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Optoelectronic Associative Memories
Sadik C. Esener, Philippe Marchand and Ashok Krishnamoorthy

Department of Electrical and Computer Engiti6ering
University of California, san Diego

1. OBJECTIVES

Our objective during the funding period, July 14 1989 to January 13 1991, was to design
and study the feasability of the motionless-head parallel readout optical disk system and the
optoelectronic associative memory system. The major focus of the work has been on the
development and implementation of the parallel readout optical disk prototype and on the
simulations of the associative memory architecture and algorithms. Another important research
area was in the modification of the disk encoding scheme and on the disk optical readout system to
improve the system performance.

2. PARALLEL READOUT OPTICAL DISK SYSTEM

2.1 Disk encoding

A 5.1/4" diameter disk with a 1.5 g.m track pitch and a 1 p.m pit size is assumed. The disk
active surface has a radius of 3 cm and therefore contains 20,000 concentric tracks and has a
capacity of 940 Mbytes.

The data encoding method and the readout system are designed to allow reconstructions of 2-
D images in the output plane. As illustrated in figure 1, a 2-D image (of size NxN) is first sliced
into 1 -D elements (lines or columns) and a 1 -D Fourier transform computer generated hologram is
then calculated for each one of them. These 1-D holograms are shifted one another until their total
length equals the radius of the disk active surface and then recorded on the disk. N holograms.
representing one image, are then distributed along the disk radius. A disk encoded this way has a
capacity of approximately 14,000 128x 128 pixel images.

2.2 Optical system

The optical readout system (figure 2) maps the data distribution on the disk to a 2-D image at
the output. Lens L2 illuminates an area on the disk whose length is equal to an entire radial line of
the disk active surface. Therefore N data blocks are illuminated simultaneously. The cylindrical
lens L3 performs a Fourier transform of the illuminated area along the radial direction while lens
L4 images and magnifies the data along the tangential direction. N data blocks are read
simultaneously, therefore a binary image of NxN pixels is reconstructed on the output plane.
Since no mechanical motion of the head is required to access any image stored on the disk, the
entire content of the disk can be retrieved in one rotation. Higher performance than any existing
optical disk systems can be achieved. For a rotation speed of the disk of 2,400 rpm and an image
size of 128x128 pixels, the data rate is then 1.2 Gbytes/sec, the access time 12.5 msec and the
retrieval time is 25 msec.

The beam illuminating the disk holograms converges along the tangential directi L. and is a
plane wave along the radial direction. The width of the area containing the data blocks of one
image is 22 p.m. A relatively large f-number lens (L 1) is used to ensure a small illumination solid
angle Therefore, the depth of focus is large (> 10 p.m). This lens is placed out of focus, at a
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distance calculated to allow the illuminating beam to be slightly smaller than 22 gtm at the disk
plane. A wobble of 20 gIm due to flatness variations of the spinning surface can therefore be
tolerated. In addition, due to the hologram information redundancy, even partially illuminated
holograms reconstruct the entire data; a loss of 10% of the hologram information inducing a loss
of only 3 dB in the reconstruction Signal to Noise Ratio (SNR) 5. For these ieasons, no focusing
servo is required. As shown in section 2.1 the data is encoded as 1-D computer generated Fourier
holograms. Since Fourier-transform holograms are shift-invariant, the eccentricity (radial motion)
of the spinnIng disk does not affect the reconstruction of the data. Therefore no tracking servo is
required.

2.3 Hologram encoding

The data encoding on the disk is a key factor for a good operation of -.he parallel readout
system. 1 he quality of the reconstruction and also the size of the hologram zerefore the capacity of
the disk will both depend on the holographic encoding. The first criterium is the best compromise
between the quality of the reconstruction and the disk capacity. Moreover due to the nature of the
data recording on a disk, the holograms must be binary. The reconstructed images have also to be
binary. Taking into account all these requirements a CGH encoding method has been developed
specifically for the disk holograms. This method based on a grey level encoding scheme has been
compared to the existing methods.

Each column of the NxN pixel image to be stored on the disk is used as the 1 -D input image
(C) for which an hologram of size KxN will be computed. The binary array (C) is then embedded
with a specific shift m into a 1-D array (0) of size M of which all elements are zeros. A random
phase is then multiplied to this new input array, and its 1-D Fast Fourier Transform (FFT) is
computed. The real part is extracted and a bias equal to its minimum is added to it in order to make
all the values positive. Each sample value obtained is quantized to n grey levels on a n-1 bit pattern
using a density modulation algorithm (see figure 3a). In order to reduce the speckle the resulting
binary hologram is replicated once to generate a 2M cells of (n-I) bit data block. An example of
such a block is given in figure 3b. For the actual system with images of 128x128 pixel image to be
stored, the 128 bits of each column are encoded in a 512 cell holograms with 5 grey levels.
Therefore the hologram after replication is a 4x1024 bits data block. Using a larger number of grey
levels reduces the disk storage capacity but increases the output SNR. Then depending on the
application, SNR can be traded in for capacity.

It is possible to improve greatly the performances of these holograms by calculating them
with an iterative algorithm. This algorithm is derived from the Direct Binary Search (DBS)
algorithm 8 and adapted for the grey level encoding method described previously. The flow chart
of this algorithm is given on figure 4. A random grey level hologram is first generated. The
reconstruction of this hologram is then computed by FFT. An error function is calculated by
comparing the intensity of the reconstructed image and the original image to be reconstructed. The
bits of each cell of the hologram are then inverted one after another and the new reconstruction is
computed each time. But it is not neccessary to use an FF1', since changing one bit of the hologram
is equivalent of adding (bit changed from 0 to 1) or substracting (bit changed from 0 to 1) a plane
wave to the previous reconstruction. The error between the new reconstruction and the original
image is calculated. If the new error is smaller than the previous one the change of the bit is
maintained and the new error is memorized, if not the change is ignored. A loop is completed when
the n grey levels of the M cells of the hologram have been tested.The iterative process continues
until a predetermined number of loops is completed (ctr) or until the error is lower than a preset
threshold or until all the change are ignored during one complete iteration.

Table 1 shows the. comparison of this encoding method with other binary encodings. The
reconstructions are simulated on computer and the comparison criteria are: the diffraction efficiency
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and the contrast ratio. The diffraction efficiency is defined as the ratio between the intensity of the
reconstructed image and the total intensity of the reconstruction. Two different cases are defined
for the contrast ratio. The average contrast ratio is computed by taking the ratio of the average
intensity of the "1" bits over the average intensity of the "0" bits. The worst case contrast ratio is
the ratio between the lowest intensity of a "1" bit and the highest intensity of a "0" bit. The values
of table I are an average for 128 holograms. For all the encoding methods, 4x 1024 pixel
holograms are used. The cell oriented method is similar to the one proposed by Psaltis 8, only the
phase is encoded by variation of the position of "1" bits in a cell. The other methods are the error
diffusion as def'red by Hauck 9, the grey level method and the iterative method described here.
The table 1 shows that the iterative method we proposed gives the best results. However the
algorithm must be very carefully implemented on the computer in order to optimize the computing
time for the holograms.

2.4 Experimental results

Experiments were conducted to test the hologram encoding method as well as the validity of
the disk data layout and the optical system. For these first experiments, the holograms were
recorded on glass plate with an electron beam recorder (EBR), using the same feature size as an
actual optical disk (lgm spots with 1.5 gim radial pitch, see figure 5). Once the holograms are
calculated, they are processed by the UCSD holographic CAD program 10 which generates data
files for the EBR. Several holograms were recorded on glass plates of 1.2 mm thickness with a
photoresist of 350 nm thickness. The optical system used for reading the disk is described on
figure 2. The following lenses are used:

L2 f 100 mm aperture: 50 x 60 mm f/# = 2 illuminating lens
L3 f := 200 mm aperture: 60 x 50 mm f/# = 4 Fourier transform lens
L4 f := 25.4 mm aperture: 22 x 60 mm f/# = 1.15 imaging lens

The plates were placed in the optical system on a rotation stage at the disk plane, both static
and dynamic measurements being conducted. The hologram reconstructions were analysed. Figure
6 shows the intensity of a part of a line in a 128x128 pixel reconstructed image, an average SNR
of about 40 is measured. Static measurements revealed that focusing errors of up to 20 gm and
tracking errors of over I mm could be tolerated without significant degradation of the reconstructed
image. Dynamic tests have been conducted and as expected the position of the reconstructed
images in the output plane is not moving when the disk is rotating and moving lateraly due to the
excentricity. Figure 7 shows the center portion of a 128x128 pixel reconstructed image.

Finally, the performance of the full scale motionless-head parallel readout optical disk
system, using a 13 cm disk diameter rotating at 2400 rpm and storing 128x128 pixel images
(typical rotation speed of optical disks systems), are expected to be:

Storage capacity: 7.4 Gbits
or 14,000 images

Data rate: 1.2 Gbytes/sec
or 580,000 images/sec

Average access time: 12.5 msec

2.5 Hybrid lens design

The optical system design for the parallel readout optical disk system includes two separate
cylindrical lenses with different focal lengths: one for imaging in the X-direction, and one for
Fourier transforming in the Y-direction. Besides being bulky and heavy, these cylindrical lenses
are extremely difficult to align and suffer from severe aberrations. Code V optical design software

3



is then used to design a single Holographic Optical Element (HOE) to replace the function of the
two lenses and to correct for the aberrations (figure 8). Due to the difference in focal lengths in the
X and Y directions, it is found advantageous to use orthogonal cylindrical diffractive lenses I
(OCDL). Two separate designs were studied, both design overcoming the problem associated with
refractive cylindrical lenses. The first one is a single element HOE with both focal lengths positive
but different. The second design is a hybrid refractive/ diffractive element that combines a HOE
with a piano-convex spherical lens. In this case one focal lenth is positive while the other is
negative. The respective optical performance of the three systems are shown in the figure 9. The
error function is calculated in Code V and corresponds to the distance of all the rays to the chief ray
in the output plane. The results show that the best system is the hybrid element for both optical
performance and fabrication requirements. Indeed, this combination raises the required f/# of the
OCDL, which in turn reduces the minimum feature size of the OCDL. Thus a larger size OCDL
with more phase levels and a higher diffraction efficiency can be fabricated. As an illustration of
this design a mask of the diffractive element of the hybrid lens can be seen in the figure 10.

