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ABSTRACT

The advection of a passive scalar by incompressible turbulence is considered using recur-

sive renormalization group procedures in the differential subgrid shell thickness limit. It is

shown explicitly that the higher order nonlinearities induced by the recursive renormaliza-

tion group procedure preserve Galilean invariance. Differential equations, valid for the entire

resolvable wavenumber k range, are determined for the eddy viscosity and eddy diffusivity

coefficients and it is shown that higher order nonlinearities do not contribute as k --+ 0, but

have an essential role as k -* k,, the cutoff wavenumber separating the resolvable scales from

the subgrid scales. The recursive renormalization transport coefficients and the associated

eddy Prandtl number are in good agreement with the k-dependent transport coefficients

derived from closure theories and experiments.

1This research was supported Ly the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-19480 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1 Introduction

The turbulent transport of a passive scalar, while serving sound pedagogical purposes. is

also of interest in the spreading of temperature, humidity and pollution in the atinosphere

as well as in other problems (Csanady'). Here we shall apply recursive renornializatiun group

(RNG) procedures to the subgrid modeling of a passive scalar field T'(k. t) being advected

by a turbulent Navier-Stokes velocity field u(k, t). Subgrid modeling is necessary for the

high-Reynolds number turbulent flows of interest because of the limitations of current and

foreseeable supercomputers'. Another advantage of considering the problem of passive scalar

transport is that the spectral transport coefficients (eddy diffusivity and eddy viscosit•y

deferminpd frnm our RNG theory can be compareai to those arising from closu, re- based

theories3'4,. It should be noted that the transport coefficients in these closure theories are

determined over the whole resolvable scales.

Recently, two distinct approaches of RNG to fluid turbulence have arisen: one lbased on

the work of Forster et. al. 5 , called t-RNG, and the other based on Roses. called recursive-

RNG. Some aspects of these two approaches have been discussed7. In particular, we point

out here that in e-RNG, a small parameter ( is introduced through the forcing correlation

function. Yakhot & Orszags have extrapolated f << 1 to c -- 4 in order to reproduce

the Kolmogorov energy spectrum. Furthermore, it is also necessary to take the distant

interaction limit9 , k --* 0. Thus, it is difficult to compare the transport coefficients generated

by Kraichnan3 and Chollet4 , with that determined from c-RNG.

In this paper, we continue our application of recursive RMNG 1 -' to turbulence. The

basic differences between the two RNG procedures are that in recursive RNG:

(i) The c-expansion is not applied.

(ii) The turbulent transport coefficients are determined for the whole resolvable wavenum-

ber scales,

(iii) Higher order nonlinearities are generated in the renormalized momentum equation.

In Sec. 2 we derive the renormalized evolution equations for the passive scalar T(k, t)

and the fluid velocity u(k, t) as well as the recursion relations from which the eddy diffusivity

and eddy viscosity can be determined. Because of the presence of higher order nonlinearities

in the renormalized equations, it is not apparent that Galilean invariance is still preserved.

These questions are addressed in Sec. 3 where we prove that the RNG-evolution equations are

Galilean invariant: a property deemed necessary in any subgrid model'". It has been found
very difficult to find fixed points for the RNG-difference recursion relations if the suhgrid



shell thickness is chosen too small' 0 1. If recursion RNG procedures are to 1e employed

successfully in more complicated flow problems, then it is necessary that these differenlce

recursion relations be simplified. In Sec. 4 we proceed to the differential limit of these
recursion relations, paying careful attention to the k -+ 0 limit. We show that the higher

order RNG-induced nonlinearities do not contribute to the k --+ 0 limit of the RNG recursion
relations, but play a significant role for k --+ k,, where k, is the wavenumber that separates the

resolvable scale from the subgrid scale. In the Appendix, we contrast our ordinary differential
equations for the RNG eddy viscosity and diffusivity with that generated by Yakhot-Orszag'

by their &-RNG, a theory that is valid only in the distant interaction limit k - 0. In contrast.
in the recursive RNG approach, the differential equations for the eddy transport coefficients

are valid over the whole resolvable scales and not just at k --+ 0, and no ( expansion is needed.

The turbulent transport coefficients for the second moments (i.e., for the time evolution of
U.a(k,t) =< u•(k,t)uO(-k,t) > and the scalar variance O(k,t) =< T(k,t)7'(---k,t) > )
are determined in Sec. 5. In particular, the importance of the RNG-induced higher order

nonlinearities is very apparent. The spectral eddy viscosity, diffusivity and Prandtl number
are derived in Sec. 6, while in Sec. 7 we present our conclusions.

2 Renormalized momentum equation for velocity and
passive scalar

We consider a passive scalar T(k, t) being advected by incompressible turbulence

+ +ok2k 2] T(k, t) -Zk, f d3ju (k - j,t)T(j,t)

with the turbulent velocity field u(k, t) being determined from the Navier-Stokes equation

+ vok']u,(k,t) = M•,,,(k) d u#(j,t)u,(k-j,t) + f, (k, t). (2)

Summation over repeated subscripts is understood, and

M,#-i(k) = kgD,.y(k) + kD~o(k), and De(k) = 6,f - k, ke/k 2. (3)

Here go is the molecular diffusivity, v0 the molecular viscosity and f•, a random forcing term.

