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CA A-K I-9'Z- I

FOUNDATIONS OF THE GENERA TI EOILY OF' SUM MAREY
CAA VOLLEY FIRE CAA-RP--92-1

THiE REASON FOR PERFORMINGTH'IIS RESEARCH was that volley fire problutils arise- freqient IN
in appiied niltr eCi eerhwork. This paper dlevelop), a powverhI'l Igeni eral Itheory wi~
systemna tic application to volley tire p~roblems greatly aids ini their soluition.

THlE STUDY SPONSOR wvas the Director. [.S Army C.oncepts Aiialyvsk.\gency.

THlE STUD)Y OBJECTIVE was to provide lie ('S Army and other military anialysts readyv lcce~.s. to

svstemat ic methods whose a pplication call greatly si iiiplit- thie solutionl ot' vol 1e fin attrition t no Iel'.

TuuE SC OPE OF THE STUDY involved reviewing a sample of the pa-st work ont volley fire problumý.
dIevelop~ing niew atidl more powerfu1 l methiods for their. solution, and ilutrti teir a;piplcatiionl to
several volley Fire situations of practical interest,

TH E PRINCIPAL FINDIINGS of thle work reported herein are that. int Olit.- simtpler ca-,cs, the hetur\
leads directly to elegant fornmulas for the expect at ion anid variance of the niumber of z~iirvivors. lIn it tor4

comnplicat ed situnation.,, it p~rovidles algorithimus useful for nutmerical calculi at ions. After sampling

previous work on the analysis of volley fire models, the general theory is developed anid applied to a
number of volley fire situiations of practical interest. The theory powerfully unifies and extends
previously used methods for solving volley Fire problems and often provides simp~ler and more intuit Ive
solutions than have previously appeared. It. also yields hitherto unpublished results. Our approach also
shows that, volley fire models generalize tilall Of the claSsical prolbabilitN lprObleitns ill the t heorvN ot'
matchings. occupancy, and statistical mechanics. lIn addition. it, suggests p~otenitially imuportanit 1tieW
conicepts, such as those for equivalenit anid complementary volleys. It also p~rovidles it usefuSyl sseit for
cl assi fvying volleys, into a few --canoniicalI formns" based ott their commion featutres. wvhichi fulci lit att lwili

soltition by avoiding thne for ud /1cc methods. Several p)otenitial areas for f'urther mivest-iglatioti are
also suggested.

T[HE STUD)Y EFFORT was directed by Dr. hiohert L. Ifelinbold. Office of, the Special AsIst atit f'or
Model V'alidatioii.

COMMENTS ANI) SUGGE'STIONS mtay be sent to the Director. U;S Aritt C.oncepts Atialysi.s Agenicy.
ATTr'N: CSC'A-MV. 8121) Woodmnimt. Avenu~e. B~ethtesda, Maryland, 20J81-1-2797.
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CAAIU0 92!1

1. INTROI)UC110N

Estimating the altdtron thai remult when a blattey of wveapons sIoot>W an aIIrmy Q ti argri im

of thle most characteristic activities of military operations anab~sts. in inan', cavw, tle. silo] are ,11,4 "I- a~

volley. or near!ly so. In this paper a grou p of shots is called a vol ev if all of thani are fi redt Wfo-h irQ

isapolis acljuii their operationis oni the brasis (of any daniage (Ooi. to We ia. rvtt ait ay. When thc-.0"ý

he trget array is taken to speefy- which targets are f-ill alive a mlore pr~ick r'-hoatunisnt "f h

(lefinititoll is, that th 1W Wapons act only onl th 1state of the target arrax at Thle ýt art Of thle \11114-y.-a ild not

on any change in state that occurs while the volley is in progress.

This definition generalizes those given in the prestigious Oxford English I )ist joar [1971.. "141

clei les a vol 1ev as -A sinmuwtaneous discarge of a Iinumbler of Ft ram s or ar li icr a -al vo a "lioaIv,a'

"-A simiultaneous dlischlarge of artillery or other firearmns, whet her withI hosýt is jittsiii or ot livrw .... anid ;I

fusillade as --A simultaneous discharge of Apyrns;-~ a whiob-ale execiltionl I).'O, lii jis'ln,ý When11

are tliscliargi-iI tiiitiioi lt, the atery of weapons plaiuilv does 1)o) ha'~e tlinii (Itirng tie 1-,e t

ad~ii:,t to any dainage done to the target ar-ay. and in that ca.se our definit ion ago-c-. withl Ihose gi'. -ii In

the Ox ford Enigl ishi Di4tionary. H owever. in Mt' papi-vr we co~ni lne to speak o~f a volley fire situoat ion

when-tier Ihe w-eapons do not perceive (or If for any reasoni t hey iho not hood 1 cta ng.-s in tilie state* of 11i1'.

target. array. In such c-ases, whet her the shots are Ftred sinmultatwoul or over ani extetnded p7riA of iiino

is clearly immate~rial, because at the end of the volley t heir effects are thle saine.

In addition. thle results liresenled in t his paper call lie alplded not onily to .r iller or firariii. bit

to a wider class of weapons including rockets, tintitank weapons. intercoit ino-ital ballistic uuiissile-.

Inachilnegunls. boimbs, aliti-aircraft airtillery, and so forthI. For this reason, volley\- dlelive-red1 bý a biattery

of weapotns against ali array of targets are oft en ""ed to mcdll(h altrtntion in t~ailt r operatbins research.

They frequently appear as components of larger niodels. shitu lat ions, or war- gants'-, where they. are used

to assess the outcomes of individual volleys, or of several sulccessiye volleys. or of countervolleys fired

alternately by one side and then by t he of lie. For one example of such comiponutent volleys, see Ket ron

[1983]. When successive volleys tire An rd, the state (f the systecm at the end of eachI successive ýolec

usually depends only on the slate of the systemn, at lie start of tli vol 1ev. itw lie h case tilt state vrie o

evolves accordling to a Narkov piro{t-s. the importalice of whlich int mtodel-- of comibat it eracti005 has

Weet emphasized by N oopma n [1 970],- among others. In this paper. several volleys of practical military

n terest are piresent ed a nd solved to illustrate the general Iveory's abi Ii t to Yl icId pre iouly unpubished

results, as well as to pirovide shimpler and more intunit ive dlerivat ions of k nowti results.

Our heworv takes fo its objet, the d~et e)i nat ion of tlie outcomle whien a battery of weaponis voile-.

against a target ;array. It makes use of techniques borrowed frmi the AMld of cotiin~iatorics. troh~lmihiy

algebra, and analysis (the latter prinuci pall h i con necton with Iimhim laws of prolabiiyh A Ithough
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weapon batteries and] target ;irraNv, ronsist ilg of a sinigle eleiment are techlnically within the puirview of

volley fire theory, they are normially viewved as special cases and are analyzed as dutels. Phu-s. thew thlior"

of volley fire concentrates on cases where the battery of wea pons and I lv target array bothI con lai ii

several elements. The scope of the theory is intended to Include the analysi.- of innIlt ipie vlysbý a

hat terv against. a single t~arget array, and also exchanges of volleys where the %eapotis hat ter ;mtd thec

target array volley back and fort h. V nforinunat ely. the cuirrent state of thlt Ivlory does not ltrt)6d'' aiti

;at isfyi ng treatmeneit of mulIt iple or counter volleys. ( olisequentilv. apart from .i fe-w passnim renai~tk'.. llu-

pap~er concentrates oil single volleys withI the understanding that they can be chained togethier i11 %;ai1011

(oft en ail hor) ways to estimate the effects of successive volleys. if so desired.

The central object in t Iiis paper is t 1e computation of t.he lprobakil its of vairiouis out comes of it

single volley. \Ve want t~o know such things as:

1. H~ow mlanly targets canl be expected to survive the Volley?

2. Hlow variable is thle nu tmbler of survivors"

3. What is thle prohabi lit y that 6 target., survive" That 12 -iurvive'.' [in genieral. what is O

prob~ability that t targets stirvive.

4. If tie target array consists of two or mnore types of target, what are' thlet correlation,, hoitWeenl

the number of survivors of each type?

5. What. is the probability that all targets of a specified type will be wi ptd ouit?

U it il recently. volley fire problems were treated by ad hoc- met hods that gave litmit ed result, f'0t

sp~ecial cases. Despite tie inigenuity of some of thlesev ad hoc methlods. t hey. ('oltctttrateil so -;t tonvgl wn

special cases that their general theoretical foun idat ions I erlded to he hiidden rat her than revealed. J ust

very recently, it was recognizedl that. there are some deeper anld More generTAl concripts whose s si enaiatt

application to volley fire problems can greatly aid in their solution. In the simipler cases, these coincet'l,

lead directly to elegant formulas for the expectation. variance, and] correlation of the number of

suirvivors. In more complicated situiations, t hey provide algorithlms uiseful for tnumierical coipiit at ion,.

Thet systematic appIlicationi of these general analytical methlods has led to simtipler an iid ore in ttnit is,

proof,- of all of the known results iii tie tieory anid has clarified their inmterrelat ions. This approach liat

also led to several nmew and previously unknown resitlt s. This has pilt us iii th li'o (sit ion where'. for the

First time, it appears that. such a thinig as a theory of volley fire might exist.

It also tutrns onut t hat the t heory of volley fire iiuc Iides as a special case all of tlit' thIeory of ra lidom ti

allocatiotns, That familiar field of classical probability theory (deals with the random allocations or

(list ribut ions of r objects, into ni cells. Treatments of the problem of rcipcon In .s or random iiiat-chiiigs: of

ite (list~riul ioii of part~icles anmong energy states for Mlaxwell- Holt zm uani. Host'- lI ist eiti. or FeCrmli -I i ra

1-2
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statistics in the kinetic theory of matter: and of many other faaamous classical probleits are exaltiples (A

those dealt with in the theory of random allocations. Certain aspects of this classical theory of random

allocations have recently been developed extensively by the Russian mathematician Kolchin [197T] anid

colleagues. However, they have dealt almost exclusively with the study of limiting distributions for

certain classes of random allocations. In contrast, practically all of the-extant work on the theory of

volley fire has been devoted to solving certain difficiht combinatorial probheiu is t lhe thery of

probability. In the fiatuire, it may be possible and desirable to extend to the thheory of volle% fire on Mtiie of

tle asymptotic results from the Theory of random allocations.

Several ant hors have studied special cases of volley fire. and Table I shows a sample of the Owarl er

work on special cases. We will say more about these papers presently. The general theory presetited in

this paper supersedes these specialized approaches, because it can readily be used not only to reproduce

all of the previous results, but to provide additional information not obtainable by the specialized

methods. Because volley fire models have arisen in a variety of contexts, o1lhar works on thein may no,

have come to our attention, and we apologize in advance to the anthors of an% ii llh• fire anahlv's,-- 1,,,

listed in Table I.

Dixon [1953] was apparently one of the first to analyze a volley fire sit uation, lie showed by

selected examples how tile outcome of repeated volleys by a homogeneous battery of weapons (that is.

one in which the weapons are all alike) against a homogeneous array of passive targets could be

computed. IHe applied his results to calculate the (list ribution of the number of survivors for some

situations in which successive waves of interceptor aircraft (the weapons batte'y ) attack a forniatioit of

bombers that is attempting to reach its bomb release zone. Dixon's method for finding the (list ributiou

of the number of survivors at. the end of a -.ingle volley requires the exhaustive,.i lnlerat iol of cellaila

combinatorial configurations. This method is similar in principle to those later enmployed by Robert sn

[19-56] and by llehb.old [1960]. Dixon works out a few specific examples involving no more than fo,,r

weapons and only a handful of targets but does not present an explicit algorithin for enumerating the

required configurations.

However. Dixon does find an important general formula for the expected minnber of survivors aft.r

a single volley, lie argues correctly that the probability a particular weapon selects a particular target

(say, target t) is 1/T. where T is the number of targets alive at the start. of the volley. Thus. the

probability that target t, survive., the Fire of this weapon is I - q/T, where q is the kill probability.

1-3
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Tlable 1. A Sampling of SornC Early Work or, Volley Fire Modelts

Provides explicit formulas for:
f'.pected Variance D~istribu tion

Principal Pub. Target Weapon Allocation no.ý of of no. of of no.ý of
author date array battery of fire survivors survivors iurvivors

Di x on 1953 Hornog. Homog. Unif. random Y es No No'
Lavin 1953 Honiog. Homnog. Unif. random No No Noa
Wegner 1954 Hionog. Homog. Unif. random 'Yes No ýNO i
Thomas 1956 Hlomog. Hlomog. Unif. random Yes N oY'
Robertson 1956 llomiog. Ileterog. Unif. random N o N o CeS
Heinibold 1960 llomog. lleterog. U iif. randomn Yes N o Yes1

Rau 1964 llomog. Iloniog. U-nif. random Yes Ye~ Yes
Rau 196.5 Ilomnog. lloiiog. Unif. random Yes No4 Yes
Ancker 1965 Homog. Hlomog. Unif. random No N o Yes
HIelbold 1966 Ilomog. Heterog. Unif. random Yes N o Yes
lfelmbold 1968 Heterog. Heterog. Random Yes No N o
Karr 1974 Hlomog. Hornog. Compoundc Yes N*o Y'es
Karr 1974 Ileterog. lieterog. C7ompound Yes No N o

Notes:
a. Dist ribut-ions are provided only for a few examples involving isumall ni umber

of wveapons and targets. A general algorithmn is not explicitlyý .STat ed.

h. Although a computationally well-defi ned algorithim for obtai ning the
dlist ribution is provided, it. requires as an intermediate st~ep thle

cumbersome generation of certain comibinatorial configurations.
C. Allocation of fire is determined by a compound proces.s in which largets

are first. acquired, and then fire is allocated uniformly at random over
the subarray of acquired targets.

