
AD-A263 16711111l|1 111 I it

ONR Grant N00014-91-J-1404
Final Report for

Synthesis Techniques and Analysis Tools for

On-Chip Fault-Tolerance

Dhiraj K. Pradhan

Computer Science Department

Texas A&M University

College Station, TX 77843 DTIC
U..ECTE

SAPR 23 1903

DIUU~b~B USIU

93 4317' 3 93-08698N UIUi *El

Contents

1 Fault-tolerant VLSI: An Integrated Approach 1

2 The Reliable Architecture Characterization Tool 4

2.1 Reliability Analysis of Unidirectional Voting TMR Systems 6

3 Novel Fault Tolerant Architecture Development 9

3.1 Roll-forward Checkpointing Schemes 9

3.2 Reliable Memory Design 10

3.3 Safe Modular Redundant Systems 12

4 -Papers Under ONR Grant and References 14

Loooosion lor

STIS URMI
DTIC TAB
Unannoumnced 0
Just ifcatio

By
D1 tibuton/

Availability Codes

This report summarizes significant research performed under ONR grant N00014-91-

J-1404 on a broad range of issues related to fault-tolerant design both at the chip and system

level.

First discussed is an integrated approach, currently under development for integrating

concurrent checking with BIST. The goal here is to generate synthesis tools to develop low-

cost fault-tolerant VLSI chip design tools that are both easy to test as well as being robust

against operational errors. Section 2 reviews REACT, a tool currently under development

for fault-tolerant architecture characterization. Finally, Section 3 presents on-going research

on the development of novel fault-tolerant architectures.

1 Fault-tolerant VLSI: An Integrated Approach

The traditional focus of VLSI design has been performance and area. Increasingly integral to

the design methodology are newer concerns aimed at reducing both production and life-cycle

costs through enhanced testability and field diagnosability.

Also system availability is becoming a key feature of both fault-tolerant and non fault-

tolerant systems. Crucial to achieving high availability is the ability to rapidly perform field

diagnosis. Achieving this requires both the ability to perform concurrent as well as periodic

checking.

However, in the context of VLSI design, concurrent checking and periodic testing

have been treated in isolation. Concurrent checking has been the primary focus of those

system designers concerned with system availability and serviceability. On the other hand,

techniques such as BIST (self-test) have been the focus of VLSI test engineers concerned

with product quality.

Error detecting and correcting codes which form the basic framework for the design

of concurrent checking methodology have recently been shown by the authors to provide a

comprehensive mathematical framework for analysis and synthesis of a large variety of BIST

methodology, as well. This important new linkage can provide a unified framework for the

development of an integrated design methodology.

1

The importance of BIST is two-fold: (i) reducing the cost of testing and (ii) identi-

fication of faulty field replaceable units for repair and reconfiguration. Similarly, the goal

of concurrent checking is also two-fold: providing high reliability through error containment

as well as high availability through rapid identification of the faulty field replaceable unit.

Consequently, there is significant overlap between the objectives of BIST and concurrent

checking. This can be exploited to the mutual advantage of BIST and concurrent checker

designs.

Although many present day VLSI design methodologies have integrated DFT tech-

niques, the design and placement of concurrent checkers as well as BIST support logic is still

carried out in an ad-hoc manner. There are many obvious drawbacks to this which stem

from the following two factors.

Firstly, the designs of concurrent checkers and BIST hardware, in and of themselves,

without consideration of any potential interactions, are obviously not tailored to efficient

sharing of the available silicon area. The other important drawback of treating these two

aspects independently is that the overlapping information is not allowed to be used to realize

potential performance improvements.

Demonstrated clearly in this research is that the BIST design can greatly benefit

from the use of available concurrent checkers and vice-versa[11J. Our main goal is, there-

fore, to develop theory and design techniques to unify these design methodologies, taking

advantage of potential interactions. Specifically, following are some of the major advantages

in developing this integrated framework.

"* First, it may be seen that a key objective of BIST is to detect and identify the faulty

subcircuit. So, also, the concurrent checkers provide information about the location

of faults through detection of on-line errors. Therefore, there is a natural overlap

in the information from BIST hardware and concurrent checkers. Consequently, if

these two are designed for sharing this information, it can be expected that the overall

effectiveness can be increased with reduced hardware overhead.

