two SPARCStations.

E. JUSTIFICATIONS FOR CHOICES

Our first choice for a concentrator system was one supplied by Synernetics. Our

second choice was Cabletron. Several factors were overriding in our final decision.

The most important factor for us was to have a piece of equipment that was tested.

As mentioned earlier, the equipment we bought needed to work with the Sun

computers we had in the lab. Basically, those were the six vendors listed earlier

(AT&T, DEC, Timeplex, Synoptics, Synernetics and Sumitomo). We knew that

each of these vendors had some product that was interoperable with the interface

cards that we were going to get.

In order to pare the field further, I contacted each of the companies and asked

for information on their FDDI products. AT&T did not respond and I was never able

to find out what their product was like in great detail. Sumitomo also provided

insufficient information to be able to support a purchase decision.

DEC provided quite a bit of technical information. Their concentrators did not

meet our needs for several reasons. First, their concentrators were only first

generation devices (a hub). Because it was only a hub, it did not support the

management features we felt were important for effective network operation.

Second, they did not provide an easy way to bridge FDDI to Ethernet. In order to

83

perform that function, an additional chassis was required. Third, their hub was

limited to eight FDDI ports. Again, if we wanted to expand in the future, we would

be required to buy another chassis and the modules to populate it. Finally, DEC did

not support the "hot swap" capability.

Timeplex offered a third generation concentrator (TimeLkAN 100

Concentrator*32) with integrated management facilities and redundant processors.

It also supported up to 32 SAS's, but it was not in full production when we needed

to order. It, like DEC's concentrator, did not have a built-in bridge from FDDI to

Ethemet. I have since discovered that Timeplex has removed their concentrator

from the market because of difficulties associated with their SMI" implementation.

SynOptics offers the LattisNet 2914 which supports up to 14 SAS's. This

concentrator is a sezond generation device which is not modular. It does provide the

intelligent management features that we wanted. Like DEC's and Timeplex's

concentrators, it does not provide any bridging capability. They were one of the

vendors who demonstrated their product at InterOp on 1990.

Essentially, the company that met all the technical requirements that we agreed

were important was Synernetics. In addition to having proven hardware on the

market for over a year, they are primarily responsible for writing the SNIT software

that provides the important services for the FDDI ring. They license this software to

virtually every other FDDI concentrator vendor.

At the beginning of the section, I mentioned Cabletron. At the time we made the

purchase decision, Cabletron was in the process of putting the final touches on their

FDDI concentration cards. They were still in a Beta test status and had not been used

in a commercial environment. Their reputation as a networking leader deserved our

consideration. The major factor against them was that their equipment had only been

prototyped and not actually used in other than a laboratory environment.

84

F. PURCHASE PROCESS

Once we decided which features were important for our installation, we wrote

up the appropriate documentation for a sole-source procurement. To make a long

process short, the sole-source procurement was disapproved and we had to send it

out for bids. While we were in the sole-source loop, Synemetics had licensed its

LANplex backplane technology to 3Com. At the end of the bidding period, we had

five bids: one from Synernetics, three from 3Com vendors and one from RAYCOM.

In essence, we received four bids for the same equipment and one from an unknown

source.

We rejected the bid from RAYCOM because their delivery date was the end of

September, which was not going to be within 30 days of the contract award date.

From the information we received, it appeared that their product was only an FDDI

to Ethernet bridge. We accepted the bids from the other vendors because the

equipment was the same. In the end, we bought the concentrator from Synernetics.

85

IV. INSTALLATION

The overall philosophy of the changeover from Ethernet to FDDI was to allow

the CAPSNet to continue to function while we installed the hardware. We followed

this principle to the greatest degree possible during the change. To that end, we

planned the installation in three phases. Phase I was a simple connection between

the two servers. In this configuration, there was no "control" on the FDDI ring. In

essence, the only function that this satisfied was ensuring that the driver software

and the FDDI interface cards could communicate. This phase was completed by 17

July 1992. Phase H was a dual ring connection between the servers using the

Synernetics LANplex 5012 concentrator. This was the first phase in which we had

a fully managed and functional FDDI network, even though the servers were the

only resources connected to the FDDI ring. This phase was completed on 23 July

1992. Phase M was the full FDDI subnet installation. The two servers would remain

on the dual ring, while the five remaining SPARCStation 2's were connected to the

LANpIex 5012 as single attach stations. All stations retained their Ethernet

connections in the unlikely event that the concentrator failed. This phase was

completed on 30 September 1992. The next several sections discuss the items we

considered when we developed the changeover plan.

A. CONSIDERATIONS

Important considerations can be divided into five major categories. They are

environmental, physical, link related, network availability and software

compatibility. Each of these issues will be discussed in detail below.

86

1. Environmental

Synernetics had included several temperature protection schemes into the

LANplex 5012. They recommend an ambient operating temperature range of (0 C

to 400 C. Internally, the concentrator generates a large amount of heat, 3505 BTUs

when fully configured. The first level of thermal protection is initialized at 55* C

when the concentrator issues an audible alarm, a visual alarm at the panel and,

optionally, sends an SMT message to the network administrator that the temperature

is approaching an unacceptable level. The second level of thermal protection occcrs

at 70* C when the concentrator shuts itself down to prevent permanent damage to

itself.

The other main environmental factor is humidity. The LANplex 5012 is

designed to operate in a 5 to 95% relative noncondensing humidity range. The

concentrator has no built-in facility for monitoring the moisture content in the air.

In our situation, these constrains were easily met. The lab has an air conditioning

system that keeps the air well within those values. If we were installing the

concentrator in one of the wiring closets, these issues would have been much more

important.

2. Physical

When the LANplex 5012 is fully loaded with expansion boards, it weighs

slightly over 100 pounds. Moving it is a two person operation. It is designed to

operate as a table top device or in a rack mounted configuration. Converting from

table top to rack mounting is simple: add a bracket to each side of the enclosure. The

LANplex 5012 cabinet remains enclosed regardless of the mounting method. It can

be rack mounted to 19 or 24 inch racks.

We found that rack mounting the concentrator is a little difficult because of

the weight. The user manual indicated that temporary supports for rack mounting

87

were included. They were not shipped with the concentrator and we discovered that

they were not due to be included in the near future. This meant we had to man handle

the concentrator into the rack and secure it properly.

3. Links

The next major issue is concentrator location and cable routing. Remember

from earlier discussions that the maximum ring size is 200 km and the maximum

link length is 2 krm using multimode fiber and standard transceivers. When a

concentrator is used, each station uses an incoming link and an outgoing link. This

makes the segment length twice the actual cable length. Each cable is actually a

duplex fiber. In other words, a 10 m cable accounts for 20 m of ring length (10 m

from the concentrator to the station plus 10 m from the station to the concentrator).

Thus, the 200 km ring length becomes a 100 km linear cable length in a

concentrator-based installation.

In our installation, this limit is not critical. CAPSNet only has seven

stations. At most, we would only use approximately 280 mn of the maximum ring

length if all of our cables were 20 m long. We used 10 mn cables to the servers and

20 in cables to the workstations which only uses 240 m of the maximum ring length.

None of our links approach the 2 km limit. Large installations must be planned

carefully, though.

Another important consideration is the curvature radius for bends. We had

to make sure that we did not install the cables so that there were 900 bends. A sharp

bend like that would introduce unnecessary losses or, in the extreme, break the fiber

core. A gradual bend (6" or greater radius of curvature) does not present a problem.

4. Network Availability

Another major consideration was to ensure that the CAPS lab remained

open and available as much as possible during the hardware conversion. Other than

88

the time taken for installing hardware and software, and configuring the stations, the

lab was available for general use. In a more general sense, we also wan",ed to make

sure that we had a backup in case the concentrator failed.

To accomplish this, we left the previous Ethernet installation in place, but

disabled it through the software drivers. In this way we ensure maximum network

availability with a minimum of reconfiguration time.

5. Software Compatibility

Initially, there was concern regarding the FDDI/DX board software drivers

and their ability to operate correctly under SunOS 4.1.2M. Documentation which

accompanied the drivers indicated that they would work properly in that

environment, but the installation script provided on the tape indicated that there was

a problem using SunOS 4.1.2M. The solution was to ignore the warning and proceed

with the installation. Everything worked as planned.

B. EXPERIENCE

Actually installing the concentrator was much easier than the planning and

forethought that preceded it. The FDDI system is designed to be "plug and play" to

the greatest extent possible. Each cable is terminated with a polarized MIC plug

which mates with a MIC receptacle in only one orientation. MIC receptacles are

keyed to allow only one type of plug. There are four different types of ports and the

receptacles are keyed accordingly. A and B ports are for connections to the dual ring

while M (master) and S (slave) ports are for concentration connections [Ref. 22: p.

103]. The keys are easily changed, but should be left alone once the final

configuration is set.

After several different trials, we settled on a dual trunk ring for the servers. This

means that the B port from the concentrator goes to the A port on suns5, the B port

on suns5 goes to the A port on suns7 and the B port on suns7 goes to the A port on

89

the concentrator. The advantage to this topology is that it uses only two concentrator

ports instead of four. The major disadvantage is that if one station goes down, only

a single attachment remains.

The workstations are connected in a M-S configuration. The M ports are on the

concentrator and the S ports are on the workstations. This is the only way that they

can be connected because the workstations are only SAS's. Five of the eight

available master ports are used.

C. CONCENTRATOR CONFIGURATION

One of the advantages of the Synernetics LANplex 5012 is that it is very easy

to configure and very flexible. The LANplex 5012 is controlled by a Motorola

68030 32-bit microprocessor which controls all of the onboard functions. The

LANplex 5012 has 12 expansion slots on an intelligent backplane. The backplane

contains a VMEbus, which is responsible for communicating between the modules

and the processor, three FDDI paths, three 4- or 16-Mbps Token Ring paths and

three Ethernet paths. Only the FDDI paths are currently in use.

1. Slot Configuration

In our installation, slot 1 holds the System Processor Module (SPM). This

is the module which controls all the functions of the concentrator. Slot 2 is not used

but can have a redundant SPM. Slot 3 contains the FDDI Enterprise Access Module

(FEAM). The FEAM holds one or two FDDI MAC's which are the traffic cops for

FDDI. The MAC takes care of generating and controlling the tokens. Our FEAM has

two MAC's installed. In addition to the MAC's, the FEAM also has FDDI A and B

ports. Slots 4, 5, 7, 8, 9, 11 and 12 are empty. Slots 6 and 10 contain FDDI

Concentrator Modules (FCM). The FCM's each have four FDDI M ports.

90

2. System Configuration

The current configuration for the concentrator is both IMAC's active with

MAC I on the primary FDDI path and MAC 2 on the secondary FDDI path. MAC

1 can be assigned to either the primary or secondary path while MAC 2 can be

assigned to the secondary or local path. Two MAC's from the FEAM can not be

assigned to the same path at the same time [Ref. 15: p. 7-31.

Each of the ports from the FCM can be assigned to either the primary.

secondary or local path. All eight M ports are assigned to the primary path.

D. FUTURE GROWTH

Eight slots in the concentrator are available for future expansion. If required, all

eight slots could be used for FCM's to provide a total of 40 SAS's. Another

expansion option is to add one or more Ethernet Express Modules (EEM) which

support eight 10BaseT (UTP) ports. Each of these ports can support one or more

Ethernet connected stations. If we filled up the remaining slots available, we would

have 64 Ethernet ports and the original 10 FDDI ports.

When all the buildings on the campus are "wired" for FDDI, the CAPSNet

concentrator can be easily added to the campus-wide backbone dual ring trunk,

either through an FDDI router or through a direct connection.

Without any further expansioni of the concentrator, the three unused ports can

be connected to additional workstations.

91

V. PERFORMANCE ANALYSIS

This chapter deals with actual, not theoretical, performance. In all cases,

numerical values provided are from empirical analyses. In practical terms, there are

several important factors which will guarantee the success or failure of a particular

installation. In the case of FDDI, as well as Ethernet or any other network, there are

certain parameters which are critical. The single most important factor is the bit error

probability (Pj). If the P, is too high, the upper layers will need to get frames

retransmitted more frequently, if it is too small, the system will be prohibitively

expensive. The P, for FDDI is 2.5 x 1001 which is easily attainable with current

optical fiber technology. As long as the signal to noise ratio (SNR) is sufficient, the

required P, is attainable. Conversely, if the SNR is insufficient, the P, will tend

toward certainty (1). The loss budget calculation- in the following section directly

address this concern.

