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FOREWORD

Uneven forces in the several suspension lines of Cross
parachutes cause design problems due to lack of engineering force
distribution data. A series of Cross parachutes was wind-tunnel
tested and the forces in individual suspension lines measured for
several lengths of individual lines to determine the load

variations.

The‘pressure'distribution adjacent to the canopy center line
was also measured ahead of and within the parachute canopy.

Approved by:

<V @{m-z’m_,, |

C. A. KALIVRETENO3, Deputy Head
Underwater Systems Department
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ABSTRACT

The force distribution in the several suspension lines
attached to an arm of a Cross-type parachute is nonuniform. The
outer suspension lines carry the minimum force. The forces
increase in each suspension line as the line attachment approaches
the center of the arm with the maximum force carried by the most

central lines. .

This report describes a series of wind tunnel tests to
measure the forces in individual selected suspension lines of
Cross type parachutes with 8, 16, and 24 suspension lines. The
test results show that lengthening the inner suspension lines
tends to equalize the suspension line forces. The static pressure
distribution adjacent to the parachute center line was measured
for each parachute model. Positive pressures were found to exist
ahead of the canopy skirt hem as well as inside of the canopy.

The magnitude of the pressures is influenced by the canopy cloth
permeability.
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INTRODUCTION

_ The Cross parachute has been demonstrated to be a reliabla
retarder for ordnance and other applications. Characteristics of
the Cross parachute are low opening shock factor, good parachute
stability, good two-body stability, supersonic inflation
capability up to Mach 2.5, and a reduced manufacturing cost. An
engineering problem with the Cross parachute is the occasional
failure of one or more suspension lines when conveuntional analysis
indicates that they were structurally adequate. The cause of the
failure is due to the unique inflated shape of the Cross canopy.
Conventional parachutes are symmetrically constructed and the
forces in the several suspension lines are usually assumed to be
uniform. This is a reasonable assumption because all of the
suspension lines are of the same design length and elongate
equally. The arms of a Cross parachute each have a set of
suspension linas which are usually of the same design length.
Figure 1 shows that the several suspension lines attached to an
arm of the canopy elongate in a uniform, but unequal pattern.

Figure 2 is a typical load elongation test result of tubular
braided nylon cord of the type used by the Naval Surface Warfare
Center in parachute designs. The samples witness to tha
repeatability of the cord's performance. The obvious conclusion
to be drawn from Figures 1 and 2 is that the tensile force in the
Cross perachute's suspension linas varies, and this forced
variation manifests itself by the different elongations of the
lines. The equal elongation of the ring-slot parachute suspension
lines indicates uniform suspension line loading. The suspension
line forces can be modified to a uniform distribution by
selectively lengthening the inner suspension lines. If the
suspension lines were lengthened so that they hang loosely they
would not transmit any force.

Several approaches are avallable as solutions to the broken
suspension line problem. Each approach has some advantage and
disadvantage.

---------- APPROACH-===~~=======ADVANTAGE~~=====~=-DISADVANTAGE-~--~

1. All suspension lines No production line Some increase in
same length. Design misassembly suspension line
strength related to problems. cost and required
maximum suspension packing volume.

line force.
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R e 120 :!,;'- *’?""""’ - o
RINGSLOTPARACHUTE WITH EQUALLY ELONGATED SUSPENSiON D0 = 373 INCH DIA
LINES AT 200 MPH 24 GORE
16% POROSITY

CROSS PARACHUTE WITH UNEQUALLY ELONGATED SUSPENSION L = 40 INCH DIA

LINES AT 200 MPH WIL = 0.264
FIGURE 1. COMPARISON OF SUSPENSION LINE ELONGATION OF RIBBON
AND CROSS PARACHUTES
2
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CORD SAMPLES AS PER MIL-C-17183, TYPE VI

SAMPLE 1 SAMPLE 2
700 - - N 700 -
600 |- . - 600 - .
500 - - 500 L— —~
400 - — 400 - -
300 - 300+ -
200 - 200 |~ -]
100 - - 100~ -
| 1 | |
0
oO 10 20 30 0 10 20 30
ELONGATION
(PERCENT)

FIGURE 2. TYPICAL FORCE-ELONGATION TEST NDATA FOR A TUBULAR BRAIDED
NYLON PARACHUTE SUSPENSION LINE CORD




All suspension lines
same length. Design
strengths tailored
to various maximum
suspension line
forces

Suspension line
lengths varied.
Design strength of
all lines constant
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Less weight and
packing volume
than approach
No. 1

Less weight and
packing volume
than approach
No. 1

Possible production
line problems with
suspension line
misassembly

----- DISADVANTAGE----

Possible production
line problems with
suspension line
misassembly

. Gh N W R D G R e WS T D T A R D B ST AR T D G O SR WGP e YR P IS S D oY TEp M G RS e WD e G mm AP AL R S R e G AR S ED W EP AR W D e S W S

All suspension
lines are the same
length and strength.