The forcing correlation is given by

< f.(k, t)f3(k', t') >= Dok-YDO(k)6(k + k')b(t - t') (4)

where Do denotes the intensity of the forcing, and y is an appropriately chosen exponent so

as to recover the Kolmogorov energy scaling in the inertial range (y = 3).
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2.1 An outline of the recursive RNG procedure

Since the details of the recursive PNG procedure for Navier-Stokes turbulence have been

presented before 6 '- 1 , we just briefly outline the steps here:

(i) The subgrid wavenumber region (k,, kd) is partitioned into N-shells

k, =_ kN < kN-1 < .... < ki < ko =_ kd (5)

where k, is the wavenumber separating the resolvable from the subgrid scales and kd

is the Kolmogorov dissipation wavenumber. k,, = f'•ko, n = 0,..., N, where f is a

factor, 0 < f < 1, measuriu5• the coarseness of the subgrid partitioning. The limit

f -+ 1 corresponding to a differential partitioning of the subgrid region (N -- co).

(ii) The subgrid modes for the first shell, ki < k < k0 , are eliminated from the resolvable

scale equation by the solution of the subgrid scale equation.

(iii) A subgrid scale average is performed over the resultant resolvable scale equation. This

will result not only in the introduction of the subgrid scale energy (or equivalently,
forcing) spectrum, but it also results in a new triple nonlinearity and nonlocal eddy

damping function in the resolvable momentum equation (k < k,).

(iv) The above steps are repeated for each successive subgrid shell until all the subgrid
scales have been removed.

(v) Since the subgrid scales evolve on a faster time scale than the resolvable scales, a

multiple time-scale analysis can be performed to simplify the eddy damping function.

The resultant eddy viscosity is a fixed point of an integro-difference recursion relation.

(vi) The recursion relation for the eddy viscosity and the renormalized Navier- Stokes equa-

tion are rescaled.

It should be emphasized that there are two singular limits7 : f --- 1 and k -_ 0. A careful

analysis must be done regarding these two limits and the associated averaging operations.

We will address this issue here in the present paper.

2.2 An asymmetry in the renormalized passive scalar equation

The details of the implementation of the recursive RNG procedure to the advection of a
passive scalar is a straightforward generalization of that for Navier-Stokes turbulence (see

e.g. Hossain13 ) and so will not be presented here. Here we comment on a symmetrization
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procedure that is standard when dealing with Navier-Stokes turbulence, but which can not
be applied to the passive scalar problem.

Consider the removal of the first subgrid shell and use the usual notation

k f t) (kt) If/k, < k < k0f(k,) 11<(k,f) if k < (
and

T~kt') >(k, t) if k, <k< ko"(7
T~k~t) =T< (k, t) if/ k < k,. - 7

We find for k < kl, the resolvable scale passive scalar and Navier-Stokes equation can be

written as

a>[ I±,ok'j T< (k, t) k, d3'u( j)<j ) 'k-,t7(,t

+u?<(k -. j,t)T>(j.t) + u,(k - j,/)T>(j, t)]. (8)

and

+ vok ]u (k,t) = f(k,t) + Mo-,(k) j d3j'i(j, t)u<•(k- j.t)
+2u,>(j, t)u•<(k - j, t) + uý>(j, t)u•>(k - .j, t))- (9)

The factor 2 in the Navier-Stokes Eq. (9) arises from the symmetry in the j k - j

interchange.

XWe assume isotropy for both the velocity field and passive scalar, so that the subgrid
velocity - passive scalar correlations are zero (Lesieur14):

< u>T> >= 0, (10)

where < ... > represents averaging over the subgrid scales.
On applying the recursive RNG procedure to eliminate the subgrid fields in Eqs. (8)

and (9), the second term on the RHS of Eq. (8) requires special attention. In Ref. 6, the
frozen flow velocity field is prescribed, so that this term plays no role in the renormalization

procedure. However, here we are considering a passive scalar field being advected by a
turbulent velocity field which is itself determined from Navier-Stokes turbulence. As a result,
this term must be treated on the same footing as the others. For this second term on the
RHS of Eq. (8) we have the wavenumber restrictions, j,k < k, while k/ < 1k-jj <
k0 is in the subgrid scale. This can only be achieved when k and j are located near ki.
Thus u>(k- j, t)T<(j, t) with the wavenumber restriction discussed above is different from
I>(j, t)7'<(k -j, t) with k, k -jj < k, and ki < j < ko. Hence one can not interchange the
variables j and k - j by standard symmetry arguments as done by Hossain 13.
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2.3 The renormalized Navier-Stokes and passive scalar equations

After removing the nttL subgrid shell, the renormalized passive scalar equation takes the folrm

+ ,(k)k 2 ] T(k, t)d= -1k,, Jd du'(k - j" I)T<(k, t)

-ka E d3 u (k -iIOzu,3(( - Y) 0T<(',t
h= Pn-hoU)] 2

- .z d 3 _ jd31--- Ma(kj - j 2i u(j', t)u(k - j - j', t)<(ji, t) (11)
h~l Vn-h(lk -i )Ilk -j 1 1

where the last term on the RHS differs from that of Hossain' 3 .

The restriction on the wavenumbers are the following:

kN < j < kN-1 in the second integral

kNJl k-I< kN_1 in the third integral.

The other wavenumber constraints are as indicated by the superscript oil the fields u and T.

