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SECTION 1

INTRODUCTION AND SUMMARY OF RESUI.TS

1.1 Statement of the Problem

Electromagnetic radiation can diffuse through a thin walled metallic enclosure
and, perhaps, interfere with the proper functioning of internal electronics. This report
shows how to predict the current induced on a wire within a rectangular metallic box
(figure 1) which is irradiated with an ekitromagnetic pulse. The wire is connected between
opposite walls of the box and the incident pulse has arbitrary time history and angle of
incidence. Simple formulas are derived for a straight wire. The case of an arbitrarily
shaped wire within any shape enclosure is discussed semi-quantitatively. Gocd agreement
has been found between the analytic formulas and computer code results.

This work was motivated by an experiment at Harry Diamond Laboratory which
measured the current produced on a wire within a shielded room by an EMP simulator.
The walls of the room were entirely coated with metal so that diffusion was the primary
mechanism for leakage of radiation into the enclosure. A future document will compare
the results of these experiments with the theory developed in this report. Comparisons
are shown here between the theory and some code results.

It is helpful to consider three distinct regimes in frequency space 1'-. In the low
frequency regime the skin depth is larger than the wall thickness of the enclosure. For
instance, if the conductivity and wall thickness of the enclosure are 106 and 1 millimeter,
respectively, then the low frequency regime extends from zero frequency to about 1.6x 106
Hertz (angular frequency). The intermediate frequency regime extends up to the frequency
of the lowest internal mode of the enclosure. For example, the lowest mode of a cube two
meters on each side is 2.5 x 108 Hertz. The high frequency regime extends upward from
the lowest mode.

Figures 2, 3, and 4 show typical results yielded by the theory. Figures 2, 3
and 4a show the wire current as a function of the frequency of the incident pulse in the
low, intermediate and high frequency regimes for a box 2 meters on each side irradiated
with an external field of Hx=l Ampere/meter. The wire parameters and other details are
indicated in sections 1.2 - 1.4. As expected, the wire current is largest at low frequencies
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because the enclosure is a good shield if the skin depth is smaller than the wall thickness.
Figure 4b shows the wire current in the time domain. The box is irradiated by a ten
nanosecond long square pulse whose magnetic field rises abruptly to a peak H,-=1000
Amperes/meter. The wire currept rises to a peak value of about 0.5 ma which persists
for about 100 microseconds. The wire resistance is 0.01 ohms/meter and the inductance
is 10-6 henry/meter. The other parameters are the same as in the calculations of figures
2-4.

The remainder of this introduction (sections 1.2, 1.3 and 1.4) summarizes the
final results of this analysis. The final analytical formulas for the three regimes are dis-
cussed along with the code comparisons which corroborate them. Section 1.4 discusses the
physics of the wire response and extends the analysis to arbitrarily shaped enclosures and
wire shapes. Section 1.5 summarizes some basic mathematical facts which are used in sec-
tions 2-5. Sections 2 through 5 contain the detailed derivations of the results summarized
in section 1. Section 6 discusses the code HFC which treats external scattering from a box.
A previous report discusses the low frequency regime in greater detail. For the reader's
convenience it is reproduced here (with some minor corrections) in Appendix A.

MKS units are used in this report.

1.2 Low Frequency Regime

This subsection summarizes the final results of the low frequency regime. The
detailed derivation are shown in Appendix A.

For boxes of any practical size the wavelength of the incident electromagnetic
wave in the low frequency regime is much larger than the box. Consequently, in the
neighborhood of the box the incident magnetic field is spatially uniform and is given by
the real part of

HDe-iwt (1 - 1)

Here, a single Fourier component of the incident pulse will be considered which oscillates
at the frequency w. The time domain wire current will be considered below.
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The uniform external field can be resolved into its vector components HD, Hý
and HD, along the three axes in figure 1. Then the current in the wire is given by the final
result

"" " I( iW) -= o0I-H: c b iwAOH a b
- - iwL -2 b) + c -Y- iwL 2 a+b (1-2)

Here, the coordinates of the wire are x = xo and z = zo. H* and H: are the vector
components of the magnetic field inside the box

S=

HD
I - iW/Wj

1 -iHD (1-3)

which are also spatially uniform (Appendix A and section 2). Also a,bc are the box
dimensions and

(3abc 1/3

The resistance per unit length of the wire (at zero frequency) is, of course',

1 ohm.

7Ro -o0 (m-"r) (1-4)

in terms of its radius wo and conductivity ao. But at higher frequency where the skin
depth

6o - /•o-- -•o°(1-5)

is less than the wire radius (6o < wo) the wire impedance6 is
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Figure 1. Problem geometry.
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• wo ohm (
-. (1-6)

The symbol -y is defined to be

f Ro if 60 wo (1-7)
"Ro (1-i) o if 5o>wo

L is the inductance per unit length of the wire in the box. Above the frequency

3

where a and A are the wall conductivity and thickness the inductance is

10= oo sin 2 a ( , ) (henry) (1- )
ac 4= (D) + () meter

Below this frequency it is approximately the inductance which the wire would have in free
space outside the box. The symbols juO and co have their usual meaning.

Figure 2 compares the wire current predicted by equation 1-2 with the current
computed by the computer code BOX4 discussed in Appendix A. The agreement is within
a factor of four over five orders of magnitude of frequency. In this example the box is two
meters on each side and the walls are one millimeter thick. The wall conductivity is 106
mho/meter. The wire resistance R0 = 0.0183 ohm/meter and it is located one-half meter
from the x = 0 and z = 0 walls. The wire is one centimeter in radius and the external
magnetic field is pointing in the x - direction and has a magnitude on one ampere/meter.

Table I indicates that the wire current is predicted at different positions of the
wire at one hertz angular frequency. Agreement is within twenty percent when the wire
location is varied from z0 - 0.05 to zo = 0.95 meters. All other parameters are identical
to the figure 2 case.
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Table 1. Wire current as a function of wire position.

Wire Position Wire Current Wire Current
x (cm) Theory (Amp) Code (Amp)

5 3.3 x10- 5  3.5 x 10-5
10 3.1 x 10-1 3.3 x 10-5

50 1.7 x 10-1 1.6 x 10-1
95 1.7 x 10- 6  1.4 x 10-6

Tabie 2 indicates good agreement between the analytic expressiors and the code
when the frequency is 10s hertz. The analysis always underpredi:ts the current by about
of factor of three.

Table 2. Wire current as a function of wire position.

Wire Position Wire Current Wire Current Ratio
x (cm) Theory (Amp) Code (Amp) Code + Theory

5 0.033 0.10 3.0
10 0.027 0.081 3.0
50 0.011 0.043 3.9
95 0.0011 0.0029 2.6

Figure 2 illustrates the general behavio- of the wire current. It increases linearly
with frequency to a peak value. At sufficiently high frequency the inductive reactance of
the wire becomes large enough to cause the current to decrease.

The wire current can be obtained as a function of time by taking the inverse
fourier transform of equation 1-2. If the incident pulse has an arbitrary time history given
by the function H1 D then the wire current is

(t)

I(t) 2 b°(z°-)+c dt'IIH {R e- (t-t" -we-(-)

S- w.- faL
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/AO4.'XO 2)k. j~ dt'H" ~e-f(" - wiewd".)} (Amp) (1-10),O-wL f a R

In general, this integral smoothes out the fluctuations in the incident pulse so
that the wire current is much less rapidly varying. When the incident pulse first reaches
the box the wire current slowly builds and after the pulse has past the box the wire current
slowly decays to zero.

These results are explained in section 2 and Appendix A.

1.3 Intermediate Frequency

The analytical formulas for the wire current in the intermediate frequency regime
are summarized here. The details are in section 2.

In the intermediate frequency regime equation 1-2 applies but the internal mag-
netic fields within the box are no longer given by equation 1-3. Instead, the appropriate
expressions to use are

HýD

H: =s cce(3) Isi n1-11

cos(3A) - 13#sin(PA) '

The wall thickness is A and the symbol P is the attenuation constant of a wave propagating
in the metallic wall. In terms of the skin depth 8 in the wall it is the complex number

1+i+ = -(1-12)

Figure 3 shows the intermediate frequency regime wire current for the case illus-
trated in figure 2. Clearly, at high frequency the wire current becomes very small because
the walls are many skin depths thick and the enclosure is a good shield.

8
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The pulse starts to diffuse into the enclosure in a time t, = /40i( 2 seconds which
is frequently many microseconds. If the incident pulsewidth is short compared to this time
then the wire current in the time domain is approximately

I(t) = /o•o[1 4Rot t L) +-16ROt t 'tA 1/2

L ~ ~ ~ ~ b a L t 'rC

(Zo - 5) b Hox - (xo _ a)b--)H-s t < t/10
2 ~ 2 a-+-bJt<t/

where •i - 36L

)O=W1  R0I ýe-Rot/L wle-Wit}
P.0 - w•L ' eL

(z O x a) b Ho.1 t>t&1(zo c)b-fIo - (o- a5)~ ~

-2 b +c 2 a+bJ

The wire current does not depend upon the details of the time history of the incident pulse.
Instead only the time integrated impulse

HoA = 00L H Ddt

Hox = fJ0 HD.dt

is important. The above early time approximation is valid provided RotA/10L < 1. In
general, the wire current slowly rises to a peak at about the time rA/10. It then falls to
zero. These expressions make use of the early and late time approximations for the internal
magnetic field which was derived by Bedrosian and Lee25 .

10
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1.4 High Frequency Regime

The analytic formulas for the high frequency wire current are summarized here.

If a plane wave is normally incident on the z = c wall of the box (figure 1) then
the wire current is

00,H In(cosnw)(1 -coalw)} sin -rx sin -irz

1= , at(t)+(~)~ a C
C ' a [() c (1 - 13)

4iw sin2  sin 2 B(
aCO2 (I(K)' + (11)2 - kP

Here the incident wave magnetic field (at z = c)

(1- 14)

is in the x - direction and the transfer impedance of the wall is

Z sinA) (1-15)

The speed of light in vacuum is denoted by v and k = w/v is the wavenumber.

Figure 4 graphs the high frequency wire current given by equation 1-13 for the
box referred to in the figures 2 and 3 example. As expected the wire current is minute.
In the high frequency regime the incident frequency cart equal the frequency of one of the
internal modes of the box. One might expect that this would lead to a resonance which
might cause a dramatic change in the wire current at the resonance frequency. Figure 4
shows one such resonance near 2 gigahertz angular frequency.

At low and intermediate frequencies the above formulas apply for any angle of
incidence. However, the case of arbitrary angle of incidence at high frequency is much more
complicated to treat and no simple formula applies. Instead a computational method has
been derived. The code HFC (section 6) calculates the current on the outside of the box.

11
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These results are then used by the method described in sections 4 and 5 to compute the
wire current.

As a practical matter the wire current is so small at high frequencies that a very
"%i',e prediction is probably not necessary. An approximate method which is convenient

-auploy is for most applications more useful. It is recommended that equation 1-13 be
used to yield an approximation in the case that the frequency is so high that the wavelength
of the incident wave is much less than the box dimensions. At lower frequencies (in the
high frequency regime) the wire current might be estimated with

4eipA
-i~vH sin (ka) cos ka + • sin ka

- (2 (1-16)
in a a)] )/(2)n

n-ia S v 2af

Equation 1-16 furnishes the wire current for an enc:losure formed by two parallel
plates of infinite extent (figure 5). A pulse given by equation 1-14 is incident normally on
each plane. The planes are a distance 2a apart and the wire coordinate is V0 (figure 5).

