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The Curvature of Plane Elastic Curves

Guido Brunnett
Department of Mathematics
Naval Postgraduate School

March 25, 1993

Abstract

In this paper plane elastic curves are revisited from a viewpoint
that emphasizes curvature properties of these curves. The family of
elastic curves is considered in dependence of a tension parameter a and
the squared global curvature maximum r. It is shown that for any
elastic curve n is bigger than the tension parameter cr. A curvature
analysis of the fundamental forms of the elastic curves is presented.
A formula is established that gives the maximum turning angle of an
elastica as a function depending on oc. and a. Finally, it is shown
that an elastic curve can be represented as a linear combination of
its curvature, arc length and energy function and that any curve with
this property is an elastica.

1 Introduction

The search for Smoothing Algorithms in CAGD has induced research on
curves and surfaces which minimize functionals with geometrical or physical
meaning. The classical example are elastica which describe the shape of
elastic materials. Plane elastica can be defined as the extremals (critical
points) of the variational problem

IL ,2(s) + ads - rin

where K denotes the curvature, s the arc length of a plane curve x and a is
constant. The total length L of z is considered to be variable. The set of
comparison curves of the problem is the set of all C' curves in the plane
with fixed endpoints and fixed tangent directions at these points.



Lee and Forsythe found (see [6]) that the curvature function of an elastica
satisfies the differential equation

K"(5) + I (3) + Kx(s) = 0, K E R. ()

We begin this paper with a short derivation of this result and a proof that this
equation is also sufficient for a curve to be an elastica. We will then show that
for any elastica the square of the curvature function has a global maximum
X. which is bigger than the tension parameter o. The fundamental forms of
elastic curves first described by Euler are characterized by the values of the
parameters K 2 and o,. A curvature analysis of these curves is presented.

In section 3 various formulas expressing properties of elastica in terms of
K. and a' are given. This includes a formula that gives the maximum turning
angle of an e!astica as a function depending on oc. and a. The explicit
formula for the maximum turning angle allows to determine an upper bound
for •K in the case that an inflectional elastica has a turning angle bigger
than 7r. As the main result of this section we show that a plane elastica has a
representation as a linear combination of its curvature, arc length and energy
function E(s) = fo" K2(9) d.3. This property characterizes the class of plane
elastica and can be used for speeding up the computation of interpolating
elastica.

2 The curvature of plane elastica

Given two points P, Q E R2 and two unit vectors V E TpR , W E TQR 2

then M denotes the set

M := {x: [*0,L] --+ R 2 L E R+,x E C'[0,L], I '(s)I = 1 for s E [0,L],
-(0) = P, x(L) = Q, x'(0) = V, xT'(L) W}.

We consider the problem of minimizing the functional

E + aL := j (3) + a ds

among all curves of M where K denotes the curvature and s the arc length
parameter of a plane curve x. The integral E - f=L ic2(s) ds is called the en-
er7,y of z on [0, L]. o denotes a constant which we call the tension parameter.
The total length L is considered to be variable. As the functional considered
is translation and rotation invariant we assume in this section that P = (0, 0)
and V = (1,0).
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For z E M the tangent vector T of x is given by

T(s) = (cos(*(s)), sin(*(s)))

where the function * with *1(s) := Jc x(,) d,6 gives the turning angle of x.
Using this notation the variational problem can be written asL

mrin * (s) + ads
•eCJO0.L]J0

under the constraint
J sin *(s) d

where the admissible functions %P E C¶0O, L] are subject to the constraints:

I(O) =-0, 1(L) = b with (cos k, sinV') = W.

According to Lagrange's multiplier rule the differential equation of this
probiem is the Euler equation for the integrand

F(Ik, V1',s) = •'2(s) + a + Acos 4(s) + psin 4'(s),

for some constants A, u C- R, i.e.
A p o ()

%"'(s) = - sin* (s) +cosP(s). (2)

(see e.g. in [3],[6]). By introducing the constants

A = 2a cos y = 2a sin ,,

we rewrite the Euler equation in the form

%"P - -a sin(¢ - 4,). (3)

Multiplying (3) by 24' and integrating yields

9 2 = 2a cos(% - 0) + A (4) per

where A E R denotes an integration constant. Equation (4) has been used :I
to define elastic curves in the plane in the classic literature (see [7]). d 0

In order to determine the constant A in terms of the tension parameter d

o, we consider the boundary condition

F(* (L), V(L),L) - -,F(4(ss,'),(s),s) IL '(L) 0 on/ -
S...... ,111ty codes

3 ;Dlist Speoao

if...



that must be satisfied by the extremal. This condition is implied by the fact
that the total length L of the curve is variable in the variation (see e.g. [2],
p. 571). Thus,

*'(L) =,K 2(L) = Acos *(L) + isin I(L) + a. (5)

Comparing (5) with (4) shows that

A -- ¢.

