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/ Abstract

Instruction scheduling and register allocation/assignment are two optimizations that are commonly used
in thp code generation phase of modern compilers. These optimizations are important for processors
with exposed instruction-level parallelism and large register files. These optimizations, however, impact
the task of the symbolic debugger which attempts to present to the user a source-level view of program
execution.
The debuggers for most systems today usually punt the issue of optimized code, either by turning
optimizations off whenever the user asks for source level debugging, or by not detecting the effects of
optimizations on the source-level state. To not mislead the user, the debugger must provide feedback
of the effects of optimizations. In this paper, we investigate the effects of instruction scheduling and
global register allocation/assignment on symbolic debugging and present approaches that a debugger
can take.
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1 Introduction

A debugger provides a user with mechanisms to control the execution of a program (e.g., to set break-
points) and to inspect the state of the execution (e.g., to print the current value of & variable). To
qualify as a synbolic debugger, all interactions must be in terms of the high-level language program
that is the source for the object program.

Optimizations commonly employed by current compilers duplicate, eliminate or reorder operations
and values so that it is difficult for a symbolic debugger to discover the correspondence between source
and object code. Such optimizations may make it difficult to set breakpoints, e.g., because the execution
of multiple source statements is overlapped, or to inspect variables, because some values may either be
inconsistent with what a user expects based on the source code, or may be inaccessible in the run-time
state. A symbolic debugger for optimized code must detect these values and respond appropriately to
a user query.

A number of modem high-performance processors expose instruction-level parallelism as well as
large register files to the compiler. Since the parallelism and the storage hierarchy are expoged, the
compiler has the opportunity to exploit the parallelism in the program and to reduce the memory
traffic by keeping the most freqmently accessed variables in registers. Instruction scheduling and register
allocation/assignment are two compiler optimizations that are commonly used to take advantage of
these features. These optimizations, however, affect setting breakpoints and inspecting variables by a
symbolic debugger.

Global register allocation and assignment effectively exploit modern architectures that have large
register files and high memory access latencies. These optimizations affect debugging by making vari-
ables inaccessible at a breakpoint. By attempting to pack as many variables as possible into a limited
number of registers, global register allocation re-assigns registers to different variables at different points
in the program. Therefore, a source level variable V may be inaccessible at a breakpoint if the register
assigned to V holds the value of some other variable at that point, and there is no other location that
holds V's value. Such a variable V is called a nonresident variable.

Instruction scheduling can increase the efficiency of processors with instruction-level parallelism by
statically scheduling independent operations for concurrent execution. However, scheduling chahges
the sequence in which source level values are computed by reordering or interleaving code sequences
from different source statements. If assignments are executed out of order, the sequence in which source
level values are computed will be different from that specified in the source program. Consequently, at
a breakpoint, the run-time value of an inspected variable may not be the value expected in the source.
Such a variable is called an endangered variable. If an indirect assignment or function call operation is
executed out of sequence, the debugger may not be able to determine the operation's side effects on the
source state. As a result, the debugger may not be able to determine with certainty whether a variable
V's run-time value is the same as the value the user expects V to have. Hence, there are two types
of endangered variables. if the debugger can determine with certainty that an endangered variable
V's run-time value is not the same as V's expected source value, then V is a noncurrent variable.
Otherwise, V is a suspect variable.

From the viewpoint of the user, nonresident and endangered variables are similar in that the debug-
ger cannot display the variable's expected source value. However, an endangered variable has a value
that may be inconsistent with what the user expects, whereas a nonresident variable has no value.
That is, the value in an endangered variable's run-time location is a source level value, but it may not
be the value expected by the user. Therefore, since the value has some meaning in the source, it may
be helpful to the user if the debugger can convey what source value an endangered variable's value
corresponds to 113,9]. On the other hand, no source value can be displayed for a nonresident variable.

This paper investigates the problem of detecting nonresident and endangered variables in the pres-
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ence of global register allocation and instruction scheduling. We present a solution to detecting non-
resident variables based on using data-flow analysis techniques for the debugger to detect all points
where source level values are in their assigned run-time locations. The problem of detecting nonresi-
dent variables is concerned only with whether a variable V's register contains any source value of V.
We also present an approach to detecting and recovering endangered variables caused by instruction
scheduling. Detection of endangered variables is concerned with whether the value in a resident variable
V's run-time location is the expected source value of V. Recovery attempts to produce the expected
source value of an endangered variable from the run-time state.

To evaluate the effectiveness of our approaches (and the seriousness of the problem) we have im-
plemented the techniques in a production C compiler that performs code compaction and register
allocation for a long instruction word (LIW) machine with a large register file. We compare the effects
of nonresidency with the effects of endangerement on the debugger's ability to recover source values
at a breakpoint. Our results indicate that nonresident variables are a serious problem; the assumption
(made if endangerement is the only issue of concern to the debugger) that a variable is always accbssible
in its assigned run-time location presents a picture that is too optimistic. Furthermore, a separate data-
flow analysis phase in the debugger for tracking a variable's run-time location significantly improves the
number of variables accessible by the debugger; an overly conservative approach to tracking a variable's
run-time location (as presented in [13]) misses many opportunities. We also measure the effectiveness
of simple recovery strategies on the debugger's ability to report expected source values and to precisely
determine which variables are endangered. Our results show that a simple recovery scheme is successful
in increasing the number of variables for which the debugger can report the expected source value and
improving the debugger's accuracy in detecting endangered variables.

2 Debugging optimized code

In this section we introduce the key concepts of our symbolic debugger and describe how optimizations
affect a symbolic debugger's behavior.

2.1 Debugger model and terminology

The debugger can be invoked as a result of two types of breaks:y ynchronous and asynchronous. A
synchronous break occurs when control reaches a control breakpoint that was set at a source statement
by the user. When a synchronous break invokes the debugger, the debugger reports that execution has
stopped at the statement S where the user has set a breakpoint. An asynchronous break occurs when
an instruction raises an exception, or when the user interrupts program execution. The debugger maps
the instruction I at which execution halted to the source statement S for which I was generated and
reports that execution has stopped due to an exception within source statement S.

A data break occurs when the program writes to a storage location that is monitored by a data
breakpoint set by the user. A source statement may contain several assignment expressions that may
each cause a data break. Therefore, since a data break can occur within a source statement (as opposed
to at a statement boundary), a data break is considered to be an asynchronous break. We do not discuss
the mechanics of how control or data breakpoints are implemented. See [15] or [19) for possibilities.

When a break occurs, the point in the object at which execution has halted is called the object
breakpoint, and the source statement where the breakpoint is reported is called the source breakpoint.
S ince there is always a source and object breajpoint associated with every break, a breakpoint refers
to a pair < S,0 >, where S is the source breakpoint and 0 is the object breakpoint.

The debugger is non-invasive; no modification of the program's code or data is allowed, except
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for modifications neccessary for setting breakpoints (as, for example, described in [15]), i.e., the code
generated for debugging is identical to the code generated otherwise, and the storage layout of the
program is not perturbed. Our model does not allow the compiler to insert extra code to make
debugging easier. For example; the compiler does not insert path determiners [211 into the object
code to determine the execution path leading to a breakpoint, even though such knowledge allows the
debugger to perform better analysis while retrieving source values. Furthermore, registers are only
saved when necessary for the execution of the program, the compiler does not save old values solely to
assist the debugger. The compiler will, however, leave sufficient information describing correspondences
between the object and source codes, such as a mapping of variables to storage locations.

Debugger functions can be classified into two groups: related to program flow (petting breakpoints:
mapping a source-level location into a location in the object code; reporting exceptions: mapping
a faulting machine operation into source code), and related to data (reporting the values of user
variables). Problems related to the former are known as code location problems, while those related to
the latter are known as data value problems (22]. In this paper, we only address the data value problem
of retrieving source level values (e.g., values of source variables or locations in the heap) from the
run-time state of -a halted program. Our work assumes that breaks can occur anywhere in the object
code and hence applies to both synchronous and~asynchronous breaks. We do not discuss methods of
mapping breakpoints in the source to breakpoints in the object. See (91 or (21] for a discussion of flow
related issues.

Data modification by the user is complicated in optimized code since storage locations can be re-
used, and expected uses of source variables can be re-ordered or eliminated by transformations such as
instruction scheduling and common subexpression elimination. We do not address this problem in this
paper, and data modification by the user is not iupported in our debugger model.

2.2 Retrieving source values

In response to a query of a variable V's value at a source breakpoint S, the user expects the value
from the latest source assignment to V, relative to S. This value is the ezpected value of V [9]. A
variable's expected value is not always retrievable from the run-time state of an optimized program.
Two conditions must be satisfied to retrieve a variable V's expected value at a breakpoint:

1. V must be accessible in a storage location (memory, register, condition codes, ... ) of the machine.
If the debugger determines that V is accessible in a storage location, V is called resident, otherwise
V is called nonresident. The storage location where V is accessible is called V's residence, and
the value in V's residence is called V's actual value [9].

