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The Curvature of Plane Elastic Curves

Guido Brunnett

Department of Mathematics
Naval Postgraduate School

March 25, 1993

Abstract

In this paper plane elastic curves are revisited from a viewpoint
that emphasizes curvature properties of these curves. The family of
elastic curves is considered in dependence of a tension parameter ¢ and
the squared global curvature maximum x2,. It is shown that for any
elastic curve &2, is bigger than the tension parameter 0. A curvature
analysis of the fundamental forms of the elastic curves is presented.
A formula is established that gives the maximum turning angle of an
elastica as a function depending on k2, and o. Finally, it is shown
that an elastic curve can be represented as a linear combination of
its curvature, arc length and energy function and that any curve with
this property is an elastica.

1 Introduction

The search for Smoothing Algorithms in CAGD has induced research on
curves and surfaces which minimize functionals with geometrical or physical
meaning. The classical example are elastica which describe the shape of
elastic materials. Plane elastica can be defined as the extremals (critical
points) of the variational problem

L
./o x*(s)+o0ds — min

where x denotes the curvature, s the arc length of a plane curve z and o is
constant. The total lengtb L of z is considered to be variable. The set of
comparison curves of the problem is the set of all C*® curves in the plane
with fixed endpoints and fixed tangent directions at these points.
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Lee and Forsythe found (see [6]) that the curvature function of an elastica
satisfies the differential equation

K"(s) + %xs(s) +Kx(s)=0, KeR. (1)

We begin this paper with a short derivation of this result and a proof that this
equation is also sufficient for a curve to be an elastica. We will then show that
for any elastica the square of the curvature function has a global maximum
%, which is bigger than the tension parameter 0. The fundamental forms of
elastic curves first described by Euler are characterized by the values of the
parameters k2, and o. A curvature analysis of these curves is presented.

In section 3 various formulas expressing properties of elastica in terms of
2 and o are given. This includes z formula that gives the maximum turning
angle of an elastica as a function depending on «% and o. The explicit
formula for the maximum turning angle allows to determine an upper bound
for k2 in the case that an inflectional elastica has a turning angle bigger
than 7. As the main result of this section we show that a plane elastica has a
representation as a linear combination of its curvature, arc length and energy
function E(s) = [y «*(3) d5. This property characterizes the class of plane
elastica and can be used for speeding up the computation of interpolating
elastica.

2 The curvature of plane elastica

Given two points P,@ € R? and two unit vectors V € TpR%2, W € TgR?
then M denotes the set

M:={r:[0,L]-»R?*: LeR*zeC0,L]|z'(s)|=1fors€0,L],
z(0)=P,z(L)=Q,2'(0) =V, z'(L) = W}.

We consider the problem of minimizing the functional
L
= 2 d
E+olL /0 x3(s) + o ds

among all curves of M where « denotes the curvature and s the arc length
parameter of a plane curve z. The integral E = [ x?(s)ds is called the en-
erey of z on [0, L]. o denotes a constant which we call the tension parameter.
The total length L is considered to be variable. As the functional considered
is transiation and rotation invariant we assume in this section that P = (0,0)
and V = (1,0).




For z € M the tangent vector T of z is given by

T(s) = (cos(¥(s)), sin(¥(s)))

where the function ¥ with ¥(s) := fJ x(5) d3 gives the turning angle of z.
Using this notation the variational problem can be written as

n
Jn / W?(s) + o ds

L(Ga) as=e,

where the admissible functions ¥ € C*[0, L] are subject to the constraints:

under the constraint

V{0)=0, ¥(L)=1v with (cos¢, singp)=

According to Lagrange's multiplier rule the differential equation of this
probiem is the Euler equation for the integrand

F(W, ¥ 8) = ¥?(s) + 0 + Acos W(s) + usin ¥(s),
for some constants A, u € R, i.e.
” A H
U(s) = -3 sin U(s) + 3 cos ¥(s). (2)
(see e.g. in [3],[6]). By introducing the constants

A=2acos¢ pu=2asing m\wm
INsrEcTREY ,

we rewrite the Euler equation in the form
V" = k' = ~asin(¥ — ). ‘ , (3)
Multiplying (3) by 2¥' and integrating yields
=2acos(¥V - ¢)+ A (4)

Por

where A € R denotes an integration constant. Equation (4) has been used I F
to define elastic curves in the plane in the classic literature (see [7)).