3. ASSOCIATIVE MEMORY STUDY

3.1 System overview

The associative memory system (figure 11) presently being developed at UCSD, consists of
the parallel readout optical disk, an opto-electronic XNOR gate array, a photo-detector array and a
single variable threshold summation circuit. A 2-D query from the host computer, is electronically
loaded onto the XNOR gate array. The query image is then compared serially to the binary images
from the optical disk (bitwise matching operations). The output of the variable threshold detector
is then fed into the decision circuit which controls the data flow between the photo-detector array
and the host computer.

This associative memory system using the optical disk is well suited to implement a page
serial, bit parallel inner product algorithm system which is shown in figure 12. The search time of
this method is higher than those of outer product and parallel inner product methods.12 However.
due to the high data rate achievable with the parallel readout optical disk, the page serial, bit parallel
inner product method is still capable of low retrieval times.

The system can support two modes of operation. In the first mode, the threshold value is
preselected. Local XNOR operations are performed between the bits of the electronic query and the
corresponding bits of the disk image.Therefore only images that are close to the query will be
retrieved by the host computer via the photodetector array. The second mode finds the best match
to the query image. On the first rotation, the Hamming distance for each image is input to the
decision circuit in the manner described above. The best match is identified and retrieved on the
subsequent rotation.

The key element of the associative memory system using the motionless head disk is the
optoelectronic XNOR integrated circuit which is computing the inner product. Two different
approaches have been considered to realize this circuit, one analog approach and a digital approach.

3.2 Analog approach

The XNOR gate array consists of an optically and electronically addressed 2-D PLZT SLM
13 with local Silicon circuitry that performs the Exclusive-nor function. Each unit cell receives
three inputs as well as control information. The query bit is electronically loaded from the host
computer. The corresponding bit from the stored images arrive from the disk at the detector. The
third input is a clock obtained from the disk that signals when a complete image is under
observation. The detector circuits of the XNOR gate array are designed to provide large noise
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margins for the detected input bits. The SNRs achievable with the disk holograms can therefore be
tolerated since each detector circuit restores logic levels. The logic circuitry drives the PLZT
modulator so as to allow light to pass when a bit match occurs. Therefore, the output light
represents a logical Exclusive-nor operation of the query bits and the corresponding bits of the
stored image.There are two limitation to this approach. The minimal Hamming distance which can
be distinguished is limited by the contrast ratio of the Si/PLZT modulators and by the dynamic
range of the variable threshold detector.

3.2 Digital approach

The limitations of the previously described analog approach can be overcome by replacing the
Si/PLZT XNOR gate array with an Opto-Electronic Integrated Circuit (OEIC) based on a tree
structure 14,15. This OEIC has light dtectors to receive the light from the images read from the
disk. It also has local silicon circuitry perform the XNOR operation between the disk images bits
and the query bits and fan-in units to perform the summs of the bits down the tree. A schematic
view of such an OEIC, based on a H-tree structure 15 is shown in the figure 13. Using this OEIC
system, the Hamming distance between a query and the image stored on the disk can be measured
with a precision of one bit. Furthermore, the system maintains high throughputs, since all
operations down the tree can be pipelined due to the H-tree structure where all electronic lines have
equal length and introduce no signal skew.

A simulation of this system has been implemented. The images are read from the disk using a
CCD camera interface to a PC conputer. Once an image is read, it is digitized and compared
(XNOR operations) to the electronic query. The results of the XNOR operations are then summed
and the Hamming distance between the query and the disk images is calcuiated. The results of the
simulation can be seen on the figure 14 where 16x16 images were used.

4. CONCLUSIONS

During this project, we have designed and experimentally tested a motionless-head 2-D
parallel readout system for optical disks. Since the optical disk system requires no mechanical
motion of the head for access, focusing or tracking, addressing is performed only through the
rotation of the disk. A higher data rate than any existing optical disk system can be achieved since
the entire memory can be scanned in one rotation. The data is written on the disk as 1 -D CGH, and
a special CGH encoding method using an iterative algorithm and a grey level representation by
density modulation has been developped giving high quality reconstructions. The optical readout
system is very simple and consists of only three cylindrical lenses. For easier system alignment
and better optical performance, two of these lenses could be replaced by a single hybrid
diffractive/refractive optical element. An opto-electronic associative memory system using the
parallel readout optical disk has also been designed. This associative memory system consists of
the parallel readout optical disk, a host computer, an optoelectronic XNOR gate array and its
summation circuit (analog or digital) and a local decision circuit. After simulations, the digital
approach based on a serial inner product algorithm has been proven to give the best overall
performance.
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6. TABLES AND FIGURES

Diffraction effiency Worst case contrast ratio Average contrast ratio

Cell Oriented 7 % < 1 10

Error Diffusion 5 % 2 15

FFT Grey level 4x1 5% 5 25

Iterative Grey level 4x1 12 % 50 350
i.te a iiiý I I ml

Table 1: Comparison of encoding methods for disk holograms
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Figure 1: Disk data encoding. A 2-1) image is sliced into I1-D columns. These
columns are then I -D Fourier transformed and I -D CGH are generated. The
holograms are then shifted one another and radially recorded.
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Figure 2: Optical system. After being collimated by lens LI, the light is focused onto the disk by
cylindrical lens L2. Cylindrical lens L3 performs the Fourier transform of the data along the radial
direction and cylindrical lens L4 images and magnifies the data(M = d2/dl) along the tangential
direction. A binary image of 128 x 128 points is then reconstructed on the ouput plane.
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Figure 4: Iterative algorithm flowchart for grey level holograms
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radial direction

Figure 5: Experimentally recorded holognrms: The holograms are recorded on an E-beam test plate using optical
disk pits feature size, i.e I pm bit size with 1.5 pitch according to the format described in figure 1 and 3.

3m

vI ILQ1u 1.

Bit sequence to be detected 1100011 Average SNR= 40
Figure 6: Expermetal intensity measurement of an output image

Figure 7: Disk in rotation: center portion of an 128x128 recomuwtzed image
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Figure 8: Replacement of the two orthogonal cylindrical lenses with one hybrid refractive/diffractive element
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Figure 9: Comparison between the three systems studied with Code V
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Figure 10: Hybrid lens fabrication, OCDL mask # I corresponding to a binary phase
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Figure 11: Associative memory design

2 model of operation:

1. Preset threshold : All images that satisfy threshold are retrieved in one rotation
2. Best match : detect smallest hamming distance during first rotation and retrieve

best matched image during 2nd rotation
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M = Number of memory pages
N= Size of a page
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Figure 12: Serial inner-product algorithm
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Figure 13: Schematic view of the Opto-Electronic Integrated Circuit (OEIC) based
on a H-tre structure, and a fan-in unit detalled view.

Figure 14: The query (RADC) and the output of the )(NOR gate array showing a complete
match with one of the image of the memory, the memory is then recovered.
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ABSTRACT

A motionless head 2-D parallel readout system for optical disks is presented. A design for a high
performance associative memory system using the parallel readout disk is also described. Such systems
offer several advantages: high data rates, low retrieval times and simple implementation.

1. INTRODUCTION

Current secondary storage systems have low transfer rates relative to CPU processing speeds [1].
For memory intensive applications, this creates a performance bottleneck since the 1/0 subsystem forces
the CPU to wait for data. Solid state disk drives, with capacities of 100 Mbytes, can provide
bandwidths no better than 10 Mbytes/sec [2]. Although projected developments in main memory
technologies such as SRAM and DRAM could provide bandwidths of 100 Mbytes/sec, their capacity will
remain severely limited (1-10 Mbytes) [3,4]. However, as depicted in figure 1, the 1/O bandwidth
limitations to the host CPU can be alleviated by incorporating high parallelism and suitable "intelligence"
at the secondary storage. In this paper, we propose a high performance opto-electronic associative
memory using a fast, parallel access optical storage medium that can reduce this performance bottleneck.

A motionless-head parallel readout optical disk system is first presented. Its unique features are
discussed and it is compared to various parallel access optical storage media. The motionless-head
parallel readout system for optical disks is shown to meet current and near-term future requirements for
high performance secondary storage. In order to select a memory architecture compatible with the
motionless-head disk, inner-product and outer-product associative men'mory algorithms are compared in
terms of their storage requirements, search times, system complexities, and fault tolerance. Based on
this comparison, the page serial, bit-parallel inner-product method is shown to be well suited to
implementation with the parallel readout optical disk and opto-electronic XNOR gate arrays, using for
instance the Si/PLZT technology [5]. Finally, the associative memory system design is presented.

2. MOTIONLESS PARALLEL READOUT SYSTEM FOR OPTICAL DISK

In this section a design for a parallel readout optical disk system is presented. This system is well
suited for associative memory implementations because it has the unique advantage that no mechanical
motion of the head is required for access, focusing or tracking.

