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INTRODUCTION

Ionic solvation has been the subject of current interest for at least a century, I Modern

experimental techniques2 and the availability of powerful computers 3 have produced real progress

in the understanding of this complex problem.

It is clear that in many problems the knowledge of the very complex details of the close range

interactions are more than what one needs. In the interpretation of thermodynamic and kinetic

parameters averages over large domains are predominant, and therefore, simple, yet controlled

theories not only provide a way of fitting data, but also useful physical insight.

The success of the Marcus theory of electron transfer kinetics4 in solution is a good example.

In this theory the polarization of the solvent is evaluated from a continuum model for the solvent,

that is, the structure of the solvent is completely ignored. The recent rather spectacular calculations

of Chandler and his group 5 have conclusively shown that within certain limitations, this is not

unreasonable provided that the radius of the activated complex is chosen in a suitable manner.

There are also other examples where this is true. It was used by many investigators in the past, but

in an entirely empirical way. 6

In a series of recent papers7 -10 we have discussed the use of the Mean Spherical

Approximation (MSA) in combination with a very simple asymmetric force model, which has a

spherical repulsive core. The excellent correlations for the thermodynamic and kinetic parameters

for a large number of solvents are more than mere coincidence. We believe that they are due to the

fact that the MSA is not only a simple theory, but it also has some remarkable variational

properties, that were discovered quite recently. Liquid state theories like the MSA and the HNC

can be derived as variational problems of the free energy functional, which is written in terms of

the Omstein-Zernike direct correlation function. This view was introduced by Rosenfeld 1- 13 for

systems of hard objects in general, and hard spheres in particular. In that work the relation

between the grand potentiai, the direct correlation function and die scaled particle theory was

clearly shown. This analysis was extended to the case of charged hard spheres in general, and to

the primitive model of electrolytes in particular. 14 .15 It can be shown that the thermodynamics and



the pair correlation functions can be derived from a simple nxoel in Ahich the lons are replaced by

charged shells and the dipoles by charged dipolar shells. We have shown that the direct correlamon

function in the MSA is just the electrostatic energy of the shells. Solving the MSA is thus

equivalent to an electrostatics problem.

In the limit of high density and charge the Gibbs energy and the internal energy should

diverge to the same order in the coupling parameter (charge/temperature ratio) while the entropy

should diverge at a slower rate and therefore the Gibbs energy and the internal energy coincide in

this limit. The mean spherical approximation (MSA) and the hypemented chain approximation

(NBC) satisfy these bounds, discovered by Onsager some fifty years ago. (This is not true for

the Debye Htickel theory, where the entropy also diverges). Therefore, in this limit, the HNC and

the MSA Gibbs energy, and its derivatives, coincide. This is a very gratifying feature, because the

HNC, which is the more accurate theory, is in general difficult to solve numerically, while the

MSA is analytical in most cases, and of a rather simple form.

In the asymptotic limit the excess electrostatic energy is identical to the exact Onsager lower

bound, which is achieved by immersing the entire hard core system in an infinite neutral and

perfectly conducting (liquid metal) fluid. 14 In the case of the primitive model of electrolytes, this is

equivalent to smearing the charge on the surface of the ion. It was also shown t 4,16 that the direct

correlation function is equal to the interaction potential of two "smeared" ions of radius Ri, Rj

where Ri is the radius of ion i plus some screening length.

The Onsager process of introducing the infinite conductor, naturally decouples all the

different components in the system which may differ in size, shape, charge distribution and relative

orientation in space. As a result, the variational free energy functional in the high coupling limit

diagonalizes, and the mathematical solution of the asymptotic problem is given in term of the

geometrical properties of the individual particles in the system.

The MSA Gibbs energy provides an appropriate functional from which the charge part of the

direct correlation function is obtained by functional differentiation.