In order to determine the constant A in terms of the tension parameter "10 a
o, we consider the boundary condition _,_\n“:"’_____:‘
FOU(L), (L), L) = 5 FOW(s), W(a), ) ¥'(L) = oa__

B
. n-+4vility Codes
3 f Avail &nd/or
‘;Diat Special

W T




that must be satisfied by the extremal. This condition is implied by the fact
that the total length L of the curve is variable in the variation (see e.g. [2],
p. 571). Thus,

V(L) = k*(L) = Acos W(L) 4 usin W(L) + 0. (5)
Comparing (5) with (4) shows that
A=o.
Therefore we give the following definition of an elastic curve under tension.

Definition 1 An arc length parametrized plane curve z with curvature func-
tion k is called elastica (or elastic curve) with tension parameter o, if for
somea,p ER

k?*=2acos(¥V—¢)+ o (6)

where ¥ denotes the function ¥(s) := [ x(5)ds.

Lee and Forsythe showed in [6] that the Euler equation (2) implies the
differential equation (1) for the curvature function k. We will now show that
(1) 1s in fact equivalent to (6).

Theorem 2 If k € C*(R) and V(s) := [y x(5)d5, then
k% = 2acos(¥ — @) + o

holds for some constants a, ¢ and o if and only if

K"+ -]-x3 - %an = 0. (7)

2

Proof: (i) Differentiating (6) yields the Euler equation in the form of
(3). Differentiating the Euler equation gives

k" = —acos(¥ ~ ¢)x.

Substituting the term cos(¥ — ¢) in the above equation according to (6) we
obtain (7).

(i1) Differential equation (7) can be integrated to the first oder differential
equation

(') = C - (1/4)0? - (1/4)(s* - a)”. (8)

Note, that for a real solution of (8) it is necessary that

a®:=C - (1/4)e®> > 0

4




and

2 2
Lx_:_fl. <1.
4¢2 ~
The function 8 defined by
8:=(-1)" «:ms("2 id
= ar 2a]

with n =1 for £’ > 0 and n = 2 for x’ < 0 obviously obeys the relation
x? = 2|a|cos 8 + 0. (9)

It remains to show that @ is an integral of «.
(8) together with the definition of a? and (9) implies

(x')? = a*sin 4.
Since sin 8 is positive (negative) if «’ is negative (positive), we obtain
k' = —|a|sin 6. (10)
Differentiating (9) and substituting &’ according to (10) yields
0 = k.

Since ¥ and 8 are both integrals of x there is a constant ¢ such that
V=0+¢ ForV¥
k% = 2|a|cos(¥ — @) + &

holds because of (9).
D

The squared curvature function x? of an elastic curve has a global maxi-
mum, even if &% is extended to the whole real line.

Lemma 3 If x is a solution of (7) on R, then x? has a global mazimum.

Proof: Since the function (1/2)(x® — o) is of the class C'(R) the solu-
tions of (7) can be extended to the whole real line.

To show that x? has a global maximum we observe first that (3) implies
the existence of a local extremum of x. This is because the assumption
k'(s) = ¥"(s) # 0 for all s € R means that ¥ is convex or concave and
therefore unbounded while according to (6) ' has no zeros only if ¥ is
bounded. Furthermore from (3) and (4) it is obvious that any local extremum
of « is a global extremum of 2.




We assume now that x? has no global maximum on R. In this situation
' has exactly one zero s, on R and «? takes its global minimum in this
point. Note that x is non-zero for any s # s, because a zero of « at a
point § # Smin wWould imply that £(smin) = 0 and «’(3) = 0 for some point 3
between § and smin. Therefore (x?)’ has no zero besides s,,;, and &2 is strictly
monotone increasing on the right of s,,;,. Hence x is monotone increasing
resp. decreasing on the right of s, if x has positive resp. negative values
on the right of spin. The formula

V)= [ 5(3) d5 + ¥(Smin)

yields that ¥ is in any case unbounded. This is a contradiction to the as-
sumption because (4) implies the existence of global maxima for x? if ¥ is

unbounded.
]

We now give the relation between the global maximum «2, of x? and the
tension parameter o and express k in terms of elliptic functions.

Theorem 4 Let k € C*(R) be a solution of the differential equation (7) with
a global mazimum k2, # 0 of k2 on R. Then the following statements hold:
(i) kh 20
(i1) & has a zero if and only if &2, > 20. In this case & is given by

K(s) = Km en(y/ (s, = 0)/2(s = sm) | K?) (1)

with the parameter
2

Km
2(k2 — o)

(iii) 20 — k2, < k? < k% for k% < 20. In this case K is given by

k=

k(s) = kmdn(Km(s — s,,)/2| -kli) (12)

Proof: As a global maximum point s,, of k? is also a zero of «’ (8) implies

_la_1
C= 2%m = 3%%m:
Hence (8) takes the form
() = 3% = K)o + 3, = 20). (13)




As all quantities in (13) are real (i) follows from the fact that the term
(k2 — «?) is always non-negative and therefore the term (x? + x2 — 20) has
also to be non-negative for any x2.