A 5.1/4" diameter disk with a 1.5 =m track pitch and a I p±m pit size Is assumed. The disk active
surface has a radius of 3 cm and therefore contains 20,000 concentric tracks. The data encoding method
and the readout system are designed to allow reconstructions of 128x128 pixel images at the output. As
illustrated in figure 2a, the data blocks are 1-D Fourier transform Computer Generated Holograms
(CGH) calculated to reconstruct one column of 128 pixels each. 128 of these blocks, representing one
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image, are distributed along the radial direction of the disk active surface, shifted radially by 150 tracks
from one another (fig 2b).

The optical readout system (figure 3) maps this data distribution on the disk to a 2-D image at the
output. Lens L2 illuminates an area on the disk whose length is equal to an entire radial line of the disk
active surface. Therefore 128 data blocks are illuminated simultaneously. The cylindrical lens L3
performs a Fourier transform of the illuminated area along the radial direction while lens L4 images and
magnifies the data along the tangential direction. 128 data blocks are read simultaneously and a binary
image of 128x128 pixels is reconstructed on the output plane. Since no mechanical motion of the head
is required to access any image stored on the disk, the entire content of the disk can be retrieved in one
rotation. A higher data rate than any existing optical disk system can therefore be achieved.

The beam illuminating the disk holograms converges along the tangential direction and is a plane
wave along the radial direction. The width of the area containing the data blocks of one image is 22 pIm.
A relatively large f-number lens (LI) is used to ensure a small illumination solid angle Therefore, the
depth of focus is large (> ± 10 gm). This lens is placed out of focus, at a distance calculated to allow the
illuminating beam to be slightly smaller than 22 gmn at the disk plane. A wobble of 20 pm due to flatness
variations of the spinning surface can therefore be tolerated. In addition, due to the hologram
information redundancy, even partially illuminated holograms reconstruct the entire data; a loss of 10%
of the hologram information inducing a loss of only 3 dB in the reconstruction Signal to Noise Ratio
(SNR) [6]. For these reasons, no focusing servo is required.

The CGH encoding method developed specifically for the disk holograms is based on a grey level
encoding scheme. The 128 bits of each image column are embedded in a larger array of 512 elements.
This array is then either Fourier transformed or processed by an iterative algorithm. Each sample value
obtained is quantized to five grey levels on a four bit pattern (see figi: . 4a). The resulting hologram
(4x512 elements) is replicated once to generate a 4x1024 data block. An example of such a block is
given in figure 4b. Since Fourier-transform holograms are shift-invariant, the eccentricity (radial
motion) of the spinning disk does not affect the reconstruction of the data. Therefore no tracking servo
is required. Using a larger number of grey levels reduces the disk storage capacity but increases the
output SNR. Depending on the application, SNR can be traded in for capacity.

The encoding method described above necessitates an accurate recording control system that allows
a precise radial alignment of the recorded bits [7]. However, by using a larger number of grey levels, it
is possible to suppress the recording alignment requirement without a degradation in the SNR of the
reconstructed images. This would enable the disk to be recorded using almost any commercial optical
disk drive.

Experiments were conducted to test the hologram encoding method as well as the validity of the
disk data layout and the optical system. Several holograms were recorded on glass plates with an electron
beam recorder, using the same feature size as an actual optical disk (1gIm spots with 1.5 gm radial pitch,
see figure 5a). The plates were placed in the optical system at the disk plane and the hologram
reconstructions (figure 5b and 5c) were analysed. Average SNRs of over 100 for the smaller images
(16x16 pixels) and of about 40 for the larger ones (128x128 pixels) were measured. Static
measurements revealed that focusing errors of up to 20 gIn and tracking errors of over 1 mm could be
tolerated without significant degradation of the reconstructed image.

3. PARALLEL ACCESS OPTICAL MEMORIES

The critical parameters of concern for implementing an opto-electronic associative memory are the
capacity, data rate, latency time, and retrieval time of the secondary storage system. The data rate is the
maximum rate of information transfer from the memory device. Latency is defined as the delay beween
accessing two successive bit-planes. The retrieval time is the time required to read the entire content of
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the memory. As shown in table 1, several page oriented parallel access optical memories were
considered. These include 3-D memories such as photo-refractive crystals and two-photons memories,
as well as planar memories such as the Page-Oriented Holographic Memory (POhM) [8], and the
motionless-head parallel readout optical disk. Other parallel readout optical disk systems could not be
compared since the corresponding numbers were not available.

The POI-LM approach provides lower data rates. If moving parts are not used, the system is limited
by the resolution requirements of the optical system as well as the reduced effective aperture [9].
Volume holography using photorefractive crystals [10] shows promise. By applying a voltage to
increase the assymetry between write times and erase times [11], and storing low efficiency holograms,
terrabit storage may be possible. However, important questions of fixation, optimal multiplexing
methods, and crosstalk must be answered. Other volume media such as the UCSD/UCI 2-photon
memory [41 also have excellent performance potentials. However, such memories are not expected to be
manufactured before the turn of the century. Based on these figures, the motionless-head parallel
readout system for optical disks (section 3) is seen to be well suited to current and near-term future needs
for high performance secondary storage.

4. ASSOCIATIVE MEMORY ALGORITHMS

In this section several algorithmic approaches to associative memory using 2-D bit plane storage are
investigated. These fall into two broad categories. The first is an outer product algorithm using matrix-
tensor multiplications. The second is an inner-product scheme based on bitwise-matching.

In outer-product based associative memory algorithms, the memories are distributively stored via
an outer-product construction. If Xm represents one of M two-dimensional images to be stored, and Ym
the desired output, a fourth rank tensor must be stored:

WX= I YmXmT

For autoassociative memories, Ym=Xm. Outputs are obtained by iteratively performing tensor-
matrix multiplications on the input followed by thresholding (fig. 6).

In inner-product based algorithms such as the Hamming network [12], the data (Xm's) is stored
explicitly. Inner products between the input and all the Xm's are calculated and the output is the
corresponding Ym associated with the largest inner product. The inner products may be calculated in
parallel (fig 7), in which case a maximum-selector network is needed, or they may be calculated serially
(fig 8).

Outer-product neural network algorithms such as the Hopfield network and its variants suffer
several disadvantages when compared to parallel inner-product methods [ 13,14]. The critical issues for
an opto-electronic implementation are the storage requirements, system complexity, search times, and
fault tolerance of these methods. In table 2 a comparison of outer-product, parallel inner-product, and
serial inner-product methods is presented. Although outer-product based associative memories can
provide robust storage and fast convergence when a small number of very large memories are used [15],
inner-product methods provide significant hardware savings when a large number of memories must be
stored. For the optical disk system with M=14,500 images of N=128x128 bits each, the page-serial, bit-
parallel method has the least storage requirements as well as the lowest system complexity because no
maximum selector network is needed. For this same reason, the method does not place an upper limit on
the number of memories that can be searched. The search time of this method (O[M]) is higher than
those of outer product and parallel inner product methods. However, due to the high data rate achievable
with the parallel readout optical disk, the page serial, bit parallel inner product method is still capable of
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low retrieval times. Finally, as discussed in section 3, fault tolerance can be traded in for capacity. For
these reasons, the page serial, bit parallel inner product algorithm is well suited to implementation.

5. ASSOCIATIVE MEMORY SYSTEM DESIGN

The associative memory system (figure 9) presently being developed at UCSD, consists of the
parallel readout optical disk, a Si/PLZT XNOR gate array, a photo-detector array and a single variable
threshold detector with fast local decision circuitry. A 2-D query from the host computer, is
electronically loaded onto the Si/PLZT XNOR gate array. The query image is then compared serially to
the binary images from the optical disk (bitwise matching operations). The output of the variable
threshold detector is fed into the decision circuit which controls the data flow between the photo-detector
array and the host computer.

The XNOR gate array consists of an optically and electronically addressed 2-D PLZT SLM [51
with local Silicon circuitry that performs the Exclusive-nor function. Each unit cell receives three inputs
as well as control information. The query bit is electronically loaded from the host computer. The
corresponding bit from the stored images arrive from the disk at the detector. The third input is a clock
obtained from the disk that signals when a complete image is under observation. The detector circuits of
the XNOR gate array are designed to provide large noise margins for the detected input bits. The SNRs
achievable with the disk holograms can therefore be tolerated since each detector circuit restores logic
levels. The logic circuitry drives the PLZT modulator so as to allow light to pass when a bit match
occurs. Therefore, the output light represents a logical Exclusive-nor operation of the query bits and the
corresponding bits of the stored image.

The system can support two modes of operation. In the first mode, the detector threshold value is
preselected. The intensity at the Variable Threshold Detector (VTD) measures the match between the
query image and the stored image currently under observation. Therefore only images that are close to
the query will be retrieved by the host computer through the photodetector array. The second mode finds
the best match to the query image. On the first rotation, the intensity detected for each image is input to
the decis-on circuit. The best match is identified and retrieved on the subsequent rotation.