The renormalized Navier-Stokes equation has the following form11:

[Ia/± + vn(k)k2]u,(k,t) fn(k, t) + M,3 (k)- d' (j,t)u<(k- j,t)

+2M.(k) 1 J d3 jd 3 j' M*,,(j)uJ,(j',t)u<1 (j - j', t)u•<(k - j, t) (12)h=1
h=l IVn•-h (I *)J 2 M0'u l u<i-l

where j is restricted to the subgrid shell in the second integral. Again, all other wavenumber

constraints are as indicated by the superscript.

2.4 Recursion relations for eddy viscosity and diffusivity

Although the second term on the RHS of Eq. (8) contributes a iiew triple nonlinear term,

it does not make any contribution to the renormalized eddy diffusivity in the inomentum

equation in the process of removing the next subgrid shell. The reason is the following:

2 d term -M,,(k-j) < uý(j',t)u>(k-j-j',t) > T<(j,t) -- 0 (13)

since the ensemble average will generate a delta function 6(k -j) while k -j is in the subgrid

range. This is impossible, and so this second term can not contribute to the eddy diffusivitv.

After the removal of the (n + 1)Ih subgrid shell, the spectral eddy viscosity in the renor-

malized momentum equation is determined by the recursion relation"



141+ I(k) = v. (k) + 6 v,' (k) (14)

where
5v•() =D~: 0 n d.3 L(k'J'q)jk -j- I -I5'

h=0CE Vh(j)j 2v(lk - jI)ik -Tj(2

and

L(k,j,q) = kj(1 - z2 )[zq 2 -kQ (16)q2 (6

with k -j = kjz. This difference equation, after rescaling, has been solved by Zhou et al.11

and fixed points were readily determined for finite f < 0.7. However, it was very difficult to
determine fixed points for finer subgrid partition factor f > 0.7. In Sec. 4 we shall pass to

the differential subgrid limit f -- 1 and determine an ordinary differential equation (o.d.e)

for the renormalized eddy viscosity over the entire resolvable scale which can be readily

integrated.

In a similar fashion, the spectral eddy diffusivity in the renormalized passive scalar equa-

tion can be shown to be given after the removal of the (n + 1)"h subgrid shell, by

S= y.(k)+ ± /in k) (17)

where

k, kZ 71 d~a(k -/j)Q(lk - ill(18
65n(k)= k---E fd3 * ,,I (18)

Vh=0 n-h0'j

The renormalized eddy viscosity and diffusivity are defined as the fixed point of these

recursion relations.

2.5 Rescaling of the recursion relation and momentum equations

From the self-similarity properties of the forcing and energy spectrum in the subgrid range,

we expect that the viscosity vn+1 to be simply related to vn for large n, while the diffusivity

I'n+1 is simply related to pI,,. A rescaling can be performed on the recursion relation. In

particular, consider

k -, k,+,k (19)

and define

v (k) k 13+i (kvn,(+, k) for k<(
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Unless mentioned otherwise, we drop the tilde notation on the wavenumber, and note

that 0 < k < 1. The recursion relation for the eddy viscosity becomes

(k) = f(y+ )/3 [,,(fk) + 6ýi,(fk)] (21)

where

&5fi(fk) =fiiI+i) Do2 [d 3 L(k, j, q) Ik -j1-
k-2 -I i.(fj)j2i'.(fjk -ij)jk -jJ 2

+ n Do L(k,j,q)jk -j k- ]
Jd3jf-hI + U(fh+l. qIk -j) - (22)h=1 Vn'-hfhJ)2J(fk-Jlk--J'

and the summation term arises from the triple nonlinearity induced by the recursive RNG

procedure. The recursion relation for the eddy diffusivity is

An+ (k) = f(m+l)/ 2 [An (fk) + 6bp,(fk)J (23)

with
f-( k)9 ) [k•,kn - jAk -j-m

6bpn(fk) = V I Ind3jDn(k (fj?)j 2

+n kak fh(m d 3j.D<(k -j)Ik - jI-(+2 ) 1
+ k •f- th(fh+lj)" 2  j (24)

where again the second term on RHS of Eq. (24) arises from the induced triple nonlinearities.

We have introduced the parameter m = 5/3. These equations are valid for any k in the

resolvable scales: 0 < k < k-. In the limit k -- 0, the triple term contribution -- 0, as will

be shown in Sec. 4.1.

The final renormalized passive scalar equation is

+ .u(k)k2-T(kt) = a.k.Id3iu<(k -jt)T-(kt)

kr d 3d 3* h U(k-j,t)u<(j-j',t)T<(J',t)

ik, d "3id3j' M~n(kj) <(j',t)u<(k-j -j',t)T<(j,t) (25)

(k,)k. 2 a Ik - jlk -

while the final renormalized Navier-Stokes equation is

[09/0t + v(k)k2)ua(k, t) = fa(k, t) + M,.,g(k) J dfju, (j, t)u<(k - j, t)

+2. M~..(k) I d 3d3j M (3)u,(j ,t)u<,(j - j', t)u<(k - j, t). (26)
v~k,)k 3
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3 Galilean invariance of the renormalized Navier-Stokes
and passive scalar equations

Befor we proceed further, we turn omr attention to the questiotn of the (;aliheail ivariar',C

of the renormalized Navier-Stokes and passive scalar equations (25) and (26). The imptlr

tance of Gael;lean invariance in turbiulence modelline has been emphliasized hy Spcziah lv.