"• The effectiveness of a concurrent checker is highly dependent on minimizing thc proba-

bility of undetected error. Similarly, the effectiveness of the BIST compressor is highly

2

dependent on the aliasing probability. Using algebraic coding theory, the authors re-

cently were able to establish that there are simple relationships between the probability

of undetected error and aliasing probability. These relationships naturally provide the

basis for exploring the precise benefits of an integrated design methodology. For ex-

ample, understanding of error models for effective BIST compression can also lead to

effective concurrent checking.

"* The BIST and concurrent checkers can be designed to complement each other. For

example, the periodic self-test, using BIST, can be aimed at precisely only those faults

that escape the concurrent checkers. This could not only simplify the BIST hardware

but also increase the effectiveness of the overall fault diagnosis strategy.

" This integrated approach would lead to a better understanding of the trade-offs in-

volved between concurrent checking and self-testing. For example, in a noisy envi-

ronment, both error correction and detection may be essential. This may, in turn,

require significant VLSI complexity for the concurrent checker. However, as shown

here in this research, if concurrent checkers axe used in conjunction with BIST, one

can significantly enhance the fault coverage. Thus in the integrated environment, the

overhead of implementing concurrent checking can be compensated (partially) by a

potential decrease in VLSI area required for BIST.

" Effective fault isolation strategy is critical to implementation of cost effective Field Re-

placeable Unit (FRU) replacement policy. It can be seen that the concurrent checkers

and the BIST hardware both provide information about the location of errors in the

system. Hence, if the field diagnosis procedures are formulated under an integrated

design environment, then the information from concurrent checkers can be utilized by

the BIST and vice versa, in order to formulate an efficient strategy.

Previous approaches include a self-verification scheme and the UBIST scheme. Our

approach provides an integrated coding theory based framework for studying the dual use of

concurrent checkers for operational fault-detection and BIST[11]. Specifically, prropose#I is a

self-test scheme combining parity (code) checking and MISR compression. In the proposed

3

scheme, the circuit augmented with parity (code) predictors is not required to be fault-

secure. Most of the extra circuitry added for self-test is the parity prediction circuitry.

This is very useful during the normal circuit operation, providing the main advantage of

the proposed scheme. Fault-escape probability in the proposed scheme is first studied for

various error models. The general framework being developed by us is being used to compute

aliasing probability for the scheme. The effectiveness of the proposed scheme on Read Only

Memories, compared with the effectiveness of the ODM scheme for ROMs is under study.

Parity predictors are being synthesized for benchmark circuits, in order to evaluate the area

overhead that is due to parity predictors. Also, the synthesized circuits will be used to

obtain error models; these help compute fault-escape probability for the proposed scheme.

2 The Reliable Architecture Characterization Tool

The Reliable Architecture Characterization Tool (REACT) is a software testbed which per-

forms automated life testing of many user-defined multiprocessor systems through simulated

fault-injection [7, 10]. This involves emulating the high-level hardware and software compo-

nents of a given system while concurrently injecting bit-level faults and errors into it. During

a single simulation run, the code conducts a certain number of experiments or trials in which

an initially fault-free system is operated until it fails or reaches a specified censoring time.

The exact number of trials required is determined by the desired confidence intervals about

the system dependability attribute being investigated. Extensive instrumentation has been

included in the program in order to collect data from each trial which is later aggregated

over the entire simulation run in order to generate the outputs. Graphs of reliability and

availability, a comprehensive failure mode report and various statistical measurements are

provided as output by the software. REACT consists of 8000 lines of C running under UNIX

and completes a "typical" simulation run in less than 10 hours on a dedicated DECstation

5000/120.

REACT can analyze a class of architectures in which any number of processor and

memory modules may be specified and each can be designated as initially active or a hot

or cold standby spare. Groups of processors or memories may also be defined in which all

4

modules operate redundantly. The error control logic may be built from various combina'ions

of components commonly found in fault-tolerant designs. Custom error control logic circuitry

may also be specified by the user. Processors are simulated at the functional-level whereas

a logical-level description is used for the memory modules and error control logic. Logic

values 0 and 1 are not differentiated in the system model: only error-free and erroneous

states exist for each bit. Memory depth is variable and a 16-bit word width for memory

and all data paths has currently been implemented. Other word sizes may be realized with

minor modifications in the code.