6. CONCLUSIONS

In this paper, we have presented an opto-electronic associative memory based on a motionless-head
2-D parallel readout system for optical disks. Since the optical disk system requires no mechanical
motion of the head for access, focusing or tracking, addressing is performed only through the rotation of
the disk. A higher data rate than any existing optical disk system can be achieved since the entire
memory can be scanned in one rotation. A design for an opto-electronic associative memory system
using the parallel readout optical disk and an optically addressed Si/PLZT SLM with local Exclusive-nor
circuitry was presented. The associative memory system can retrieve either the best match or all images
that satisfy a preset threshold. Such a system can achieve storage capacities of over 1 Gigabyte (14,500
images per disk) and retrieval times of 25 msec.
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Volume UCI / UCSD POHN UCSD Parallel
Holograms 3-D Memories Optical Disk

Capacity 125 GByies 12.5 GBytes 725 M]vytes 940 M2Bytes

Data rate 12.5 TByte/sec 12.5 TByte/sec 0.1 GByte/sec 1,2 GByte/sec

Latency time 10 pLsec 1 gsec 0.1 msec 1.7 lisec

Retrieval time 10 msec I msec 0.5 sec 25 msec

LiNbo, 10x10N l C.? 10xOxI O 6x6inchescard 51/4 -disks
Description 3pes 103 pages 5800 pages @ 2400 rpma

@ 109 bits/aage @ 10 biatspage 1450x0 pabges C
________________ ____________ _____________ 128x128 bits/aze

Table 1 : critical parameters for optical parallel access storage media

Storage Search Time System Fault
Requirements Requirements Tolerance

Outer Product N 2  F 'N1 2 element Graceful degradation
Neural OjLog Natrix-tensor to:

Network and M<O. 15N Local memory damage
Architecture multiplications Memory overloading

Analog weights

Parallel
Inner Product M •N-element) - No tolerance to

MN + LogM O[Log Ml mutrix-matrix Memory damage
Neural comparisons - Upper limit on

Network binary weights + maximum selection number of
Architecture circuit stored memories

Serial
Inner product MN O[M] N-element Fault tolerance can

Page serial matrix-matrix be traded in
Bit parallel binary weights comparisons for capacity
Comparison

* N = Number of bits per memory page

M = Number of memory pages

Table 2: Comparison of associative memory algorithms
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Figure 1 : Schematic of an associative memory system
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Figure 2a :Disk data encodinga. A 2-D image is sliced into IPD columns.
These columns are then P D Fourier transformed and I -D CGH are generated.
The holograms are then shifted one another and radially recorded.
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Figure 2b :Disk data layout. Data blocks of one image are
radially and laterally shifted

Los

Figure 3 :Optical system. After being collimated by lens Li, the light is focused onto the disk by
cylindrical lens L2. Cylindrical lens L3 performs the Fourier transform of the data along the radial
direction and cylindrical lens L4 images and magnifies the data(M = d2/dl) along the tangential
direction. A binary image of 128 x 128 points is then reconstructed on the ouput plane.
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Figure 5a : Experimentally recorded holograms
The holograms are recorded on an E-beam, test plate using
optical disk pits feature size, iLe lgrm bit size with 1.5 gm
pitch according to the format described in figure 2 and 4.
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Figure 5b : reconstruction
of a 16x16 object

Figure 5c: center portion of the
reconstruction of a 128x128 object
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ABSTRACT

A motionless head 2-D parallel readout system for optical disks is presented. The system is designed to read data blocks
encoded as I-D Fourier holograms distributed radially on the disk ac:ive surface. Such systems offer several advantages: hignh
data rates, low retrieval times and simple implementation. It is used as the secondary storage of a high performance
optoelectronic associative memory system.

1. INTRODUCTION

Current secondary storage systems have low transfer rates relative to CPU processing speeds I. For memoro.-
intensive applications, this creates a performance bottleneck since the I/O subsystem forces the CPU to wait for data. Soaý
state disk drives, with capacities of 100 Mbytes, can provide bandwidths no better than 10 Mbytes/sec 2. Althouc,,
projected developments in main memory technologies such as SRAM and DRAM could provide bandwidths of 1,00
Mbytessec, their capacity will remain severely limited (I-10 Mbytes) 3,4. Optical disks are good candidates for second--,,
storage. They combine a high capacity ( 900 Mbytes for a 5.1/4 "diameter disk ), low cost ( S I / Mbyte) and robusmess
(no head crash). There are three limitations for high speed operations of optical disk systems: the tracking, the focusing and
the addressing mechanisms. All theses functions require mechanical motions of the head which slow down the disk
operation. Moreover the available disk technology is sequential, only allowing data rates of up to I Mbyte/sec. It has been
shown that optical disks can be read in parallel and several parallel readout systems has been proposed 5.6.7. Our objecuve
is to implement a parallel system with data rate of 1Gbyte/sec and an average access time of 12.5 msec. In the system we
present, data is written radially on the disk as I-D holograms and data access is achieved solely through the disk rotation.
This system has the unique advantage that no mechanical motion of the head is required fur access, focusing or trackmng.
Section 2 introduces the system and the disk data encoding method. The application to associative memory is describeýd :n
section 3.

2. MOTIONLESS PARALLEL READOUT SYSTEM FOR OPTICAL DISK

2.1 Disk encoding

A 5.1/4" diameter disk with a 1.5 4m track pitch and a I 4,m pit size is assumed. The disk active surface has a
radius of 3 cm and therefore contains 20,000 concentric tracks and has a capacity of 940 Mbytes. The data encoding method
and the readout system are designed to allow reconstructions of 128x,128 pixel images at the output- As illustrated in figure
1, the data blocks are 1-D Fourier transform Computer Generated Holograms (CGH) calculated to reconstruct one column of
128 pixels each. 128 of these blocks, representing one image, are distributed along the radial direction of the disk acuve
surface, shifted radially from one another to fit a complete radius. A disk encoded this way has a capacity of approximateiy
14,000 128x128 pixel images.

2.2 Optical system

The optical readout system (figure 2) maps the data distribution on the disk to a 2-D image at the output. Lens L2
illuminates an area on the disk whose length is equal to an entire radial line of the disk active surface. Therefore 128 data
blocks are illuminated simultaneously, The cylindrical lens L3 performs a Fourier transform of the illuminated area along
the radial direction while lens L4 images and magnifies the data along the tangential direction. 128 data blocks are read
simultaneously, therefore a binary image of 128x128 pixels is reconstructed on the output plane. Since no mechanical
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mouon of the head is required to access any image stored on the disk. the entire content of the disk can be retrie.',d mn one
rotation. Higher performance than any existing optical disk systems can be achieved. For a rotation speed of :i dsk of
2,00 prom. the data rate is then i.lGbytes/sec, the access time 12.5 msec and the retrieval time is 25 msec.

The beam illuminating the disk holograms converges along the tangential direction and is a plane wave alone te
radial direction. The width of the area containing the data blocks of one image is 22 p.mn. A relatively large f-number lens
(Li) is used to ensure a small illumination solid angle Therefore, the depth of focus is large (> = 10 4em). This lens is
placed out of focus, at a distance calculated to allow the illuminating beam to be slightly smaller than 22 jim at the disk
plane. A wobble of 20 .um due to flamess variations of the spinning surface can therefore be tolerated. In addition, due to
the hologram information redundancy, even partially illuminated holugrams reconstruct the entire data; a loss of 10% of ,Ie
hologram information inducing l loss of only 3 dB in the reconstruction Signal to Noise Ratio (SNR) 5- For these
reasons, no focusing servo is required. As shown in section 2.1 the data is encoded as I-D comput r generated Fourier
holog-rams. Since Fourier-transform holograms are shift-invariant, the eccentricity (radial motion) of the spinning disk does
not affect the reconstruction of the data. Therefore no tracking servo is required.

2.3 Hologram encoding

The data encoding on the disk is a key factor for a good operation of the parallel readout system. The quafiit' of the
reconstruction and also the size of the hologram therefore the capacity of the disk will both depend on the hoiographic
encoding. The first criterium is the best compromise between the quality of the reconstruction and the disk capactyv.
Moreover due to the nature of the data recording on a disk, the holograms must be binary. The reconstructed images have
also to be binary. Taking into account all these requirements a CGH encoding method has been developed specifically for
the disk holograms. This method based on a grey level encoding scheme has been compared to the existing methods.

E.ach column of the NxN pixel image to be stored on the disk is used as the I-D input image (C) for ',i:ch an
holoLram of size KxN will be computed. The binary array (C) is then embedded with a specific shift m into a 1-D array O'O
of size M of which all elements are zeros. A random phase is then multiplied to this new input array, and its A-D Fast
Fourier Transform (FM) is computed. The real part is extracted and a bias equal to its minimum is added to it in order to
make all the values positive. Each sample value obtained is quantized to n rey levels on a n-I bit pattern using a density
modulation algorithm (see figure 3a). In order to reduce the speckle the resulting binary hologram is replicated once to
generate a 2M cells of (n-I) bit data block. An -example of such a block is given in figure 3b. For the actual system with
images of 128x128 pixel image to be stored, the 128 bits of each column are encoded in a 512 cell holograms with ' grey
levels. Therefore the hologram after replication is a 4x102 4 bits data block. Using a larger number of grey levels reduces the
disk storage capacity but increases the output SNR. Then depending on the application. SNR can be traded in for capacity.

It is possible to improve greatly the performances of these holograms by calculating them with an iteracive
algorithm. This algorithm is derived from the Direct Binary Search (DBS) algorithm S and adapted for the ereey level
encoding method described previously. The flow chart of this algorithm is given on figure .. A random grey level hologram
is first generated. The reconstruction of this hologram is then computed by FFT. An error function is calculated by
comparing the intensity of the reconstructed image and the original image to be reconstructed. The bits of each cell of the
hologram are then inverted one after another and the new reconstruction is computed each time. But it is not neccessary to
use an FFT, since changing one bit of the hologram is equivalent of adding (bit changed from 0 to 1) or substracung (bit
changed from 0 to 1) a plane wave to the previous reconstruction. The error between the new reconstruction and the
original image is calculated. If the new error is smaller than the previous one the change of the bit is maintained and the
new error is memorized, if not the change is ignored. A loop is completed when the n grey levels of the M cells of the
hologram have been Cested.The iterative process continues until a predetermined number of loops is completed (ctr or until
the error is lower than a preset threshold or until all the change are ignored during one complete iteration.