Using the same argument we observe that x?(s) = 0 for some s implies
that x2 > 20 while for 2, <20 «x? has to be greater or equal 20 — &Z,.

To express « in terms of elliptic functions we procede as follows. In the
case that k2, > 20 we substitute z? = (x?, — x?)/x2, in (13) and obtain for z

the differential equation

()7 = 5(kk = o)1 = 2)(1 = ¥3%) (14)
where R
2 Km
k= 2(k2 —0)

(14) is the differential equation of Jacobi’s function sn=sn(u) for the argu-
ment u = (/1(x2, — 0)s (see [1],p. 114). We therefore obtain

2%(s) = sn?(\/(x% = 0)/2(s ~ sm) | K?).

The relation x? = &2 (1 — 2?) then gives

k3(s) = k2 cn?(\/(KZ, — 0)/2(s = sm) | K?) (15)

(see [8],p.16). Since « is differentiable, (15) implies (11).
In the case that x2, < 20 we substitute z2 = (k2 — k2)/2(x2, — o) in (14)
and obtain for z the differential equation

() = %xfn(l - )1 - I22?)
where
= p = "———;"—2':'—.
Hence

2(s) = sn?(km(s — sn)/2| ).

The relation
x? = k3 (1 - 127

yields
k3(s) = k2 do?(km(s — sp)/2] )

(see [8],p.16) which implies (13) again because of the differentiability of .
8]




Theorem 2 implies that the curvature function of an elastic curve extends
to a periodic function on R. In the case that x2 > 20 this periodic function is
symmetric with respect to any zero of its derivative and antisymmetric with
respect to any zero. According to Love [7] this situation is called inflectional
because the extersion of z has turning points. In the case that k2, < 20 the
extension of x has no zeros but is still symmetric with respect to any zero
of its derivative. The local extrema in this case are x,, and +(20 — x2).
The situation is illustrated in figure 1 - figure 8 where for x,, = 1 various
curvature functions and the corresponding elastica are shown. If only non-
negative tension values are considered o is an element of [0,1]. With ¢
increasing from 0 to 1 the curvature function changes continuously from a
lemniscate function (¢ = 0) to a constant (¢ = 1). A classification of the
different forms of elastica has beer given by Euler (see [5], {7}).
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3 A characterizing representation theorem

First we summarize the main formulas for elastic curves. In order to avoid
repetitions we use the following convention: if a curve z : [0,L] — R? is an
elastica , then x denotes the (analytic) curvature function of z, & denotes the
extension of x on R, &2, the global maximum of k? and s,, is a number with
%%(sm) = x2,. Furthermore ¥ : [0, L] — R is the function ¥(s) := J§ x(3) d3,
¥ denotes the extension of ¥ on R and ¢ := ¥(sn). The energy E of z is
tke function E(s) = [; x?(3)ds. For convenience we also use the notation

C(¥) = (cos ¢,sin ). ¥ is the angle in [0,2x] with 2'(0) = C(9).

Theorem 5 For a plane elastic curve z with tension parameler o the fol-
lowing relations hold:

(i) () = (s, = o)sin(¥ - ),

(i) K*(s) = (x5 — o) cos(¥(s) — p) + o,

(iii) k(s) — x(0) = —3(x% —0) < C'(p + 9),2(s) — 2(0) >.
(iv) E(s) = (k2 —0) < C(p+ 9),z(s) — 2(0) > +os,

Proof: Without loss of generality we can assume that a in (4) is positive.
From lemma 3 we know that #? has a global maximum 2. Since for positive
a the maximum occurs iff cos(¥Y(sn) ~ @) = 1, it follows that

0=k -0

and
¢ = VY(sp) + 2kn.

Therefore (3) and (4) imply (i) and (ii). To obtain (iii) we rewrite (i) as
K(s) = -%(xf,, — o)(sin(V + 9) cos(ep + 9) — cos(¥ + 9) sin(y + 9))
and integrate using
z'(s) = (cos(¥(s)),sin(¥(s))).
To verify (iv) we write (i) in the form
K2(s) = {2 — o)(cos(¥ + ¥) cos(ip + 9) + sin(¥ + 9) sin(¢ + 9)) +

and integrate.

11




Since the elliptic function cn in Theorem 3 has the symmetry properties
of a sine wave while dn is positive, the turning angle of an elastic curve is
bounded in the inflectional case ¢ < 3«7, and unbounded otherwise. Formula
(i1) of Theorem 3 can be used to determine the maximum turning angle of
an inflectional elastic curve.