The system throughput section addresses the actual, measured performance that

I observed for both FDDI and Ethernet. That section also addresses system clock

granularity verification as well as comparing the observed performance to the actual

performance.

A. LOSS BUDGET

A loss budget analysis is important for ensuring that the system will meet or

exceed performance limits. In conventional Radio Frequency (RF) systems like

Ethernet or Token Ring, the SNR must be large enough to support a specified P,. For

an optical system, the goal is the same, but the calculations are based on losses

specific to the optical plant. The ANSI standard specifies P, of less than 2.5 x 1040

[Ref. 17: p. 93].

92

In the case of the CAPS net installation, the calculations are very simple because

the lab is in one room and there are no splices or wiring closets to confuse the

calculations. Robert Kimball provides a detailed explanation of the different losses

associated with FDDI [Ref. 18: p. 252] and I will follow his equation development

and relate it to our specific installation. The reason for conducting this analysis is to

determine whether or not our installation will meet the FDDI requirements.

The general form of the decision statistic is:

P > gi + Ad + A.d + 2or

where:

P = available power (defined as 11 dB for FDDI)
, = aggregate component losses

I = dispersion penalty
it, =system margin
ar = total variance of the link loss distrution

The first term on the right hand side of the inequality is the sum of the

component losses in the link. These losses include propagation losses due to

irregularities in the fiber, connector losses, splice losses, higher order mode losses

(due to refraction inside to fiber), and the MIC ferrule delta (due to the difference

between the precision test ferrule and a production ferrule). The equation is given

below and Table 15 provides the pt values [Ref. 18: p. 253].

1l tcoo 0+tci i +'tcon ncon sp n sp + HO+ 25

where:

4.1 = aggregate component loss
tCO =outside plant cable loss
1o = length of outside fiber link
gC, =inside plant cable loss
1, = length of inside fiber link
140V = connector loss
n. number of connectors

93

IAl splice loss
n, = number of splices
to = Higher Order Mode loss
8 MIC ferrule delta

Table 15: p AT = 1300 NM

Component Variable Mean Loss Units

Outside Plant Cable i 0.8 dB/km

Inside Plant Cable 1.0 dB/km

Connector 0.4 dB

Splice 0.15 dB

Higher Order mode loss t.no 0.5 dB

MIC ferrule delta d 0.2 dB

If we substitute the values from the table above and the following values from

our installation (our installation only uses continuous 10 m or 20 m fibers) into the

equation for gt,

l, = 0 meters
l, = 0.02 km (20 meters)

, = 2
n = 0

we get:

= 0.8.0+ 1.0-0.02+0.4.2+0.15 -0+0.5+2.0.2

91 = 1.72

The second term on the right hand side, g, is the dispersion penalty, which

accounts for dispersion losses in the optical fiber. This is a function of bit rate, where

Rb = 125 Mbps, and of several chromatic characteristics of the LEDs used in FDDI.

94

The average segment length component accounts for links that consist of several

spliced segments. This accounts for the bandwidth concatenation phenomena,

which may cause a bandwidth increase in concatenated fibers over what is normally

expected in a single, unbroken fiber.

The equation for dispersion penalty is:

= 0.1311138 +0.14881 101.4

d C

where:

P-d, = dispersion penalty
l = total link length, 1, + l,

S = average segment length of spliced fibers

If we substitute the following values into the equation for gt, (use the same

values as for ji:),

1 = 0.02 km (20 meters)
1, = 0.02 km (20 meters)

we get:

9d = 0.131 • 0.021.38 + 0.1488.0.020.5.
2014

lad = 0.00068052

The third term on the right hand side, p,,, is the system margin. It is a catch-all

that allows for variations in the cable plant and a factor that compensates for timing

variations between the light level at the output of the fiber and the light received at

the lens on the receiver. I will use 1.0 dB because it is sufficient to cover any

unexpected losses [Ref. 18: p. 254].

95

The final term on the right hand side, 2ar, is the total variance of the link loss

distribution and is defined as a function of the variances of the dispersion penalty

and the loss distribution.

The equation for Or is:

2 2 2
OT = d1 +GOd

where a, is normally set at 0.09 dB [Ref. 18: p. 254].

The equation for a, is:

12

2 2 o 2 2 2 2= 2 +a 1+o0 N +o -NCo R cf I con con SP sp

where:

oF, = standard deviation of the loss distribution
a = outside plant cable loss standard deviation
1 - length of outside fiber link
R = number of cable segments in the link

-70 inside plant cable loss standard deviation
1, length of inside fiber link

o =connector loss standard deviation
Nco number of connectors
ap = splice loss standard deviation
N, = number of splices

The a values associated with each of the variables in the previous equation are

given in Table 16 [Ref. 18: p. 2541.

Table 16: STANDARD DEVIATION OF LOSS CHARACTERISTICS

Component Variable Standard deviation Units

Outside Plant Cable Cf. 0.25 dB/km

Inside Plant Cable 00 0.0 dB/krn

96

Table 16: STANDARD DEVIATION OF LOSS CHARACTERISTICS (Continued)

Component Variable Standard deviation Units

Connector 0.2 dB

Splice o0, 0.1 dB

When we substitute the values from the table above and the 1 values given

earlier, we get:

2 0.0625.0 + 0.0.0004 + 0.04 •2 + 0.1 - 0

22 = 0.08

Now that we know o, and ao, we can substitute them into the equation for r,- and

solve it, which yields:

aT = 0.2968

The final step is to substitute all the intermediate results back into the original

equation to verify that we have not exceeded the loss budget. When we substitute in,

we get:

11Ž I 1.72 + 0.00068052 + 1 + 2 - 0.2968

11 Ž_ 3.3143

If the right hand side of the equation exceeded 11 dB, we would need to go back

to our installation and figure out where we could improve the loss budget. The area

that would provide the greatest change with the least effort would be the aggregate

loss factor. Two ways to improve that factor would be to shorten the links between

transmitter and receiver or reduce the number of connectors.

97

For comparison purposes, the link losses for various other link lengths are given

in Table 17.

Table 17: LOSS BUDGET FOR VARIOUS LINK LENGTHS

Link length Loss (dB)

10 M 3.30388

20 m 3.31431

30 m 3.32486

50 m 3.34623

75 m 3.37339

100h 3.40097

In all cases, we have more than 7 dB of signal excess. When CAPSnet is

connected to the CS ring or the campus ring, there may be additional demands and

losses. T. McIntosh addresses specific wiring considerations for buildings and

campuses [Ref. 31: pp. 242-250].

B. SYSTEM THROUGHPUT

Theoretically, networks can approach 100% transmission efficiency, but there

are certain trade-offs that must be addressed. Contention-based protocols which

approach 100% transmission efficiency have excessive wait delays associated with

them. Collision-free protocols are better suited for approaching the transmission

efficiency limit.

1. Clock Accuracy Verification

Timing analysis is critical to determining how well the system performs

over the network. Recent studies have shown that bottlenecks in the protocol stacks

and the processors are more detrimental to network speed than the raw data transfer

98

rate. In order to determine how well the protocols performed, I needed to be able to

time different data transfers and compare them.

I used C test programs, rather than Ada, to perform the timing tests because

all of the SunOS calls are in C. Even though the SunOS manuals discuss a I psec

clock resolution [Ref. 13: pp. 24-251, they advise caution in accepting psec values

as valid [Ref. 12: p. 761]. In other words, the gsec clock may not track properly

when compared to the NBS (National Bureau of Standards) atomic clocks. For hard

real-time systems where absolute temporal triggering and procedure duration are

critical, this would present a major challenge. By contrast, my tests were relatively

short and did not require an absolute time reference.

Previous timing studies conducted using a UNIX or system call for time

only achieved a resolution of approximately 20 msec. For my purposes, I needed a

finer resolution than this. To ensure that I was actually able to achieve a I psec

resolution-or, more accurately-comfortably accept a 1 Asec resolution, I used the

test program shown in Appendix A. I ran it in two different configurations. The first

was with 100 iterations and the second was with 1000 iterations. The concept is

simple: call getti meof day () and store the results in an array. The procedure call

passes in two pointers to structures which tells the procedure where to place the

results. The results are copied into an array for subsequent display.

The structures represent absolute time and time zone. The time structure,

called timeval, consists of two long integers and the time zone structure, called

timezone, consists of two integers. I will only discuss timeval, because there

was no need for timezone.

The two components of timeval are tv_sec and tv_usec, which

represent the elapsed seconds and microseconds since 00:00 GMT 1 Jan 1970 [Ref.

12: p. 760). I stored the results of tv_usec in the array to verify the clock timing.

After the array is full, the program displays the results on the monitor.

99

The results showed that I could expect 1 jisec clock resolution within

reason. Every 10 msec or so, the UNIX pager or swapper preempts the application

for approximately 120 g±sec. No applications can preempt the pager and swapper

even by altering their "niceness" (or priority) levels. I executed the program (1000

iteration version) without adjusting the nice value and with a nice rating of -20,

which is the highest value allowed without altering the code in the kernel. I found

that there were no significant differences in execution delays between the two

settings.

The discussion up to this point has centered around determining the system

clock resolution. The reason for doing that is to be able to accurately determine how

long data transfers from one point to another will take. Inaccurate timing would

jeopardize the validity of the data I collected. The next section will discuss the test

procedure in detail and provide an analysis of the results.

2. Timing Test Procedure

The procedure used to find network file transfer speed was to time a remote

file copy (rcp) from one machine to another. Since we were interested in how

quickly data moved from one place to another, I performed four sets of 21 different

tests. The first and second sets were conducted on Ethernet while the third and fourth

sets were conducted on FDDI. The first set of tests was a baseline and was conducted

under normal circumstances, which simulated normal network activity. The second

set of tests was conducted under "ideal" conditions with all transfers within the

subnet and no other network traffic. The third set was a repeat of the first and the

fourth set was a repeat of the second.

Several variations of the C programs were attempted until I found the one

that provided optimum performance. Appendix B shows the actual program to

accomplish the file transfers. This is where the distinction between TCP and UDP as

100

the upper protocol layer makes a tremendous difference. UNIX (at least Sun OS

4.1.1 UNIX) uses UDP as the underlying protocol for local network copying. In

other words, when a user uses the UNIX cp command to copy a file from one

location to another, the UNIX kernel sets it up as a UDP transfer. As explained

earlier, UDP is an unreliable, connectionless service and, as a result, the IJNILX

kernel forces a write to the hardware (usually a hard disk) before it will recognize

that the task is completed. This adds additional overhead and is clearly not the file

transfer method to use to measure network performance. A better method of

measuring network performance is to use an NFS get command or the UNIX rcp

command. The major difference between these commands and the cp command is

that they use TCP. Since TCP is a reliable transport service, the 1 INIX kernel

recognizes that the task is complete when the protocol stack sends the ACK. This

process takes much less time because it does not depend upon the physical zansfer

to the storage medium, although at some point the receive buffers must be moved to

a storage device before overflowing.

Each set of tests consisted of three groups of file transfers. The test files

were selected based on size. The criteria for size selection is described in the

following paragraphs.

The largest one had to be larger than 256 kilobytes so that it would exceed

the size of the buffers on the interface cards. I selected a file slightly larger than 1

Mbyte (1155959 bytes) in size to minimize the effects (by percentage) of overhead.

The next file had to be smaller than 256 kilobytes, but larger than the size

of an 802.3 or FDDI packet. The space reserved for data is 1500 bytes in an 802.3

packet and 4478 bytes in an FDDI packet. I selected a file slightly larger than 56

kilobytes (58080 bytes) in size to minimize the effects (by percentage) of overhead.

The final file had to be smaller than the minimum size for an 802.3 packet.