Consequently, the probability that target. t survives the fires of all of the lU' weapons iii the batter 'I.,

(I - q/T)l . Since this probability is the same for each target.. thle expected inutmber of suirvivors after

one vollev is

This elegant result will be called "Dixon's Formula." As indicated in T'able 1. it applies when a

homogeneous battery of weapons volleys against a homogeneous array of paRssive targets-. p)rovide'd t lie

weapons allocat~e their fire to targets selected independently and uniformly at random from~ the target

array. Such volleys, including their generalization to volleys by a heterogeneous battery of weaponis

against a homogeneous target array, will be called lDixon-Rohert-son-Rau (DIMH) volleys after thiree whmo

have contributed substantially to die theory of volley fire, although in actualityv none ol' these thlree

tprovidedl closed form solutions for the general case where thle weapons battery is, heterogeneous- or t he

allocation of fire, m-ay be nonuniform. However, such formulas are easily found usinug onur general

ap~proach.

1-4
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By using the same methods as Dixon [1953]. Lavin and W\egner [1953] generate distriblution-, of thi

number of survivors for additional examples of M)liR volleys. They obtain expressioits for t lie cas,+ whiriv

I' = 1. 2. 3, 4. and 8. and for T up to 9. They also apply the then new electronic digital computer

technology to compute the matrix products required in the Markov process approach. Wegner [1951]

continues in this vein and also introduces a process in which the two sides exchange volleys

simultaneously.

Robertson [1956] provides an explicit algorithm for computing the distribution of survivors wheni a

homogeneous battery of weapons volleys against a homogeneous target array and illustrates by exanmple

a method for obtaining the distribution of lilt, number of survivors when the bat tery is heterogeleowis.

She applies the results to situations in which an infantry rifle squad (the battery) is defending its

position against an assault, conducted by another rifle squad. She makes no reference to the earlier work

of Dixon. Lavin, and \Wegner and seems to have arrived independently at her results.

Thomas [19.56] derives and solves in closed form a partial difference equaltion for the distribution of

the number of survivors in a DRR volley and obtains Dixon's formula from it. lIe has in mind the ca',,,

of interceptors (weapons) against bombers (targets). lie also presents computationally convenient

recursive formulas and a generating function for the distribution of survivors. and suggests various

approximations to that distribution. However. Thomas does not explicitly cite a formula for the varianlle

of the number of survivors. HIe does note the Markoy chain solitlon for successive volleys. and analyzes a

volley in which each weapon in the battery may have kill probability q1 or q., (with probabilities L"1 and

L'.1 1 - V1 ' respectively). lie also considers a heterogeneous target array consist.ing of just two tk ps (it'

target (bombers and decoys): for this case he analyzes the allocation of a fixed budget to bombers and

decoys to maximize the expected number of surviving bombers.

Also in the nid 1950s Hehlmbold (following u lt ideas originated jointly by him and his colleagilis

Martin N. C('hase. John C. Flannagan, and Hunter M. Woodall, Jr.) was examiniug the use of volley fire

models to represent situations in which antitank weapons (the battery) are defending against tank

assaults. This work was conducted in ignorance of the work of Dixon. Lavin. Wegner. Robertson. and

'Thomas. Some of it was later recorded in Ilelmbold [1960], which contains lie following Generalized

Dixon Formula for the case where the weapons are not all the same:

IVU
E(T')=T j (1-q q/T),

where q, is the kill probability of wveapon w. This result call be obtained b1 an argument similar to

Dixon's but, wit h miinor modifications to allow different kill probabilities for different weapons. By the

tuine Ilelmbold [1960] was published, he had become aware of Robertson [19536], but not of Dixon [1953].

Lavin [1953]3, Vegner [1954], or Thomas [1956].

I-5



CAA-RP-92- I

By applying the principle of inclusion and exclusion to DRR volleys, lian [196,1] not only derivc•

Dixon's Formula, but also finds the distribution and variance of the number of survivors. Subsequently.

Rau [1965) obtained the same results by an ingenious and entirely different argument. Rau provides

explicit and relatively simple formulas for the number of survivors. Ilis formulas are much miore

convenient than the algorithms proposed by Robertson [19561 or Ilelmbold [1960]. Rau's formulas will

not be repeated here, because they can be obtained by particularizing more general results given later ini

this paper. Rau applies his formulas to situations where surface-based air defen.se weapons (the battery)

shoot at an intruding formation of aircraft. There is no indication in either of flau's reports that lie wds

aware of any of the earlier work on volley fire models.

Ancker and Williams [1965] obtain both iterative and closed form solutions for the distributionl of

the number of survivors for DRR volleys. They do this by setting up and solving an appropriate partial

difference equation. They do not state Dixon's Formula, although it is derivable from their expressions

for the distribution of the number of survivors, nor do they cite any of the works listed in Table 1.

Ilelmbold [1966) pointed out that their argument is easily extended to obtain the distribution of

survivors when the weapon battery is heterogeneous, and showed that this result leads quickly to tlie

Generalized Dixon Formula.

Later. Helmbold [1968] further generalized these results to the case where the target array as well

as the weapons battery is heterogeneous, and where, in addition, weapons select targets independently

(but not necessarily uniformly) at random. Unfortunately. no results on the distribution or the variance

of the number of survivors can be obtained with the methods used by Helm bold [1968]. This lack will be

corrected by the results to be given later in this paper. Helmbold [1968) does not cite the earlier papers

of Dixon, Lavin, Wegner, Thomas, or Rau because he was not, then aware of their existence.

Karr [1974], motivated by problems in the penetration of aircraft, through defended areas, consider.

a compound process in which each weanon of the battery independently acquires targets. After the

acquisition process is completed. each weapon selects exactly one of the targets it has acquired and fires

at it; however, a weapon that acquires no targets fires no shots. When the weapons battery and target

array are both homogeneous. Karr derives the following formula for the expected number of survivors

(we shall call it Karr's Formula, although it was originally proposed on the basis of intuition by LTG

Glenn A. Kent, USAF):
T •W

E(T) = Tl -(1 -(1 -d) )q/TJ

where d is the probability that a particular weapon will acquire a particular target and is assumed to be

the same for all weapon-target pairs. Karr also gives the distribution of the number of survivors when

the battery and target array are both homogeneous. fie obtains the expectation of the number of

survivors when the battery and array are both heterogeneous, but not its distribution or variance. Later
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we will show how our general theory call be used to provide that information. l,%arr cites none of thli

prior work on volley fire models.

Clearly the work just described has been disjointed, unsystematic, and failed to make the best use

of earlier work. Results were usually obtained by ad hoc methods that (despite their other merits) had

an unfortunate tendency to conceal common concepts and generally applicable principles, rather than to

reveal them. The main contribution of this paper is to identify some general concepts whose systematic

application to volley fire problems can greatly aid in their solution. These general concepts are natural

and powerfully unify previously used methods. Several potential areas for further investigation are also

suggested. The general approach developed here also reveals that volley fire models generalize in a

natural way many of the classical probability problems in the theory of matchings, occupancy. and

statistical mechanics. Moreover, they yield hitherto unpublished results, and often provide simpler and

more intuitive solutions than have previously appeared. In the simpler cases, these concepts lead easily

and directly to elegant formulas for the expectation and variance of the number of survivors. In more

complicated situations, they provide algorithms useful for numerical calculations. Applications of the

approach to several volley fire situations are presented to illustrate the specific combinatorial techniques

that appear most effective in analyzing volley fire problems.

That some reasonably complex problems yield easily to the new methods developed here can be

illustrated by considering a sample problem in which a heterogeneous battery of weapons volleys against

a heterogeneous target array, and weapons select targets independently (but not uniformly) at random.

Suppose, as shown in Figure 1, that three weapons volley against an array of six targets. Weapons 1 and

3 are medium antitank weapons, and each fires three shots during the volley. Weapon 2 is a heavy

antitank weapon and fires two shots during the volley. The target array consists of three medium and

three heavy tanks, alternating with each other as shown in Figure 1. The heavy tank labeled as target

number 4 contains the tank unit's commander. The antitank weapons are 90%A reliable. Let vwt be the

probability that weapon iv (w = 1, 2, or 3) directs a reliable shot at target t (t = 1, 2 ... , 6). Let qvt be

the probability that target t will be killed if a reliable shot is directed at it. by weapon w, and let the

numerical values of these factors be as in Table 2. Note that, in this example problem,

Vwt = 0.90
t=l

for w = 1, 2, or 3 because the 90 percent reliability per shot has been included in the vw, values. (The

reliability factor would have the same effect on the results if. instead, it had been used to reduce the

value of qwt') We assume that each weapon directs each of its shots at a target selected in accord with

the vwt values, but independently of all other shots fired. By employing some of the results to be
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i i4

KEY: 3

Meditsm Tank .

I 1i Heavy Tank

) Medium Antitank Weapon ...

>:= Heavy Antitank Weapon

Field of Fire

Figure 1: A Sample Volley Problem

Table 2. Values of vwt and qwt for the Sample Problem

to
1 2 3

V Vt qlt v21  q 2 t v2 t 1l-

1 0.23 0.70 0 N/A 0 N/A
2 0.44 0.30 0.30 0.90 0 N/A
3 0.23 0.70 0.15 0.60 0 N/A
4 0 N/A 0.30 0.90 0.35 0.30
5 0 N/A 0.15 0.60 0.20 0.70

6 0 N/A 0 N/A 0.35 0.30
No.
shots 3 2 3

presented in Section 7 for volleys by independently effective weapons and a small hand calculator of the

type readily available nowadays, we found in a few minutes the following information.

1. The average and standard deviation of the number of tanks surviving the volley is

3.054 and 1.007, respectively.

2. The average and standard deviation of the number of heavy tanks surviving the volley is

1,447 and 0.759. respectively.
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3. The average and standard deviation of the number of medium tanks surviving the volley is

1.606 and 0.818, respectively.

4. The probability that the commander's tank survives the volley is 0.382.

5. The probability that exactly 0, 1, 2, or 3 heavy tanks survive the volley is

0.096, 0.429, 0.407, and 0.068, respectively.

6. The probability that exactly 0, 1, 2, or 3 medium tanks survive the volley is

0.082, 0.363, 0.422, and 0.133, respectively.

7. The correlation between the numbers of medium and heavy tanks surviving the volley is

-0.187.

It should be emphasized that these values are not the result of any form of Monte Carlo

simulation. Instead, they are exact values obtained by substituting the assumed values of twt and qwt

into exact formulas for the situation described. Consequently, they could be used to verify that a Monte

Carlo simulation was operating correctly.
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2. NOTATION AND BASIC CONCEPTS

Suppose that at the start of a volley the target array consists of T targets. The state of the target

array at the end of the volley will be represented by the complei"ion

(rl,r 2 ... rT)

where 7j = I if target j is alive at the end of the volley and rj = 0 otherwise. (A development in which

additional target states are allowed is possible, but is more complex and will not be pursued here.) In

principle, any properly posed question regarding the outcome of a volley can be answered if (and only if)

the probabilities of each of these 2 T complexions is known. In many volley fire problems, however, a

direct evaluation of the probabilities of the complexions is difficult, while the following indirect approach

is more effective and in many ways more natural.

One of the characteristics of our approach is that it focuses on the probability that a target

survives instead of on the probability that. it is killed. This facilitates the theoretical development and

yields more elegant formulas for the outcome of a volley. Consequently. we begin by defining z to be

the event that target j survives, that is,

zj = {complexions I 7 j = 1}

The event complementary to zj is

S=- z j- = {complexions I rj = 0}

where I is the set of all complexions and so carries a probability value of unity. In this paper. set-

theoreti7 intersections are usually written as products, so that (for example) jZmTnZr represents the

event that targets j, rn, and r survive the volley while targets k and n do not.

Now consider the following family of basic events:

I,

zj for j = 1(1)T.

Ujzk for j = 2(1)T and k = 1(I)(j- 1).

zj-kzl for j = 3(1)T, k = 2(1)(j- 1). and I = l(1)(k - 1),

Z1Z2Z 3 .. .zT.

Here and elsewhere in this paper the notation rn = a(b)c denotes that in is a variable that ranges over

the set of values a, a + b, a + 2b, ... , c - b, c. Call a basic event that is specified by the product of

exactly r z's an r-th order basic event. For each r,= 0(1)T, there are exactly ('i.) r-th order basic
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events, because that is the number of combinations of r z's that can be selected from tile set of 7' :'s.

Consequently, there are a total of 2T members in the family of basic events.

These basic events and their probabilities play so central a role iii thle general theory of volley fire

that we define a volley to be solved completely if the probability of each basic event is known. It is well-

known that the probabilities of the basic events suffice to determine the probability of any complexion.

and therefore of any well-defined outcome of a volley (see Note 1 ii Appendix A). In several cases of

practical interest, the basic event, probabilities are easily evaluated, as will be demonstrated by the

examples presented later in this paper. However, their computation inescapably requires special

knowledge or assumptions regarding the tactical behavior as well as the technical military capability of

the weapons and targets, and so it is not feasible to provide a useful general formula for them. For the

present, we simply take for granted that all or some of the basic event. probabilities for the volley in

question can be obtained.

Suppose we say that a volley is solved to order m if tile probabilities of all basic events of order

r = 0( I)m are known. Many interesting and important questions can be answered easily, once a volley is

solved to some low order. To illustrate this more fully. let A be an arbitrary but fixed collection or

subarray of T targets, that is, subarray A consists of T targets "of type A." The subarray .4 may be

identical to the full target array, or may be any proper subarray. Designate the targets in subarray .4 a,

A.4, 4.2 ... , AT. The probabilities of the following subfamily of basic events associated with sulbarro?}y A

are available whenever the volley has been solved to order TA:

I,

ZA for j = I(t)TA,

4Aj z , for j = 2(1)T.4 and k = l(1)(j - 1).

Z A1 A2 A3" TA

For each r = 0(1)T this subfamily contain ) r-t.h order basic events. so in all there are 27' basic

events in this subfamily.