Figure 5 also graphs the wire current for a parallel plate enclosure formed by
plates 2 meters apart having the same conductivity and thickness as in the previous exam-
ple. A similar wire is located 0.5 meters from one plane. The total field on the planes is
one ampere/meter. The magnitude of the current is about the same as in the box example
in figure 4 but the resonance spikes are more visible.

The code HFC has been written to treat the high frequency case with a great
deal of precision. Figure 6 shows that it calculates correctly the scattering of an incident
electromagnetic wave. The surface current density (amperes/meter) on the outside of
the box is graphed around the perimeter of the box. Agreement is seen to be good with
published results for the two frequencies discussed in section 6. The k. = I case corresponds
to a wavelength equal to three times the box dimension a.

The wire current can be computed as a function of time for the intermediate and
high frequency cases by taking the inverse fourier transform

1(t) =dwe-I(W)

14
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of equations 1-2, 1-13 or 1-16.

The parallel plate enclosure is discussed in section 3. Other high frequency
results are explained in sections 4, 5 and 6.

1.5 Physics of Wire Current

The fundamental physics of the wire coupling is easily understood. The metallic
conductor very effectively shields the incident electric field from the interior of the con-
ductor at all frequencies. At low frequencies charge appears on the external surface (the
conductor polarizes) which creates an electric field which cancels the incident field within
the enclosure.

The incident magnetic field, however, slowly diffuses through the walls. The curl
of the magnetic field creates a small electric field which drives current in the metal. The
current creates its own magnetic field which cancels the incident field so that the internal
magnetic field is small. This is the mechanism of inductive shielding which occurs in the
low frequency regime. At higher frequencies the internal magnetic field is further reduced
as the wave propagates many skin depths through the metal.

The dotted line in figure 7 defines a closed loop which runs through the wire
and the metallic walls. Around this loop Faraday's law states

EMF = JE . dl = iwuo f HS. ndS

This equation indicates that the electromotive force driving current through the wire equals
the rate of change of magnetic flux through the loop. Clearly, the magnetic flux increases as
the magnetic field increases. The equation also predicts that as the frequency w increases
the EMF and wire current will increase. The rising portion of the wire current in figure 2
is due to this effect.

However, this source of EMF drives current against two types of impedance.
Firstly, the frictional force exerted by the metallic lattice impedes the electrons flow-
ing through it. This is quantified by the wire resistance. Secondly, the current flowing
through the wire circuit creates a magnetic field which reduces the flux in the loop and,
consequently, the EMF. This can be quantified in terms of the wire's self-inductance L. As

17
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the frequency increases the inductive reactance increases and so the wire current decreases.
This causes the drop in current in figure 2 at the higher frequencies.

In the low frequency regime the internal magnetic field is largely independent of
the shape of the enclosure for reasons discussed in Appendix A and section 2. Furthermore,
the inductance L is always of the order of p0 henry/meter regardless of whether the wire
is straight or (within reason) curved. Consequently, the EMF in the loop in figure 7 and
the wire current itself is expected to be somewhat insensitive to the precise shape of the
enclosure or the wire.

The u.Lture of the internal magnetic field in the low frequency inductive regime
has been very well developed elsewhere2 ,4'5 . If a short pulse is incident on an enclosure of
any shape the internal magnetic field slowly rises from zero and reaches a peak after about
r&/4 where

&= '- A a 2  seconds

Here A is the wall thickness. This is the time for the radiation to diffuse through the walls
and is often tens of microseconds. The field then decays to zero exponentially with a fall
time of

rdT A

where ý is the ratio of the volume of the enclosure to the volume of the walls. In general,
then, if the incident pulse is shorter than r& then the internal magnetic field slowly rises
to a peak after TA/4 seconds. It then falls even more slowly. The internal field behavior is
totally insensitive to the detailed time history of the incident pulse. The internal electric
field is induced b the changing internal magnetic field and, therefore, is proportional to
the rate of change of the magnetic field.

The wire current can be expected to rise to a peak at about the time rT and
then fall to zero. This behavior obtains as long as the pulsewidth is shorter than rA and
is independent of the details of the incident pulse.

1.6 Mathematical Remarks

Several mathematical facts which will be used below are discussed in this section.

19



The electric and magnetic fieldss'6 can be written in terms of the vector A and
scalar @ potentials

B = VxA

_VO A
E = _LA (1-17)

In this report the Lorentz gauge is used exclusively.

Consider a scalar function 0 satisfying the differential equation

V2 0_1 a2 = o (1-18)v2 at 2

Then, the transformation

Ao =A-V

S=

yields new potentials which lead to the same E and B (equation 1-1) and satisfy the Lorentz
gauge conditions. Although A and 0 must satisfy boundary conditions on the box, 0 can
have any value on the boundaries (as well as any initial conditions) because the electric
and magnetic fields on the boundary given by equation 1-1 are completely independent
of 0. Therefore, 0 can be any solution to the homogeneous wave equation (equation 1-2)
which will be seen to be very useful.

The freedom afforded by 0 allows one to choose a scalar potential 0 which is zero
on the walls. For if 4' were not zero on the walls then i, could be chosen to have the value

S= ± on the walls. Then 4' must be that solution of the wave equation (equation 1-18)
which has the prescribed value on the wall which is

20



t ±J ~VG -dS .(-9

iJ

Here G is the Green's function of the wave equation satisfying Dirichlet boundary condi-
tions and the integral is taken over the wall surfaces. Clearly, another scalar potential 00
could be defined

00 = 0+ -(1-20)

Of course, 00 = 0 on the walls.

The Helmholtz equation

V2to + k20b = -4?rp

arises from fourier transform of the wave equation as well as the diffusion equation. It has
the general solution3

)=fpGdV + f [GVP - 0VGJ dS

where the Green's function satisfies

V 2 G + k2G = -47rb(T -

It is

G = 47rZ &1*•(r') on(F)
n k2 - k2

where to are eigenfunctions of the Helmholtz operator

V'On + k 20, = 0

They are normalized according to

0, G and 0t, all satisfy the same boundary conditions.
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SECTION 2

INTERMEDIATE FREQUENCY REGIME

2.1 Introduction

In the intermediate frequency regime the frequency is sufficiently high that the
skin depth is smaller than the wall thickness but sufficiently low that the lowest mode of
the box is not appreciably excited. For instance, if the wall conductivity and thickness are
106 mho/meter and one millimeter, respectively, and the box is 2 meters on a side then
the intermediate frequency regime extends from about 1.6 x 106 to 2.5 x 108 sec-langular
frequency.

At any point within the wire the current density J is related to the total electric
field ET by

J = aoET (2- 1)

where a0 is the wire conductivity. At low frequencies the current is uniform throughout
the wire of radius w0 so the total current is

= irw (2-2)

and

11o =ET

where the wire resistance per unit lengtit is

1 ohms (2-3)
irwoa0 In)

At higher frequencies, however, the current runs primarily within a skin depth 60 of the
wire surface and

22



!Ro(I - i) Mo = E, (2 -4)

The total electric field is

ET=E*+E . (2-5)

Here, E* is the field within the box when the wire is not present but the box is irradiated
with the external electromagnetic field. Similarly, EW is the field within the box caused by
a current I which runs down the wire and around the box when the external driving field
is absent. Equations 2-4 and 2-5 indicate that the current on the wire must satisfy

IRo(1i- ) = E" + Ew (2-6)
26o

where the fields are evaluated at the wire. The derivation of this equation is very similar
to the approach used in many scattering problems and is explained in greater detail in
section A2 of Appendix A.

E' and Ew are calculated in the following two subsections. Then equation 2-6
will be employed to calculate the current I in the wire.

2.2 Calculation of Ew

Figure 7 illustrates the problem geometry. A wire carrying a current density J
connects opposite walls of a metallic box. The electric field within the box is sought. Of
course, in order to driveP the current there must be a source of electric field. For present
purposes, however, it is only necessary to calculate the fields produced by the current so
the details of this source are irrelevant.

The current in the wire can be written as a cosine series

J¥(x~yz) :E Jp(x'z) Cos(--)(-7

p23

23



where Jp is the fourier coefficient and is a function of the radial position. The time
dependance is exp (-i w t). The cosine series will faitnfully converge to any possible wire
current in the open interval (O,b) but at the wire ends the series fails. This causes no
difficulty.

The Hertz Vector

It is helpful to employ the Hertz vector 1'. The polarization vector P is defined
in terms of the current density by

oP _(2-8)
at

By the continuity equation, therefore, the charge density on the wire must be

p=-V.P (2-9)

Maxwell's equations then become

V P 013 . 1 1
at at

V.B-=0 v xE -- (2-10)
at

It is easily shown thctt these are satisfied by the electric and magnetic fields given by

1 aflr

T2 x -ýt,

V X M(2-11)

where the Hertz vector satisfies

24



7111 _P (2-12)V2l Wlt e3•

The speed of light in vacuum is called v since c denotes the box length.

In terms of the vector and scalar potential (section A)

8A
.= Wet (2- 13)

B=VxA • (2-14)

Comparing equations 2-11 and 2-13 and 2-14 shows how IT depends upon A and 4.

1 811[
A I= 1

v2 at

S= -V. 1 (2-15)

Boundary Conditions

Since the wall conductivity is finite the inside and outside of the box are coupled.
An exact solution would solve for the exterior and interior fields together. Because the
skin depth in the intermediate region is small, however, the coupling is extremely small
and the exterior fields are minuscule compared to those in the interior. Consequently, the
walls will be approximated as perfect conductors to calculate EW.

The Hertz vector has three components but only the 11y component is non-zero.
This appears reasonable since P has only a y-component so that only H'[y is driven through
equation 2-12, But this is insuffirient to prove that IT. and 1I, are non-zero because the
homogeneous equation has non-zero solutions. Instead, the assumption that IT. and 11,
are zero can be justified at the end of the calculation by verifying that the final solution
satisfies Maxwell's equations. It has been pointed out in section A that it is always possible
to choose a scalar potential 4 such that on the walls
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= 0 .(2-16)

On the x=O and x=a and z=O and z=c walls, Ey 0 0. From equation 2-11 and
equation 2-15 on the walls

V.n1=0 (2-17)

and

Ey = 5(v. f) + W2 , (2- 18)

so that on these walls

11=0. (2- 19)

On the y=O and y=b walls equation 2-15 shows

Vr1= O

so that

- 0 (2-20)
ay

Equations 2-19 and 2-20 are the boundary conditions on 11.