A synthetic workload is assumed in which processors continually perform computa-

tion cycles consisting of an instruction fetch, a possible operand read, a computation and a

possible result write. Real code and data are not used by REACT, but errors are allowed

to propagate throughout the system as if the application program was actually being ex-

ecuted. Behavior of the application workload is specified by a mean instruction execution

rate, the probabilities of performing a data read and write per instruction plus a locality of

reference model. Values for the mean number of data accesses made during the execution of

an instruction may be obtained either through trace analysis or directly from the measure-

ment of operational hardware. It is assumed that all memory references access one whole

word. Which memory locations are accessed during a computation cycle are determined via

the locality of reference model. The testbed implements a model based on Bradford-Zipf

distributions which suggests that a % of all accesses go to 6 % of the memory under the

condition a + 0 = 1. Reference addresses are assumed to be uniformly distributed inside

and outside of the locality and no attempt is made to separate code from data in memory

with the model.

The fault/error model employed by REACT accounts for permanent, intermittent

and transient faults in the processors plus permanent and transient faults in the memories

as well as the error control logic. Faults with a Weibull distribution (of which the exponential

distribution is a subset) for their inter-arrival times are injected into these modules only at

the beginning of a computation cycle. Faults are assumed to always cause immediate errors,

so their fault (but not error) latency is 0. Correlated failures are presently not considered.

Processor fault effects are assumed to be completely characterized by the rate at

5

which errors appear on its memory bus. Three types of errors exist: transients lasting only

one computation cycle, intermittents with a Weibull distributed duration and permanents

which have an effect in every computation cycle. Errors may affect either addresses, (write)

data or both addresses and data simultaneously. An erroneous address is assumed to access

a random memory location while erroneous data take a random value. In addition, erroneous

processor reads generate output errors in the same computation cycle.

Memory faults are divided among the bit-array and addressing-logic regions of a mem-

ory module. The fraction of faults which fall into each of these regions may be approximated

by their relative chip areas. Bit-array faults are assumed to affect a single random bit in a

word at a random address while a random location is referenced during an addressing-logic

fault. A transient bit-array fault may be overwritten (changing it from the erroneous to

error-free state) at any time, but a permanent can never be overwritten. Addressing-logic

transients last one computation cycle and permanents will cause the memory module to

endlessly access random words. An access to a random address reads or writes a value with

randomly corrupted bits, representing the difference between the bit values of the word that

was accessed and the word that should have been accessed. Finally, faults within one of the

error control logic components are assumed to affect a single random bit either permanently

or for one computation cycle in the case of transients.

2.1 Reliability Analysis of Unidirectional Voting TMR Systems

Computer systems used in aircraft and reactor control often require critically high reliability

for moderately short mission times. Triple-modular redundant (TMR) hardware has been

employed in many of these ultrahigh reliability applications. The three redundant processors

of a TMR system concurrently execute identical tasks while the triplicated memories contain

the same code and data. Majority voting is used to mask erroneous module outputs. The

voter (V) is usually inserted into the redundant system buses between the processors (P)

and memories (M). Bit-wise voting is typically performed on data, address and control

lines during both read and write accesses to memory. Such a system will be referred to as

bidirectional voting (BDV) TMR.

6

Voting has a substantial performance penalty associated with it. This degradation

can be attributed to two specific delays [6]. The propagation delay of signals through the

voter logic is the more obvious contributor to increased memory access times. Less apparent

is the synchronization delay incurred when clock skew requires modules to wait for a

lagging signal before performing a vote. This penalty becomes even greater if a module fails

in such a way that it does not respond, forcing a timeout period to be suffered on each

memory reference. TMR systems used in hard real-time applications may not be able to

tolerate the ensuing drop in throughput after this type of failure.

It is possible to significantly reduce the performance degradation of a BDV system by

voting only on one type of memory access, either reads or writes. These unidirectional

voting systems are expected to have lower reliability than the bidirectional design since a

smaller fraction of errors will be masked, possibly allowing them to propagate and corrupt

the state of non-faulty modules.

Because the voter may be by-passed on either memory read or write accesses to

achieve higher performance, two different unidirectional voting systems exist. The Read-

Only Voting (ROV) TMR system removes the voting delays from the bus cycle on writes.

Processor generated read addresses and memory outputs are voted upon and a single voted

value is distributed to all three processors. Processor outputs are written straight into the

corresponding memories without any error masking. The ROV TMR system therefore allows

processor errors to propagate into the memories while all single errors from memory will be

contained by the voter.