"Respace reinforcement

tapes on the canopy
to vary pressurized
canopy area to
produce uniform
suspension line
forces.

Best possibility
fcr a minimum
weight system.

Less likely
production line
problems.

approach number one is best.
assembled to any attachment point on the arm.

From +he standpoint of potential production problems,

of approach number four.

controlled in the layout and marking of the canopy cloth.

Any suspension line may be correctly

This is also true

The possibility of misassembly of the
canopy reinforcements to the canopy in approach number four can be

Spot

inspections of the reinforcement to canopy assembly are easily

accomplished.

Misassemblies should be obvious.

Approaches two

and three have the possibility of assembling either the wrong
length or wrong strength suspension line to the attachment point.
This possibility exists for each line attached and may not be

obvious.

for achieving a minimum weight system.

suspension lines.
suspension line lengths predetermined from existing data.

Approach number four appears to be the best candidate

The first step in the analysis of the problem of unequal
loading was to conduct a 200-mile-per-hour wind-tunnel test where
the tension force was measured in individual Cross parachute

A series of parachutes were constructed with

The

models were attached to the force measuring instrumentation. A

stadia rod was attached to the wind-tunnel mount and extended
along the wind-tunnel center line into the inflated canopy.

The

stadia rod was marked to provide a reference for measurements and
was also rigged to measure static pressures at various points
within the canopy and immediately ahead of the skirt hem.

4
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A second objective of the wind tunnel tests is to examine the
static pressure distribution along the canopy center line within
the canopy and in the zone immediately ahead of the skirt hem.
Figure 23 of Appendix A of Reference 1 presents photographs of
airflow patterns around parachute profiles. The volume of air
associated with an inflated parachute is shown to extend ehead of
the canopy skirt hem. This volume of air must also be collected
during the inflation time interval in crder to have a fully
inflated parachute. As a demonstration that this air mass
actually exists a stadia rod with ten pressure taps was mounted
alorig the parachute center line to measure the static local
pressure distribution ahead of and inside of the canopy. Elevated
static pressures are indicative of air masses with less than free
stream velocity.

5/6
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APPROACH

The best way to investigate the Cross parachute suspension
line variable force problem is to conduct a wind-tunnel test
wherein the forces in designated suspension lines can be measured
simultaneousiy under controlled test conditions. Seven,
40-inch~diameter mode}l parachutes were designed and manufactured.
The seven models built with the materials of Table 1, consisted of
one parachute with two suspension lines per arm, three parachutes
with four suspension lines per arm, and three parachutes with six
suspension lines per arm. The models were built as per Figures 3
and 4 with uniform suspension line spacing on the canopy as a
baseline force distribution which is representative of our current
design technique. Each of the parachutes had different suspension
line length distributions which were derived from existing data.
Three 41.7 percent scale models of the parachute MK 38 MOD 0 were
also constructed as per Figure 5. These parachutes, numbered 8,
9, and 10, were tested to determine the effects of the rate of
airflow of the production canopy cloth on the drag coefficient of
the parachute. Parachute materials are listed in Table 1. The
particular suspension line lengths for every model parachute test
are listed in the test data summary of Table 2,

|

The 200 mph test was conducted at the University of Maryland
Subsonic Wind Tunnel at College Park, Meryland. Win® c‘unnel
engineering personnel designed and constructed the 24 attachment
poirnt suspension line force measuring device of Figure 6. Twelve
of the sensing elements were instrumented to measure force data.
The instrumented active load cell channels were located as
indicated in Figure 7. Each parachute was attached to the load
cell with two complete sets of adjacent lines connected to active
channels. The active channels were continuously recorded by
instrumentation which determined the average value of the tensile
force and the one sigma variation.

