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FOUNDATIONS OF THE GENERAL THEORY OF SUMMARY
CAA | VOLLEY FIRE | CAA-RP-92-1

THE REASON FOR PERFORMING THIS RESEARCH was that volley fire problems arise {requently
in appiied wilitary sperations researeh work. This paper develops a powerful general theory whose
systematic application to volley fire problems greatly aids in their solution,

THE STUDY SPONSOR was the Director. US Army Concepts Analvsis Ageney,

THE STUDY OBJECTIVE was to provide the US Army and other niilitary analysts ready access to

systematic methods whose application can greatly simplify the solution of volley five attrition models.

THE SCOPE OF THE STUDY involved reviewing a sample of the past work ou volley fire problenss.
developing new aud meore powerful methods for their solution. and itHustrating their application 1o
several volley fire situations of practical interest,

THE PRINCIPAL FINDINGS of the work reported herein are that. in the simpler cases. the theory
leads directly 1o elegant formulas for the expectation and variance of the number of survivors. In more
complicated situations. it provides algorithims useful for numerical calculations, After sampling
previous work on the analysis of volley fire models. the general theory is developed and applied 10 a
number of volley fire situations of practical interest. The theory powerfully unifies and extends
previously used methods for solviug volley fire problems and often provides simpler and more intuitive
solutions than have previously appeared. 1t also yields hitherto unpublished results. Qur approach also
shows that volley fire models generalize many of the classical probability problems in the theory of
matchings. occupancy, and statistical mechanics. In addition. it suggests potentially important new
concepts, such as those for equivalent and complementary volleys. It also provides a useful systeni for
classifving volleys into a few -canomnical forms™ based on their common features, which facilirate their
solution by avoiding the need for ad hoc methods. Several potential areas for further tnvestigation are
also suggested.

THE STUDY EFFORT was directed by Dr. Robert L. Hehmbold, Office of the Special Assistant for
Model Validation.

COMMENTS AND SUGGESTIONS may be sent to the Director. US Army Concepts Analysis Ageney.

ATTN: CSCA-MV. 8120 Woodmont Avenue. Bethesda, Maryvland, 20814-2797.
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1. INTRODUCTION

Estimating the attrition that results when a battery of weapons shoots at an artav of targets 1= one
of the most characteristic activities of military operations analvsts, In mauy cases the shots are Gred as a
volley. or nearly so. In this paper a group of shots is called a volley if all of then are fired before the
weapons adjust their operations on the basis of any damage done to the targer aray, When the case of
the target array is taken to specify which targets are still alive, a more precise restateient of this
definition is that the weapons act ouly on the state of the target array at the start of the volles | and not

on any change in state that occurs while the volley is in progress.

This definition generalizes those given in the prestigious Oxford English Dictionary {19715 which
defines a volley as »A simultaneous discharge of a number of firearmis or artillers: a sadvo.™ a <alve as
“A simultaneous discharge of artillery or other fircarms, whetlier with hostile intent or atherwise.” and &
fusiliade as ~A simultancous discharge of firearms: a wholesale execution by this mean<” When weapons
are discharged simultaneounsly, the battery of weapons platnly does not have tipne during the volley 10
adinst to any damage done to the target ar-ay, and in that case our definition agrees with those given
the Oxford English Dictionary. However, in th's paper we continue to speak of a volley fire sttuation
whenever the weapons do not perceive (or if for any reason they do not heed) elianges in the state of the
target array. In such cases, whether the shots are fired simultanenusly or aver an extended period of tine

is clearly immaterial. because at the end of the volley their effects are the same.

In addition, the results presented in this paper can be applied not only to artiflery or fircarims. bt
to a wider class of weapons including rockets. antitank weapons. intercontinental ballistic missiles,
mmachineguns, bombs, anti-aircraflt artillery. and so forth. For this reason, volleys delivered by a batiery
of weapous against an array of targets are often used ro madel attrition in military operations rescarch.
They frequently appear as components of larger models, simulations. or war games. where they are wused
to assess the outcomes of individual vollevs. or of several successive volleys. or of countervolieyvs fired
alternately by one side and then by the othier. For one example of such component volleys, see Ketron
[1983]. When successive volleys are fired. the state of the svstem atl the end of cacl successive volley
usnally depends only on the state of the system at the start of the volley. in which case the state vector
evolves according to a Markov process, the importance of which in models of combat interactions has
been emphasized by Koopman [1970]. among others. In this paper. several vollevs of practical military
interest are presented and solved to illustrate the general theory's ability to vield previously unpublished

results, as well as to provide simpler and more intuitive derivations of known results.

Our theory takes for its object the determination of the outcome when a battery of weapons volleys
against a target array. [t makes use of techniques borrowed from the ficlds of combinatorics, probability,

algebra, and analysis (the latter principally in connection with limit laws of probability). Although
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weapon batteries and target array« consisting of a single element are technically within the purview of
volley fire theory, they are normally viewed as special cases and are analyzed as duels. Thus, the theory
of volley fire concentrates on cases where the battery of weapons and the target array both contain
several elements. The scope of the theory is intended to include the analysis of multiple vollevs by a
battery against a single target array. and also exchanges of vollevs where the weapons hattery and the
target array volley back and forth. Unfortunately, the current state of the theory does not provide a very
satisfying treatment of multiple or counter vollevs. Consequently. apart fromn a few passing remarks, this
paper concentrates on single volleys with the understanding that they can be chiained together in various

{often ad hec) ways to estimmate the effects of successive volleys. if so desired.

The central object in this paper is the computation of the probability of various outcomies of a

single volley. We want to know such things as:

1. How many targets can be expected to survive the volley?
2. How variable is the number of survivors?
3. What is the probability that 6 targets survive? That 12 survive? In general, what s the

probability that ¢ targets survive?

4. If the target array consists of two or more types of target, what are the correlations between

the number of survivors of cach type?
5. What is the probability that all targets of a specified type will be wiped ont?

Until recently. volley fire problems were treated by ad hoe methods that gave lhmited results for
special cases. Despite the ingennity of some of these ad hoe methods. they concentrated so strongly an
special cases that their general theoretical foundations tended to be hidden rather than revealed. Just
very recently, it was recognized that there are some deeper and more general concepts whose systematic
application to volley fire problems can greatly aid in their solution. In the simpler cases. these concepts
lead directly to elegant formulas for the expectation. variance. and correlation of the number of
survivors. In more complicated situations, they provide algorithms useful for numerical computations.
The systematic application of these general analytical methods has led to simpler and more intuitive
proofs of all of the known results in the theory and has clarified their interrelations. This approach has
also led to several new and previously unknown results. This has put us in the position where, for the

first time. it appears that such a thing as a theory of volley fire might exist.

It also turns out that the theory of volley fire includes as a special case all of the theory of randomn
allocations. That familiar field of classical probability theory deals with the random allocations or
distributions of r objects into n cells. Treatments of the problem of rencenfres or random matchings: of

the distribution of particles among energy states for Maxwell-Boltzinan, Bose-Einstein, or Fermi-Dirac
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statistics in the Kinetic theory of matter: and of many other famous classical problems are examples of
those dealt with in the theory of random allocations. Certain aspects of this classical theory of random
allocations have recently been developed extensively by the Russian mathematician Kolchin [197%] and
colleagues. However, they have dealt almost exclusively with the study of limiting distributions for
certain classes of random allocations. In contrast, practicaily all of the-extant work on the theorv of
volley fire has been devoted to solving certain difficult combinatorial probleiss in the theory of
probability. In the future. it may be possible and desirable to extend to the theory of volley fire some of

the asymptotic results from the theory of random allocations.

Several authors have studied special cases of volley fire. and Table 1 shows a sanmiple of the earlier
work on special cases. We will say more about these papers presently. The general theory presented in
this paper supersedes these specialized approaches. because it can readily be used not only to reproduce
all of the previous results, but to provide additional information not obtainable by the specialized
methods. Because volley fire models have arisen in a variety of contexts. other works on them mayv not
have come to our attention. and we apologize in advance to the authors of any volley fire analvses not

listed in Table 1.

Dixon [1953] was apparently oue of the first to analyze a volley fire situation. He showed by
selected examples how the outcome of repeated volleys by a homogeneous hattery of weapons (that is.
one in which the weapons are all alike) against a homogeneous array of passive targets could be
computed. He applied his results to calculate the distribution of the number of survivors for sonie
situations in which successive waves of interceptor aireraft (the weapons battery) attack a formation of
bombers that is attempting to reach its bomb release zone. Dixon’s method for finding the distribution
of the number of survivors at the end of a single volley requires the exhaustive enumeration of certain
combinatorial configurations. This method is similar in principle to those later emploved by Robertson
[1956] and by Helmbold [1960]. Dixon works out a few specific examples involving no more than four
weapons and only a handful of targets but does not present an explicit algorithm for enumerating the

required configurations.

However, Dixon does {ind an important general formula for the expected number of survivors after
a single volley. He argues correctly that the probability a particular weapon selects a particular target
(say. target t) is 1/7T. where T is the number of targets alive at the start of the volley. Thus. the

probability that target t survives the fire of this weapon is 1 — ¢/T. where ¢ is the kill probability.

1-3
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Table 1. A Sampling of Some Early Work on Volley Fire Models

Provides explicit formulas for:
Expected Variance Distribution
Principal Pub. Target Weapon Allocation no. of  of no. of of no. of
author date array battery of fire SUIVIVOTS SUrvivors survivors
Dixon 1953 Homog. Homog. Unif. random Yes No No®
Lavin 1953 Homog. Homog. Unif, random No No No?
Wegner 1954 Homog. Homog. Unif. random Yes No No?
Thomas 1956 Homog. Homog. Unif. random Yes No Yes
Robertson 1956 Homog. Heterog. Unif. random No No Yesb |
Helmbold 1960 Homog. Heterog. Unif. random Yes No Yes™
Rau 1964 Homog. Homog. Unif. random Yes Yes Yes
Rau 1965 Homog. Homog. Unif. random Yes Nu Yes
Ancker 1965 Homog. Homog. Unif. random No No Yes
Helmbold 1966 Homog. Heterog. Unif. random Yes No Yes
Helmbold 1968 Heterog. Heterog. Random Yes No No
Karr 1974 Homog. Homog. Compound® Yes No Yes
Karr 1974 Heterog. Heterog. Compound® Yes No No
Notes:
a. Distributions are provided only for a few examples involving a small number
of weapons and targets. A general algorithm is not explicitly stated.
b. Although a computationally well-defined algorithm for obtaining the
distribution is provided. it requires as an intermediate step the
cumbersome generation of certain combinatorial configurations.
c. Allocation of fire is determined by a compound process in which targets
are first acquired, and then fire 1s allocated uniformly at random over
the subarray of acquired targets.

Consequently, the probability that target t survives the fires of all of the " weapons in the battery is
(1- q/T)W. Since this probability is the same for each target. the expected numiber of survivors after
one volley is

BTy =710 -¢/T)V.

This elegant result will be called “Dixon’s Formula.” As indicated in Table 1. it applies when a
homogeneous battery of weapons volleys against a homogeneous array of passive targets, provided the
weapons allocate their fire to targets selected independently and uniformly at random from the target
array. Such volleys, including their generalization to volleys by a heterogeneous battery of weapons
against a homogeneous target array, will be called Dixon-Robertson-Rau (DRR) volleys after three who
have contributed substantially to the theory of volley fire, although in actuality none ol these three
provided closed form solutions for the general case where the weapons battery is heterogeneous or the
allocation of fire may be nonuniform. However, such formulas are easily found using our general

approach.

1-4
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By using the same methods as Dixon [1953]. Lavin and Wegner {19533] generate distributions of the
number of survivors for additional examiples of DRR volleys. They obtain expressions for the cases where
W = 1.2 3, 4 and 3. and for T up to 9. They also apply the then new electronic digital computer
technology to compute the matrix products required in the Markov process approach. Wegner [1954]
continues in this vein and also introduces a process in which the two sides exchange volleys

simultaneously.

Robertson [1956] provides an explicit algorithm for computing the distribution of survivors when a
homogeneous battery of weapons volleys against a hlomogeneous target array and illustrates by examiple
a method for obtaining the distribution of the number of survivors when the battery is heterogenecous.
She applies the results to situations in which an infantry rifle squad (the battery) is defending its
position against an assault conducted by another rifle squad. She makes no reference to the earlier work

of Dixon. Lavin, and Wegner and seems to have arrived independently at her results.

Thomas [1956] derives and solves in closed form a partial difference equation for the distribution of
the number of survivors in a DRR volley and obtains Dixon’s formula from it. He has in mind the case
of interceptors (weapons) against hombers (targets). He also presents computationally convenient
recursive formulas and a generating function for the distribution of survivors. and suggests various
approximations to that distribution. However. Thomas does not explicitly cite a formula for the variance
of the number of survivors. He does note the Markov chain solution for successive volleys. and analyzes a
volley in which each weapon in the battery may have kill probability q) or ¢ (with probabilities vy oand
Uy = 1 — . respectively). He also considers a heterogeneous target array consisting of just two types of
target (bombers and decoys): for this case he analyzes the allocation of a fixed budget to bombers and

decoys to maximize the expected number of surviving bombers.