Now let P be the probability that exactly In targets of type A survive the volley. Then. b%
A i]

the principle of inclusion and exclusion as described in Feller [1950], Liu [1968], Riordan [1958], Netto

[1927], Frechet [1940], Frechet [1943], Ryser [1963], and many other texts on probability and

combinatorics, for m = O(I)TA

TA TA - +'1[ m] r ,. in +7 ,),5.
A,-" = E (1, + ,), , (A)

r -= m r=O
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where SA, is tile sum of the probabilities of all r-th order basic events in the subfamily associated with

subarray A. That is, for r = O(I)TA,

T A  Jil- j 2 -1 J,.- 2 -1 J,'-I-1

SAt=•r = P(zAja 3""zA)=Z Z• Z "'". Z P(: 4 .. " ). ('2)
- = E1 j3 = 1 J, - I= 1 Jr = 1

When there is little chance of confusion. S4r will be referred to briefly as the r-th order basic sum.

These basic sums appear frequently in the theory developed in this paper. Observe that the r-th order
basic sum is the sum of(T4) basic event probabilities. Since r varies from 0 to T., there are exactly

T 4 + 1 basic sums. Of course, tile value of the basic sum SAO is unity, since it is the probability of the

basic event involving no ZAj specification. that is, S is the probability of the set I of all complexions.

In many applications of the theory of volley fire. detailed information as to which specific targets

survive is not essential and information regarding only the nuimber of survivors is sufficient. In such

cases,. equation (1) shows that the problem reduces to finding the values of TA + 1 basic sums. rather

than the probabilities of 2 T A basic events (or complexions). We proceed to show that further

simplification is possible when the complete probability distribution of the inuiber of survivors is not

required. and only the values of its first few moments are needed.

Let GA(z) be the generating function for the distribution of the ixuiber of survivors, that is.

TA

A4 (x) = 1: .4[m]

M = 0

Note that the probability that at least in targets survive can easily be generated from G.(z)-sec Note

2 in Appendix A.

Replacing PA[r] by its value as given by equation (1) and then interchanging the order of

summation (having due regard for the region in the (77. r) plane over which the summation extends)

yields

TA .

= 0 i=0

TA

=- E (x-1l)SSAr (4
r0

The expectation and variance of TA, the number of type A targets that survive the volley, are easily

obtained from GA(r) by taking derivatives, and we find:

2-3



CAA-RP-92-1

E(T4) =G'A(1)(=S ()

and

Var(T) G28(1) + G'4 -[G21)

-2S.4 +S' 4 -S 4 (6)-- AI 1 )

Since A may be any subarray of targets. formulas for the expectation and variance of the total

number of survivors can be obtained simply by suppressing .4 in formulas (5) and (6). It is often

important for applications that the expected number of survivors can be obtained from the first order

basic sum, its variance from the first two basic sums, and (in general) its n-th order moment from the

first n basic sums (see Note 3 in Appendix A).

Now let A and B be arbitrarily prescribed subarrays containing T_ 4 and TB targets, respectively.

Designate the targets in these subarrays as A.Y where j = 1(1 )T 4 , and as Bk, where k = 1(1 )TB. The

subarrays A and B may overlap in any way. By definition, the correlation between the number of

survivors of type A and type B is

E(T I T) I E(T' )E(T')(7

PAB = Var(T 4)Var(T B)

The variance and expectation of T I and TB in (7) can be found from equations (5) and (6). To find

E(T I T ), observe that

T.4

T = 1 A.=j

and similarly for T'B, so that

TA TB

A B - Zr.4 rB
j=l k=1

By well-known properties of the indicator functions and expectations. it. then follows that

T 4  TB

E(T! T')EZ E E(i 4r A Tj=lk=l = k

TA TB

Ez EP(zA zB,)()
j =lk= k (8)
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and we see that all of the quantities appearing in equation (7) are available whenever the volley ha., ite,

solved to the second order.

The preceding development can easily be extended to obtain expressions for the exlpctatiou.

variance, and correlation between weighted survivor functions, such as

T.4

t .4o+ A "1 .4 r , (9

where the constant term .Al is presetnt only wheven non-zero weights art, assigtjed to losses (.see Note .1 ill

Appendix A). This slight generalization can be treated by a straightforward extension of the methoik

used to analyze the special case in which A. = 0 and M.t I for j = I(1I )T I to which we now

return.
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3. EQUIVALENT VOLLEYS AND CANONICAL FORMS

Volleys frequently are described by specifying how targets are to be acquired. how fire is to be

allocated among the acquired targets, and how the damage done to the target array by various

allocations of fire is to be determined. For many purposes, such descriptions are absolutely essential.

On the other hand, the basic concepts introduced in the preceding section make no reference to the

verbal description of a volley. Instead, they deal only with its basic event probabilities. When these ba.sic

event probabilities are obtained for a number of different volleys, it is observed that the mathematical

expressions for them sometimes exhibit the same functional form. R~ecognition of this common functional

form can be of capital importance, since all volleys whose basic event probabilities have the same

functional form can be analyzed by the same mathematical methods. When the basic event prob;ailities

for two volleys can be put in the same functional form, the volleys are said to be equiralent, and the

common functional form is said to be their cauontcal form. We will not here attempt to formalize

exactly when two mathematical expressions can be put into the same functional form. Instead. we go

directly to examples of canonical forms, each of which is analyzed more fully later in this paper.

3-1. Independently Survivable Targets. We say that the targets within a subarray A of TA targets are
independently survivable if the z4*'s for j = 1(1)TA are independent evens. In that case. the canonical

form for the basic event probabilities is

r
P(z " .'- I1 P(-A )'t)

where the argument on the left is any r-th order basic event associated with subarray A. All volleys

which are equivalent to a volley of this form are called volleys against independcntly survivable targets.

Some of the properties shared by all such volleys are as follows. All targets in the full array are

independently survivable if. and only if, they are independently survivable within every subarray.

Moreover, such a volley can be solved completely whenever it can be solved to the first orde:. since ail of

its basic event probabilities are known functions of the first order basic event, probabilities.

3-2. Exchangeably Survivable Targets. The targets within a subarray A of 7'..l targets are called

exchangeably survivable if the zA 's for j = 1(I)TA are exchangeable events. that is. if the probability

of any basic event in the subfamily of basic events associated with subarray A depends only on the

uImber of z's in its specification, but, not on which particular Z 's appear in it. Specifically, targets

are exchangeably survivable within a subarray A whenever
P(zA )=P(ZA)=PA1 for j= I(1)TA,
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P( 4z 4 )--P(:lA2)-PA) forj=2(1)T1 andk-=l(1)(j-1).

and so forth. Thus, the canonical form for a volley against exchangeably survivable targets is

P(zAjl-Aj2.. Ajr)=P(zAA2"...z 4 r)= PA r (01)

where j, = r(1)TA and Jn = (1)(in - 1 - 1) for n = 2(1)y". The concept of exchangeability and sollie of

its connections with other topics in the theory of probability and mathematical statistics can be found in

Feller [1966], Loeve [1960], De Finetti [1974], and Frechet [1940], among othei,.

Some of the properties possessed by all volleys against exchangeably survivable targets are as

follows. If all targets in the full array are exchangeably survivable, then they are exchangeably

survivable within any subarray. Such a volley is solved completely once each of the T values P,1 for

r = I(1)T are known, where Pr is the probability of the r-th order basic event lz...z"

In addition, when the targets in a subarray A of TA targets are exchangeably survivable the

general equations (1) through (6) immediately reduce to the following elegant forms:

S A- (= 4 )PAr (12)

4Arn] = (7)-I TA - I (T A 7fl)PA(,11 + I-)r--0

( TjA T 4T-1 '

r = 0l

Var(TI) = T.(TA- l)PA2 - T AP A(TAPA 1 - 1) (16)

When A and B are subarrays of TA and TB targets, and if the targets are exchangeably survivable

within their union subarray, A U B, then it can be shown that

TA TBE(TTI)=l Z TI TA T) TATBP +T 4 nB(PA1- P4 )

3-I k = I j
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so that

PAB"P = A2 (TATB - Tn B) - (TATBPAI - TAn B)P'A (17)
ýVa r(T A)Var(TB )

where TA A B is the number of targets in both A and B. that is. in A n B.

3-3. Indepcndently versus Synergistically Effective Weapons. Suppose that a battery of W weapons

volleys against an array of T targets. Suppose that we know the basic event probabilities when each of

the 11 weapons acts alone and all other weapons are silent. Let pw(zj), pw(:jzk). and so forth, be the

basic event probabilities for a volley by weapon w acting alone against the target array. Then the

canonical form for a volley by independently effective weapons is

P(zj) = 17 P11 (z .)

wti

P(zjzk)= H Pw(zjZk)

and so forth for each basic event probability. Consequently, volleys by independently effective weapons

can be analyzed by temporarily setting aside all but one of the weapons in the battery, soiving each of

the resulting single weapon volleys, and recombining them via the independence of their individual

effects. The volley used as an example in the Introduction is a volley by a battery of independently

effective weapons.

If the weapons in a battery are not independently effective. then we say that they are

synergistically effective. A volley by synergistically effective weapons cannot be solved completely by

analyzing only its single weapon subvolleys.

Observe that a volley by independently effective weapons is against an array of independently

(respectively, exchangeably) survivable targets whenever each of its single weapon subvolleys is against

an array of independently (respectively, exchangeably) survivable targets.

3-4. Independently Effective Point Fire Weapons and Munitions. Suppose that a battery of IV

independently effective weapons volleys against an array of T targets, and consider

W
P(zjzk .. z"z) = f Pw(:j-k'...)

w --

= J1 [I f1- P k-
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W
H I - P(7- -Zk U .. (19)

W=IV

where U indicates the set theoretic union of events. Now, in some volleys, a weapon may be unable to

kill more than one target. A weapon that is unable to kill more than one target per volley will be called

a point fire weapon. For each such weapon,

Pw(-5" -k) = Pw1(0j • • - .. Pw(07j --k .. •)=-0

so that

P t u uj. .. U =-- P ( ý + + . .. 7 + P ,,,( .-- ) (2 0 )

Consequently, for volleys by batteries composed exclusively of independently effective point fire weap,,nls.

the canonical form is

W ( rP(Zj~j2" z( =7 1--n) (21)

A volley by a battery of independently effective point fire weapons can be solved completely by finding

each of the WT values pw(-Z7J) for w = I(1)W and j = I(I)T, where p,(--) is the probability that

target j is killed during the subvolley in which weapon u, acts alone against the full target array.

A weapon that is not a point fire weapon will be called an area fire weapon. Equations (18) or (19)

give the canonical form for a volley by a battery of independently effective area fire weapons.

The definition of a point fire weapon needs to be broadened slightly to accommodate comfortably a

number of important applications. For example, suppose that one of the weapons is a rifle that in the

course of a volley may fire a number of shots and kill several targets. Under the( definition given above.

the rifle fails to qualify as a point fire weapon, although both common sense and conventional military

terminology agree in ascribing "point fire" qualities to rifles. One appropriate response to this situation

is to introduce the concept of independently effective point fire munzttons. as follows.

Suppose that each weapon in a volley fires a certain number of shots. Let St., be the number of

shots fired by weapon w. Let Pws(zj), Pus(zizk), and so forth, be the basic event probabilities for a

"volley" consisting of just shot number s from weapon it) acting alone against. the full target array. We

say that weapon w fires independently effective munitions if

SIV

Pi(zj) = h Pvs(Zj) )

s=l
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SW

Pw(zjzk) = f Pws(ZjZk) (22)

and so on. If, in addition, shot s can kill at most one target, so that

PW(- '- = P18 -7. =..=P ,(j-..:

then we say that shot s from weapon w is a point fire munition. In that, case,

pts(Zj 1 n...zj) = I- E Pns(,-) (23)
ni=1

If all the shots fired by weapon w are independently effective point fire munitions, then

Ste
P"J(z j . . s = 1 -- } s ( _

If. in addition. the shots fired by the various weapons in the battery are independently effective, then so
are the weapons. In that case. the canonical form for a volley of independently effective point fire

munitions will be written as

P(zJJ2 -z Jr) )= 17 1 I- = 1

Observe that a volley of independently effective point fire munitions is equivalent to a volley

delivered by a battery of
WI•0= x: Stt

indcpendeiatly effective point fire weapons, each of which fires exactly one shot. 'File equivalence is
obtained by replacing the original battery of It' weapons by the battery (if lI'V weapons. and arranging
things so that their kill probabilities correspond to those of the shots in the original volley. Therefore. in

the theoretical treatment, we may freely replace a volley of independently effective point fire munitions

by an equivalent volley of independently effective point fire weapons.

3-5. Summary of Canonical Forms. The foregoing suggests the taxonomy of canonical forms shown in
Table 3. Each block in this table represents a canonical form possessing the combination of target and
weapon attributes indicated by the column and row. The named volleys listed in the blocks of Table :3
are examples or special cases of canonical forms for the block. Volleys of independently effective point
fire munitions are listed as if they were replaced by an equivalent, volley of indelpendently effective point.

fire weapons. Each of the examples listed in Table 3 is described at length and solved completely in
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subsequent sections of this paper. If no examples are listed in a block, it indicates that we are not awa,

of any practically useful examples of that canonical form which can be solved completely. (lit fact. tlie

Bellwether Volley was contrived to provide a solvable example of a volley by synergistically effective

weapons against an array of targets that are neither independently nor exchangeably survivable, rat her

than for its practical utility.) It appears that describing and solving volleys that niot only fit the

characteristics indicated by the lower right hand blocks of Table 3. but that also have a spectrum of

valuable applications, is a worthwhile area of research.