There is an actual numerical test case that proves the electrostatic analogy of the MSA. The

very- high charge and density limit for the one component plasma (point ions 'in a neutralizing

background) was investigated using the IINC equation by Ng 17, in a tour de fourcer nurnencal

calculation. The same results were obtained by Rosenfeld et al. using the analytical solution cf the

MSA. 18

A second point is the use of spherical cores to represent non spherical objects, This also

depends on the properties of interest. For the equation of state, it works even for very non

spherical objects. There are numerous examples of sphericalization in the literature of molecular

fluids. A notable example is given in the recent work of Williams et al. 19 The median diameter of

a non spherical object yields a surprisingly good equation of state, not only for hard dumbbells but

also for real gases at extremely high pressures.20 .2 1 Other examples are found in the extensive

studies of Nezbeda and his group 22.23 on the structure of molecular liquids.

The analytical solution of the MSA for mixtures of ions and dipoles with a non spherical

sticky potential was obtained some time ago 24 -26 for the case of a sphere with a point dipole and a

sticky potential of dipolar symmetry, which represents the specific non electrostatic interactions.

In this work it was shown that the contribution of the sticky potential was merely a shift in the

polarization parameter, X. This work has been continued to include short ranged potentials of

higher (tetrahedral) symmetry.2 7

In this spirit we have recently analyzed the solvation thermodynamics of monoatomic

monovalent ions in water and in a number of polar solvents.7, 10,28 The basic idea comes from the

observation that to a first approximation the corrections due to the molecular nature of the solvent

result in a change in the screening length from l/r to 1/r + Xc./r O0 s, the shift being different for

each ion, according to its size; because of geometrical packing considerations the number of

solvent molecules that can be the first neighbors of a given ion, i, vary according to the ratio ui/ias.

Consider now a realistic model of the solvent, with a soft repulsive core, and of non-spherical

shape. Then, the distance of closest approach of a certain ion should be very different for the

anion-solvent pair and the cation-solvent pair, even if the unsolvated anion and cation are of the



same size. The correct statical mechanical model for such a situation is the mixture with non-

additive cores discussed in the literature. 29 A simple way of accounting for this is to assume that at

low concentration the effective radius of the solvent is

rsi = rs+Asi()

The Model

In the MSA for a system of spherical ions and dipoles of arbitrary size 30 , the Gibbs energy

of solvation in the limit of infinite dilution is3 1

Gid No(zieo) 2 (1 .'\ I (2)

8i -8rt £o ) ri+

Here, zi is the valence of the ion, co , the fundamental charge, e-, the static dielectric constant of

the solvent, _., the permittivity of free space, ri, the radius of the ion, and No, the Avogadro

constant. 50 is equal to rs/k,, where rs is the radius of the solvent (the effective radius) and the

MSA polarization parameter, X is calculated from the dielectric constant of the pure solvent Fes

using the Wertheim relationship 32

)ý2 (X+1)4 = 16 Es (3)

Although this value of the polarization parameter may be appropriate for estimating dipole-dipole

interaction energy, it gives poor estimates of the Gibbs solvation energy when this is assumed to

equal Gid, 7,10,28 Therefore, and in view of the above discussion we change eq. (2) to

Gid(C+) No(Zieo) (1 ) r1 1 (4)- 81EE•o es (ri+8c)(4

where

8c - rs+Asc (5)

and for cations, and similarly, for monovalent monoatomic anions

Gid(A) -= No (zie) 2 (l I 1 1 (6)"87reE (ri+jSA)
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where

8A rs+AsA (7)

This separation and parameterization produces a much more sensible and physical model of Gid for

ions in a number of solvents.