Also in the inid 1950s Helinbold (following up ideas originated jointly by him and his colleagues
Martin N. Chase. John C. Flannagan, and Hunter M, Woodall, Jr.) was examining the use of volley fire
models to represent situations in which antitank weapons (the battery) are defending against tank
assaults. This work was conducted in ignorance of the work of Dixon. Lavin, Wegner, Robertson. and
Thomas. Some of it was later recorded in Helmbold [1960], which contains the following Generalized

Dixon Formula for the case where the weapons are not all the same:

1%
E(T) = T[] (1-qu/T),
w=1
where ¢, is the kill probability of weapon w. This result can be obtained by an argument similar to
Dixon’s but with minor modifications to allow different kill probabilities for different weapons. By the
time Helmbold {1960] was published. he had become aware of Robertson {1956}, but not of Dixon [1953].

Lavin [1953]. Wegner [1954], or Thomas [1956].
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By applying the principle of inclusion and exclusion to DRR volleys, Rau [1964] not only derives
Dixon’s Formula. but also finds the distribution and variance of the nummber of survivors. Subsequently.
Rau [1965] obtained the same results by an ingenious and entirely different argument. Rau provides
explicit and relatively simple formulas for the number of survivors. His formulas are much more
convenient than the algorithms proposed by Robertson [1956] or Helmbold [1960]. Rau's formulas will
not be repeated here, because they can be obtained by particularizing more general results given later in
this paper. Rau applies his formulas to situations where surface-based air defense weapons (the battery)
shoot at an intruding formation of aircraft. There is no indication in either of Rau’s reports that he was

aware of any of the earlier work on volley fire models.

Ancker and Williams [1965] obtain both iterative and closed form solutions for the distribution of
the number of survivors for DRR volieys. They do this by setting up and solving an appropriate partial
difference equation. They do not state Dixon's Formula, although it is derivable from their expressions
for the distribution of the number of survivors. nor do they cite any of the works listed in Table 1.
Helmbold [1966] pointed out that their argument is easily extended to obtain the distribution of
survivors when the weapon battery is heterogeneous, and showed that this result leads quickly to the

(Generalized Dixon Formula.

Later, Helmbold [1968] further generalized these results to the case where the target array as well
as the weapons battery is heterogeneous, and where, in addition, weapons select targets independently
(but not necessarily uniformly) at random. Unfortunately. no results on the distribution or the variance
of the number of survivors can be obtained with the methods used by Helinbold [1968]. This lack will be
corrected by the results to be given later in this paper. Helmbold [1968] does not cite the earlier papers

of Dixon, Lavin, Wegner, Thomas, or Rau because he was not then aware of their existence.

Karr [1974], motivated by problems in the penetration of aircraft through defended areas. considers
a compound process in which each wearon of the battery independently acquires targets. After the
acquisition process is completed, each weapon selects exactly one of the targets it has acquired and fires
at it; however, a weapon that acquires no targets fires no shots. When the weapons battery and target
array are both homogeneous. Karr derives the {ollowing formula for the expected number of survivors
(we shall call it Karr’s Formula, although it was originally proposed on the basis of intuition by LTG

Glenn A. Kent, USAF):
W
E(TY) = T{l —(1—(1 -d)T)q/T] .

where d is the probability that a particular weapon will acquire a particular target and is assumed to bhe
the same for all weapon-target pairs. Karr also gives the distribution of the number of survivors when
the battery and target array are both homogeneous. He obtains the expectation of the number of

survivors when the battery and array ate both heterogeneous, but not its distribution or variance. Later

1-6
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we will show how our general theory can be used to provide that tuformation. Karr cites none of the

prior work on volley fire models.

Clearly the work just described has been disjointed, unsystematic, and failed to make the best use
of earlier work. Results were usually obtained by ad hoc methods that (despite their other merits) had
an unfortunate tendency to conceal common concepts and generally applicable principles, rather than o
reveal them. The main contribution of this paper is to identify some general concepts whose systematic
application to volley fire problems can greatly aid in their solution. These general concepts are natural
and powerfully unify previously used methods. Several potential areas for further investigation are also
suggested. The general approach developed here also reveals that volley fire models generalize in a
natural way many of the classical probability problems in the theory of matchings, occupancy. and
statistical mechanics. Moreover, they yield hitherto unpublished results, and often provide simpler and
more intuitive solutions than have previously appeared. In the simpler cases, these concepts lead easily
and directly to elegant formulas for the expectation and variance of the number of survivors. In more
complicated situations, they provide algorithms useful for numerical calculations. Applications of the
approach to several volley fire situations are presented to illustrate the specific combinatorial techniques

that appear most effective in analyzing volley fire problems.

That some reasonably complex problems yvield easily to the new methods developed here can be
iliustrated by considering a sample problem in which a heterogeneous battery of weapons volleys against
a heterogeneous target array, and weapons select targets independently (but not uniformly) at random.
Suppose, as shown in Figure 1, that three weapons volley against an array of six targets. Weapons 1 and
3 are medium antitank weapons, and each fires three shots during the volley. Weapon 2 is a heavy
antitank weapon and fires two shots during the volley. The target array consists of three medium and
three heavy tanks, alternating with each other as shown in Figure 1. The heavy tank labeled as target
number 4 contains the tank unit’s commander. The antitank weapons are 90% reliable. Let vyt be the
probability that weapon w (w = 1, 2, or 3) directs a reliable shot at target ¢ (t = 1. 2, ..., 6). Let q,; be
the probability that target t will be killed if a reliable shot is directed at it by weapon w, and let the

numerical values of these factors be as in Table 2. Note that. in this example problem,

6
> vy =0.90
t=1

for w =1, 2, or 3 because the 90 percent reliability per shot has been included in the v, , values. (The
reliability factor would have the same effect on the results if. instead. it had been used to reduce the
value of q,,,.) We assume that each weapon directs each of its shots at a target selected in accord with

the v, values, but independently of all other shots fired. By employing soime of the results to be
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Figure 1: A Sample Volley Problem
Table 2. Values of v, and ¢,,, for the Sample Problem
w
1 2 3
t Y1t a4 Y21 92t Yot 11t
1 0.23 0.70 0 N/A 0 N/A
2 0.44 0.30 0.30 0.90 0 N/A
3 0.23 0.70 0.15 0.60 0 N/A
4 0 N/A 0.30 0.90 0.35 0.30
5 0 N/A 0.15 0.60 0.20 0.70
6 0 N/A 0 N/A  0.35 0.30
No.
shots 3 2

presented in Section 7 for volleys by independently effective weapons and a small hand calculator of the

type readily available nowadays, we found in a few minutes the following information.

1. The average and standard deviation of the number of tanks surviving the volley is

3.054 and 1.007, respectively.

2.  The average and standard deviation of the number of heavy tanks surviving the volley is

1.447 and 0.759. respectively.
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3.  The average and standard deviation of the number of medium tanks surviving the volley is
1.606 and 0.318, respectively.
4.  The probability that the commander’s tank survives the volley is 0.382.

5.  The probability that exactly 0, 1, 2, or 3 heavy tanks survive the volley is
0.096, 0.429, 0.407, and 0.068, respectively.

6. The probability that exactly 0, 1, 2, or 3 medium tanks survive the volley is

0.082, 0.363, 0.422, and 0.133, respectively.

7.  The correlation between the numbers of medium and heavy tanks surviving the volley is

-0.187.

It should be emphasized that these values are not the result of any form of Monte Carlo
simulation. Instead, they are exact values obtained by substituting the assumed values of v, and g,
into exact formulas for the situation described. Consequently, they could be used to verify that a Monte

Carlo simulation was operating correctly.
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2. NOTATION AND BASIC CONCEPTS

Suppose that at the start of a volley the target array consists of T targets. The state of the target

arrayv at the end of the volley will be represented by the complerion

(T T Tp)

where Ti= 1 if target j is alive at the end of the volley and 7= 0 otherwise. (A development in which
additional target states are allowed is possible, but is more complex and will not be pursued here.) In
principle, any properly posed question regarding the outcome of a volley can be answered if (and only if)

oT complexions is known. In many volley fire problems, however, a

the probabilities of each of these
direct evaluation of the probabilities of the complexions is difficult, while the following indirect approach

is more effective and in many ways more natural.

One of the characteristics of our approach is that it focuses on the probability that a target
survives instead of on the probability that it is killed. This facilitates the theoretical development and
vields more elegant formulas for the outcome of a volley. Consequently. we begin by defining jto be

the event that target j survives, that is,
2, =Jcomplexions |7 =1
J { P 7} }

The event complementary to = j is

= I— ;= {complexmns { = 0} .

where T is the set of all complexions and so carries a probability value of unity. In this paper. set-
theoretiz intersections are usually written as products, so that (for example) :j:_kzmﬁzr represenits the

event that targets j,m,and r survive the volley while targets £ and n do not.
Now consider the following family of basic events:

L,

:j for J = 1(1)T.

22y for j = 21)T and k = 1{1)(j = 1),

o for j=3()T, k=2(1)(j—~1) and [ = L{1)(k = 1).

212223. . .ZT.
Here and elsewhere in this paper the notation m = e(b)c denotes that m is a variable that ranges over
the set of values a, a+b, a+2b, ..., ¢ —b, c. Call a basic event that is specified by the product of

T

exactly r z's an r-th order basic event. For each » = 0(1)T, there are exactly ( > ) r-th order basic
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events, because that is the number of combinations of r ='s that can be selected frony the set of T s,

T

Consequently, there are a total of members in the family of basic events.

These basic events and their probabilities play so central a role in the general theory of volley fire
that we define a volley to be solved completely if the probability of each basic event is known. [t is well-
known that the probabilities of the basic events suffice to determine the probability of any complexion,
and therefore of any well-defined outcome of a volley (see Note 1 'n Appendix A). In several cases of
practical interest, the basic event probabilities are easily evaluated, as will be demonstrated by the
examples presented later in this paper. However, their computation inescapably requires special
knowledge or assumptions regarding the tactical behavior as well as the technical military capability of
the weapons and targets, and so it is not feasible to provide a useful general formula for them. For the
present, we simply take for granted that all or some of the basic event probabilities for the volley in

question can be obtained.

Suppose we say that a volley is solred 1o order m if the probabilities of all basic events of order

r = {1 )}m are known. Many interesting and important questions can be answered easily, once a volley is
solved to some low order. To illustrate this more fully. let A be an arbitrary but fixed collection or
subarray of T 4 targets, that is, subarray A consists of T 4 targets “of type A.” The subarray .4 may be
identical to the full target array, or may be any proper subarray. Designate the targets in subarray 4 as
Ay Ag ATA. The probabilities of the following subfamily of basic events assocrated with subarray 4
are available whenever the volley has been solved to order T :
(
I,
:Aj for j = 1(])T_4‘
4.4 forj:?(l)T4a11d k= 11);~ 1)

< j Py k -

T4z Eg 2 .
{ ‘A7 A, A, AT.-&

. . . TA . . ol 4 .
For each r = 0{1)T 1 this subfamily contains | 7 } r-th order basic events. so in all there are 27 4 hasic

events in this subfamily.

Now let P A[m] be the probability that exactly m targets of type A survive the volley. Then, by
the principle of inclusion and exclusion as described in Feller [1950], Liu [1968], Riordan [1958], Netto
[1927], Frechet [1940], Frechet [1943], Ryser {1963]. and many other texts on probability and

combinatorics, for m = O(I)TA

T, Ty—m
PA[m] - Z ("] )7‘ B m( 711.1 )SA = Z ("1 )1‘(”1’;‘ , >S;l ) “)
r=m r m4r

r=20
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where § 4 is the sum of the probabilities of all r-th order basic events in the subfamily associated with
r

subarray A. That is, for r = 0{1)T e

T, J',z—:l Ja—1 j,-_i:—l j,._i:—l
Sy =3Pz 4 2y )= P(zy ..ty ) ()
A A T4 FA A, 74
ror 3y T g =rg,=1 j3=1 Jy_1=1 i =1 71 Ir

When there is little chance of confusion. 5_4'_ will be referred to briefly as the r-th order basic sum,
These basic sums appear frequently in the theory developed in this paper. Observe that the r-th order
basic sum is the sum of(T,‘") basic event probabilitiss. Since » varies from 0 to T 4, there are exactly
TA + 1 basic sums. Of course, the value of the basic sum 5-40 is unity, since it is the probability of the

basic event involving no z 4 specification. that is, § 4 is the probability of the set T of all complexions.
A; Ay

In many applications of the theory of volley fire. detailed information as to which specific targets
survive is not essential and information regarding only the number of survivors is sufficient. In such
cases, equation (1) shows that the problem reduces to finding the values of '1‘.4 + 1 basic sums. rather
than the probabilities of '2T-4 basic events {or complexions). We proceed to show that further
simplification is possible when the complete probability distribution of the number of survivors is not

requited, and only the values of its first few moments are needed.

Let G 4(z) be the generating function for the distribution of the number of survivors, that is.

T,
(,;A(.L‘): z ‘l‘JnPA[rvz} . (3)

m=10

see Note

Note that the probability that at least m targets survive can easily be generated from G ((r)

21 Appendix A.

Replacing PA[m] by its value as given by equation (1) and then interchang.ng the order of
summation (having due regard for the region in the (m.r) plane over which the summation extends)

vields

Ty
Gyey=>" 3 (=1)S (-0

r=0m=10

TA
=Y (z-1)'S,, . (H)
r=90

The expectation and variance of Til’ the number of type A targets that survive the volley, are easily

obtained from G.“(z) by taking derivatives, and we find:
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i

E(TY) =G (1) = S, (:

and
Var(Th) = 6 (1) + G/, -{G'A(l)]z

=25, +S, ~5% (6)
Since A may be any subarray of targets, formulas for the expectation and variance of the total
number of survivors can be obtained simply by suppressing A in formulas (5} and {6). It is often
important for applications that the expected number of survivors can be obtained from the first order
basic sum, its variance from the first two basic sums, and (in general) its n-th order moment from the

first n basic sums (see Note 3 in Appendix A).