The dual of the ROV system is the Write-Only Voting (WOV) TMR system which

eliminates the delay associated with voting on read accesses. It performs a vote only at the

outputs of the processors and writes a single voted value into all three memories at a voted

address. No masking of data or addressing errors takes place during reads, so erroneous

memory outputs may propagate directly into the associated processors. Voting terminates

any single processor error before it reaches the memories.

Both unidirectional voting TMR systems can realize better performance than the tra-

ditional bidirectional voting system. However, WOV should have better performance

than ROV because it suffers the delays of voting less often since reads generally occur

7

much more frequently than writes. In terms of fault-tolerance, one might expect ROV to

provide higher reliability than WOV for similar reasons. When processors and mem-

ories experience faults at the same rate, the percentage of potentially fatal errors that will

get masked will be larger with the ROV system. In addition, memory often has a higher

fault rate than processors so the percentage of errors masked will be even greater when the

voter is placed at the output of the less reliable component.

Two parametric analyses of the bidirectional and unidirectional voting TMR systems

were carried out with REACT [8, 9]. The following observations were made:

"* the tradeoff of reliability for performance made by the unidirectional voting systems

becomes more effective as the difference between processor and memory module failure

rates increases

"* near ideal tradeoffs can be attained for some failure rate combinations, particularly

when memory is more likely to fail than the processors

"* the analytical model traditionally used to predict the reliability of TMR designs is

indicative of some of the differences between the bidirectional and unidirectional voting

systems, but is not always accurate

"* reliability of the ROV system is generally better than the WOV system, except when

processor failure rates are high relative to the memory failure rates

"* system failure is caused by propagation of errors more often in the WOV system than

in the ROV system

"• workload has limited effects on reliability when memory error latency is low

Results demonstrated that in many cases, acceptably little reliability was sacrificed by the

unidirectional voting TMR systems for a potentially large increase in performance.

8

3 Novel Fault Tolerant Architecture Development

3.1 Roll-forward Checkpointing Schemes

A fault-tolerant multiprocessor environment wherein each task is executed simultaneously

on two processing modules is considered. A pool of a small number of nondedicated spares

or processing modules with spare processing capacity is assumed available (see Figure 1).

Duplex fault-tolerant architectures that require no rollback for most faults are proposed.

VS VS

Pro SS 000 Prc ss

V V SS: Stable Stora

Spare VS: Volatile Storage

Figure 1: System architecture for roll-forward checkpointing schemes

In the proposed schemes, at each checkpoint the state of the two modules executing

the task is compared for detection of faults. If a fault is detected, instead of usual rollback,

the following mechanism is used for identification of the faulty processing module [13, 14, 16].

The good state of the previous checkpoint is loaded into a spare module. The checkpoint

interval in which the failure is detected is then "retried" on the spare module. Concurrently,

the task continues execution on both processing modules in the duplex system. At the next

checkpoint the state of the spare is compared with the state of the two processing modules

at the previous checkpoint where disagreement occurred. This allows for the identification

of the faulty module (see Figure 2). Once the faulty module is identified, the state of the

faulty module is made consistent with the state of the fault-free module in the duplex system

and the spare is released to the pool.

9

1j+1

A __

B
* 2

* S

a S

Timto t I t2 Time

1: Copy state to the spare

2: Compare state of the spare with the state of A and B

3: Copy state from A to B

X A fault

Figure 2: Roll-forward checkpointing scheme

These schemes axe termed as Roll-Forward Checkpointing Schem-3s (RFCS). The

proposed RFCS schemes provide a mechanism for identifying the faulty processing module

and recovering it, in most cases, without the overhead of rollback. It is demonstrated that the

proposed schemes have potential performance advantages over conventional duplex system

with rollback.

Specifically, the advantage of .i_,. oposed schemes is that they achieve a lower aver-

age execution time with a lower variance as compared to the rollback schemes. This is crucial

for real-time systems with hard deadlines as lower variance enhances the predictability of

the task completion time.

3.2 Reliable Memory Design

The use of a hybrid memory structure consisting of both highly reliable and normal memory

can further support persistent and recoverable memory [1]. Hybrid algorithms that man-

age the writable memory and read-only memory separately are proposed. The traditional

10

measures of virtual memory algorithms (i.e., lifetime and space-time) have been extended to

account for the dual nature of the policies. Several properties of the policies have been ex-

plored. It has been shown that the knee of a hybrid lifetime curve produces a near minimum

space-time product as with the existing algorithms. Hybrid policies are more controllable

with respect to highly reliable memory because they can constrain the amount of writable

memory and gain performance by using additional read-only memory. The lifetime mea-

sure for the hybrid policies under constrained writable memory, when compared at equal

amounts of highly reliable memory, is better than the single policy algorithm at a small

cost of additional read-only memory. Furthermore, even at an unconstrained amount of

writable memory, the hybrid policy produces approximately equal performance while the

writable memory can be completely fixed in size. Theoretical results are also derived for a

property which indicates the optimal performance for a hybrid reference stream based on

two individual streams.