The second contribution to the Gibbs solution energy comes from repulsive dipole-dipole

interactions 2 5,3 3 and is given by the equation

Goa = (zieo)2 (Es- l) 2 -4ri + 8 (k8)+1)(
64r Eocs (ri +8i) 2  ES + X X+3)(

2(X+ 1)2 j

This expression may be simplified considerably when one considers the range of values typical for

X•. For water whose dielectric constant is 78.3 at 25 'C, X is equal to 2.65. The corresponding

value of the ratio %(),+3)/2(X+ 1)2 whicn appears in the denominator of the term in square brackets

in eq. (8) is 0.56. This is negligible with respect to the value of es and may be neglected. The

ratio appearing in the numerator of this term, namely, (3X+2)/(%+1) is equal to 2.7. Thus, the

expression for Gdd may be rewritten as

=N(Zie )2 I_1 2 (4ri+2.7 0) (9)

Gdd co FES) (ri+si)2

The simplified expression has the advantage that the parameter X does not appear on its own but

only in 8i. This fact is important in applying the expression to experimental data. Finally, on the

basis of previous work2 5, only a fraction 0 of the dipole-dipole term is used in estimating the

Gibbs energy of solvation so that the final expression for Gs becomes

Gs = Gid + 0 Gdd (10)

The expressions for the corresponding entropies are obtained from the temperature

derivatives of the above Gibbs energies. For the ion-dipole term, the result for a cation is
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= 8 o CS d (ri+Sc) -e(ri+[c)2 1 dT 1)

where d&,/dT is the temperature derivative of 8c which is obtained from the temperature derivative

of kc. Comparing eqs. (4) and (11), it is easily shown that

Sid (C+)I1 e- Gid (C+) d 87C £oGid2(C+) d&c (12)
"es) = " s2 No(zie0 )2  dT

The corresponding expression for an anion is

Sid (A-)(1 I- L = - Gid(A-) dCs 8in oGid 2(A-) dA (13)

E)s2 i No(zieo) 2  dT

From these equations it follows that two additional parameters are required to estimate the entropy

of solvation of a salt, namely, the temperature derivatives of the polarization parameters for the

cation and anion. 10,28

From the expression for Gdd, one obtains the following equation for the corresponding

entropy:

Sdd =Gdi[E_2 des / (--1 L 2.7 8} dX, ].2±cA1 ( ~ ~ 4

.s dT = + d/ (4ri + 2.7 8i) 2-is + 2 (ri + 8i) (14)

The derivative dX/dT may be found from the Wertheim equation from which one obtains

dX [X(1+X)1 I dEs
dT [3-+I J 2 4 dT (15)

Assuming that the fraction 0 is independent of temperature, the resulting expression for the

entropy of solvation is

Ss = Sid + 0 Sdd (16)

This model is now examined with respect to data for monoatomic monovalent ion solvation in

water.
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Results and Discussion

In order to apply the above model to experimental data one must choose radii for the ions and

an extrathermodynamic assumption for extracting single ion solvation energies from experimental

values for the salts, namely, the alkali metal halides. Two sets of ionic radii give good fits between

experiment and theoryI 0 , namely, the values given by Pauling 34 and those extracted from neutron

and X-ray diffraction experiments. 35 The Pauling values are used here simply because they are

more familiar. The extrathermodynamic assumptions used to separate experimental quantities into

those for cations and anions were examined in detail for aqueous systems by Conway.36 Values

of the Gibbs energy and entropy of solvation for the alkali metal cations and halide anions

estimated by Conway are summarized in Table 1 together with the Pauling radii for these ions.

In our previous analysis of the Gibbs solvation energy7T,10, the contribution of dipole-dipole

interactions was ignored ( 0 = 0 in eq. (10)). Analysis of the data for the alkali metal halides

showed that the best values of 8c and 5A (eqs. (4) and (6)) assuming Pauling radii for the ions

were 82.4 and 18.0 pm, respectively. 10 The quality of the fit between theory and experiment is

really excellent, the standard deviation for the calculated values being 1.5 kW mol-1, that is,

significantly less than 1 percent. This result is illustrated in Fig. I in terms of a plot of -Gs against

l/(ri+Sj). It is apparent that the values of Gs fit very well on a straight line in the region where data

exist but that the slope of the best straight line througl these data is slightly higher (75.2 Id nm

mol-1 ) than that predicted by theory (69.45 Id nm mol-1). As a result, an ion with infinite radius is

predicted to have a Gibbs solvation energy of 35.7 Id mo[-' when this simple model is applied.

This can be attributed to the failure to account for dipole-dipole interactions which constitute a

positive contribution to Gs.