Therefore, by the remarks in the last subsection of section 1 the Hertz potential
is

fly = ,Eo P7 GdV (2-21)
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where G is the Green's function

(kcNO-kV) k2

where

nk2n 1- 2+(,) n)
a b c

and k = w/c. The exponent 6,,,o is one if m=O and zero otherwise. Here G satisfies Dirichiet
boundary conditions on two walls and Neumann conditions on the other. Of course the
current runs primarily within a skin depth of the surface of the wire but the analysis is
simplified by approximating the current to run along a very thin filament so that

jy 00 ~p717(2 23
PolIpb(x )b(z 1) coo( -) .(-3

From equation 2-8 the polarization PY, is found and the Hertz vector is

-4 00 sin(!2) cos( m ~) sin(DMl) sin(qf) sin(Tli) (-4

M=0

From equation 2-11 the electric field within the cavity can be computed. At the wire
location it is

-4_ 00___ 2 IM-2 ~ý-2w m~ryEw (y) = -. E I l* sin - sin - coo - (2-25)
iwacEot {Ik2- k2 a c b

This is the desired field at the wire which will be needed below.
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The advantage of the Hertz vector approach is that it simplifies the boundary
conditions. The boundary condition which was employed is that the electric field tangent
to the walls is zero while the derivative of the normal electric field is zero (since the
divergence of the electric field is zero just inside the wall where the tangential electric field
vanishes). But the electric field is due to the combined affect of both A and 0. Hence,
the boundary condition mixes the behavior of A and 4. The Hertz vector provides one
approach to unmix the boundary conditions. Another possible approach is to solve the
scalar retarded potential equation subject to the conditions that 4 is zero on the walls.
With this value of q$ the boundary condition for A can be found from

aA_i9 = -E - 0
at

2.3 External Driver E

In this section the electric field E' produced within the enclosure is calculated
when the wire is not present. In sections 4 and 5 this problem is solved with the help
of the code HFC very precisely for the high frequency regime. This numerical method is
applicable to the intermediate frequency case also and will yield a very accurate solution.
However, in the intermediate frequency regime the code treatment is unnecessarily com-
plicated. The method developed in this section is expected to yield a simple, accurate
result.

Figure 8 illustrates three enclosures which are irradiated by an electromagnetic
wave whose wavelength in free space is much smaller than the enclosure. Since the wave-
length is large the external magnetic field is constant around the enclosure (Appendix A)
and is given by

HDe-iwt (2 - 26)

The internal field H' is constant in each case and points in the direction of the
external field. For the sphere, parallel plates, and two polarizations of the cylinder 2,5

Hi = HD {cos(03/) - -sin(P3A)- (2-27)
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Figure 8. (a) Two parallel plates, (b) a cylindrical shell with longitudinal HD,
(c) a cylindrical shell with transverse HD, and (d) a spherical shell.
All cavity walls have thickness A, conductivity a (taken frcm EMPf
Interaction: K. S. Lee, AFWL-TR-80-402).
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H' = HD -{Cin(} (2-28)

H' = HD cos(13A) - Lsin(,OA) (2-29)

where '02 = lwsou (a = (I + i)/6 where 6 is the skin depth). The dimension a is defined
in the figure and A is the wall thickness. Clearly, the internal field is almost the same
regardless of the geometry. It is reasonable to assume, therefore, that the field within a box
is also approximately uniform and its magnitude is roughly that of a spherical enclosure.
If the sides of the box are equal the box might best be replaced by a sphere whereas if one
side of the box is very small it would best resemble two parallel plates. Fortunately, the
above formulas indicate that all geometries have about the same internal fields.

Equation 2-27, therefore, will be used to approximate the uniform field within
the box. The sphere's radius is chosen to be

(3abc.l/s
I = 1/3 (2-30)

so that the volume of the sphere and box are the same. In Appendix A the field within a
box and sphere are shown to be nearly the same in the low frequency regime by numerically
solving for the internal field with the code BOX4.

Equation 2-27 is derived in the remainder of this subsection. In section 2 of
Appendix A it is shown that the magnetic field within an enclosure is governed by the
static magnetic field equations whenever the enclosure is driven at a frequency much less
than the lowest modal frequency of the box. Consequently the internal (and external)
magnetic field are given by the gradient of a magnetic potential which satisfies Laplace's
equation. Assuming that the form of the potentials are (c.f. figure 9)

illn = H'rcos9

flouW = HDrcos+ Cos9 (2-31)

the fields tangential to the sphere are
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Figure 9. Spherical enclosure.
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H4 = -H'sin0

B1 .

H, = - H Dsin 0 - !-sin 0 (2-32)
a3

Within the conductor

V2H +02 H = 0 (2- 33)

which can be solved by separation of variables to be the product of spherical Hankel
functions and sin 0. In the limit that the skin depth is smaller than the spheres radius the
two independent solutions are

-H 2 ipr and -He
e_--- - 2eI a! sin(0) (2- 34)

O3r O3r

The electric field associated with each magnetic field is given by

E = -IV x H (2- 35)or

so that the two independent solutions of electric field are

-iH2eiprsin(0) and iH-Se-"Prsin(6) (2-36)
ar or

The continuity of the magnetic and electric field across the sphere's inner surface
yields

_H'_ = e'#& + H+e5  (2- 37)

iwo2H' -iHHe = iHe + e- (2 - 38)
2 ag a
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whereas the continuity of the magnetic field across the outer surface provides

-HD-O- _ H e-iPb (2-39)

Within the conductor the normal component of the magnetic field satisfies Fara-
day's law. At the outer surface it equals the normal component of the external magnetic
field. Consequently,

(V x E)n = iw/•oH,, = iwi#o rou (2-40)

and from equations 2-31 and 2-36

1 2 iHo eB}
sin _2e + 'H3- iwILo H.x ascos 0 (2-41)a i 0dsin in2 as a&l I •

Solving simultaneously equations 2-37, 2-38, 2-39, 2-41 yields equation 2-27. As
expected, in the limit that the skin depth is larger than the wall thickness the low frequency
internal magnetic field employed in equation 1-2 of Appendix A is obtained.

Following the low frequency treatment in Appendix A (equation A-12) the aver-
age field in the walls is

bc
j4 b iwH (2- 42)

2(b +c)

and the electric field at the wire which runs in th ý y-direction (figure 7) with the coordinates
x • and z = 17 is

E=-- 0  ( 2) _ b (2-43)
t 2- coa(#A)-0sin( 3A)b+c
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i.-A Intermediate Frequency Result

The wire current follows from substituting EW and E' from equations 2-25 and 2-
43 in equation 2-6. Because the electric field E* created by the external electromagnetic
pulse is uniform along the wire it drives a uniform current down the wire and, consequently,
only the m = 0 mode in equation 2-25 is retained. The wire current is, therefore,

I b

2 cos(PA) - 10sin(PA) b + c

((1-i) .8wlpo 0 sin2(dlE)sin'(") (2-44)
2wo6o ()2 + ()2

Clearly, the real and imaginary parts of the denominator can be considered to be the
resistive and inductive parts of the wire impedance within the box.

The only significant aipproximation made in the derivation has been to approx-
imate the internal field by the field of a sphere. Appendix A indicates that this is a very
good. approximation in the small number of cases which are treater. Perhaps the most
convincing argument that the approximation is always valid lies in figure 8 which suggests
that the internal field is insensitive to the encloiure geometry.
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SECTION 3

HIGH FREQUENCY-PARALLEL PLATE ENCLOSURE

3.1 Introduction

At very high frequencies not only is the skin depth smaller than the wall thickness
but the electromagnetic modes of the enclosure are excited. Consequently, the internal
magnetic field can no longer be expected to be constant. In sections 4 and 5 the problem
is treated precisely but the formal solution is complex and somewhat inconvenient to use.
In this section the physics of the high frequency regime is examined by calculating the
current excited on a wire within the enclosure formed by two infinite parallel conductors
(figure 10). The simplified geometry allows an exact solution to be derived.

3.2 Parallel Plate Enclosure

Figure 10 illustrates an enclosure formed by two parallel conducting plates. On
the external surface of both plates is an oscillating electric and magnetic field

H. = Hle-iwt

Ey = Ele-t (3-1)

as illustrated. These fields might be produced, for instance, if each plate were exposed
to a plane electromagnetic wave. The fields H, and El are the sum of the incident and
reflected wave. Again the wire current must satisfy equation 2-6 and it is only necessary
to calculate Ew and E,
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Figure 10. Parallel plate enclosure.
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Calculation of E*

If the wire is absent then the electric and magnetic fields within the enclosure
satisfy the free space wave equations. Because the cavity excitation is identical on both
plates the internal magnetic field is symmetrical about z = 0. Hence, the internal field is

H! = H.4 cos(kz)e-Iw (3- 2)

where k = w/v. The in. ual eAectric field can be found by Ampere's law

E 1 =H IZ (3-3)

to be

E = . H 4sin(kz)e-it (3 - 4)

Within the conductor the two independent solutions of the wave equation are

H~eio'

and

Hse-io' (3 - 5)

and the electric field of these modes

L13H2e'ip'
t7

and

-i Hse-iB' (3 - 6)
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can be calculated from Faraday's law.

Equating the tangential components of E and H at z=a and the tangential com-
ponents of H at z=b yield three algebraic equations which can be solved for the unknowns
H2 , H3 and H4. Solving yields the internal magnetic field in terms of the external

H,14 = H1  (3 -7)
coo(ka) cos(,A) - 2a sin(ka) sin(PA)

Feorn equation 3-4 the internal electric field is

-i/i 0 vH1 sin(kz)e-iw' (3 - 8)
EY = - ~ ic, 3 8

cos(ka) cos(13A) - -O-- sin(ka) sin(i3A)

As expected, equation 3-7 reduces to equation 2-28 in the limit that the frequency
is so low that ka't 1. Comparing these expressions indicates that the high frequency modal
structure of the enclosure enters only through the sin and cosine of the argument ka.

3.3 Calculation of Wire Driver EW

The coordinate system in figure 11 is employed to calculate EW the field produced
by the wire if the external driving wave is absent. The parallel walls are again approximated
as perfect conductors which is an excellent assumption at high frequency when the walls
are good shields. The walls are located at z = 0 and z = 2a and the wire runs parallel to
the y axis and is located at x = 0 and z = e.

The case is treated in which the wire current and electric field are independent
of the y- coordinate. The y- component of the electric field obeys the wave equation

82 E 8 2E wo2S2 -E + w-E = -iwuoJ (3-9)

subject to the boundary condition that it vanishes at the walls. This equation will be
transformed by the fourier sine series
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Figure 11. Parallel plate enclosure.
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E.(x) = ! E(x, z) sin-n-sdz
a Jo 2a

E(x,z) = IE.(x)sinn•'z (3-10)
nal

in the z variable and fourier transformed in the x variable by

En(k) = 1r f E.(x)e-"mdx

E.(x) = fE.(k)eikxdk (3-11)

Then the transformed electric field is

E.(k) = iWIAoJ.(k) (3-12)k' + ( ) -(v)2
2a v

where J.(k) is the transformed wire current density J. The convolution theorem indicates

E.(x) = •2 f dxJ,,(x)f(x - X') (3 - 13)

where

f(x) = dkeikk - k + a)(3-14)

and

4 R'f) . (3 -15)
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It is assumed that the field damps very slightly due to an unspecified mechanism. Then w
must have a small, negative imaginary part since the temporal dependance is exp (-i w t).
The poles are at a and -a. The square root appearing in the definition of a is chosen to
be that branch of the function for which if

U = ul Ie" - < 0 <

* then

S= V IjUjei/2 (3 - 16)

Figure 12 shows w/v with its small imaginary part. Also indicated is the value
of a for several values of the integer n. The corresponding values of -a are shown. The
inverse transform is done by closing the contour in the upper k plane when x is greater
than zero. Yielding

(W2 -(n) 2

f(x) = WrWAOO - vnRif
(-)2 2

Finally, the inverse sine series is inverted to yield the desired value of E'

-ix -(H) .E* (x, z) = ýýoI .snn~r ý e- X--(v 2a-sn z( 17

2aO 2anr e )2 (-")2 2ar
Z ~~ si2a

EWx z a n,,• s 2(-•-a) )2 - ---n•_-2 sin(--a) (3--17)

The field at the wire is found by evaluating this expression at x = 0 and z -. It is
assumed that the wire current density is J = I 6(z -- ý)b(x).