The ability to accurately predict the reliability of a system is very important. Two

novel techniques have been developed which focus on dynamic aspects of memory [2, 3, 4, 5].

The first focuses on the memory reference patterns of a particular program while the second

looks at memory behavior due to memory management actions.

The first novel technique evaluates the probability of correct execution of a program

based on the program's memory access behavior. The approach is an analytical study using

an existing model which characterizes an address trace with four parameters. Three cases are

developed based on the storage allocation policy (i.e., prc-allocated, dynamically allocated,

or constrained in allocation). The models are able to compare the traditional view that is

taken in standard memory reliability analysis to that of a real world environment where a

program uses a varying fraction of the memory at different instances. Using these models, it

is shown that the reliability may be significantly better than the apparent reliability when

the program behavior was not considered. It provides one explanation for the cause of

unobserved faults along with an analytical basis for determining the extent of faults not

being observed. Possibly the most important application of these models is to analytically

quantify the observed phenomenon that failure rates increase with increased workload. A

new explanation has been proposed for this phenomenon based on the notion that programs

11

often have storage allocated which will never be referenced again and cannot cause a failure.

Assuming a constant fault rate over increased workloads, the model shows that there could

be a significant increase in observed failures. The model was validated with actual program

traces and shown to be very accurate. Finally, several techniques have been shown for

extracting the fractal parameters of a program trace.

The second novel technique for reliability analysis uses the memory space allocated

to more accurately calculate the reliability. This can be used to understand the relationship

between the amount of memory allocated and the reliability. This effect has been quantified

based on the relative cost of a fault. Distinct effects have been measured depending on

the relative speed of the paging device. For small reload times it is found that a decrease

in the memory partition size leads to an increase in reliability at the cost of additional

instruction overhead. For extremely long reload times it is found that larger amounts of

memory lead to increased reliability. There also exists a middle reload time where the

optimal reliability corresponds to the optimal space-time performance. Other aspects of

virtual memory algorithms such as small pages and different paging algorithms were studied.

Furthermore, the methodology was applied to study the reliability of cache memories which

have the characteristic of very small reload delays. The results show that the reliability

improvement factor can change by several orders of magnitude based on the cache size. For

small memory sizes it was found that a very small number of page durations contribute to

a majority of the total unreliability. Two techniques have been suggested to remove these

long durations, which then lead to even greater improvements in the reliability. One is

an algorithm called selective scrubbing to break the long durations, which could either be

implemented! in software or hardware. A second technique showed that the addition of very

small amounts of highly reliable memory can also lead to significant reliability improvements.

3.3 Safe Modular Redundant Systems

Dependability considerations warrant that in addition to reliability, a dependable system

must have a high level of safety. Therefore, there is a need to ensure operation which is both

error-free under adverse conditions, as well as safe under severely adverse conditions.

We have analyzed a technique for implementing systems requiring high reliability and

12

safety [15]. These systems, named n-Safe modular redundant (nSMR) systems, achieve high

reliability and safety using module replication and redundancy in module output.

An nSMR system consists of n identical modules and an arbiter. The arbiter uses

outputs of all the n modules to decide the nSMR system output. Reliability and safety of

the system are a function of the arbitration strategy used. When reliability is the only cri-

terion, an optimal arbitration strategy that maximizes the reliability can be designed. With

reliability and safety both of concern, usually no single arbitration strategy is optimal. We

have presented an implementation of maximal arbitration strategies which achieve different

maximal reliability and safety combinations. Maximal arbitration strategies are such that

no arbitration strategy has better reliability and safety, compared to a maximal strategy.

The effect of increasing redundancy on the achievable reliability and safety has been

analyzed for systems with and without redundant module outputs. Detailed results on

binary SMR systems using binary arbiters have also been obtained. The results of this

chapter are summarized below.