The stadia rod of Figure 8 was attached to the aft end of the
force sensing gauge. The stadia rod was marked with contrasting
stripes to permit measurements of the inflated models, and also
fitted with ten static pressure sensing taps to measure the static
pressures within the inflated canopy and the zone directly ahead
of the canopy skirt hem. Orthogonal photographs of the several
parachutes under test were obtained by still cameras positioned as

shown in Figure 9.
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SEE TABLE 1 FOR MATERIALS IDENTIFICATION
AND TABLE 2 FOR SUSPENSION LINE LENGTHS

» .7
|
‘,—Ar@ TYPICAL TAPE - CANOPY CROSS SECTION
__._iL_.]
. \@

SKIRT HEM - SUSPENSION LINE ASS'Y

FIGURE 4. MODEL PARACHUTE CONSTRUCTION DETAILS FOR MODEL PARACHUTES
NUMBERED 1 THROUGH 7
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TYPICAL TAPE - CANOPY CROSS SECTION

SEE TABLE 1 FOR MATERIALS IDENTIFICATION
AND TABLE 2 FOR SUSPENSION LINE LENGTHS

CONSTRUCTION DETAILS FOR MODEL PARACHUTES NUMBERED 8, 9, AND 10

FIGURE 5. 41.7 PERCENT SCALE MODEL OF THE PARACHUTE MK 38 MOD 0
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ACTIVE LOAD CELL CHANNELS
" LOOKING UPSTREAM

RUNNO. | LINESPER PARACHUTE CONNECTED
ARM TO ACTIVE CHANNELS NO.
' 2 2,5,8,11
56,7 4 2,3,4,5,8,9,10,11
8,9,10 6 1,2,3,4,5,6,7,8,9,10,11,12
1,12,13 4 2,3,4,5,8,9,10,11

FIGURE 7. LOCATIONS OF ACTIVE LOAD CELL CHANNELS

e
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TEST METHOD

The suspension line force and static pressure instrumentation
were mounted on the support and aligned with the center line of
the wind tunnel. A 20-mph run was conducted without a parachute
installed to obtain the system aerodynamic tare and a reference
static pressure distribution along the stadia rod. A parachute
was then installed on the force sensor with the parachute
suspension lines connected to active channels as listed in
Figurs 7. The wind tunnel was accelerated to 200-mph and the
suspension line forces were recorded. The steady state drag force
of the parachute was also recorded by the wind tunnel balance
system. The static pressure distribution together with front and
side view still photographs of the test configuration completed
the data. This procedure was followed for each parachute. Some
parachutes had the inner line lengths modified and the test was
repeated to measure changes in the suspension line force

distribution.

17/18
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RESULTS

SUSPERSION LINE FORCES

Test results confirm that selectively lengthening the Cross
parachute inner suspension lines redistributes the forces and
improves the uniformity of the force distribution. The test data
and calculations are summarized in Table 2. Note that the
suspension lines are attached and distributed around the
circumfersnce of a 3-1/4-inch~diameter circle. The length of the
suspensinn lines in this study is taken to be the actual length of
the cord and not the projected effective length of all the
cuspension lines to a single confluence point.

With reference to the 1list of suspension line force
coz2fficients in Table 2 the following conclusions may be drawn.

1. The force distribution in the eight suspension line
parachute of run number 4 is uniform.

2. The addition of four more evenly spaced suspension lines
{16 lines total) of equal length as in run number 5 ¢enerally
reduces the force distribution in the outer lines by 50 percent.
However, the force distribution is not uniform. The inner pair of
suspension lines are bearing tensile forces which exceed the outer
suspension line forces by 1.47.

3. As the inner suspension lines are lengthened, as in runs
number 6 and 7, the susnhension line loads in the several lines are
redistributed with an incrzcse in the outer line forces and a
decrease in the inner line forces which results in a more uniform
force distribution among the lines.

As the inner lines were extended the ratio of suspension 1ine
tension to outer suspension line tension decreases linearly as
shown in Figure 10.

4. The 24 suspension line parachutes of runs number 8, 9,
and 10 show the same force distrihution trends as the 16 line
parachute. The linearity is not as easily seen with the
additional twc suspension lines per arm. It is obvious that as
the number of suspension lines increase the evaluation of the most
efficient suspension line length distribution becomes increasingly
difficult.