3.4 Wire Current in Parallel Plate Enclosure

The wire current is found to be
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Fiure 12. Complex K plane.
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-i~vH, asin(ka) 2e0DA
-ioI- ink cos ka + a sinks.

I- 2(3-218)2WOS -- fa([in BEl~ (v + a)]' () •"
2u'woc~u~o n-a 1 LnaI~) ')2~

by substituting equations 3-8 and 3-17 in equation 2-6. By definition #3A in the high
frequency regime is large so the large argument limits of the sin and cosine functions have
been employed. Furthermore, equation 3-17 has been adjutted to conform to the figure 10
coordinate system by evaluating the wire location at v -= f + a.

At first glance it might be thought that the wire current would be very large if
the incident wave frequency equals the frequency of one of the modes of the cavity. This
analysis indicates that the wire current is large but not huge at the modal frequencies.
The electric field induced within the cavity is largest when the expression (equation 3-18)

cos(ka) + sin(ka) (3 - 19)

is smallest. For practical values of the conductivity the minimum value is one which occurs
when sin ka = 0. As expected the minimum occurs whenever the driving frequency equals
the frequency of one of the internal modes of the cavity (if its wall conductivity were
infinite). But 3 is a complex number. Hence, there is no real value of k = w/v for which
equation 3-19 vanishes. Therefore the internal field is finite. Evidently, if the walls are
made of metal then the conductivity always introduces enough damping to prevent the
internal field from becoming very large. If the walls were made of a very poor conductor,
however, then equation 3-18 shows that the internal field could be driven to large values.
The upward spikes in figure 5 illustrate the increased current.

The square root in equation 3-18 is also zero whenever the driving frequency
equals the frequency of an internal mode. This causes the wire current to be zero which

"* is not surprising for at for these frequencies a finite wire current causes an infinite electric
field. If the finite wall conductivity were taken into account then the current would be
small but not zero. Consequently, equation 3-18 indicates that the wire current at these
frequencies is zero which is an underestimate. The downward spikes in figure 5 illustrates
this behavior.

The internal field is driven maximally whenever ka = nlr or
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Wa n" (3-20)
V

whereas the square root is zero if

wa 1

v "m r (3--21)

The difference is attributable to the fact that the external field is assumed to be equal on
each conducting plate. Hence, it can excite only modes of E which are anti-symmetric
in z. The wire, however, excites both symmetric and anti-symmetric modes depending on
its location. It should be pointed out that the peak current at each upward spike is also
underestimated because whenever equation 3-20 is satisfied equation 3-21 is satisfied also
for m = 2n.
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SECTION 4

HIGH FREQUENCY REGIME - APPROXIMATE TREATMENT

In the low and intermediate frequency regime the electromagnetic field within
the enclosure is approximately uniform and easily calculated with equation 2-27 and 2-43
of section 2. At high frequencies, however, the internal field depends upon the frequency
and angle of incidence of the incident electromagnetic wave which greatly complicates the
problem of predicting the wire current. Several approximations are made in this section
in order to derive an easily applied formula to estimate the wire current. In section 5 a
more exact treatment is derived.

4.1 Inductance Matrix

In this section electromagnetic transmission through a conducting plane is ex-
amined in some detail. Figure 13 illustrates a conductor of thickness A which is irradiated
normally from the right with a linearly polarized, plane electromagnetic wave of frequency
w. The total field at z = A is the sum of the incident and reflected waves and is denoted
by E' and H1. Similarly, the total field at the z = 0 plane is E4 and H4 .

Within the conducting medium two independent solutions to the diffusion equa-
tion exist. The total internal magnetic fields is

H(z, t) = H2e'#s + Hse-iB' (4- 1)

The total electric field is derived from Faradays law to be

E(z,t) = iH 2 e'iP - i-H 3 e-io' (4 - 2)
a or

The wave H 2 travels to the right while H3 travels to the left.

The electric and magnetic fields are continuous across the surface. Equating the
internal and external fields at the two surfaces leads to four algebraic equations which
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Figure 13. Metallic slab.
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contain the six quantities H1 through H4 and El and E4. It is useful to consider H1 and
H" to be known and solve for the remaining quantities in terms of them. Then

El = ZH 1 - ZtH 4

E4 = ZtH.-Z.H4  (4-3)

where

/3 cos 3A
a sin,6A

Zt - 1sin6A (4-4)

are the self impedance and transfer impedance. This can be written in matrix form as

E] [z Z: -Z H, I.(45
E4 -- Z -Z' H4

In terms of the fields on the z = A surface, H' and E', the magnetic field phasors
in the metal are

H 2 =1 Hle- & + 1a-'04 El
2 2 i/

H3 = 1 HeiPA - !I--ei#&Ei (4-6)
2 2' Ffl

The electromagnetics are explained in figure 14 assuming that the driving wave is
incident at the z = A surface. On the z = 0 surface the ratio of electric and magnetic fields
within the conductor is constrained to be equal to the impedance Z. of the electromagnetic

47



HH

H4 4
o

Figure 14. Qualitative behavior of the electric and magnetic fields in figure

13 in the high frequency regime.
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field just outside the metal. To fulfill this requirement the R12 wave is sent backward from
the z = 0 surface into the conductor. Usually, the two waves in the metal have nearly equal
and opposite values of H on the z = 0 surface in order to reduce the total H field. The
reduction is necessary because the conductor supports waves with much larger ratios of H/E
than are usually four.d in vacuum. The figure indicates that the backward wave magnitude
is very small in the high frequency, small skin depth regime so that approximately

Hse-iA -- Hi (4- 7)

Continuity of the electric and magnetic field at z = 0 yield

H4 = H2 + H3

E 4 = -(H2 - H3) (4-8)

Substituting equation 4-7 in 4-8 and solving for the internal electric field yields

2iy i¢3E4= -- e'OAH1 + -114

which is the same as the more precise equation 4-3 in the high frequency limit where
i3AI > 1.

But

H4 = E4 (4-9)

so that equation 4-3 yields

ZtH 1
E4 - 1 + Z'/Z. (4-10)

In many cases Z,/Z, <<1. In the parallel plate case, for instance, equation 3-4 in section 3
shows that
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Ze = ijAov sin ka (4-11)

and the inequality is true provided

sinka >• CosA (4-12)

ipova sin #3A

where k = w/v.

But sin ka = 0 is the resonance condition for the modes in a parallel plate
enclosure (with infinitely conducting walls). So within a very narrow frequency band
about each internal mode equation 4-12 is not fulfilled. Equation 4-12 indicates the width
of the band (Aw) is

Aw = 6
WO a

where w0 is the resonance frequency given by sin(-) = 0 and 6 is the skin depth in the
walls. At all other frequencies the self impedance term in equation 4-3 can be neglected
and the internal electric field is very well approximated by

E4 = ZtH (4-13)

Within the equation 4-12 frequency band, however, the impedance of the enclo-
sure and the impedance of the coiductor are very well matched so that the magnetic field
H4 within the enclosure is comparatively large. This very narrow resonance was pointed
out in the section 3 discussion of the parallel plate enclosure. The method derived in
the remainder of this section employs the equation 4-13 simplification and is, therefore,
not valid in the narrow frequency band about each mode of the enclosure. In section 5 a
method is derived to treat the narrow band of frequencies.
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4.2 Calculation of El

Figure 15 illustrates the box with the wire running in the y direction. The Ey
component of the electric field obeys the wave equation

V 2Ey + k2 Ey = 0 (4- 14)

Section A points out that in the absence of the wire the solution to this equation can be
written in terms of surface integrals over the walls. It is

Ey(x, y, z) = G- J -y dS'lx=o,. s=o,c walls

41r f: J-y, dS',y 0,bw.l.l (4-15)

where G

1*erxmInv n(nzm e ?r Inry'.n7rz'
8 sin (-)cos ( ) sin ()sin ( )cos (-)sin (- )

G = 47r c . (V)6,o
ab 2 [) 2 ( + (b 2 _(n)2 ] 2

m=O ir [a7 + - - k

(4- 16)

is the Green's function which satisfies Dirichet boundary conditions on the x = constant
and z = constant walls and Neumann boundary conditions on the y = constant walls.

The integrals contain Ey on the x = constant and z = constant walls. But
equation 13 of the last section shows that these quantities are easily calculated. On the x
= constant walls they are

Ey(x=0,y,z) = +ZtH.

Ey(x = a,y,z) = -ZtH. (4-17)
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and on the z = constant walls they are

E7(x, y, z =O) = Ze H,

Ey(x,y,z = c) = +Z,Hx (4-18)

where the magnetic intensities H are on the external surfaces of the box. It is intended that
the external magnetic fields will be calculated with the code HFC which is explained in
section 6. HFC assumes the box has infinite conductivity and calculates H on the external
surface. This is an excellent approximation. Other approximations for H on the external
surfaces which avoid the use of a code are mentioned below.

On the y = constant surfaces the integral requires the normal derivative of
aEy/ay at the surface. A small distance from the y = constant walls (inside the box)
the divergence of the electric field is zero so that

OE_ = 8EXOE, (4-19)

ay ax az

On the y=b surface, for instance, the right hand member is derived from equation 4-13 to
be

aE_ = ztOH,
ax ax

aE, _ all, (4-20)

where H, and H. are the magnetic intensity on the external surface of the y=b wall. They
could be supplied by the code HFC. Consequently, equation 4-15 yields the internal field Ey
in terms of a quadrature over the external magnetic field. Of course, it has been assumed
that the one dimensional transfer impedance in the previous section applies. This is well
justified since the walls are much thinner than either the wavelength or the lengths of the
box's sides. Within a very narrow frequency band around each of the box's modes this
method fails. Section 5 explains how to calculate the fields within these bands.
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In the most general case the external field is incident on the box at arbitrary
angle and may have any spatial dependence satisfying the wave equation. HFC can treat
this case and will furnish the magnetic intensity H on the external surface of the box.
Equations 4-17, 4-18 and 4-19 then furnish Ey and &Ey/Oy from H. Finally, equation 4-15
yields E. inside the box which is needed in the next section to calculate the wire current.

The integral in equation 4-15 is reasonably straight- forward. In some cases H
approaches infinity at the edge of the box. But these are integrable singularities. In order
to illustrate the method a simple example is worked out in the next subsection.

4.3 Simple Example

In order to illustrate the general method in the previous subsection consider the
case of a plane wave normally incident on the z = c wall of the box in figure 15. If the
wavelength is much less than the box dimensions then the geometric optics theory of light
indicates that total magnetic field on the z = c face is twice that of the incident field and
is constant over the surface. The surface magnetic field is smaller on the other faces. In
this example it is assumed that the surface magnetic field is zero everywhere except the
exposed face and is well behaved at the edges of the box.