This was to ensure that the smallest possible packet was sent. I selected an 11 byte

101

file to simulate the results of a computation being passed back to a caller. The

minimum packet size for an 802.3 network is 46 bytes which ensures that it will take

longer than 2T to transmit it. FDDI has no such minimum. Table 18 shows the

percentages of overhead for each of the different file sizes and transmission media.

Percentage of overhead is calculated by dividing the number of bytes of overhead

by the number of data bytes, then multiplying the result by 100. The overhead for

the small file transfer is huge when compared to the data being transferred. This is a

result of TCP, LP and the physical layer adding headers and trailers to the data they

each receive.

Table 18: PERCENTAGE OF OVERHEAD

File Size Ether st FDDI

Large (1155959 bytes) 4.81 1.63

Medium (58080 bytes) 4.82 1.74

Small (11 bytes) 636.36 654.55

Each file was transferred between seven pairs of nodes and each transfer

was performed 500 times to provide a statistically significant sample. Luckily, the

file transfers only took a short time to accomplish.

a. Test Set One

Test Set One was conducted from sun51 (see Appendix E for a notional

network diagram). The tests were done in this order: sun51 to sun52, sun51 to suns5,

sun51 to suns7, suns5 to suns7, suns7 to suns5, suns5 to sun5l and suns7 to sunS1.

As explained above, each transfer was performed 500 times. The test was conducted

on the CAPS subnet to avoid bridge latency (at sun53) for both the command and

the response. The subnet was in use for normal CAPS development. This test

102

provides "typical" results for a user who was working on the CAPS subnet, either

on campus or dialed in remotely.

b. Test Set Two

Test Set Two was conducted from sun51. The tests were done in the

same order as before: sun51 to sun52, sun51 to suns5, sun.51 to suns7, suns5 to

suns7, suns7 to suns5, suns5 to sun51 and suns7 to sun5 1. As explained above, each

transfer was performed 500 times. This test was designed to test "ideal" file

transfers. The only traffic on the net was that generated by the tests. All other users

had logged off.

c. Test Set Three

Test Set Three was conducted from sun5l (see Appendix F for a

notional network diagram). The tests were done in this order: sun51 to sun52, sun51

to suns5, sun5l to suns7, suns5 to suns7, suns7 to suns5, suns5 to sun5l and suns7

to sun51. As explained above, each transfer was performed 500 times. Again, the

test was conducted on the CAPS subnet to avoid bridge latency for both the

command and the response. In this case the bridge latency would be larger because

of the conversion from FDDI packets to Ethernet packets. Comparing the two sets

of results would have been more difficult because of the extra variable.

d. Test Set Four

Test Set Four was conducted from sun51. The tests were done in this

order: sun51 to sun52, sun5l to suns5, sun5l to suns7, suns5 to suns7, suns7 to

suns5, suns5 to sun51 and suns7 to sunSl. As explained above, each transfer was

performed 500 times. This test was designed to test "ideal" file transfers. The only

traffic on the net was that generated by the tests. All other users had logged off.

103

3. Timing Test Results

The general results of the timing tests are provided in the following

sections. Graphical results for each test are provided in Appendix G. These results

only give an average of the time taken for each file transfer. A more detailed analysis

of the distributions is provided in the Distribution of Message Delays section. In

order to make the results more meaningful and reduce the disparities between the

different machines, I grouped the transfers by type. Group 1 transfers were those

from servers to workstations, Group 2 transfers were those from workstations to

servers, Group 3 transfers were those from workstation to workstation and Group 4

transfers were those from server to server. Further, this type of grouping allows the

most common types of file transfers to be more easily analyzed. In the CAPS

environment, the most common data transfers are between workstations and servers.

a. Test Set One

Table 19 shows the results from performing the Ethernet file transfer

test with normal net loading. It is presented by the groups mentioned in the previous

section. As expected, the larger the file, the longer it took to complete the file

transfer. Another interesting point is that the medium file transfer did not take much

more time to complete than the small file transfer.

Table 19: AVERAGE TIME IN SECONDS FOR ETHERNET UNDER NORMAL
LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 4.57111 4.54401 4.50775 4.6884

Medium file (58080 bytes) 3.64403 3.60362 3.43904 3.64839

Small file (11 bytes) 3.50187 3.52319 3.43241 3.59244

Data transfer rates are consistent across file sizes. Table 20 shows the

same data from Table 19 converted to data transfer rate instead of raw transfer times.

104

The server to server transfers (group 4) were always the slowest, workstation to

workstation transfers (group 3) were the fastest, and workstation to server transfers

(group 2) and server to workstation transfers (group 1) were in the middle with the

slightly better performance availa3le from the workstation to server transfers.

Mible 20: DATA TRANSFER RATES IN MBPS FOR ETHERNET UNDER
NORMAL LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 2.02307 2.03513 2.05151 1.97246

Medium file (58080 bytes) 0.12751 0.12894 0.13511 0.12735

Small file (11 bytes) 2.5E-05 2.5E-05 2.6E-05 2.4E-05

b. Test Set Two

Table 21 shows the results from performing the Ethernet file transfer

test with no net loading. It is presented by the groups mentioned in the previous

section. As expected, the larger the file, the longer it took to complete the transfer.

The comments from the previous section apply equally well here.

Table 21: AVERAGE TIME IN SECONDS FOR ETHERNET UNDER NO LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 4.61714 4.60216 4.42663 4.70986

Medium file (58080 bytes) 3.63165 3.84411 3.59872 3.68031

Small file (11 bytes) 3.5717 3.52192 3.39746 3.52963

Data transfer rates are consistent across file sizes. Table 22 shows the

same data from Table 21 converted to data transfer rate instead of raw transfer times.

105

In all cases, the workstation to server transfers (group 2) were fastest and the server

to workstation transfers (group 1) were always the slowest.

Table 22: DATA TRANSFER RATES IN MBPS FOR ETHERNET UNDER NO
LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 2.0029 2.00942 2.0891 1.96347

Medium file (58080 bytes) 0.12794 0.12087 0.12911 0.12625

Small file (11 bytes) J__2.5E-05 2.5E-05 2.6E-05 2.5E-05

c. Test Set Three

Table 23 shows the results from performing the FDDI file transfer test

with normal net loading. It is presented by the groups mentioned in the previous

section. The results are not as clear cut as are those from the previous two tests. The

servers no longer posted the slowest transfer times primarily due to the

microprocessor dedicated to packetizing the FDDI data and controlling the

interface.

Table 23: AVERAGE TIME IN SECONDS FOR FDDI UNDER NORMAL LOAD

File size I Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 3.96714 4.18395 3.99961 4.0783

Medium file (58080 bytes) 3.21534 3.20085 3.23287 3.18365

Small file (11 bytes) 3.39959 3.39859 3.40128 3.3994

In this case, data transfer rates are not consistent across file sizes. The

small file transfers actually took longer to complete than the medium files. This is

probably an anomaly since there is no logical reason for the small files to take more

time than the medium files. This may be the result of daily backups which may have

106

been conducted during the tests. Table 24 shows the same data from Table 23

converted to data transfer rate instead of raw transfer times.

Table 24: DATA TRANSFER RATES IN MBPS FOR FDDI UNDER NORMAL
LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 2.33107 2.21027 2.31214 2.26753

Medium file (58080 bytes) 0.14451 0.14516 0.14372 0.14595

Small file (11 bytes) 2.6E-05 2.6E-05 2.6E-05 2.6E-05

d. Test Set Four

Table 25 shows the results from performing the FDDI file transfer test

with no net loading. It is presented by the groups mentioned in the previous section.

As with the previous test set, The server to server transfers were no longer the

slowest. The small and medium file transfers were fastest, but the large file was next

to the slowest. This is probably due to lack of buffer space on the interface card.

Table 25: AVERAGE TIME IN SECONDS FOR FDDI UNDER NO LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 4.04894 3.20263 3.18897 3.76448

Medium file (58080 bytes) 3.19917 3.40358 3.22202 3.18418

Small file (11 bytes) 3.41572 3.23914 3.39594 3.19937

Data transfer rates are not entirely consistent across file sizes. The same

anomaly exists here for the same reasons. Table 26 shows the same data from Table

25 converted to data transfer rate instead of raw transfer times.

107

Table 26: DATA TRANSFER RATE IN MBPS FOR FDDI UNDER NO LOAD

File size Group #1 Group #2 Group #3 Group #4

Large file (1155959 bytes) 2.20105 2.03086 2.29328 2.02035

Medium file (58080 bytes) 0.12832 0.12902 0.13669 0.12076

Small file (11 bytes) 24E-05 2.6E-05 2.6E-05 2.6E-05

4. Modeling Software Analysis

I used the CACI Products Company simulation software LANNET l.5TM

to model file transfers between workstations and servers. I set up two classes of

simulations: one for Ethernet and one for FDDI. The simulations were of Test #2 and

Test #4 (Ethernet and FDDI no load performance, respectively). Adding net loading

would have been fairly easy because LANNNET II.5TM supports 12 different kinds of

distributions and provides the ability to make user-defined distributions.

I attempted to include the TCP/IP overhead in the LANNET 11.5TM

simulation by adjusting the overhead associated with the file transfers. Otherwise,

standard network parameters were used for the simulations. The following two

sections provide a summary of the simulation results. The detailed simulation report

is provided in Appendix D.

a. Ethernet

A comparison of the file transfer times that I computed manually and

those computed by LANNET II.5TM are shown in Table 27. The LANNET L.5TM

times are smaller than those I calculated manually because the LANNET Hi,5TM

times do not include the TCP/IP acknowledgments for the sliding window. Neither

of these sets of times include the processing overhead (which can be added to the

108

simulation) or the file access times for the hard drives (which can also be added to

the simulation).

Table 27: COMPARISON OF FILE TRANSFER TIMES IN ILS

File size LANNET l.5"m Manual

Large (1155959 bytes) 988596.000 1028626.4

Medium (58080 bytes) 49678.301 51660.8

Small (11 bytes) 85.600 170.4

These data suggest that it is reasonable to expect data transfer times

close to those shown if the data is instantaneously available to the interface card at

the beginning of the file transfer. In other words, it is not reasonable to expect data

transfer times close to these under normal circumstances.

b. FDDI

A comparison of the file transfer times that I computed manually and

those computed by LANNET 1].5Tm are shown in Table 28. The LANNET].51"m

times do not exactly match those I calculated manually, but they are close enough to

validate my values. Neither of these sets of times include the processing overhead

(which can be added to the simulation) or the file access times for the hard drives

(which can also be added to the simulation).

Table 28: COMPARISON OF FILE TRANSFER TIMES IN IaS

File size LANNET I3.5"1 Manual

Large (1155959 bytes) 94419.234 94318.

Medium (58080 bytes) 4745.384 4764.

Small (11 bytes) 8.136 6.32

109

The question that remains is, "Why do the actual values and the

theoretical (or simulation) values differ so greatly?" Obviously, there are other

factors which I did not address with the theoretical calculations and were not

included in the LANNNET 11.5 Th simulation. I will address the missing bottlenecks

in the following section.

C. BOTTLENECK IDENTIFICATION

Not surprisingly, I found that there was a significant difference between the

theoretical file transfer time and the actual file transfer time for both Ethernet and

FDDI. Overall, there was not a one-order-of-magnitude improvement in the

performance of FDDI over Ethernet. Three areas in the computer directly affect the

difference. First, the interface hardware has a maximum throughput which may be

much slower than the network data rate. Second, the data has to be processed in one

way or another and that processing is not completed instantaneously. Third, once the

data is processed, it must be moved to some form of permanent or semi-permanent

storage.

1. Interface Hardware

The actual hardware interface operates at 125 MHz (for FDDI). All of the

hardware that converts the incoming serial stream to a parallel stream for the

microprocessor operates at that speed as well. Once the data gets into the buffers,

the controlling factor becomes the microprocessor. In order to keep up with the

incoming bit stream, the microprocessor would have to use a 100 MHz clock (which

is generally not available for production equipment) if it could only read data one

byte at a time. Data bytes get shifted into the buffers at a 12.5 MHz rate (100 Mbps

+ 8bits/byte). The interface would be easy if the microprocessor could read the

buffers in one clock cycle, but it cannot. The MC68020 that is used in the Sun FDDI/

DX interface typically takes eight clock cycles to read a byte of data from memory

110

(Ref. 16: pp. 10-2-10-31. There are certain economies of scale, though. It takes the
same amount of time to read four bytes of data from memory as it takes to read one

byte, provided that the interface is built around a 32-bit data bus. This means is that

the slowest clock rate for the microprocessor is 25 MHz.