Corollary 8 The mazimum turning angle W,,,. 1= maX,g(14+7] [¥(s)| of an
elastica ¢ with period T and tension parameter 0 < 1x2, is given by

). (16)

V¥ mar = 2arccos( >
o — K2,

Ifo > k2 #0 then i
[9(t + T) - $(1)| = 27
for anyt € R.

Proof: Let sy be a zero of 5. Then it follows from the symmetry prop-
erties of k in the inflectional case that

s0+T/4 _ _
Wonas = 21/ &(s)ds| = 29 (so + T/4) - ¥(a)l.
With (i1) we get

K2,
K2

-0 ~0
) + ¢ — arccos(

- 2 _
-0 k2 -0

wma: = 2' ATCCOS( ) - SO‘

and therefore (16).

In the non-inflectional case « is a positive periodic with the period T =
4K /|k.| where K denotes the complete elliptic integral of the first kind. For
t = s,, one obtains

- - K
[(V(sm + T) = V(sm)| = 4_/0 dn(u|l®) du = 4 arcsin(sn(K)) = 2r.
D

For an inflectional elastica z formula (16) implies an upper bound for x?
if the absolute value of the oriented angle between z'(0) and z'(L) is bigger
than «.

Corollary 7 For an inflectional elastica r with tension parameter ¢ and
Y= |W(L)|>n:

% 1
DO R
2s o =1 cos(y/2)




Proof: It follows from (16) that a turning angle bigger than = can only
happen for positive o. The inflectional nature of z implies therefore the left
inequality. The right inequality follows from the fact that y has to be less
or equal Wp,,. which is given by (16).

O

As the main result of this paragraph we show that an elastica can be
represented as a linear combination of its curvature, energy and arc length.

Theorem 8 If r is an elastica with tension parameter o # &2, then

_ 1 sin(p+9) cos(p +9)\ [ 2(x(s) — x(0))
z(s) = K2 —o (—coss(agp +9) s?n((p + 19)) ( E(s)-os ) +2(0) (I7)

where cosp = (k3 — 0)/(k%, ~ 0) and sinp = 2x{/(x2, - o).

Proof: A plane curve z € C*™|[0, L} has a representation

2(5)-2(0) = ['COUE) -p+p+9)ds
= C(p+9) /0’ cos(¥(3) - p)ds
+ Clo+ 19)/0' sin(¥(3) — p) ds .

Applying (iii) and (iv) of Theorem 3 yields
2(5) = 2(0) = = (Cly + 9)(E(s) — 05) ~ C'lyp + D)2(x(s) - x(0)

which is equivalent to (17).
The formulas for ¢ follow from (i) and (ii) for s = 0.
0

Formula (17) provides an explicit representation of an elastica in terms
of its curvature function if x2, # 0. Note that in the case k2, = ¢ the elastic
curve is a circle of radius 1/|,,| as shown in figure 8.

Finally we show that elastica are essentially the only curves in the plane
that bave a representation of the form (17).

Theorem 9 Let x be an arbitrary C*(R) function with a global mazimum
x2 of k%, o a real number smaller than k2, and E(s) := J$ xk*(3)d3. An arc
length parametrized curve z where z(s) is given by (17) is an elastica with
curvature function x and tension parameler o.

13




Proof: We assume the case ¢ + ¢ = x/2 which can always be achieved
by applying a rotation to z. Then

‘ 1

1
= (2«',6*~0), 2= (2x", 2xx").
x?ﬂ -0 b 1 +

2 _
K3 -0

z is arc length parametrized if and only if 2’ =1, i.e.
(2)? = (x5, — 0)* = (s* — 0)". (18)
Differentiating (18) yields
2c's" + k'x(k* = ) = 0.

refore either x satisfies or Kk is constant. n
Theref eith tisfi 7 stant. For an arc length
parametrized curve the determinant [z’, 2] is curvature. Here we have

[z, 2"] = z—;?:i—a;-i(?(x')zx - x"(s? - 7). (19)
If « is constant the curvature of z is zero, hence z is a trivial elastic curve.
If k satisfies (7) we substitute in (19) x” according to (7) and «? according
to (18). This yields
[/,2"] = «.

O

The representation formula (17) of an elastic curve is extremely useful for
the computation of interpolating elastica. One reason for this is that (17)
involves no trigonometric functions and fewer integrations than the standard
representation based on the formula z’ = (cos ¥,sin ¥). Therefore (17) is
less expensive to evaluate. Furthermore (17) can be used to find piecewise
polynomial approximations of elastic curves based on a spline approximation
of the curvature function. The author has established polynomial splines
which approximate the curvature functions of plane elastica with high ac-
curacy. Using these piecewise polynomial curvature functions together with
the new representation (17) one obtains polynomial spline approximations of
the elastica itself. These approximations will be discussed in [4).
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