Equation 4-18 shows that the internal electric field on the z = c wall is

Ey = 2ZtHix (4-21)

where H1 is the field of the incident wave generated by a source of electromagnetic inter-
ference, perhaps. The electric fields tangent to the other walls will be much less than this.
Equation 4-3 shows that these electric fields can be computed from H, and H4 the external
and internal magnetic fields on each wall. But, by assumption H, is zero except on the
z=c face. Consequently, the internal electric field on the other walls is given by

E4 = -ZH 4  (4 - 22)

The internal magnetic field H4 is roughly the same on all walls of the box. Hence, the
magnitude of the internal field E4 is about the same on all the walls. But in section 4.1
this term was shown to make a negligible correction to the internal electric field on the z =
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c wall. Hence, the internal field is much larger on the exposed wall (z=c) than the others.
From equation 4-19 it can be inferred that aEy/ay is small also.

Consequently, only the integral over the z c face survives in equation 4-15 and

8Z Hi 0f n cos nir(1- coos1r)) tf *nx r) 4-3t X I sin -sin z(-3EY X Z 7 2 E t[( )2 + (a) 2 a

EY is independent of y for this case.

4.4 Wire Current EW

At each point on the wire the relationship

IRo(1 -i) -• - E" + Ew (4-24)

must be satisfied. It is convenient to transform each side of this equation with a cosine
transform

fm -- 2mob f(y) os --- dy

f(Y) -- fm COS b (4-25)

yielding

Iol - 01--= E"m + E-(4- 26)

where the subscript m indicates the m'h fourier coefficient.
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Simple Case

First the wire current will be derived for the simple case treated in the previous
section. Because the plane wave is normally incident on the box, Ey (equation 4-23) is
independent of the y -coordinate and only the m = 0 coefficient is non-zero. It is trivially
given by equation 4-23 to be

S8Z 0 n ( sin(ý-r) sin(-n-r) (4- 27)~=1 i [(Y+ (n')2 -k 21

In section A.2 the electric field E" produced by the wire was calculated. From
equation 2-25 it is clear that the m = 0 component is

4 w l m o o 0 s i n 2 -_ . s i n 2 n -__X

- m a c (4- 28)E=0 = iace0v2 k2= - k2
f,n----n

Substituting equations 4-27 and 4-28 in 4-26 yields the wire current

-8&H m • -•cos• 170 1 sin ý-rCsin n-,
-8c H IJ n (cos n r) (1 - o t r i i

c+ ( e a c

1( ) __=_w 4iw . sin 2  "r' sin 2  m _ 
(4 - 29 )

t,n=1 n
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General Case

For an arbitrary incident wave the code HFC (section 6) furnishes the magnetic
intensity H on the external surface. Equations 4-17, 4-18 and 4-19 then yield the internal
electric field on all surfaces which are used in 4-15 to yield the internal electric field at the

omry
wire Ew. The Green's function in equation 4-15 contains the factor cos a-. Hence, this
formalism will always furnish E" as a cosine transform of the form

m~ry
E@ E" cos

m=0

Of course, E' will contain the integrals in equation 4-15 but these are straightforward to
perform numerically in the general case.

From 2-25 the mth fourier coefficient of EW isW2
E 41, 0 -Y 2 e 2 n7ri7MW = - sin -_ sin n

iwaco,_ k2 -kP a c

Equation 4-26 then yields the mth Fourier coefficient of the. wire current

IM E~~m V b sin - lisin 2ni
Ro(1- i) --- 4i k2 - k2  a c

Finally, the current I in the wire at any position is given by summing the Fourier compo-
nents

Co s m7ry1 = Im COS

m=O b

The calculation is straightforward, but tedious. It is expected to be valid except
in the narrow frequency band about each internal mode of the box. The behavior of the
fields at the edges of the box should be considered more thoroughly.

57



SECTION 5

HIGH FREQUENCY REGIME - COMPLETE TREATMENT

It has been pointed out that the section 4 method does not apply in a very narrow
frequency band centered about each mode of the enclosure. Within the band the internal
magnetic field H' (equation 4-3) is driven to comparatively large values and the internal
electric field is not accurately approximated by ZtH 1 . The internal electric and magnetic
fields must be calculated self consistently. A method of calculating the wire current in this
situation is outlined in this section.

Consider the H, component of the internal magnetic intensity which in the ab-
sence of the wire satisfies the homogeneous Helmholtz equation

2

V2H. + H, =0 (5-1)

In terms of the magnetic intensity at the inside surface of the walls section A
points out

HS fdS'. H5 V'G (5-2)

where the surface integrals are taken over the x = constant and y = constant walls. Because
H, is normal to the z = constant walls it is very small on these surfaces and is neglected.
The Green's function satisfies Dirichlet boundary conditions

G inrx, miry. nrz .inrx'. miry' nirz'
abc - sin -in -sin sin b sin -G 7(acac-_ (5-3)Zm,n- a k2 - k2

The electric field tangent to these four interior walls can be fourier decomposed
into
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EY(0,yz) miry n rz

mn=- b c

a m7ry . nirz
E,(a,y,z) 7- e ,sin-b sin

m,n=h

E.(x, O, z) = e% sin 17rx sin n.__
t,n: 1 a c

Ex(x, b,z) t L eýb sin '7_.x sin n__ (5-4)
a c

Equation 4-3 indicates that the the x = 0 wall

H. = E•-E + 2H1 ei#A (5 - 5)
it.,

where H1 is the external field on the surface of the box which is computed by the code
HFC (section 6). On the x = a, y = 0,b walls analogous equations furnish the interior
surface electric fields.

In addition, on the y = b wall Faraday's law shows

EX = -47r •H (5-6)
iweo ay

Substituting, equations 5-4, 5-5, 5-6 into 5-3 yields

= ' 47r abc cos mar
- 4lrexb - =iW 8k---

I2e"A cos ti-- Hý " (x = a)
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t7r _ a beab

_ p, 2et•r 4 Hn(x = 0) t~r or bc
- 2e =0) - P-ea- beý a i 4 ey°

+ 2 eip• m s 4 H - a ac

csi 4 H '(y=0 ) + lcsr, ei
bmr mac a a4~

- 2ePAb - b) i4 e (5-7)

Here the Fourier components on the x=a wall of the field H1 is denoted by H'n(x = a).
Other components of H, are denoted by a similar notation.

This equation relates e', e e x and the H' components given by the code
HFC on the x = O,a and y = O,b walls. Equations 5-4 have 4S2 unknown Fourier coefficients.
Equation 5-7 is S2 equations relating these unknowns. 3S 2 more equations are found by
applying the same method to calculate H. on the y = 0 and x = O,a planes. Solving these
simultaneous algebraic equations numerically furnishes all the coefficients in equations 5-4.
Some care must be exercised when evaluating the series expressions near the edges since
they may converge slowly.

Applying the same technique to the H. and Hy counterparts of equation 5-1
allows a self consistent calculation for the internal electric field tangential to all the internal
surfaces of the box. From these E' can be computed. Section 2 yields Ew which can then
be employed with

IRo(1 - i)0- = E" + E-
260

to furnish the wire current as in sections 2, 3 and 4.
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SECTION 6

HIGH FREQUENCY CODE

A rectangular box illuminated by electromagnetic radiation can be described in
terms of the magnetic fields or alternatively in terms of the surface current density K. A
careful analysis, yields the equation:5

I(r - 2j n' .x k x G(F,?)dS' = 2 5 x H-°xt (f) (6-1)

where K is the surface current, HIx' is the external magnetic field and G is the outgoing
Green function

1

G- F (6-2)G~r.) =47rlF_ ?Iexp(iklr.- P'I)(6-2

corresponding to frequency w = kV. The integral over S' is over all the faces of the rectan-
gular enclosure. Note that only the tangential component of the incident field contributes
to the formation of current on the surface. The enclosure walls are infinitely conductive.

In order to solve the integral equation (6-1) for k we have written a computer
code called High Frequency Code (HFC). This code solves the integral equation above
numerically using finite difference approximation to the double integral. In principle, the
code permits as fine a resolution of the surface as necessary because of the utilization of
virtual memory in the computer. In practice, the resolution is limited by both the accu-
racy that can be obtained inverting a large matrix and by the amount of computer time
available. Thus accuracy limits the resolution to 36 elements per face in single precision
arithmetic and to about 200 elements per face in double precision arithmetic. The time
required for computation increases as the third power of the total number of surface ele-
ments used. For a 4 MIPs machine, 100 elements per face requires about 1 hour of CPU
time which costs about $20 on an ELXSI minicomputer.

In general HFC can treat any angle of incidence and any frequency. Round off
error, however, may prevent HFC from treating frequency greater than about ten gigahertz
for boxes about one meter on each side.
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For the present problem we have considered only a rectangular box. Other box
geometries could be also computed but the algebra becomes somewhat more involved. For
the six faces of the box, there are 12 independent components of the current together
with the boundary conditions at the edges of the box which arise from continuity. Each
component is complex and the physical current is the real part of the product K exp(iwt).

The resultant matrix equation can be cast in the form:

AK=D

where A is the LHS matrix (kernel) and P. is the driving term. In order to save memory,
we had hoped that the kernel has some evident symmetries that permit more efficient
computation. However, as it turns out, the matrix A is band structured, but not evident!y
symmetric (or antisymmetric). Thus the computation of the surface currents requires large
memory available unless we invoke the physical symmetries, which though not apparent
must be present in the solution. These include rotational and transinational symmetries
which are clearly embedded in the original Maxwells equations. Our calculations indicate
that these are indeed satisfied by our numerical solutions.

To test the validity of the code we have computed the surface currents on a long
rectangular box. For this situation and an incidence perpendicular to the long axis of the
box, the solution has been computed previously e.g. by Mei and van Bladel.8 Their results
together with our computations are shown in figure 16. In view of nur finite resolution in
the fiziite difference scheme the agreement with their results is excellent. The results are
somewhat less accurate for the E wave, i.e. oi~e where the magnetic field is perpendicular
to the long axis of the cylinder. This is because the surface current, and the induced
magnetic field is now discontinuous and divergent the edges perpendicular to the magnetic
field. This can be seen in figure 17 where we show results from referenc.e 8 for this case. We
have attempted to compute this problem with our code with some success, but to obtain
accurate results requires more time than we have presently avai!able.

6.1 CODE DESCRIPTION

The basic tenet that has been ised in designing the HFC code was to maincain
minimum complexity, in particular since code development was not our primary goal for
this effort. For this reason the code contains minimum "bells and whistles" coding. The
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input consists of the dimensions of the enclosure, frequency of incident radiation and the
size of the driver field. In addition, the input requires the number of vertices in each
independent direction x, y, z.

The code consists of the main control program, which defines the loop structure
necessary to compute the surface integrals, the calls to the algebraic equation solver rou-
tines and the output instructions. The code uses the LINPACK GESL routine to solve the
algebraic equations for K in complex arithmetic. A GREEN subroutine is used to compute
the green function and its derivatives needed in equation 6-1.