While the majority of the decoding and shifting functions are performed by

dedicated chips, some functions require the processor. One of those functions is

forwarding the data to the main processor. Moving the data from the buffer to main

memory takes at least 16 clock cycles [Ref. 16: p. 10-2] once the microprocessor has

seized control of the VME bus.

The preceding paragraphs have only discussed memory reads and writes

and not the other functions that the interface microprocessor must also perform. It

must also generate and respond to interrupts for or from IP. One instance is when the

incoming file is larger than the 256 kilobyte buffer and the buffer overflows.

In the macro sense, interrupt handling takes much longer than simple

memory reads and writes. It is easy to see that the interface is one source that may

reduce the data transfer rate.

In my estimation, the overall delay effect of the interface card is minimal

because in most common networking environments, the size of the data to be

transferred is smaller than the buffer size. Also, processor features on the MC68020

like prefetching make it more efficient. A 25 MHz clock rate would probably be

sufficient to keep up with the incoming data stream. The most likely place for a

bottleneck would be the communications between the interface card and the main

processor. The amount of time it takes to seize the main bus to accomplish the

transfer depends on the interrupt level. Overall, the delay should not exceed 0.75

gsec if we assume that at most it would take 30 clock cycles to complete the current

processor instruction and respond to the interrupt. The only time that it would take

111

longer to seize the bus is when the processor is currently handling a higher level

interrupt.

2. Protocol Stacks

Once the data is in main memory, the main processor calls IP and IP strips

the header and calls TCP. TCP then strips its own header and passes the data to the

appropriate process. The way that this is actually accomplished is that the main

processor updates the pointer to the beginning of the data segment by adding the

offset in the HLEN field. It also calculates the end of the IP datagram by adding the

value in the TOTAL LENGTH field to the original pointer. TCP strips the header

from its datagram by updating the beginning pointer. It then passes a pointer and

length or two pointers to the appropriate destination process. In addition to the

pointzr manipulation, TCP and IP must also take care of other tasks like comparing

header checksums and sending ACKs.

TCP must also decide where to put the information for the appropriate

process based on the incoming traffic. In some cases the information is in a lookup

table and in others, it must compute offsets based on internal constants and the

destination port value in the header. All of this takes place under software control,

which is subject to suspension because of higher priority tasks, i.e. UNIX pager and

swapper.

As shown in the previous section, the workstation to workstation file

transfers are fastest while server to server transfers are slowest, and the other

transfers were in between the two extremes. The reason transfers involving the

servers take longer is that the servers do not process the data as quickly as the

workstations. The primary reason is that the multiprocessing software on the servers

adds additional overhead. While conducting the tests to verify that I could read the

system clock to a 1 gsec resolution, I noticed that the loop consisting of checking a

112

counter, updating the counter, making a subroutine call, returning from the

subroutine call and storing the results of the subroutine call in an array took about

27.5 pgsec on a workstation. The same process on the servers took about 33.3 pec,

which represents a performance penalty of about 21%.

The TCP, iP and network elapsed time can be described graphically as

shown in Figure 5.1 [Ref. 39: p. 45]. T represents the total time involved in the data

transfer and the t's represent the time taken to complete a function in the protocol

stack. The tr value represents the TCP portion of the protocol stack, the t1 value

represents the IP portion of the protocol stack, the t,. value represents the physical

transfer protocol in use (Ethernet or FDDI, in our case) and tc value represents the

time in the channel. If all other values remain the same, decreasing tc by a factor of

10 would change T by some fractional amount. The amount of the change depends

upon the processing time and other overhead associated with the transfers.

tT t, tp tc tp t - tT

T

Figure 5.1 Protocol stack

113

If we assume that the tc values from Table 27 and Table 28 are correct, we

can compute the time taken by the stack and the storage systems. The transfer times

also include the time taken to establish the connection and close it again.

Establishing the connection requires a three way handshake [Ref. 3: pp. 194-1951

which translates to a minimum size frame in each direction before starting the data

transfer. The third part of the handshake can be piggybacked on the first data frame.

Closing the connection uses a modified three way handshake [Ref. 3: pp. 196-1971

but it imposes no additional penalty because the close instruction can be

piggybacked on the last data frame and the response can be piggybacked on the ACK

for the last frame.

We can subtract the tc values from the total time taken and then use a

minimum mean square error formula and linear regression to determine how much

time is associated with the processing the bit stream (variable) and how much is

taken up by overhead (fixed). The fixed and variable values are shown in Table 29.

Table 29: FIXED AND VARIABLE TIMES (IN SECONDS) FOR ETHERiNET AND
FDDI TRANSFERS

Ethernet FDDI

Variable 1. 1626E-08 7.6474E-07

Fixed 3.57530133 3.68333285

The variable times represent seconds per byte. Since the actual data transfer

time was subtracted out, these values include time taken to establish the connection,

read the data, encapsulate in three layers of protocols and restore the data at the other

end. A large part of the fixed time is probably related to building the connection

because it involves manipulating connection ports and updating routing tables.

Without access to the source code for the establish connection procedure and the

114

build packet procedures it is difficult to determine how much is involved in each
one.

Based on hardware considerations with respect to the interface card and the

observations I made with respect to hard drive access, I believe that the greatest

percentage of overhead is associated with building the TCP/IP connection and

processing the data through the protocol stacks.

3. Storage

The storage subsystem is one of the slowest components in a computer

system. At the fast end of the spectrum are the IPI and SCSI drives, next come tape

backup units, then erasable optical systems and finally CD-ROM and floppy drives.

The main reason that storage subsystems are so slow is because they are primarily

mechanical devices.

In the tests that I performed, data had to be read from one disk and written

to another. Even though the data transfer rate from the controller to the hard drive is

between 3.5 and 4.2 Mbps, actual data transfers must also account for seek and settle

times for the read/write heads. These times are in the millisecond range, typically

between 9.5 and 15 milliseconds. This adds substantial overhead to the data storage

process.

In order to try to find out how long a disk read/write cycle actually takes, I

duplicated the three files on to the same device and timed the execution using the

same calls that I used for the file transfers, The results were quite surprising and are

shown in Table 30. Notice that the time to duplicate the large file took longer than

the time required to transfer that file to a remote storage device.

Table 30: DUPLICATE FILE TIMES

File size Elapsed time (s)

Large (1155959 bytes) 11.052

115

Table 30: DUPLICATE FILE TIMES (Continued)

File size Elapsed time (s)

Medium (58080 bytes) 0.5144

Small (11 bytes) 0.1679

I felt that the times from this test were unreliable and not representative of

the tests I was conducting. A more reasonable method may be to use the

synchronous data transfer rates provided by the UNIX dmeog command. After

reviewing the raw data, I noticed that the first file transfer took longer than those

following it. I believe that this is due to caching which would allow the system to

use the cache instead of reading the data from the hard drive again. Continuing with

that assumption, the read time for the file transfer get averaged over 500 iterations

and accounts for an insignificant amount of the values presented here.

If a user was sending different large files to remote stations, the effect

would be noticeable, but sending the same file to several locations would pose no

additional overhead. Storage access and transfer rates do not apply when the data

being transferred is RAM resident.

D. ERROR RATE

With FDDI, we can expect a bit error rate of less than 2.5 x 10"10 because of the

analysis in section A. If we experienced large numbers of errors, the most probable

causes would be in the optical fibers themselves or in the optical transceivers. The

functionality built into the concentrator and the SMT services from FDDI would

allow us to quickly isolate the station or link causing the problem and correct it.

With Ethernet, the situation is quite different. In the normal configuration,

Ethernet cabling is susceptible to RF interference. Coaxial cable is less affected by

RF energy than UTP, but it does not provide the same expectation of signal clarity

that optical fibers do. Bit error probabilities in the range of 1 x 10-1 would be

116

reasonable and single errors or short error bursts will be corrected, or at least

detected, by the CRC. Isolating the station causing the problem is much more

involved because Ethernet does not support the network management capabilities

that FDDI does. Further, the medium is broadcast, rather than a composite of point-

to-point links.

If the Physical Layer entity can not correct the corrupted data streams, the upper

layers will take care of it. In our case, TCP would send a NAK for the appropriate

frame and it would be resent.

E. DISTRIBUTION OF MESSAGE DELAYS

In theory, the distribution of message delays is a continuous random process. In

our application, the distribution is discrete because the system clock is only accurate

to one microsecond. When viewed over a two to five second window, the

distribution appears nearly continuous. The message delivery distribution for

Ethernet takes the general form of a Rayleigh probability density function. The

Rayleigh function is asymmetrical and has the largest probability density on the left

side and continues to infinity on the right. Even though the Ethernet file transfers are

modal in nature, the envelope of the distribution plot is still a Rayleigh function. The

mathematical expression for a Rayleigh function is:

ro 0 -r) /(2 C2)
f= h- .e

2

where cy is the variance and h is a height adjustment multiplier. The function is

only defined for r0 > 0. The plot of a Rayleigh function for a = I and h = I is shown

in Figure 5.2. This is appropriate for Ethernet because, as I mentioned earlier, the

117

majority of the transfers take place relatively fast, but there is a finite possibility that

a transfer will take an infinite amount of time.

0.6

0.5

0.1

0.3

0.2

0.1

1 2 3 i 5

Figure 5.2 Rayleigh distribution function

To calculate the probability density functions, I took the samples that I had

collected and performed some basic statistical analyses (mean, standard deviation).

I then grouped the data into four categories based on the type cf file transfer that I

attempted. The four groups were: server to workstation, workstation to server,

workstation to workstation and server to server. I did this to get a larger sample and

reduce the effects of a particular machine.

From there, I generated a histogram and plotted it. A sample of the actual data

is provided in Figure 5.3. A complete set of the histogram plots is shown in

Appendix G. After I generated the plot, I used Mathematica to graph the ideal

function with the same parameters. Figure 5.4 shows a sample generated to match

Test #1 (normal network load), Group #1 (servers to workstations).

118

14

12

10
8

6

4

2

0
cc 7- T- N CM Cf CV) q ~ in i

I'- rý OR 0 CM C. c ' t 0 in
CV CM Ný Cý C ý Cn Cý Cý C'7

Figure 5.3 Actual data
Plots are not provided for the Rayleigh functions because they look the same

with the exception of the height and spread. I have summarized the results of the

plots in Table 30.

I did not use Rayleigh distributions to model the FDDI delay distributions

because they are not stochastic processes. Their histogram plots are also provided in

Appendix G. One major item to notice is that the FDDI plots are modal in nature.

There are two or more definite spikes which represent the effect of TRT and THT.

Figure G.36 and Figure G.47 show this feature best.

119

12

10

2

0.5 1 1.5 2

Figure 5.4 Model for actual data in Figure 5.2

Table 31: VALUES OF a AND h FOR RAYLEIGH DISTRIBUTION

__ h

Test #1 Trial #1 Grobp #1 0.15 8.1

Group #2 0.24 12

Group #3 0.19 8.2

Group #4 0.55 30

Trial #2 Group #1 0.12 8.2

Group #2 0.12 15

Group #3 0.02 0.05

Group #4 0.19 8.2

Trial #3 Group #1 0.8 40

Test #1 Trial #3 Group #2 0.19 14

Group #3 0.63 25

Group #4 0.19 15

120

Table 31: VALUES OF a AND h FOR RAYLEIGH DISTRIBUTION (Continued)

a h

Test #2 Trial #1 Group #1 0.68 20

Group #2 0.65 15.8

Group #3 0.15 4.5

Group #4 0.47 11.1

Trial #2 Group #1 0.39 20

Group #2 0.36 21.6

Group #3 0.19 6.4

Group #4 0.23 7.8

Trial #3 Group #1 0.38 15.5

Group #2 0.23 10.2

Group #3 0.20 6.4

Group #4 0.22 13

121

VI. CONCLUSIONS

The results that I recorded were much different than what I expected. Even

though I knew that the different types of processing would take some time, I did not

have a feel for how much time they actually took. The next three sections provide a

summary of the results that I expected, the results that I observed and a comparison

of the two. The final section discusses topics for further study.