Now let A and B be arbitrarily prescribed subarrays containing 7" 4 and 7 p targets, respectively.
Designate the targets in these subarrays as AJ, where j = 1(1)T n and as B where &k = ()T . The
subarrays A and B may overlap in any way. By definition. the correlation between the number of

survivors of type A and type B is

E(TLTh) - E(T)E(TY)
\JVar(T‘&)Var(TlB)

PAB=

The variance and expectation of Tl_‘ and TIB in (7) can be found from equations (5) and {6). To find

E(T‘l‘iT%), observe that

Z Pley zp) (%)
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and we see that all of the quantities appearing in equation (7) are available whenever the volley has been

solved to the second order.

The preceding development can casily be extended to obtain expressions for the expectation,

variance, and correlation between weighted survivor functions. such as

Iy
U _ ' N
“"A““Aofz Mamj o (4
;=1

where the constant term M/ 1 is present only when non-zero weights are assigned to losses (see Note 4 in
P O .
Appendix A). This slight generalization can be treated by a straightforward extension of the methods
used to analyze the special case in which M g =0 and M g =1 for j = 1(D)T { to which we now
- 0 o } P

return.
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3. EQUIVALENT VOLLEYS AND CANONICAL FORMS

Volleys frequently are described by specifying how targets are to be acquired. how fire is to be
allocated among the acquired targets, and how the damage done to the target array by various

allocations of fire is to be determined. For many purposes, such descriptions are absolutely essential.

On the other hand, the basic concepts introduced in the preceding section make no reference to the
verbal description of a volley. Instead. they deal only with its basic event probabilitics. When these basic
event probabilities are obtained for a number of different vollevs, it is observed that the mathematical
expressions for them sometimes exhibit the same functional form. Recoguition of this common functional
form can be of capital importance, since all volleys whose basic event probabilities have the same
functional form can be analyzed by the same mathematical methods. When the basic event probabilities
for two volleys can be put in the same functional form. the volleys are said to be equivalent. and the
common functional form is satd to be their canonical form. We will not here attempt to formalize
exactly when two mathematical expressions can be put into the same functional form. Instead. we go

directly to examples of canonical forms, each of which is analvzed more fully later in this paper.

3-1. Independently Survivable Targets. We say that the targets within a subarray A of T" targets are
independently survivable if the : 1 Jsfor j = {()T 4 are independent events. In that case. the canonical

form for the basic event probabilities is

Plzg zg 2qg )=]] Pe4 ), (10)

where the argument on the left is any r-th order basic event associated with subarray A. All vollevs

which are equivalent to a volley of this form are called volleys against independently survivable targets.

Some of the properties shared by all such volleys are as follows. All targets in the full array are
independently survivable if, and only if. they are independently survivable within every subarray.
Moreover, such a volley can be solved completely whenever it can be solved to the first orde:, since ail of

its basic event probabilities are known functions of the first order basic event probabilities.

3-2. Exchangeably Survivable Targets. The targets within a subarray A of 7', targets are called
exchangeably survivable if the T4 ’s for j = l(l)TA are exchangeable events. that is. if the probability
of any basic event in the subfamilgl of basic events associated with subarray A depends only on the
number of Ty s in its specification, but not on which particular T4 ‘s appear in it. Specifically, targets
are exchangeably survivable within a subarray A whenever ! '

P(:Aj) =Pzy )= Py for j= 11T,

3-1
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P{z, = =Pz, = =P, for j=2A1)T d&=1(1)}j~1).
Gazg) =Py g) =Py forj=2T, an (= 1)

and so forth. Thus, the canonical form for a volley against exchangeably survivable targets is

P(:4 :4‘ ...:4' )=P(z441:442.“:4

=P , (1
A4, 4, Ar

where j; = r(1)T 4 and j, = H1)(j,, — 1= 1) for n=2(1)r. The concept of exchangeability and some of
its connections with other topics in the theory of probability and mathematical statistics can Le found in

Feller [1966], Loeve [1960], De Finetti {1974], and Frechet [1940], among other..

Some of the properties possessed by all volleys against exchangeably survivable targets are as
follows. If all targets in the full array are exchangeably survivable, then they are exchangeably
survivable within any subarray. Such a volley is solved completely once each of the T values P, for

r = {1)T are known, where P,. is the probability of the r-th order basic event T39Iy

In addition, when the targets in a subarray A of T  targets are exchangeably survivable the

general equations (1) through (6) immediately reduce to the following elegant forms:

T
T, 4 AT (~m
=< ,,;‘)rzm(—i)"'ﬂ“’( A )PA,, . (13)
T-!
GA(I): ZO(-’L'_I),( 74)P {; {L4)
r=
ETY)=T P, .and (15)
Var(TL) = T (T 4~ )P 4o =T (P (T JP 4y~ 1) . (16)

When A and B are subarrays of T 4 and T p targets, and if the targets are exchangeably survivable
within their union subarray, A U B, then it can be shown that
Ty Tp
ETYTE =3 3 Plzg i) = TATBP 42+ Ty plP 4y — P 42)
j=1 k=1
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so that

P Tp=T iap) =T TgP (=T qp)P 4
&Var(T‘l‘l)Var(T};)

PAB= {17)

where T ¢  p is the number of targets in both A and B. that is. in ANB.

3-3. Indepcndently versus Symnergistically Effective Weapons. Suppose that a battery of W weapons
volleyvs against an array of T targets. Suppose that we know the basic event probabilities when each of
the IV weapons acts alone and all other weapons are silent. Let pw(:j), pw(:j:k). and so forth, be the
basic event probabilities for a volley by weapon w acting alone against the target array. Then the

canonical form for a volley by independently effective weapons is

W
P(z)) = [T pulz))
w=1

W
P(zjzk): H pw(:jzk) . (18)
w=1

and so forth for each basic event probability. Consequently. volleys by independently effective weapons
can be analyzed by temporarily setting aside all but one of the weapous in the battery, soiving each of
the resulting single weapon volleys, and recombining them via the independence of their individual
effects. The volley used as an example in the Introduction is a volley by a battery of independently

effective weapons.

If the weapons in a battery are not independently effective, then we say that they are
synergistically effeciive. A volley by synergistically effective weapons caimmot be solved completely by

analyzing only its single weapon subvolleys.

Observe that a volley by independently effective weapons is against an array of independently
{respectively, exchangeably) survivable targets whenever each of its single weapon subvolleys is against

an array of independently (respectively, exchangeably) survivable targets.

3-4. Independently Effective Point Fire Weapons and Munitions. Suppose that a battery of ¥

independently effective weapons volleys against an array of T targets, and consider

W
b(:jzk. i) = H 1pw(:j.:k...:m)

Ww =

W

=1 [t - put5=m)]

w=1
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:Hl[l—pw(?;usgu.,.us;;)] , {19)

where U indicates the set theoretic union of events. Now. in some vollevs, a weapon may be unable to
kill more than one target. A weapon that is unable to kill more than one target per volley will be called

a point fire weapon. For each such weapon,

pw(- zk)_pw(.,-f—?,i)z...zpw(:j ke tm)E0

so that

pw(auq U~1n)-— Pw(‘ )+pw( k)+ +pw( n]) i . (—)0)

Consequently, for volleys by batteries composed exclusively of independently effective point fire weapons.

the canonical form is

w
P(zj 2j ..z =11 { pr } : (21)

Ir w=1 n=1

A volley by a battery of independently effective point fire weapons can be solved completely by finding
each of the WT values pw(z_J?) for w= I{1)W and j = 1(1)T, where pu,(:—j) is the probability that

target j is killed during the subvolley in which weapon w acts alone against the full target array.

A weapon that is not a point fire weapon will be called an area fire weapon. Equations (18) or (19)

give the canonical form for a volley by a battery of independently effective area fire weapons.

The definition of a point fire weapon needs to be broadened slightly to accommodate comfortably a
number of important applications. For example, suppose that one of the weapons is a rifle that in the
course of a volley may fire a number of shots and kill several targets. Under the definition given above,
the rifle fails to qualify as a point fire weapon, although both common sense and conventional military
terminology agree in ascribing “point fire” qualities to rifles. One appropriate response to this situation

is to introduce the concept of independently effective point fire munitions. as follows.

Suppose that each weapon in a volley fires a certain number of shots. Let S, be the number of
shots fired by weapon w. Let Pws(zj)' pws(:j:k), and so forth, be the basic event probabilities for a
“volley™ consisting of just shot number s from weapon w acting alone against the full target array. We

say that weapon w fires independently effective munitions if

S
Pylz H pw.s(“ ,

3-4
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Sy
Pw(:j:k) = Hlpws(:j:k) . {22)
S =

and so on. If, in addition, shot s can kill at most one target, so that

—— r

Pl TR = pws(':‘;qj:“,.) = ... Z pysl Pk Tm )=
then we say that shot s from weapon w is a point fire munition. In that case.

.
Pus(3, 35,55 ) = 1——;_:1»[”3(?;;) : (23)

If all the shots fired by weapon w are independently effective point fire munitions, then

S "
I’w(:jl:j?-- ‘:jr) 251:[1 1 _ngll’ws(?;;) . (1)

If. in addition. the shots fired by the various weapons in the battery are independently effective, then so
are the weapons. In that case. the canonical form for a volley of independently effective point fire

munitions will be written as

,
- Z Pws(:-j;) . (23)

Pz, s, ..z2.)=
(JlJ'z J') I—E | n=1

Observe that a volley of independently effective point fire munitions is equivalent to a volley

delivered by a battery of

independently effective point fire weapons, each of which fires exactly one shot. The equivalence is
obtained by replacing the original battery of 11" weapous by the battery of wt weapons, and arranging
things so that their kill probabilities correspond to those of the shots in the original volley. Therefore. in
the theoretical treatment, we may freely replace a volley of independently effective point fire munitions

by an equivalent volley of independently effective point fire weapons.

3-5. Summary of Canonical Forms. The foregoing suggests the taxonomy of canonical forms shown in
Table 3. Each block in this table represents a canonical form possessing the combination of target and
weapon attributes indicated by the column and row. The named volleys listed in the blocks of Table 3
are examples or special cases of canonical forms for the block. Volleys of independently effective point
fire munitions are listed as if they were replaced by an equivalent volley of independently effective point

fire weapons. Each of the examples listed in Table 3 is described at length and solved completely in
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subsequent sections of this paper. If no examples are listed in a block. it indicates that we are not awa v
of any practically useful examples of that canonical form: which can be solved completely. (In fact. the
Bellwether Volley was contrived to provide a solvable example of a volley by synergistically effective
weapons against an array of targets that are neither independently nor exchangeably survivable, rather
than for its practical utility.) It appears that describing and solving vollevs that not only fit the
characteristics indicated by the lower right hand blocks of Table 3. but that also have a spectrumn of

valuable applications. is a worthwhile area of research.

Table 3. Taxonomy of Canonical Forms

Targets
Weapons Independently Exchangeably Neither independently nor
survivable survivable exchangeably survivable
Independently | Gauntlet Volleys | Dixon-Robertson-Rau | Helmbold Volley*
effective ICBM Volley+ (DRR) Volley Burst Fire Volleys
point fire Hide-and-seek Volley
Independently
effective Multishot Karr Volley
area fire
Synergistically| Artillery Volley | Redundantly Survivable| Bellwether Volley
effective Target Volley
* Since this is a volley of independently effective point fire munitions,
or for other reasons is equivalent to a volley by independently effective
point fire weapons. it is listed in that category.
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4. COMPLEMENTARY VOLLEYS

Before analyzing these canonical forms and examples in detail. we introduce one last concept—
namely, the idea of a complementary volley. Roughly speaking, two volleys are complementary if the
outcome of each is the logical negation of the outcome of the other. Although this definition can be
applied even when several target states are allowed. this paper considers only targets that either survive
the volley, or do not. In that case, two volleys are complementary if targets that survive in one of them

are killed in the other. and vice versa. Formally, we have the following

Definition.- Volley V* is a complement of volley V if they have the same number of targets
and if the probability P* of each basic event :}:z,...:fn of volley V* is related to that of
volley V by
pesm) = PE T (26)

In some cases. the complementary volley may be much easier to solve than the original vollev,
Although no such cases have come to our attention in practice, that possibility is the most importaut
reason for considering complementary volleys. They would be of theoretical interest in any case. because
the notion and properties of complementary volleys lend a certain symmetry to the general theory. The
following theorems and corollaries establish the basic properties of complementary volleys. Theorem |
essentially states that if V* is a complement of V, then V and V* are mutually complementary.
Corollary 1.1 states that the complement of the complement is (equivalent to) the original volley.
Theorem 3 states that the number of survivors in volley V has the same distribution as the number of
targets killed in volley V*, and vice versa. Since the theory of complementary volleys is not completely
developed in this paper. and has yet to show its promise in applications, some readers may wish to skip
the remainder of this section, which is devoted to the mathematical statement and proofs o. these

propositions. (In the following, the symbol O denotes the end of a proof.)