The running time for the code has been obtained from a number of numerical
experiments. We conclude that the CPU time required,

CPUTIM = TZERO(nx * ny + nx * nz + ny * nz)3 ,

where TZERO = 1.6' seconds for our 4 MIP ELXSI computer.
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APPENDIX A

INTRODUCTION

A.1 Summary of Results

Electromagnetic radiation can diffuse through a thin walled metallic box and
couple to internal circuitry. At high frequencies for which the skin depth is much smaller
than the wall thickness a metallic enclosure is a good shield. At low frequencies, however,
the incident magnetic field penetrates the walls easily so that the magnetic field within the
box approaches the magnitude of the external field radiating the enclosure. This report
discusses the diffusion cf a low frequency electromagnetic signal through a thin walled
box that contains a wire which is connected between opposite walls of the parallelpiped
(figure A-i). A quantitative analytic theory is derived to predict the current on the wire.
Easily applied formulas are found which furnish the wire current as a function of time due
to any external driving pulse. Frequency domain solutions for the wire current are also
shown. In order to establish the theory's credibility its predictions are compared to the
wire current calculated by the code BOX4.

The theory developed below indicates that the current I(amperes) in the wire is
given by

it 0 wH rx wL(L + 2x)]

R iW 2(w +L)J(Ai

where w is the frequency of the external radiation incident on the enclosure, R is the wire
resistance, Z is the wire inductance and the box dimensions and wire location are denoted
by w,L,x as in figure A-2. The permiability of space is it0 and i = V`--1. He, the magnetic
field intensity within the box is approximated by

He= [ -_ ] D (A 2)
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Figure A-1. The incident electromagnetic wave diffuses through the box and
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Figure A-2. Problem geometry.
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where a is the conductivity of the walls, and A is the wall thickness. The external magiletic
field radiating the box is assumed to be the real part of

HDea-iwt

Because the wavelength of the low frequency radiation is much larger than the box HD is
independent of position in the vicinity of the enclosure. The parameter a is

a.= (3-/

in terms of the volume V of the enclosure. MKS units are used throughout this report.

Figure A-3 compares the wire current predicted by these expressions with the
current computed by the computer code BOX4 discussed below. The agreement is within a
factor of four over five orders of magnitude of frequency. At one hertz angular frequency the
code and analytic method differ by six percent and at 100000 hertz the analytic predictions
are a factor of four too small. In this example the box is two meters on each side and its
walls are one millimeter thick. The wall conductivity is a = 106 (mho/meter). The wire
resistance is 0.0366 ohms and it is one-half meter from the y'=0 and z'=0 walls. The wire
is one centimeter in radius and the external magnetic field is perpendicular to the wire
and has a magnitude of one ampere/meter.

Table A-1 indicates that equations A-1 and A-2 predict the wire current at
different positions of the wire at one hertz angular frequency. Agreement is within twenty
percent when the wire is varied between five centimeters from the wall and five centimeters
from the center of the box which is 2 meters on each side. All other parameters are identical
to the figure A-3 case.

Table A-2 indicates that at 100000 hertz the analytic method correctly evaluates
the dependence of wire current on wire position. As the position is varied the analytic
prediction is always about a factor of three smaller than the code. The analytic method
always underpredicts the current by the same factor at high frequency regardless of wire
position. As in figure A-3 the disagreement at high frequency is due to the approximations
made in the derivation equations A-1 and A-2.

More extensive comparisons are necessary to evaluate the accuracy of the analytic
formulas over a large range of box dimensions, wire parameters and wall conductivity
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Table A-1. Wire current as a function of wire position.

Wire Position Wire Current Wire Current
x (cm) Theory (Amp) Code (Amp)

5 3.3 x 10-5 3.5 x 10-5
10 3.1 x 10-r 3.3 x 10 5

50 1.7 x 10- 5  1.6 x 10- 5

95 1.7 x 10- 6  1.4 x 10-6

Table A-2. Wire current as a function of wire position.

Wire Position Wire Current Wire Current Ratio
x (cm) Theory (Amp) Code (Amp) Code - Theory

5 0.033 0.10 3.0
10 0.027 0.081 3.0
50 0.011 0.043 3.9
95 0.0011 0.0029 2.6

and thickness. These results suggest, however, that the basic physics of the situation is
contained in the equations and they are sufficiently accurate for many purposes. The
results are typical in so far as the wire resistance is comparable to the inductive reactance
at intermediate frequencies and the wall thickness and conductivity are realistic. These
are all the comparisons made to date.

The code BOX4 should predict the wire current even in situations for which
the analytic method is insufficiently accurate to be useful. Because it is comparatively
inexpensive to run (cf. section A.3) it may be helpful in many problems.

In the remainder of section A.1 the analytic method equations are derived and
the basic characteristics of the wire current are explained in both the frequency and time
domain. Sections A.2-A.5 of the report are concerned with the description of the code
BOX4. The last section discusses progress made in treating very high frequency incident
radiation.
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A.2 Diffusion and Coupling Fundamentals

The low frequency shielding of a metallic enclosure ran be understood by con-
sidering the case of a spherical metallic shell exposed to a spatially homogeneous uniform
external magnetic field of intensity HD at frequency w (figure A-4). At frequencies much
lower than the natural modal frequencies of the sphere the displacement current can be
neglected (section A.4) and the internal field satisfies

V =xH-=O (A-3)

Within the sheil having conductivity a and thickness A a current flows parallel to the
spherical surface

J -aE

where E is the electric ii Integrating across ti-, a'ess A of the thin sheet yields the
surface current density K Lr:•i.'eres/meter)

K = aAE (.4 -4)

This current creates its own magnetic field which subtracts from that of the incident
wave reducing the field inside the shield. The change in the tangential component of the
magnetic intensity across the shield is, of course

HD - H" = K (A - 5)

whiie the component normal to the shield is continuous through it. Finally, the electric
field in the shield is associated with the rate of change of magnetic flux in the shield by
Faraday's law

V xE= - - (A -6)Lat
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Figure A-4. Spherical shell in an incident magnetic field.
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It is easily shown that the solution to equation A-3 through equation A-6 is the internal
magnetic field

He= H- D

SiWM"OVAa

This internal field is parallel to the external field and also spi tially homogeneous (uniform).

Clearly, at frequencies lower than

W1 = 3uoAa (A - 7)

the internal field almost equals the external field because the slowly changing magnetic
field induces a small electric field (equation A-6) which drives little current K in the shield.
But at frequencies higher than w, a large current K causes a small internal field. Above
the cut off frequency w, the internal field decreases inversely with w and oscillates ninety
degrees out of phase with the external driver. This behavior is called inductive shielding
to distinguish it from the shielding which occurs at sufficiently high frequencies

w ::w

1
W2 = oaA 2  (A - 8)

that the skin depth is less than the wall thickness. In inductive shielding the electric field
through the wall is nearly uniform as is the wall current it drives. All but the last section
of this report is concerned with inductive shielding and frequencies well below both the
modal frequencies of the enclosure or w2.

Several useful characteristics of the spherical case apply to all enclosures regard-
less of their shape. Firstly, above a cutoff frequency (approximately wl) the internal field
always decreases inversely with the frequency. Although the field is not the same at each
point it decreases by the same factor at each point as the frequency increases (above the
cutoff frequency). In other words, the internal field is of the form

75



11-0 f

W()= 1fF

where f(f) is the spatiai dependence of the field and the frequency enters only as an overall
coefficient. This '. proven rigorously for any shape enclosure in section A.3. Another
important characteristic is that the internal fields are approximately spatially uniform so
f(f) is approximately constant. In the cases of a sphere, cylinder and a parallel plate
enclosures the internal field is exactly the same at all points'. This is obvious at very low
frequencies where the walls do not shield effectively and the internal and external fields are
the same. As the frequency increases the field in these smple geometries remains uniform.
In the general case, of course, the fields will vary somewhat within the enclosure but as
long as the shape is not radically different from a sphere, cylinder or two pprallel plates
une would expect the intermal field to be approximately uniform. At very high frequencies.
of cou.'se, the internal fields are very non-uniform since the cavity modes are excited.

In summary, the analytic theory in section A.1 assumes that the field in ,
box is approximately spatially homogeneous as it is for a sphere, cylinder and two pazallel
plates. It might be pointed out that the internal field in these three cases differ only by
about a factor of two. The theory assnmes that the shielding of a box must be quite similar
and the ir terral field is approximated by the field in a sphere having the same volume as
the box (equation A-2).

Equation A-1 which estimates the wire current is derived by integrating Faraday's
law around the dotted line closed path in figure A-2

f E. dt = iwIAo f / H ndS

The line integral can be divided into a part through the wire and a part through the walls

J BEdx 
= IR

fBCA Ed -d=Vd

where I and R are the wire current and resistance, respectively. The paths A-B and 3-
C-A are indicated in the figure. The total internal magnetic field H i• the sum of the field
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produced by the current in the wire H" and the field which diffuses through the shield H.
Consequently, H = H" + He and

IR + Vd = iwo f H". ndS + iwuso f H. ndS (A - 9)

This equation is proven rigorously in section A.2.

It was pointed out that the magnetic field within the box is roughly uniform so
that

J H ndS= HLx

where x and L are defined in figure A-2. Consider a contour of integration in the walls
which circles the box like the wall current (figure A-2). The magnetic flux through the
contour is HwL so the average field in the walls must be

EW = + zOwLLiwH"
2(w + L)

Hence,

Vd = EW (L + 2x)

and

IR + iwrO jLiwL(L + 2x) H iw-o f H. ndS + iwttoh0 Lx (A--
2(w + L) f

The flux produced by the wire linking the path of integration is proportional to the induc-
tance C of the wire

CI = -'o/ f H . ndS (A - 11)
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Consequently

IR + iwCI = iuowH L wL(L+ 2x)l (A-12)

IX - 2(w + L)

This is equation A-2. The authorsi original derivation of this equation assumed that £
is the inductance of a wire in free space. Recent work has shown that the free space
inductance is about a factor of three too large if the wire is near the center of the box.
In section A.4 the inductance is calculated accurately. Figure A-5 which graphs the in-
ductance for the table A-2 case shows that it depends slightly on the wire location and is
approximately the free space inductance. In the section A.1 comparisons the more accurate
values of inductance were employed.

Clearly, several approximations have been made to deduce the final results. The
most controversial are probably the assumption that the internal fields are uniform and
approximated by a sphere. The authors believe these are indeed general features of low
frequency diffusion. The code comparisons support this intuitive judgement convincingly
but much more extensive comparisons are needed.

A.3 General Characteristics of the Wire Current

Equation A-9 has a simple interpretation. The right hand member of the equa-
tion is the EMF linking the loop in figure A-3. It i,: the driver of the wire current. The
wire inductance L is a source of back EMF which reduces the wire current.The equation
indicates that the total EMF drops through the wire resistance R and the wall resistance.
The path of the loop in the walls is, of course, arbitrary but once a path has been chosen
both the driver and Vd must be computed with that path.

