
939DCnAT floC~UMENTATION PAGE Fotrm Approved 007j
08M N, 0704-0 188

ngte05knC nontm aqidotfW1OtardVI~~0.stodenor NXW1h 1V~. db~ ~'' ~t'A D -26 2 3 arca,DOr . loP lrio iftfaftorp#9 OpMubu md,o. 1215 d.Womm Davis Hl0mft. Sul* 120'. Anm9Xgao.'VA MW7 A J02 &'ýd

AT2 Deor Aeit 263 253port Type and DtsCvrd

4.411111 uaau .u,..S. Funding Numibers.

Variational methods and the derivation of shell theories to approximate Confir cr

vibrations of bounded elastic shells P-91a"' Fl- '4 06011 53N

6. Authorils). 0" O3202
C. E. Dean and M. F. Werby TsJi 5

Accession No DN25501 1
WCA ., II W 122118B

7.Performing Organization Hamels) and Addiess(es). S. Performing Organization
Naval Research Laboratory Report Numbii:
Center for Environmental Acoustics PR 91:112:221
Stennis Space Center, MS 39529-5004

9. Sponsoring/Monltorfng Agency Name(*) and Address("e).t'"~i 10. Sponsorinlg/Monitorinlg Agenlcy
Nava Reearh LaoraoryReport Number.

Stenns Spce Cnter MS 95295004PR 9 1.112:221

11. Supplementary Notes..
Published in IMACS, Computational Acoustics.

1 2s. Distribution Availability Statement. 12b. Distribution Code.

Approved for public release; distribution is unlimited.

13. Abstract (AWaiimum 200 words).

The calculation of vibrations, and in particular, resonances from bounded elastic shells can be quite tedious and time consuming
when using the exact elastodynamic equations. Thus, a popular approach has been to employ various dynamic assumptions about
the motion of the shell surface when subjected to disturbances. This can be done using variational considerations in which energy
is minimized when various constraints are imposed. We exploit the technique using various assumptions which give rise to several
shell theorios, We can use the resulting expressions to calculate resonances over a frequency range and compare then with the
exact result-,. We may then rank the various approximations in order of their agreement to the exact results. Limitations of each of
the methods can then be outlined as well as those of shell methods in geraral.

93O69

14. Sub*ec Term*. IS. Num%- of Pages.
Acoustic scattering, shallow water, waveguide propagation

Ia. Price Code.

17. Security Clasalflcation IS. Securlity ClasltIlcadlon Ill. Security Cleessiticetion 20. Umlitiaion of Abstract.
Of Report of This Page. of Abstract.
Unclassified Unclassified Unclassified SAR

NSN 75.40-01 26.5s00 Standai-d Forni 298 (Ray. 219)
Ptvcitw"by*5d ANIs.z2wl
2W02



Math Modtlling and Sci. Computing VL? 2, pp 882-8
8

6, 1993 1,5 7i- 3S5 * O 00
.Pircipia Swie"tia. PNnied in U-SA.

Variational methods and the derivation of shell theories to approximat= vibaiuons of bounded elasuc she;ls
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Naval Oceanographic and Atmospheric Research Laboratry
Theoretical Acoustics Code 221

Stennis Space Center, MS 39529-5004

ABSTRACT

The calculation of vibrjdtions, and in particular, resonances from bounded elastic shells can be quite tedious and time
consuming when using the exact elastodynamic equations. Thus, a popular approach has been to employ various
dynamic assumptions about the motion of the shell surface when subjected to disturbnncs. This can be done using
variational considerations in which energy is minimized when various conctraint: are imposed. We exploit the
technique using various assumptions which give rise to several shell theories. We can use the resulting expressions
to calculate resonances over a frequency range and compare them with the exact results. We may then rank the
various approximations in order of their agreement to the exact results. Limitations of each of the methods can then
be outlined as well as those of shell methods in general.
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INTRODUCTION