2. V's actual value must be the same as V's expected value. If V's actual value may not correspond
to V's expected value, V is called endangered [141. Sometimes the debugger can determine with
certainty that a variable's actual value does not correspond to the variable's expected value;
such a variable is called a noncurrent variable. If a variable V is endangered, but the debugger
cannot determine with certainty that V is noncurrent, then V is called a suspect variable. (An
endangered variable is either noncurrent or suspect, but not both.) A nonresident variable does
not have an actual value, hence endangerement can not apply to such a variable.

In unoptimized code, a variable has a home location whose value always matches the variable's
expected value at a breakpoint. Thus the debugger can retrieve a variable's expected value from the
variable's Lome location. Optimizing transformations complicate the retrieval of values by violating
the conditions above; either a variable is inaccessible because the debugger determines the variable
has no residence, or a variable is resident, but the variable's actual value may not be the same as its
expected value.
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2.3 Approaches to debugging optimized code

There are several approaches that a debugger can take to handle code that has been optimized. The
debugger can try to completely hide the effect of optimizations, i.e., the debugger presents the expected
behavior[21,9]. To provide expected behavior, the debugger must detect all endangered variables and
recover their expected values.

Recovering the expected values is not always possible (Section 2.5), therefore most debuggers for
optimized code settle for truthful behavior [21,9]: the debugger detects the set of variables that are
nonresident or endangered, and either reports them as such in response to a user query, or attempts
to recover their v.-lues, although recovery may not always be successful[14,9]. The recovery strategy
has an influence on how often the debugger is able to present the expected value to a user, but in
either case, the debugger is never allowed to present erroneous data to the user. If an expected value
cannot be presented, the debugger may provide additional guidance to the user by conveying how
optimizations have affected source values. For example, the debugger may tell the user at which~source
assignmment(s) an endangered variable's actual value was (or may have been) assigned.

2.4 C source language and compiler issues

Detecting and recovering endangered variables at all possible object breakpoints requires analysis of
both the source and object programs to accurately determine expected and actual variable values.
Hence language features and semantics (e.g., pointers and evaluation order), effects of compiler trans-
formations (e.g., re-ordering of operations), as well as target machine features (e.g., concurrent exe-
cution of multiple operations) must be precisely modelled. Earlier work in debugging optimized code
focused on simple languages with restricted features, e.g., a subset of Pascal without pointers[14],
allowed only synchronous breakpoints at statement boundaries, requiring only the modelling of inter-
statement expected values [13,91, or considered only simple compiler models. However, C is nowadays a
widely used programming lauguage, and the practice of debugging has evolved to include asynchronous
breakpoints (e.g., for data breaks, post-mortem analysis, or user interrupts like Control-C). Support-
ing asynchronous breaks requires modelling of what occurs within a statement, to correctly determine
expected source values at a breakpoint.

Compiling the C language creates the following problems that must be addressed by the debugger:

1. Indirect assignments and function calls. If an indirect assignment (i.e., an assignment
through a pointer) is executed out of order, the memory location targeted by the assignment
is noncurrent. Therefore, to detect which memory location is affected by the assignment the
debugger must recover the value of the indirect assignment's address expression. However, like
recovery of endangered variables, recovery of indirect assignment address expressions is not always
successful, in which case the debugger must conservatively assume that any memory location may
be affected. Thus when the debugger detects that an indirect assignment has executed out of
order and it cannot recover the assignment's address expression, it must report all variables with
home locations in memory as suspect (and this includes the heap ai well). Similarly, function
calls can be reordered with respect to other language statements (e.g., other function calls or
assignments), in which case the debugger must again report all variables with home locations in
memory as suspect. As a compiler's ability to analyze the global effects of functions increases, it
is more likely that an operation is executed out of order with respect to a function call.

2. Undefined evaluation order. To correctly determine expected source values at an asyn-
chronous break, the debugger must accurately model the execution order of source side effects
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within and among statements. The evaluation order of side effects from different source expres-
sions is well defined. However, in a C language expression containing multiple side effecting
expressions (i.e., assignments or function calls) the compiler is free to choose the evaluation order
of the side effecting expressions. E.g., in the C code fragment of Figure 1, the assignment in
statement S, must execute before the assignments in S2, and all assignments in S2 must execute
before the assignment in S3, but the compiler is free to choose the evaluation order of the three
assignments within statement S2. Thus, at an asynchronous breakpoint < S2,0 > occuring at
the expression y++ within S2, the expected value of x depends on the evaluation order determined
by the compiler and can be the value assigned by either S, or the expression x++ of S2.

S: xz y+2;
S2: Z a Z++ * y*÷;

S3 : yaz4y;

Figure 1: Undefined evaluation order in C

2.5 Example

Consider the source and object codes shown in Figures 2 (a)-(b). In this example, variables a and d
have both been assigned register r5, while b and p have both been assigned register r4. Variable c has
been assigned register r3 and variables e*, and g reside in memory. Figure 2(c) shows the ranges of
instructions during which register assigned variables are resident. c is resident in r3 throughout this
block. Registers r4 and r5 contain the values of p and a respectively upon entry to this block, hence b
and d are nonresident. At Is, r5is reassigned to d, and as a result a becomes nonresident, while at Is,
r4 is reassigned to b causing p to become nonresident.

r3 r4 r5

St: d = f +g; 11: r]l - load f C
S2: b a f-a; 12: r2 4 load g
S" *p - a; 13: r3 - fpnulrf , r3
S4: c = a'c; 14: (r4) 4- store r5 p a
Ss: * = b; 1I: r4 - fpsub rl,rS

16: r fpadd rl,r2
17: * 4-- store r4 b d

Source code Object code Residence ranges
(a) (b) (c)

Figure 2: Example of noncurrent and nonresident variables

Table 1 lists the nonresident and endangered variables at all possible object breakpoints in the code
of Figure 2. We report an asynchronous break at an instruction I as a break occuring at the source
statement for which I was generated. The first two columns of Table 1 show the mapping from object
breakpoints to source breakpoints. The third column presents the source expression that is computed
by each instruction. The last three columns of Table 1 list the nonresident, noncurrent and suspect
variables if a break happens at a given instruction. Note that the value computed by 11 is a common
subexpression (f) of S, and S2. This instruction, however, is mapped to S1, since a break occuring at
a common subexpression must logically happen at the earliest source statement in which the common
expression occurs (14].
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Breakpoint I Source Expression Nonresident j Endangered Variables
Object Source Evaluated by Instruction Variables Noncurrent [Suspect

i S, b,d
72 31........ b ,d
h3 S 4  C aaft b,d e___ ,_

14 S3 _ _ _ __a b,d
Is S2 b a f-a b,d c I*fg16 S, 4 a-~ p,d c,b o, ,
17 S5  e a b pa

Table 1: Nonresident and noncurrent variables at breakpoints in code of Figure 2

Consider a breakpoint at instruction 13, reported at statement S4 in the source. At this breakpoint,
the expected value of d is the value assigned at statement S, and the expected value of b" is the
value assigned at statement S2. Both of these variables are nonresident at this breakpoint, because
the registers assigned to these variables (r5 and r4) are holding values of other variables (a and p).
Therefore b and d have no actual values. The expected and actual values of a, c and p are the values
assigned by the last assignments to these variables before this block. Therefore, these variables are
current at this breakpoint. The indirect assignment of statement S3 has not yet executed at this
breakpoint. Consequently, the value in the memory location M pointed to by p is not the value the
user expects M to have. Since M may be the home location of e,f or g, the expected value of one
of these variables may be the value assigned by S3 . The actual values of *.f and g are the values
assigned by the last assignments to these variables before this block. The value of p can be retrieved
from r4, and therefore the debugger can precisely determine at run-time the location M. Consequently,
the debugger will report one of e,f or g as noncurrent and the other two as current. But since this
is a run-time value, we cannot statically determine which memory location is noncurrent. Therefore,
for the purpose of this example, we show these memory variables as suspect. Note, however, that at a
breakpoint at 16, the assignment of S3 has executed prematurely at 14 and again the memory location
pointed to by p is noncurrent. But p is nonresident at Is and the debugger will not be able to determine
at run-time which memory location is noncurrent. Consequently, * , and g will be reported as suspect.

The compiler may have information that describes which variables may be aliased by p at a break-
point. However, program bugs, e.g., a pointer incremented past the end of an array (a typical bug in
C programs), invalidate alias information gathered by the compiler. The debugger, therefore, cannot
use alias information to refine the set of variables that are supect at a breakpoint, e.g., the debugger
cannot rule out .,f or g as unaffected by 14, even if compler alias information indicates that 14 will
not target these variables.

