
AD-A2 6 2 261

THE CONSORTIUM REQUIREMENTS
ENGINEERING METHOD

SPC-92118-CMC
Ins q 6?7.2 - l? 2 - 7- /0/8

VERSION 01.00.00

SEPTEMBER 1991 D TIC
]•MAR2 5 1993D

E

.- ýSTRIBtqs.,Ap STATE
Approved for public releowe
~m Distributigo L

93 3 24 008 93-0606593l•iilll~l~ll .e

THE CONSORTIUM REQUIREMENTS
ENGINEERING METHOD

Accesioi, For

NTIS CP.,I

DTI1(TAL;
SPC-92118-CMC

By
VERSION 01.00.00

Availabihty Codes

SEPTEMBER 1991 "st Avanai;d•,or
Dist [SPL-cal'

Stuart Faulk I
James Kirby, Jr. A-1

Skip Osborne Statement A per telecon Jack Kramer
DARPA/SISTO

D. Douglas Smith Arlington, VA 22203
Steven Wartik

NWW 3/24/93

John Brackett, Boston University
Paul T. Ward, Software Development Concepts

Reprinted for the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER
c

February 1993 t7-

SOFTWARE PRODUCTIVITY CONSORTIUM, INC.
SPC Building

2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1991, 1993 Software Productivity Consortium, Inc.. Herndon, Virginia. Permission to use, copy, modify' and distribute
this material for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies
and that both this copyright notice and this permission notice appear in supporting documentation. The name Software
Productivity Consortium shall not be used in advertising or publicity pertaining to this material or othecrw-ise without the prior
written permission of Software Productivity Consortium, Inc. SOFTWARE PRODUCTIVrIY CONSORTIUM, INC. MAKES
NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS MATERIAL FOR ANY
PURPOSE OR ABOUT ANY OTT IER MAITER, i,;1D I HIS MAI EIAT, IS PROVIDED WITHOUTI EXPRESS OR
IMPLIED WARRANTY OF ANY KIND.

Macintosh is a registered trademark of Apple Computer, Inc.

SuperCard is a copyright of Silicon Beach Software, Inc.

teamwork- is a registered trademark of Cadre Rchnologics, Inc.