Table 3. Taxonomy of Canonical Forms

Targets

Weapons Independently Exchangeably Neither independently nor
survivable survivable exchanIgeably) survivablle

Independently Gauntlet Vollev* Dixon-Robertson-Rau Ihehlabold Vollev*
effective ICBM Volley* (DRR) Volley 1311rst Fire Volle,*
point fire llide-a nd-seek Vollev
Independently
effective Multishot Karr Volley
area fire
Synergistically Artillery Volley Redundantlv Survivable Bellwether Volley
effective Target Volley

* Since this is a volley of independently effective point fire munitions.
or for other reasons is equivalent to a volley by indepenfdently effective
point fire weapons. it is listed in that category.
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4. COMPLEMENTARY VOLLEYS

Before analyzing these canonical forms and examples in detail, we introduce one last concept-

namely, the idea of a complementary volley. Roughly speaking, two volleys are complementary if the

outcome of each is the logical negation of the outcome of the other. Although this definition can be

applied even when several target states are allowed, this paper considers only targets that either survive

the volley, or do not. In that case, two volleys are complementary if targets that survive in one of them

are killed in the other, and vice versa. Formally, we have the fol!owing

Definition.- Volley V* is a complement of volley V if they have the same number of targets
and if the probability P* of each basic event z* of volley V is related to that of

volley V by

P jk .m) = -k -) (26)

In some cases. the complementary volley may be much easier to solve than the original volley.

Although no such cases have come to our attention in practice, that possibility is the most important

reason for considering complementary volleys. They would be of theoretical interest in any case. because

the notion and properties of complementary volleys lend a certain symmetry to the general theory. The

following theorems and corollaries establish the basic properties of complementary volleys. Theorem

essentially states that if V* is a complement of V, then V and V* are mutually complementary.

Corollary 1.1 states that the complement of the complement is (equivalent to) the original volley.

Theorem 3 states that the number of survivors in volley V has the same distribution as the number of

targets killed in volley V*, and vice versa. Since the theory of complementary volleys is not completely

developed in this paper. and has yet to show its promise in applications, some readers may wish to skip

the remainder of this section, which is devoted to the mathematical statement and proofs o. these

propositions. (In the following, the symbol 0 denotes the end of a proof.)

Theorem 1: If volley V* is a complement of volley V, then V is a complement of volley V*, that is.

for each basic event of volley V,

P(zjzk' .. z") = P*(*zj* ...- k )

Proof: Let A be any subarray of T targets. Then

A A
P(ZAl--A2... ATA) 'A 1 (-'A2 -U,.U

SI-S 4 1 +S 4 2-...+(-I)T)S.4 T
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where

r ~P(T'zj7 '_Aj2... z4,

and, as usual, E stands for the operation of taking the sum over all r-th order subarrays of subarray A
r

(cf. equation (2)). But, since by hypothesis V* is a complement of V. we may, by definition of a

complementary volley, replace each term in the sum F by its related complementary probability to
r

obtain

SAr= S t

where S* is the r-th order basic sum for volley V*. Consequently, we have

Ar
P(z 4 lzA2 .. AT4)1

.AA) 42 + -. + (-) ASTA

- -P('.41U _42 U'UATA)•* ~*

P* (Z*4 U-4 U2 ... TATA)

Because A was any subarray of targets, this result holds for all basic events of volley V. 0

Corollary 1.1: Let V* be a complement of V and V** be a complement of V*. Then V** is

(equivalent to) V.

Proof: Because V** is a complement of V*,

p**(** ** *** ,.-*).

"(~ zk ... m) = P*(* "- = P(zJ*k. "

where the last equality is supplied by Theorem 1. 0

Theorem 2: Let volley V* be a complement of volley V and let A be any subarray of TA targets.

Let S' be the r-th order basic sum for volley V* and SAr be the r-th order basic sum for volley V.

Then

r (- T A - In '

.4= -, (1)1 ? :- )SAm for ' = O(l)TA
m--0

Proof: Because the proof is longer than convenient to present here, it has been relegated to Note 5.

Corollary 2.1: With assumptions and notation as in Theorem 2,

TAm 4 (-) m-- r)Sr for In = O(1)T. 4

r-0
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Proof: By assumption, V* is a complement of V. By Theorem 1, it follows that V is a complement of

V*. Consequently, in the statement and proof of Theorem 2 the roles of V and V* may be interchanged.

0

Theorem 3: Let V* and V be complementary volleys, and let A and B be any two subarrays of T.

and TB targets. Then the following assertions are true:

(i) G*(x) x TAG
A (0)=x

(ii) PA[m]- -A[TA - mn]

(iii) E(T*41) = TA-E(TI)

(iv) Var(T* 1) = Var(T and

ATA)

(v) P*AB = PAB

Proof: See Note 6.
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5. VOLLEYS AGAINST INDEPENDENTLY SURVIVABLE TARGETS

These are the easiest volleys to analyze. Indeed, it must be admitted that the results in this section

are well known and are traditionally obtained by elementary probability arguments that are simpler and

more direct than those based on the general theory of volley fire. Nev-,'theless. we will rederive them

using the general machinery developed Above. Our purpose in doing so is to illustrate the applicatior of

the new methods in simple situations before using them in more complicated ones. where the elementary

probability arguments do not apply. This also serves to demonstrate that the results obtained using the

general methods do indeed agree with those reached by more familiar approaches. It will be found that

the general methods are more precise and rigorous than the usual iaformal arguments. Moreover, tile

results are used later in this paper.

Recall that the canonical form for a volley against an array of T independently survikable targets

is (cf. equation (10))

P(zjlzj2"".zj,.= 1 P(:j.)

Obviously, the targets within any subarray are also independently survivable. For this class of volleys.

the complement takes a particularly simple forim. In fact, we have the following.

Theorem 4: If V is a volley against independently survivable targets and V* is a complement of V.

then V* is (equivalent to) a volley against independently survivable targets. Moreover, the basic evcnt

probabilities for volley V* are

iJl'J2 .J .LA~l = J

Proof: Let A be any subarray of T 4 targets, and consider the collection of events zA1, ZAT ... :ATA.

By hypothesis, these events are independent with respect to P. But any collection of events is

independent if, and only if, the collection of their complementary events is independent. Hence, the

events A1 A ... , are independent with respect to the probability P. Hence, V* is a volley

against independently survivable targets, as asserted.

Now, by hypothesis, V* is a complement of V, and so for every subarray A

T 4
., ( * rl *P*(.41 '.*12,"".*47'.) = P(-Al -. 42 "".TA) H.IP )

TA TTA
= r 1 P( -.4 ) = P *(- A IJ )

j=l j
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where the last equality follows because V* is a complenent of V. But since thik holds for any sul)arriay

A, the events * for j - I(1)T are also independent with respect to the probahility P*. Q

Theorem 5: Let V be a volley against independently survivable targets and let A be any suharray

of T targets. Then the generating function for the distribution of the number of type A survivors is

TA

G.4(x) 7 [I + (x - 1)(zj)] 27)
l)=

Proof: Consider

II i + (x )z 4 )z (-1 1 Y,!.()j =I =0

where

C. = n P(: 4 jl)P(Aj2)P(z 4 )

where the last equality follows fronm equation (2) and the hypothesis that V is a volley against

independently survivable targets. But sulbstituting S.4n for C.-Un on the right side of equation (28) and

coniparing the result with equation (4) gives the asserted result. 0

Corollary 5.1: Let V be a volley against independently survivable targets. Let A and B be disjoint

subarrays of T.4 and TB targets, respectively. Let A U B be the subarray coisisting of the type A and

type B targets. Then the following statements are true.

(i) GA U B(x) =GAGB

(ii) PAB 0

(iii) E(T1
1 U 11) E('I..j) + E(Tj3)

A(Uiv) Var(TA) + Var(TB)± and

M,
(V) P.4 u B[,] =_A,, - k]'1)[A-]

Proof: Part (i) is a general property of generating functions, which in the present context can he shiowtu

as follows. By Theoreni 5.

Tu B

( U •U 3(-'): ] {1 +( - 1-)P(. IUBj)}
j = I

'A.4

1 {I + (, - I )P((t: j)}I I f + (x - )I 4.
5 k 1
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whcre the .econd equility follows from the hy pothesis that -k and B are diBjoinl. Iul by 'lheor.in 7j. i*

two factors oi the rglht side are (.tx) •ud (,'1(r.). proving assertion (i).
By the first assertion and a fundamental theoremi of probability theory. T and T1 must be

independent random variables. But then they are uncorrelated. which proves assertion (ii). Assertion (i%

is an immediate consequence of assertion (ii).

Assertion (iii) holds whenever A and B are disjoint, because in that case

7".1.'= • + T' I,
Au 1 fl- 1

and becanse the expectation of a snin a I waNs equals the slim of the expectt•tlion,. (W\hlen A and B ar, io,
(lisjoint. then T) C + .4 ad ini( thIia t case F(T /-.'T1' i

Assertion (v) follows either from the independence of T1 and TW and st anidard results of
probability theory, or by expanding (G.7I U B(x) in powers of J" in ac-cor'd w11hI*'qution (I) an1d
comparing coefficients with those of the product of (.; and G B(7.) . 0

Corollary 5.2: Let N be a volley against indepelndelitly stir% ivablagts and let'.. Ahb" aeay'i. r,;v

of 7'.4 targets. Then

"1.4

j~ I

and
T.4

Va r (T) 7 T4  ,I)

j1=1

Proof: The first assertion is the same as equation (5). To prove the setond. apply assertion Jiv) of

Corollary 5.1 repeatedly to show that

T'

where 7',.1j is the ntumber of survivors in the subarray consisting of the siigle target Aj. 13ut for a

subarray of just one target. Theorem 5 gives

Gj(x) I+ (x - I)p(ej

and then equation (Gi) applie's to give,

V r ( : 1)4 j- P( j)} 0 0

Corollary 5.3: Let V be a volley against iidepenidently survivat);,, targets. Suppose that the targets

in subarray A are exchangeably survivable. Them thel following assertions are true:
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(i) The probability that exactly in of the type A targets survive is

P4 ]=( ) ]A Il1 - PA)TA

where

PA = P(zAI) P(:A,1 2 ) form = I(l)nA

is the survival probability of an arbitrarily selected target of type A.

(ii) E(T 4 ) =7TPA

(iii) Var(TI) =TAPA(1-PA)

Proof. When the targets in subarray A are exchangeably survivable. substituting for each P(z.4) its

common value, PA. in equation (27) yields

G 4 (x) f{1 + (x- 1)PA}TA I{ - PA + 1PA }T'I

T 4 (T) .4

ill = 0

and comparing this with equation (1) gives assertion (i). Assertions (ii) and (iii) follow by standard

results in the theory of binomially distributed random variables, or from Corollary 5.2. 0

Now we will consider some particular cases of volleys against independently survivable targets.

Here, as in the discussion of other canonical forms, these examples illustrate the Connection Ietween tOw

somewhat lifeless abstract canonical form of a volley and the animated, often colorful applied versions

familiar to military operations analysts. In describing particular volleys, it is usually helpful to think of

the battery of weapons as going in turn through the phases of target acquisition, allocation of fire. and

achievement of effects. In the acquisition phase. candidates for attack bh one or more weapons are

obtained frori the target array. In the allocation phase. fire from the weapons is allocated to the

acquired targets. In the effects phase, the daniage done by the allocated fire is determined. With thii

concept of the volley process in mind, we turn to the example of the Gauntlet Volley.

5-I. The Gauntlet Volley. The informal mental image of the action in a (aamitlet Volley is thai each

target separately "runs the gauntlet," that is. it faces and is subject to attack by each of the weapons in

turn. with each weapon-target. combination encounter being a separate engagement. Alternatively. we

may think of each weapon as moving iii turn front one target, to the next. singleliandedly engaging
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each target it comes to. Whichever intuitive picture is used, a Gauntlet Volley may be defined by the

following postulates.

G-1: The probability that weapon w, acquires target t is aw(t), and is independent of otner

acquisitions.

G-2: Each weapon may fire up to T shots at the target array. depending on how many targets it

acquires. The probability that weapon tv allocates one shot to target t is vi,(t) if w acquires target f. anl

is zero otherwise, independent of what other events occur during the volley.

G-3: The probability that target I is killed by weapon u, is q•1 (1) if a shot from weapon u: is

allocated to target t, and zero otherwise, independent of what other events occur during the volley.

The Gauntlet Volley is easily solved by observing that it is a volley against an array of

independently survivable targets in which

IV'

e(:,) = ]I {( - a',((q"()
r= I

so the results of Theorems 4 and 5 and their corollaries apply. The form of P(z-1 ) shows that a (I;auntlet

Volley is also a volley by a battery of independently effective weapons. fI general. the weapons of a

Gauntlet Volley can kill more than one target, and so are area fire weapons. However, by postulate (1-3,

the munitions are independently effective point fire munitions, so a (amauntlet Volley is equivalent to a

volley by point fire weapons. This justifies the location of the Gauntlet Volley entry in Table 3.

5-2. Th-. ICBM Volley. The name of this volley was chosen because it has frequently been used to

obtain quick estimates of the effects of a salvo of intercontinental ballistic missiles. It satisfies the

following postulates.

ICBM-I: Each weapon acquires all of the targets in the target, array.

ICBM-2: Each weapon fires exactly one shot. Shots are allocated as evenly as possible to the

targets. More precisely, let [WIT] be the greatest integer not larger than IW/'. and let.

R(IV, T) = W - T[W/TJ be the remainder when IV is divided i)y T. Then [Hi'/T] + I shots are allocated

to each of the first R(W, T) targets and [IV/T] shots are allocated to each of tihe remaining 7'- R(IV. T)

targets.

ICBM-3: The probability that target t is killed by the shot from weapon w is q(1) if weapon m's

shot is allocated to target t, and zero otherwise, independent of what other events occur during the

volley.