"* It is shown that for modules without output redundancy, no arbitration strategy exists

for (n + 1)SMR which achieves better reliability and safety compared to certain arbi-

tration strategies for nSMR. Further, given any arbitration strategy for nSMR, there

always exists an arbitration strategy for (n + 2)SMR that achieves higher reliability

and safety.

"* It is shown that if modules have output redundancy, given an arbitration strategy for

nSMR, one can always find an arbitration strategy for (n+ 1)SMR that achieves better

reliability and safety.

"* A detailed aaalysis of binary nSMR systems with single bit output is presented.

Whether binary (n + 1)SMR dominates binary nSMR is shown to be dependent on

the relation between the likelihood of a detected error (Pd) and the likelihood of an

undetected error (p,,) in a binary module's output. It is shown that when Pd = p.,

binary (n + 1)SMR does not dominate any of the plurality strategies for binary nSMRt

Also, exact expressions for the reliability and safety of the maximal strategies for such

systems have been presented.

13

* Design of a family of threshold-based maximal arbitration strategies which achieve

different reliability and safety is presented. Design of a class of arbitration strate-

gies easier to implement as compared to the threshold-based arbitration strategies is

also presented. These arbitration strategies are obtained by generalizing the plurality

strategies.

4 Papers Under ONR Grant and References

1. N. S. Bowen, Fault-tolerant aspects of memory design. PhD thesis, University of

Massachusetts-Amherst, February 1992.

2. N. S. Bowen and D. K. Pradhan, "Program fault tolerance based on memory access

behavior," in 21rst Symp. on Fault-Tolerant Computing, pp. 426-433, IEEE, June

1991.

3. N. S. Bowen and D. K. Pradhan, "Effect of memory management on reliability," Tech.

Rep. TR-91-CSE-3, University of Massachusetts, Feb. 1991.

4. N. S. Bowen and D. K. Pradhan, "Reliability aspects of memory management policies,"

Tech. Rep. TR-91-CSE-16, University of Massachusetts, July 1991.

5. N. S. Bowen and D. K. Pradhan, "Issues in fault tolerant memory management," Tech.

Rep. TR-91-CSE-20, University of Massachusetts, Aug. 1991.

6. J. A. Clark and D. K. Pradhan, "Unidirectional voting TMR systems," Tech. Rep.

TR-91-CSE-6, University of Massachusetts, Apr. 1991.

7. J. A. Clark and D. K. Pradhan, "REACT - the reliable architecture characterization

tool," Tech. Rep. TR-92-CSE-22, University of Massachusetts, June 1992.

8. J. A. Clark and D. K. Pradhan, "Reliability analysis of unidirectional voting TMR

systems through simulated fault-injection," in Digest of Papers for the 1992 Workshop

on Fault-Tolerant Parallel and Distribv. ed Systems, pp. 72-81, IEEE, July 1992.

14

9. J. A. Clark and D. K. Pradhan, "Reliability analysis of unidirectional voting TMR

systems through simulated fault-injection," Tech. Rep. TR-92-CSE-9, University of

Massachusetts, Mar. 1992.

10. J. A. Clark and D. K. Pradhan, "REACT - a synthesis and evaluation tool for fault-

tolerant multiprocessor architectures." to appear in the Annual Reliability and Main-

tainability Symposium, Jan. 1993.

11. Gupta, S. K. and Pradhan, D. K., "Can concurrent checkers help BIST?", to appear

in ITC 1992.

12. B. K. Kar and D. K. Pradhan, Patent application filed. "A New Implementation

Scheme of Rank Order/Stack Filters".

13. D. K. Pradhan and N. H. Vaidya, "Roll-forward checkpointing scheme: Concurrent

retry with nondedicated spares," in IEEE Workshop on Fault Tolerant Parallel and

Distributed Systems, July 1992.

14. D. K. Pradhan and N. H. Vaidya, "New roll-forward checkpointing schemes for modular

redundant systems," in Hardware and Software Fault Tolerance in Parallel Computing

Systems (D. R. Avresky, ed.), England: Ellis Horwood, 1992.

15. N. H. Vaidya and D. K. Pradhan, "Voting in fault-tolerant systems: Reliability and

safety issues," Tech. Rep. TR-91-CSE-7, ECE Department, Univ. of Massachusetts,

June 1991. Also accepted for publication in IEEE Transactions on Computers.

16. N. H. Vaidya, Low-Cost Schemes for Fault Tolerance. PhD thesis, University of

Massachusetts-Amherst, August 1992.

15

