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ABSTRACT

The calculation of vibrations, and in particular, resonances from bounded elastic shells can be quite tedious and ume
consuming when using the exact elastodynamic equations. Thus, a popular approach has been (0 employ vanous
dynamic assumptions about the motion of the shell surface when subjected to disturbances. This can be done using
variational consideratious in which encrgy is minimized when various constraintc are imposed. We explont the
technique using various assumptions which give rise 10 several shell theories. We can use the resulung expressions
to calculate resonances over a frequency range and compare them with the exact results. We may then rank Lhe
various approximations in order of their agreement Lo the exact results. Limitations of each of the methods can then
be outlined as well as those of shell methods in gencral,

KEYWORDS
Shell theory; elastic; variational methods; nontorsional

INTRODUCTION
The standard assumptions used in shell theory were formulated by A. E. H. Love (Love, 1944) and are as follows:
(1) The thickness of a shell is small compared with the smallest radius of curvature of the shell: (2) The
displacement is small in comparison with the shell thickness; (3) The transverse normal stress acung on planes
parallel to the shell middle surface is negligible; (4) Fibers of the shell normal 1o the middie surface remain so after
deformation and are themselves not subject to elongation. We use these assumpuons i the development of a shell
theory for an elastic spherical shell in the spirit of Timoshenko-Mindlin plate theory

DERIVATION OF EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to §) predominate over flexural stresses (proportional to 8°)
where

1 A
= - I
P=T7a o

We differ from the standard derivation for the sphere (Junger and Feit, 1986) by retaining all terms of order f%in

both the kinetic and potential energy parts of the Lagrangian. We note that this level of approximation will aliow
us to include the effects of rotary inertia and shear distortion in our sheil theory. We begin our derivation by
considering a u,v,w axis system on the middle surface of a spherical shell of radius a (measured 1o mid-shell) with

thickness A, as shown in Fig. 1.
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There is no movement in the v-direction since the sound field can be assumed, without loss of generality, as
torsionless. By substitution, the kinetic energy s
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Fig. 1. Spherical shell showing the coordinate system used.
] a0 Yariational ,
Thus the new Lagrangian (which is equivalent to & Timoshenko-Mindlin theory as applied o a spherical shell) is
L=T-V+W, %))
where the kinetic energy is
_ 1 L L T, Y .3 4
T—-z-p,L L J'_m(u, +w;Xa+x), (Y
with the surface displacements taken 1o be linear as in Timoshenko-Mindlin plate theory: ;
Q=X 22 (4) i‘
’ a adé’
W, =w, {5) 3
i
b4

or, simplifying. . .
T = xpha’ L [(1.88" + 68 + > - (3.68° + 6p’)n% + (188" + p’x%)’ + (B + W isinddB,  (T)

which to order B is
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T=npha’ [ 11+ 687 -6 6Bk~ a 5P (~—~) ¢ (1 + B7)w|sin Bd6. (%)
In a similar fashion the potential cncrgy is
Vo (Ot + Gy Xx + ) sin Bsdbdo, 9)

which by substitutior bocomes
1% ph/2 . Ju xd'w 3
V—-—- e (] 4 ) o = e 4w
18} J"“[1—v (x+ay [“ NETRIPE IR

2
+(cot0[(l+——)u———--—~]+ w1+ 2 ;ie"fge‘: + w])}(xara)’sinedxdﬂo. (10)
orﬁnally
V" L(( +—) +(w + ucot 6)* +2V(W+—-)(w+uco(9)+ﬂ {(au—&)’oot’a(u———)‘
8 d8
ow au w. . .
2veot B(u - ——Y— - 848, i1
+2vent O(u aaxae ae,)nsm ay
wher= the nonvanishing componeats of the strain are
¢ =1(3" ,.,)+L .é‘__i’_':} (12)
” EY) a*\d8 98,
and
1 x ow
£~=;(c0(0u+w)+;;co(8(u—3é—) 13
with nonzero stress components are
- E ll
on"l_vz(cn‘*VC..)- (14)
ad
a,,—-!_—‘,;(e,,*fvc..). (15)
where E is Young's modulus.
Finally, the work done by the surrounding fluid on the sphere is
W =2xa* [ 'p,wsin 848, (16)

where p, is the pressure at the surface of the shell.

ian Density and Equations of Mo

Since the integration along the polar angle is intrinsic o the problem, the solution must be found using a
Lagrangian density:

L, =npha’[(1+ 68"’ 6ﬁ’u—+ﬂ( )+ (1+ W Jsin6 - =— Ak ((w+-§—) +(w +ucot 6)’
&4 a? ow o dw.. .
+Mw+——)(w+ucm9)+ﬂ ((—-———")’+cot a(u---)’nvoow( —-‘—;;}(-éa-}?)]}sme
+2xa’ p,wsin 8. (amn

with corresponding differential equations
_dL, d 3L, dadL,

oL d dL ddL
0= 290 9% 19
v d6 aw, i ow, as)

Substituting, we find

e WL
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1
O=(1+8° {381 colﬁ——-v(»%cm B)H}-—ﬂzag, -~ Bleat 9

+H(1+ v)+ B3(v+col’ 0)]-‘;l~-°-z—[(1+ﬁp’)ﬁ—3ﬁ’——L (20)
a8 ¢} 98
ad
- 'Q:E_v__)_a_ ﬁ’ +2ﬂ’cot9-é———{(l+ vX1+ 83+ Bieot? 8)]—3—:—
-Bleot (2 - v+cot? G)———2(1+ v)w--;(Hﬂ Y. (21}
a6 ¢

r

Differential equations (20) and (21) have solutions of the form
Wn)= }_‘,u a-n’

an

llldf (22)

ad
w(m =Y W,P(n), (23)

L]
where 1= cos§ and F,(n) are the Legendre polynomials of the first kind of order a. The differential equations of
motion (20) and (21) are satisfied if the expansion coefficients U, and W, satisfy a homogeneous system of linear
equations.

Yacuum Case
1f we consider the simpler vacuum case first, where p, = 0, the linear equations are

0=1Q(1+68%) - (1+BHxW, - [B*(x - 3Q%) + 1+ vIW,, (24)
ad

==1,(Bx+1+ VU, +[Q}(1+B1)-2(1+ v)- BixA,W,, 25)

where Q=wa/c,, x=v+A4 -1 and A, =n(n+l) The determinant of (24) and (25) yiclds a frequency equation
of the form

0=Q%(1+78%)+ QM-(1+ 28"k - [2(1+ VX1 + 68%) + B*xA, )

#3BP, 1+ v} + (A, 2K = V') + Bixixd, + 2(1 - 2 X1+ V)] (26)

Fluid Loaded Casc
We begin consideration of the fiuid loaded case by noting that “for a plae, fluid loaded on one side, of mass per unit

area p,h, the appropriate nondimensionai measure of {luid loading at a frequency @ is pc / op,h.” (Junger and Feit,
1986, p. 237). Analogously, we may expand the surface pressure for a sphere in terms of modal specific acousuc

impedances z, as follows,

pa,0,0)= i ‘Zz,w_a'(cos 8)cosm¢, (27)
2o0 mat
where
h,(ka)
2, =ipc——r hka) (28)
Splitting 2, into real and imaginary parts, we have
2, =7, - iam,, (29)
where
ik, (ka)
r, = pc Re{ e ) } (30)
ad
ik, (ka)
= 1 ’ . 3 1
" { h.<u>} én

For our simpler case of nontorsional ensonification, the surface pressure expansion simplifies to
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P.(8)=-3 2,W,P.(cos6), (32)
az0
which by substitution becomes
P.(8) ==Y (~iwW,r, -~ 0*W,m_)F,(cos 8). (33
a=Q
Substitution of (33) into (20) and (21) will result in simultaneous linear equations of the form:
0={Q2(1+68)~(1+ B, ~(B*(x-30%)+1+ viW,, (34)
and
0=-2,(8x+1+ VU, +(Q}(1+ f—: +p’)*i£-_ﬁ_.g - 201+ v) - BixA, W, (3%)
[} ">y

Setting the real part of the determinant of (34) and (35) 10 zero results in a quadratic equation in £2*for the fluid
loaded case. If we define

a=— (36)

and neglect terms of order greater than $°, then the quadratic is, finally,
O=Q'(1+a+ 78 +6af®) -1+ a+ 28 + af®)x + 2(1+ V(1 + 68%) + BxA, - 38%2.(1 + v)]
#3874, (1+ VI + (A, —2X1— v1)+ BPxixA, + 2(1- A X1+ v)] 37

CONCLUSIONS

With (26) and (37) in hand, the obvious next step is 10 test the results numericaltly against exact results. We note

that by setting B 10 zero we revert our solutions o previously derived models (Junger and Feit, 1986). Similarly,
setting @ 1o zero in (37) is equivalent to removing the fluid loading from the model. This makes (37) revent w
(26). By alternately retaining or zeroing B in (26), and similarly for @ in (37), we have three distinct models with
differing degrees of physicality. We can use the resulting expressions to calculaie resonances over a frequency range
and compare them with the exact resuits. We may then rank the various approximations in order of their agreement

to the exact results. Limitations of cach of the methods can then be outlined as well as those of sheli methods in
general.
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