2.6 Nonresident and endangered variables

Observe that endangered and nonresident variables are different with regard to the possible behavior
of the debugger. In the case of an endangered variable V, the debugger may provide additional
information to the user by displaying V's actual value and attempting to explain what value is being
displayed. E.g., consider a breakpoint occurring at Is and reported at statement S, in Figure 2. At
this breakpoint, the assignment to b of statement S2 has executed too early at Is. In response to a user
query of b, the debugger may display the value in register r4 (b's actual value) and explain to the user
that the displayed value is the value of b assigned at S2 because optimizations have caused statem'ent
S2 to execute too early. This approach was adopted in the DOC debugger [13]. Copperman [9] gives
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suggestions about what information should be presented to the user.
In the case of a nonresident variable, however, no actual value exists that can be presented to the

user. For example, at a breakpoint at 13, b is nonresident because its assigned register r4 is holding the
value of p. This value has no relation to b and therefore will not be helpful to the user. The debugger
can only inform the user that the requested variable has been optimized away (i.e., the variable is
unavailable), as is done in DOC [13] and CXdb [5].

An approach to dealing with nonresident and endangered variables is to recover a variable's expected
value from the actual values of other variables and temporaries [14]. E.g., at a breakpoint at 13 (reported
at statement 54 in the source), d and b are nonresident. The expected values of these variables are from
statements S1 and S2 , which are computed by instructions 16 and Is. The operand values of these two
instructions (the values in registers ri, rg and rS) are available at 13 and thus the debugger can provide
the expected values of b and d by interpreting instructions Is and I,. In general though, recovering
values in globally optimized code is difficult (see [141 for a discussion of the scenarios when recovery can
be attempted) and is not always possible. E.g., to recover b's value at a break at I,, the debugger must
detect the latest source assignment to b that was executed before this block of code. Using Teaching
definitions [2], the debugger can determine which assignments to b reach the breakpoint S1. However,
there may be several definitions of b reaching this block, e.g., because of different assignments reaching
on different execution paths leading to this breakpoint or because of ambiguous definitions of b, or
there may be only one assignment to b that reaches, but not on all paths. Consequently, the debugger
may .not be able to determine which reaching source assignment computes b's expected source value.
In Section 5 we discuss recovery of endangered variables caused by one case of code re-ordering.

2.7 Uninitialized variables

When the user inspects a variable, the variable's expected value may be immaterial because the vari-
able has not been initialized during the execution of the program. Thus the question of whether an
uninitialized variable V is resident or current is irrelevant, since V has no expected value. The de-
bugger may either detect and warn the user of uninitialized variables, or it may let the user beware.
Detecting and reporting uninitialized variables can reduce the number of variables that are reported
as nonresident or endangered and provides additional information to the user.

In the absence of support provided by the run-time system (e.g., path determiners [21]) or the
architecture (e.g., memory tags), detecting uninitialized variables requires that the debugger obtains
program flow analysis information from the compiler. If no definition of a user variable V reaches a
point Sin the source, then Vis uninitialized whenever the program breaks at S. Note that the debugger
cannot help in the case that definitions reach on some but not all paths to S.

Referring back to the example of Figure 2, if no source assignment of b reaches the block of code,
b can be reported as uninitialized rather than nonresident or endangered at any breakpoint reported
at S. In this example, these are breakpoints that occur at 11, 12 and I$.

3 Global register allocation

Register allocation and assignment attempt to speed up program execution by keeping frequently
accessed values in high speed registers. Such values include variables, temporaries, and constants, but
since we are concerned with source-level debugging, we do not mention temporaries or constants any
further.

Our model of register allocation is similar in style to Chaitin's [6) and is based on the optimizing
compiler that we have used in our empirical studies. In our model, a variable is either promoted to a
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register (selected to reside in a register) or given a home location in memory. Register assignment binds
physical registers to register promoted variables, and in our compiler, register assignment happens after
instruction scheduling. A register is assigned for exclusive use by a variable during the variable's live
range [7), which consists of instruction ranges between definitions and last uses of the variable.

If spilling is required during register assignment, the whole live range of a variable is spilled to
memory. Loads and stores are added to the schedule to access spilled variables. Disjoint segments of
a live range are not renamed, nor are live ranges split during register assignment. Thus, each register
promoted variable V is either spilled to memory (if there are not enough registers), or it is assigned a
single physical register denoted R(V) for the duration of its live range. A register promoted variable
that is assigned a physical register is referred to as a register asgned variable. Variables that have
home locations in memory (including those that are spilled to memory) are always resident, since their
storage locations are not shared with other variables. Register assigned variables, however, may be
nonresident since a register is usually assigned to many variables.

Coalescing, also known as subsumption [6], eliminates copy operations. This optimization coalesces
two variables whose live ranges do not interfere and are connected by a copy operation. As a'result,
both variables are assigned the same physical register.

Other register allocation and assignment models allow a variable to exist in different storage loca-
tions at different points in the program, e.g., by splitting live ranges or by allocating registers seperately
in different regions of a program. The approach to detecting nonresident variables described in this
paper can also be extended to these models.

4 Detecting nonresident variables

There are several approaches that a debugger may take to determine if a variable is resident at a given
object location. Since a variable is resident during its live range, one way to detect resident variables is
to consider a variable as resident at an object breakpoint within the variable's live range. The advantage
of this approach is that live range information is computed at compile time by the compiler's register
assignment phase. E.g., in the DOC debugger (131, the address ranges of instructions in a variable's
live range are recorded in the range record data structure at the same time as the interference graph is
built by the register assigner. The range records are passed to the debugger, which uses them to detect
whether a breakpoint lies within a variable's live range.

1o:f... ( )
11: def r def x (I) Residence deemiined

12: ... ILby live rsge
13: use r last use x T IF Ruidena dermined
14: ... by flow analysis
I5: def r def y

16:...

Object code Ranges in which x is resident
(a) (b)

Figure 3: Example illustrating the approaches to detecting nonresident variables

Using a variable's live range for determining residency is simplistic and conservative; the debugger
uses a simple rule that is always right but misses opportunities. A variable's assigned register may still
be holding the variable's value after the variable's live range (e.g., after the last use of the variable).
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This is illustrated in Figure 3(a). This figure shows a sequence of definitions and uses of a register r
in a straight line piece of object code. Register r has been assigned to source variables x and y. The
definition at I1 writes a value of a into r, and this definition marks the beginning of x's live range,
whereas the use of r at 13 is the last use of x and establishes the end of x's live range. x is definitely
resident at a breakpoint occurring at either 12 or 13, since these instructions lie within x's live range.
x remains resident until Is writes y's value in r, thus evicting x from r (eviction is discussed in Section
4.2). But the range of instructions after 13 are not part of x's live range. Hence, at a breakpoint at 14,
a debugger that bases x's residency on x's live range will report x as being nonresident, even though r
still contains x's value.

4.1 Terminology

Before discussing the details of our approach, we introduce some terminology. A control flow graph is
a directed graph (B, Bs, E) where B is the set of basic blocks; Bs E B is the entry block; E is the
set of edges between blocks such that if (B,, Bj) E E then control may immediately reach Bj from
BA. Each basic block Bi contains a sequence of instructions generated by the compiler, as well as a
special preamble instruction that appears before the other instructions in B,, thus dominating them.
A preamble instruction is an abstraction that is used by our algorithms, it is not generated by the
compiler nor does it appear in the object code. Given an instruction I, we define the set of predecessor
instructions of I, denoted pred(I), ax the set of instructions from which control can immediately reach
I. A point is defined as being either batween two adjacent instructions, before the first instruction in a
basic block, or after the last instruction in a basic block. The point immediately before an instruction
I is denoted pre(I), and the point immediately after I is denoted post(I). The entry point Os of the
control flow graph is the point at the beginning of the source basic block Bs. The entry point dominates
all other points in the control flow graph. A path is defined to be a sequence of points O1...O,, such that
for each adjacent pair Oi, Oi+,, either O0 = pre(I) and 0i+.1 = post(l) for some instruction I, or Oi is
a point at the end of a block Bj and Oi+1 is a point at the beginning of a block B, and (Bi, Bk) E E.

We call an instruction that targets a register r a definition of r. An instruction I reaches a point
0 if there exists a path from post(I) to 0 along which the register defined by I is not redefined. The
set of definitions of a register r that reach a point 0 is denoted by ReachingDeffr, 0).

4.2 Evicted variables

An approach to detecting nonresident variables that is more accurate than using live ranges is to
precisely detect all points where V becomes nonresident. This implies detecting that x is still resident
at 14 in Figure 3(a) and allows the debugger to display the value of x outside of x's live range, as
depicted by Figure 3(b). In the rest of this section, we describe a method based on data-flow analysis
that realizes such an approach by detecting evicted variables. At a breakpoint, an evicted variable is a
register assigned variable V whose assigned register R(V) may contain a value that is not from a source
assignment to V. Since only register assigned variables can be nonresident, all further references to
variables in this section mean references to register assigned variables.