To be consistent with the basic physics, it is required that Ihe descril)tion of the Iuril -

lehce be the same in all inertial frames of reference. The appearance of the tripih fuhlinlear

term, wich is a function of the resolvable scales velocity fields, makes the property of the

(;aljiha invariance of our recursive RN( procedure not transparent. We now show that

both the renormalized N avier -Stokes e(inat ion and the renormalize, p assive' sca lar euate iO

are Galilean invariant.

3.1 Galilean invariance in Navier-Stokes equation: A review

The Galilean transformation is

x-x - U01" - t" (27)

Thus, one has

0 ) a ) a a
U = u " - U -U Ord (2d)

While the Galilean transformation for the Navier-Stokes equation in physical space is

trivial, the Galilean transformation in wavenumn)ber space is less obvious, due to the lack of

differential operations. For convenieince, we first review how Galilean invariance is preserved

for the Navier-Stokes equation in the wavenuml)er space.

Ilnder the Galilean transformation, the LIIS of the Navier-Stokes e(quationi [cf. FEq. (2)]
I (('Ofli ('5

0 '(k ', t + `0,u 3i4,I•,k •(k ., 1) + vo k 2A[- V ), A k ") + ua (k , t)]

/)u•,(k*, 1) +*
0uk.I)t + J,0 ikjg,, (k'. t) + v u/,(k" t) (29)

wh.re in the last step, we have used the the b function p)roperty A,"Zb(k*) 0.

Vnder the (Catilean transformation, the RH S of the Navier-Stokes equation [c.f. FEq. 2]

lecolues

8.+



dA/j(k ) Jd3ju .jS, t) - 1To,6(j )][u<(k - j, t) - o.,(k' -j')]

h ,? -,(k *) I d 3 jui(ji ,)u;(k" -j',t) + i+,o,-3 ,u,,i(k*. t) (m0)

where we have used the property of the 6 function, the incompressible condition, aud

M •(k•.)(J0,,(k', t) = UOf3kh;u,(k,. )/(2i*) (31

Thus, as expected, the Navier-Stokes equation is invariant under a Galilean transfornia-

tion due to the cancellation of the second term on the RHS of Eqs. (29)-(30).

3.2 The renormaii7ed Navier-Stokes equation under a Galilean

transformation

To show that the renormalized Navier-Stokes equation is invariant under a Galilean trans-

formation, we need only consider the recursive RNG induced triple nonlinear term, denoted

by N,AT:

NST---2M•( k)j ~dj(•43~''J
J,5 =(k) u,,4/(j _ j- ' t)uY'(j', t)u-,(k - j, t) (32)

It is important to note that 3j is in the subgrid.

Under a Galilean transformation, Eq. (32) becomes

N ....-T 2M,3-,(k*) d3j*d 3j'*(j* )4/3M•-3-Y(J*)b, (j /'t t"036("Y
k, •(kk))f >(j --2 t) - o•,6(j -

[u;,(jI*, t) - u" , *(j)f [u(k* - ,t) - -U j(k*) (33)

Since j* is in the subgrid scale, while J'* and k* are in the supergrid, 6(k* - j*' and

6(j* -j'*) can never be simultaneously satisfied. As a result,

NS•. = 2M., ;3.y(k*) fd3j'*d3j' * (J* )4/3 M.-y(J*) u',3• 0 j

"I k,~ )] (k -- ,t[u*,,(j * ,t) - "1, 6 j' ) u (* "* f)"



Now only one term in Eq. (34) could violate the Galilean invariance of the renormalized

Navier-Stokes equation. However,

d'S(j')u>(j - j , t) -, ,, (j, t) (35)

This is not permissible since uý, = uit, and is restricted to the subgrid. Thus NST

NS*. Hence the triple term is Galilean invariant.

3.3 Galilean invariance in the renormalized passive scalar equa-

tion

The renormalized passive scalar equation has two triple nonlinear terms. The proof of the

Galilean invariance of the renormalized passive scalar equation proceeds in a similar manner

to that for the renormalized Navier-Stokes equation.

For the first triple nonlinear term, labelled PSrTI. after a Galilean transformation, we

found

i*d 3j*[,u*(k' - j-,-t) + Uo,5(k -j)][u2 (j -j>t) + U016(j j"')]T<*(j,t)

=Jd3 d 3 U<-(k - j. t)u<'(j - j')T<*(j, t)(36)

since j* is in the subgrid while k*,j" are in the resolvable scale. Thus the 6(k' - j) and

6(j* -j') can never be satisfied simultaneously.

The second triple nonlinear term has the following structure aftei Lihe Galilean transfor-

mation

P ,-. Jd3i'd3I"[u<*(j"*,t) + Uo0 6(j"*)][u<*(k -j" - j', t) + UcA,(k* - j* - j')]T<(j. t)

Jd 3j dd3 [u•*(j'*) + Uo (j')]1u1-'(k -j - j, t)T<(j, t)

J d3 j *d 3U-(jfL)u<(k* - j -j',t)T<(j,t

where the last two steps follow from the wavenumber constraints. k,j', are in the resolv-

able scales while Ik - ji is in the subgrid scale. Specifically, the first step follows since

6(k- j - j'-) can never be satisfied. The second step follows since 6(j"*) would force

u•<*(k- j* -j") --+ u•<*(k*- j*). This is not permissible since lk-JI is in the subgrid

while u;, by definition, is in the resolvable scale. Thus, the renormalized passive scalar

equation is also Galilean invariant.