It. is easily seen that an ICBIM Volley is equivalent to the Gaunt let V'olley V,) in which a single
0weapon volleys against the target array, and in which the acquisition l)robal)ilitics are a (t) = 1 for
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t = 1(1)T, the allocation probabilities are vO(t) = I for t = (1 )T. and the conditional kill probabilities

are

f { , for t I(1)R(TF,T)
qO(t)

ii -{i-q(t)}[W/T] ,for t = (R(11'.T) + 1)(1)T

This equivalence justifies the location of the ICBM Volley entry in Table 3.

When the target array is partitioned into two distinct subarrays A and B such that A contains thi

first R(W, T) targets, then it. is easily seen from the equivalent Gauntlet Volley V0 that

P(:t) = {I - q(t)})w/T] + for t E A. and

P( = {1 -(q)}[w/7t for t E B.

Corollary 5.1 applies to yield

R(W. T) T
E(TI)= I -q(t)}["/T]+I + I _Zq(t)I[WIT]

~t It= R(W.T)+ I

PAB = 0

and so forth.

Now suppose that q(t) = qA for all t E A and q(t) = qB for all I E B. and let

PA=(I-q 4 ) [WT]±+ .and

PB = (1 -.- 1B)

Then Corollaries 5.1 and .5.3 apply to yield the familiar formulas

E(Tt) = R(WUT)P 1 +{T- R(i'.iT)}PB

Var(T 1 ) = R(WT)PA (1 - P 4 ) +{T - R(11.T)}PB(1 - PB)

Pl ((R(It" T)) 1A1(1 - P W , T) - m for , = O(l)R(W ,T)

- 6 R ( W , T ) ) P f 1? ( 1 - 1)( I V, T ) ' I fo i- m ( 1 ) J T - T )

B5-B6)I n
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PV[illey iPA[m - k]PBtk] for P = 0(1)1

5-3. The Artillery Volley. The Artillery Volley is often used to estimate the effects of fragmenting

ordnance delivered by artillery, aircraft, mortars, rockets. and so forth. It may be described as fotlkws.

A-1: Individual targets per se are not acquired. However, an area believed to contain targets is

acquired.

A-2: There are W weapons. Weapon w fires S. shots. Shots are not allocated to individual targets.

but are allocated stochastically to particular ground zeros in such a way that (7,,(u. u)dudt is the

probability that shot s from weapon w has its ground zero located almost exactly at the point (u. r).

Each ground zero distribution a•ws(u, v) is independent of the actual ground zeros of other shots.

A-3: The probability that shot s from weapon w kills target t when target t is located almost

exactly at (x, y) and the shot's ground zero is located almost exactly at (u, v,) is given by the damage

function Dst(x - u.y - 0). Shots are independently effective given their ground zeros, that is. the

probability that target t survives all shots when it is located almost exactly at (x. y) and the ground zcr,)

of shot s from weapon w is located almost exactly at (U 8s, "'Ws) is equal to

W Stw
Ft = HI TI 1i -. NLst(x - lu s,Y y - 4}

A-4: The probability that target t is located almost exactly at (x. y) is pt(x, y)dxdy, independenttly

of the locations of other targets and of the ground zeros of the shots.

Observe that, by virtue of the above postulates, an Artillery Volley is a volley against an array of

independently survivable targets. Neither the weapons nor the munitions are point fire. As explained in

Note 7, the munitions are independently effective only conditionally on their ground zeros, that is. in the

sense specified in postulate A-3, and do not conform to the definition of independently effective

munitions in the sense expressed by equation (18). These observations justify the location of the Artillery

Volley entry in Table 3. Schroeter [1984] also develops expressions for the expectation and higher

moments of T 1 , the number of targets that survive an artillery volley.
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6. VOLLEYS AGAINST EXCIIANGEABLY SURVIVABLE TARGETS

The canonical form of a volley against exchangeably survivable targets is given by equation (11). It

is clear that if all the targets in an array are exchangeably survivable, so are the targets in any subarrav.

When the targets are exchangeably survivable. the elegant formulas (12) through (17) ap)p)ly. We lov

prove the following.

Theorem 6: If V is a volley against exchangeably survivable targets and V* is a complement )f V.

then V* is also a volley against exchangeably survivable targets. Moreover, the complementary ba.ic

event probabilities are

=* Z k(l) for r = 0j( )T.

k = 0

Proof: Let A be any sub)array of TA targets. and consider

.*(.* "* - * P(=- 1 z " ZATA)

= I U Z. 2 U ... U :.4 T.4

1 ,.-l + 5 .12 -S .13 + A.(-I)T.
= 1-S -S2 S +...(l SAT.4

where

S.ýl = (zJ PAJi.I:j,:.4j.)

Mnd. as in equation (2). inld icat es that the smu inis taken for indlices j J.)... .,. which are varied ini
r

such a way that the subarray consisting of the targets A I. A .2 A sweeps over each of the r-th

order suibarrays of subarray A. But, because by hypothesis the events . " :...... .1..A are

exchangeable with respect to P.

where

/ 7. = Py :I.:2"."': ) = ....-... '. z ir)

is independent of which r events z" appear. Thus,

A I.* .. *-A.* )=Y (-I) (MSt!~~m t -) '" ¢ p
.t =0
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which depends only on T 4 and not on which TA events appear in the argument of P*. Therefore the

events z*4 z*A2..-.. - ATA are exchangeable with respect to P*. But, since A was any subarray of

targets, it follows that V* is a volley against exchangeably survivable targets, and the complementary

basic event probabilities are as given in the statement of the theorem. 0

In general, the state space for a volley consists of the 2 T possible complexions of the target array.

and the sequence of complexions generated as successive volleys are fired is a Markov chain with 27'

states. However, when the targets are exchangeably survivable, only the number of survivors matters

(that is, only those complexions which differ in the number of survivors are distinguishable). and the

sequence of the number of survivors generated as successive volleys are fired is a Markov chain with only

T + 1 states. The transition probabilities for the jatter Markov chain are givell by P which may be

calculated using equation (13). Consequently. volleys against exchangeably survivable targets are much

easier to analyze than are volleys against aitays of targets that are neither independently nor

exchangeably survivable. Particular examples of volleys against exchangeably survivable targets are

given later in this paper (the names of these volleys are shown in Table 3)-
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7. VOLLEYS BY INDEPENDENTLY EFFECTIVE POINT FIRE WEAPONS Oft MUNITIONS

In this section we show that the general theory developed earlier easily yields results for volleys by

independently effective point fire weapons that are difficult to derive by other methods. In fact. we show

that application of the general theory allows us to develop new results for some of these volleys. Recall

that the canonical forms for volleys by batteries of independently effective weapons or munitions are

given by equations (18) or (22). respectively. Before introducing and analyzing particular cases, we

establish the following.

Theorem 7: Suppose that V is a volley by a battery of W independently effective weapons. and let
V* be a complement of V. Then. in general, V* is not (equivalent to) the volley V +, obtained by

independently combining the complements of volley V's single weapon volleys.

Proof: In general.

P,*( :7) = I,(y) = 1- (•= 1- ]-I m,•(iY
I - P(:, = I

On the other hand. the complements of volley V's single weapon volleys are

p*,(:*) = pr,(- )= I - p,,,(: ) for ,, = 1(1)I'.

and combining them independently leads to the volley V + in which

l1- 1.* =
P+j 17 (T) =7 {:-1, .(:i)}

(U = w -- I
and so. in general, P+ +- P*(z*). In fact. it is clear that, P + (:l+ and that the equality

sign applies only in very special cases. Consequently. in general. volleys V + and V* are not equivalent.

0

Observe that, in general, the complements of volleys by independently effective point fire weaponts

appear to be volleys by synergistically effective weapons. This may provide a useful method for

investigating and solving volleys by synergistically effective weapons. Specifically. some volleys by

synergistically effective weapons may be most easily solved by recognizing thla they are the

comiplements of volleys by independently effective point fire weapons, solvitig the apl)ropriate

compl)eltentary volley. and translating itls solution to tle original volley.

7-1. The Dixon-Robertson-Raau Volley. The I)ixon-Robertson- Rau (IDliRR) Volley occurs quite frequer tly

iii applications and also serves as a prototype for the study of other volleys by independently effective

point fire weapons because it can be analyzed in considerable detail and has int uit ively appealing

solutions. It may be defined by the following postidates.
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DRR-1: Each weapon in a battery of IV weapons acquires all of the T targets in the array.

DRR-2: Each weapon fires exactly one shot., which it allocates to a target selected uniformly and

independently at random from the target array. (That is. the probability that weapon w directs its shot

at target t is equal to 1/T and is independent of the other events that occur during the volley.)

DRR-3: The probability that target t is killed by the shot. from weapon u is q,, if w allocates its

shot to t. and zero otherwise, independent of the other events that occur during the volley.

Observe that the DRR volley is a volley by independently effective point fire weapons, in which

T
Pw(t ) L Prob(weapon w kills target t I w, fires at target t) x Probh(w fires at target j)

j=t

= qw/T

Because pw(-zt) is independent of t, the targets in a DRR volley are exchangeably survivable. Thein. for

any subarray A of TA targets, equations (21 ) and (11) show that

IV?
PAr= 1 (1 - rqu,/T) for r = l(1)TA.

Therefore, in general, .PA2 # l2 and hence a DRR Volley generally is not a volley against

independently survivable targets. These observations justify the location of the DRR Volley entry in

Table 3.

Because equations (12) through (17) apply, we obtain imiediately

TA) IV
S.4, H : 1 (I - 7-qw/T) for r = 0(1I)TA

ti'= 1
E(TA)= TrAr (I (-,IWIT)

W

IV
Var(T 0) = T 1

Iu I-2qtT)+El l E-(

0 u'= (1 + r)qZ,7/T)

and so forth. Observe that., when q, = I for w = I(1)W, the formulas for the DRR Volley give the

expectation and variance of the number of empty cells in the classical occupancy problem, and P 4 l]
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gives the probability that exactly m cells of an arbitrarily chosen collection of T 4 cells are empty

(compare this observation to Feller [1950]). (See also Note 8.)

Clearly, a volley in which there is but one weapon that fires a total of W shots, where each shot is

allocated to a target independently at random from the target array and the w-th shot has kill

probability qw, is equivalent to a DRR volley. In fact, the number of weapons and the number of shots

per weapon can be changed at will, subject only to the conditions that a total of W shots be fired, that

each of the shots be allocated to a target selected independently at random from the target array, and

that the kill probabilities of the shots correspond one-to-one with the q, for w = I(1)W. For example, a

volley by W0 weapons, each of which fires S shots with each shot fired at a target selected

independently at random from the target array, in which the kill probability gradually improves on each

shot, so that

q w0 < qw02 :S:-S.. q uPS

for each w- = I(1)W0 , is equivalent to a DRR volley by a battery of W = WUS weapons in which

qw, for w = 1(1)W0

qW- wW,2 for w = (W0 + 1)(1)(2W0 )I Wfor w = [(S- I)W 0 + 1I(I)(SW 0 )

(The assumed increase in kill probability is, of course, not essential. The important conditions are that

the shots be independently effective, that each of them be directed at a randomly selected target, and

that the targets are all alike.)

It might be conjectured that the complement V* of a DRR Volley in which q, == q for w = 1(1)W

could be obtained by substituting 1 - q for q in the above formulas. However, this generally is false,

because it results in the volley VI for which

Fit=[{l-,(1 - q)/1 }w

but the correct expression for the complementary basic event probabilities as given by Theorem 6 is

r

k=0

and these expressions are not reducible to the same functional form. One way of demonstrating that is to

observe that, because they both involve the same variables, the expressions for Pt and P* are reducible
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to the same functional form only if they are identically equal for all relevant values of r, q, T, and W.

But whenr=l,q= 1, T=2, andW=1, we find P1 = 1/2, but Pt =, so that the expressions are

not identically equal. In fact, as shown in Theorem 8, the complement of a DRR Volley is not usually a

DRR Volley.

Theorem 8: Let V be a DRR Volley by a battery of W weapons against an array of T targets in

which qw = q for w = l(1)W. Suppose that V <K T - 2. Then V*, the complement of V, is not

(equivalent to) a DRR Volley by a battery of RW weapons for which q* = q* for w = I(1)W.

Proof: If V* were (equivalent to) a DRR Volley in which q* = q*, we would have to have

P* =-(1- rq*/T)W for r=0(1)T

Equating this to the expression for P* given by Theorem 6, we see that V * is a DRR Volley only if the

set of equations

(I1- rq*/T) = (lk (1 kq/T)W for I-= 1(1)T (29)

has a solution q* that lies between 0 and 1. But, as will be shown in a moment, when W < T - 2, the

right side of equation (29) vanishes for r = T and for r = T - 1. And then we would have to have

(1 - q.*)W = 0 and 11 - (T - 1)q*/TJW = 0, which is impossible, because the first of these equations

requires that q* = 1 while the second requires that q* = T/(T - 1) > 1.

To show that when w < T - 2 the right side of equation (29) vanishes for r = T and for r = T - 1.

rewrite it as

r W W

(-0 k\(n )(q/T)"1k = E (-1 \m (q/T)')Cr'

k 0 0 n- = 0

where

r k

k=0

But it is well-known that Cm vanishes for r > m (see, for example, Feller [1950. p 77]). Consequently,

when W < T - 2 the right-hand side of equation (29) vanishes for r = T and for r = T - 1, as asserted.

0

Corollary 8.1: If W < T - 1, a complementary DRR Volley in which qw = q* exists if, and only if.