To track whether a variable V's value is held in R(V), definitions that write a source value of V
into R(V) must be distinguished:

Definition 1 Let E be a source assignment expression that assigns to a variable V. Of the instructions
generated for E, the instruction that assigns V '- value to R(V) is referred to as a source definition
of V and is denoted by Iv(E).
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At the point immediately following a source definition of V, V is resident since R(V) holds a value
from a source assignment to V.

Referring back to Figure 2, instructions 13, Is and Is are generated for etatements S 4, S2 and S1
respectively. These instructious target the registers assigned to variables c,b and d with the source
values of these variables computed at statements S4, S2 and SI. Hence 13, Is and 16 are source
definitions of cb and d : Ic(S 4) = 13, Ib(S2) = Is and Id(S) = Is.

To detect whether a variable V is evicted, the debugger must analyze paths leading to a breakpoint
to discover which value is being held by R(V):

Definition 2 A variable V is evicted along a path P in the object if ezecution of the path P results
in R(V) containing a value that is not a value from a source definition of V. If R(V) is uninitialized
along P, then R(V) is considered as having no value, and V is not evicted along P.

Definition 3 A variable V is evicted at a point 0 in the object, if V is evicted along at least one
path leading from Os (the entry point) to 0. The predicate IsEvicted(V,O) is true if a variable V is
evicted at point 0 in the object.

i/ .
AX$) 

Vr) 
r 

.. ]

Sl4)..: r- r

B5
R(x) R(y) R(z) r

Figure 4: Object control flow graph

Note that the definition of an evicted variable does not depend on where the breakpoint is reported
in the source. We are concerned only with whether R(V) holds a value of V, not whether it holds the
expected value of V.

Consider the control flow graph of Figure 4. In this figure, variables x, y and z have all been assigned
the same register r. Each basic block contains at most one instruction that is a source definition of one
of the variables. At the beginning of block B3, x and z are evicted, since all execution paths leading
to this point result in r containing a value of y. Similarly, at the beginning of block B5, y and z are
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Basic Block Evicted Variables Evicted Variables
at Start of Block at End of Block

BI _____ _Y .Z
B2 y.z I.:
B3 zz zsty
B4 zyz Y.z
B5 y.z y-z

Table 2: Evicted variables at the start and end of each block in Figure 4

evicted since all execution paths leading to this point result in r containing a value of z. Table 2 lists
the evicted variables at the start mad end of each basic block in Figure 4.

To detect whether a variable V is evicted at a point 0, we must consider all values that may
possibly be confained in R(V) if execution is halted at 0. This can be accomplished by examining
the set ReachingDef(R(V),O). If there exists any definition D e ReachingDef(R(V),O), such that D is
not a source definition of V, then there exists a path leading to 0 which results in R(V) containing a
value that is not a value from a source definition of V, and hence by Definition 3 IsEvicted(V, 0) is
true. Conversely, if IsEvicted(V,0) is true, some definition of R(V) that is not a source definition of
V must reach 0. Thus, the eviction problem may be cast in terms of reaching definitions:

Lemma 1 A variable V is evicted at a point 0 in the object if. there exists a definition D E Reach-
ingDef(R(V), O) such that D is not' a source definition of V.

4.3 Computing evicted variables

By Lemma 1, IsEvicted(VO) can be solved for by computing the set ReachinqDefR(V),O), and
checking whether there is a definition in ReachingDef(R(V),O) that is not a source definition of V. A
simpler approach to computing IsEvicted(V, O) is to track whether any definition of R(V) that is not
a source definition of V reaches 0, using data-flow analysis. Whereas a source definition writes the
value of a variable V into R(V), an evicting definition of V writes the value of a variable other than V
into R(V):

Definition 4 An evicting definition of a variabk V is a definition of R(V) that is not a source
definition of V.

Given an evicting definition I of a variable V, we say V is evicted by I (or I evicts V). Table 3 lists
the variables evicted by the instructions in Figure 4. For each register promoted variable V, we define
the predicate Evict Reach( V, 0) as follows:

Definition 5 The predicaie EvictReach(VO) is true at a point 0 in the object if any evicting defini-
tion of variable V reaches 0.

Note that by Lemma 1, EvictReach(VO) is equivalent to IsEvicted(VO). Hence, solving for
EvictReach(V,O) is equivalent to solving for JsEvicted(VO). Also, since no evicting definitions reach
the entry point OS of-the flow graph, no variable is evicted at OS.

Given an instruction 1, let EvictReachln(I) be the set of variables {V : EvictReach(V,pre(I)))
and let EvictReachOut(l) be the set of variables {V : EvictReach(Vpost(I))). Evicting definitions
of a variable V reach the point immediately before an instruction I if evicting definitions of V reach
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Instruction Variables Evicted

by Instruction
15(Sa) yD.

1I(S 4) Y.2

Table 3: Variables evicted by Instructions in Figure 4

the points after any of Au predecessor instructions. Thus the EuictReachln set of an instruction I is
related to the EvictReachOut sets of Ps predecessor Instructions by the following data-flow equation:

or EvictReachln(I) a U Ewidctawhut(J)

An instruction I that is an evicting definition of a variable V causes EvictReaeh(Vpost(I)) to
be true, and thus generates a reaching evicting definition of V. The set of variables that are evicted
by an instruction I is denoted by EvictReachGen(I). Similarly, an Instruction J that is a source
definition of V re-establishes V's residence, by killing all reaching evicting definitions of V, and causes
EvitcReaeA(V,post(J)) to be false. Evict ReachKill(J) denotes the set of variables for which J is a
source definition. The sets EvictReachGen and EvicdReachKill are defined for an instruction I that
defines register R(V):

* If I is a source definition of V, then V 6 EvicdReachKill(I).
Otherwise, V f EvictReachKill(l).

* If I is an evicting definition of V, then V e EudctReachGen(I).
Otherwise, V f EictReachGen(I).

The 15mictReachln and EvictReachOut sets of an instruction are related by the following data-flow
equation:

" EvictReachOut(l) = (EvictReachln(l) U EvictReachGen(I)) \ EvictReachKill(l)

Function calls kill the contents of caller saved registers and therefore evict all variables that are
assigned caller saved registers.

5 Detecting and recovering endangered variables

Noncurrency occurs when an assignment to a variable is executed out of source order,. Such an assign-
ment makes a variable's actual value unequal to its expected value by either prematurely overwriting
the expected value with a future value or by delaying the update of the expected value. Therefore,
there are two types of noncurrent variables for a given breakpoint: a roll forward variable is one whose
expected value is assigned by a source assignment that has not been executed at the breakpoint, while
a roll back variable is one whose actual value Is from a source assignment that occurs after the source
breakpoint [14].

To detect noncurrent variables, the debugger must detect which operations have executed out of
order and how these operations affect the source level state (i.e., variables and memory locations).
Operations that affect source state include assignments to source variables and function calls, but for
conciseness, we only mention assignments in the rest of this section.
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5.1 Execution order

We assume a target machine with a precise interrupt model; i.e., at an object breakpoint 0, all
instructions scheduled prior to 0 have executed, while no instructions scheduled at 0 or after 0 have
completed execution or caused side effects on the run-time state. Either an instruction at 0 raised an
exception, a user interrupt halted execution at 0, or a breakpoint was reached at 0.

We define the canonical ezecution order of source expressions to be the order in which expressions in
the source program are supposed to execute according to the semantics of the source language. During
symbolic debugging, the user expects variables to be updated according to the canonical execution
order of assignments in the source.

Instruction scheduling changes the order in which source expressions execute, and as a result vari-
ables may not be updated in canonical execution order. To detect assignments that have executed out
of source order, a model is necessary that records the source execution order of assignments and links
it to the object execution order of the assignments. Our compiler (like all optimizing compilers we are
aware of), however, first maps source expressions to an intermediate representation (IR), and then the
code generator maps the IR into machine instructions. So our model must link the source assignments
with the object assignment instructions via the IR.

We annotate a program's IR with information describing the canonical execution order of the IR
operations and the code generated for each IR operation. The canonical execution order of assignments
is captured by annotating each assignment operation A in the IR with a sequence number Seq(A). IR
operations within the left and right hand side expressions of A are given the same sequence number
as A. Given two assignments A and B, both in the same basic block, Seq(A) < Seq(B) implies that
A executes before B in canonical execution order, while Seq(A) = Seq(B) implies that the canonical
execution order of A and B is undefined (their execution order is undefined in the source). E.g.,
in the example of Figure I the three assignment expressions of statement S2 will all have the same
sequence number. Note that the partial ordering defined by the Seq annotation captures the canonical
execution order of statements within the same basic block, not the dependences that constrain the
correct execution order(s).