A. EXPECTED RESULTS

When I first started this thesis, I expected the FDDI net to have significantly

faster data transfer rates than the Ethernet. Although I did not expect to see data

transfer rates that were ten times faster, I did expect to see data transfer rates that

were three to five times faster. The reason I felt that this was appropriate was

because, theoretically, FDDI is approximately 20 times faster than Ethernet as far as

raw data transfer speed. Remember that Ethernet has a maximum data transfer rate

on the medium of approximately 5.2 Mbps. FDDI, on the other hand, does transfer

data at 100 Mbps because there is no time lost to collision processing.

The big problem with the preceding discussion is that it does not take into

account other factors such as net loading and the number of datagrams actually

queued and ready for transmission. Maximum network utilization occurs when

every station has traffic to send when it senses a clear channel or when it receives

the token. My tests, on the other hand, were more of a quiescent state test rather than

a steady state test.

I also expected the transfers between the servers to be much faster than transfers

between any of the other stations-at least for the Ethernet tests. I felt that the

122

multiprocessors could improve performance because one processor could perform

the kernel operations while the other handled network communications.

B. ACTUAL RESULTS

As I mentioned above, the actual test results were not quite what I had expected.

From the data I collected, there are several conclusions that I can reliably draw.

First, file transfers between the servers is the slowest on Ethernet and there may

be more than one cause. One possible cause is the use of shared memory resources

between the processors which could cause delays while waiting for the other

processor to complete a memory access cycle. A related cause may be that the

multiprocessing operating system is not as efficient as the single processor operating

system.

Second, there was a modest performance improvement (approximately 12%) on

FDDI over Ethernet on the normal load tests. Table 32 '-hows the composite

improvement results for the normal load tests. I believe this to be as a result of the

processing overhead associated with forming the TCP/IP and Ethernet or FDDI

packets. H. AlKhatib prcvides an in depth review of high speed protocol overhead

in his lecture notes from the High Performance Local Area Networks tutorial at

Compcon Spring '92 [Ref. 39: p. 45].

Table 32: FDDI IMPROVEMENT OVER ETHEIRNET (NORMAL LOAD)

File size Percentage

Improvement

Large file (1155959 bytes) 12.898

Medium file (58080 bytes) 12.486

Small file (11 bytes) 3.6602

Table 33 shows the composite improvement results for the no load tests. The

improvement is greater here than for the normal load tests because of the dyn.mic

123

bandwidth allocation scheme associated with FDDI. Notice that the small file did

not show much improvement. This is due to the higher percentage of overhead

associated with this transfer. If our normal Ethernet loading was greater than G=I

(see Figure 2.3), i e. our network was operating in the saturation region, our normal

load improvements would have been similar to those found during the no load tests.

FDDI provides the best relative improvement when it replaces an Ethernet network

which is routinely saturated and users experience long delays in delivering packets.

Recall that throughput on Ethernet can be driven to zero if the offered load (G) gets

too high.

Table 33: FDDI IMPROVEMENT OVER ETHERNET (NO LOAD)

File size Percentage
Improvement

Large file (1155959 bytes) 29.215

Medium file (58080 bytes) 13.682

Small file (11 bytes) 6.7548

When CAPS is being used to develop prototype systems, users can expect at

least 12 percent network performance improvement. If several users are actively

involved in prototyping work, that improvement will be significantly higher.

C. COMPARISON

As discussed in Chapter V, Section C, the reason that the theoretical and actual

times were very different is because of the processing overhead that is not included

in any of the models. The TRT that I assumed to do the calculations was not

necessarily the same as what the actual FDDI network uses. The other major

unknown is the effect of the concentrator on the network performance. That was not

included in any of the models, either. Theoretically, the concentrator should not

124

impose any latency penalties on the network. In reality, it may impose a delay to

check for certain network operations, but the delay should be small.

In order to accurately model the true behavior of either Ethernet or FDDI, we

would also have to include all the processor tasks. As long as the environment is

very tightly specified, it would be possible to calculate the number of machine

cycles associated with each process and when processes would be interrupted to

perform other tasks for the operating system.

D. TOPICS FOR FURTHER STUDY

Several topics for further study are related to improving the performance of the

software portion of the protocol stacks in one way or another.

For FDDI, one option is currently under study: XTP. Another lightweight

protocol under development is T'P which uses a different fiber ring architecture to

provide data transfer rates in the Gigabit per second range [Ref. 23: pp. 247-254].

In order to evaluate performance improvements, these protocols would have to be

implemented and then integrated with the hardware that is available on CAPSnet. In

both cases, these protocols are not compatible with TCP/IP. That would need to be

addressed in any study or implementation that was proposed.

Another option would be to investigate ways to improve the TCP/IP suite by

decreasing the overhead. One possible implementation would be to use compressed

headers the way that CSLIP (Compressed Serial Line Interface Protocol) does for a

serial communication interface.

Another possible study area would be performance improvements related to

putting the protocol stack in hardware and dedicating an independent (simple but

fast) processor to that task. Further, if one processor was dedicated to TCP (or UDP)

and another to IP, the only time that they would not run in parallel would be during

the first and last datagram processed. Dedicated 1/0 processors is not a new idea (the

125

Coast Guard standard workstation used communication input output processors

(COMMIOPs) in the early 1980's to improve network performance) and is gaining

popularity in consumer grade computers (Apple uses dedicated I/O processors for

serial and Ethernet connections in their Quadra line of personal computers).

Finally, an area related to all of these topics would be a way to find out how long

each step of the process really takes. Being able to timestamp the major steps would

require changing the source code for the UNIX kernel and then recompiling and

linking. One major drawback with this approach is that the call to the

gettimeof day () routine would have to be as unobtrusive as possible so that it

would not adversely affect the performance of the stacks. Unfortunately a

subroutine call takes much longer than simple memory reads and writes or

assignments.

As software engineers provide more powerful applications and users demand

higher performance, the demand for improved network performance will continue

to accelerate for the foreseeable future.

126

APPENDIX A

#include <stdio.h>
#include <sysltime.h>

main()

long iteration-arrayflOO0i;
int index, a;
struct timeval timeslice;
struct timezone timechunk;

for(index = 0; index < 1000; index +=I

a = gettimeofday(×lice,tirneChufk);
iteration_array~index] = timeslice.tv-usec;

for(index = 0; index < 1000; index +=1

printf ("%d\n", iteration_array~index)D;

exit~u),

127

APPENDIX B

#include <stdio.h•
#include <sys/time.h>

main()
(

long elapsedsec; /* Seconds variable "l
long elapsed...usec; /* Microseconds variable */

float total-time;
float partusec;
int loop-counter;
int a,b; /* Subroutine result vars*/

/* Variable structure defns */

struct timeval timestart, timedone;
struct timezone zonestart, zonedone;

/* Set up outer loop to execute transfers 50 */
/* times. */

for(loop-counter=l; loop-counter<=500; loopcounter += 1)

/* Get start time in sec&usec and check if*/
/*successful*/

a = gettimeofday(×tart,zonestart);
if (a != 0)

printf ("Oops! %d\n", a);

/*Use system call to do file transfer*/

system("rcp sun52:/tmp/bob.hqx sun53:/tmp/hammar");

/* Get stop time in sec&usec and check if*/
/*successful*/

b = gettimeofday(&timedonezonedone);
if (a != 0);

printf ('Oops! %d\n", b);

128

/* Get structure values for calculations.*/

elapsed-sec = timedone.tv_sec - timestart.tvsec;
elapsed_usec = timedone.tvusec - timestart.tv usec;

/* Make sure that we account for the usec*/
/*variable rolling over (through zero)'/

if (elapsedsec >= 1
(

if (elapsedusec < 0)
(
elapsedsec -= 1;
elapsedusec += 1000000;
I

/* Convert the usec variable to a floating*/
/* point number. */

part_usec = el2apsed_usec/l.0e6;

/* Add the seconds to the microseconds to
/* get a real number. */

totaltime = elapsed_sec + partusec;

/* And print the results on the CRT*/

printf ("The time was %f\n",total-time);

} /* This is the end of the control loop. */

exit(0);

129

APPENDIX C

Decimal Code Group Symbol Assignment

Line State Symbols
00 00000 Q QUIET
31 11111 1 IDLE
04 00100 H HALT

Starting Delimiter
24 11000 J 1st of sequential SD pair
17 10001 K 2nd of sequential SD pair

Data Symbols
Hex Binary

30 11110 0 0 0000
09 01001 1 1 0001
20 10100 2 2 0010
21 10101 3 3 0011
10 01010 4 4 0100
I1 01011 5 5 0101
14 01110 6 6 0110
15 01111 7 7 0111
18 10010 8 8 1000
19 10011 9 9 1001
22 10110 A A 1010
23 10111 B B 1011
26 11010 C C 1100
27 11011 D D 1101
28 11100 TE 1110
29 11101 F F 1111

Ending Delimiter
13 01101 T Used to terminate the data stream

Control indicators
07 00111 R Denoting Logical ZERO (Reset)
25 11001 S Denoting Logical ONE (Set)

Invalid Code Assignments
01 00001 VorH These code patters shall not be
02 00010 V or H transmitted because they violate
03 00011 V consecutive code-bit zeros or duty
05 00101 V cycle requirements. Codes 01, 02, 08
06 00110 V and 16 shall however be interpreted
08 01000 V or H as Halt when received.
12 01100 V
16 10000 VorH

130

APPENDIX D

Large Ethernet LAN simulation report.

CACI LANNET 11.5 RELEASE 3.00 08/25/1992 12:04:44

Ethernet LAN with two servers and five workstations

COLLISION LAN UTILIZATION STATISTICS

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

LAN NAME ETHERNET

COLLISION EPISODES 0

COLLIDED TRANSFERS 0
AVG TO RESOLVE 0.
MAX. TO RESOLVE 0

DEFERRALS 0
AVG DEFERRAL DELAY 0.
MAX DEFERRAL DELAY 0.
STD DEV DEFERRAL DELAY 0.

AVG DEFERRAL QUEU'E 0.
MAX QUEUE SIZE 0.
STD DEV QUEUE SIZE 0.

MULTIPLE COLLIS:ONS 0
AVG MULT COLLISIONS 0.
MAX MJLT COLLISIONS 0

SUCCESSFUL TRANSFERS 1
AVG USAGE TIME 988596.000
MAX USAGE TIME 988596.000
STD DEV USAGE TIME 0.

PER CENT OF TIME BUSY 49.430

131

COMPLETED ACTIVITY STATISTICS

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

ACTIVITY NAME RECEIVE SEND A FILE

HOST STATION SUNS5 SUN51

COMPLETED EXECUTIONS 1 1

AVG EXECUTION TIME 2948.883 991544,883

MAX EXECUTION TIME 2948.883 991544.883

MIN EXECUTION TIME 2948.883 991544.883
STD DEV EXECUJTION TIME 0. 0.

STATION UTILIZATION STATISTICS

FROM 0. TO 2. SECONDS

(ALL TIMES REP"ORTED IN MICROSECONDS)

STATION NAME SUNS5 SUNS7 SUN51

LAN REQUESTS GRAXTED 0 0 1

AVERAGE WA:T TIME 0. 0. 0.

MAX:IMK. WA:T T:ME 0. 0. 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 1 0 1

AVERAGE BITS USED 10169444.312 0. 9712400-000

MAXIMUM BITS USED 10621483. 0. 9712400.

STD DEV BITS USED 454534.609 0. 0.

STATION UTILIZATION .147 0. 49.5771

STATION NAME SUN52 SUN53 SUN54

LAN REQUESTS GRANTED 0 0 0

AVERAGE WAIT TIME 0. 0. 0.