(i) W= 1 and T=2, and (ii) q*-q= 1.
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Proof: When W < T - 1, taking r = T in equation (29) yields (1 - q*)W = 0, so that q* = 1 is the

only possible solution. But the complementary version of equation (29) reads

(1 -rq/T - (-1).(r)(1 - kq*/T)
k=0

and when W < T - 1, putting r = T in this equation yields (1 - q)W = 0, so that q* = q = 1 is the only

possible solution. With these values of q and q*, taking r = 1 in equation (29) yields the necessary

condition for a solution as (1 - l/T)W = 1/2. or 1 - 11T = 2 - 11

If W = 1, then T = 2 is a possible solution. It is easily verified that the values W = 1, T = 2, and
q q* = 1 do indeed provide a solution to equation (29). However, wheni W > 1, the right side of the

last equation of the previous paragraph is irrational, while its left side is rational. Hence, when W > 1,

equation (29) has no solution of the required type. 0

When T = 2 and W > T, there are selected values of q = q* for which equation (29) has a solution,

and therefore for which complementary DRR Volleys for which qu, ,, q and q* = q* exist. The values of
q = q* which afford solutions of equation (29) when T = 2 and W = 1(1)9 are listed below.

W q=q*
1 1.000 000 000
2 0.585 786 438
3 0.412 598 948
4 0.318 207 170
5 0.258 898 874
6 0.218 202 564
7 0.188 552 672
8 0.165 991 914
9 0.148 250 576

Presumably, this list could be extended to higher values of IV and T. Hence. for some W > T.

complementary DRR Volleys with qw = q and qw = q* exist for selected values of q and q*.

The theory of complementary volleys is incomplete. This is true for the complements of volleys by

independently effective weapons generally, and for the complements of DRR Volleys in particular. As

such, this topic deserves additional study and research.

7-2. The Helmbold Volley. The DRR Volley can be generalized considerably at slight effort. For

example, suppose a Helmbold Volley is defined by the following postulates.

Ul-1: Each weapon acquires all T targets in the target array.

H1-2: Weapon w fires SW shots during the volley, allocated at. the rate of one target per shot. The

probability that shot s from weapon u? is allocated to target t is tv, w(t) and is independent of the

allocations made on other shots by the same or any other weapon.
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11-3: The p~robability that shot ,; from weapon it, kills target t i- qt ) if' that hiot. is allocated to)

target t, anl is zro ot~herwise. inudepenident of' the other events thlat occ i lii drinmg lie vofl e%

'niis oi)'iotisly is a volley of intdeptilendet~ly effective point tFire munliiit ions. so that. eq nat ion F

applies wit~h p,,(-F) = t'u~(t)qWS( t). 11(11ce, when A is any suharray of T.4 t argets,

T'4 w Su

j1~ Avl -

Thie antitank weap)on voll1ey presen tedl in the iut rod iictorv section is an exammmple of a II ehln old Volley.

aind the equlatilons albove and~ others (such as equations (1). (5). (6). (7), aiid (8)) were uisedi to calculate

lie numierical values for it.

A lthouighm lelinbold Volleys are volleys of independently effective poinut fire mnunitionms, it is clear

that in gencral thlev are not volleys against exchiangeably .surv iva ble targets. This Jutst ifies the locat ion ot'

the Ifelrnbold Volley in Table :3.

In a Helnuibold 'Volley it. is not necessary that, 1: vm,~( ) I. 1,hat. s it, is not requiired that ea-l

shot be. allocate~d to someW target. Allocationi ;)rolbabllites that, do iiot. suom to unit y miay b~e i~iterlpreted as

muldicar ing that sortie shots are allocated to false targets (eit her deli beramt ely dle(ept ive "dumlien its." or

mmadlvertemit spuiriouis targets), or that some shots are lost as the resul t of' ii alfmu mctjomis, dudits, anid/or

human error, or iii other ways.

Observe that, the availabilit.y of explicit solutions to volleys suich as the10 Ileltilbold Volley and other,

smooths the way to an investigation of various op~t imizat ion problems Ili conntection wilt i volley fire

p~rob~lemis. For exanmple, tact~ical problems~ such'l as thie best arranigenient of ovedlappiuig fields of fire or

lie value of trading rate of fire for itmproved accuracy cail be inivest igated usling lhe exp-cted uumnulaie (11t

'1r~irvors as ain ol jective Euiuctilou that, is to be 111iliuilized(. Some force struictuire issues could be clarified

by evaluiating the impact oif different. small unit orgainizat iomis ott thle nuiimber of survivors. amnd so forthI.

If the target~s aiid weapons are- all different. so that. tflie, rllljlrin.(licts are all (lifferenit, thlen thle

evaluation of S, inovs ( )t errns in it~s summinat ion. So if thiere are mianytres(a 10tres

then to evaluate .'Y inuvolves tlit! suuiurnat~iotu off 100(a) 168i,Ot00 umoles of terms. each termii being a

prodl uct of It' factours, each factor being of time form I - rll,. llI - - vo 1 ,oSo whmen t here are, 10t0

tairiets. iisntpatcltsovthvleyrmph, Irly by evaluatinig all of thme ;basic siumis. Fort uinately,

fttr ilo.t puract ical piirlioes, .olvinig flt- lueolley coiuiplctely i., not really utcs;r.and we (-au iuaked(1

wit hi Just flthe first1 feW miomnemmis.,. Of tflie, dist ribmution of, thle number of survi1vors, such ais thie exjiect~auiOn
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and variance. For 100 targets, the expecteu value call be found from S 1. which inivolve~s 100t temnis in it-

summation. The variance can be found from) S.). which inivolves ( 0') iz .950 termls: not a calculation

one would cheerfully undertake to do by hand. but somet hing that is ,erv eaisy, to do with modern

computers. With 100 targets, the third momtent involves the sunimiation of 161O Hl.700~ ternis.

Although this is feasible with modern comnputers. some numerical analysis may be inI order to enisumre

adequinate precision in the final result. But the imaini point is that the expcct at oio and variance can b.,

found without solving the volley completely. and for applications that is ai very hiand(y feature.

The Heimnbold Volley can also be generalized to allow for Some types of collateral damage. For

example, t his could be done by setting

- lii: qti5 ( tI )nx(t)

1'E T

where tvU, 5(t') is as before, but Where qt1 :s( I t') is the probablit ythat a 'hot from,, weapon a- aimled at or

allocated to tar-get I' actually kills target I instead. Because % e cotitnmiie to a.n,mne that

71

for all subsets of the target array, the resulting volley IS Still a 13oi1A finre Tathler than anl area firevol.

7-3. The Burst Fire Volley. The Burst. Fire Volley extends the Hfelinbold Volley to allow a burst of

ý,hots to be fired at an acquired target. It may be characterized by the following postulates.

BF-i: Each weapon acquires all of the 7' targets in the target array.

BF-2: Each weapon Fires Stv bursts during the volley, allocated at t lie rate of one( b~urst. rwr target.

The probability that weapon it, allocates burst s to taýrget t is t1 .(I.and is Independent of thle

allocations of other bursts from the same or any other weapon. The probabi Iiit that. weapon u Fires~ b

rotunds d uri ng a lblmrt. allocated to target t is f l,st~( ). andl Is I ndn -pendi ni of lie ot her events t hat occuri

(luring the volley. All rounds fired in a hurst are allocated to t he sanme t areet as t(le bur ist.

BF-3: The probability that, target. f is killed if it is allocated b rounds, in hiurist .s from weapon it, is

q,,t. b,, and is zero otherwise, independent of the other event~s that occur during lie volley'.

It is clear that a Burst Fire Volley is equivalent to a Hjelnlhold Volley In which

p~rovidled that. the I.shot~s" of the Ilel in hold Voll1ey are Identified with1 thfe bunirst s of illhe Hurst F ire Vol1elv.

This justifies the location of the l3iimrst lireý \olle viut ry InI Tahle 3.
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If the rounds in a burst are independently effective given the weapon-target combination involved,

then qws(t,b) = I - {1 -qws(t, 1))b. In that case,

00qws(t) = I - E {I1 - q W5(", )}ywst(b)
6=0

Various simplifications are possible if, for example.

b- -e (Poisson),

fwst(b) = (1 - A)Ab (Geometric).

f bwt(b) = (Bust Ab(l -A) Bwst - b (Binomial),

I if b = Bwst

f wst(b) = f Deterministic).

otherwise

In the Poisson case,

qws(t) = 1 - e-Aqws(t, 1)

In the Geometric case,

Aqws(t,1)
Iw~) -All - qws(t, 1)}

In the Binomial case.

qws(t) = 1 - { - Aqws(t, 1)} Bwist

In the Deterministic case,

qws(t) = I - {1 - qws7(t, 1)} Bst

In each of the above cases, the basic event probabilities are given by equation (25) with

pw,(T-t) = vws(t)qws(t), and many other quantities of interest can easily be calculated from these basic

event probabilities.

7-4. The flide-and-seek Volley. The Hide-and-seek Volley is a volley hy a battery of It' weapons against

an array of T targets that, satisfies the following postolates.
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H-1: There are H hiding places and T targets, aud H > T. Targets occupy hiding places unifornmly

at random and independently of each other, subject only to the condition that at most one target can

occupy a given hiding place.

H-2: Each weapon fires exactly one shot, which it allocates to hiding place h with probability vh

independently of the actual location of the targets.

H-3: The probability that the shot from weapon w kills target t is qwh(t) when that shot is

allocated to hiding place h and target I is occupying hiding place h, and is zero otherwise, independent

of what other events occur during the volley.

Note that this is a volley by a battery of independently effective point fire weapons, and so it can

be solved by finding the pw(7--) values. To do that, observe that the probability that weapon w kills

target t is vwhqwqh(t) if target t occupies hiding place h. and since the probability that target t occupicz

hiding place h is 1/H for each h = I(1)11,

H
pwv(--) H= Vwhqwh(t)h = 1

Then

P(zt I..Z .2z1 J I f f - L H qi
1 = n=l h= I

gives the basic event probabilities, and so provides the complete solution to the Hide-and-seek Volley.

The Hide-and-seek Volley is equivalent to a Helmbold Volley V0 by a battery of W weapons

against an array of T targets in which each weapon fires exactly one shot, allocated according to a

uniform distribution over the T targets, and in which the kill probabilities are defined by

This justifies the placement of the Hide-and-seek Volley entry in Table 3.

For the special case in which each weapon allocates its shot to a hiding place selected from the H

hiding places according to a uniform distribution, v,, = Ill. Then

qO = -j ,where

h I
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If, in addition, 4'w(t) is independent of f, then the Hide-and-seek Volley becomes equivalent to a DRR

Volley by a battery of W weapons against an array of T targets in which the kill probability is taken to

be
q, =(T)Tw

7-5. The Karr Volley. Karr [1974] has analyzed in some detail a volley that he proposed as a model of

the penetration of aircraft through a defended area, and for certain other types of penetration processes.

We will extend Karr's results by providing formulas for tile variance and correlation of tile number of

survivors. We paraphrase Karr's postulates for this volley as follows.

K-i: A battery of W weapons volleys against an array of T targets. The probability that weapon w

acquires target i is dw(t) and is independent of other acquisitions made by the same or any other

weapon.

K-2: A weapon that acquires one or more targets fires exactly one shot. which it allocates to a

target chosen uniformly at random from among those it acquired, independently of the other events that

occur during the volley.

K-3: The probability that target t is killed by weapon w is qw,(t) if w allocates its shot to target t,

and is zero otherwise, independent of the other events that occur during the volley.

Since a Karr Volley clearly is by independently effective point fire weapons, equation (21) applies.

To determine the pw(zt) values, consider a Helmbold Volley with the same number of weapons and

targets as in the Karr Volley. In this Helmbold Volley. let each weapon fire exactly one shot. which is

allocated to target t with probability

Vw(t) = Prob(Weapon uw of the Karr Volley both acquires and allocates its shot to target t)

Furthermore, in this Helmbold Volley, let the kill probabilities qtv(t) be the same as in the Karr Volley.

Then this Helmbold Volley is equivalent to the Karr Volley, and the problem reduces to determining the

values of vw(t). Now, as Karr [1974] points out,

T-1
Vw(t) = E (in + 1)-'Prob(Weapon w acquires target f and exactly in other targets)

in•-- 0

T- I= 3 (ni+1)-ldtw(t)Aw~(flt),

m--0

where we have written Aw(m,t) as an abbreviation for the probability that weapon w acquires exactly

m other targets, given that it acquires target 1. But, because acquisitions are independent events by

postulate K-I, Aw(m,t) must also be equal to the probability that weapon w acquires exactly mn of the
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T - 1 targets in the subarray C(t), where C(t) is the subarray of T - 1 targets obtained by omitting

target t.

Next, observe that Aw(m, t) is the probability that cxact'y in targets survive a Gauntlet Volley in

which a battery of one weapon (corresponding to weapon w of the Karr Volley) volleys against an array

of C(t) targets, and in which the survival probabilities for the Gauntlet Volley are identified with the

acquisition probabilities dw(t) of the Karr Volley. Let

T- IGwt(x) = E xinAw(i,'t)

be the generating function for the distribution of the number of survivors for this Gauntlet Volley.

Because

1 T-1

f Gwt(z)dz = E (m+ I)-=Aw(re.t)
0 mn= 0

it. can be seen that

I

Vw(t) = dw(t) J Gwt(x)dZ

0

1T-
= dw()f E (x -1)s 7 '25,,,(t)dx

0 M = 0

where Sunn(t) is the ?n-th order basic sum for this Gauntlet Volley (see equation (2)). Carrying out the

integration yields

T- 1Vw(t)= dw(t)E (-)1,,+l-Sw,.(
rm=0

where, by equations (2) and (10),

771 n = 1

T J 1 Jm- I in

Ji=m j 2 =l jm n=

where the notation 7 means that the index Jk = t is to be omitted from the summation. This is

equivalent to a result obtained by Karr [1974, p 191, using different methods.
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In the case where the targets are all alike. dw(t) = dw for all t = I(1)T, so that

Swm(t)=(T?1)dwm

and hence

T-I
vw(t) = dw T 1-)~r + 1 l1T- I 1)dm

7n = 0

0 0=O

dw

= J(l-x)T-ldx

0

= T-l{1-(1-dw)T}

By virtue of the equivalence previously pointed out between the Karr and Heimbold Volleys, it follows

that for the Karr Volley with exchangeably survivable targets, where A is any subarray of TA targets,

Ar = 1I-rqwT-{1 -(1-dw;)T}] forr=O(1)T 4
W~ =1

E(T14 )=T APA

Var(T4) = TA(TA - + E(T4)1 I- E(Tl4)}

P A2-PA12 for j$ k, and

[ TAmT - ()A )1k TA. m)pA(m+.) for ?n O(l)TAr=0

Karr [1974] gives formulas for the distribution and expected number of survivors that are

equivalent to (or special cases of) those given above, but does not provide formulas for the variance or

correlation.