Table 1 shows the comparison of this encoding method with other binary encodings. The reconstructions are
simulated on computer and the comparison criteria are: the diffraction efficiency and the contrast ratio. The diffraction
efficiency is defined as the ratio between the intensity of the reconstructed image and the total intensity of the
reconstruction. Two different cases are defined for the contrast ratio. The average contrast ratio is computed by taking the
ratio of the average intensity of the "I" bits over the average intensity of the "0" bits. The worst case contrast ratio is the
ratio between the lowest intensity of a "I" bit and the highest intensity of a "0" bit. The values of table I are an average
for 128 holograms. For all the encoding methods, 4x1024 pixel holograms are used. The cell oriented method is similar to
the one proposed by Psaltis 8, only the ohase is encoded by variation of the position of "I" bits in a cell. The other
methods are the error diffusion as defined by Hauck 9, the grey level method and the iterative method described here. The
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table 1 shows that the iterative method we proposed gives the best results. However the algorithm must be very carefully
implemented on the computer in order to optimize the computing time for the holograms.

2.4 Experimental results

Experiments were conducted to test the hologram encoding method as well as the validity of the disk data layout and
the optical system. For these first experiments, the holograms were recorded on glass plate with an electron beam recorder
(EBR), using the sarrm feature size as an actual optical disk (lgm spots with 1.5 .un radial pitch. see figure 5). Once the
holograms are calculated, they are processed by the UCSD holographic CAD program 10 which generates data files for the
EBR. Several holograms were recorded on glass plates of 1.2 mm thickness with a photoresist of 350 nm thickness. The
optical system used for reading the disk is described on figure 2. The following lenses are used:
L2 f:= 100 mm aperture: 50 x 60 mm f/# = 2 illuminadng lens
L3 f := 200 mm aperture: 60 x 50 mm f/# = 4 Fourier transform lens
LA f := 25.4 mm aperture: 22 x 60 mm f/# = 1.15 imaging lens

The plates were placed in the optical system on a rotation stage at the disk plane, both static and dynamic
measurements being conducted. The hologram reconstructons were analysed. Figure 6 shows the ir.tensity of a part of a
line in a 128x128 pixel reconstructed image, an average SNR of about 40 is measured. Static measurements revealed that
focusing errors of up to 20 pin and tracking errors of over I mim could be tolerated without significant degradation of the
reconstructed image. Dynamic tests have been conducted and as expected the position of the reconstructed images in the
output plane is not moving when the disk is rotating and moving lateraly due to the excentricity. Figure 7 shows the center
portion of a 128x128 pixel reconstructed image.

2.5 Hybrid lens design

The optical system design for ;he parallel readout optical disk system includes two separate cylindrical lenses with
different focal lengths: one for imaging in the X-direction, and one for Fourier transforming in the Y-direction. Besides
being bulky and heavy, these cylindrical lenses are extremely difficult to align and suffer from severe aberrations. Code V
optical design software is then used to design a single Holographic Optical Element (HOE) to replace the function of the
two lenses and to correct for the aberrations (figure 8). Due to the difference in focal lengths in the X and Y directions, it 's
found advantageous to use orthogonal cylindrical diffractive lenses 11 (OCDL). Two separate designs were studied. both
design overcoming the problem associated with refractive cylindrical lenses. The first one is a single element HOE with
both focal lengths positive but different. The second design is a hybrid refractivei diffractive element that combines a HOE
with a piano-convex spherical lens. In this case one focal lenth is positive while the other is negative. The respective
optical performance of the three systems are shown in the figure 9. The error function is calculated in Code V and
corresponds to the distance of all the rays to the chief ray in the output plane. The results show that the best system is the
hybrid element for both optical performance and fabrication requirements. Indeed. this combination raises the required f/# of
the OCDL, which in turn reduces the minimum feature size of the OCDL. Thus a larger size OCDL with more phase levels
and a higher diffraction efficiency can be fabricated. As an illustration of this design a mask of the diffractive element of the
hybrid lens can be seen in the figure 10.

3. APPLICATION TO ASSOCIATIVE MEMORY

3.1 System cverview

The associative memory system (figure 11) presently being developed at UCSD, consists of the parallel readout
optical disk, an opto-electronic XNOR gate array, a photo-detector array and a single variable threshold summation circuit.
A 2-D) query from the host computer, is electronically loadcd onto the XNOR gate array. The query image is then
compared serially to the binary images from the optical disk (bitwise matching operations). The output of the variable
threshold detector is then fed into the decision circuit which controls the dat2 flow between the photo-detector array and the
host computer.

This associative memory system using the optical disk is well suited to implement a page serial, bit parallel inner
product algorithm system which is shown in figure 12. The search time of this method is higher than those of outer product
and parallel inner product methods.1 2 However, due to the high data rate achievable with the parallel readout optical disk.
the page serial, bit parallel inner product method is still capable of low retrieval times.
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logic =tcuitr-. drives the ?LZ7 modulator so as to allow light to pass whetn a bit match occurs. Therefore, the outoput l~igt
represýents a logical Exzlusoie-nor operation of the query bits and th" -corresponding bits of the stored imaize.There are -w'
limitation to thi~s approach. The minima! Hamm~ng distanc.e which can be distinguished is limited by the zontrast rac( )i
the St ?'-ZT modulators and by the dynamic range of whe variable threshoid detector.

3 . Digital approach

T-he limirtations of thie previously described analog approach can be overzcm b'rpiacing the Si;PLZT M'NCR :-2,,
ar-ay jv,.Lh arn (Opto-E:ectrcnic Integrated Circuit iOEI) 'based on a tree- siruct,,ure;, TIs )EIC has i chz -ztoctr-
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be--k-een the disk images bits and thz query bits and fan-in units to per~form the summs of; the bu~s dowkn -_he ur!!-

scematic view of such an OEIC. based on a ?{-tree structure is shown in the ftzlure 13. Uising this QEIC sv.szer"
Hamming distance betwecen a query and the image stored on the disk can be measured with a precision of one
Furthermore, the system, maintains high throuighputs. since all oper.ations down the treze can be pipelined due tothi--e
s-uucture where all electronic lines have e3utal lenzth and introduce no sicnal skew.

A simulaauon of this system has been implem ented. T1he images are read from the disk using a CCD camer-ainrto
to a PC computer. Once ant image is read. it is digitized and compared ( N-OR operationsi to the el!ectronic iuer,. ..
results of the XNOR operations are then summed and the :amn dsacbewnthquradtedikmages ;s
calculated. T"he results of the simulation can be seeni on the figure 14 where 16.Y,6 images were- used..

4. CONCLUSION'S

In this paper, we have described a motionless-head 2-D) parallel readout system for optical disks. Since the 'optical
disk s stem requires no mechanical motion of the head for access, focusing or tracking. addressing is performed o~
through the rotation of the disk. A higher data rate than any existing, optical disk system can be achieved since the e:ntre
memory can be scanned in one rotation. The data is written on the disk as l-D CO.and a special CGH enco~dinz memcd~
Using an iterative algonthm and a grey level representation by density modulation has been developped giving high quai-"
recan~szructions. The optical readout system is ver-y simple and consists of only threze cylindrical lenses. For easter s%,sze
alignment and better optical performance, two of Lthese lenses czan be replaced by a s~nele hybrid diffractive,-refracuve opuz
elem'ent. An opto-electronic associative memory system using the parallel readout optical disk was presented. ~
associative memory system consists of the parallel readout optical disk, a host computer. an optoelectronic XNOR -3t-,
array and its summation c~ircuit (analog or dizital) and a local decision circuit. The throughputs 1 .2 Gbytesisec I an,"
retrieval times (2Sms) of this associative Memory system make it well suited to currcnt and near term future needs for high
performance associative recall.
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Diffraction effiency Worst case contrast ratio Average contrast ratio

Cell Oriented 7 % < 1 10

Error Diffusion 5 %9 15

FFT Grey level 4x1 5 % 5 25

Iterative Grey level 4x1 12 % 50 350

Tahle 1: Comparison ofencoding methods for disk hoiograxns
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1-D FFT
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P-D HologramsoD D N
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I1-D Holograms
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Figure 1: Disk data encoding. A 2-D image is sliced into 1-D columns. These
columns are then I -D Fourier transformed and I -D CGH are generated. The
holograms are then shifted one another and radially recorded.
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Figure 2 Optical system. After being collimated by lens L 1, the light is focused onto the disk by
cylindrical lens L2. Cylindrical lens L3 performs the Fourier transform of the data along the radial
direction and cylindrical lens L4 images and magnifies the data(M = d2/dl) along the tangential
direction. A binary image of 128 x 128 points is then reconstructed on the ouput plane.
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Generate random binarv hologram

Compute reconstructed image via FFT

Compute Mean Squared Error E of reconstruction

-- • Change bit J of cell I of the hologram

Compute new reconstruction by a plane wave
equation addition/substraction

Compute the new error E'
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Change the changed bit [Keep the changed bit. E=E'

1 = I + I modulo M

No

Yes
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Figure 4: Iterative algorithm flowchart for grey level holograms
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radial direc:ion

Figure 5: Experimentally recorded holograms: The holograms are recorded on an E-beam test plate using optical
disk pits feature size, i.e I pm bit size with 1.5 pmn pitch according to the format described in figure I and 3.