MAXIMUM WAIT TIME 0. 0. 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 0 0

AVERAGE BITS USED 0. 0. 0.

MAXIMUM BITS USED 0. 0. 0.

STD DEV BITS USED 0. 0. 0.

STATION UTILIZATION 0. 0. 0.

132

RECEIVED MESSAGE REPORT

FROM 0. TO 2. SECONDS

RECEIVER COUN7- MESSAGE NAME

SUNS5
1 LARGE

MESSAGE DELIVERY REPORT

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

MESSAGE NAME LARGE

SOUR:E STATION SUNS.

DESTINATICN STAT'IN SUNS5

Nrl.B•r SENE 1
AVG :ELT'-ERY T:M'E 986596.000
MAX DEL:'EY T:!C 98859E.cc
MINDELIVERY T:M! 988596.030
STD DEV DELIVE7RY TIME-- 0.

133

Medium Ethemet LAN report

CACI LANNET 11.5 RELEASE 3.00 08/25/1992 12:08:18

Ethernet LAN with two servers and five workstations

COLLISION LAN UTILIZATION STATISTICS

FROM 0. TO .5 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

LAN NAME ETHERNET

COLLISION EPISODES 0

COLLI•E TRk•SFE.:S 0
AVG 70 RESCLVE 0.
MAX TO RESOLVE c

DEFERRALS 0
AVG DEFERRAL: DELAY 0.
MAX DEFERRAL DELAY 0.
ST: DEV DEFERRAL DELAY 0.

AVG DEFERRAL QUEUE 0.
M.•A QUEUE SIZE 0.
ST'U' EV QUEUE SIZE 0.

MULTIPLE COLLISIONS C
AVG MULT COLLISIONS 0.
MAX "ULT COLLISIONS 0

SUCCESSFUL TRANSFERS I
AVG USAGE TIME 49678.300
MIAX USAGE T:•ME 49676.230
STD DEV USAGE TIME 0.

PER CEN• OF TIME BUSY 9.936

134

COMPLETED ACTIVITY STATISTICS

FROM 0. TO .5 SECONDS5

(ALL. TIME~S REPORTED IN MICROSECONDS)

ACTIVITY NA..2 RECEIVE SEND A F!LE

HOST STATION SUNS5 SUN51

COMPLETED EXECUTIONS11

AVG EXECUTION T:.ýEI.t 50661.261

MAX EXECUTION TMEZ 962. 1 66'.6

M:N EX.E:U7101___ 962.961 50661.261

STD DEV EXECUTIýN Tl!e 0. 0.

STATION UTILIZATION STAT:sT:CS

FROZM 0. To .5 SECONDS

(ALL TIaS RPORTED IN M:CROSEZ_:NDS)

STIAT: N NAY__ SUNSS SUlNS7 ~5

LA-N PEF'2ESTS ý 0 0

AVERAZýE WAIT. TME: 0. 0..

MXX WA:T T:KZ 0. 0. 0l.

STZ DEN WAIT TIýM 0. 0. 0

Do'SiK~~E GWANTEC 1 01

A'.tZF.A3Z B:TS USZ9_15336.197 0. 94 C

mXIKMZ. BITS UsEZ, 9?S2:76. 0. 971_42:.

STDE BS USED llOC1.817 0. 0

STATIZN TIITIN.1 0. 1-0.132

S TAT. -IN NAMIE: S U'NSI S U"N 5 SUN 54

LAN; RE-7- ESTS GFAT.0 0 0

AV'ERAGE WA:T TIE0.
0. 0.

M.A-XIMtUM WAIT, TIMEX 0. 0. 0.

STZ LEV WAIT TIM-E 0. 0. 0.

DISK REQUESTS GPANTE: 0 0 0

AVERAGE BITS USED 0. 0. 0.

m~iJ Bilrs USED 0. 0. 0.

S=- DEV B:TS USE: 0. 0. 0.

STATIC:N UTILýZATIZN U. 0. 0.

135

STA7Q-N UTILIZATION STATISTICS

FROM 0. TO .5SECION-ZS

(ALL TIM(ES REK'PTED) IN :CROSECONrDSY

STATION NAME SUtN55

LION RE-,UES7S ;R.ANTEDZ 0
AVEP.AGF WAIT TIMýE 0.
MA.XIMUM WAIT TIME 0.
STD 0EV WAIT T IME 0.

DISK REQUESTS GPLAt4EO 0

AVERA3E B:TS USED ~ 0.
~XMA~xK B:7s us-- 0.
STO DEV BITS US;ED 0.

S7A7'-N-C.

REEV:MZSSA5E- RE72:,-

FRO-M C. -C 15SENZ

RECEZVER cz;ý1r M-ESSASE NKME

MESSAZE DEL-i-ERY REPCRT

FROM 0. TO .5 SECCNDI.S

(ALL T:%ES REPZEF~- ZN HRSZD

MZS'SAGE NAMxEm_-- ,y

SOU~RCE S:A7:DNSU`

DESTINA7ION STATION NE

NUMBER SENT 1
AVG DELIVERY TIME 49678.300
MAX DELIVERY TIMýE 49E76.301
MIN DELIVERY TIME 49678-301
STD DEV DELIVERY TIM~ 0.

!16

Small Ethernet LAN report

CACI LANNIET 11.5 RELEASE 3.00 08/25/1992 12:11:13

Ethernet LAN with two servers and five workstations

COLLISION LAN TL:LIZAT:ON STATISTICS

FROM 0. TO .1 SECONDS

WAL" TIMES REPORTED IN MICROSECONDS)

LAN NAME ETHERNET

COLLISION EP:S:ZES 0

CCLLI7EZ TRANSFERS C

AVG 7: FES:LZ- c.
MAX Tc RESDlvý G

DEFER.RAIS 0

AVG zEFERRAL EAY 0.

MAX :EFER..AL BEI.Y 0.

ST: :E" IEFE.RRAL :5-AY 0.

AVG EEFE.R.AL ?EE 0.

X.kX 1EUE SIZE C.

STD :7: QUEUE SIZE 0.

MyT2TPLE CcLLISZNS 0

AVG .UT C$LLL:S:-NS 0.

MAX M2..T cOLLISIONS 0

SUCSESSFU.L TRA•SF-RS 1

AVG USAKE TIME 8A 63C

KKXY USAGE T>ME- GE.605

STL WEE, USAGE TIME 0.

PER CEN- OF TIME BUSY .066

137

COMPLETED ACTIVITY STATISTICS

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

ACTIVITY NAME RECEIVE SEND A FILE

HOST STATION SUNS5 SUN51

COMPLETED EXECUTIONS 1 I

AVG EXECUTION TIME 982.961 1069.561

MAX EXECUTION TIME 982.961 106E.561

MIN EXECUTION TIME 982.961 1068.561

STD DEV EXECUTION TIME 0. 0.

STATION UTILIZATION STATISTICS

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

STATION NAý- SUNSE SUNS? SUNS1

LA-N REQUESTS GRA TED C 0 1

AVE-.AGE WAIT TIME 0. 0. 0.

YMAXK'IM WAIT TIME 0. 0. 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 1 0 1

AVERA.DE EITS USED 971134:9-803 0. 971240.9OC

MA.XI•'JM B.ITS USED 9713482. 0. 971240C.

STC DEV B:TS USED 153.378 0. 0.

STATION UTILIZATION .983 0. 1.069

STATION NAME SUN52 SUN53 SUN54

LAN REQUESTS GRANTED 0 0 0

AVERAGE WAIT TIME 0. 0. 0.

MAXIMUM WAIT TIME 0. 0 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 0 0 0

AVERAGE BITS USED 0. 0. 0.

MAXIMUM BITS USED 0. 0. 0.

STD DEV BITS USED 0. 0. 0.

STATION UTILIZATION 0. 0. 0.

138

i ! | __

STATION UTILIZATION STATISTICS

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

STATION NAME SUN55

LAN REQUESTS GRANTED 0
AVERAGE WAIT TIKE 0.

MAXIMUM WAIT TIME 0.
STD DEV WAIT TIME 0.

DISK REQUESTS GRANTrED 0

AVERAGE BITS USED 0.

MAX:FM, 51TS USED 0.
STD DEV B:TS USED 0.

STAT 5:;UTI IZAU DN0.

REZEIVED MES:SAGE REPORT

FDM 0. TO .1 SEfONDS

'.' "-- _... M•E--AGE NA.E

1 SMALL

MESSAGE DEL:VERY REPORT

FPOM 0. TO .1 SECONDS

MESSAGE NAE SMALL

SCU•:"E STAI::N SUN51

DESTINA71ION STATION SUNS5

NUMBER SENT I
AVG DELIVERY TIME 85,600

MAX DELIVERY T:ME 85.600

MIN DELIVERY TIME- 85.600

STD DEV DELIVERY TIME 0.

139

Large FDDI LAN report

CACI LhNN`ET 1i.5 RELEASE 3.00 08/25/1992 11:53:04

FDDI LAN with two servers and five workstations.

TOKEN LAN UTILIZATION STATISTICS

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

LAN14 NAME FOIl

LA" PEUESTS GP.AE-
AVG RE:UEST DELAY 0.
MAX FE[,UEST DELAY 0.
STZ -EV REQ^UEST DELAY 0.

COMPLETED TRANSFERS 1
AVG USAGE T:M, 94419.232
MAX USAGE TIME 944!9.232
ST: DEV USAGE TIE 0.

AVG QUEUE SIZE 0.
MA QuEUE SIZE 4 . 0
STB DEV QUEUE SZE 0.

PER CF2N'T OF TI- BU'SY 4.721

COMFLETE: A.TIV17Y STATISTICS

FROM 0. TO 2. SECONDS

(ALL T-MES REPORTED !N M:CROSECONDS)

ACT:' VTY NAME RECE:VE SEND FILE

HCST STA7:ON SL'NS 5 SUN 51

CCMPLETED EXECUTUONS 1 1

AVG EXECUTION TIME 2942.883 97368.115
MAX EXECUTION TIME 2948.893 97368.115
MIN EXECUTION TIME 2948.863 97368.115
STD DEV EXECUTION TIME 0. 0.

140

STATION UTILIZATION STATISTICS

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS(

STATION NAME SUNS5 SUNS7 SUN51

LA.N REQUESTS GRAK'TED 0 0 1

AVERAGE WAIT TIME 0. 0. 0.

MAXIMUM WAIT TIME 0. 0. 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRATED 1 0 1

AVERASE BITS USE: 18779553.724 9712400.000 9712400-0C

MAXIMUJM BITS USED 125E365. 9712400. 9712400.

STD DEV BITS USED 2083615.954 0. 0.

STATION .U.TI:.AT.N .147 0. 4.868

STATION NA•CE SUN52 SUN53 SUN54

LAN REP•ESTS GA•N-TED 0 0 0

AV'ERAGE WAIT TIME 0. 0. 0.

MAiIM'im WAIT TIME 0. 0. 0.

STE. EV WAIT TI.E 0. 0. 0,

DISK REQUESTS GRANTED 0 0

AEr-FLAGE BITS USEz 9712400.000 9712400.000 97124C'0.000

MAY.IMUr'M BITS USED 9712400. 9712400. 9712400.

ET: BEV BITS USE: 0. 0. 0.

STAT: N ..T...ZATN 0. 0. 0.

STATION NAicE SUN55

LAN REIUESTS GFUA.:TED 0
AVERAGE WAIT TIME 0.
MAXIMUJM WAIT TIME 0.
STD DEV WAMT TIM--- 0.

DISK REQUESTS GRAN•TED 0

AVERA5E BITS USED 9712400.000
MAXIM'UM BITS USED 9712400.
STD DEV BITS USED 0.

STATION UTILIZATION 0.

141

RECEIVED MESSAGE REPORT

FROM 0. TO 2. SECONDS

RECEIVER COUNT MESSAGE NAME

SUNS5
LARGE

MESSAGE DELIVERY REPORT

FROM 0. TO 2. SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

MESSAGE NAME LARGE

SOURZE S.AT.::; SUN

DESTINATICN STATION S UNS 5

NUMBER SENT i
AVG CELIVERY TIME 94419-232
MAX DELIVERY TIME 94419.234
MIN DEL-ýIVERY TIM- 94419.234
STD DE'; DELIVERY TIM- 0.