Theorem 1: If volley V* is a complement of volley V, then V is a complement of volley V*, that is.

for each basic event of volley V,

* X
)

te

= P*:*
P(z 2. 2) = P*(]

“<“m

Proof: Let A be any subartay of T 4 targets. Then

i

P(ZAIJ‘A-;)...:“lT.“) I“P(ET[U?:EU.-.UE-IIIIH—A)

i

I—S‘4l+5‘42“...+(—1) 154714 .
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where

547' = Zr: P(:‘Aj] 2‘4-)-2...3‘41-'.)

and, as usual, Y stands for the operation of taking the sum over all r-th order subarrays of subarray A
r
(¢f. equation (2)). But, since by hypothesis V* is a complement of V. we may, by definition of a
complementary volley, replace each term in the sum 3. by its related complementary probability to
r

obtain

__ *
Sar= Sar

where th, is the r-th order basic sum for volley V*. Consequently, we have

> > - _— Q% * - _
Plz g1 g9 47 )= 1= S41+Sqa -+ (=1

Because A was any subarray of targets, this result holds for all basic events of volley V. 0

Corollary 1.1: Let V* be a complement of V and V** be a complement of V*. Then V** is
{equivalent to) V.

Proof: Because V** is a complement of V*,

P**(z j* Z* ..::,f) = P*(:j' :z,...:m_) = P(:j:k..:

where the last equality is supplied by Theorem 1. O

Theorem 2: Let volley V* be a complement of volley V and let A be any subarray of T 4 targets.
Let 54 be the r-th order basic sum for volley V* and S 4, be the r-th order basic sum for volley V.

Then

Z 1)"’(r_m )SA for » = 0(1)T

Proof: Because the proof is longer than convenient to present here, it has been relegated to Note 5.

Corollary 2.1: With assumptions and notation as in Theorem 2,

Z (-1) ( m—p )S* for m = ()(l)TA

42
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Proof: By assumption, V* is a complement of V. By Theorem 1, it follows that V is a complement of
V*. Consequently, in the statement and proof of Theorem 2 the roles of V and V* may be interchanged.

a

Theorem 3: Let V* and V be complementary volleys, and let A and B be any two subarrays of T 4

and T g targets. Then the following assertions are true:
() GY@) =2 4G (1/2)
() Poim) = PAIT, —m)
i) E(Tyy=71,~ETY) |
(iv) Var(T%!)=Var(T]) . and

(V) Pyp=rap
Proof: See Note 6.
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5. VOLLEYS AGAINST INDEPENDENTLY SURVIVABLE TARGETS

These are the easiest volleys to analvze. Indeed, it must be admitted that the results in this section
are well known and are traditionally obtained by elementary probability arguments that are simpler and
more direct than those based on the general theory of voiley fire. Nevectheless, we will rederive them
using the general machinery developed ubove. Our purpose in doing so is to illustrate the applicatior of
the new methods in simple situations before using them in more complicated ones. where the elementary
probability arguments do not apply. This also serves to demonstrate that the results obtained using the
general methods do indeed agree with those reached by more familiar approaches. It will be found that
the general methods are more precise and rigorous than the usual iaformal arguments. Moreover, the

results are used later in this paper.

Recall that the canonical form for a volley against an array of T independently survivable targets

is (cf. equation (10)) ,
P(:szj'z"':jr):nl;[lm:j") ‘

Obviously, the targets within any subarray are also independently survivable. For this class of volleys,

the complement takes a particularly simple forin. In fact, we have the following.

Theorem 4: If V is a volley against independently survivable targets and V* is a complement of V.
then V* is (equivalent to) a volley against independently survivable targets. Moreover, the basic event

probabilities for volley V* are

Proof: Let A be any subarray of T 4 targets, and consider the collection of events = AL SAD 0 TAT
y ; A2 AT
By hypothesis, these events are independent with respect to P. But any collection of events is
independent if, and only if, the collection of their complementary events is independent. Hence, the
events I 11, 2 19y .. n zATA are independent with respect to the probability P. Hence, V* is a volley

against independently survivable targets. as asserted.

Now, by hypothesis, V¥ is a complement of V, and so for every subarray A

T,
*,. % % L% R p— ; )
PU(Ny e ar ) = PO T Ty = I P
i
Ty T
-— ~ _ ¥, &
—Hl{l“”(au)}—n Py )
i= j=

5-1
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where the last equality follows because V* is a complement of V. But since this holds for any subarray
) i A 3

A, the events :; for j = 1(1)T are also independent with respect to the probability P*. O

Theorem 5: Let V be a volley against independently survivable targets and let A be any subarray

of T , targets. Then the generating function for the distribution of the number of type A survivors is

TA
G 4(2) :.Hl[l = DPL )] (27}
J =
Proof: Consider
’I_‘ ’I"‘
1T [1 +(z- 1)p(:4}.)]: (r=D"C (2%)
j=1 ’ m =10
where
¢ Am ™~ ZP [(' 1]2) Pls 4},”) lm

where the last equality follows from equation (2) and the hypothesis that \" is 4 volley against
independently survivable targets. But substituting 5 4, for gm on the right side of equation i28) and

comparing the result with equation (4) gives the asserted result, 0

Corollary 5.1: Let V be a volley against independently survivable targets. Let A and B be disjoint
subarrays of T , and T p targets. respectively. Let 4 U B be the subarray coasisting of the type A and

type B targets. Then the following statements are true.
() Gy yplr)=G Gp
(i) pyp="0
Giy BTl p = BT+ BT

tiv) Var(Th | p)=var(Tl) + var(r]) . and
m

™) P4y Bim) 2;_:0” Alm = 1) Bk

Proof: Part (i) is a general property of generating functions. whicli in the present context can he shown

as follows. By Theorem 3.

Tayn
“qupt) :,Hl {1+ =10PG )
j:
T, Ty
1:1 {1+ r=1)P(: U)} IT {r+ @ =nPe )
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where the second equality follows from the hiypothesis that A and B are disjoint. But by Theoremn 5. the

two factors ou the right side are (7 1) and G gle), proving assertion (i).

By the first assertion and a fundamental theorem of srobability theory, T'1 and T, must be
I 3 2 K
independent random variables. But then they are uncorrelated. which proves assertion (ii}. Assertion (ivi

1s an immediate consequence of assertion {1i).
Assertion (iii) holds whenever A and B are disjoint, because in that case

21 ol
Faup=Ta+Ty.

and because the expectation of 4 sum always equals the sum of the expectation~. (When A and B are nof

disjoint. then T‘l'x upS T.I»! + '1'}2 . and in that case h'(T& uR < E('I'Iii + /'.'TIH}-)

Assertion (v) follows either from the independence of Tl and T1 and standard results of
' A B
probability theory. or by expanding (7 1y plr) in powers of rin accord with equation (1) and

comparing coefficients with those of the product of (,'1"_\(1') and (_}'1}(1'). a

Corollary 5.2: Let V be a volley against independently survivable targets and let A be any subarray

of T 4 targets. Then

4

Bty =3 Plsy))
VT
and
T,
Var(Th) = ‘; P(:AU){I - P(:;U)}

J=1
Proof: The first assertion is the same as equation (3). To prove the second. apply assertion (iv) of

Corollary 5.1 repeatedly to show that

T,
TS S A CU |
Var(7T = Z Var( I';U)
j=1
where '1']4). is the number of survivors in the subarray consisting of the stngle target A5, But for a

subarray of just one target. Theorem 5 gives

(r';&j(.l,') =14 (c - 1)1’(::”)

and then equation (6) applies to give

At = pr- TR
\dr(1:tj)_1)(-:_‘j){1 ”‘-4)')} .0
Corollary 5.3: Let V be a volley against independently survivabie targets. Suppose that the targets

in subarray A are exchangeably survivable. Then the lollowing assertions are true:
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(i) The probability that exactly m of the type A targets survive is

- I

T T
A
P.-i[m] :( " )[:AIN(I _ P.—i) A

where

PA = P(:Al) = P(:Am) for m = l(l)TA

is the survival probability of an arbitrarily selected target of type A.
iy E(Tl)=T1,p,

(iii) Var(Th = T P, (1-P )

Proof: When the targets in subarray A are exchangeably survivable. substituting for each P(: 4j) s

common value, P4, in equation ¢27) yields

T T
G2 =14z = 0P T = (1= 4 up T
T,
A (T _
_ Z ( n'{,l)P_.;m“ _ P._‘)Y"‘ mom
m =1

and comparing this with equation (1) gives assertion (i). Assertions (ii) and (iii) follow by standard

resuits in the theory of binomially distributed random variables. or from Corollary 5.2. O

Now we will consider some particular cases of volleys against independently survivable targets.
Here, as in the discussion of other canonical forms. these examples illustrate the connection between the
somewhat lifeless abstract canonical form of a volley and the animated. often colorful applied versions
familiar to military operations analysts. In describing particular volleys. it is usually helpful to think of
the battery of weapons as going in turn through the phases of target acquisition. allocation of fire. and
achievement of effects. In the acquisition phase. candidates for attack by one or more weapons are
obtained fror: the target array. In the allocation phase. fire from the weapons is allocated to the
acquired targets. In the effects phase, the damage done by the allocated fire is determined. With 1his

concept of the volley process in mind, we turn to the example of the Gauntlet Volley.

5-1. The Gauntlet Volley. The informal mental image of the action in a Gauntlet Volley is that vach
target separately “runs the gauntlet.” that is. it faces and is subject to attack by ecach of the weapons in
turn. with each weapon-target combination encounter being a separate engagement. Alternatively, we

may think of each weapon as moving in turn from one target to the next. singlehandedly engaging

54
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each target it comes to. Whichever intuitive picture is used, a Gauntlet Volley may be defined by the

following postulates.

G-1: The probability that weapon w acquires target ¢ is a, (t), and is independent of otner

LAl

acquisitions.

G-2: Each weapon may fire up to T shots at the target array, depending on how many targets it
acquires. The probability that weapon w allocates one shot to target t is v,.(1) if ' acquires target 1. and

is zero otherwise, independent of what other events occur during the volley.

G-3: The probability that target ¢ is killed by weapon w is ¢,,(¢) if a shot from weapon w is

allocated to target t, and zero otherwise, independent of what other events occur during the volley.

The Gauntlet Volley is easily solved by observing that it is a volley against an array of
independently survivable targets in which

W
P(z) = J] {1 - aulthes{thaylt)}

r=1
so the results of Theorems 4 and 5 and their corollaries apply. The form of P(z,) shows that a Gauntlet
Volley is also a volley by a battery of independently effective weapons. In general, the weapons of a
Gauntlet Volley can kill more than one target. and so are area fire weapons. However, by postulate (-3,
the munitions are independently effective point fire munitions. so a (zauntlet Volley is equivalent to a

volley by point fire weapons. This justifies the location of the Gauntlet Volley entry in Table 3.

52. Thu ICBM Volley. The name of this volley was chosen because it has frequently been used to
obtain quick estimates of the effects of a salvo of intercontinental ballistic missiles. It satisfies the

following postulates.
ICBM-1: Each weapon acquires all of the targets in the target array.

ICBM-2: Each weapon fires exactly one shot. Shots are allocated as evenly as possible to the
targets. More precisely, let [W’/T] be the greatest integer not larger than 1 /T°  and let
RW.TY=W - T[W'/T] be the remainder when W is divided vy T. Then [H"/T]+ 1 shots are allocated
to each of the first R{W,KT) targets and [W/T] shots are allocated to each of the remaining T — R(W.T)

targets.

ICBM-3: The probability that target ! is killed by the shot from weapon w is ¢(1) if weapon w's
shot is allocated to target {, and zero otherwise, independent of what other events occur during the

volley.

[t is easily seen that an ICBM Volley is equivalent to the Gauntlet Volley v in which a single

weapon volleys against the target array. and in which the acquisition probabilities are aO(t) =1 for
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t = 1(1)T, the allocation probabilities are vO(t) = 1 for t = 1(1)T. and the conditional kill probabilities

are

L= (1=} TI+L o b= 1) R(w, T)

) =
1—{1—q(t)}{“/T] or t = (R(W.T)+ 1)(1)T

This equivalence justifies the location of the ICBM Volley entry in Table 3.

When the target array is partitioned into two distinct subarrays A and B such that A contains the

first R{(W ,T) targets, then it is easily seen from the equivalent Gauntlet Volley VO that

W/T]+ 1

P(:t):{}—q(t)}{ for t € 4. and

P ={1 -0}/ forien

Corollary 3.1 applies to yield

R(W.T) oy T W
ETh=Y [-goW/TI+1 4 Y {1—gnW/T]
t=1 t=R(W.T)+1
pag="Y

and so forth.

Now suppose that g(t) = 9.4 for all t € A and ¢(t) = qp for all ¢ € B. aud let

P.-& ={l- qA)[W/T] +1 . and

Pp=(1-qp /7]

Then Corollaries 5.1 and 5.3 apply to yield the familiar formulas
E(TY) = ROW.T)P | +{T - ROW.T)}P

Var(T!) = ROW.T)P (1 - P ) +{T = R(W.T)}P (1 ~ Pp)

p _(R(W.T)

Alm]— m )P.N‘”'(i - PA)R(H' T)—m

for m = {(1YR(W.T)

T-R(W.,T)

T~RW. T)-m
Popy = T g pp

56

for m = 0(1){ T - R(W, T)}

. and
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m

P[m] zkzop,—l[m - HPB[I\'] for m = ()T
5-3. The Artillery Volley. The Artillery Volley is often used to estimate the effects of fragmenting

ordnance delivered by artillery. aircraft. mortars. rockets, and so forth. It may be described as follows.