The same data were re-examined on the basis of eq. (10) using the expression for Gad

given by eq. (9). The fit was carried out so that the resulting estimates of Gid and Gad would go to

zero for an ion of infinite radius. The resulting best values of k and SA were much smaller than

those obtained by the simpler analysis, and are recorded in Table 2. The corresponding estimates

of Gid are plotted against 1I(ri+Ai) in Figure 2. As expected these estimates are larger in magnitude
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than the experimental values of Gs also plotted on the same graph. Both plots are linear it, l/(ri+6i)

and have zero intercepts within the experimental standard deviation. Estimates of OGad for the

same nine ions are also plotted in this figure. For the cations, this quantity varies from a high of

41.2 Id mol-I for Li+ to a low of 22.7 Id mol-[ for Cs+, and is approximately eight percent of the

magnitude of Gid. In the case of the anions it represents a slightly higher fraction of the total Gibbs

energy and varies from a high of 42.7 kU mol[ for F to a low of 30.8 kd mol-[ for I- ion. The

values of OGdd are also approximately linear in 1/(ri+S) with an intercept corresponding to zero for

an infinitely large ion. The value of 8 used in estimating Gdd is that estimated on the basis of the

Wertheim equation, namely, 51.6 pm. W1en the contributions, Gid and OGdd are added one

obtains estimates of Gs which agree with those obtained from experimental data to within a few kJ

mol- 1. Values of the parameters used in our calculations including the fraction 0 are summarized in

Table 2.

A successfal model for ionic solvation must also be able to estimate correctly the entropy of

solvation. In order to make this calculation one must have estimates of the temperature derivatives

of the parameters Sc, SA and A.. The latter was calculated using eq.(15) which gives a value of

-2.48 x 10-8 K-1 for dX/dT on the basis of the dielectric properties of water. Assuming rs, the

radius of a water molecule, is equal to 137 pm the corresponding value of dS/dT is 0.048 pm K-1 .

Values of 8c and 8A were determined from the single ion estimates of Ss given by Conway. 13 In

the case of cations on the basis of eqs. (12) and (16), one may write

y_ d•: X (17)
dT

where
8X t 8 oGid2(C+) (18)

X = - No(zieo) 2

and

Y S(C'+)1 .1)+Gid(C+) dgs + OS5 S (19)ES s2 + Ss(9
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Sc(C+) being the solvation entropy of the cation. Similar equations can be written for anions using

eqs. (13) and (16). A plot of Y against X for both ions is shown in Fig. 3. These data were fit to

a straight line passing through zero (one parameter fit) as shown, the resulting slope which equals

both d8s/dT and d8A/dT being 0.032 pm K-1. It is important to note that the present analysis

suggests that these temperature coefficients are equal in contrast to our previous conclusion based

on an analysis which ignored dipole-dipole interactions, The estimated error in the slope is not

large being about 4%. It should also be noted that the magnitude of d~c/dT and d8AdT is about 65

percent of that found on the basis of the Wertheim equation (eq. (15)).

Using the above coefficients values of Sid were estimated for the alkali metal and halide ions

and are plotted in Fig. 4 together with estimates of Sdd and experimental values of Ss against the

experimental Gibbs solvation energy Gs. It is clear that the entropy of solvation is approximately a

quadratic function of the Gibbs energy as suggested by the MSA model. The ion-dipole

contribution to the solvation entropy is clearly the larger varying from -161 J K-1 mol1- for Li+ to

-55 J K-'mol-1 for Cs+; in the case of the anions, this contribution is -145 J K-1mol- 1 for F- and

-65 J K-1 mol-1 for E. The positive dipole-dipole contribution is generally less than ten percent of

that from ion-dipole interactions. The estimate of Ss agrees with the experimental value quite well

except for the heavier halide ions. Thus, in the case of I- ion, the estimate of Ss is higher in

magnitude by 20 kJ mol-1. This may be a result of some oversimplification used in the present

analysis, especially the assumption that d&c/dT and djA/dT are equal. Nevertheless, the agreement

between theory and experiment is really quite good and demonstrates that the MSA provides a

simple and powerful model for ion solvation in water.