The order in which IR operations are executed in the object is determined by the code scheduler,
and the code scheduler must pass this information to the debugger. Each IR operation may translate
into multiple instructions, which are placed by the scheduler at different positions in the basic block
schedule. Therefore, each IR operation N is annotated with the list of instructions generated for YV.

The position of the last instruction generated for an IR operation N is denoted by Sched(N).
Sched(N) captures the relative order in which IR operations complete execution in the object: given
two IJ. operations N and M, Sched(N) < Sched(M) implies that N completes execution before M in
the object, while Sched(N) =Sched(M) implies that N and M complete execution concurrently'. For
an IR assignment operation A, such that A assigns a value to a variable V, Sched(A) is the basic block
position of the instruction I that performs the assignment. If V has been assigned a register, then I
targets the register assigned to V, otherwise I stores to V's home location. Thus, the order in which
assignments are executed is recorded.

When a break occurs at an instruction I, the object breakpoint is mapped to the IR operation N for
which I was generated, denoted IR(I), and referred to as the IR breakpoint operation. The annotated
IR is then examined to detect which IR operations have executed out of sequence with respect to the
IR breakpoint operation. This approach is similar to Hennessy's [14], however, our model considers
values held in the physical registers of the machine as well as individual instructions generated for each

'This definition covers statically scheduled machines that can execute multiple instructions (or machine operations)
concurrently. Hence the need for the cae where two instructions are scheduled at the same block offset.
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IR operation.
For each instruction I, we record its position in the basic block schedule. Since our code generator

performs local instruction scheduling only, it is sufficient to record I's offset from the start of the basic
block. Each instruction I is also annotated with the position (in the basic block) of the last and next
local definitions of its source and destination registers, denoted LautDefi(R) and NeztDefi(R), where
R is a source or destination register of I. If no local last definition of R exists, then LastDefj(R) is
-1. Similarly, if no local next definition of R exists, then NeztDefi(R) is set to a value beyond the last
position in I's basic block.

The set of. source registers of an instruction I is denoted by SourceRegs(I), and the destination
register of an instruction I is denoted by DestRegI(). If I is a load or store instruction, then I's set of
address registers (e.g., base or index registers) is denoted by Addre•uRegsaI).

3.2 Out-of-order operations

To determine if there are noncurrent or suspect variables at a breakpoint, we have to find out if any
operations with side effects on the user-visible state executed out of order. Si6e effects on temporaries
(e.g., for address arithmetic) do not cause noncurrent variables.

Given an object breakpoint 0 and the IR breakpoint operation M, we call an IR operation N
that is performed out of source order with respect to M an out-of-order IR operution at breakpoint 0.
There are two types of out-of-order IR operations:

"* If N executes before M in the canonical execution order but is scheduled to complete execution
after 0, then N is a roll forward operation at breakpoint 0, denoted RFOp(N, 0).

"* If N executes after M in the canonical execution order but is scheduled to complete execution
before 0, then N is a roll back operation at breakpoint 0, denoted RBOp(N,O).

Using the IR annotations, the debugger can determine which operations are executed out of order. Let
I be the instruction causing an asynchronous break, M = IR(I) be the I1R breakpoint operation, 0 =
Offset(I) be the position of I in the basic block (the object breakpoint), and N an IR operation in the
same block as M:

"* [(Seq(N) < Seq(M)) A (Sched(N) >_ 0)] =* RFOp(N,O)

"* (Seq(N)> Seq(M)) A (Sched(N) < 0)] RBOp(N, O)

We extend the above terminology to machine operations. A machine operation I that was generated
for an out-of-order IR operation IR(I) is an out-of-order machine operation. If IR(I) is a roll forward
(roll back) operation at an object breakpoint 0, then I is a roll forward (roll back) machine operation
at breakpoint 0.

5.3 Endangered variables

Having discovered which operations are scheduled for out of order execution, the debugger must then
determine how the expected source level state has been affected. Source level state is affected by
assignment and function call operations. Therefore, if such operations are out-of-order at a breakpoint
then the variables that they affect are endangered.

A source assignment can either assign directly to a variable by specifying the variable's identifier
in its left hand side, e.g.
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or it can assign indirectly through an address expression, e.g.

*(p.4) -...

In the former case, the debugger can precisely determine which storage location is being assigned to,
since the run-time locations of variables are known. Thus, out-of-order direct assignments cause non-
current variables. In the latter case, however, the variable assigned to is not explicit in the expression,
but rather depends on the value of the address expression. The debugger must be able to recover the
address expression value to determine the run-time location affected. In the case of function calls, the
debugger cannot determine which memory locations have been accessed. Thus, out-of-order indirect
assignments or function calls cause suspect variables.

Note that the compiler may have alias information describing the set of variables potentially allased
by an address expression. Such information, for example, can be used by the scheduler to re-order
indirect loads and stores. However, the debugger should not use such information for refining the set
of suspect variables, since a program bug may invalidate the assumptions made when gathering alias
information.

5.4 Recovery

The IR annotations allow the debugger to discover and use partially computed results available in the
physical registers for recovery. Recovery can allow the debugger to provide more precise information
to the user, in several ways:

1. Recovering address expressions of indirect assignments allows the debugger to re-classify some
suspect variables as either noncurrent or current. An out-of-order indirect assignment A causes
all memory variables to be suspect. The number of variables in memory can be potentially large
(e.g., consider the number of heap objects). Recovery of A's address expression will re-classify the
affected variable to noncurrent. An unaffected suspect variable V may be re-classified as current
if A is the only out-of-order operation causing V to be suspect. Recovery of address expression
values is called address recovery.

2. Recovering the values assigned by roll forward assignments allows the debugger to provide the
expected values of some roll forward variables. If a roll forward assignment A assigns a variable
V's expected value and the value assigned by A is recoverable, then the debugger can provide
V's expected value. Recovery of values assigned by assignment operations is called assignment
recovery.

As has been noted in earlier work[14], roll forward variables are easier to recover than roll back
variables. Therefore, our debugger implements the following strategy. First, the debugger attempts
address recovery of roll forward and roll back indirect assignments. Since address recovery may make
suspect variables either noncurrent or current, the status of suspect variables is re-evaluated after this
recovery is performed. Then, the debugger attempts assignment recovery of roll forward assignments,
possibly enabling the debugger to provide the expected values of some roll forward variables.

Address recovery

Let A be an indirect assignment expression, and let I be the store instruction generated for A. A's
address expression is recoverable at an object breakpoint 0 if the values in I's address registers have
been computed but not subsequently overwritten:

YR E AddressRegs(I) : (LastDefl(R) < 0) A (NeztDefl(R) 2_ 0)
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Assignment recovery

Let A be the assignment operation in the IR expression r = E, where E is an expression computed by
the JR operation N. If : is a memory variable, the instruction generated for A is a store instruction that
stores the value computed by N. If x Is a register variable, the compiler generates either a register move
operation that copies the value computed by N into the register assigned to z, or the last instruction
generated for N targets the register assigned to :. Let B be the breakpoint < S, 0 > where S is in
the same block as A. If A is a roll forward assignment operation at B, the value assigned by A is
recoverable if the value computed by N is recoverable. If A assigns x's expected value at B, and N's
value is recoverable, then the debugger can provide :'s expected value.

On the other hand, if : is an indirect address expression (e.g., *(p + 4)), and hence A is an indirect
assignment operation, the address expression of : must also be recoverable for A to be recoverable.

We take a simple approach to recovering the value of an IR. operation N. Let I be the last instruction
generated for N, and let 0 be the object breakpoint. N's value is reproducible from the run-time state
if either

1. (Offset(I) < 0) A (NextDef1(DestReg(I)) > 0) or

2. YR e SourceRegs(I) : (LastDef1 (R) < 0) A (NeztDef,(R) 2_ 0) and I is safe to execute.

In the first case, IR operation N has executed and its result is available in a register. In the second case,
the last instruction of N has not executed but can be executed (actually interpreted by the debugger)
since its source registers wre available. Hence we can compute I's value from I's source registers and
obtain N's value. However, the debugger must be prepared to handle the case that I may fault. The
debugger cannot perform this computation if I is a function call instruction, or if I is a load instruction,
since memory locations may be noncurrent or suspect.

Note that we can extend the above scheme to recover values from more than one instruction by
tracing instruction dependences back further. However, we are interested in how well we can do with
a simple scheme.

6 The effects of coalescing

Coalescing or subsumption [6] is an optimization that eliminates copy operations by assigning the
same physical register to the source and destination operands of a copy operation. Coalescing affects
debugging when the eliminated copy operation is a source definition Iv(S) of a variable V. E.g.,
consider the source and ob ;ct codes depicted in Figure 5. Part (a) of this figure shows the source
code, while parts (b) and (c) show the object code before and after register assignment respectively.
In this example, Ir(Si) = "1 and Ix(S2) = 12 before register assignment. Assume that the live ranges
of x and y do not interfere. The register assigner coalesces x and y, eliminating the copy operation 12

and assigning the same register r to both x and y (r = R(x) = R(y)).