10



4 Differential equations for the renormalized eddy

viscosity and diffusivity

The differential limit, f --+ 1, is singular and has been discussed recently". In particular, it is

related to the assumption of local versus non-local interactions in k. In this section we will

calculate the eddy viscosity and diffusivity under the differential equation limit for recursive

RNG.

For recursive RNG we will find that the differential equations hold throughout the resolv-

able wavenumber range 0 < k < k,. This should be contrasted with - RNG eddy viscosity

differential equation which is valid only in the k -+ 0 limit'.

4.1 The distance interaction approximation, k -- 0

Consider the resolvable scale Navier-Stokes equation, Eq. (9),

[ ( 0 +to~u <(k, t) = M(,l()Idj U( ýt

+2u'(j, t)u<(k -j, t) + u`(j, t)u>(k -j, t)]

The first and third terms on the RHS of (9) are symmetric in j and 1k - Ji in terms of

their respective wavenumber constraints in wavenumbers. As a result, the distant interaction

limit k --+ 0 has no effect on the existence of these terms which will give rise to the standard

quadratic nonlinearity and eddy viscosity, respectively. However, the second term on the

RHS of (9) has the following constraint: j is in the subgrid while 1k -il is in the resolvable

scales. Specifically, the consistency condition requires that, for small k, j satisfies

j > k, and j < k, + kz. (38)

Since Izf < 1, the range of integration must be O(k).

Thus, the second term on the RHS of Eq. (9) can not contribute in the limit k -4 0 since

the integrand is bounded. A similar conclusion can be drawn for the second and third terms

in the renormalized passive scalar equation. Hence, the triple terms will not contribute to

the renormalized momentum equations and recursion relation for the transport coefficients

in the distant interaction limit, k --- 0. However, they will contribute to the renormalized

Navier-Stokes and passive scalar equations for 0 < k < k,.

11



4.2 Test of the conclusion in §4.1 from numerical simulation
databases

The conclusions of the last subsection can be tested directly using nuiiierical siniulation

databases. Indeed, energy transfer and eddy viscosity can be analysed using results fronm

numerical simulations by introducing an artificial cut at a wavenumbler k,. that is smaller

than the maximum resolved wavenumber k,,, of the simulation. With this fictitious separation

between the subgrid and resolvable scales, it is possible to evaluate the effect of the subgrid

k, < k < k,. on the resolvable scales k,. To facilitate comparison with the recursive RNG(

analysis, we consider separately the contribution to the energy transfer and eddy viscosity

from the second and third term on the RIIS of Eq. 9. We form an energy equation from

the momentum equation and introduce the following notation: '<<(k) is the spectrum of

energy transfer to mode k resulting from interactions between modes with wavenumbers less

than k,; T><((k) and T>>(k) represent similar contributions from interactions with onc or

both modes above the cutoff k•, respectively. The equivalent contributions to eddy viscosity

in the energy equations are v><(k) = -T><(k)/2k 2 E(k), and v»>(k) = ->(k)/2k 2 E(k).

To determine the behavior of the energy transfer and eddy viscosity v><(k) and v>>(k)

we measured them in flow fields obtained from numerical simulations on 1283 meshes of

forced turbulence. The forced flow dataset was generated by Chasnov 15 in a large-eddy

simulation (LES) of the Kolmogorov inertial range, using a subgrid model derived from the

stochastic equation that is consistent with Eddy-damped-quasinormal Markovian (EDQNM)

approximation.

In Fig. 1, we present a numerical measurement of v">< (k). It demonstrates that the second

term on the RHS of Eq. (9) does not contribute to the energy transfer process as k --+ 0,

consistent with our analysis.

4.3 The differential equation limit, f --+ 1

We now derive the differential equation for the transport coefficients for finite k, 0 < k < 1,

where the wavenumbers are normalized with respect to the cutoff wavenumber k, = I. The

o.d.e. in the distant interaction limit (k = 0) will be derived in the next subsection. After

the rescaling, we rewrite the recursion relation in the form

v,,+I(k)- _ fO'+l),ap(fk) = f(Y+')/a63v(fk). (39)

For f -, 1, the number of iterations n - oo. Similarity considerations lead to

V+ 1(k) -- v(k), n --* c. (40)

12



Let A = 1 - f. the LIIS of Eq. (39) becomes

v(k) - [I - AI•+'l)/3V[k(l - A)] --,A [ Y + 11(k) + O(A,) (41)
dk 2

As noted earlier', the partial average of Rose' must be employed in order to insure the

existence of the differential limit. The partial average is introduced since the distinction

between the resolvable and subgrid scales become fuzzy in the limit of a differential subgrid

partitioning, f -* 1.

Following Rose', we first change the variable from j, z to j.q = k -j , with djdz

(q/kj)djdq, so that the RHS of Eq. (39) becomes

v(k) L(k,j,q)6u~~~kk =vdd (-[J)z()k2,,(jk _Jj)jk -jjl2jk- jj

L(k,j,q)kjdq()(J)k~v(jk-j!)jk-jj~jk-k,

A dq L(k, l,q) +L(kj, 1) -(y-2)/3 (12)f<q<l+k P3I2 ( 1 )qY-I + I<j< I +kd v(

where

L(k,l,q) = k(1 - z2)(k - zq 2)/q 2  (43)

and

L(k,j, 1) = kj(1 - z2)(kj - z). (44)

Here one has set the coefficient D' = 2irD0 = 1 (Zhou et al.11).