A-1: Individual targets per se are not acquired. However. an area believed to contain targets is

acquired.

A-2: There are W weapons. Weapon w fires §,, shots. Shots are not allocated to individual targets.
but are allocated stochastically to particular ground zeros in such a way that o, (u.v)dudr is the
probability that shot s from weapon w has its ground zero located almost exactly at the point (u.v).

Each ground zero distribution o ,,4(u,v) is independent of the actual ground zeros of other shots.

A-3: The probability that shot s from weapon w kills target ¢ when target t is located almost
exactly at (2,y) and the shot’s ground zero is located almost exactly at (w, ) is given by the damage
function D, ,(z — u.y — v). Shots are independently effective given their ground zeros. that is. the
probability that target t survives all shots when it is located almost exactly at {z.y) and the ground zero

of shot s from weapon w is located almost exactly at (uy.z vy} 1s equal to

5% Sw
Fy= H Hl{l ~ DystlZ = s ¥ — tyes )}

w=1 s=

A-4: The probability that target ¢ is located alinost exactly at (r.y) is p,(r.y}drdy, independently

of the locations of other targets and of the ground zeros of the shots.

Observe that. by virtue of the above postulates, an Artillery Volley is a volley against an array of
independently survivable targets. Neither the weapons nor the munitions are point fire. As explained in
Note 7, the munitions are independently effective only conditionally on their ground zeros. that is. in the
sense specified in postulate A-3, and do not conform to the definition of independently effective
munitions in the sense expressed by equation (18). These observations justify the location of the Artillery
Volley entry in Table 3. Schroeter {1984] also develops expressions for the expectation and higher

morments of 71, the number of targets that survive an artillery volley.
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6. VOLLEYS AGAINST EXCHANGEABLY SURVIVABLE TARGETS

The canonical form of a volley against exchangeably survivable targets is given by equation {11). It
- is clear that if all the targets in an array are exchangeably survivable, so are the targets in any subarray.
When the targets are exchangeably survivable. the elegant formulas (12) through (17) apply. We now

prove the following.

Theorem 6: If V' is a volley against exchangeably survivable targets and \'* is a complement of V'
then V* is also a volley against exchangeably survivable targets. Morcover, the cornplementary basic

event probabilities are

Proof: Let A be any subarray of T 4 targets. and consider

*, ¥ ¥ _* _— -—— ——— -_—
Pr iy qm=ar )= PE Ta9 - Far )

i
—
|
—
[*)
—
¢
[N
—
C
tr
-
-~
C
C
:
—
[
KN

where
S;lr = Z’: P(:‘"Ul:"U.tm:f‘jr)

and, as in equation (2), Y. indicates that the sum is taken for indices J - doe- - Jyp which are varied in
2 2

sich a way that the subarray consisting of the targets “‘j . Aj Cene .-1}- sweeps over each of the »-th
1 2 r

order subarrays of subarray A. But, because by hypothesis the events : 11 S Ty, Are
< P o ._t

exchangeable with respect to P,

where

6-1
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which depends only on T 4 and not on which T" ¢ events appear in the argument of P*. Therefore the
events 2*41» :*4.), - :jiTA are exchangeable with respect to P*. But, since A was any subarray of
targets, it follows that V* is a volley against exchangeably survivable targets, and the complementary

basic event probabilities are as given in the statement of the theorem. O

T

In general, the state space for a volley consists of the 2¢ possible complexions of the target array.
and the sequence of complexions generated as successive volleys are fired is a Markov chain with o T
states. However, when the targets are exchangeably survivable. only the nuniber of survivors matters
(that is, only those complexions which differ in the number of survivors are distinguishable). and the
sequence of the number of survivors generated as successive volleys are fired 1s a Markov chain with only
T + 1 states. The transition probabilities for the iatter Markov chain are given by P[m], which may be
calculated using equation (13). Consequently. volleys against exchangeably survivable targets are much
easier to analyze than are volleys against arrays of targets that are neither independently nor

exchangeably survivable. Particular examples of volleys against exchangeably survivable targets are

given later in this paper {the names of these volleys are shown in Table 3).

6-2
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7. VOLLEYS BY INDEPENDENTLY EFFECTIVE POINT FIRE WEAPONS OR MUNITIONS

In this section we show that the general theory developed earlier easily vields results for volleys by
. independently effective point fire weapons that are difficult to derive by other methods. In fact. we shiow
that application of the general theory allows us to develop new results for some of these vollevs. Recall
. that the canonical forms for volleys by batteries of independently effective weapons or munitions are
given by equations (18) or (22). vespectively. Before introducing and analyzing particular cases, we

establish the following.

Theorem 7: Suppose that V is a volley by a battery of W independently effective weapons. and let
V* be a complement of V. Then. in general, V* is not (equivalent to) the volley V| obtained by

independently combining the complements of volley V's single weapon volleys.

Proof: In general.

8%
Py = P = 1= P = 1= [ potep)

w=1
On the other hand. the complements of volley V's single weapon volleys are

p’&,(:’{) =Pl j=1- pu'(:i) for w = {1}

and combining them independently leads to the volley V* in which

W W
P+(:1+): H pfu(:’f): H {1=pyl=p)}

w=1 w1

and so. in general, P ¥ (:1+ ) # P*(:T). In fact. it is clear that P T (:1+ ) < P*(:’f). and that the equahity

sign applies only in very special cases. Consequently. in general. volleys VT and V* are not equivalent.

a

Observe that, in general, the complements of volleys by independently effective point fire weapons
appear to be volleys by synergistically effective weapons. This may provide a useful method for
investigating and solving volleys by synergistically effective weapons. Specifically. some volleys by
synergistically effective weapons may be most easily solved by recognizing that they are the
complements of volleys by independently effective point fire weapons, solving the appropriate
complementary volley. and translating its solution to the original volley.

7-1. The Dixon-Robertson-Rau Volley. The Dixon-Robertson-Rau (DRR) Volley occurs quite frequently
- in applications and also serves as a prototype for the study of other volleys by independently effective
point fire weapons because it can be analyzed in cousiderable detail and has intuitively appealing

solutions. It may be defined by the following postulates.

7-1
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DRR-1: Each weapon in a battery of # weapons acquires all of the T targets in the array.

DRR-2: Each weapon fires exactly one shot, which it allocates to a target selected uniformly and
independently at random from the target array. {That is. the probability that weapon w directs its shot

at target ¢ is equal to 1/T and is independent of the other events that occur during the volley.)

DRR-3: The probability that target ¢ is killed by the shot from weapon w is q,, if w allocates its

shot to ¢, and zero otherwise, independent of the other events that occur during the volley.

Observe that the DRR volley is a volley by independently effective point fire weapons. in which

~

Pl ) = Z Prob(weapon w kills target ¢ | w fires at target t) x Prob(uw fires at target j)
j=1

=qu/T

Because p,,(7;) is independent of ¢, the targets in a DRR volley are exchangeably survivable. Then. for
any subarray A of T 4 targets, equations (21} and (11) show that
W
Pyo=1] (1—-rq/T) forr=1NT .
w=1
Therefore, in general, PAf, #P 41?‘, and hence a DRR Volley generally is nof a volley against
independently survivable targets. These observations justify the location of the DRR Volley entry in

Table 3.
Because equations (12) through (17) apply, we obtain invmediately
T \W
S yn z( ,:4)H (1=rq/T) for r=0(1)T ,
w=1
14

=T [I (1-au/T)

w=1

(1 —2q,,/T) + BTl 1 - £0TY)}

.’:lvc

Var(TY) =T (T , - 1)

w =
T -m}H
P \(m) ( )ZO(—I ( A >H1(1-(m+;v)q“,/'1')
jovard W =

and so forth. Observe that, when q,, = 1 for w = 1(1)W. the formulas for the DRR Volley give the

expectation and variance of the number of empty cells in the classical occupancy problem, and P A[m)

7-2
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gives the probability that exactly m cells of an arbitrarily chosen collection of T 4 cells are empty

(compare this observation to Feller [1950]). (See also Note 8.)

Clearly, a volley in which there is but one weapon that fires a total of W shots, where each shot is
allocated to a target independently at random from the target array and the w-th shot has kill
probability q,,, is equivalent to a DRR volley. In fact, the number of weapons and the number of shots
per weapon can be changed at will, subject only to the conditions that a total of W shots be fired, that
each of the shots be allocated to a target selected independently at random from the target array, and
that the kill probabilities of the shots correspond one-to-one with the ¢,, for w = 1{1)W. For example, a
volley by wo weapons, each of which fires § shots with each shot fired at a target selected
independently at random from the target array, in which the kill probability gradually improves on each

shot, so that

< <...<
qwol = qw°2 - qwo.S'

for each w0 = I(I)WO, is equivalent to a DRR volley by a battery of W = wls weapons in which

9wt - forw:l(l)W0

q , for w= (W94 1)(1)2w?)

w— W92

Qw

. —[(G_ 0 0
qw—(S—l)WO,S . forw=[(S§-DW+1]J(1)SW™)

(The assumed increase in kill probability is, of course, not essential. The important conditions are that
the shots be independently effective, that each of them be directed at a randomly selected target, and

that the targets are all alike.)

It might be conjectured that the complement V* of a DRR Volley in which qy = ¢ for w = 1{(1)W
could be obtained by substituting I — ¢ for ¢ in the above formulas. However, this generally is false,

because it results in the volley v for which
PL={1-r(1-qyT}W
but the correct expression for the complemeuntary basic event probabilities as given by Theorem 6 is
- k(r W
Pr= 30 (=D} X1~ ke/T)
k=0

and these expressions are not reducible to the same functional form. One way of demonstrating that is to

observe that, because they both involve the same variables, the expressions for PI. and P} are reducible

7-3




CAA-RP-92-1

to the same functional form only if they are identically equal for all relevant values of r, ¢, T, and W,
But when r=1,q=1,T =2, and W = 1, we find P’{ =1/2, but P‘; = 1, so that the expressions are
not identically equal. In fact, as shown in Theorem 8, the complement of a DRR Volley is not usually a

DRR Volley.

Theorem 8: Let V be a DRR Volley by a battery of W weapons against an array of T targets in
which g, = ¢ for w = 1(1)W. Suppose that W < T —2. Then V*, the complement of V, is not
(equivalent to) a DRR Volley by a battery of W weapons for which ¢, = ¢* for w = 1(1)W.

Proof: If V* were (equivalent to) a DRR Volley in which ¢, = ¢*, we would have to have
Pr=1-rg/TW forr=001)T

Equating this to the expression for Py given by Theorem 6, we see that V * is a DRR Volley only if the
set of equations

r

(1=rg*/T)W = 3 (DX Y1-ke/T)Y for v = 11)T (29)

has a solution ¢* that lies between 0 and 1. But, as will be shown in a moment, when W < T -2, the
right side of equation {29) vanishes for r = T and for » = T — 1. And then we would have to have
(1- q*)W =0 and [1 —-(T - l)q*/T]W = 0, which is impossible, because the first of these equations
requires that ¢* = 1 while the second requires that ¢* = T/(T - 1) > L.

To show that when w < T — 2 the right side of equation (29) vanishes for r =7 and for r = T — 1.

rewrite it as

W W ,
- (—l)k r Z (1) l’/x (¢/T)™™ = Z (—=1)—m ‘,'3;)(q/T)WC';." )

m=20

where

e = i =D ™

But it is well-known that C}* vanishes for r > m (see, for example, Feller [1950. p 77]). Consequently,
when W < T — 2 the right-hand side of equation (29) vanishes for r = T and for r = T — 1, as asserted.
O

Corollary 8.1: f W < T - 1, a complementary DRR Volley in which qu = ¢* exists if, and only if,
()W=1land T =2, and (ii))¢*=¢g=1.
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Proof: When W < T — 1, taking » = T in equation (29) yields (1 — q*)W =0, so that ¢* =1 is the

only possible solution. But the complementary version of equation (29) reads

r ,
(=rg/TW = 37 DY )1 - kDY
k=0

and when W < T — 1, putting » = T in this equation yields (1 — q)W = 0, so that ¢* = ¢ = 1 is the only
possible solution. With these values of ¢ and ¢*, taking r = 1 in equation (29) yields the necessary

condition for a solution as {1 — l/T)W =1/2.0or1~-1/T=2" 1w

W =1, then T =2 is a possible solution. It is easily verified that the values W = 1, T = 2, and
¢ =4q* =1 do indeed provide a solution to equation (29). However, when W > 1, the right side of the
last equation of the previous paragraph is irrational, while its left side is rational. Hence, when W > 1,

equation (29) has no solution of the required type. O

When T = 2 and W > T, there are selected values of ¢ = ¢* for which equation (29) has a solution,
and therefore for which complementary DRR Volleys for which ¢,, = ¢ and ¢}, = ¢* exist. The values of

q = ¢* which afford solutions of equation (29) when T = 2 and W = 1(1)9 are listed below.