$2: Y - h:I: Y 1-- r

S 2 : X WY; 12: X Y

(a) (b) (c)

Figure 5: Effects of register subsumption
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Y Y D: y

(a) (b)

Figure 6: Global register coalescing

To capture the effects of coalescing, we consider the source definition corresponding to S2 as being
executed by 1, at the same time as SI, so that 1z(S 2) = I,(S) = J1 and {z,y1 ý EvictReachKill(11 ).
The IR annotations are adjusted to reflect ths change. If execution stops somewhere between S, and
S2 in the source, but after I, in the object, x and y are both resident in r. The actual value of y is the
value assigned by SI, while the actual value of z is the value assigned by S2. Hence, y is current and
x is noncurrent. If execution stops after S2 in the source, but after 11 in the object, both x and y are
current.

A less precise model is to consider S2 as an eliminated assignment. Thus at a breakpoint after 52
in the source and after I1 in the object, • will be detected as nonresident since I is a reaching evicting
definition of x. However, this is conservative since r contains the value that would have been assigned
to x by S2, which is x's expected value.

In general, when coalescing eliminates an instruction I = Iv(S), the source definition instruction
Iv(S) is changed to an earlier definition of R(V) that reaches pte(I). Figure 5 illustrates the simple
case where the earlier definition of R(V) is within the same basic block as the eliminated copy opera-
tion. However, no earlier definition of R(V) may exist within the same basic block as the eliminated
instruction. Figure 6 illustrates other cases that can occur. In this figure, coalescing eliminates the
copy ; - y. In Figure 6 (a) S post-dominates all reaching definitions of R(V). Thus we may consider
all reaching definitions as source definitions of S, adjusting I(S) accordingly. Note that this moves
the definition of x into different basic blocks and results in multiple source definitions. This has ram-
ifications on the noncurrency detection algorithms which now have to address global code movement.
If there exists a reaching definition D that is not post-dominated by S, as shown in Figure 6(b), D
cannot be considered a source definition of x.

To avoid these two problems all together, we model the source definition of S in both cases to be
the pre-amble instruction of S's basic block. In other words, if there does not exist a prior definition
of R(V) in the basic block, the pre-amble instruction is used.

7 Prior work

Prior work on debugging optimized code has mostly assumed that variables are always accessible in
a run-time storage location. With the exception of the DOC [131 and CXdb [5] debuggers, previous
research has overlooked the problem of nonresident variables. In [1], we defined the problem of non-
resident variables and investigated approaches to detecting when a variable's assigned register holds a
value of that variable.
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Hennessy's work [14] and later refinements of Wall et. al [20] deal with detection and recovery
of noncurrent variables in the presence of local optimizations and code generation using DAGs. The
model of [14] assumes that all variables have home locations in hemory and does not consider values
held in registers. The code generator is cast at the intermediate representation level (before variables
are bound to machine resources) and operates without reference to any specific features of the target
machine (like load delays or a horizontal instruction format). However, code generators in modern
compilers are typically tightly tuned to the instruction-level parallelism and storage hierarchy of the
target architecture, as modem architectures rely on instruction scheduling and register allocation for
performance.

In [14], Hennessy introduced the concept of endangered and noncurrent variables and proposed
algorithms to recover their expected values. However, the source language is a subset of Pascal that
does not include pointers. The optimizations performed by the Pascal compiler are at the intermediate
representation level, and the algorithms described in [14] (and corrected in [20]) deal with noncurrency
due to dead codeleimination, and re-ordering introduced by common subexpressions that are asigned
to variables. The effects of code generation techniques like instruction scheduling or register allocation
are not considered. Furthermore, the recovery algorithms only recover values from memory and do not
consider partially computed results that are available in registers. Our recovery algorithm considers
values computed by individual instructions and held in physical registers.

The only type of endangered variable that is considered in [14] are path.endangered variables. A
path-endangered variable is a variable that is noncurrent along (at least) one path through the pro-
gram leading to the breakpoint B. Only global (inter-block) optimizations can cause such a situation.
This paper considers endangered variables that occur in the presence of local (intra-block) optimiza-
tions: even if all global optimization is suppressed, reordering of load and store operations can cause
endangered variables.

DOC [13] is a prototype debugger, designed to demonstrate the feasibility of debugging optimized
code. The optimizations that DOC handles include instruction scheduling and register allocation. It is
the first debugger system that we are aware off that deals with multiple storage locations for variables.
DOC tackles this problem by computing the location and currency of a variable in the compiler; this
information is then passed to the debugger in range records. A range record provides the debugger
with the storage location assigned to a variable or, in the case that a variable has been eliminated
and replaced with a constant, the variable's value. The range of object code addresses during which a
range record is valid is also specified in the record. The description in [13] states that range records
of a register promoted variable span only the variable's live range, but the paper does not indicate
how the debugger responds to a user query of a register promoted variable at breakpoints outside of
the variable's live range, e.g., at a breakpoint before the variable has been defined or after its last use.
According to Copperman and McDowell [12], DOC reports a variable as inaccessible after its last use.

DOC simplifies the problem of noncurrent variables by allowing only breakpoints that are set
in the source by the user. -That is, the DOC approach to detecting noncurrent variables assumes
predetermined breakpoint locations in the object code that correspond to source statement entry points.
If an exception occurs at an instruction I that is generated for a statement S in the source, and I does
not correspond to S's statement entry point, then DOC may not precisely detect which variables
are noncurrent. Hence DOC does not model what happens inside a statement and supports only
synchronous breakpoints. Re-ordering of function calls is not an issue in DOC, since the compiler does
not perform such a transformation. The user is warned when an assignment through a pointer has
occurred out of order, but no recovery (of the address or the value) is attempted.

Copperman and McDowell (in [11] and [9]) propose a method of detecting noncurrent variables
in the presence of global transformations that re-order or eliminate operations. Their method uses
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global data flow analysis techniques and is based on comparing variable assignments that reach a
breakpoint in the source with those that reach the breakpoint in the object. Their method assumes
predetermined breakpoint locations at instructions that correspond to source assignment operations.
Thus, like the DOC approach, their method does not handle asynchronous breaks at arbitrary points
in the object code. They do not consider nonresident variables, nor do they consider recovery of
endangered variables. Moreover, they do not consider the problems caused by function calls that are
executed out of order, and they do not consider practical aspects like the impact of the undefined
evaluation order of assignments within a statement[10]. There is no implementation of the proposed
methods. Bemmeri [3J also proposes a method of detecting noncurrent variables in the presence of
global transformations, using global data flow analysis.

In another work, Copperman and McDowell point out that Hennessy's model does not consider
values held in registers [12]. However, they still consider the problem at the intermediate representation
level without reference to registers. They suggest that allowing multiple assignments to a variable within
a basic block addresses this problem. However, this does not handle the case of nonresidenc6 caused
by register re-use.

Other work in debugging optimized code addresses the code location problem: how to construct a
mapping between breakpoints in the source and object code. Zellweger [21] deals with these mappings
in the presence of control flow optimizations such as function inmining and cross jumping. Our work
deals with retrieving source values at breakpoints and is orthogonal to the code location problem. Also,
we do not consider the mechanics of how data or control breakpoints are set; see [15] or [19] for some
options.

Some debugger systems try to avoid the problem of dealing with optimized code by leaving it to the
user to sort things out. Instead of trying to present the user with a view f the data space that matches
the source code, these systems provide either raw information (e.g., thie current state) to the user or
convey the results of optimizations (e.g., statements eliminated). CXdb 15] is a recent example of such
a debugger. It animates the execution of a source program by highlighting the source expression(s) that
is (are) executed. Based on this information, the user can determine how source values are affected by
optimizations. Such a visual annotation is useful if the user single-steps through the code; for each step,
the current source unit is illuminated. However, if the program is run until a break occurs, CXdb tells
the user which source unit the break occurred at but fails to provide any history or context. Although
CXdb does not detect endangered variables, it detects and warns the user of nonresident variables.
CXdb uses the live range approach to detecting nonresident variables [17].

8 Experimental results

To compare the problems caused by nonresidency with those caused by noncurrency, and to evaluate
the effectiveness of using data-flow analysis, we have implemented our approach using the iWarp C
compiler. This compiler is based on the PCC2 compiler from AT&T that has been enhanced with
global optimizations. The target machine is the iWarp processor, an LIW machine, with a large
number of registers.