Therefore we give the following definition of an elastic curve under tension.

Definition 1 An arc length parametrized plane curve x with curvature func-
tion Pc is called elastica (or elastic curve) with tension parameter 0', if for
some a, • E R

V2 = 2a cos(P - 0) + u (6)

where %Y denotes the function wk(s) := f .(.§) dg.

Lee and Forsythe showed in [6] that the Euler equation (2) implies the
differential equation (1) for the curvature function K. We will now show that
(1) is in fact equivalent to (6).

Theorem 2 If K E C2 (R) and *(s) := fO K(.A)d.§, then

K 2 = 2a cos(tk - 0) + O

holds for some constants a, V and a if and only if
,, +23 1____

e 2 =0. (7)

Proof: (i) Differentiating (6) yields the Euler equation in the form of
(3). Differentiating the Euler equ•.tion gives

K " = -a cos(q1 - O)K.

Substituting the term cos(*1 - W) in the above equation according to (6) we
obtain (7).

(ii) Differential equation (7) can be integrated to the first oder differential
equation

(K') 2 = C - (1/4)a2 - (1/4)(# 2 - a)2 . (8)

Note, that for a real solution of (8) it is necessary that

a2 := C - (1/4)a 2 > 0

4



and
(K 2 _ or')2 <

4a 2  -

The function 0 defined by

with n = I for K' > 0 and n = 2 for r' < 0 obviously obeys the relation

2 = 2Ial cos 0 + a. (9)

It remains to show that 0 is an integral of Kc.

(8) together with the definition of a2 and (9) implies

(K') 2 = a 2 sin 2 o.

Since sin 0 is positive (negative) if .' is negative (positive), we obtain

KI = -lalsin 0. (10)

Differentiating (9) and substituting K' according to (10) yields

0e 1 =K.

Since TP and 0 are both integrals of K there is a constant 4 such that
'P = 0+ . ForP

1C = 2lal cos('P - 0) +

holds because of (9).
0

The squared curvature function r2 of an elastic curve has a global maxi-
mum, even if JK is extended to the whole real line.

Lemma 3 If x is a solution of (7) on R, then K 2 has a global mazimurm.

Proof: Since the function (1/2)(X3 - ax) is of the class CI(R) the solu-
tions of (7) can be extended to the whole real line.

To show that K 2 has a global maximum we observe first that (3) implies
the existence of a local extremum of K. This is because the assumption
W'(s) = 'P"(s) # 0 for all s E R means that TP is convex or concave and
therefore unbounded while according to (6) K' has no zeros only if %V is
bounded. Furthermore from (3) and (4) it is obvious that any local extremum
of K is a global extremum of K2.

5



We assume now that Pc2 has no global maximum on R. In this situation
Kc has exactly one zero s,, on R and iC2 takes its global minimum in this
point. Note that K is non-zero for any s . s,0,, because a zero of K at a
point 3 # s,,i would imply that K(s..in) = 0 and #'(i) = 0 for some point i
between .3 and sim.. Therefore ( 2 )', has no zero besides s,i,, and r2 is strictly
monotone increasing on the right of s5 .., Hence r is monotone increasing
resp. decreasing on the right of s,,,, if K has positive resp. negative values
on the right of a,,.. The formula

vI(s) = j" x(g)6 + V

yields that *I is in any case unbounded. This is a contradiction to the as-
sumption because (4) implies the existence of global maxima for K2 if %P is
unbounded.

0

We now give the relation between the global maximum KC of K' and the
tension parameter a and express K in terms of elliptic functions.

Theorem 4 Let K E C2 (R) be a solution of the differential equation (7) with2 0 Oof j2
a global maximum K., on R. Then the following statements hold:

(i) 2 > a

(ii) has a zero if and only if "cM > 2a. In this case K is given by

K(s) = Km cn(/(K2 -( )/2(s - SM)Ik 2 ) (11)

with the parameter
K2ks 2. KMn

2(t: -2 )

(iii) 2a- 4 < M 2 < _ for K2 < 2a. In this case K is given by

oc(s) = Kdn(xf(s - s,,)/21 I ). (12)

Proof: As a global maximum point s, of K2 is also a zero of K' (8) implies

C = 1•C4 1I14 m "

Hence (8) takes the form

(K ') I =•2 - K 2 )(K 2 + 4 - 2a) (13)

6



As all quantities in (13) are real (i) follows from the fact that the term
(r.' - K 2 ) is always non-negative and therefore the term (02 + r,, - 2a) has
also to be non-negative for any K2 .