CONTENTS

PREFACE ... xiii

ACKNOWLEDGEMENTS ... xv

EXECUTIVE SUMMARY .. xvii

1. INTRODUCTION .. 1

1.1 Approach to Method Development ... 1

1.2 The M ethod Requirements .. 2

1.2.1 Requirements Addressed in the Current Method 2

1.2.2 Needs Remaining to be Addressed .. 3

1.3 Key Assumptions and Features of the Method 4

1.3.1 M ethod Assumptions .. 4

1.3.2 Technical Features ... 5

1.4 Technical Approach to the Method ... 5

1.5 Report Organization .. 6

1.6 'Iypographic Conventions .. 7

2. THE BEHAIORAL AND DATA MODELS 9

2.1 The Stendard Behavioral M odel .. 9

2.1.1 Relations NAT and REQ ... 10

2.1.2 Relations IN and OUT ... 11

2.1.3 Object Decomposition and Definition 12

2.2 The Requirements Data Model .. 13

2.2.1 Notation for Describing the Data Model 13

2.2.2 The D ata M odel ... 14

iii

Contents

3. THE CONCEPTUAL METHOD .. 17

3.1 Process O verview ... 17

3.1.1 Step 1: Define the Object Model ... 18

3.1.2 Step 2: Identify Monitored and Controlled Variables 19

3.1.3 Step 3: Define Environmental Constraints 19

3.1.4 Step 4: Define Externally Visible Behavior 20

3.1.5 Step 5: Define Hardware Interfaces .. 20

3.2 D efining O bjects ... 21

3.3 Identifying Monitored and Controlled Variables 22

3.3.1 Defining the Domain and System Boundary 23

3.3.2 Specifying Monitored and Controlled Variables 24

3.4 Specifying Environmental Constraints: Defining the NAT Relation 25

3.5 Defining Visible Behavior ... 26

3.5.1 Specifying the REQ Relation ... 26

3.5.2 Describing State and State Transitions 28

3.5.2.1 State Conditions .. 29

3.5.2.2 Events ... 30

3.5.2.3 M odes ... 31

3.6 Specifying the IN Relation ... 32

3.7 Specifying the OUT Relation .. 33

3.8 Specifying Timing Constraints .. 34

3.9 Specifying Accuracy constraints .. 35

3.10 Determining Completeness and Consistency 35

3.10.1 Data Model Completeness Checks 36

3.10.2 Data Model Consistency Checks ... 36

3.10.3 Behavioral Model Completeness Checks 36

3.10.4 Behavioral Model Consistency Checks 38

iv

Contents

4. METHODS OF REPRESENTATION 41

4.1 Requirements Information to Present ... 42

4.2 Presenting Requirements Information ... 43

4.2.1 Presenting the Environment of the System 43

4.2.2 Presenting the Hardware/Software Interface 46

4.2.3 System Behavior ... 48

4.2.3.1 Presenting an Overview ... 48

4.2.3.2 Detailed Specification of the System's Behavior 49

4.2.3.3 Presenting States of the System and State Transitions 51

5. TECHNICAL RATIONALE AND PROGRESS 53

5.1 The Basic Technical Approach ... 53

5.1.1 Reactive System Orientation .. 53

5.1.2 Front Loading ... 53

5.1.3 Integration of Graphics-Based and Text-Based Methods 54

5.1.4 Integration of the Object-Oriented Paradigm 54

5.1.5 Nonalgorithmic Specification ... 55

5.1.6 A "M achine-Like" M odel ... 55

5.1.7 Existing Tool Support .. 55

5.1.8 Document and Work Product Independence 56

5.2 Q ualities of CoRE .. 56

5.2.1 Completeness of the method .. 56

5.2.2 Scalability .. 57

5.2.3 Usability on Line Projects .. 58

5.2.4 Technical transfer .. 58

5.2.5 Document Production Independence 58

5.3 Qualities of the Method Work Products .. 59

5.3.1 Completeness of Specifications .. 59

5.3.2 Consistency in Specifications ... 60

V

Contents

5.3.3 Specifying Timing and Accuracy Constraints 61

5.3.4 Tool Support 62

5.3.4.1 The teamwork Tool ... 62

5.3.4.2 Ideal Requirements Toolset .. 63

5.3.5 Verification and Validation of Specifications 64

5.3.5.1 Validation ... 64

5.3.5.2 Verification .. 65

5.3.6 Maintainability and Ease of Change 66

5.3.7 Understandability and Communication of Specifications 67

5.3.8 Redundancy in Requirements ... 68

5.3.9 Feasibility of Requirements ... 69

6. CONCLUSIONS ... 71

APPENDIX A. FUEL-LEVEL MONITORING SYSTEM INTRODUCTION AND
GUIDED TOUR ... 73

A.1 Introduction to the Fuel-Level Monitoring System Example 73

A.2 Problem Description ... 73

A.3 A Guided Tour of the Example .. 74

A.3.1 Tour for Overall Understanding .. 75

A.3.2 Tour for the Software Designer ... 78

A.3.3 Tour for the Software Tester .. 79

APPENDIX B. FUEL-LEVEL MONITORING SYSTEM SPECIFICATION 81

B .1 Introduction ... 81

B.1.1 Purpose of the Fuel-Level Monitoring System 81

B.1.2 N otation ... 82

B.2 System Context Diagram 83

B.3 Fuel-Level Monitoring System Information View 84

B.4 Fuel-Level Monitoring System Transformation View 85

vi

Contents

B.5 InO peration O bject .. 86

B.5.1 Interface ... 86

B .5.1.1 M odes .. 86

B.5.1.2 Term s ... 86

B.5.2 Encapsulated Information 86

B .5.2.1 Events .. 86

B.6 Pump Interface Object ... 88

B.6.1 Interface ... 88

B.6.2 Encapsulated Infoimation .. 88

B.6.2.1 Controlled Variables .. 88

B.6.2.2 Term s ... 88

B.6.2.3 NAT Relation .. 88

B.6.2.4 Required Behavior ... 89

B.6.2.5 Output Data Items ... 89

B.6.2.6 OUT Relation ... 89

B.7 Watchdog Interface Object .. 90

B.7.1 Interface ... 90

B.7.2 Encapsulated Information .. 90

B.7.2.1 Controlled Variables .. 90

B.7.2.2 NAT Relation .. 90

B.7.2.3 Required Behavior ... 90

B.7.2.4 O utput Data Item .. 91

B.7.2.5 OUT Relation ... 91

B.8 Fuel in Tank Interface Object .. 92

B.8.1 Interface ... 92

B.8.1.1 M onitored Variables .. 92

B.8.1.2 NAT Relation .. 92

vii

Contents

B .8.1.3 Term s ... 92

B.8.2 Encapsulated Information .. 93

B.8.2.1 Term s ... 93

B.8.2.2 Input D ata Item ... 93

B.8.2.3 IN Relation .. 94

B.9 Operator Interface Object .. 95

B .9.1 Interface ... 95

B.9.1.1 M onitored Variables .. 95

B.9.1.2 Events .. 95

B.9.2 Encapsulated Information .. 96

B.9.2.1 M onitored Variables .. 96

B.9.2.2 Controlled Variables .. 97

B.9.2.3 Term s ... 97

B.9.2.4 Required Behavior 98

B.9.2.5 Input Data Items ... 100

B.9.2.6 IN Relation .. 100

B.9.2.7 Output Data Items 101

B.9.2.8 OU T Relation ... 102

B.10 G lossary ... 103

B.11 Indexes .. 104

B.11.1 M onitored State Variables .. 104