The set of programs for this evaluation consists of three C programs from the SPEC integer suite (li,
espresso and eqntott)[18], and twelve programs from the Numerical Recipes collection (balanc, bessi,
bessj, elmhes, fit, gauusj, hqr, jacobi, ludcmp, meo, svdcmp, and tred2)[16]. Each program from the
latter set consists of a small number of functions, and the results do not vary significantly between the
individual programs. Therefore, we average the results from the Numerical Recipes programs. Each
figure in this section contains four charts, one for each SPEC program, and one for the averaged results
of the Numerical Recipes programs (referred to in the figures as "recipes").
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8.1 Compiler framework

The iWazp C compiler (pro-release version 2.7) performs local code compaction for the iWarp processor.
iWarp is an LIW machine, with 128 registers, of which 94 are available to the compiler. In a single cycle,
the iWarp can execute a floating point multiplication, a floating point addition, 2 integer operations or
memory accesses, as well as a loop termination test [4].

The compiler performs global register allocation and assignment, branch optimizations, unreachable
code elimination, common subexpression elimination, value propagation, constant folding, and instruc-
tion scheduling. Common subexpression elimination, value propagation, and instruction scheduling
are performed at the basic block level. Function calls do not delimit basic blocks, and scheduling may
cause function calls to be reordered with respect to other operations.

Local variables that are not aliased are promoted to a register by the optimizer. These variables
along with compiler temporaries are allocated registers from an infinite pool of virtual registers. Virtual
registers are assigned physical registers after code scheduling, using graph coloring. Live ranges are not
split, and promoted variables have no home locations in memory. Therefore, a promoted variable resides
in its assigned register throughout its live range. The assigner attempts to assign caller saved registers
to live ranges that do not span function calls. Register subsumption or coalescing[6] is performed to
minimize the number of register moves. This optimization- assigns the same register to two virtual
registers whose live ranges do not conflict, but are connected by a register move. Due to the large
number of registers in our machine, none of the benchmarks requires live ranges to be spilled to
memory.

The code scheduler and register assigner of the iWarp C compiler create two problems for a debug-
ger. First, because of code scheduling, the debugger must detect which assignments and function call
operations have executed (or not executed) out of order with respect to the source stopping point, and
how source level values have been affected. Second, because registers may be reassigned, the debugger
must detect which of the promoted variables are resident in their assigned registers at a breakpoint.
A promoted variable may have been evicted either because its assigned register was re-assigned to
another variable or killed by a function call (if the variable was assigned a caller saved register). Since
promoted variables do not have home locations in memory, recovery of their values is difficult.

The code generator was modified to emit the information and IR annotations described in Sections
4 and 5. The IR of assignments that have been eliminated due to coalescing are annotated as described
in Section 6. Register assignments are recorded in a table that maps register assigned variables to
physical registers. Note that the object code is identical to the default code produced. The debugger
is totally non-intrusive and does not effect any changes in the code, the memory layout, or any other
aspect of the object program. The alge'-ithms for detecting nonresident and endangered variables can
be performed either in the compiler for the debugger, or in the debugger. For our experiments, these
algorithms were implemented in a separate program that gathers statistics.

The information presented in this section is collected by analyzing the code generator output for
all possible breakpoint locations.

8.2 Nonresident variables

Our experiments compare the effects of data-flow analysis techniques for finding evicted variables to
a simple approach, which tracks a variable's location only during the variable's live range. We also
investigate the effects of using reaching analysis to find uninitialized variables at breakpoints.

We look at the following four approaches to detecting nonresident variables:

1. A variable is resident during its five range only.
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2. A variable is resident during its live range only, and reaching analysis detects uninitialized vari-
ables.

3. A variable is resident wherever it is not evicted.

4. A variables is resident wherever it Is not evicted, and reaching analysis detects uninitialized
variables.

In the first approach, the debugger Is successful in recovering a variable V's value if a breakpoint
occurs inside V's live range. The second approach augments the first approach by using reaching
analysis to detect uninitialized variables. In this approach, the debugger is successful in recovering a
variable V's value if the breakpoint occurs inside Vs live range. At a source breakpoint where V is
not reaching, the debugger reports V as uninitialized. This reduces the number of variables reported
nonresident, since uninitialized variables are not reported as nonresident.

The third approach uses the data-flow analysis technique described in Section 4.3 to find all points
where a variable V's assigned register R(V) contains V's value. However, at a breakpoint, an uninitial-
ized variable V is reported as nonresident if an evicting definition of V reaches the object breakpoint
location. Recall that such an evicting definition is not a source definition of V. The fourth approach
adds reaching analysis to the third approach to detect uninitialized variables and therefore only reports
variables as evicted if there is a source definition that reaches the breakpoint. This approach is the
most aggressive and least conservative of the four.

Figure 7 compares the percentage of breakpoints that contain endangered variables with the per-
centage of breakpoints that contain nonresident variables using each of the above four approaches. The
first column shows the percentage of instructions for which there are endangered variables, i.e., we
map each instruction to its source statement and determine if there are any assignments or function
calls that have been scheduled out of source order. The other four columns show the percentage of
breakpoints with nonresident variables. For each approach listed above, we compute the number of
instructions for which there is at least one nonresident variable. The raw instruction counts are nor-
malized by the total number of instructions in the program. These metrics do not reflect the number
of noncurrent or nonresident variables at a breakpoint, nor do they consider the dynamic behavior of
programs. Note that these metrics also assume queries to all variables to be equally likely.

The breakpoint model used is one that considers all instructions as potential breakpoints and
corresponds to the situation where the user can interrupt program execution at an arbitrary point in
the object. We also considered a breakpoint model where only instruction that can generate a fault
are considered as breakpoints. Note that these models capture the state of the user program for each
machine instruction in the object code and not for each source-level statement in the user program.

The results in Figure 7 for these benchmarks show that there are significantly more breakpoints con-
taining nonresident variables than there are breakpoints with endangered variables. Thus nonresident
variables are potentially a more serious problem than endangered variables when debugging optimized
code.

A comparison of the results of using the first approach with the results of using the third approach,
as well as a comparison of the second approach with the fourth approach show that using data-flow
analysis to detect evicted variables significantly increases the chances of recovering a register assigned
variable's value.

The effects of usivg reaching analysis can be measured by comparing the results of using the first
and second approach and by comparing the results of using the third and fourth approach. Our results
show that using reaching analysis decreases the number of breakpoints with nonresident variables for
both the live range approach and the evicted data-flow analysis approach.
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Benchmark Average number of Average number of
out-of-order machine -perations statements per basic block

per breakpoint
Ii 0.8 1.2
espresso 0.6 1.6
*qntett 0.7 1.5
recipes 1.1 2.1

Table 4: Effect of scheduling

Another way to evaluate the effectiveness of the various techniques for detecting nonresident vari-
ables is to look at the number of variables that awe nonresident at a given breakpoint. Figure 8 presents
this information using the same breakpoint model as discussed above. The leftmost column of each
graph in this figure shows the average number of register assigned variables; this number presents a
baseline for comparison. A naive debugger that does not handle register assigned variables at all has
to report all of these variables as inaccessible, so this number is the upper bound on nonresident vari-
ables for each program. The rightmost columns of these graphs depict the average number of variables
that the different strategies discussed above report as inaccessible. The results from this figure again
illustrate the effectiveness of using data-flow analysis to detect nonresident and uninitialized variables.

To minimize saving and restoring of callee-saved registers in function prologues and epilogues,
our compiler attempts to assign caller-saved registers to live ranges that do not span function calls.
However, the programs from the SPEC suite contain a large number of function calls. Since function
calls evict variables that have been assigned caller-saved registers, assigning caller-saved registers to
variables could affect the number of variables that are evicted. We investigated the effects of assigning
only callee-saved registers to variables, and our results showed that the choice of assigning caller-saved
vs. callee-saved registers to variables does effect the number of nonresident variables.

8.3 Endangered variables

Clearly, the number of endangered variables at a breakpoint is a function of the program and the
code generator. (A code generator without reordering does not cause any endangered variables). We
performed a simple sanity check to ensure that indeed the code generator interleaved the execution
of multiple statements where appropriate. Table 4 shows the average number of out-of-order machine
operations at each breakpoint. Although there are on the average only a few statements per basic
block, the compiler interleaves code quite frequently when the opportunity exists. (For comparison,
the average number of statements per basic block in the source programs is shown in the right column.
Basic blocks with just a single statements contain no endangered variables due to reordering, and no
out-of-order operations. For Ii, only 1/5 of the basic blocks contains more than one statement on
average, but nevertheless, on average, 0.8 operations are out-of-order.)

Figure 9 shows the number of breakpoints that contain out-of-order operations as a percentage
of the total number of possible breakpoints (i.e., machine operations) in each benchmark program.
Only out-of-order operations that cause noncurrent or suspect variables are included in Figure 9. The
percentage of breakpoints with such out of order operations ranges from approximately 9% (1U) to 21%
(recipes).