Using the same argument we observe that O2 (S) = 0 for some s implies
* that x > 2ar while for 4c" < 2a ic has to be greater or equal 2a - .

To express K in terms of elliptic functions we procede as follows. In the
case that r.2 > 2o we substitute z2 = (r.2 - K2 )/1K in (13) and obtain for z
the differential equation

(z')2 = j(K2 0,)(1 - z2 )(1 - k 2z 2) (14)

where
k 2 - 2

2(K2 -oa)*

(14) is the differential equation of Jacobi's function sn=sn(u) for the argu-

ment u = V/½(K - o)s (see [1],p. 114). We therefore obtain

z(s) = sn2(/(4 - o)/2(s - si) I k2 ).
The relation K 2 = (1 z 2) then gives

2(K) = 4cn( (/( - o)/2(s - SM) k) (15)

(see [8],p.16). Since K is differentiable, (15) implies (11).
In the case that K2 < 2a we substitute z2  (K2- K 2 )/2(4 a) in (14)

and obtain for z the differential equation

(Z')2 = 1K (1 - Z2 )( - 1•• 2)

where
12 1 _2(4 -

T2  K2

Hence
z 2 (s) = sn 2 (KM(s - sn,)/2 112).

The relation
K 2 K 2 (1 2 Z2 )

yields
2(s) = 4dnf 2 (Km(S - sm)/2 112)

(see [8],p.1 6 ) which implies (13) again because of the differentiability of K.

0
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Theorem 2 implies that the curvature function of an elastic curve extends
to a periodic function on R. In the case that ic,, > 2o, this periodic function is
symmetric with respect to any zero of its derivative and antisymmetric with
respect to any zero. According to Love [7] this situation is called inflectional
because the extep',ion of x has turning points. In the case that K.2 < 2a the
extension of Pc has no zeros but is still symmetric with respect to any zero
of its derivative. The local extrema in this case are C,, and ±(2a - P2).

The situation is illustrated in figure 1 - figure 8 where for xn = 1 various
curvature functions and the corresponding elastica are shown. If only non-
negative tension values are considered a is an element of [0, 11. With o
increasing from 0 to 1 the curvature function changes continuously from a
lemniscate function (a = 0) to a constant (a = 1). A classification of the
different forms of elastica has beeT given by Euler (see [51, 171).

8
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3 A characterizing representation theorem

First we summarize the main formulas for elastic curves. In order to avoid
repetitions we use the following convention: if a curve x : [0, L] --* R' is an
elastica, then ic denotes the (analytic) curvature function of x, R denotes the
extension of i on R, ic' the global maximum of R2 and s,, is a number with
k 2 (Sm) = IC . Furthermore 1 : [0, L] -4 R is the function *(s) := fo' oc(.) di,
4k denotes the extension of % on R and W := i(s,,,). The energy E of z is
the function E(s) = f K2(3) di. For convenience we also use the notation
C(O) = (cos t, sin k). t is the angle in [0,27r[ with z'(0) = C(d).

Theorem 5 For a plane elastic curve x with tension parameter a the fol-
lowing relations hold:

(i) K'(s) = -!(K2, - o) sin(_ -V),

(ii) K2(s) = (K 2 o) cos(*I(s) -)+ a,

(iii) K(s) - K(O) = I (K2,• - a_) < C'(ýo + t),X(s) - z(0) >.

(iv) E(s) = (rc- a) < C(V + t9), x(s) - X(0) > +as,

Proof: Without loss of generality we can assume that a in (4) is positive.
From lemma 3 we know that R2 has a global maximum K2 . Since for positive
a the maximum occurs iff cos(%P(s,,) - 0) = 1, it follows that

2

and

Therefore (3) and (4) imply (i) and (ii). To obtain (iii) we rewrite (i) as

1 2 _
K'(s) = -•(?c, - a)(sin(*I + 0) cos(p + 4) - cos(41 + t9) sin(,p + 0))

and integrate using

z'(s) = (cos(*l(s)), sin(4I(s))).

To verify (iv) we write (ii) in the form

K(s) - MtK2 - o_)(cos(%P + 0)cos(V + t9) + sin(*' + V)sin(V + t)) + o-

and integrate.

11



Since the elliptic function cn in Theorem 3 has the symmetry properties
of a sine wave while dn is positive, the turning angle of an elastic curve is
bounded in the inflectional case a < le and unbounded otherwise. Formula

(ii) of Theorem 3 can be used to determine the maximum turning angle of
an inflectional elastic curve.