142

Medium FDDI LAN report

CACI LANINET I1.5 RELEASE 3.00 08/25/1992 11:56:31

FDDI LAN with two servers and five workstations.

TOKEN LAN UTILIZATION STATISTICS

FROM 0. TO .5 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

LAN NAME FDOI

LAN REQUESTS GPANCE: 1
AVC REQUEST DE--AY 0.
MAX REQUEST DELAY 0.
STD DEN REQUEST DELAY 0.

COMPLETED TRANSFERS 1

AVG USAGE TIME 4745,384
MAkX USAGE TIME 4745,364
STD DEV USAGE TIME 0.

AVG QUEUE SIZE 0.

MAX QUEUE SIZE 1.0•0
STD DEV QUEUE SIZE 0.

PER CENT OF TIME BUSY .949

COMLETED ACTIVITY STATISTICS

FROM 0. 10 .5 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

ACTIVITY NAME RECEIVE SEND FILE

HOST STATION SUNSS SUN51

COMPLETED EXECUTIONS 1 1

AVG EXECUTION TIME 982.961 5728.345

MAX EXECUTION TIME 982,961 5728.345

MIN EXECUTION TIME 962.961 5728.345

* STD DEV EXECUTION TIME 0. 0.

143

STATION UTILIZATION STATISTICS

FROM 0. TO .5 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

STATION NAME SUNS5 SUNS7 SUNS1

LAN REQUESTS GRANTED 0 0 1
AVERAGE WAIT TIME 0. 0. 0.
MAXIMUM WAIT TIME 0. 0. 0.
STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 1 0 1

AVERAGE BITS USED 10185589.153 9712400.000 9712400.000
MAXMj7 BITS USED 10192027. 9712400. 9712400.
STD DEV BITS USED 55193.473 0. 0.

STATION UTILIZATION .197 0. 1.i46

STAT=:N NAME SUNN52 SUN53 STN5 4

LAIN REQUESTS GR.ANTED 0 0 0
A•E.RAE WAIT TIME 0. 0. 0.
MA.XIMUM WA:T TINE 0. 0. 0.
STD ZE'v WAIT TIME 0. 0. 0.

DISK REQUESTS GRANTED 0 0 0

A'TERAGE BITS USED 97i2400.000 9712400.000 9712400.000
AXIMLTYV BITS USED 97124C0. 9712400. 9712400.

ET7 DEV BITS USED 0. 0. 0.

STATION UTILIZATION 0. 0. 0.

STATION NAME SUN55

LAN REQUESTS GPAkNTED 0
AVERAGE WAIT TIME 0.
MAXIMUM WAIT TIME 0.
STD DEV WAIT TIME 0.

DISK REQUESTS GRANTED 0

AVERAGE BITS USED 9712400.000
MAXIMjM BITS USED 9712400.
STD D7V BITS USED 0.

STAT:ON UTILIZATION 0.

144

RECEIVED MESSAGE REPORT

FROM 0. TO .5 SECONDS

RECE:VER CO,,. MESSAGE NAME-

SUNS5
1 MEDIUM

MESSAGE DELIVERY REPORT

FROM 0. TO .5 SECONDS

(ALL TIME-S REPORTED IN MICROSECONDS)

14ESSAGE NA.E MEDIUM

- zSTA7N SUN 5 1

DE-T.--NAT)N STAT:CN SUNS-

A'G ,EL:v7RY TIME 4Z45.3•4

MIN ELI-VERY T:b 4745.364

145

Small FDDI LAN report

CACI LANNET 11.5 RELEASE 3.00 08/25/1992 11:59:36

FDDI LAN with two servers and five ý.. kstations.

TOKEN LAN UTILIZATION STATISTICS

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

LAN NA.NE FDCI

LAN P~2SSGAT
AVG RE.EUES7 DELAY 0.

MAX REQUEST DELAY 0.
STD DEV REQtEST DELAY 0.

COMPLETED TRANSFERS 1
AVG USAGE TIE--- 8.13E
MAX USAGE 7T!MZ 6,136

STD DEV USAGE TIME 0.

AVG QUEUE SIZE 0.
M.A.X Q1'EUE S:ZE !.0C10
STD DEV QUEUE SIZE 0.

PER CENT OF TIME BUSY .00O

COMPLETEI ACT:VITY STATISTICS

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

ACTIVITY NAME RECEIVE SEND FILE

HOST STATION SUNS5 SUN51

COMPLETED EXECUTIONS 1 1

AVG EXECUTION TIME 982.961 991.097

MAX EXECUTION TIME 982. 961 991.097
MIN EXECUTION TIME 982.961 991.097
STD DEV EXECUTION TIME 0. 0.

146

STATION UTILIZATION STATISTICS

FROM 0. TO .1 SECONDS

(A!.L TIMES REPORTED IN MICROSECONDS)

STATION NAkME SUNS5 SUNS7 SUNS1

LAN REQUESTS GKAN7ED 0 0 1

AVERAGE WAIT TIME 0. 0. 0.

MA.XIMUJM WAIT TIME 0. 0. 0.

STD DEV WAIT TIME 0. 0.

DISK REQUESTS GRANTED 1 0 1

AVERAGE BITS USED 9712566.509 9712400.000 9712400.000

MAXIMJM BITS USED 9713590. 9712400. 9712400.

STD DEV BITS USED 165.538 0. 0.

STATION UT:I:ZAT:ON .9e3 0. .991

STATION NA-M sUN52 SUN53 sUN54

LAN RE2UE.STS Gf.A,--7ED 0 0 0

AVERAGE WAIT TIME 0. 0. 0.

M-X:KIJMU WAIT TIME-- 0. 0. 0.

STD DEV WAIT TIME 0. 0. 0.

DISK REQUESTS GkA'ED 0 0

A'JEF.AGE BITS USED 971240C.C00 9712400.000 97124C0.000
M.A:IMUM SITS USED 9712400. 9712400. 9712400.

STD 0DE' BITS USED 0. 0. 0.

STATION UTILIZAT:ON 0. 0. 0.

STAT CN; ;AE sUN,5'

LAN RE.QUESTS GORAITED 0
AVERAGE WAIT TIM- 0.
MAXIMUM WAIT TIME 0.

STr DEV WAIT TIME 0.

DISK REQUESTS GRANTED 0

AVERAGE BITS USED 9712400.000
MAXIMUM BITS USED 9712400.
STD DEV BITS USED 0.

STATION UTILIZATION 0.

147

RECEIVED MESSAGE REPORT

FROM 0. TO .1 SECOhDS

RECEIVER COUNT MESSAGE NAME

SUNS5
1 SMALL

MESSAGE DELIVERY REPORT

FROM 0. TO .1 SECONDS

(ALL TIMES REPORTED IN MICROSECONDS)

MESSAGE NAME SMALL

SCURCE STAT:GN SUN51

DESTINATION STATION SUNS5

N7-16ME R SENT I
AVG DELI"VERY TIME 8.136
MAX DELI•VERY TIME 8.136
MIN DELIVERY T:ME 8.136
STD DEV DELIVERY TIME 0.

148

APPENDIX E

CS Ethernet backbone

suns5 suns7

sun5l IIsun52 IIsun53 I sun54_ I sun55

CAPSnet

CAPSnet before the changes. Orignially, CAPSnet was an Ethernet subnet.

149

APPENDIX F

CS Ethernet backbone

suns5 suns7

LANplex 5012

su sun52 sun54 n55

CAPSnet will have the topology shown above after FDDI is fully installed. Each single line
represents a duplex fiber.

150

APPENDIX G

160

140

120

I100
80

9 60

40

20
0

Time(s)

Figure G.1 Test #1, Group #1, large file on Ethernet

300

250

200

150

100

50

0

4 1? Cý 7, Ci 1": 7 - =; -

Time (s)

Figure G.2 Test #1, Group #2, large fide on Ethernet

151

160
140

120-
100

350-

20

Fiur G.4 Tes #1 Gru 't4, nlarge f 'i on Etherne

3550

250

200

150

100

50

0
CD 03 C t O I. CL U; 1; 0; 1ý (L' C

Time (s)

Figure G.5 Test #1, Group #1, medium fide on Ethernet

350

300

250

S200

S150

100.-

50-

0

Time (s)

Figure G.6 Test #1, Group #2, medium rde on Ethernet

153

300

250

S200

150

100

50

0.
0 * 10 1 44 1 1 10 N 10 1 'aIt

0 LO 0 IV" 0V 1 • c m) 0

cm 0cot c IV

Time (s)

Figure G.7 Test #1, Group #3, medium fie on Ethernet

250

200

S150

100

50

10 (0-il I 1 1 10 (0 1 +. 10 10

M w v' 'U 0 (0 C- 10c

Time (s)

Figure G.8 Test #1, Group #4, medium rde on Ethernet

154

500
450
400I350-
300
250

200-
150
100

S50A

Time (s)

Figure G.9 Test #1, Group #1, small file on Ethernet

500
450
400

S350
300
250

S200
150
100

50
0

Time (s)

Figure G.10 Test #1, Group #2, small file on Ethernet

155

450
400
350
300
250
200
150

ISO100

Time (s)

Figure G3.11 Test #1, Group #3, small file on Ethernet

700

600

S500

'400
S200

100

0

0 .- . i - '
Inl W IM M C P - V-L m0 r 0 t

0CO C .t- n 0 0 a 0 N cmfz i

Time (s)

Figure G.12 Test #1, Group #4, small file on Ethernet

156

400

350

300

250

200

150

100

50
0

Time (s)

Figure G.13 Test #2, Group #1, large file on Ethernet

160

140

120

100

80
60

40

20
0~

4 ,V Uif Uý Ui L6 V U;

Time (s)

Figure G.14 Test #2, Group #2, large Mfie on Ethernet

157

300

250

200

150

100

50

0 -H - l ti i it - ii i

Time (s)

Figure G.15 Test #2, Group #3, large file on Ethernet

400

350

300

S250
S200

150

100

50

0.

W CO a , C*

Time (s)

Figure G.16 Test #2, Group #4, large file on Ethernet

158

300

250

S200

S150

100

50

0
C•0 = (=°C~O~~0f o,-. .- CJU

Time (s)

Figure G.17 Test #2, Group #1, medium file on Ethernet

400-
350

300

250

S200
S150

100
50

0~~~ ll C:,-;;' ;' ! ,Ci '

Time (s)

Figure G.18 Test #2, Group #2, medium file on Ethernet

159

500
450
400
350
300
250

S200
150
100

50
0~

CO) 03 0q 03 0n M 03 co 0) 0) 0) V) CF) V)03

Time (s)

Figure G.19 Test #2, Group #3, medium fde on Ethernet

350

300

250

200

150
100

50

0*

Time (s)

Figure G.20 Test #2, Group #4, medium ride on Ethernet

160

500
450

400
S350-

30O-

250
200
10 • •500

150

Time (s)

Figure G.21 Test #2, Group #1, small file on Ethernet

450
400
350

S300

200
150
100

50

0

Time (s)

Figure G.22 Test #2, Group #2, small file on Ethernet

161

500
450
400

300--
250 -

200 !
150
100.-

v0

Time (s)

Figure G.23 Test #2, Group #3, small file on Ethernet

400--

350--

300-

250

200-

150 °
100 T

50-

Time (s)

Figure G.24 Test #2, Group #4, small file on Ethernet

162

400

350

300

250

200

150

100

50
0 . . i i i

a cv) 0') r. 0) r-3 M n P "-M L ,- 0)

Time (s)

Figure G.25 Test #3, Group #1, large file on FDDI

250

200

S150

100

50

"0 M. . .V VOV: . . . ;; ;: ; ; V I1 ;O O

Time (s)

Figure G.26 Test #3, Group #2, large file on FDDI

163

250

20050

150 -

100

so

0 i L ! 0 "- i C C, i i. , 4.