19




SUSPENSION LINE TENSION
QUTER SUSPENSION LINE TENSION

Fin

Fout

FIGURE 10

NSWC TR 89-306

' ¢
Fin 12475 — + 13.944

Fout fout
_ RUNS
15
~ RUNG6
10 |~
- ‘ . RUN7?
™ Crav FORRUNS5,6,&7 = 0.611
B ‘
0s - 1.0376
‘[__\,\ ] | { 1
0 1.0 1.02 1.04 1.06
Cin Line Llength

-
——— =

Cout Outer Line Length

. VARIATION OF SUSPENSION LINE FORCE COEFFICIENT FOR THE VARIED
SUSPENSION LINE LENGTHS OF THE 16 SUSPENSION LINE PARACHUTE

20




NSWC TR £9-30§

5. The equal suspension line length MK 38 MOD 0 parachute
has similar load distributions as run 4. Lengthening the
suspension lines, run 12, did not improve the drag coefficient due
to the hem tape limiting the canopy diameter. The partial
collapse of the 4 momme silk cloth parachute of run 13 is
reflected in the reduced suspension line force readings. The load
distribution shows the same trends even when only partially
inflated.

The load cell channel suspension line force coefficients have
been added up for each run, multiplied by 2, and compared to the
wind tunnel balance reading. The sum of the suspension line force
coefficients generally exceeds the balance reading because the
load cells measure the tensile force in the suspension lines and
the balance measured the parachute axial aerodynamic force.

For each run the ratio of suspension line length to len¢th of
the outer suspension line was calculated. The suspension liae
force coefficients for each set of lines were averaged to minimize
test variations and ratioed to the line force coefficients c¢f the
outer lines. These data are plotted in Figures 10 and 11. The
suspension line length variation of Figure 10 is a linear
variation of force ratio since all of the inner lines were
modified by the same amount. Equation (1) was fitted to the data
and shows that the force distribution in all 1lines should te :
uniform when the inner line Jengths are 1.0376 times the ovter
line length.

As the number of suspension lines in the parachute increase
the effects of varying the lengths of the inner lines complicates
the data analysis. The interaction of the inner sets of lines
causes a scatter in the data. For each set of lines the data has
been averaged for runs 9 and 10 and plotted on Figure 11. A
uniform suspension line load distribution in a 24 suspension line
requires that the first inner set of lines be 1.020 times the --
length of the outer suspension line and that the lengths of the
central set of lines be 1.0386 times the length of the cuter
suspension line.

CANOPY INTERNAL STATIC PRESSURE DISTRIBUTION

Most inflation time calculation approaches assume that the
volume of air that is to be collected lies inside of the inflated
canopy between the skirt hem and the vent. There is evidence in
Appendix A of Reference 1 that the total volume of air associated
with a fully inflated canopy extends ahead of the canopy skirt
hem. This additional volume of air was derived in References 2
and 3 which presented a method for estimating the total volume of
air, v,, to be collected. Utilization of the V, air volume in
subsequent inflation reference time, calculations shows
excellent agreement with inflation timgs calculated using accepted
empirical methods.
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As the flow enters the mouth of an uninflated parachute the
velocity head of the flow is reduced and transformed into a
pressure head. If the flow were at a complete stagnation the
canopy internal pressure coefficient, AP/q, would be a maximum.

As the rate of canopy outflow increases the internal pressure is
reduced. Eventually, the internal pressure is too weak to support
full inflation and inflation instability develops. :

Figures 12 through 21 are profile views of the test
parachutes with the pressure coefficient distributions
superimposed at the particular pressure tap locations along the
the stadia rod. 1In each of the tests elevated static pressure,
ahead of the parachute skirt hem, was detected as well as within
the canopy. These partial stagnation pressures increase in
intensity as the flow approaches the parachute skirt hem and reach
a maximum value inside of the canopy. The elevated pressure
profile ahead of the canopy skirt hem is indicative of an
additional mass of air associated with the inflated canopy.

Figures 22 through 25 present the effects of the number of
parachute suspension lines and canopy cloth rate of airfiow on the
measured pressure distributions. Due to the various parachute
suspension line lengths in the tests, pressure distributions
cannot be compared by orienting the pressure taps. For each test
the plane containing the locations of the joint of the canopy
skirt hem and the outer most suspension lines on each arm was
established. The pressure distributions were shifted to align the
canopy hem planes which compares the canopy pressure distributions
relative to the hem of the canopies.

The pressure profiles of Figure 22 indicate a rise in
pressure distribution with an increase in the number of suspension
lines in the assembly. The dominant change occurs between the
eight and 16 suspensicn line configurations with a smaller
pressure increase between 16 and 24 lines. The pattern of
increase indicates that the effects of increasing the number of
suspension lines approaches a limiting value. This is similar to
the known effects of the number of suspension lines on the Cross
parachute drag coefficient. Comparing the pressure levels of
Figures 23 and 24 generally shows the same effects as Figure 22.