As a result, the fixed point renormalized eddy viscosity v(k) is determined from the o.d.e.

at o(A)

icdVk) ±~ 1__
dk + 31 v(k) 2(1)[A,,(k) + B,(k)] (45)

where

A,(k 1 I i+k dqL(k, l,q) (6dq() ~(46)

B,,(k) : - djL(k,j, l)j~y-• 3  (47)

Here, z is evaluated at j = I and q = 1, respectively in the L(k,j, q) expression.

The fixed point o.d.e. for the eddy diffiisivity is that given by

13



kdu 1 + -- l(k) I-[A,(k) + Bu(k)] (48)
dk 3 POl)

where

1mk dq qmZlsin2( k, q, 1 ) (49)
A 2(k) = j]<q<_d+k q-+(

B,(k) = I j dj sin 2 (k, l,j)j(',-1)/ 2  (50)

and sin2 (k,j, q) is the square of the sine of the angle defined by the k and q legs of the

k,j, q wave-vector triangle. Note that Eqs. (48)-(50) are identical with the o.d.e. of eddy

diffusivity which Rose6 derived for a prescribed frozen velocity field.

4.4 Differential equations in the k -+ 0 limit

In the k -- + 0, we have seen that the triple term does not contribute to the eddy viscosity. As

a result, the recursion relation will now contain only the usual quadratic contribution. We

further simply the analysis by taking the standard subgrid linear propagator"1 G-'(Ik -jI) =

[2 + vh(jk - j1)] - G-'(Li1) as k -- 0.

The limits of the integration are given by

I <j-kz< 1/f, 1+kz<j<1/f+kz (51)

Thus, the RHS of Eq. (39) becomes

bv,(k) = M - A - B (52)

where the integral limits for these terms are

jlf dj dz for M (53)

J 1 1+kz

0 dz 11 dj for A (54)

0 dz1 dj for B. (55)
fi I,/ +kZ

Terms A and B are the corrections to the symmetric term M. They are important for

a finite bandwidth f. However, it is easy to show that A + B = 0 for f -- I in the k -- 0

limit. Hence

SDO 1' [z1 k 2 8 DO'
iuvD(k)"-+ - kv 2 ()• dz[1 - z2][z + -(YZ- 1)]=AA- (56)

14 1) V(1)

14



while the LHS of Eq. (39) yields

k k) v(k), as k 0
dk 3 k)

since d( is bounded as k - 0.

Thus, as k -4 0,

v(k -- 0) 3 8 DO' (57)

y + 115 V2(1)

Again, one sets the coefficient D' = 21rDo 1.

A similar anlysis can be performed on the fixed point o.d.e for the eddy diffusivity. This

was not performed by Rose6 who did not consider the k --* 0 limit carefully. Again, as k - 0,

the triple term will not contribute and we find that the corresponding buO(k) term has the

limiting form

5by'(k) A 1_ 117 kz, I12
- ( 2 J(1) •/311 Jdz[1 + ( I)--(I - z2)=, = 2 1() dz( - (52)

2 (58)

as k --+ 0. Hence

2(k 0) 2 1 (59)

y + 1 (1)

4.5 The momentum equation eddy viscosity and diffusivity

The o.d.e's, Eqs. (45) and (48), for the momentum equation eddy viscosity and diffusivity are

readily solved and shown in Fig. 2. We observe that both the eddy viscosity and diffusivity

have a similar plateau structure as k -- 0. Notice that the eddy diffusivity plateau is not

obtained in the original numerical calculation of Rose'. As k --* kc, eddy viscosity displays a

weak cusp like behavior while the eddy diffusivity decreases monotonically as k --+ k,. These
6curves, as k -+ kc, are similar to that of Zhou et al." and Rose .

5 The turbulent transport coefficient in the second
moments

The concept of the spectral eddy viscosity and diffusivity are introduced in the second

moments3' 4 . Thus, the momentum equation spectral eddy viscosity and diffusivity are only
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a partial contribution to the total transport coefficients. Indeed from our unmerical Inca-

surement in Fig. 1, we expect that tile triple nonlinear terms will contribute to the energy

transfer when k is near k,.

We consider the contribution of the triple nonlinear term in the renormalized eddy vis-

cosity to the eddy viscosity first (Zhou and Vahala 6 ). The second moment for the velocity

field is defined as

U00(k, t) =-< u,(k, t)uO(-k, t) > .(60)

The time evolution of U, 0 (k, t) is

aU•(kt) 2v (k)k 2 Ufo(k, t) + 2 < f 0 (k, t)ua(-k,t) > +T((k, t) + T3(k. t) (61
at

In this equation, TD(k, t) is the standard energy transfer from the quadratic nonlinearity.

In contrast, Tao(k,t) - -2vT(k)k 2E(k) is the energy transfer arising from the RNG iMduced

triple nonlinearity. It is readily shown that16

VT~~~k) = I I +ko dj dz L( k,] ,q.)Jk - jJ-Y-2jY+,/3 (2

VT(k) v2(k,)k(-+, /2 )F .(k - j) (62)

In Fig. 3, we see that IJT(k) is the major contributor to the cusp-like behavior of the

spectral eddy viscosity as k -+ 0. For k < 1, it has a backscatter of energy from the subgrid

and resolvable scales.