The present analysis may easily be extended to the other polar solvents considered in our

previous work.7 .28 It is obvious that the values of X for these solvents that would be obtained

using the present analysis would be quite different from those reported earlier.7.2 8 However,

preliminary calculations indicate that they follow the same trend. Thus, the correlation observed

between 4c and the Gutmann donor number, DN37 for the solvent, and XA and the Dimroth-

Reichardt acidity parameter ET38 should be maintained. This provides an important connection
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between the MSA X and these empirical solvent parameters which are often used by chenusts in

assessing solvent properties. 39 ,40

In conclusion, the present study has shown that ,he description of the variation in Gibbs

energy and entropy with ion size is significantly improved when dipole-dipole mteractdons for the

solvent molecules are taken into consideration. This is especially important when considenng the

entropy of solvation which is very poorly estimated by other models. The simplicity of the MSA

makes it an attractive model for general use by physical chemists. Furthermore, the polanzation

parameter has practical significance as a measure of the solvents' ability to act as a Lewis acid or a

Lewis base. In future papers, we will expand the descrption applied here for water to other polar

solvents.
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Table 1. Pauling radii and standard thermodynamic parameters of solvation of mnoatornic

monovalent ions in water at 298' K

Ion Pauling Radius Gibbs Solvation energy Solvation Entropy

ri, nm Gs/kJ mol[' Ss/J K-1 mol'1

1. Li+ 0.060 -487.5 -141

2. Na+ 0.095 -387.6 -109.7

3. K+ 0.133 -314.0 - 74.2

4. Rb+ 0.148 -292.7 - 62.1

5. Cs+ 0.169 -260.5 - 59.1

6. F- 0.136 -456.8 -136.8

7. C1- 0.181 -339.7 - 79.9

8. Br 0.195 -325.9 - 64.4

9. 1- 0.216 -279.5 - 41.4



Table 2. MSA Parameters for the Alkali Metal and Halide Ions in Water at 25 °C

Radius correction for cations, Jc/nm 0.0692

Radius correction for anions, 8anm 0.0011

Dipole-dipole fraction for cations, 0c 0.31

Dipole-dipole fraction for anions, 0 a 0.26

Temperature derivative of radius correction

for cations and anions, dS/dT/pm K-1 0.032



Legends for Figures

Figure 1. Plot of the single ion Gibbs energy of solvation for the alkali metal cations (0) and

halide anions (* ) against the reciprocal of the ion radius, rl, plus the MSA parameter

&. The value of 5 for cations was 82.4 pm and for anions, 18.0 pm. The solid line

shows the least squares fit to these data, and the broken line the value of the ion-

dipole contribution to the Gibbs energy according to eqs. (4) and (6). The numbers

refer to individial ions listed in Table 1.

Figure 2. Plot of the single ion Gibbs energy of solvation, Gs, the ion-dipole contribution, Gi,

and the dipole-dipole contribution, Gdd, against the reciprocal of the ion radius ri plus

the MSA parameter 8 for the alkali metal cations (o, o) and halide anions (*, 0). The

value of 5 for cations was 69.2 pm, and for anions, 1.1 pm. The solid lines show

the least squares fit to each set of data. The numbers refer to individual ions listed in

Table 1.

Figure 3. Plot of the function, Y, (eq. (17)) against the function X (eq. (18)) for the alkali metal

cations (e) and halide anions (*). The solid line was determined by a one parameter

least squares fit going through the origin. The numbers refer to individual ions listed

in Table 1.

Figure 4. Plot of the single ion entropy of solvation, Ss, the ion-dipole contribution, Sid, and

the dipole-dipole contribution, Sdd, against the Gibbs energy of solvation Gs for the

alkali metal cations (o, o) and halide anions (#, 0). The curves are fitted to data for

Sid and Sdd. The numbers refer to individual ions listed in Table 1.
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