Figures 23 and 24 show the pressure distributions for 16 and
24 suspension line configurations respectively for lines of equal
length and two different distributions of inner suspension line
lengths. Lengthening the inner suspension lines appears to cause
a small reduction in the pressure distribution.
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PRESSURE COEFFICIENT

NSWC TR 89-206

RUN  PARACHUTE  NO* PERMEABILITY
NO. NO. LINES CANOPY CLOTH (CFM/FT2)
0 4 1 8 MIL-C-7020, TYPE| - 90
X 5 2 16 MILC-7020, TYPE| 20
o 8 5 24 " MIL-C-7020, TYPE | 20
o 15 STRUT AND FIXTURE TARE RUN WITH SHORT STADIA ROD
10 T | | I T 7
o _
08
o ‘ X0
' o)@&f ;
, ] of |
— o | —
o |
2 04 e ‘
2 x ¢ -~ ALL OUTER SUSPENSION
| <N LINE-CANOPY SKIRT HEM -
X JOINTS LIE IN THIS PLANE
_ x 0 |
0.2 5
) |
!
L [I a
0.0 VASSUACE e RCEoEERY
O
-0.2 L N | ] | |
16 24 32 40 a8 56 64

DISTANCE ALONG STADIA ROD (INCHES)

¢ ALL SUSPENSION LINES ARE 34 INCHES LONG,

FIGURE 22, EFFECT OF THE NUMBER OF SUSPENSION LINES ON THE MEASURED
STATIC PRESSURE DISTRIBUTION ALONG THE STADIA ROD SHOWING
ELEVATED LOCAL STATIC PRESSURES AHEAD OF THE CANOPY SKIRT
HEM. TEST VELOCITY 200 MPH.
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PRESSURE COEFFICIENT

(AP/q)

NSWC TR 89-306

RUN PARACHUTE NO. PERMEABILITY
NO. NO. LINES CANOPY CLOTH (CFM/FT2)
X 5 2 16 MIL-C-7020, TYPE | 90
Fa 6 3 16 MIL-C-7020, TYPE | 90
Qo 7 4 16 MIL-C-7020, TYPE | 90
0] 15 STRUT AND FIXTURE TARE RUN WITH SHORT STADIA ROD
1.0 I T I T T T T T T i
RUN SUSPENSION LINE LENGTH
= NO 1 2 3 4
5 34 34 34 34
0.8 6 34 35.2 35.2 34 —
d} @l) é 7 34 35.51 35.51 34
| ]
AH 8
0.6 Q
&(
0.4 3¢
%
% / ALL OUTER SUSPENSION
— % LINE-CANOPY SKIRT HEM =
JOINTS LIE IN THIS PLANE
0.2
0.0 T O TO T T
o -
-0.2 ! I ! | ]
16 24 32 40 48 56 64

DISTANCE ALONG STADIA ROD (INCHES)

FIGURE 23. EFFECTS OF VARYING THE INNER SUSPENSION LINE LENGTHS ON THE
MEASURED STATIC PRESSURE DISTRIBUTION ALONG THE STADIA ROD

SHOWING ELEVATED LOCAL STATIC PRESSURES AHEAD OF THE CANOPY
SKIRT HEM, TEST VELOCITY 200 MPH.
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RUN  PARACHUTE  NO. PERMEABILITY
NO. NO. ~ LINES CANOPY CLOTH (CFM/FT2)
o 8 5 24 MIL-C-7020, TYPE | 90
o) 9 6 24 MIL-C-7020, TYPE | . 90
A 10 7 24 MIL-C-7020, TYPE | - 90
O 15 STRUT AND FIXTURE TARE RUN WITH SHORT STADIA ROD
1.0 : ] | R S TS S 1
RUN SUSPENSION LINE LENGTH .
| | NO. 1 2 3 4 5 6 _|
® 8 33 3a 34 34 33 34
0.8 9 34 3502 35.53 35.53 35.02 34 —
10 34 35.08 35.63 35.63 3502 34
: [
0.6
- . &
i '
3] — ' -
E f
§§ 0.4 1 [
wd & | — ALL OUTER SUSPENSION
S B S LINE-CANOPY SKIRT HEM _
a JOINTS LIE IN THIS PLANE
g 2
a . 0.2
0.0 (¢ BB AN e EnCaxe pue; 0 0O G
- o -
-0.2 ] ] i \ ] !
16 24 32 40 48 56 64