The wire current dependence on frequency is typified by figure A-3. At low
frequencies the current is small because the electric field induced by the slowly changing
magnetic field produces a small EMF (right hand member of equation A-9). As the fre-
quency increases the EMF and wire current increase. At the frequency W, however, the
wall current begins to effectively reduce the magnetic field in the enclosure so the EMF
increases less rapidly with increase in frequency. For frequencies larger than a ,.1"os
the critical frequency

78



24

22

20

* 18

~16-

= 14

-12

10-

m ~8_

IS I i I I I I I
0 10 20 30 40 50 60 70 80 90 100

Wire position x (centimeters)
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W ýw W,

equation A-2 shows the product of frequency and internal field remains a constant. Hence,
the EMF and wire current are constant for frequencies above this value. Consequently, the
maximum wire current occurs at frequencies siightly above w1 . At much higher frequencies,
of course, skin depth and other effects alter this behavior and reduce the wire current far
below its maximum.

Equation A-12 indicates that the larger the wire resistance and inductance the
smaller the wire current. At low frequencies

R

the resistance will dominate the inductive reactance and the wire current will be ninety
degrees out of phase with the internal magnetic field. At sufficiently high frequencies

R

the resistance i. negligible and the current is in phase with the internal field. As explained
above if w << ,'l ther the internal magnetic field is in phase with the external driving field
and ninety degrees out of phase if w > w1 . The inductance can be approximated by that
of a wire in ,ree space although section A.4 derives a more accurate value.

£i' wire current can also be derived in the time domain. Substituting equa-
tion A-1 in equation A-2 yields

iwGHD (W)
- (R - iwZ)(1 - iw/wl)

where

SwL(L + 2x)
G- Iox - 2(w +L)
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This is the wire current as a function of the external, driving magnetic field HD
in the frequency domain. By taking the inverse fourier transform the wire current I(t) as
a function of time is found to be

Gwj t dt'HD(t1) R CD"') -we-w(t-t')

This is the wire current as a function of time driven by an arbitrary external pulse whose
time dependence is HD (t).

Clearly, the wire current depends upon w, and the characteristic frequency R/A.
The first is the cutoff frequency below which the enclosure shields the external field very
poorly. The second is the time constant of the R - Z circuit formed by the wire and the
box. Fluctuations faster than w, and R/IL are smoothed out by this integral. In general,
when the driver is first turned on the current slowly builds in the wire and after it is turned
off the wire current slowly decays to zero.

The authors believe that the frequency domain solution in equations A-i, and A-
2 and the above time domain solution contain the basic physics of the problem and permit
reasonably accurate predictions in most situations. A straightfoward extension of the
theory will enable predictions to be made for wires of any shape.

A.4 RESULTS AND BASIC PHYSICS

Figure A-2 illustrates a metallic enclosure driven by an external magnetic field
directed along one of its edges and oscillating at the frequency w. Because the wavelength
is much longer than the box dimensions the field is independent of position. If the current
on the internal wire can be predicted for this case then it can be predicted for any long
wavelength external driving field. It is only necessary to fourier analyze thrn more complex
driver into its frequencies and resolve the field at each frequency into its components along
the three orthogonal edges. The total wire current is the sum of the currents produced by
each part of the driver.

The electromagnetic field which is produced by the current within the wire obeys
Faraday's and Ampere's laws

V x EW i=0wOHw
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V x H' = JW - iwEoE"

within the box where jP is the current density in the wire. A single frequency is considered
which,as explained above, is not a loss of generality. In this report all quantities are
assumed to vary as exp(-i w t). Within the walls having conductivity a

V x E" = iwpoH*

V x H" = uE" - iwoE"

and outside the enclosure the fields satisfy both

V x H" = -iweoE" (A - 13)

and Faraday's law.

The box is radiated with a driving field which, presumably, is produced by an
external current density J. The current density might, for instance, be the currents within
a -iPM microwave weapon or the Compton current in the atmosphere which generates an
EMP pulse. j is assumed to be known. Outside the box the field produced by this driver
satisfies Faraday's law and

V x H =? - iwcoE°

In the walls the governing equation is

V x H* = aE - iw~oE°

and within the box

V x H' = -iweoE° (A - 14)
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The presence of fhe wire is correctly omitted in equation A-14

The total electric ET and magnetic HT fields are the sum of the fields produced
by the external driver J, the current in the wire JW and the current in the walls GET

ET = Ew + Ef

HT = Hw + HO

However, the wire c a,.ent J" is caused by the total electric field according to

Jw = o"(EW + Ee) (A- 15)

in terais of the wire conductivity, aw. Solvirg equations A-13 through A-15 furnishes the
current JWin the wire. The wire current derived in this way is exact but it is difficult to
solve the equations if the wire is so thick thi.t the current around it is non-uniform. The
authors will attempt this less important case in the future.

This approach to the )roh!em which was pointed out by Dr James Giibert at
Mission Research C(.rporat'on 's similar to the technique used to solve many scattering
problems. Solving equations A-.13 yields the electromagnetic fields produced oy a specified
wire current J" when the extec-nal driver jP is not present. Solving equations A-14 yields
the electiomagnetic fields due to the known external diiver J" when the wire is not present.
These two 3illipler problems are solved in sections A.3 and A.4. Equation A-15 then yields
the wire current trivially. O1 course, in equation A-15 E' is a function of the unknown
J'. So 2-3 is actualiy an implicit equation which must be solved to find JW. The authors
employed this method to derive the wire current results in the previous section.

The electric field can be written in terms of the scalar and vector potentials3, €
and A

EW = iwAw - V467

E* = iwA° - VO° (A - 16)
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Integrating equation A-15 along tii wire (figure A-2) yields

IR = E* + E'dx = OA - + ,O-B + iw Awdx + iw A'dx (A - 17)

where R is the wire resistance.

Consider the integration path through the walls shown in figure A-2. The line
integral of the electric field along this path is called

Vd=fETd=O-A + iwf Ad + iw fAd (A-18)

adding equation A-17 and equation A-18 yields

IR + Vd = iw f Awd+ iw f Ad (A-19)

Where the closed path is formed by the wire and the path through the walls. But the line
integrals can be related to the surface integral of the magnetic field through the closed
path

f A.dt = f[(V x A).ndS= B.ndS

by Stokes theorem yielding

IR + Vd = iw f BW.ndS + iw f B.ndS (A - 20)

This is a rigorous proof of equation A-9, the starting point for the approximate wire treat-
ment in section A.1. It is important to note that in adding equation A-17 and equation A-18
the scalar potentials drop out. Consequently, equation A-20 is correct even in the general
case for which the scalar potential is not negligible. Calculating the wire current with this
equation requires that Vd be estimated, however, a complication which is avoided in the
following manner.

The scalar potentials are small and can be neglected in equation A-17. This
is shown in sections A.3 and A.4 and explained intuitively in the following way. In the
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Lorentz gauge the scalar and vector potentials are driven by the charge. p and current
density J, respectively 3

1 4920 1

c2 at2 Co

v2X 1 a2X

c•'"c2  t = -

In general, charge accumulates on the surface of the wire and creates an scalar potential
whose gradient is the irrotational part of the electric field. The charge accumulates in such
a way that the boundary condition (equation A-15) is satisfied on the wire. For instance, if
the wire is coiled on a cylinder to form an inductor then a small charge density is deposited
by the almost divergenceless wire current on the surface. For a zero resistance wire the
field on its surface must be zero so the electric field iwA must be equal and opposite to that
produced by the scalar potential Vq. In a small number of very symmetrical situations,
however, the vector potential alone is sufficient to satisfy the boundary condition.

Consider, for example, a zero resistance wire loop in a homogeneous oscillating
magnetic field (figure A-6) which induces an EMF around the wire and causes a current
to flow. The oscillating current creates an electric field iwA at the wire which just cancels
the induced field. It is easily shown that charge does not accumulate along the thin wire
and the scalar potential is zero. But if the circular loop is distorted slightly then the
vector potential can not by itself zero the electric field and a scalar potential must be
produced. Similarly, if the oscillating driving field is not homogeneous the scalar potential
is significant.

The vector potential A' is the sum of the potentials produced by the current in
the walls Ac and the external source Ad. The low frequency external source produces a
homogeneous magnetic field HD directed along the z axis (figure A-2) so that

HD = X D
'so

Since the vector potential is symmetrical about an axis through the center of the box
parallel to the z axis the currect solution to this equation is
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H

Figure A-6. Wire in an oscillating magnetic field.

b
AD 2- --.._(y2 -- j)HD

AD=-(x- a)HD (A- 21)

Hence, equation A-17 becomes

B BB
IR --- ii Acdx + iw A dX (A - 22)

This final equation, rather than equation A-17, is used to find the wire current with the
code.
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In summary, the method which the authors developed to calculate accurately
the wire current er-ploys the computer code discussed in section A.3 to calculate

f 
Awdx

IA
and the analytic calculation in section A.4 to yield

/2 Acdx
Then equation A-21 yields

IA A Ddx

Since the magnetic field is proportional to the wire current I

fA Awdx =- (A- 23)

Finally, the wire current is obtained by solving the algebraic equation A-22 which becomes

IR + iwCI = iw Acdx + iw J ADdx (A - 24)

It is worthwhile pointing out that £ is the inductance of the wire in the enclosure
in the limit that the walls shield the outside of the box from the wire very effectively. This
equation differs from equation A-20 which is the starting point of the analytic method in
two ways. Firstly, it is not necessary to calculate Vd, the line integral of the electric field
in the walls. Secondly, the scalar potential has been neglected in equation A-23 but it is
included in the surface integrals in equation A-20.

A.5 EXTERNAL DRIVER CALCULATION

In this section the electric field produced at the wire by the external magnetic
field which diffuses through the shield is derived. Outside the wall the magnetic intensity
H can be expressed4 by the gradient of a magnetic scalar potential fl
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H=Vfl

where

It is well known' that within the enclosure the scalar potential can be expressed
as a function of its value and derivative on the inside surface of the wall

' f(G8 n n' I )dS' (A - 25)f an'( an'

where

1 1
4n ir - r'f

Similarly, outside the rectangle

flou°(y) = nex(f) - f(G anout an fut) dS' (A - 26)
an' -an' t)dS

where the normal derivative is always outside the box and fl" is the external field imposed
on the metallic enclosure by the source such as a low frequency electromagnetic wave.

The current in the thin walls is expressed as a surface current density K (am-
peres/meter) parallel to the conducting surface. Assuming it is dlvergenceless permits it
to be expressed in terms of a scalar stream function

K'=f'xV, . (A-27)

where n is the surface normal and the surface divergence is V,.

Latham and Lee4 have shown the magnetic scalar potentials on the inside and
outside surfaces of the walls obey
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1 - fin aG dS'+ f GVIbdS'
2 f an' iUJA 0g

2 a 9n' isg I1A
where g = aA, the product of wail conductivity and thickness.

Making use of the facts that the normal derivative of H is continuous across the
wall whereas the jump in the tangential component of H across the wall is equal to the
surface current density K yields an equation for the stream function4

1-0(r) G a +rIfG 9G ds'dS"
4 f1 (ontin

f f(k(r') - @(r)V'GdS' (A- 29)

This integral equation is ideally suited to numerical solution since only integrals over the
unknown 0 rather than derivatives appear. The function k is calculated at a several
hundred locations on the surface of the box. For the ith location the integral equation is
approximated by

1 an
4 an',! k ankaonj

1w/log (Ok - ?k1)VGb 2iWA0g j

where 62 is the area of each suirface cell. This yields a system of several hundred simulta-
neous linear algebraic equations which are then solved numerically with the code BOX4
to yield the stream function. Once, 10 is known the magnetic scalar potential fn and the
magnetic field can be calculated within the box with little additional difficulty. Further-
more, the magnetic vector potential A at the wire produced by the current in the walls
can be found by integrating over the stream function
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AC = Ao f dS'G(n x V.0) (A - 30)

This is the quantity needed in section A.4 (equation A-24) to calculate the wire current.