The standard assumptions used in shell theory were formulated by A. E. H. Love (Love. 1944) and are as follovws:
(I) The thickness of a shell is small compared with the smallest radius of curvature of the shell: (2) The
displacement is small in comparison with the shell thickness; (3) The transverse normal stress acting on planes
parallel to the shell middle surface is negligible; (4) Fibers of the shell normal to the middle surface remain so after
deformation and are themselves not subject to elongation. We use these assumputons in the development of a she'l
theory for an elastic spherical shell in the spirit of Timoshenko-Mindlin plale theory

DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to P) predominate over flexural stresses (proportional to 3P)
wheire I

I h

We differ from the standard derivation for the sphere (Junger and Feit. 1986) by retaining all terms of order fi in
both the kinetic and potential energy parts of the Lagrangian, We note that this level of approximation will allow
us to include the effects of rotary inertia and shear distortion in our shell theory. We begin our derivation by
considering a u.v,w axis system on die middle surface of a spherical shell of radius a (measured to mid-shell) with
thickness h. as shown in Fig. 1.
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Fig. 1. Spherica shell showing the coordinate system used.
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Thus the new LAgragian (which is equivalent to a Ttmnoshenko-Mindhn theory as applied to a sphtrical -ýhell is

L~ T - V + W.(2)

here the kinetic energy is

1 ' .+ 2 At ( .)

-oith the surface displacements taen to be linear as in T inoshenko- Mindhin plate theory:

a ad-
L =T-VW. (5)

There is no movement in the v-direction since the sound field can be assumed, without loss of generality, as
torsionless. By substitution, the kinetic energy is

s ,it] his Ais ii A d,P2 2(0 _)+ 12 )]dO. (6)

a a joa 2X'

or. simplifying,
T= 9pha' Il(l.S4+ f' +6 lUý2- (3.6i' + 6,8)i!ý +(1.8fl" *.3 XX)'+(i + ÷ O)•'Sin~dO, (7)

0de d

which to order P' is
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T-~hi2 [( 0 - 6i - () I )w~sin Odti. 9
do do

In a similar fashion the potential energy is
v haar12

=i Uc. f' ,(.-t- ÷,efx + a)")2 sinm 0Odd . (9)

which by substitutior' becomes
V=f f" . [1 E I) , d.

=2 0Fo .J-.,2[ (x+ a)' a do a dOO
+(c°O[(l + )-xdw x &• zdZa#2  

II.

( )U -x- ]+ w)f(l + x)--- + x +a) si odxo. (10)
a a do a do adO wyIx+a 2 i~zO.(0

or f'mally.

) ... (W +2UC.EO(,,+_v~ +-,h.. 2ýxw +Uoo+PRct (1o do d~ do

do do do(

where the nonvanishing components of the strain are
co i.ý +W (12)

a do 3 a2 do do ",~ (2
and

, =-(cotOu + w)+-+jcooto u- L13)
a a2 do)

with nonzero stress components are
E

(r" = 7-(14)

a.= i--(e. + ve). (IS)And
E0** = iV _--(Coo + vC08), (15)

where E is Young's modulus.

Finally, the work done by the surrounding fluid on the sphere is

W = 2za[afp.wsin OdO. (16)
.0

where p. is the pressure at the surace of the shell.

Laranrian Density and Equations of Motion

Since the integration along the polar angle is intinsic to the problem, the solution must be found using a
Lagrangian densty:

,= ipAa( + .68A2 x (w2 _d+ (w+uco 0),
dG 09I- V dodu = w +A co[ol+6'i- _+, (w) +co(u-f!ý)"+2cosin0XX _ 3u lsi

du de do,2 do d dw du 0

+2xap.wsin G. (17)

with corresponding differential equations
O=L, d OL, ddL, (18)

du dO du, d( du,
and

o=dL d d L. d dL., (19)
Ow dO w*, d diw,

Substituting. we Frind
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0= (l + # + cotO- _(V + CO -f 2 co0

+((I+ v)+8f2 (v+ co2 O)jl- •-1(! +6.')ui - 3' (20)
dOl C, To-

nd (-')a" 2 , d'u 2fi'cot a - [(I +• vXI +P
2') +P'cot' 0)]- 1

-O'cot 0(2 - v + co' - 2(1 + v)w - (2() + fi ),.