ICr-,l y (mV)

U LU U

Bit sequence to be detected 1100011 Average SNR= 40
Figure 6: Experimental intensity measurement of an output image

Figure 7: Disk in rotation: center portion of an 128x 128 reconstructed image
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(a) Fourier transform along Y

Imaging along X with M--d2.dL

d >!

di d

Y
(b) Fourier Transform along Y

Imaging along X with M=fy,/dx
z

Figure 8: Replacement of the two orthogonal cylindrical lenses with one hybrid refractive/diffractive element

2 lenses OCDL Hybrid lens

Error 15800 950 193

Total length 216 mm 295.4 mm 330.6 mm

Figure 9: Comparison between the three systems studied with Code V

Figure 10: Hybrid lens fabrication, OCDL mask # 1 corresponding to a binary phase
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Figure 11: Associative memory design

2 modes of operation :

1. Preset threshold : All images that satisfy threshold are retrieved in one rotation
2. Best match : detect smallest hamming distance during first rotation and retrieve

best matched image during 2nd rotation

[N] X IN] W [N] Y

I F Bitwise Maximum
matching Detection

(address) Best
Match

LMN1

M = Number of memory pages
N= Size of a page

C =Wx
k Ilk Ii

Figure 12: Serial inner-product algorithm
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X"NOR gate

Figure 13: Schematic view of a Opto-Electronic Integrated Circuit (QEIC) based on a
H-tree structure, and an entrance unic detailled view

Figure 14: The queay (RADC) and the output of th~e XNOR gate array showing a complete
match with one of the image of the memory, the memory is recovered
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APPLICATION DES HOLOGRAIMMES SYNTHETIQUES AU STOCKAGE SUR DISQLE OPTIQLE
P. Marchand, A. Knishnaxnoorhv*, P. Ambs. J. Gresscr. S. Esener*, S.H Le,-

Institut de Recherche Polytechnique
Un~iversitd de Haute Alsace

34 rue Marc Seguin BP 2438
68067s MU LHOUSE Cedex

Electrical and Computer Enginecrin-z Departmenz

University of California, San Diego

LA JOLLA, CA 92093 USA

Rsurn.ý: Un syst~me de lecture parall~le dc disque optique utilisant une rate fixe est prdsenid. Ce sysitme est conqu pour lire des blocs de
dornndes codees sous forme dbhologrammes de Fourier A une dimension qui sont distribuds radialcrnent sur la surface active do disque. Un tel
systtme a p]usicurs avanrages: vitesse de transfert dlevdee faibie temnps dcces6 er rialisation simple.

1. INRODUTIONlecture est sdquentielle et temps d'acces long (20 a 50 msec poor

les sysiemes les plus rapides) puisque les mouvements de la tate de
Depuis quelaues ann~es, il existe un besoin de plus en plus lecture sont m~caniques et que la masse de ces zate atietnt
iniportant p~our. des svst~rnes de bases de donn~es alliant une plusieurs gramnmes. Comparativement, les perlorma-':es oes
grande capacitý de stockage i one e-rande viresse de lecture des sys~ttmts ý, disquts magnttiques sortt bien suptrieures: plus tie !10
donndes darts des dornaines teis que la m~decine, l'dducation, Moctets/sec pour les vitesses de transfert e: des temps d'acces

Varme. indstre arosatile Cs sst~es e bsesde nf~rieurs A 10 msec. Toutefois, Ia transmission optique des
dornndes sont maintenant considdre's comme une ressource donndes peut s'effectuer naturellement en parall~lle. Ainsi. en
indisoensable par nomnbre de ces organisations. mais les taillies de profitant de cet avarirage dle l'optique'. en supprimant. les
ces systrnmes augmentent die plus en plus (maintenant de I'ordre du mouvemenrs m~caniques de Ia tite die lecture, et en adaptant des
Teraocete: e- les techniques conventionnelles die stock-age et de rn~thodles d'encodage h olographiques aux stockages des donndes
traitement de I information ne sont plus suffisantes pour obrenir sur disque oprique. un syst~me die lecture parall ~ie de disque
une manipulation efficace d'une relle quantitd de donndes. En effet optique avec des viresses die transfert die lortire du Gocites par
les vitesscs die :ransfert des mdmoires secondaires sont faibles par seconde ez des temps d'acc;-s de l'ordre tie 10 msec a di conqu et
rapport A Ia vitesse de l'unict centrale du calculateur forgant celui-ci realisd. De cette faqon. des pages enri~res du sysi~me de stock-age
a attendre les donindes. 11 exisre donc on goulor d'rranglement peuvent Etre lues en parallkle et fournies au calculateur pour
pour les applications n~cessitant des acc~s m~moire fr~quents. o-auement.
Ainsi, de nouveaux rnoyens de stockage et de nouvelles m~thodes Le syst~me oprique de lecture en parail~le de disques optiques que
die manipulation des donndes plus performanres, faisant une nous avons rdalisd est tout d'abord ddcrit. tUne description d~taillde
utilisation extensive du traiiement Paralltle de linformarion. de la nouvelle mdthotie decncodage d~velopp~e pour cette
doivent Ew~e diveiopp,6s [1,1.2

application esi ensuire prdsentde. Une comparaison die diffirenres
Les mdmoires A disqlue oprique peuvent apporter une solution m~thodes d'encodage des donn~es sous forme holographique pour
intdressante i ces probl~mes. En effet, les syst~mes de lecture de le stockage sur disque optique est rdaiis~e. Les rdsultats
disques opriques prdsentenc l'avantage d'une grande capacird de experimentaux sont alors prdsentds suivis dle Ia conception d'une
stockage des donnides (jusqolA on Goctet pour un disque de 12 lentille hybride dont l'intdgration dlans le sysr~me permet
cm). on raux d'erreur faible er une importante immunitd aux d'am~iiorer ses performances.
inrcrf~rences exrdrieores 131. De plus. le disque optique esi
maintenarn one rechnologie de stockage de l'inforniarion en plce.TTEOTQEDELCUE nALL

essor. ayanr ddpassý le stade dle la recherche. Malheureusenient. ii ".1 Pr~sentaiion du systime
existe des probl~mes importants associds ý ces svsr~mes: viresse de L ytm elcued iqeotqeqenu vn ~ls
transfert des donndes faible (die l'ordre d'un Moctet/sec) puisquc Ia utilise un disque de 130 mm de diametre (5,11;4",. cont ;a surface
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utile. c'est a dire celie oii Its donnees sent enregistrees, se situe image scion la direction r-adiale (Y) tandis ouc la lenulie cviind.'-iuc
entre un raven interne de 30 mm et extemne de 60 mm, Les pite L3 image la zone illuminee par Li Sur Ie pian de sortie selon A.-
sent espac~cs rad~iaiemrent de 1.5 Amn, ce qui donne 20000 pisres direction tangentieile (X,. Tous Its holog9-ram es d'une mrimm
sur la surface utile du disque, c-rIes spots cnt on diain~nre de I Am. image sent ddcaIds rad~ialcment mass sent reconsmruits par lai mime
Uls sont alors enregistrds avec Uric s~paration angulaire constante de lentilic de Fourier donc toutes ies reconstructrons scront rapportdes
U.01'. Ainsi. la capacit. totale de' stockage d'un tel disque est 7.5 au m~me axe horizontal (X). La ientilie dirnagerte, quant 2i ie.l

Gbits ou 940 Moctets par face. En fait, lc systtme de lecture image cihacun des helogrammes I'un A c~id dc I'autre verticaiement
parail~e est prdvu pour Vgdndrer des images de sortie binaires bL (Y). Ainsi, une image biriairc A deux dimensions est reconsu'ite
deux dimensions. sur lc plan dc sortie.
L'approche choisie est de 1upprimer tous Its meuvements
m~caniques de la tete de lecture au-dessus de Ia surface du disque. 2.4 Encodage des hologrammes
Ainsi I'adressage des donnfes sur le disque s'effecrue uniquement Afin de supprimer Its asserissemerits de suivi de piste let de
par i'inrECmddiaire de la rotation du disque car Ies dornndes focalisation. Its dornndes sent steckdes sur It disquc sovs forrne
correspondanit A une image de sortie sont StEckices sur une zone d'hologrztmmes de Fourier ý uric ditmension.
dent la longucur est dgale ý un rayon de la surface utile du disque. L'encodage des donn~cs sur Ie disou-, es., un eriýmen, dcrertmnan'
En illuminant one relic zone. routes Its images srockdes Sur It do bon foncrionnement du syst~mc de iecture paraitici dt-.rit
disque seront loes sdquenltlellement el cela, sans aveir !i beuger la pric~demment. En effet. scion It codage holograpihique uuiisd, la
tate de lecture. De plus, Its donrindes sent stockdes suir le disque tasiie des hologrammes vanec, modifiant proportionneliernent Ia

sous ferme d'hologmrames de Fourier cc qui permet dc supprimer caai~d tcag ddsqe cpu.aqai eiim dcc
Ies asservissements de suivi de piste et de fecalisation ainsi que Its sortie depend 6galement de la mdthode d'en-codage choisie. Ains.,

mouvements m~caniques qui y son associds, It premier crit~re de choi~x de la mdthode est it me~ieor compro-u's
possible entre qualit6 de reconstruction (dynarruque la pius .;Iev6:

2.2 Format des donn~es possible) et capacitd de stockage du disque. D'autres centraintes
La faqon dent Its dornndes sent encod~es et cnregistrdes sur le viennent alors s'ajouter. Tout d'abord. 6tant donný quc ie support
disqoc oprique est d~crite i la figure 1. Une image binaire h deux d'enregiscrement est le disque epnique, la mtthode d'encodage deir
dimensions (2-D)~ devant atre stockie surile disque est tout d'abord gdn~rer des hologrammes binaires. Ensuite. cette methode deic
d~composte en 616ments 4 uric dimension (I -D). Chacun de ces offrir one bonne qualitii de reconstruction d'irages cui sont elies
616ments I-D correspond en fait ý one colonne (00 une ligne) die aussi binaires. Finalerrint, cette mithode doit Eire toi~rante a des
l'image origginale. Pour une image 2-D de taille NxN points, N erreurs d'alignemenr des bits lors de ienregisrrement des
coionnes 1-D de N4 points chacunes sent gdn~rdes. Un hologframrmes. Considirant routes ces contraintes, one mrrbehde
hologramme synthdtique de Fourier I-D de chacune de ces d'encodage I. -D niveaux de gris a 6t6 sp~cifiquement d~velopp~e
celonnes est alers caicul6. soit par une mdthode classique de puis cemparde Zi des mdrhodes existantes, prouvant qu~eue est la
rransforrnde die Fourier rapide, seit en utilisant un algzorithme plus adicquare pour cette application.
irdrarif. Les diffdrentes rndrhodes d'encodagc drudiies pour It
caicul de ces hologrammes seront ddraiildes dans la section 2.4.1. Encoda-e 5 niveaux de t-ris
suivante. Les N hologrammes I-D alers calculds, sent dicalds Chaque colonne de l'image :.-D de railie NxN Zi stocker sur le
radialemerir Its un par rapport aux autres jusqu'i cc que leur disque est donc utilisde cemme objet (C) de tailie N dent on veut
lengueur rerale soit dgaie au rayon de la surface utile du disque calcuier I'holograxnme de tailie KxN. Chaque coicrine est un obje,.
(figure 2). Ces N' holegramrmes 1-D. correspendant i une image binaire a une dimension. On ddi'init alers on tabieau (0) de muile M
2I-D, sent alors enrcgistrds sdquentcilement Sur le disque. La -n ieso etru C~~mnS sntuletopac(C

capacird pratique d'un disque de 130 mm est cempte teno du clans (0) avec on certain ddcalage m. Le ddcaiage m est choisi pour
codage des hologrammes d'environ 14 000 images de IZ8xI128 quc la reconstruction de V'objet (C) soit stpar~e de l'ordre 0 et des
points. autres termes apparaissant lors de Ia reconstruction. Cet objet (0)

est aiers multipli6 par une phase altaroire La transformnet dc
2.3 Systeme optique Fourier rapide 1 une dimension de (0) est effccru~cet on en extrair
Le systeme eprique ddveloppi pour permcttre la lecture en paralidle Ia partie rdelle ýc laquelie on ajeute une censtanre pour en rendre
des images stockdes sur Ic disque en utilisant la mithode touces Its valeurs positives. Certe censtanre est le minimum die cette
d'encodagae ddcrite prdcddemment est montri i la figure 3. Ce partie rdelle. Chaque paint est alors quantifie sur n niveaux de gris.
syst~me utilise 4 lentilles, La premiere lecriille. L, sphdrique, esc merminant le caicul die l'hologramme. Ccs niveaux de gris scramt
utilisie pour collimater It faisceat: laser ct propager one ende plane aiors enregcstrds sur le disque par l'inmerm~ddaire d'un codage

vets la lentille cyiindrique d'illurnination Ll. Celle-ci illumine one binaire sur n- I bits, en utiiisant un aigonithme de moduiation de
zone du disque correspondant octiquerrenE aux hologrammes d'une densitd, L'hologramme est alors rdpliqud one fats ifin de rdduire

seule image. c'est h dire one ligrme dent Ia longucur ets egale au Ie speckic sur I'imagc recenstruire. La fonction biraire H(xV'

rayon de Ia surface utile du disque. Ensuite, la lentille cylindrique alors edndree. est Composee de 2N1 celloles cc (n-I) bits avec

L2 effe.-rue ]a transfermee die Fourier des hologgrammes die cette 0vc2 drtinaia)CtOxz-dreiomagtili.i
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ets a.Iors possible de ddlerMIner It compromnis entre capacird du 4x1024 points. Les differcntes methodes envisagees, ouore Its

disque (facteur K) ci dN-namique des images reconstruites. Comrne deux cas de la methode A niveaux de gris ddcrite prtcddernment.

ill sera vu plus loin, la dynarniique est en effer proportionnelle a K, consistent en un codage I diffusion derrecur [61 et une version

c esi A dire au nombre de niveaux de gris des hologramxrnes. La binarisde d'un codage a celluies '7 (hologramme A ddtou: de

figure 4 montre comment Its 5 niveaux de gi-is par cellule sont phase) idenrique a celui propose par 0. Psaltis ý8 Cetre n-~hode

cncod~s sur 4 bits tandis que [a figure 5 rcprdsente un holograrrmm urilise uniquement le codage de la phase en variant ýa position des

compler utilisant ces cel~lules. Dans le cas de cettc figure. la tali bits is "un" dans one cellule constitute de quatrt- points. La figure

de l'objet I-D 1 reconstuire est de 128 bits et I'holograxnme gdniri montre Its diffirentes ctiloles utilisies pour diff~renics vaieurs dc

a 512 cellules. soir 1024 cellules apres duplication. (K = 32.) la phase de ['hologramme.

II ets possible, afin d'amdiiorer Its performances de ce Les rtsultats montrent que l'algorirhme ittratif a niveaux de gris

holograrnmes, d'utiliser on algorithme de calcul itdrarif ('.51 au lie donne Its meilleurs resuiztas. Pourt-ant, ii existe un problkme

de its calcuier par une FFT directe. L'aigorirhme ddveloppd pour rnajeur lors de l'urilisation d'un tel algorithme: let emps de calcul

It calcul de ces hologrammes est en fait une adaptation de nicessaire pour gdndrer Its hologramrnmes. nl est tourefois possible

1'aleorirhme de recherche birtaire directe ("Direct Binary, Search", d'optimiser cc remps de calcul en uralisant une version rapide de

DES f4J) a la mrrehode d'encodage A niveaux de gris d~crite 1'aigot-ithme ic~rarif [51. Si cecrtenps de caicul es: prohibirif, !a

prtcddcmment. L'organigramme de cc- algorithme ets donind dans merhode d'encodage ii niveaux de goris par FFT peut Eire modifide

la figure 6. Un hologaramme aldaroire a niveaux de gris est tout pour de meilleures performances en sacriftant la capacitd du disque.

d'abord gindri. La reconstruction de cet hologramme ets ensoite En effet, la dynar'ique de l'image reconstroite peut Eire augmentte

calculie en effecruant la transformie de Fourier rapide de cei en accroissant It nombre de cellules de l'hologramtne et/ou er.

hologramme aldaroire. U-ne foniction d'errcur ets alors calcuide en accroissant Ie nombre de niveaux de gris par celiule (figure 8).
comparant Its inrensit~s des bits entre l'image reconstruite et 2.4.3. Tolkrarice d'alignement radial
Fimnage originale que C'on veur reconso-ruire. Les bits de chaque Ce paragraphe ets consacri A I'~ttde du comportement des
cellule de Ihologramime soni inverses tour A tour et la nouvelle performances des hologrammes 5 niveaux de gris ddcr-its
reconstruction ets caicolie i chaque fois. 11 nWest cependant pas prdcddemment face aux probI~mes d'alignernenr radial des bits,
nitcessaire d'effectuer one FF1' A chaque fois puisque changer un pouvan; interventir lots de I'enregisrremenr sur It disque. En effer,
bit de I'hoiog~mmme revient A additionner (bit changd de 0 A 1) ou Its valeurs donndcs jusqu 'A prdsent assument que ces
soustraire (bit -hangd de 1 A 0) i'I'quation d'une onde plane A la hologrammes seront parfaitement enregistrds sor Ie disque. nl ets
reconstruction pric~dente. L'erreor entre la nouivelle reconstruction effectivement possible d'enregistrer Its bits sot- It disqoc avec on
et I'image originalt est alors calculke. Si ccitt nouvelle erreur ets alignement radial d'une prdcision infirieure Ai 0,1 4ms en urilisant

!ndiur a -ricedente. le bit change est gardd er la nouvelle par exetnple des enregistreurs cornme ceiui fabriqod par Son, 8
valtur de l'erreur est mndmorisde, sinon It changement ets innord. ou par Apex [91. Si un tel enreg-istreur n'esr pas disponible ou si
Une boucle ets compldtde lorsque Its n niveaux de gris des M son utilisarion s'avtre trop co~teuse, il est quand n,~me possible
cellules de I'hoiogramme ont did tesrds. Le procidd irdraiif d'enregistrer Its holog"ranimes sur le disque avec one prtcision
continue aiors jusqu'A ce que le nombre de changements (contr6ld moindre tout en conservant des performances idenriques A celles
par Cur) qui diminuent I'erreur soir nul pendant une boucle donndes prdcddemmenr. II suffit pour cela d'augrnenrtr It riombre

compltre ou jusqu'a cc que I'erreur calculde soir infdrieure a on de niveaux de g-ris par cellule de !'hologranmc.
seuil fixd A i1'avance. La figure 9 montre comment Ia dynamique de 1 image reconstr-uite