Columns 2 to 6 of Figure 9 show what kind of operation causes endangered variables. Note that at
a breakpoint B there can be more than one out-of-w:der operation, so the sum of the percentages of
these columns may be more than the total shown by the first column. At the majority of breakpoints
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with endangered variables, an assignment to a register assigned variable is out-of-order and causes this
variable to be noncurrent. The exception to this is 3A, which contains a large number of function
calls, and where out-of-order function calls are the main cause of endangered variables. The low
number of out-of-order assignments to local variables in memory is due to the success of the register
allocator in assigning registers to local variables. Out-of-order function calls are the second largest
contributor for the other SPEC benchmarks. This shows that if a scheduler operates on basic blocks
that are not delimited by function calls, a significant number of function calls may be out-of-order
at a breakpoint. The numerical recipes benchmark consists mainly of computations on arrays, with
relatively few function calls. Therefore this benchmark has a higher percentage of breakpoints with
endangered variables caused by out-of-order pointer assignments and a low percentage of breakpoints
with out-of-order function calls. In the SPEC programs, out of order assignments through pointers
occur at about 2% of all breakpoints, while in the numerical recipes such assignments occur at about
4% of the breakpoints.

Out-of-order~function calls are problematic in that the debugger cannot determine a function call's
effect on the program state in memory. Thus a debugger must report a memory variable as sdpect at
a breakpoint B, if there exists an out-of-order function call at B. Out-of-order indirect assignments
are similarly problematic if the debugger cannot recover the address of the assigned memory location.
The variables effected by direct assignments can be precisely determined by the debugger, and hence
these types of assignments do not cause suspect variables.

Figure 10 depicts the effect of address recovery. Since we may not be able to count the number
of variables that are suspect (all variables on the heap may be included, and their number can only
be determined at runtime), we have to use the number of breakpoints with suspect (or noncurrent)
variables to illustrate the effect of recovery.

The first column in the charts of Figure 10 shows the number of breakpoints with either noncurrent
or suspect variables (from Figure 9) and is repeated here for reference. The second column in the charts
shows the percentage of breakpoints with out-of-order direct assignments. These are breakpoints with
noncurrent variables. The third column shows the percentage of breakpoints with out-of-order indirect
assignments or function calls. These are breakpoints with suspect variables. This data indicates that
there are more breakpoints with noncurrent variables than there are breakpoints with suspect variables.
However, there are still a significant number of breakpoints with juispect variables. In the case of 1i
there are almost as many breakpoints with suspect variables as there are breakpoints with noncurrent
variables. Furthenraore, the number of suspect variables can be quite large at such a breakpoint.
Therefore, any success in identifying the effect of the indirect assignments improves the quality of the
debugger, since such recovery of the addresses allows thd debugger to provide the user with more precise
responses.

The last two columns in the graphs of Figure 10 show the effects of recovering addresses of out-of-
order indirect assignments. Address recovery reduces the number of breakpoints with suspect variables
to approximately the number of breakpoints with out-of-order function calls, which is the limit on how
weil address recovery can do.

Figure 11 breaks down the percentage of breakpoints with out-of-order assignments and function
calls into breakpoints with roll forward and roll back operations. Again, the first column is repeated
from Figure 9. We see that there are more breakpoints with roll forward operations (Column 2) than
ones with roll back operations (Column 3). This is good news for the user interested in obtaining
the expected value of a variable: for a roll forward operation M, either the debugger may attempt to
recover the value using the approach described in Section 5.4, or the user may set a breakpoint at the
point where M is eventually computed to recover the value computed by M.

This figure also breaks down. the breakpoints with roll forward/roll back operations according to
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Benchmark % Breakpoints with % Breakpoints with

out-of-order function calls out-of-order function calls
or assignments or assignments that are not recoverable

71_8.8 6.1
espresso 12.9 9.0
oqntott 14.5 10.7
recipes 20.8 . 16.2

Table 5: Effects of recovery

whether they cause suspect or noncurrent variables. Column 7 (the right most column) shows the
percentage of breakpoints with a roll back function call or indirect assignment. The debugger may be
limited in allowin$ variable inspection at such a breakpoint, since some or all variables in memory may
be suspect. But Ilmost all roll back operations are direct assignment operations; roll back function
calls or indirect assignments are very rare. That is, almost all suspect variables are caused by roll
forward operations, and those can be resolved at runtime by the debugger.

A user of a debugger may want to know how many variables are suspect or noncurrent at the
average breakpoint. As explained above, this number cannot be obtained using the static analysis
tools developed, since the number of suspect memory variables is dynamic (and may differ from one
run of a program to another). However, for other out-of-order operations, a better breakdown is possible
and !s presented in Figure 12. This figure shows the average number of roll forward operations per
breakpoints with noncurrent or suspect variables, for the different types of assignments and for function
calls. Columns 1, 3, 5, 7, and 10 show the average number of roll forward assignments to registers, locals
(direct), and globals (direct), of indirect assignment,, and of roll forward function calls, respectively.
Also shown is the average number of roll-forward assignments whose values are recoverable using our
simple approach to assignment recovery (Columns 2, 4, 6, 9). In many of the cases, most of the roll
forward assignments are recoverable. Note that to recover an out-of-order indirect assignment, both
the address expression as well as the assigned value must be recoverable. We see that address recovery
is successful in recovering the addresses of most roll forward indirect assignments (Column 8), but there
are some for which only the the address expressions can be recovered (compare Column 8 with Column
9).

Address recovery is also successful in recovering the addresses of the majority of roll back indirect
assignments. However, these results were not shown because roll baek indirect assignments are so rare
that their effects do not show in the graph (see Figure 11 for the overall frequency).

In the case of roll forward operations that are direct assignments or indirect assignments with
recoverable addresses, the numbers in this graph are also upper bounds on the number of roll forward
variables that are caused by these assignments, since each assignment can assign to only one variable
(but more than one may assign to the same variable).

In summary, there exist a noticeable number of breakpoints with endangered variables (between
9% and 20% in our suite), but their number is no obstacle to symbolic debugging. Furthermore, even a
simple recovery scheme as described in this paper reduces the number of breakpoints with endangered
variables. Table 5 presents the bottom line and shows how recovery effects the number of breakpoints
where the debugger can provide the expected values of source variables.
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9 Conclusions

Global register allocation/assignment and instruction scheduling are important aspects of code gen-
eration and a large number of modern compilers Include some form of these optimizations. Register
allocation/assignment causes nonresident variables by re-assigning registers to many variables. In-
struction scheduling causes endangered variables by re-ordering the execution of side effecting source
operations. There exist two mutually exclusive classes of endangered variables: those for which the
debugger can deduce that the actual value is not the expected value, and those for which the debug-
ger is not sure. A debugger that wants to exhibit truthful behavior must detect all endangered and
nonresident variables and warn the user.

Prior work in debugging of optimized code has concentrated mainly on the problem of detecting and
recovering endangered variables and has either ignored the problem of evicted variables by assuming-
that a variable is always resident in a storage location, or used a simplistic approach to tracking variable
locations. However, evicted variables are a serious problem for a symbolic debugger if the compiler
optimizations include global register allocation and assignment (as is commonly done in modern com-
pilers today). Our results indicate that evicted variables are far more serious problem than endangered
variables. In our sample programs a large number of breakpoints have evicted variables.

To detect evicted .a-riables, it is necessary to consider the data-flow at the level of machine instruc-
tions since it is at this level that register re-use occurs Thus a detailed model of the machine resources
is required. Debugger models proposed in previous studies are at a higher level than the machine level
and are not sufficient for detecting evicted variables.

Detecting evicted variables requires analysis for the debugger. Our results show that at an approach
that uses compiler collected data-flow information (e.g., live range information for register allocation)
to track a variable's location is conservative. The impact of data-flow analysis on the number of
resident variables is significant, and our results clearly show that performing data-flow analysis to
detect evicted and uninitialized varialles increases the number of variables that are correctly reported
by the debugger.

Deteuting noncurrent variables caused by instruction scheduling requires accurate modeling of
source and object execution orders. When debugging a realistic language such as C, out-of-order pointer
assignments and function calls may inhibit the debugger from precisely detecting which variables are
noncurrent. Our results show that the impact of out-of-order function calls can be significant.

A simple recovery scheme that rolls forward a single instruction is effective for recovering the values
assigned by out-of-order assignments and can reduce the number of variables for which the debugger
cannot report the expected value. Further work is required to investigate whether better results can
be obtained by rolling forward through more instructions. Recovering address values from the physical
registers can reduce the number of out-of-order assignments that cause suspect variables. By recovering
the address, the debugger can determine the effect of the indirect assignment on the programmer-
visible state of the machine. Both techniques are effective and reduce the number of breakpoints with
endangered variables.
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