Differential equations (20) and (21) have solutions of the form
U(7 .(I-1212 ýd.(22)

a-d
wr)=- W.P. (n/), (23)

1.-0

where Y1= cos o and P. (17) are the Legendrc polynomials of the rugst kind of order x. The differential equations of

motion (20) and (21) are satisfied if the expansion coefficients U. and W. satisfy a homogeneous system of linear

equations.

If we consider the simpler vacuum case first, where p. = 0, the linear equations amr

0 = 11'1 + 6p8') - (I + 01))U. - Ifz(K - 301) + I +'vIW., (24)

and
0= -A. (, 2 ,r+ I+ v)U, + fQZ(I+ . 2 )-2(1 + v) - 1SAJ. 1W., (25)

where 0 = oja c,, r = v + 1-. and A. = (n + l). he determinant of (24) and (25) yields a ftequency equation

of the form
0 - 4 (1+ 7p8) + 12 (_(I + 2p8)t - [2(1 + vXl + 6pu') + PL. 1
+3#11. (1 + v)1 +(A. - 2XI - v2) + fia•irA. + 2(l -A.X1 + v)j (26)

We begin consideration of the fluid loaded case by noting that "for a plate, fluid loaded on one side, of mass per unit

area p,h, the approprat nonduamnsionai measure of fluid loading at a frequency W is pc / 0p,h." (lunger and Feit.

1986, p. 237). Analogously. we may expand the surface pressure for a sphere in terns of modal specific acoustic

impedances j. as follows.

X h,(ka) (28)

Splitwng z. into real and imaginary parts, we have
z. = r - it., (29)

where

,.= •_• (30)

and
M. PC Ih.ik(ka) (31)

Fo. our(im) c
For our simpler case of nontorsional ensonification, the surface prtwsse expansion simplifies to

I
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P.(o)=-Xz.w.P.(cos9), (32)

which by substitution becomes

p*(0)= -X(-iWW.r. - coW'm.)P.(cos9). (33)
*.0

Substitution of (33) into (20) and (21) will result in simultaneous linear equations of the form:0 =102 (1 + 6p'•)- (I +/P')]U. - Lil'(K - 3jz) + I + v]W,. (34)

and

0 = -XtO'K+ I + Y)U, +tnQ•(l + -2'-. +P'),+ia-r--- - 2(l + v) -P•,ct,)w.. (35)
ph h pc,

Setting the real part of the determinant of (34) and (35) to zero results in a quadratic equation in Q
2 for the fluidloaded case. If we define

~ ,..~.(36)

p~h
and neglect terms of order greater 2 then the quadratic is, finally.

O-fl'(++a+7p 2 +6a# 2)- Q"(l+a+2 '+a4 );+ 2(l+ v)(l +68P 2 • ÷ i2.A - 3f.2.,(1 V)
+3p'A.o(I + v)) + (A. - 2XI - •) + P'rxA r., + 2(1 - A.oXI + v)]j (37)

CONCLUSIONS

With (26) and (37) in hand, the obvious next step is to test the results numerically against exact results. We note

that by setting fl' to zero we revert our solutions to previously derived models (Junger and Feit, 1986). Similarly.
setting a to zero in (37) is equivalent to removing the fluid loading from the model. This makes (37) revert u)

(26). By alternately retaining or zeroing ,8' in (26). and similarly for a in (37). we have three distinct models with
differing degrees of physicality. We can use the resulting expressions to calculae resonances over a frequcni y range
and compare them with the exact resum. We may then rank the various approximations in order of their agreement
to the exact results. Limitations of each of the methods can then be outlined as well as those of sheli methods in
general.

ACKNOWLEDGMENTS

We wish to thank the Office of Naval Research, the Office of Naval Technology, and NOARL Management
including Drs. Chin-Bing, F'anchi. and Mosely for support of this work. Dr. Dean is at NOARL on an ONT
Fellowship. This work was funded by NOARL Program Element 61153N. H Morris. Program Manager.

REFERENCES

Junger, M.C. and D. Feat (1986). Sound, Structures. and Their Interaction. 2nd ed. MIT Press. Cambridge. Mass.
Love, A.E.H. (1944). A Treatise on the Mathematical Theory of Elasatcuy. Dover, New York.