Time (s)

Figure G.27 Test #3, Group #3, large file on FDDI

140

120

100

80

60

40

20

0
N~~~ 0Y 0 O- CY oD a a)0w 0 I- I-

Time (s)

Figure G.28 Test #3, Group #4, large file on FDDI

164

350

300

S250

"200

J150
100

50
0

Time (s)

Figure G.29 Test #3, Group #1, medium file on FDDI

160

140

• 120

100

80

~60
40

20

0-

*0 'f '- •D N 3 • 03 1- 03 N3 N

Time (s)

Figure G.39 Test #3, Group #2, medium file on FDDI

165

180.•

160--
140

120
100

60
40
20

0 i i i I U l i f 1 f

Time (s)

Figure G.31 Test #3, Group #3, medium ride on FDDI

140

120

100

S80o

60-

40

20

0
CO U)3 C' OD 9)' N4 €0 U,) -P w WV

Time (s)

Figure G.32 Test #3, Group #4, medium rile on FDDI

166

500

450
400

S350
300
250
200
150
100

50

Time (s)

Figure G.33 Test #3, Group #1, small file on FDDI

500
450
400
350
300.
250

S200
150
100

50

Time (s)

"Figure G.34 Test #3, Group #2, small file on FDDI

167

450

400
350

I 300
250
200
150
100
50

Time (s)

Figure G35 Test #3, Group #3, small file on FDDI

450
400
350S300

2 250
S200-

150
100

50
0

0 - 4 -4 d"0 q

N C~) CY CO cv) CvDCR 0 CY c) W' • O

Time (s)

Figure G.36 Test #3, Group #4, small fide on FDDI

168

300•

250

S200

S150

100

50

Time (s)

Figure G.37 Test #4, Group #1, large file on FDDI

350

300

S250

200

150

0 100

50

0

Time (s)

Figure G.38 Test #4, Group #2, large file on FDDI

169

160

140

120

100

80

360
40

20

0
C; 'C IW 0 4• CO 0 ' CM 04 'f C O ' rCY V 00

Time (s)

Figure G.39 Test #4, Group #3, large file on FDDI

250

200

150

S100 ,

50

0 1

Time (s)

Figure G.40 Test #4, Group #4, large file on FDDI

170

350

300

I 250

200,

150

100

Time (s)

Figure G.41 Test #4, Group #1, medium r'de on FDDI

250

200

S100

50

Time (s)

Figure G.42 Test #4, Group #2, medium file on FDDI

171

0 -- H l 1m i , ' l0 O

250

200

150

0

Time (s)

Figure G.43 Test #3, Group #3, medium file on FDDI

600

500

= 400

S300

S200 -

100

0.
1Ln•U In O LD S I.O , In In O Ui w U) V Sn

Time(s)

Figure G.44 Test #4, Group #4, medium Me on FDDI

172

700

600
S500

400

300

200

100
0

Time (s)

Figure G.45 Test #4, Group #1, small file on FDDI

400
350

300

• 250
200

100
50

Time (s)

Figure G.46 Test #4, Group #2, small file on FDDI

173

200
180
160.

S140-
S120.

100-

60-
40-
20-

Time (s)

Figure G.47 Test #4, Group #3, small tile on FDDI

500
450
400
350-
300 -

S250
S200

150
100

50
0.

Time (s)

Figure G.48 Test #4, Group #4, small file on FDDI

174

LIST OF REFERENCES

[1] Clements, Alan, Microprocessor System Design, PWS-Kent, Boston,
MA,1987.

[2] Tanenbaum, Andrew S., Computer Networks, Prentice-Hall,
Englewood Cliffs, NJ,1989.

[3] Comer, Douglas E., Internetworking With TCP/IP Vol 1: Principles,
Protocols, and Architecture, Prentice-Hall, Englewood Cliffs,
NJ,1991.

[4] Stallings, William, Data and Computer Communications, Macmillan
Publishing Company, New York, NY,1988.

[51 Draft FDDI-Single Mode Fiber, Physical Layer Medium Dependent
(SMF-PMD), X3.184-199x, American National Standards Institute,
New York, NY, 30 July 1990.

[61 Fiber Distributed Data Interface (FDDI)-Token Ring Physical Layer
Protocol (PHY), ANSI X3.148.1988, American National Standards
Institute, New York, NY, 30 June 1988.

[7] Working Draft Proposed American National Standard FDDI Physical
Layer Protocol (PHY-2), X3T9/91-X3T9.5/88-148 Rev 4.1,
American National Standards Institute, New York, NY, 5 March 1991.

[8] Fiber Distributed Data Interface (FDDI)-Token Ring Media Access
Control (MAC), ANSI X3.139.1987, American National Standards
Institute, New York, NY, 5 November 1986.

[9] Working Draft Proposed American National Standard FDDI Media
Access Control (MAC-2), X3T9/90-X3T9.5/88-139 Rev 4.0,
American National Standards Institute, New York, NY, 20 October
1990.

[10] Draft Proposed American National Standard FDDI Hybrid Ring
Control (HRC), X3.186-199x, American National Standards Institute,
New York, NY, 15 October 1991.

[11] Preliminary Draft Fiber Distributed Data Interface (FDDI)-Station
Management (SMT), X3T9/90-X3T9.5/84-49 Rev 6.2, American
National Standards Institute, New York, NY, 18 May 1990.

175

[12] SunOS Reference Manual, Sun Microsystems, Sunnyvale, CA, 21
January 1990.

[13] System Services Overview, Sun Microsystems, Sunnyvale, CA, 27
March 1990.

[14] Sun FDDI/DX Software and Hardware Installation Guide.

[15] LANplex 5004 and 5012 Installation Guide.

[16] M68000 8-/16-132-Bit Microprocessors User's Manual, Sixth
Edition, Prentice Hall, Englewood Cliffs, NJ, 1989.

[17] Annamalai, K., 'FDDI Physical Layer Implementation
Considerations," Proceedings of SPIE Fiber Optic Datacom and
Computer Networks, vol. 991, International Society for Optical
Engineering, Bellingham, WA, 1988.

[18] Kimball, Robert M., "Optical Performance Models for FDDI Links,"
Proceedings of SPIE Fiber Networking and Telecommunications, vol.
1179, International Society for Optical Engineering, Bellingham, WA,
1989.

[19] Kahn, As'ifaq R., "FDDI Interoperability Between Vendors,"
Proceedings of SPIE Fiber Networking and Telecommunications, vol.
1179, International Society for Optical Engineering, Belingham, WA,
1989.

[20] Paige, Jeffrey L. and Howard, Edward A., "SAFENET 11-The Navy's
FDDI-based Computer Network Standard," Proceedings of SPIE
Campus-Wide, and Metropolitan Area Networks, vol. 1364,
International Society for Optical Engineering, Bellingham, WA, 1990.

[21] Coden, Michael H., Bulusu, Dutt V., Ramsey, Brian, Szutka, Edward
and Morrow Joel, "Modular FDDI Bridge and Concentrator,"
Proceedings of SPIE Campus-Wide, and Metropolitan Area Networks,
vol. 1364, International Society for Optical Engineering, Bellingham,
WA, 1990.

[22] Stevens, R. Scott, "FDDI Network Cabling," Proceedings of SPIE
Campus-Wide, and Metropolitan Area Networks, vol. 1364,
International Society for Optical Engineering, Bellingham, WA, 1990.

176

[23] AlKhatib, Hasan S.. "A Vertically Integrated Transport and Media
Access Protocol for Gbps Local Area Networking," Digest of Papers,
Compcon Spring 92, IEEE Computer Society Press, Los Alamitos, CA
1992.

[24] Sun Press Release, "Fiber Distributed Data Interface/SBus (FDDL'S),"
SMCC Worldwide Product Announcement Information, 7 October
1991.

[25] Personal communication with H. AlKhatib, 4 May 1992 17:47 PST.

[26] Lundy, G. M., "Improving Throughput in the FDDI Token Ring
Network," Protocols for High Speed Networks, II, North-Holland,
New York, NY, 1991.

[27] Ahamad, Mustaque, Ammar, Mostafa H., Bernabdu-Aubdn, Josd M.,
Khalidi, M. Yousef, "Using Multicast Communication to Locate
Resources in a LAN-Based Distributed Systems," Proceedings of
IEEE 13th Conference on Local Computer Networks, Washington, DC,
October 1988.

[28] Belkeir, Nasr E., Ahamad, Mustaque, "Low Cost Algorithms for
Message Delivery in Dynamic Multicast Groups," Proceedings of
IEEE Ninth Conference on Distributed Computing, June 1989.

[29] Hughes, Larry, "Identifying Migrated Ot.jects Using Multicast
Addresses," Computer Communications, September 1991.

[30] Green, Larry, "Performance Analysis of FDDI," Digest of Papers,
Compcon Spring 87, IEEE Computer Society Press, Washington, DC
1992.

[31] McIntosh, Thomas F., "Engineering Building and Campus networks
for Fiber Distributed Data Interface (FDDI)," Proceedings of SPIE
Fiber Networking and Telecommunications, vol. 1179, International
Society for Optical Engineering, BeUingham, WA, 1989.

[321 Cohn, Marc, "A Lightweight Transfer Protocol for the U.S. Navy
SAFENET Local Area Network Standard," Proceedings of IEEE 13th
Conference on Local Computer Networks, Washington, DC, October
"1988.

177

[331 Weaver, A. C., and Colvin, M. A., "A Real-Time Messaging System for
Token Ring Networks," SOFTWARE - Practice and Experience, Vol.
17(12), December 1987.

[34] Colvin, M. A., and Weaver, A. C., "Performance of Single Access
Classes on the IEEE Token Bus," IEEE Transactions on
Communications, Vol. COM-34, Number 12, December 1986.

[35] Strayer, W. T., and Weaver, A. C., "Performance Measurement of Data
Transfer Services in MAP," IEEE Networks, May 1988.

[36] Strayer, W. T., and Weaver, A. C., "Is XTP Suitable for Real-T1ime
Distributed Systems?", International Workshop on Advanced
Communications and Applications for High Speed Networks, Munich,
Germany, March 16-19, 1992.

[371 Sankar, R., and Yang, Y. Y., "Performance Analysis of FDDI,"
Proceedings of IEEE 14th Conference on Local Computer Networks,
Los Alamitos, CA, October 1989.

(38] Tarrant, Peter and Truman, Alan, "Implementation of FDDI in the
Intelligent Wiring Hub," Proceedings of SPIE Campus-Wide, and
Metropolitan Area Networks, vol. 1364, International Society for
Optical Engineering, Bellingham, WA, 1990.

(39] A1Khatib, Hasan S., "High Performance Local Area Networks,"
COMPCON Spring 1992 Conference, Los Alamitos, CA, February,
1992.

178

INITIAL DISTRIBUTION LIST

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code EC 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

Professor Luqi, Code CS/Lq 10
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor Shridhar Shukla. Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Commandant (G-TPR) 2
U. S. Coast Guard
Washington, DC 20593

Commandant (G-PIM-3)
U. S. Coast Guard
Washington, DC 20593

Sun Microsystems, Inc.

1842 N. Shoreline Blvd.
Mountain View, CA 94043
Atm: Jean Chappelle

179

Synermetics Inc.
4017 Clipper Court
Bayside Business Park
Fremont, CA 94538
Attn: George Ducharme

Ada Joint Program Office
OUSDRE (R&AT)
The Pentagon
Washington, DC 20301

Office of Naval Technology
Code 227
Attn. Dr. Elizabeth Wald
810 N. Quincy
Arlington, VA 22132-5000

Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy
Arlington, VA 22217-5000

Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. R. Wachter
800 N. Quincy
Arlington, VA 22217-5000

University of California at Berkeley
Department of Electrical Engineering and Computer Science
Computer Science Division
Attn. Dr. C. V. Ramamoorthy
Berkeley, CA 90024

Attn. Dr. R. Wachter
United States Laboratory Command

Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

180

G. A. Hammar 10
501 Privateer Rd.
North Palm Beach, FL 33408

Naval Research Laboratory
Code 8140
Attn. Dr. Lou Chmura
4555 Overlook Ave.
Washington, DC 20375-5000

1

181