2.4.2. Comparaison des mithodes d'encodage rdagir aux problimes d'alignernent des bits sur It disque. On a

Afin de vdrifier que [a mrdrhode. d'encodage dicrite prdcidemmenr supposd dans It cas de centt itude cue la prcision d'aiignernent

ets effectivemeni optimaie pour Its hologrammes 1-0 i stocker sur radial dtiat d'un micron, c'est A dire on bit sot It disque. Le

It disque. one comparaison a ditd effectude avec d'autres codages nombre de bits ddsalignds cts alors indiqud sur i'axe des abscisses

binaires hoiographiques. Les rdsultars indiquds dans Ia table I on par on pourcentage. Ce poucenrage indlique combien de cellules de
obrenus par reconstruction simulde par ordinateur etries critires de I'hologramme ont des bits ddsalignts, cc qui revienz a on dtcaiage

comparaison sont: 1'cfficaciti de diffraction et la dynamique, vers la droite ou vets la gauche (ddcidi aldatoirement) des bits de
L'efficacird de diffraction est ddftnie par It rapport de l'intensird de centt cellule. Le nouveau bit conreno dans 1'emplacement ihdorique

l'image reconstruite i l'iniensird torale de la reconstruction. Deux de Ia cellule drant ftalement ddtermin6 aldatoirement. Sur ces

diffirents cas soni envisagds pour la dynamnique. La dynamique graphes, 0% correspond au cas dun alignement parfait et 100%
moyerine est calculde en prenant It rapport de la mayenne des bits A correspond au cas oii toutes Its cellules sont ddcaltes aidatoiremeni

I A Ia moyenne des bits 1 0 dans V'intage reconstruite. La d'un bit vet-s la droire ou vers la gauche. On peut voir sur ces
dvraznique dans It cas It plus mauvais ets It rapport de I'intensitd- courbes que la dynamique baisse lot-sque It bruit aognienie.
Ia plus faible d'un bit 1 1 A l'intensitt la plus dievee d'un bit A 0 Toutefois. un rdsultat intdressant est que Ia dynamnique moyenne de
dans I'image reconstruire. Les valeurs de la table soni une i'image Iorsque Ies hologrammes sont calculds avec 5 niveaux de
moyenne des rdsultats mesurts pour Its 128 hologrammes d'une gris avec 0%l~ de bits desalignds est ;denhique is la dynamique pour
image 128xI128 gindrte aldaroiremnent. des hoiogarammes avec 8 niveaux de gris d 100%. Ainst. en
Qutique soit la mdtliode utifisce-, Its holograinmes ont one taille de sacrifiant la capacird do disqi~e, ii ets too jours possible d'envisager
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1'etrezis~rement du disque stir on enregistreur de disqu::- optiques 6galcernen au'il ct necessaire de synchronise: sou it laser, wit: ics
n avant pas des capacitds d'alignement dc precision. ddiecteurs du plan de sorute avec: la rotaton du disque pour ivitrI-

rgumin transitoire correspondant au moment no deux images

2.5 R~sultats exp~rimentaux succ-cssives du disque sont pautiellement .Ilumindes en rncrne
Pour prouver la validjid et tester les performances de cc svstdme temps. La figure 12 montre la parni cetutrale de It reconstruc-non
opitique, piusicurs siries d'experiences statiques et dynamaques ont d'une image de 128 par 128 points lue stir It disque en rotatior.-
dii mendes en udulisant des plaques holoigraphiques fabriquees avec
l'enregistreur A faisceau d'dleccons ("Electron Beam Recorder", 2.6 Conception d'une lentille hybride

EBR) pour simuler It plan du disque dans le systtme de lecture. LestmedlcuepaI1edeiqeotqecmpndeu
Le montage exp~imcnWa du sylt~ine de lecture udtii, a it ddcrit a lentilles cyiindriques separdes, ayant des distances focajes

la figure 3. Les caractiristiqucs des lentilles utilisdes sont les diffdrentes: V'une pour imager darts la direction X ct V'auae pour la

suivantes: transformde de Fourier dans la. direction Y. Ces lentilles

LI: fl = 100 mm; ouverture :50 x 60 mm; f/# - 2; lentille cylindriques sont trds difficiles A aligner et ont des aberrations
d'ilumintionirnportanres. Le logiciel de conception de systernes optiques Ceýde

L2: f2 = 200 mm: ouverture 60 x 50 mm; f/# = 4; lentille de V a dt6 utilis6 pour concevoir un 6idment toprique holographicue

Fourier unique (EOH) pour remplaccr la fonction des deux lenulies-I

L3: 3 2.4 m; overure 22x 6 mm;fl#= 115; entlle corrige, les aberrations (figure 13). Comrne les distances focaics

d'imagenie sont diffdrentes dans Its directions X et Y. ii esii avantaceux

Les holorgammes sont enregist~rds stir une plaque de verre d'utilise- tine lentille diffractive cylindrique orthogonaic

recouverte d'une resine photo-sensible pour l'enregistrement ptar (OCDL)I I I. Deux approches ont Etd 6tudiies. La premutcre est un

EBR. Ils sont calcuids en utilisant le programme sp~cialement EOH unique avec deux distances focales positives differences. La

ddveliopp6 2i cet effet qui permet la g~ndration automanque de tous seconde eit un didment hybride rdfracdf/diffractif qui assocte ur

Its hoiograxnmes 1-D A niveaux de gris d'une image 2-D donnee. EOn avec tine lendfllc plan convexe sphdinoue. Dans cc cas lone

Ces holorrammes binaires, une fois calculds. sont traitds p~ar le des distances focales est positive tandis que l'autre cit nigative. La

programme de CAD holographique ddveloppd i UICSD qui gdn~re Figure 14 montre les performances respectives de chacun des

Its fichie-s de donndes pour l'enrcgistrement avec I'EBR 1101. Le syst~mes. La fonction d'erreur cit calculde avec Code V. cell

caractdristiques des plaques sont relativement proches de celles correspond A la distance de tous Ies rayons aui rayon principal darts

d'un disque optique puisque Ieur dpaisseur totale est 1.2 mm avec le plan de sortie. Les rdsultats montrent que, la lentille hvbride sit 1a

tin film sensible de 350 nmi. La taille des ouvertures est de 1 gLm meilleure solution tant pour les performances optiques cue !es

avec une sdpanation verticale (radiale) de 1.5 urn ( figure 10). Les contraintes de fabrication. En effet cette combtnaison per-met,

hologranmeis ont dtd dcrit avec tin format spicial stir I'EBR afui de d'augnienter Ic f/a do OCDL. cc qui diminue )a rdsoluunon

potivoir simoler Ie disque. Tootes les mesures sont alors effectudes ndcessaire lors de la fabrication. Ainsi un OCDL plus grand averý

pour des tailles d'images 2-D de 128x 128 points. Dans cc cas. Its plus die niveaux die phase et one mneilleure eff-icacitd de diffraction

hobogrammes ont tine taille de 4x 1024 points cc qui correspond A ei uecntut.L iue1 oteVndsmsusuitd
tine ouverture de 4xI536 uWim. La plaque rtalisde k I'EBR a di pour la rdalisation dee cette ientille hybride.

percie en son milieu et placic stir tine table de rotation, des essais
statiques et dynamniques ant dtd rialisds. 3. CONCLUSION

L~image de sortie a dtd analysie avec tin photoddtectcur. Les Nous avons prisentd tin systerme original die lecture paralltie de

courbes dec dynamnique relevies expdrimentalement sont donndcs A disque optique avec one t~te fixe. Aucuri mouvement de ia t~re

la figure 11. La dynamique mayenne, correspondant A tine mesure n'est ndcessaire pour la focalisation et le suivi die piste. Les
de l'dnergie dans cliacun des bits observds, est die 40. Cette valeur donn6-.s sont icrites sont forrne d'hologrammes de Fourier a tine

de la dynamnique correspond A l'dnergie apporide A tin tdulecteur die dimension et samt disposdes Ie long de rayons do disque. De cc fait
la matrice qui sera utiliste darts Ia misc en ceuvre d'un svsrtme l'addressagte se fait par la rotation dut duique. Une notivelle
complet. mdthode d'encodage holographique a dt6 ddveloppde. Ce systeme
L'observation tie Ia plaque holographique en rotation permet de permet des te~npi d'acc~s de [2.,5 ins. on termps die recotivrerncnt
vdrifier plusicurs points thioriques. Tout ti'abord, meme aprds decs donindes de 25 mns et one vitesse dte transfert des donindes de
plusieurs rotations complees de la plaque, il apparalt quc Its 1.2 Goctets/seconde.Vu ses performances. cc sysidine petit avoir
rccansurucnons s'effectuent toujotirs ati meme endroit et que la de nombreuses applications. En partictilier, il cit utiiisd comme
ldgde inclinaison ou Ies oscillations verticales de ]a plaque en tinitid te stockage dans on syittine de nrtoinoe asioctative cola-

rotation n affectent pas les reconstructions. Dc plus. aprds avoir elecrronique actuellement en coursde ddvcloppemcn02 1 11

Idgtremriet ddplacd la plaque et son support It long tie lt direction
radiale, les images l-D ct 2-D sant reconstruites aui meme endroit
avec les memes intensitds. Ccci prouve qu~il n'y a effectivement

pas besoin ni d'asservissement de suivi tie piste ni

d'asscrvissement de focalisation dans cc systdme. Enfirt, il apparait
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