We now define O(k) as the scalar variance O(k) =< T(-k, t)T(k,t) >. The dynamic

equation for O(k) can be constructed by multiplying Eq. (25) with T(-k, t), followed by an

averaging operation. Again, a quasi-normal approximation is applied to reduce the fourth

moment to the product of the second moments. Notice that the last term on the RHS of Eq.

(25) will not contribute to the spectral equation since < u3(j', t)uY(k - j - j', t) >- b(k - j),

a condition that can not be satisfied since k - j is in the subgrid scale.

The dynamical equation for the scalar variance is

t + p(k)20] E(k, t) (63)

where ED is the usual transfer function for the passive scalar. ET(k) is the additional

contribution from the triple nonlinear term induced by the recursive RNG procedure

(k) ýz~kc~kcm+j/-,1/6 < u'(k -j)uc(j -j') >< r(j')T'(-k)>

-2p 1s(k)k2 0(k,t) (64)
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where

LT(k) I ?n+1/ k kk3  D •,(k-j)Q(Ik -iI)

and the incompressible condition has been used. It is seen in Fig. 4 that /zT(k) is small when

k is small. However, as k -- k, PT(k) increases rapidly.

The solution of vT(k) is verY similar to that of t1T(k) as k -+ k,. They are the major

contribution to the strong cusp in the eddy viscosity found from the Test Field model' and

EDQNM4 . Furthermore, 11T(k) also contains the backscatter of the energy from the subgrid

to the resolvable scale. This is a major difference between IT(k) and VT(k).

Rose' discussed the role of the triple nonlinear terms in physical space. lie pointed out

that it represents the possibility of an exchange of scalar eddies between the resolvable andl

subgrid scales. This effect is an inherent property of measurements made on tile passive

scalar system with instruments which have a spatial resolution limited to an eddy width size

greater than I/lk.

6 Spectral eddy viscosity, diffusivity and Prandtl num-
ber

The spectral eddy viscosity is simply the sum of the contributions from the momentum

equation and the triple nonlinear term. The result is presented in Fig. 5. It appears that

our calulation is in qualitative agreement with the closure theory3 4 and direct numerical

measurements 4-ts. In particular, it predicts the correct asymptotic behaviors of the eddy

viscosity as k -- 0 and k -- k, (Kraichnan 3 ).

Our spectral eddy diffusivity shows a plateau at k -4 0, in good agreement with the

EDQNM calculation of Chollet4 . However, the EDQNM calculation is not unique and de-

pends on the choice of the parameters. Our diffusivity is in good agreement with EDQNM

when parameters are chosen according to the direct interaction approximation (DIA) 4 .

The spectral Prandtl number can be easily determined from our calculated eddy viscosity

and diffusivity (Fig. 5). It is a function of k and has values ranging from 0.72 - 0.92. Note

that our turbulent Prandtl number at k -+ 0 limit is very close to that reported by Yakhot

and Orszags (0.7179). The values of turbulent Prandtl numbers found experimentally "9

in the boundary layer are in the range of 0.6 - 0.8. Hinze2° and Tennekes and Lumley2"

pointed out that the transfer of passive scalar and velocity fields may be equally effective.

Thus the turbulent Prandtl number is about 1. However, Lesieur and Rogallo's found that

their spectral Prandtl number only rose from 0.2 at small k to 0.8 near the cutoff. Lesieur"4

recently found that the turbulent Prandtl number may be much closer to I than that of
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Lesieur and Rogallo'". The EDQNM spectral Prandtl number depends on the choice of two

EDQNM closure scalar adjustable constants4' 14 . In the first case, it remains approximately

equal to 0.6, even in the vicinity of k,. In the second case, it has a plateau value of 0.33,

and a cusp close to k,, where it rose to 0.6.

7 Discussion and conclusions

In this papei we have applied recursive RNG to the problem of the advection of a passive

scalar by incompressible turbulence. We have clarified the role of the higher-order RNG

induced nonlinearities and shown that: (a) The renormalized evolution equations are still

Galilean invariant (i.e., these higher-order nonlinearities do not destroy the Galilean invari-

ance of the original equations). This is an important property that needs to be preserved in
subgrid modeling, especially as one proceeds to more complicated flows and boundaries. (b)

These higher-order nonlinearities do not contribute to the transport coefficients as k -+ 0.

I No-vv tht- ',.picdl byproduct of the recursive RNG methods is a complicated integro-

difference recursion relation to be solved for the eddy transport coefficients6'1 -11 . This

recursion relation is a function of the subgrid shell thickness parameter f. Here, we have

shown how to pass to the differential subgrid shell thickne, limit f -+ 1. In this limit, we

recover an ordinary differential equation for the eddy coefficients - an equation that is very

easily solved.

The o.d.e that is derived in recursive-RNG is fundamentally different from that derived

by E-RNG techniques. For convenience, we have summarized the Yahkot-Orszag derivation

of the &-RNG o.d.e in the Appendix. In E-RNG, one is forced into taking the k -+ 0 limit 8-9 ,

and the independent variable of the resulting o.d.e is actually the cut-off wavenumber k,. In

recursive RNG, the independent variable is the resolvable scale wavenumber k, 0 < k < k•,

with a renormalization transformation that permits k, to be fixed. There is no renormal-

ization transformation made in the Yakhot-Orszag (-RNG formulation. In the limit k -+ 0,

the eddy transport coefficients from both theories are in very close agreement. This is to

be expected since the higher-order recursive RNG-induced nonlinearities -- 0 as k -* 0.