7-12



CAA-1tP-92-I

7-6. The Multishot Karr Volley. This volley generalizes the Karr Volley' to allow each weapon to fire a

number of shots, each allocated to a target chosen uniformly at random from among those it acquires.

These results are new. In this volley, the weapons are independently effective, although they are area

fire, rather than point fire weapons, as they are in the Karr Volley. Moreover, as will be apparent in the

following development, the munitions are not independently effective point fire munitions. These

observations justify the location of the Multishot Karr Volley in Table 3. Although this volley is not

equivalent to a volley by independently effective point fire weapons, it seems appropriate to present and

analyze it in the context of independently effective point fire weapons.

We treat only the case where the targets are all alike, and so write the acquisition probability as

d, and the kill probability as qws" When Sw, is the number of shots fired by weapon w, the first order

basic event probabilities can be found from

T - I Swv

pu,(Z)= (1 -dw)+diw E Alt,(n. t)J {l -q s/(,, + )}

where, as before, Au7( m, I) is the probability that weapon it acquires exactly In additional targets. given

that it acquires target t. By Corollary 5.3. for the case at hand.

Aw(n, t) (T-1`)dm(l - dw)T - 1 - k

That pw(Zt) is given by the indicated expression can be seen by reasoning as follows. Target t certainly

will survive weapon w if it is not acquired by weapon w. This accounts for the 1 - d10 term. If target t

and in other targets are acquired by weapon to, then t survives weapon u only if all of the S.: shots by

weapon w fail to dispatch it. The expression for the probability of that event can readily be obtained

from our earlier results for DRR Volleys and, when summed over Il. it produces the second term in the

equation for pw(Zt).

The second order basic event probabilities for a one-weapon battery are

T- 2 st

Pw()jzk) = (1 -dw)2 +2(1 -d0 )dw, E Aw4n(; j'k)jrj J I - ql,,s/(n + l)}
n = 0 S = I

2T -2 Sit"
+dw2 E A,,Jm;j, k)H I -'2q,(:,1sI,,+2)}

In = 0 S I

where Att(m; j, k) is the probability that weapon u! acquires exactly ii, I argels other than j or k, given

that it acquires both j and k. By Corollary 5.3, for the case at hand

Aw(7n; j, k) = I(T 2-(Iw,,n( _dw)T - 2-,
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The reasoning for each term in the expression for Pw(zjzk) is that both J and k will survive the fire

from weapon w if

(i) Neither are acquired by weapon w,

(ii) Exactly one of them is acquired by weapon w and the other is not, but the one that is

acquired survives anyhow, or

(iii) Both j and k are acquired by weapon tw. but both survive anyhow.

In the last case, we know from the analysis of DRR Volleys that the probability that both of two

preselected targets survive when a volley of Sw shots is directed at random against an array of 771 + 2

exchangeably survivable targets is
SW
]Jf {- 2qt(,/(Ym + 2)1

s=l

and the last term in the expression for pw(zjzk) follows easily. A similar argument can be used to

obtain the expression for the second term.

In general, we will have

."- T -r SW
Pw(zjl zj...jZr) =• ()dwk(1-dw)-k X Aw(m;Jl,. ... .)J) {1-kqws/(m+k)}k=O =Os=1

The reasoning is that, by Corollary 5.3,

r )dwk(a - du)r -

is the probability that exactly k of the targets jl,j2 ..... J are acquired by weapon w, that from the

analysis of DRR Vnl!.--

SW- {1 - kqu,,/(n + k)}

is the probability that all of those k targets survive anyway (given that in additional targets, other than

any of the jl, j2, ... I ilr are also acquired, making a total of m + k targets acquired by weapon w), and

that, by Corollary 5.3,

Aw(rn; Jl J l.... TJr) = (T wlw(l - dw)T - r -in

is the probability that exactly m targets other than the jl1 j 2 ' ... , J, are acquired. Observe that the

expression given above for Pw(Zl 12 ...zj) shows that. in the Multishot Karr Volley, the munitions
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generally are not independently effective point fire munitions (that is, neither equation (21) nor (25)

applies).

Since the targets are exchangeably survivable, we may write the basic event probabilities for each

of the single weapon volleys more briefly as

Pwr = Pw(Zjl J 2 . "z jr)"

The basic event probabilities for a volley by the full weapons battery may then be obtained from

W
Pr* = 1- Pu,,

u: = 1

in accord with equation (18). This formula for P,. does not seem to reduce to aiy substantially simpler

expression. However. it provides a complete solution to the Multishot Karr Volley and can be used in

conjunction with equations (11) through (17) to compute numerical values for quantities of interest, such

as the expectation and variance of the number of survivors.
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8. VOLLEYS BY SYNERGISTICALLY EFFECTIVE WEAPONS

Volleys by synergistically effective weapons usually are more difficult to analyze than volleys by

independently effective weapons, because no convenient general principles are available for expressing the

effects of the whole battery of weapons in terms of smaller and more easily analyzed batteries. Of course,

volleys by synergistically effective weapons against arrays of independently survivajie targets often can

be solved rather easily, as illustrated by the Artillery Volley. Even in that case. however, the effect of all

the weapons in the entire battery had to be considered simultaneously. We now present two examples of

volleys by synergistically effective weapons against targets that are not independently survivable.

8-1. The Bellwether Volley. This volley has been contrived to provide a solvable example of a volley by

a battery of synergistically effective weapons against an array of targets that are neither independently

nor exchangeably survivable. It is not put forward as having any important practical applications. It can

be defined by the following postulates.

B-1: All weapons acquire all of the targets in the array.

B-2: One of the weapons is selected at random from among the battery of weapons to be the

"bellwether" weapon. Let bw be the probability that weapon w is chosen to be the bellwether weapon.

The bellwether weapon then allocates its fire to a single target. which is chosen from the target array

according to the probabilities v,(t) when weapon u, is the bellwether weapon. All other weapons in the

battery then allocate their fire to the same target as the bellwether weapon.

B-3: The probability that target t is killed during the volley is q(t) if all weapons concentrate their

fire against it. and is zero otherwise, independently of what other events occur during the volley.

The Bellwether Volley is easily analyzed. The probability that target t survives, given that weapon

w is selected as the bellwether weapon, is

I - v +,(t) -+ v (t){ I - q(t)} -V ()q(t)

This is true because target t survives if the bellwether weapon does not allocate fire to it, or if the

bellwether weapon allocates fire to it., but it survives anyway. Because the bellwether weapon is selected

at random, the probability that weapon wv will be chosen as the bellwether weapon is V-1. and so the

first order basic event probabilities are

w
P(:f') = F, bu{1 - Vw(t)q(t)} = I - r(t)q(t) . where

w-1

W

w = I
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is the average probability that the battery will allocate all of its fire to target t. Now, the battery in a

Bellwether Volley could be called a point fire battery, because it can kill at most one target per volley,

and so the higher-order basic event probabilities are obtainable in terms of the first-order basic event

probabilities, as follows.

P(zjlj .z jrz 1 - P (jlj 2...z -j )

S=1- P(T,4 ) T

n~

because
P(• TJ-) P(•iz2zJ).. 0

Therefore,
r

P(zjIzj2...z = 1 - E v(j,)q(jn)
n=I

r

1-{ 1 - P(zjn)}

= Z P(zj 1.)-r+l
n=1

Consequently, summing both sides over all possible r-th order subarrays, and recalling the argument

used in the proof of Theorem 2, we find

1,

which can be written as

- 1)

where

T T
S1 = t - v(t)q(t)

t=l ti t

Then we can write the generating function as
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T
r =0
r=O

= (T-SllXT- I4{I-[l(T- SI)}XT

Comparing this result with equation (3) shows that

T
P[T] = 1-(T-SO) = 1- L v(t)q(t)

T
P[T ]=T-SI = = v()q(t)

t=1

and

P ,]=0 for m=0(1)(T-2)

Also,

T
E(TI) =-T- > v(t)q(t)

t -

and

Var(T 1 ) = 2S 2 +S1 - s12

= (T- $I){I-(T- Sl)}

The Bellwether Volley is not a volley by independently effective weapons. For if it were, then its

first order basic event probabilities would be

W
P(Zt)-- H I{I- vw(t)qwj(t)}w--

tw =I

where qtv(t) is the probability that target t would be killed if the fire of weapon w acting alone were

allocated to it. But the required equality ooviously does not hold in general. Nor would it hold even if it

were assumed that

W
wl

that is, that the weapons are independently effective, conditional on the selection of target t as the one

against which the entire battery's fire is concentrated. Moreover. in a Bellwether Volley
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Pl2)= P(Z1 ) + P(:2) - 1

which is not generally equal to P(zl)P(z2). Hence, the Bellwether Volley is not a volley against

independently survivable targets. Furthermore, ;t is clear that, in general, the Bellwether Volley is not a

volley against exchangeably survivable targets, because there iF no reason whiy the first order basic event

probabilities P(zt) = 1 - v(t)q(t) should be independent of t. The observations of this paragraph justify

the placement of the Bellwether Volley entry in Table 3.

8-2. A Redundantly Survivable Target Volley. By a redundantly survivable target we mean one that is

able to survive several hits. More precisely, we assume that there is a redundancy number R that gives

the maximum number of hits a target can tolerate without ill effect. That is, a target survives if it takes

I? or fewer hits during the volley and is killed otherwise (recall that in this paper we deal only with

targets that are in one or the other of two possible states-dead or alive). With this notion of a

redundantly survivable target in mind, we define the following version of a Redundantly Survivable

Target Volley.

RST-1: Each weapon acquires all of the targets in the array.

RST-2: Each weapon fires exactly one shot, which it allocates to a target selected from the target

array uniformly at random.

RST-3: The probability that the shot from weapon w hits target I is q if the shot is allocated to

target t, and is zero otherwise, independently of what other events occur during the volley.

RST-4: Target t survives if, and only if, it takes no more than R hits in the course of the volley.

These postulates clearly describe a volley by a battery of synergistically effective weapons against

an array of exchangeably survivable targets, confirming the placement of this volley in Table 3. To

determine the basic event probabilities, observe that, for each j = 1(1 )r. the probability that target t

receives exactly nj hits during the volley is determined by the multinomial distribution (see, for

example, Feller [1950], Abramowitz and Stegui [1964], or Loeve [1960])

- o Tn1 !...n o (q /l )n ,. .. (q/T n,,

where

no = W - nj

and j=1

r
qo = 1- (q/T)= I-rq/T

j--1
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Nevertheless, we have

Pr = P(ZIZ2 "- r)

= Prob{(yk1  R) n (mt, _< R)fn...fn(nr _< 1

=-""' I l lrlq~0 ?10!'

y11 0 n 2  = _r 0"

which provides the complete solution to this volley.

For the special case in which the targets survive if, and only ;f. they receive ito hits. the

redundancy number R = 0. In that case, the above expression for I',. redure.e io

Pr =;: qO = (I - rqi /T)1

which (as it should be) is identical to that for a DiR Volley in which the kill probability qU- q for all

w =1 (1 )W.

When the targets are singly redundant (that is, when /R = I). )put

r

=jl

so tat m ranges over the values 0(1 )r. Observe thiai. because in this c .,e n I for each j I I )r.

equation (30) can be written Las

n• •0 n2  0 ' t1 r

-k= _0\2)t '( q7) •/~

wvhere the last equality follows by observing that in lhe nailtipl,, sunlllltat ion exactiy ( 1) lterns are S.iech

thIiat
r

11 =j: ll~j = k
j=tI

This is true because (k ) is the nutimber of ways in which exactly k I's can be assigne,: to the r nj's (the

other r - k of the nj .'s having the value of zero).

In general, when R > 2, the right side of equalloll (310) is not. eai lv red need to atyv sn hst aint t alIly

more corrlpact expression. Hlowever. for the case r = I we note I hat
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R

P, = ( w)q/T)"(1 - q/T) n"
n 0

which is sometimes useful, because the average number of survivors is given by E(T 1 ) = TP 1 .

Observe that, by equdtions (13) and (30), when shots are allocated uniformly at random to the

target array, we have

. .... l / 7, 7" l '- R r
P,, 1 (R)=(T70 ) -Iti~ _7 (1 /T)R ri-in = in ( r- inAu_ Ry,)!(R!)r( /-

for the probability that exactly in of T targets each receive exactly R hits from a total of W shots.

When q = 1, this is the same as the probability that exactly in cells each contain exactly R balls when a

total of W balls are tossed randomly into T cells (compare this to Feller [1950)). Thus, the above

generalizes the well-known occupancy problem of classical conibinatorial probability theory.
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9. CONCLUDING REMARKS

This concludes our presentation of the foundations of a general theory of volley fire models- In the

course of it, we have reviewed previous work in this area and demonstrated that our approach not onlly

powerfully unifies and extends previously used methods for solving volley fire p)roblems. but often

provides simpler and more intuitive solutions than have previously appeared. This general approach alo

shows that volley fire models generalize many of the classical probability problems in the theory of

matchings, occupancy, and statistical mechanics. It also provides a useful system for classifying vollevy

into a few major categories to facilitate their solution by indicating tile most approt)riate solution

method. In addition, it suggests potentially important new concepts, such as those for equivalent and

complementary volleys. Moreover, it. yields hitherto unpublished results.

In addition, various specific opportunities to extend or apply this treatment of the foundations of

the general theory (,f volley fire were identified. Among them are tile following.