:q*
.000 000 000
.585 786 438
.412 598 948
.318 207 170
.258 89R 874
<218 202 564
.188 552 672
.165 991 914
.148 250 576

(O(XJ*JC)O‘J‘ACO(OHIS
COOCOoCOOCOoOO -

Presumably, this list could be extended to higher values of W and T. Hence. for some W > T,

complementary DRR Volleys with q,, = g and g3, = ¢" exist for selected values of q and ¢*.

The theory of complementary volleys is incomplete. This is true for the complements of volleys by
independently effective weapons generally, and for the complements of DRR Volleys in particular. As

such, this topic deserves additional study and research.

7-2. The Helmbold Volley. The DRR Volley can be generalized considerably at slight effort. For

example, suppose a Helmbold Volley is defined by the following postulates.
H-1: Each weapon acquires all T targets in the target array.

H-2: Weapon w fires S, shots during the volley, allocated at the rate of one target per shot. The
probability that shot s from weapon w is allocated to target f is v, .(t) and is independent of the

allocations made on other shots by the same or any other weapon.

7-5
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H-3: The probability that shot s from weapon w kills target ¢ is g, (#) if that shot is allocated to

target 1, and is zero otherwise, independent of the other events that oceur duving the volley.

This obviously is a volley of independently effective point fire munitions. so that equation {25)

applies with p,, (%)) = vy, ((t)g,.4(t). Hence, when A is any subarray of T, rargets,

TA W Su-
S:“ = z H H {1~ ":l's("‘j)'l::-.s‘("’j)} . and
=l w=1 s=1
TA j‘ 1 1 Su'
Sp=y. > 11 Hl{l = Pl sl 1) = r,m(.»1“(,“,5(..1“)}
J=2k=lw=1s=

The antitank weapon volley presented in the introductory section is an examiple of a Helmbold Volley.
and the equations above and others (such as equations (1), (3). (6). (7). and (8)) were used to calculate

the numerical values for it.

Although Helmbold Volleys are volieys of independently effective point fire muunitions, it is clear
that in general they are not volleys against exchangeably survivable targets. This justifies the location of

the Helmbold Volley in Table 3.
T
In a Helmbold Volley it is not necessary that 3 v, (f) = L that is. it is not required that each
shiot be allocated to some target. Allocation pr()})alt)iﬁt.ios that do not sum to unity may be interpreted as
indicating that some shots are allocated to false targets (either deliberately deceptive “dummies.” or

inadvertent spurious targets), or that some shots are lost as the result of malfunctions, duds, and/or

human error, or in other ways.

Observe that the availability of explicit solutions to volleys such as the Helimbold Volley and others
smooths the way to an investigation of various optimization problems in connection with volley fire
problems. For example. tactical problems such as the best arrangement of overlapping fields of fire or
the valie of trading rate of fire for improved accuracy can be investigated using the expected numiber of
survivors as an objective function that is to be minimized. Some force structure issues could be clarified
by evalnating the impact of different small unit organizations on the munnber of survivors. and so forth.

If the targets and weapons are all different. so that the v, g, preducts are all different, then the
evaluation of S, involves ( { ) terms In its summation. So if there are many targets (say 100 targets),
{100
\ 50

produet of W factors. each factor being of the form 1 — v g, = =t 504,50 5S¢ when there are 100

then to evaluate S50 ivolves the summation of )’:: 168,000 mioles of rerms, cach term being a
targets, it is not practical to solve the volley completely by evaluating all of the basic sums. Fortunately,
for most practical prrposes, solving the volley completely is not really necessary, and we can make do

with just the first fow moments of the distribution of the number of survivors, such as the expectation
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and variance. For 100 targets, the expectea value can be found from 5. which nvolves 100 terms in it
summation. The variance can be found from S,,. which involves ( ‘f{”) = L850 terms: not a caleulation

one would cheerfully undertake to do by hand. but something that is very easy to do with modern
100
3

Although this is feasible with modern computers. some numerical analysis may be in order to vnsure

computers. With 100 targets, the third moment involves the summation of( ): 161.700 terms.

adequate precision in the final result. But the main point is that the expectation and variance can be

found without solving the volley completely. and for applications that is a very handy feature.

The Helmbold Volley can also be generalized to allow for some types of collateral damage. For

example, this could be done by setting

Pus(T) = Z qusit] (’)z'“‘s(t') .
teT

where v, (t') is as before, but where Qs t'Y is the probability that a shot from weapon w aimed at or

allocated to target ¢’ actually kills target ¢ instead. Because we continue to assume that
Prob(F]UTU...UT) = D pes(Fr)
r=1
for all subsets of the target array, the resulting volley is still a point fire rather than an area fire volley.

7-3. The Burst Fire Vollev. The Burst Fire Volley extends the Helmbold Volley to allow a burst of

shots to be fired at an acquired target. It may be characterized by the following postulates.
BF-1: Each weapon acquires all of the T targets in the target array.

BF-2: Each weapon fires S, bursts during the volley. allocated at the rate of one burst per target.
The probability that weapon w allocates burst s to target fis v, (7). and is independent of the
allocations of other bursts from the same or any other weapon. The probability that weapon u fires b
rounds during a burct allocated to target fis f 4 (b). and is ind:pendent of the other events that oconr

during the volley. All rounds fired in a burst are allocated to thie same target as the burst.

BF-3: The probability that target # is killed if it is allocated b ronnds m burst s from weapon 1w is

quws(t.b), and is zero otherwise, independent of the other events that occur during the volley.

It is clear that a Burst Fire Volley is equivalent to a Helmbold Volley in which
X
qu;s(t) = Z ’1{(*.‘({-’)))(”\31‘(,))
bh=40

provided that the “shots™ of the Helmbold Volley are identified with the bursts of the Burst Fire Volley.

This justifies the location of the Burst Fire Volley entry in Table 3.

7-7
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If the rounds in a burst are independently effective given the weapon-target combination involved,
then g,,4(t,0) = 1 ~ {1 — q,s(1, I)}b. In that case,
. b
qus(t) =1~ Z {1 = qus(t D £ se(b)
b=20

Various simplifications are possible if, for example,

A=A .
Fwstd) = = {Poisson),
fwstt®) =0~ A (Geometric),
B, . _
fwst(b) = ( l,;bt)’\b(l - '\)Bll"ﬂ b {Binomial),
L ifb= B,
fwsttd) = { Deterministic).

0 otherwise

in the Poisson case,

‘st(t) =1- e_/\qws(t'l)

In the Geometric case,

Aqws(t,l)
I~ A{l - quslts 1)}

qlu,s(t) =

In the Binomial case.

B
gs(t) =1 ——{l - ,\qws(t,l)}

wst

In the Deterministic case,

B,
Tws(t) = 1= {1 — qps(t, 1)} w8t

In each of the above cases, the basic event probabilities are given by equation (25) with

Pusl?p) = Vs )8s(1), and many other quantities of interest can easily be calculated from these basic

event probabilities.

7-4. The Hide-and-seek Volley. The Hide-and-seek Volley is a volley by a battery of W weapons against

an array of T targets that satisfies the following postulates.

7-8
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H-1: There are H hiding places and T targets, aud H > T. Targets occupy hiding places uniformly
at random and independently of each other, subject only to the condition that at most one target can

occupy a given hiding place.

H-2: Each weapon fires exactly one shot, which it allocates to hiding place h with probability (.

independently of the actual location of the targets.

H-3: The probability that the shot from weapon w kills target ¢ is 9,,5(t) when that shot is
allocated to hiding place k and target t is occupying hiding place A, and is zero otherwise, independent

of what other events occur during the volley.

Note that this is a volley by a battery of independently effective point fire weapons, and so it can
be solved by finding the p, (Z;) values. To do that, observe that the probability that weapon w kills
targes £ is vwhqwh(t) if target t occupies hiding place h. and since the probability that target t occupies

hiding place h is 1/H for each h = 1(1)H,

H
Pul(F)) = ,,_1} Zlvwhqu)
=

Then
W 1< H
P(ztl:tz...ztr) = H 1-H }: Z vwhqwh(tn)}
w=1 n=1h=1
gives the basic event probabilities, and so provides the complete solution to the Hide-and-seek Volley.

The Hide-and-seek Volley is equivalent to a Helmbold Volley Vo by a battery of W weapons
against an array of T targets in which each weapon fires exactly one shot, allocated according to a

uniform distribution over the T targets, and in which the kill probabilities are defined by

H
q&(t) = (I{')Z VihTwh(?)

This justifies the placement of the Hide-and-seek Volley entry in Table 3.

For the special case in which each weapon allocates its shot to a hiding place selected from the

hiding places according to a uniform distribution, Vih = H™L. Then

qow(t) = (%)un(t) , where

! f
Tty =H" Z Toht)

1=

7-9
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If, in addition, §(t) is independent of , then the Hide-and-seek Volley becomes equivalent to a DRR

Volley by a battery of W weapons against an array of T targets in which the kill probability is taken to

be

w=(%)%w
7-5. The Karr Volley. Karr [1974] has analyzed in some detail a volley that he proposed as a model of
the penetration of aircraft through a defended area, and for certain other types of penetration processes.

We will extend Karr’s results by providing formulas for the variance and correlation of the number of

survivors. We paraphrase Karr’s postulates for this volley as follows.

K-1: A battery of W weapons volleys against an array of T targets. The probability that weapon w
acquires target 1 is d,(?) and is independent of other acquisitions made by the same or any other

weapon.

K-2: A weapon that acquires one or more targets fires exactly one shot. which it allocates to a
target chosen uniformly at random from among those it acquired. independently of the other events that

occur during the volley.

K-3: The probability that target ¢ is killed by weapon w is ¢,,(1) if w allocates its shot to target t.

and is zero otherwise, independent of the other events that occur during the volley.

Since a Karr Volley clearly is by independently effective point {ire weapons, equation {21) applies.
To determine the p,,(z;) values, consider a Helmbold Volley with the same number of weapons and
targets as in the Karr Volley. In this Helmbold Volley. let each weapon fire exactly one shot. which is

allocated to target f with probability
vy,(t) = Prob(Weapon w of the Karr Volley both acquires and allocates its shot to target ¢}

Furthermore, in this Helmbold Volley, let the kill probabilities g,,(¢) be the same as in the Karr Volley.
Then this Helmbold Volley is equivalent to the Karr Volley, and the problem reduces to determining the

values of vy(t). Now, as Karr [1974] points out,

T-1
v, (t) = (m+ l)"lProb(W'eapon w acquires target ¢ and exactly m other targets)
w g g
m=74
T -1

=Y m+ )7l () A, (mt) .
where we have written A, (m,t) as an abbreviation for the probability that weapon w acquires exactly

m other targets, given that it acquires target {. But, because acquisitions are independent events by

postulate K-1, 4,,(m,1) must also be equal to the probability that weapon w acquires exactly m of the

7-10
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T —1 targets in the subarray C(t), where C(t) is the subarray of T — ] targets obtained by omitting

target {.

Next, observe that A, (m,t) is the probability that cxact'y m targets survive a Gauntlet Volley in
which a battery of one weapon (corresponding to weapon w of the Karr Volley) volleys against an array
of C(t) targets, and in which the survival probabilities for the Gauntlet Volley are identified with the

acquisition probabilities d, (¢) of the Karr Volley. Let

T-~1
Gz} = Z ™4, (m,t)
m =0

be the generating function for the distribution of the number of survivors for this Gauntlet Volley.

Because
! T-1
Jth(z)d.r = Z {m+ 1)-1.410(177.0
0 m=29_0

it can be seen that
1
Uy(t) = dy(8) | Goylz)dx
0
1 p_

1
=d,,(1) Z (2= D)™ p(t)dz
pm=0

where S ,,,,,(2) is the m-th order basic sum for this Gauntlet Volley (sec equation (2)). Carryving out the

integration yields

T -1
vy(t) = t)Z Y™ om + )18 (8)
m=
where, by equations (2} and (10),
m
Swm(® =[] dutin)
mp=1

h=m j,=1 Jm=1 n=1

where the notation Y, means that the index ji = tis to be omitted from the summation. This is

equivalent to a result obtained by Karr [1974, p 19], using different methods.

7-11
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In the case where the targets are all alike, d,,(t) = d, for all t = 1(1)7, so that
Sum(t) = (Tr_r; l)dwm '

and hence

T~1
@ =dy 3 (~1™m+ 17 T D,

m=20
dw
T -1
:J S (=0T e
) m=10
dw
=J(1-1)T ldz
0

= T"l{l -1 ~dw)T}
By virtue of the equivalence previously pointed out between the Karr and Helmbold Volleys, it follows

that for the Karr Volley with exchangeably survivable targets, where A is any subarray of T 4 targets,
w
Pa= 11 [1-rau {1 -1 =a)T} torr =0t .

w=1

E(T‘lbl) =T 4P 4
Var(TL) = T (T , ~1)P 4o+ E(TL )1 - E(TL)
Ty AT 4 42 A A

9
P,,—P ,*
=—AQ—AI.2 for j # k, and

Pik
j
Pyi—Py
T,—-m
T, 4 (T —m)
- A 7 A —
PA[m]..(m) Zo (~1) r JPaimary form=00T,
r =

Karr [1974] gives formulas for the distribution and expected number of survivors that are

equivalent to (or special cases of) those given above, but does not provide formulas for the variance or

correlation.
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7-6. The Multishot Kaer Volley. This volley generalizes the Karr Vollev to allow each weapon to fire a
number of shots, each allocated to a target chosen uniformly at random from among those it acquires.
These results are new. In this volley, the weapons are independently effective. aithough they are area
fire, rather than point fire weapons, as they are in the Karr Volley. Moreover. as will be apparent in the
following development, the munitions are not independently effective point fire munitions. These
observations justify the location of the Multishot Karr Volley in Table 3. Although this volley is not
equivalent to a volley by independently effective point fire weapons, it seems appropriate to present and

analyze it in the context of indepeudently effective point fire weapous.