DISTANCE ALONG STADIA ROD (INCHES)

FIGURE 24. EFFECT OF THE NUMBER OF SUSPENSION LINES ON THE MEASURED
STATIC PRESSURE DISTRIBUTION ALONG THE STADIA ROD SHOWING
ELEVATED LOCAL STATIC PRESSURES AHEAD OF THE CANOPY SKIRT
HEM. TEST VELOCITY 200 MPH.
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PRESSURE COEFFICIENT
(AP/y)

QDo 0 X

NSWC TR 89-306
RUN PARACHUTE NO. PERMEABILITY
NO. NO. LINES CANOPY CLOTH (CFM/FT2)
5 2 16 MIL-C-7020, TYPE | 90
11 8 16 MIL-C-17208, TYPE |, CLASS B 325
12 9 16 MIL-C-17208, TYPE I, CLASS B 325
13 10 16 3 MOMME SILK 428
14 STRUT AND FIXTURE TARE RUN WITH LONG STADIA ROD
1.0
i T T T T ] | l
RUNS 11, 12, & 13 ARE 41.7% SCALE MODELS
— OF THE CROSS PARACHUTE MK 38 MOD 0. ]
| | |
| I |
N ALL OUTER SUSPENSION~——,_
LINE-CANOPY SKIRT HEM 7
JOINTS LIE IN THIS PLANE %
0.6 x"\ 3
x
- k2 -
[0}
0.4 ¢ N
&
g
0.2 50
&
=] o)
- fa
o o -
d ]
-0.2 ! ] ! |
16 24 32 40 48 56 64

DISTANCE ALONG STADIA ROD {INCHES)

FIGURE 25, EFFECT OF CLOTH PERMEABILITY ON THE MEASURED STATIC PRESSURE
DISTRIBUTION ALONG THE STADIA ROD SHOWING ELEVATED LOCAL
STATIC PRESSURES AHEAD OF THE CANOPY SKIRT HEM. TEST VELOCITY

200 MPH.
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Figure 25 presents the effects of canopy cloth rate of
airflow on the pressure distribution of 41.7 percent scale model
of the Parachute MK 36 MOD 0. Runs 11 and 12 which had suspension
line lengths of 40 inches and 50 inches, respectively, indicated
essentially identical pressure variations. The three momme silk
model of run 13 was included to evaluate canopy cloth permeability
on canopy full inflation. The silk model of the MK 38 parachute
inflated to 75 percent of the design drag area at the test
velocity of 200 mph. The wind tunnel onset of inflation
instability is somewhere between the 325 CFM/FT® production MILic—
17208, Type I, Class B cloth rate of airflow and the 428 CFM/FT
silk cloth rate of airflow, see Figures 18, 19, and 20. The
greater rate of airflow of the silk cloth used in run 13 of Figure -
25 has reduced the internal canopy pressure to a degree that full '
inflation of the parachute cannot be maintained. It is consistent
that the lower cloth rate of airflow of run 5 results in a slight
increase in the pressure distribution. The effects of canopy rate
of airflow on the Parachute MK 38 MOD O drag coefficient are shown
in Figure 26.
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CONCLUSIONS

1. Conventional round parachutes have a uniform steady state
suspension line force distribution in the several equal length
suspension lines because all lines elongate equally under load.

2. Equal length suspension lines attached to an arm of a Cross
parachute elongate nonuniformly in steady state. This indicates a
nonuniform force distribution in the lines with the maximum force
occurring in the longest line(s).

3. The suspension line forces can be reduced by progressively
lengthening the several lines. The longer lines modify the force
distribution in the suspension line system.

4. The optimum way to make the suspension line force distribution
uniform is to adjust the spacing of the suspension lines on the
canopy. This approach will permit use of a single strength and
length of suspension line and minimize inspection during
manufacture.

5. Measurements of the axial steady state static pressure
distribution adjacent to the parachute center line indicate that

. the associated air mass of the inflated parachute extends ahead of

the canopy skirt hem.
6. As the canopy cloth permeability is increased the pressure

-—distribution is similar in form but the magnitude 1is reduced.

This also applies to partially inflated canopies.

7. Excessive canopy cloth rate of airflow results in incomplete
canopy inflation.
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