1. In general. the complements of volleys by independently effective weapons are volleys by

synergistically effective weapons. How are those volleys by synergist ically effective weapons

characterized'? What properties do they possess? What insights regarding the solution of volleys by

synergistically effective weapons do they afford?

2. How can the effects of successive volleys best be approximated? \Vhat error bounds apply to

this approximation?

3. What limiting forms do volleys approach as various parameters (such as tle number of

targets, the number of weapons. and so forthi) tend toward large or small values?

4. WiVat optimization problems regarding volleys are most important. and what are their

solutions?

Some larger issues which deserve attention in future research on volley fire models are as follows.

1. flow can volleys against arrays of targets that may be in more than two states at the end of

the volley be most efficiently analyzed?

2. What are the necessary and/or sufficient. conditions Under whliclm exlici t, closed-forni

solutions for the effect of successive volleys against, arrays of targels be oltai ied?

3. What are the outcomes of volleys in which lie target array is acti\e, that is. returns fire? As

far as we are aware, tie deepest results oin this have been reported by Gafarian and Manion [19891.

Versions in which the targets can countervolley have been treated by lhehnbold [1966] (who. in a

heuristic manner, derived the Lanchester square law -quations from the limit of a1i alternating volley),

Hlelrnbold [1968] (although under rather restrictive assmnptions). Bashviam [19701. and Zinger [1.81].
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Hopefully, calling attention to these challenging problems will stimulate analysts to devise original

and imaginative solutions to them.
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APPENDIX A

NOTES

Note I. The probability of any complexion, and therefore of any event concerning the outcome of a

volley, can be expressed in terms of sums and differences of basic event probabilities. For example,

P(:7z 1 7k-zlýY)- T Er(l - r-k),rl(l - T Ir~

= E frTjrirn(l - T-k - i-1n + rkrifl}

= P(zjlzn) - P(zjzlzn:k) - P(zjzflznz7) + P(zj:1?ln:kzl)

This illustrates the following useful prescription given by Loeve (19601 for finding the probability of an

event: (i) express the event as a sum of intersections of z's and 7's (note that coplplexions are already in

this form); (ii) replace the z's by r's and the V's by (1 - r)'s; (iii) express the result in the form of sums

and differences of terms involving only products of the r's; and then (iv) take the expectation. In taking

the expectation, recall that the expectation of a sum is the sum of the expectations, and that

N N
E(frl TJ)P(f H I i

because the r's are the indicators of the z's. Following this prescription produces for the probability of

any event an expression involving only the sums and differences of basic event probabilities and justifies

the assertion that, in principle, this is always possible. Of course, when there are many targets and the

event involves com,,licated sums and differences of basic events, it may not be feasible to perform the

calculations, even though explicit algorithms for them may exist.

Note . Let HA(x) be the generating function for the -tail" probabilities

PAm + = Prob(At least in targets of s-ibarray A survive the volley)

TA

- := _P A[r]

=PAlm]+ PA(m+ 1)+

A-I
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Thus,

TA

HA(W) =Z 7mP Ai +
m = 0

TA
--GA(x)+ Z 5 n-l~p +

S +1 Aim

r- 1

G HA(X) - 1
=G(x) + x

Solving for HA(P) yields

__A(_)_-_ GA(x)- 1
HA(x) 4 G-(x) + G4 ' J-1P X-1 -IX -

Note I. The n-th moment of the number of survivors can be expressed in terms of the first n basic

sums, SAk, where k = 1(1)n. This can be shown as follows. Comparing the k--th derivative of

evaluated at x = 1, obtained from equation (3), with the same value, obtained from equation (4), shows

that

G(k) (1) = k! 4TA) = O!Sk

Since, by a standard result in combinatorial analysis (see section 24.l.41B of Abramowitz and Stegini

[1964]),

T_ , ~k)n = E ,( 4k--1

where the coefficients 82(n, k) are Stirling numbers of the second kind, it. follows that

72

A Z: e 2 (n, k)k!S Ak=l

n 5) (. k G(k)

k-1

These results express the n-th moment in terms of the first n basic sunms, or in terims of the first 11

derivatives of the generating function. Abramowitz and Stegun [196,4] tabulate the values of the Stirling

nuiimbers 62(n,k) for k = 1(1)n and n = 1(1)25.
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Note 1. Suppose weights m 4 j and Thj are assigned to the events Z ~j and respectively. Then

the surviving weight of the targets in subarray A is

Mi TA 7

A = Z mAjTAj + 7j(' '-Aj)}

TA

= MAO + i MAjTAj
j=1

where

TA

MAO = S mAj
j=1

and

MAj=mAj4 1-rn4 j for j= I(1)TA.

If hostile elements in the target array are intermingled with friendly units or other elements of value to

the side controlling the battery of weapons, survival of the items of value might be assigned positive

weights while survival of hostile elements are assigned negative ones.

Note 5. The proof of Theorem 2 is as follows. By equation (2),

S*t r• *(,* * * -* .

A r ýAj 1 Aj 2-- Air

where E signifies that the sum is taken for indices jl, J2 . j. which are to be varied in such a way
r

that the subarray consisting of the targets {A1j,, Aj 2 ...... 4j,.} sweeps over each of the r-th order

subarrays of subarray A. By definition of a complementary volley, each term in this sum can be writteln

as

p*( •* -7 * r)

Ajl 'A < " jr) = P(-A J1 z 4A "2 Ajr'

= 1 - P(zAj, U z4 j2 U... U -Ajr)

= I-S1, + ...± 1)SAl'4 + S", + (-I) '"S
A2 ' ) .4r

where St k is the k-th order basic sum associated with the subarray {.-1j1 . A j2 ...... - } of r targets, that

is,
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r

Al4= P(zAj )nl

r n-I
5A2 = P(zAjnZAi,)

n =2 m= I

and so forth.

Then we may write S* as a sum of terms
Ar

S6* --)Y~ (-1)ln S 11
Ar Ai .-4ms m

rti 0 in 0

The square-bracketed term in the last expression can be evaluated by a combinatorial argument.

Consider first the term with in = 1, that is,

r

Observe that, as the indices jl,j 2 . .-...Jr vary so as to sweep over all r-th order subarrays of subarray A,

the index j, will vary over the values I(l)TA. The index j,) will also vary over the values 1(1)T 4A. and

so on for each index Jn for n = 1(1)r. Thus, we may write

r TA

Er E P(zAJn) = •5 P(zAj)
F 1 - j1

where Cj counts the number of times the value P(zAj) appears in the sum on the left hand side of this

equation. But each C1 must have the value

C =(TA411)

because that is the number of r-th order subarrays of subarray A that contain target Aj (that is, it is

the number of ways in which the additional r - 1 targets needed to fill out an r-th order subarray can be

selected from among the TA - 1 targets that remain after an initial target has been selected). Hence,

r Tz (TA-l) (TA-l)A n IP(ZA4J,)'- •'= E P(zAj} rX

Similarly,

E 5 "A5 P(-,jz,~ 4 j,,) = E
2 1 2 k I
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TA J-I(T 4 _2 )( T .4 2

j=2 k=r1 2 ,- 54

because

Cik r-2

is the number of ways in which the r - 2 additional targets needed to fill out an 1-th order subarray can

be selected from the TA - 2 targets that remain after an initial pair have been selected.

And, in general, it can be seen that

Zs• =Ck¾)-•

because the coefficient on the right-hand side is the number of ways in which the r - m additional

targets needed to fill out an r-th order subarray can be selected from the T 4 - m targets that remain

after an initial selection of m targets has beeni made. Hence.

S*A SE 0(-1)m ES. 1m -- (-)1,71 _r ~ m .

M= 0 ( .i= 0

Note .k. To demonstrate Theorem 3, we first prove assertion (i), using the method suggested by

Thomas (19841. By equation (4) and Theorem 2,

TA T -1" T 4 - ,n "
G.*4(x) = (x-I" - • - I) S ,-n A,,n

r4 0 In= 0

Interchanging the order of summation, having due regard for the region of summation in the (r, in)

plane, yields

TA T.4 T 4 -

4 = Am(- E 2- > -1 ,'- I

which can be written as

TA T

*A(x)£= SA(-1)( - l )_ 1 ) -

IM = 0
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where the last equality follows from equation (4). This gives assertion (i), and assertion (ii) immnediately

follows. The proof of assertions (iii) and (iv) follow immediately on observing that assertion (ii) implies

that T.', the number of survivors in volley V*. has the same distribution as TA - T1 the number of
targets killed in volley V. Assertion (v) is demonstrated as follows. By equation (7), the correlation is

equal to

AB-E(T* 1Tl) - E(T*'1 )(E~1 )
Var(T*1 )Var(T~l)

where, by assertion (iv), the variances in the denominator can be replaced by those for TA and T1. By

the definition of a complementary volley, we may write

TA TA TA T 4

E(A 7 B)E 1 L > r j E 1  r. )(I AulikAZ= B : E 'Aj BkI j k l,= rj( rBk)

T T4 T T E(T1
4 - TE(TI ) + E(T 1

4T)

The other term in the numerator of PA is, by assertion (iii),

E(T*A)E(T•I) = TATB - TBE(T1)- TAE(T1) + E(T 4 )E')

so that the numerator of PAB is equal to

and therefore P*AB = PAB .l

Note 7. By postulates A-2 and A-3, the probability that target t survives all shots when it is

located almost exactly at (x,y) is

VV S.o

P{ Zt (XY)} Jf F, r III{tsiv, 1,)?wd'tI
tv = I S= I

Here Ft is the probability that target t survives, given the ground zeros of all the shots, as defined by

postulate A-3, and f stands for the multiple integral

W Sw

w = I S

This integral may be written as
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W S.
I ztl(x, Y)1= ]7J R7 j {1-D'VSt(X-t1Y-v)}cltLs(u, tidudv]

z 1( {I - Dwst(x-u,y-v)ws(u v)dudv
W= 1 S = I (uv)J

where the first equality follows from the general theorem for converting multiple integrals to products of

single integrals, and the second follows from the assumption that a is a probability density function.

Hence,

P(zt)= P{ztI(x.y)}pt(xy)dxdy

(x, Y)

-f i hf I - f DwLst(x - ity - i,)asu, r)dudr}pV(x. y)dxdy

=) IV s=1= 1  vut)

and the formulas of the canonical volley against independently survivable targets apply to complete the

solution for the basic event probabilities of an Artillery Volley.

Now, for the munitions to be independently effective, it is necessary that

W Sw

where

Pws(Z) fx ) ( U, v)

is the first order basic even probability for a volley that consists solely of shot s from weapon tu. But. in

general, P(zt) is not of the required form, and so the munitions generally are not independently

effective. A similar argument shows that in general the weapons are not independently effective, either.

It is interesting to note that under some circumstances, the weapons can become independently

effective in the limit. To show this, suppose that the damage function DIsmt does not change with the

shot number, so that it may be written as Dw,(x - u, y - t). Suppose also that the number of shots Sw.

increases, while at the same time the distribution orws "flattens out" in such a way that the product

.5 ~'w,•w(U, v) approaches the constant density Nw a/A. where A has the physica'al dimensions of an area.

Then, as Helmbold [1970] has shown. P(zt) approaches
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P(zt) = exp(-Z LWt w/ IA

W

= f Pw(zt)
w- I

where

p,(zt) = exp(-L 1 o/.NtvA)

is the first order basic event probability for a volley by weapon w acting alone against the target array.

In the above equations,

Lw= Dt,(u, v)dtidv

(ti, v)

is commonly called the lethal area for a munition of weapon w, when fired against target. t.

Observe further that the targets are exchangeably survivable if L is independent of t, in which

case Corollary 5.3 applies to show that the expected fraction of targets that survive is

E(T 1 /T)= P

where

P =ex -Z LwNw/A

does not depend on either t or wv. This expression for the expected fraction of survivors is frequently used

to obtain a quick estimate of the effect of fragmenting ordnance fired into a target area. We note that

the variance of the fraction of survivors is

Var(Tt/T) = T- 2 Var(T 1 )

= T-1P(1- P)

where the second equality follows from Corollary 5.3.

Note 8. Dixon (1953], Thomas [1956]. and Helnbold [1966] have sugge.,ed various approximation..

for the effect of successive DRR Volleys. Some of these are built around the idea of replacing the random

variable T1 with its expectation E(T1) and approximating the number of survivors after the n-th volley

a's

A-8 Tn liI ( qtj/T"
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where Tn is the number of survivors after the it-th volley. This is called the expected value

approximation. Although Helmbold [1966] presents some empirical support for this approximation, he

provides no rigorous theoretical basis for it. Consequently, as noted by Karr [1974] and others, the

conditions under which it is valid are not clear. In essence, the issue is one of establishing bounds on the

error involved in making the expected value approximation. Although the present author has not

pursued this matter, it may be that such bounds could be developed by using tlie formulas for the

variance (or higher moments) of the number of survivors. together with Chebyshev's Inequality (or

similar inequalities).

Another approach might be through the study of limiting forms. For example, we observe that the

e :pected value approximation tends to be more accurate when the number of targets is large. This

follows from the fact that when there are many targets, the argument given by Feller [1950, pp 69-7.1]

applies to yield the following limiting Poisson approximations to the outcome of a DRR Volley:

E(T 14) Var(T 1
4 ) •A ,

Pjk 0

and

PAlm]- in! -A

Where

A = T -4 eXP( q,/T)

In the limit, then,

P r-ex -I- qw/jjT •-(P

which shows that the z's tend to become independent as the inumber of targets increases--in which case

the DRR Volley approaches a volley against independently survivable targets, for which the expected

value approximation clearly is exact. For additional material related to the limitinig forms of random

allocations. see Kolchin, et al. [1978], and Choi [1987].

The study of limiting forms of volleys, and of approxiniations to the effect of several successive

volleys, are two areas deserving additional research.
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