Corollary 6 The maximum turning angle *,n, := maxEr2t+rj~t1(s)f of an
elastica x with period T and tension parameter a' < l,, is given by

£r

%,r = 2 arccos( -a-). (16)

If a > , # 0 then
IP(t + T) - 14(t)l = 27r

for any t E R.

Proof: Let so be a zero of R. Then it follows from the symmetry prop-
erties of R in the inflectional case that

so+T/4

q'1ma = 21 R(s) dsI = 21ýP'(so + T/4)- -(a)1.

With (ii) we get

%YmO= 21 arccos(- + V - arccos( 2 _

Km - Ka

and therefore (16).
In the non-inflectional case K is a positive periodic with the period T =

4K/IJr. I where K denotes the complete elliptic integral of the first kind. For
t = S,, one obtains

I'1(s, + T) - *(sm)I- 4] dn(u112 )du = 4arcsin(sn(K)) = 2w.

For an inflectional elastica x formula (16) implies an upper bound for #cM
if the absolute value of the oriented angle between x'(0) and x'(L) is bigger
than '.

Corollary 7 For an inflectional elastica x with tension parameter a and
S>' (L) >r K2 16

a cos(ik/2)

12



Proof: It follows from (16) that a turning angle bigger than 7r can only
happen for positive a. The inflectional nature of z implies therefore the left
inequality. The right inequality follows from the fact that ik has to be less
or equal 'I,,,• which is given by (16).

0

As the main result of this paragraph we show that an elastica can be
represented as a linear combination of its curvature, energy and arc length.

Theorem 8 If x is an elastica with tension parameter a" 4 Xc,,2 then

X(s) - 1 ( sin(p + t) cos( + 0) (2(K(s) - c(0)) +x(O) (17)
X2) -a. k-cos(+t9) sin(V+t9) ( E(s)-os +

where cosV = (zo - o)/(• -o) and sin = 20/(K -o).

Proof: A plane curve x E C-[0, L] has a representation

X(s)- X(O) = C(*(3)- v+p+i)dS

= ¢((P + 0) fcos('(*I) - V) d3

+ C'(O + 9) JOsin(%k ( p) - §

Applying (iii) and (iv) of Theorem 3 yields

x(s) - X(O) =2 (C(P + O)(E(s) - as) - C'(v + t9)2(K(s) - ,(O)))

which is equivalent to (17).
The formulas for W follow from (i) and (ii) for s = 0.

0

Formula (17) provides an explicit representation of an elastica in terms
of its curvature function if K 2 a. Note that in the case -= o the elastic
curve is a circle of radius 1/1K1K as shown in figure 8.

Finally we show that elastica are essentially the only curves in the plane
that have a representation of the form (17).

Theorem 9 Let K be an arbitrary C2(R) function with a global maximum
in, of ac2, o" a real number smaller than i,, and E(s) f= fc 2(9) dg. An arc

length parametrized curve z where x(s) is given by (17) is an elastica with
curvature function x and tension parameter a.

13



Proof: We assume the case W + t9 = %/2 which can always be achieved
by applying a rotation to z. Then

I 2_ (2K', K2 - o), 3" = 2--- (2K", 2 ').

x is arc length parametrized if and only if z' = 1, i.e.

(2x') 2 = (X 2 - o)2 - ( 2 _ a)2. (18)

Differentiating (18) yields

2#6c" + K'K(K 2 
- a) = 0.

Therefore either K satisfies (7) or K is constant. For an arc length
parametrized curve the determinant [x', x"] is curvature. Here we have

(24 ,,)2 (2()2 _ C"(C 2 _ a)). (19)

If K is constant the curvature of z is zero, hence z is a trivial elastic curve.
If K satisfies (7) we substitute in (19) K." according to (7) and K r2 according
to (18). This yields

1I fI= KC.

The representation formula (17) of an elastic curve is extremely useful for
the computation of interpolating elastica. One reason for this is that (17)
involves no trigonometric functions and fewer integrations than the standard
representation based on the formula x' = (cos *,sin*). Therefore (17) is
less expensive to evaluate. Furthermore (17) can be used to find piecewise
polynomial approximations of elastic curves based on a spline approximation
of the curvature function. The author has established polynomial splines
which approximate the curvature functions of plane elastica with high ac-
curacy. Using these piecewise polynomial curvature functions together with
the new representation (17) one obtains polynomial spline approximations of
the elastica itself. These approximations will be discussed in (4].
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