We treat only the case where the targets are all alike, and so write the acquisition probability as
d,, and the kill probability as q,,;- When §,,, is the number of shots fired by weapon w, the first order
basic event probabilities can be found from
Sw
Pulzy) = (1 —dy,) +duz A O T {1 = aqes/tm + 1)}

m=0 s=1

where, as before, A ,,(m.) is the probability that weapon w acquires exactly m additional targets, given

that it acquires target t. By Corollary 5.3. for the case at hand.

Ay(m,t) = (Tf’r; l)dwm(l _ dw)T —-1-my

That p,,(z;) is given by the indicated expression can be seen by reasoning as follows. Target ¢ certainly
will survive weapon w if it is not acquired by weapon w. This accounts for the 1 —d,, term. If target ¢
and m other targets are acquired by weapon w, then ¢ survives weapon w only if all of the §,,. shots by
weapon w fail to dispatch it. The expression for the probability of that event can readily be obtained
from our earlier results for DRR Volleys and, when summed over m. it produces the second term in the

equation for p,,(z;).

The second order basic event probabilities for a one-weapon battery are

-9 Sw
pw(:jzk)z(x—dw)2+-3(1—du,)dw > Aymii k) [] {1 —aps/(m+ 1)}
0 5 =

+dy, Z Ayl J,L)H - q“5 m+‘2)} ,

m=0 s =1

where A, (m; j, k) is the probability that weapon w acquires esactly m targets other than j or k, given

w

that it acquires both j and k. By Corollary 5.3, for the case at hand

T-2 I'-‘2—n
A(ms ji k =( )‘Iur dyp) ]
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The reasoning for each term in the expression for pw(:j:k) is that both j and & will survive the fire

from weapon w if
(i) Neither are acquired by weapon w,

(ii) Exactly one of them is acquired by weapon w and the other is not, but the one that is

acquired survives anyhow, or
(ili) Both j and k are acquired by weapon w. but both survive anyhow.

In the last case, we know from the analysis of DRR Volleys that the probability that both of two
preselected targets survive when a volley of 5, shots is directed at random against an array of m + 2

exchangeably survivable targets is

Sy
H {1 = 2qy,s/(m +'2)} .

s=1
and the last term in the expression for pw(:j:k) follows easily. A similar argument can be used to
obtain the expression for the second term.

In general, we will have

-

» T Sy
pw(zjlzjz"'zjr) zk_z_:o(z}iwk(l - dlu)7 ~k Z .4wlm;jlxj2y- . ]7‘;[‘[1{1 - kqws/(m + k)}

m=4_

The reasoning is that, by Corollary 5.3,

(Dt -y =+

is the probability that exactly k of the targets J11J9s- . Jy are acquired by weapon w, that from the

analysis of DRR Volley:

Sy
H {1 - k?ws/(’" + k)}
s=1
is the probability that all of those k targets survive anyway (given that m additional targets, other than
any of the Jprdos -ea Jjp» are also acquired, making a total of m + k targets acquired by weapon w), and

that, by Corollary 5.3,

Ap(midy doeaip) = (T7; 7')dw”’(1 — dw)T —-r-m

is the probability that exactly m targets other than the J1+J9y- .- Jp are acquired. Observe that the

expression given above for pw(:j1 ERIES ) shows that in the Multishot Karr Volley, the munitions
L4 r
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generally are not independently effective point fire munitions (that is, neither equation (21) nor (25)

applies).

Since the targets are exchangeably survivable, we may write the basic event probabilities for each

of the single weapon volleys more briefly as
Puwr = pw(zjl:jz...:]-r).

The basic event probabilities for a volley by the full weapons battery may then be obtained from

W
P,.= H Pur

w=1

in accord with equation (18). This formula for P,. does not seem to reduce to any substantially simpler

expression. However. it provides a complete solution to the Multishot Karr Volley and can be used in

conjunction with equations (11) through (17) to compute numerical values for quantities of interest. such

as the expectation and variance of the number of survivors.
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8. VOLLEYS BY SYNERGISTICALLY EFFECTIVE WEAPONS

Volleys by synergistically effective weapons usually are more difficult to analvze than volleys by
independently effective weapons, because no convenient general principles are available for expressing the
effects of the whole battery of weapons in terms of smaller and more easily analyzed batteries. Of course.
volleys by synergistically effective weapons against arrays of independently survivauie targets often can
be solved rather easily, as illustrated by the Artillery Volley. Even in that case. however, the effect of all
the weapons in the entire battery had to be considered simultaneously. \WWe now present two examples of

volleys by synergistically effective weapons against targets that are not independently survivable.

8-1. The Bellwether Volley. This volley has been contrived to provide a solvable example of a volley by
a battery of synergistically effective weapons against an array of targets that are neither independently
nor exchangeably survivable. It is not put forward as having any important practical applications. It can

be defined by the following postulates.
B-1: All weapons acquire all of the targets in the array.

B-2: One of the weapons is selected at random from among the battery of weapons to be the
“bellwether” weapon. Let b,, be the probability that weapon w is chosen to be the bellwether weapou.
The bellwether weapon then allocates its fire to a single target. which is chosen from the target array
according to the probabilities v,,(t) when weapon w is the bellwether weapon. All other weapons in the

battery then allocate their fire to the same target as the bellwether weapon.

B-3: The probability that target ¢ is killed during the volley is ¢{?) if all weapons concentrate their

fire against it. and is zero otherwise, independently of what other events occur during the volley.

The Bellwether Volley is easily analyzed. The probability that target t survives, given that weapon

w is selected as the bellwether weapon, is

1= v, () + v {1 = g()} =1 = v, (alt)
This is true because target t survives if the bellwether weapon does not allocate fire to it, or if the
bellwether weapon allocates fire to it. but it survives anyway. Because the bellwether weapon is selected
at random, the probability that weapon w will be chosen as the bellwether weapon is w1, and so the

first order basic event probabilities are

W
P(:f‘) = Z bu.{l - vw(t)q(t)} = 1 —v(t)q(t) . where
w =1

W
d(t) =W e un

w=1
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is the average probability that the battery will allocate ail of its fire to target . Now, the battery in a
Bellwether Volley could be called a point fire battery, because it can kill at most one target per volley,
and so the higher-order basic event probabilities are obtainable in terms of the first-order basic event

probabilities, as follows.

P(: z: )=1-P(T;

RN i r)

z_: ( Jn)
n=1
because
P(.. J2—P3j13j2:j3)="':0
Therefore,
r
P(:jlzjz...:jr) =1- Z U(Jn)‘](]n)
n=1
r
=1- {1-P(:- )}
ngl In

-
= P2, )—-r+1
nzz:l ( Jn.) ,

Consequently, summing both sides over all possible r-th order subarrays, and recalling the argument

used in the proof of Theorem 2, we find
r= 2 Pl =T s -e-1(7)

which can be written as

(T)[ (/TS| —tr = 1))

=(Th1-ra-s./1)) .

where

T T
=Y Plz)=T~ ) v(thlt)
t=1

t=1

Then we can write the generating function as
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T
G(z)= ) (z-1)S,
r=90

=(T-5)f ~ 141 —(T-5)))T

Comparing this result with equation (3) shows that

T

Pipp=1- (T-S)=1 —tglv(t)q(t) .
T
Pip_1)=T-5; =t;v(t)q(z) :

and

P[m] =08 form=0(1}T-2)
Also,

. T
E(TH=T- ot)(t)
t=1

and

=(T-$){1—(T-5))

The Bellwether Volley is not a volley by independently effective weapons. For if it were, then its

first order basic event probabilities would be

w
Pizp)= IT {1 - vul(®au(t)}
w=1
where q,,,(t) is the probability that target t would be killed if the fire of weapon w acting alone were
allocated to it. But the required equality ovviously does not hold in general. Nor would it hold even if it

were assumed that

%4
L—q(t)= J] {1 - a(®)}

. w.= . .. .
that is, that the weapons are md%pendently effective, conditional on the selection of target t as the one

against which the entire battery’s fire is concentrated. Moreover. in a Bellwether Volley
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P(zy29) = P(z{) + P(zp)—1 .

which is not generally equal to P(zl)P(zQ). Hence, the Bellwether Volley is not a volley against
independently survivable targets. Furthermore, it is clear that, in general, the Bellwether Volley is not a
volley against exchangeably survivable targets, because there is no reason why the first order basic event
probabilities P(z4) = 1 — v(t)g(t) should be independent of ¢. The observations of this paragraph justify
the placement of the Bellwether Volley entry in Table 3.

8-2. A Redundantly Survivable Target Volley. By a redundantly survivable target we mean one that is
able to survive several hits. More precisely, we assume that there is a redundancy number R that gives
the maximum number of hits a target can tolerate without ill effect. That is, a target survives if it takes
R or fewer hits during the volley and is killed otherwise (recall that in this paper we deal only with
targets that are in one or the other of two possible states—dead or alive). With this notion of a
redundantly survivable target in mind, we define the following version of a Redundantly Survivable

Target Volley.
RST-1: Each weapon acquires all of the targets in the array.

RST-2: Each weapon fires exactly one shot, which it allocates to a target selected from the target

array uniformly at random.

RST-3: The probability that the shot from weapon w hits target ¢ is g if the shot is allocated to

target ¢, and is zero otherwise. independently of what other events occur during the volley.
RST-4: Target ¢ survives if, and ounly if, it takes no more than R hits in the course of the volley.

These postulates clearly describe a volley by a battery of synergistically effective weapons against
an array of exchangeably survivable targets, confirming the placement of this volley in Table 3. To
determine the basic event probabilities, observe that, for each j = [(1)r. the probability that target ¢
receives exactly n; hits during the volley is determined by the multinomial distribution (see, for

example, Feller [1950], Abramowitz and Stegun [1964], or Loeve [1960])

W1 togg/ 7)™, (a/T)™

nO!nl!...n,Jq

where
r
ng = W—-.Zlnj
and )=
r
q9=1-Y_ (a/Ty=1-rq/T
J=1
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Nevertheless, we have

= Prob{(n1 < R)ﬁ(n‘_, <)N...N{n. < R)}
R R R .
W JN £ S .
=2 X ;;"T;‘,”T_T,”‘:‘I(y);o(‘l/” ° . (303
n = 0 n, =40 n, =0 071

which provides the complete solution to this volley.

For the special case in which the targets survive if, and only if. they receive no hits, the

redundancy number R = 0. In that case. the above expression for P, redures 1o
S

which (as it should be) is identical to that for a DRR Volley in which the kill probability 7, = ¢ for all
w = 1{1)W.
When the targets are singly redundant (that is. when B = 1), pnt
r
m= Z n;

j=1

50 that m ranges over the values 0(1)r. Observe that, becanse in this case n j! = 1 for each ; = 1{1)r.

equation {30) can be written as

i . .
S S ) e S L PIy Sk
m,= 0

n,=0n,=10
- W Wk, ook
- 5 (P S
k=0
where the last equality follows by observing that in the multiple sununation exactly (;) terins are such
that ‘
-
m = Z "j =k
j=1

This is true because (l) is the number of ways in which exactly & I's can be assignec to the r nj'.s (the

other r — k of the nj's having the value of zero).

In general, when R > 2, the right side of equation (30) is not easily reduced to any substantially

more compact expression. However. for the case r = 1 we note that
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R Id
pr=Y (Wkaryra—gmW -2

n=0
which is sometimes useful, because the average number of survivors is given by E('I‘l) = TPI.

Observe that, by equations (13) and (30), when shots are allocated uniformly at random to the

target array, we have

,
(T _yym+r{T—m Ww! /TR — e/ — BT
PlongB) = () 22 =0+ (T2 fe gt 1 = v/ 1)

for the probability that exactly m of T targets each receive exactly R hits from a total of W shots.
When ¢ = 1, this is the same as the probability that exactly m cells each contain exactly R balls when a
total of W balls are tossed randomly into T cells (compare this to Feller {1950}). Thus, the above

generalizes the well-known occupancy problem of classical combinatorial probability theory.
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9. CONCLUDING REMARKS

This concludes our presentation of the foundations of a general theory of volley fire models. In the
course of it, we have reviewed previous work in this area and demonstrated that our approach not only
powerfully unifies and extends previously used methods for solving volley fire problems, but often
provides simpler and more intuitive solutions than have previously appeared. This general approach also
shows that volley fire models generalize many of the classical probability problems in the theory of
matchings, occupancy, and statistical mechanics. It also provides a useful system for classifyving volleys
into a few major categories to facilitate their solution by indicating the most appropriate solution
method. In addition. it suggests potentially important new concepts, such as those for equivalent and

complementary volleys. Moreover, it yields hitherto unpublished results,

In addition, various specific opportunities to extend or apply this treatment of the foundations of

the general theory of volley fire were identified. Among them are the following.

1. In general. the completnents of volleys by independently effective weapons are volleys by
svnergistically effective weapons. How are those volleys by syvnergistically effective weapons
characterized? What properties do they possess? What insights regarding the solution of volleys by

synergistically effective weapons do they afford?