The slight difference in the eddy coefficients (in the k - 0) between the two theories can be

attributed to the treatment of k, : i.e., whether one performs RNG rescaling transformations

(recursive RNG) or not. The important effect of the triple nonlinearities introduced by the

recursive RNG procedure are clearly seen in the second moment equations - especially for a

resolvable wavenumber k ---+ k.
The spectral eddy viscosity, diffusivity and Prandtl number are determined and we find

good agreement with both closure theory- 4 and direct numerical simulations' 4 16 .
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Appendix: Brief summary of the Yakhot-Orszag's derivation
of o.d.e. for the eddy viscosity

In the f- RNG, a small parameter t is introduced into the exponent of the forcing corre-

lation function, Eq. (4),

c=4+y-d=I+y, (Al)

where d = 3 is the dimensionality'.

The distance interaction' is introduced at the outset8 , k -4 0. Thus, the triple nonlinear-

ities do not contribute to the recursion relation, Eq. (14). Furthermore, the eddy viscosity

is a function of the cutoff wavenumber k, and is obviously independent of the resolvable

scale wavenumber 0 < k < k,. To emphasize this, we shall follow Smith and Reynolds 22 and

denote their eddy viscosity by v(k -, 0, kr).

By variation of the cutoff wavenumber k,, Yakhot and Orszag' derived an o.d.e for

v(k --+ 0, k,) dvj --+,, k
dv(k - 0,k•) = A3v(k -- 0, k,)A 2(k -- 0, kc) (A2)

dkc

where

A 3 S3 Do (AM)
A3 - (27r) 3S A- 6-30 A(k -- 0,kc) = [v(k --, O, k,)13/2kf'/2

where S3 = 41r2 is the area of a unit sphere in three-dimensions. These equatiun should be

compared with that Eqs. (43)-(45) where the resolvable scale wavenumber k is the variable

in the recursion relation derived from the recursive RNG, and not the cutoff kc.

For a given boundary condition v(k 0 0, ko), an analytical solution can be obtained from

Eqs. (A1-A3).

3A3DoS3 kc-' ko` A4S--* 0, k,) 3  - v(k 0, k0 )3  
- (2 )3 k . (A )

where k0 is typically in the order of Kolmogorov dissipation wavenumber. Eq. (A4) reduces

to the familiar inertial range form by taking v(k -- 0, k0) - vo for k --+ kd. In that limit,

Eq. (A4) takes the form

v(k --+ 0,kc) 2,'• 1/3 t'-A ' 1/3(A5)

where v(k --+ 0,ko) is neglerzed since v(k -+ O,k,) >> v(k -+ 0,ko) in the fully-developed

turbulence.
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In order to compare with the inertial range theory of Kraichnai- 23 , Yakhot and Orszag

set

k, = k (An)

for any k E [O, k,]. From the closure theory analysis ','1 and direct numerical simulation

mieasurements1-• 18 , eddy viscosity has rather distinct characteristics in the limits 4, - 0 and

k - k,. As a result, Eq. (A6) is a rather oversimplified approximation22.
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Fig. 1 Forced eddy viscosity profiles determined from LES databases for the fluid velocity

at one time instant. vtot(k) = v>>(k) + v><(]k), where v>>(k) arises from measured LES
nonlocal subgrid energy transfer, and v><(k) arises from measured LES local subgrid energy

transfer. It is important to note that v>< (k) --+ 0 as k -- 0 and that v><(k) arises from the

u<-u> interaction. Note also the cusp bahvior in v><(k) as k -- k,.
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Fig. 2 A plot of the momentum eddy viscosity, v(k), and diffusivity, ji(k), as a function
of the resolvable scales, 0 < k/k, < 1. These profiles are determined from the o.d.e's for

recursive RNG in the limit of differential subgrid shell thickness, f -+ 1.

24



vT(k)

0.8 r=4

0.6 r=3
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-0.2 " 'II

0.01 0.1 k/k 1C

Fig. 3 The drain eddy viscosity VT(k) arising from the triple nonlinearities in the

differential subgrid shell limit in recursive RNG. r = k./K, is a parameter in the production-

type energy spectrum, so that E(k) -- k as k -+ 0. Kp is a parameter that controls

the location of the peak in E(k). As r increases, this peak in E(k) moves to smaller k.

Backscatter of energy from the subgrid scales to the large spatial scales is seen for k/k, < 0.4.

the region in which vT(k) < 0. For r > 1, there is a sharp cusp as k -+ k,.
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Fig. 4 The drain eddy diffusivity PiT(k) arising from the triple nonlinearities in the
differential subgrid shell limit of the scalar variance RNG evolution equation. The parameter
r is as in Fig. 3. Notice that there is now no backscatter of scalar variance, since jUT(k) is
non-negative for all k. There is a strong cusp as k -- k,.
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Fig. 5 The spectral eddy viscosity, diffusivity and Prandtl number in the differential

subgrid shell thickness, f --+ 1, limit. The parameter r is 2.
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