The numerical solution is fast and reasonably accurate. In the high frequency
limit the walls shield the external magnetic field very well. Consequently, the magnetic
vector potential A D (section A.4) produced by the known driver is equal and opposite to
that produced by the wall current (equation A-30). In the figure A-3 example they differed
by only eight percent when 0 was approximated by 96 cells. This accuracy was achieved
for a total computer cost of about fifty cents. Dividing the box into 216 cells achieved
slightly better accuracy for a cost of about ten dollars. The computations were done
on an ELXSI time-sharing computer which is similar to the popular Digital Equipment
Corporation VAX780. Most of the computer time is spent evaluating the coefficients in the
simultaneous equations many of which are multiple integrals rather than actually solving
the equations which is done by the Gaussian elimination method. A significant savings in
computer cost could be realized by making better use of the problem's symmetry when
computing the multiple integrals.

An important simplification is understood by examining the limit of equation A-
28 as the frequency becomes much larger than wl. Then the last terms in these equations
are small and to zero order the internal field fl'" is zero since the walls shield well at high
frequencies. Equation A-28b yields a zero order approximation to the external potential
flout which can be substituted back into equation A-28a to yield a better estimate for the
internal field

1fin (y) + fflin(f)~ ' =G 1 f G GV 2 flout dSl
2 On iwUO0A

The scalar potential fln is a function of frequency and position F. But the frequency
appears only in the coefficient of the right hand member. Consequently, as the frequency
is increased the field f0i at each location decreases inversely with the frequency. Henre,
the vector potential A* decreases at the wire inversely with frequency. As was pointed out
in section A.1 this has important consequences.

The assumption that the wall current is divergenceless implies that there is no
charge accumulation on the walls. Therefore, the scalar potential 4 must (under this
assumption) be zero. As explained in section A.4, usually, this is not true. In this approach
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it is impossible to calculate the contribution to the electric field produced by the scalar
potential. Fortunately, BOX4 shows that the vector potential A' produced by the wall
current is approximately constant along the wire. Section A.6 indicates that the potential
produced by the wire A* is also constant. But the total electric field on the wire must be
constant since it equals IR. Since A- and Aw are constant they are sufficient to satisfy the
boundary condition on the wire and 0 must be negligibly small.

Toward the edges of the wire A' is not constant. The authors believe this is due
to numerical inaccuracy. Further attention to this point is necessary.

A.6 WIRE CURRENT

As the oscillating current flows through the wire and around the walls of the
enclosure it produces a substantial electric field. If the wire resistance is zero, the mag-
nitude of the field (along the wire) which penetrates the enclosure is equal to that of the
field produced by the wire current. In this section the fields produced in the box by the
wire current are calculated so that the integral in equation A-23 and the inductance can
be evaluated.

Figure A-1 illustrates a rectangular enclosure driven by a current I which runs
through its central wire and returns via the metallic walls. The current oscillates at the
frequency w at a constant amplitude. It is not necessary to specify the source of energy
which drives the current against the ohmic losses in the walls and the wire. In the limit of
very low frequency, small conductivity or small wall thickness the current will distribute
itself so that the electric field at the walls is sufficient to drive the current. In general,
appreciable magnetic fields will leak outside the enclosure. But as the conductivity or wall
thickness increase the electric field at the walls decrease. Furthermore, as the frequency
increases the electric field induced within the enclosure by the changing current becomes
much larger than that necessary to drive the wall current. In either limit the boundary
condition at the walls is that the electric field at the walls becomes negligible. Consequently,
the wall conductivity can be considered infinite. The conditions for which this idealization
is valid are quantified at the end of this section. In the case of the conductivity and
-wall thickness referred to in the section A.1 examples the approximation is justified for
"frequencies above about one kilohertz.

91



The vector potential within the infinite conductivity box satisfies
wO2 -

VIX + I-A = -P0J (A - 31)
C2

which has the solution

f- fG(!;, r)JdV

where the Green's function satisfies the appropriate boundary conditions on the walls. J is
the wire current density. In terms of the eigenfunctions satisfying the Helmholtz equation

VI, + W_• + , =On 0 (A- 32)

the Green's function3 is

G(r')ttor (A -33)

Equation A-33 indicates that if the frequency w is much less than the natural
modal frequencies of the box w, then the vector potential does not differ appreciably from
the value if would have if w = 0. Consequently, it is only necessary to solve the quasi-static
equation

VzX = -10

subject to the boundary conditions that the normal component of the magnetic field on
the wall is zero. The eigenfunctions are then

- =-sin( )sin (n,)

bc b c
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and the vector potential is

81;0j 0 sin(-I)sin(-"). m~ry.nf'z(
Ax - (=) ) (- )Q (A - 34)

where the wire position is y - • and z = '/and

Q m=ex{f(! )2 [(M): + (!)2] }
It is important to consider a wire of finite radius to calculate the wire induc-

tance. Furthermore, the series converges very poorly if the wire radius is zero since this
necessitates very high order spatial modes because the vector potential changes direction
across the wire. In this report the wire current density J has been assumed to fall off as a
Gaussian with characteristic wire radius wo

...ZZ)2 .. (=~L)2

j _- e-(x=-€o)he-Ci)

,rw 2

From the above series expression for A the magnetic flux through the contour in
figure A-2 can be derived

J (V x A n)dS

It is the negative of the electromotive force produced around the loop by the wire current.
Since the walls are infinitely conducting it is also equal to

EMF=iwfAAdx (A-35)

These are the final expressions needed in section A.4 (equation A-23) to calculate the wire
current. The inductance Z is defined in terms of this integral by equation A-23.

The circumstances for which the infinite conductivity approximation is valid are
easily quantified. The resistance of a conducting sheet whose length and width are equal
is
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RW (A-36)

where a and A are the conductivity and thickness. For instance, a sheet of conductivity
106 mho/m and one millimeter thickness has a resistance of 0.001 ohms. Clearly, if an ohm
meter is used to measure the resistance of the walls between points A and B (on figure A-2)
a resistance of this order of magnitude will be observed provided the wall conductivity and
thickness are the same as the sheet and the box's length, width and height are comparable.
The line integral of the electric field in the wall from point A to B is path dependent but
is typically of the order IR, in terms of the wire current I. The EMF around the entire
loop in figure A-2 is shown in expression A-35. The infinite conductivity approximation is
valid if the EMF greatly exceeds IR. or

IR < w A. dx (A -37)

It has been assumed in equation A-35 that the contribution to the electric field
due to the scalar potential is negligible. It is easily seen from equation A-35 that

V.A=0

Consequently, from the Lorentz condition the scalar potential is also zero. Therefore,
for frequencies much lower than the modal frequencies of the enclosure (frequently below
hundreds of megahertz) but sufficiently high that the wails provide reasonable magnetic
field shielding (frequently above one kilohertz) the scalar potential causes little electric
field. Hence, there is no charge in the system and the flow of current is divergenceless.
It is important to understand that at higher frequencies the scalar potential can not be
neglected. Furthermore, the straight wire is a particularly simple case. If the wire were
to lead to a circuit containing inductors or capacitors then these would produce a scalar
potential. If these circuit components occupied a large fraction of the volume of the box
the computer approach taken in this report would require modification.

The inductance has not been carefully computed at low frequencies whre equa-
tion A-37 is not valid.
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A.7 CALCULATION OF HIGH FREQUENCY RESPONSE

In the previous sections we have described in detail our work on computation of
the low frequency response of the wire, in particular the solution of the interior potential
equation, including the wire. In this section we shall discuss the problem of high frequency
response calculations. Since the low frequency solution was the main thrust of our early
efforts the progress here has been more limited. To date we have almost completed the
development of the code.

The surface current on a box illuminated by electromagnetic radiation can be
described' in terms of the incident magnetic fields. A careful analysiss, yields the equation:

Kr - 2 f ft x × r,? s = 2lxF)(A - 38)

where K is the surface current, Ie is the external magnetic field and G is the outgoing
Green function

G(r',i) = I/{47rl -Fl exp(iklir- -?)} (A - 39)

corresponding to frequency w = k c.

The above equations provide the current density on the surface of the box. Ref-
erence 1 indicates how these are used to drive the internal fields and wire current.

. In our first effort we have focussed on the solution of equation A-38, i.e. the
determination of the surface current density on the outside of the box. Before we proceed
to discussion of the numerical solution of the problem we note that "high frequency" in our
case usually indicates frequencies of 1 MHz and higher. Since the integral in equation A-38
is oscillatory in nature, the required number ofsteps for the calculations is dictated by the
standard assumption of 10 - 20 points per period.

To solve the problem numerically we have adopted the standard gridding of the
box faces as indicated in our solution of the low frequency problem. For a system of
equations to have a meaningful result typical matrix dimensions should not exceed 1000
x 1000 or so. This limits the number of cells on each face to 42 or about 6 cells in each
direction. This implies that our solution will be quite accurate for a box whose. size is

95



smaller than about third of a wavelength. For the 1 MHz frequency, this corresponds to
boxes of about 100 meters across.

For larger boxes, the solution will naturally be less accurate and we shall use our
code to provide an initial es ,imate of the surface current. This solution will be improved
upon by inserting it into a very accurate integrator of the LHS of equation A-38 and com-
paring with the RHS driver. Suclh integrator is not constrained by memory requirements
and does not include any matrix operations.

We expect these two codes will be sufficient to provide a general trend prediction
for the solutions computed but we are aware that the solution accuracy is going to be
limited. However, since our goal is to develop simple models of surface currents, we feel that
the finite difference approach should be adequate. Furthermore the accurate integration of
the LHS of equation A-S8, once coded, will provide a test method for evaluation of models
of the surface current density.

After expansion of the vector product and if we replace the integral by a sum,
the integral equation becomes a matrix equation for the surface currents. For the present
problem we have considered only a rectangular box. Other box geometries could be also
computed but the aigebra becomes somewhat more involved. For the six faces of the box,
there are 12 independent components of the current together with the boundary conditions
at the edges of the box which arise from continuity. Each component is complex and the
physical current is the real part of the product K exp(iwt).

The resultant matrix equation can be cast in the form:

where A is the LHS matrix (kernel) and D is the driving term. In order to save memory,
we had hoped that the kernel has some inherent symmetries that permit more efficient
computation. However, as it turns c¶It, the matrix A is band structured, but not symmetric
(or antisymmetric). Thus the computation of the surface currents requires large memory
to be available.

Currently, the coding is essentially completed, with some problems occurring
with the mixing of real and complex arithmetics. We expect to have some results within
the next couple of weeks. We shall spend a significant amount of time verifying the code
results for the limiting cases.
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The next stage of our calculations, solving the Maxwell equations in the box
interior can be accomplished with codes already available. This effort is expected to be
relatively straightforward.

Our next task is the development of approximate formulas for the surface cur-
rents. While it is possible to rely solely on numerical experiments we are also conducting
an analysis of the structure of the solution and a survey of the literature for available exact
solution in special geometries.

I
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