2.  How can the effects of successive volleys best be approximated? What crror bounds apply to

this approximation?

3. What limiting forms do volleys approach as various parameters (such as the number of

targets. the number of weapons. and so forth) tend toward large or small values?

4. What optimization problems regarding volleys are most important, and what are their

solutions?
Some larger issues which deserve attention in future research on volley fire models are as follows.

1. How can volleys against arrays of targets that may be in more than two states at the end of

the volley be most efficiently analyzed?

2. What are the necessary and/or sufficient conditions under which explicit, closed-form

solutions for the effect of successive vollevs against arrays of targets be obtained?

3. What are the outcomes of vollevs in which the target array is active. that is. returns fire? As
far as we are aware, the deepest results on this have been reported by Gafarian and Manion {1989).
Versions in which the targets can countervollev have been treated by lelmbold [1966] (who. in a
heuristic manner. derived the Lanchester square law equations from the limit of an alternating vollev),

felmbold [1968] (although under rather restrictive assumptions). Bashyam [1970]. and Zinger [1980].
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Hopefuliy, calling attention to these challenging problems will stimulate analysts to devise original

and imaginative solutions to them.
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APPENDIX A
NOTES

Note I. The probability of any complexion, and therefore of any event concerning the outcome of a

volley, can be expressed in terms of sums and differences of basic event probabilities. For example,
P(: 7z Tm E{ 7Tl - Tm)rn}
= E{rjrlrn(l T~ T+ Wm)}
= Plzzzn) = Plejzpzps) = PG FEREm) * Pl ensim)

This illustrates the following useful prescription given by Loeve {1960] for finding the probability of an

event: (1) express the event as a sum of intersections of z's and 2’s (note that complexions are already in
this form); (ii) replace the z's by ’s and the s by {1 — 7)’s; (iii) express the result in the form of sums
and differences of terms involving only products of the r’s; and then (iv) take the expectation. In taking

the expectation, recall that the expectation of a sum is the sum of the expectations, and that
EX H ) =P H 5 )
n= 1 n=1]

because the T’s are the indicators of the z’s. Following this prescription produces for the probability of
any event an expression involving only the sums and differences of basic event probabilities and justifies
the assertion that, in principle, this is always possible. Of course, when there are many targets and the
event involves com sicated sums and differences of basic events, it may not be feasible to perform the

calculations, even though explicit algorithms for them may exist.

Note 2. Let H () be the generating function for the “tail” probabilities

P4m + = Prob(At least m targets of subarray A survive the volley)

TA
=2, Al

= PA{m] + PA(m + 1) +
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Thus,
Ty
- m
H 4l=) = Z ‘ PAm"’
m=0 -
T,
-1
= GA($)+ le1n P47n+ »
I y(x) -
=G 4(z)+ ———1.——
Solving for H 4(z) yields
G 4(z) -1 G (x)-
Hy(o) =—4 7= G40+ =5

Note 8. The n-th moment of the number of survivors can be expressed in terms of the first n basic
sums, SAk’ where £ = 1(1)n. This can be shown as follows. Comparing the k-th derivative of & 4lx).

evaluated at z = 1, obtained from equation {3), with the same value, obtained from equation (4), shows

k T,
dPay=wel "A)=ns,,

Since, by a standard result in combinatorial analysis (see section 24.1.4B of Abramowitz and Stegun

(1964]),

that

( ) ZG,(nL(l)

K=1
where the coefficients Gq(n, k) are Stirling numbers of the second kind. it follows that
I \n
B{(r4 )= LZ Goln, k)RS
n
Z (n. 0y

These results express the n-th moment in terms of the first n basic sums, or in terms of the first n
derivatives of the generating function. Abramowitz and Stegun [1964] tabulate the values of the Stirling

numbers Gq(n, k) for & = 1(1)n and n = 1(1)25.
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Note {. Suppose weights m 4j and My are assigned to the events : 1j and 3 1 respectively. Then

the surviving weight of the targets in subarray A is

T,
M,IA =j§:1{mAjTAj +ﬁ:{;(l —TA]»)}

where

and
MAj =my; —T)TE; for j = I(I)TA.

If hostile elements in the target array are intermingled with friendly units or other elements of value to
the side controlling the battery of weapons, survival of the items of value might be assigned positive

weights while survival of hostile elements are assigned negative ones.
Note 5. The proof of Theorem 2 is as follows. By equation (2),

* * g LF .:*.
Ar— ZP (‘AJI Ajy A]r)

where 3 signifies that the sum is taken for indices j, j,,....j, which are to be varied in such a way
r
that the subarray consisting of the targets {Ajl, AJgenn Aj,,} sweeps over each of the r-th order

subarrays of subarray A. By definition of a complementary volley, each term in this sum can be written

as
e V= PE T T T
P (‘A_;l Aj, AJr) 2 Ajy “AJ, A],.)
=1-Plz,. Uz U Uz,
( Aj, .-Uzu U A}r)

- r ro_ el

—-1“5.41‘*5‘4'2 . 1)5_4,_
where S’:lk is the k-th order basic sum associated with the subarray {.»Ij].Ajz ...... 4_]’,} of r targets, that
is,
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.
$u1=2_ Plagj)
n=1 n

r n-—1

=2 2 P(ZA' 2450
n=2m= In Am
and so forth.
Then we may write S :lr as a sum of terms

= LS = X 80

rim=20 m=

-
The square-bracketed term in the last expression can be evaluated by a combinatorial argument

Consider first the term with m = 1, that is,

r
ZSAI =22 Plag;)
"n=1
Observe that, as the indices J1139s-+ -+ Jy vary so as to sweep over all »-th order subarrays of subarray A
the index j; will vary over the values 1(1)T 4. The index j, will also vary over the values 1(1)T" 4. and

so on for each index j, for n = I{1)r. Thus, we may write
T4

r
ZZPL)—ZCHM%

Tpn=1

where C . counts the number of times the value P(z 4__’-) appears in the sum on the left hand side of this

equation. But each Cj must have the value

T,-1
_{ A
Cj"(~-1) :

because that is the number of r-th order subarrays of subarray A that contain target Aj (that is, it is

the number of ways in which the additional » — | targets needed to fill out an »-th order subarray can be

sclected from among the T 4 — 1 targets that remain after an initial target has been selected). Hence
T,-1 T,-1
= . _{ A
ZSAI_ Z Z P(~4J )= Z:( ro1 )P(“Aj)‘( 1 )5,“

Similarly,
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because

T,-2
("4
Cﬂ«'_( r—2 )

is the number of ways in which the r — 2 additional targets needed to fill out an r-th order subarray can

be selected from the T 4~ 2 targets that remain after an initial pair have been selected.

And, in general, it can be seen that

Ewy
254771 r—m SAm :

because the coefficient on the right-hand side is the number of ways in which the r — m additional
targets needed to fill out an r-th order subarray can be selected from the T | — m targets that remain

after an initial selection of m targets has been made. Hence.

r T,—-m
S.til Z (= l)m(zs,-im) Z (- 1)771( ’#"' )SAm a

m=10

Note 6. To demonstrate Theorem 3. we first prove assertion (i), using the method suggested by

Thomas [1984]. By equation (4) and Theorem 2.

Ty r T 4—m
H
'—'ZO(”'I Z -0 S Am
r =

Interchanging the orde: of summation, having due regard for the region of summation in the (r,m)

plane, yields

T, .
Z S-im( nm Zm(. _1)1'(7:‘.4_ n,zn)

m=

which can be written as

ie)= Z Sam(—D =1

T4~
=z “ZOS 1m{3 -1y =2 A(.vA(l/Jr)
m =
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where the last equality follows from equation (4). This gives assertion (i), and assertion (ii) immediately
follows. The proof of assertions (iii) and (iv) follow immediately on observing that assertion (ii) implies
that T:ll, the number of survivors in volley V*. has the same distribution as ’1’"_4 - T’{‘. the number of
targets killed in volley V. Assertion (v) is demonstrated as follows. By equation (7), the correlation is

equal to

E(T*lT ) - E(TY )(E h
Var(Tﬁl)Var A )

*

PAB~

where, by assertion (iv), the variances in the denominator can be replaced by those for T}'-i and 1}3 By

the definition of a complementary volley, we may write

. Ty T4 T, T, ‘
ETYTh) = Z ZTAJrBL =Ey > _Z“_T.J.j)“’TBk)

=T Tp-TgETY)-T ETh)+ BT, T))

The other term in the numerator of pr is, by assertion (iii),
E(THETE) =T Tp-TgE(TY) - T (E(Th) + E(T)EL)
so that the numerator of p* p is equal to
Erith- BT |

and therefore p% p = pap -0

Note 7. By postulates A-2 and A-3, the probability that target ¢ survives all shots when it is

located almost exactly at (z,y) is
lU
Plz (2 y)} = JFz H H {Twsluws: Vs )ty sty |
w=1s=1

Here F; is the probability that target t survives, given the ground zeros of all the shots, as defined by

postulate A-3, and [ stands for the multiple integral

[=11 i J
w=1 s=1 (Ugpse Uyps)

This integral may be written as
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W Se
P{zy|(z,y)} = H H J {1 =D oz = uy—v)}o,slu, v)dudy

w=1ls=1 (u,v)

—=

Sw
I1
1s=

| J D s(z ~u,y —v)o,(u,v)dudv|

N o)

w

I

where the first equality follows from the general theorem for converting multiple integrals to products of

single integrals, and the second follows from the assumption that o is a probability density function.

Hence,

Pz = | Plsgl(z))oqtz.v)izdy

(z,¥)

W Sy
:J ]:Il H I—J' D, sils — oy —vio g (uv)dude {p (2. y)drdy
(z,y) Y5157 (u,v)

and the formulas of the canonical volley against independently survivable targets apply to complete the

solution for the basic event probabilities of an Artillery Volley.
Now, for the munitions to be independently effective, it is necessary that

154 Sw
Pizp=11 II pustzd) -

w=1s=1

where

]
Pws(zy) = J 1- J Dwsi(‘r —uy~- v)aws(u,v)dudtl}pt(uy)da:dy
() (u,0)

is the first order basic even probability for a volley that consists solely of shot s from weapon w. But, in
general, P(z;) is not of the required form, and so the munitions generally are not independently

effective. A similar argument shows that in general the weapons are not independently effective, either.

It is interesting to note that under some circumstances, the weapons can become independently
effective in the limit. To show this, suppose that the damage function D, does not change with the
shot number, so that it may be written as D, ,(z — u.y — v). Suppose also that the number of shots 5,
increases, while at the same time the distribution o, ; “flattens out™ in such a way that the product
S s{1, v) approaches the constant density N ./, where .1 has the physical dimensions of an area.

Then, as Helmbold [1970] has shown. P(:;) approaches
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W
P(zy) =ex —-Z sz.;\'w/.-l)
w=1
|54
= H pw(z[)
w=1

where

Py(sg) = exp( =Ly Nyy/ A)

is the first order basic event probability for a volley by weapon w acting alone against the target array.

In the above equations,

L= I D, (u,v)dudo
(u,v)

is commonly called the lethal area for a munition of weapon w. when fired against target t.

Observe further that the targets are exchangeably survivable if L . is independent of ¢, in which

case Corollary 5.3 applies to show that the expected fraction of targets that survive is

ETYT)=P |
where
W
P= exp(— Y LyNy/A
w=1

does not depend on either ¢ or w. This expression for the expected fraction of survivors is frequently used
to obtain a quick estimate of the effect of fragmenting ordnance fired infto a target area. We note that

the variance of the fraction of survivors is
Var(T}/T) = T 2var(T})
=T lpa1-pP) |
where the second equality follows from Corollary 5.3.

Note 8. Dixon {1953], Thomas [1956]. and Helmbold [1966] have suggested various approximations
for the effect of successive DRR Volleys. Some of these are built around the idea of replacing the random
variable T! with its expectation E(TI) and approximating the number of survivors after the n-th volley
as

w
Tn,:Tn-—IH (1-qw/T"'“1) )

w=1
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where T™ is the number of survivors after the n-th volley. This is called the expected value
approximation. Although Helmbold [1966] presents some empirical support for this approximation, he
provides no rigorous theoretical basis for it. Consequently, as noted by Karr [1974] and others, the
conditions under which it is valid are not clear. In essence, the issue is one of establishing bounds on the
error involved in making the expected value approximation. Although the present author has not
pursued this matter, it may be that such bounds could be developed by using the formulas for the
variance (or higher moments) of the number of survivors, together with Chebyshev's Inequality {or

similar inequalities).

Another approach might be through the study of limiting forms. For example, we observe that the
e :pected value approximation tends to be more accurate when the number of targets is large. This
follows from the fact that when there are many targets. the argument given by Feller [1950, pp 69-74]

applies to yield the following limiting Poisson approximations to the outcome of a DRR Volley:
el y o v 1y o
E(T)=~Var(T )~  ,

and

where
W
Ay=T gexpl - Z Tl T

w=1
In the limit, then,

W

Pgp=ex “"Z]'I'LU/T):(P.M)'
W=

which shows that the z's tend to become independent as the number of targets increases—in which case
the DRR Volley approaches a volley against independently survivable targets. for which the expected
value approximation clearly is exact. For additional material related to the limiting forms of random

allocations. see Kolchin, et al. [1978). and Choi [1987].

The study of limiting forms of volleys, and of approximations to the effect of several successive

volleys, are two areas deserving additional research.
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