B.11.2 Controlled State Variables .. 104

B.11.3 M odes .. 104

B.11.4 Interface Term s .. 104

B.11.5 M iscellaneous Variables .. 104

REFERENCES ... 107

BIBLIOGRAPHY ... 109

viii

FIGURES

Figure 1. Standard Embedded System Model .. 10

Figure 2. The Requirements Relations ... 11

Figure 3. Data M odel Notation ... 14

Figure 4. Data Model of Software Requirements 15

Figure 5. Data Model of the Four-Variable Relation 16

Figure 6. Fuel-Level Monitoring Domain Transformation Diagram 25

Figure 7. Fuel-Level Monitoring System: InOperation Modes 37

Figure 8. Fuel-Level Monitoring System: Information View 44

Figure 9. Aircraft Collision Warning Monitor: Information View 45

Figure 10. Fuel-Level Monitoring System: Context Diagram 46

Figure 11. Fuel-Level Monitoring System: Software Context Diagram (Partial) 47

Figure 12. Fuel-Level Monitoring Systerr,•aansformation Diagram 49

Figure 13. Fuel-Level Monitoring System: Operating Modes 51

Figure 14. Fuel-Level Monitoring System: Pump and Tank Configuration (Front View) 81

Figure 15. Fuel-Level Monitoring System: Context Diagram 83

Figure 16. Fuel-Level Monitoring System: Information View 84

Figure 17. Fuel-Level Monitoring System: Transformation Diagram 85

Figure 18. Fuel-Level Monitoring System: InOperation Modes 86

Figure 19. Operator Interface Object Transition Diagram 96

ix

Figures

This page intentionally left blank.

TABLES

Table 1. The Requirements Process ... 17

Table 2. Example Fuel Level Monitoring System Attribute Definitions 43

Table 3. Definitions of Monitored Variables 45

Table 4. Definitions of Controlled Variables .. 45

Table 5. The IN Relation for DiffPress .. 48

Table 6. Decision Table Representation of the Behavior of LevelDisplay 50

Table 7. Condition Table Representation of the Behavior of LevelDisplay 50

Table 8. Definitions of InOperation Technical Terms 52

Table 9. State Transition Table Representation of the InOperation Mode Class 52

Table 10. Behavior of PumpSwitch .. 88

Table 11. Behavior of Shutdown .. 89

Table 12. Relations on Shutdown .. 89

Table 13. Behavior of W DTimer .. 90

Table 14. Relations on W DTimer ... 91

Table 15. Relations Between FuelLevel and DiffPress 94

Table 16. Behavior of AlarmName .. 99

Table 17. Instance Alarm Definitions .. 99

Table 18. Behavior of LevelDisplay .. 99

Table 19. Relations Between ResetDevice and ResetSwitch 100

Table 20. Relations Between SelfTestDevice and SelfTest 100

Table 21. Relations on HighAlarm .. 102

Table 22. Relations on LowAlarm ... 102

Xi

Tables

Table 23. Relations on AudibleAlarm 102

Table 24. Relations on LevelDisplay ... 102

PREFACE

The Consortium Requirements Project was created to address the key member company problem
that:

Requirements are incomplete, misunderstood, poorly defined, and change in ways that are difficult to
manage. (Consortium Board of Directors).

Work in 1990 determined that these problems could be substantially addressed by providing improved
methods and tools targeted to the needs of line projects. The first goal of the project was to understand,
in detail, what problems line projects have with requirements and where current methods or practices
are deficient. This produced a detailed set of requirements for methods and tools supporting the re-
quirements process. The second goal of the project was to develop a method and supporting tool that
satisfied these member company requirements. This work initially focused on software (as opposed
to system) requirements. Subsequent work will seek to validate the method through pilot projects in
member companies. Validated products will be transferred to line projects through detailed
guidebooks, examples, and training.

To ensure timely feedback to the member companies, the Consortium will provide reports over the
course of the project. This is the first such report describing the requirements method. Its purpose
is to permit member company personnel to assess the project against its goals, i.e., the method require-
ments established by the member companies. The Consortium with will use the feedback to refine
the statement of method requirements and make course corrections in the technical program as neces-
sary. The report is also intended to initiate interest in a pilot project that will apply the method exper-
imentally in a member company setting (e.g., an Internal Research and Development [IR&D] effort)
in 1992.

xiii

Preface

This page intentionally left blank

xiv

ACKNOWLEDGEMENTS

The Consortium wishes to thank the attendees of the 1991 Requirements Workshop for their work
on the method requirements, the members of the Technical Advisory Group for refining the method
requirements and for reviewing this report, and to Randy Scott for reviewing this report. Special
thanks also go to Paul Clements and Jim O'Connor for many helpful comments and suggestions.

Parts of this report, particularly the example (Appendix B), come from (van Schouwen 1990).

Xv

Acknowledgements

This page intentionally left blank

xvi

EXECUTIVE SUMMARY

The Consortium Requirements Project was created to address the key member company problem
that:

Requirements are incomplete, misunderstood, poorly defined, and change in ways that are difficult to
manage (Consortium Board of Directors).

Preliminary investigation in 1990 determined that the Consortium could substantially address these
problems by providing improved methods and tools targeted to the needs of line projects. The first
goal of the project was to understand, in detail, what problems line projects have in developing require-
ments and where current methods or practices are deficient. This phase of the project produced a
detailed set of requirements for methods and tools supporting the software requirements process. The
second goal of the project was to develop a method and supporting tool that satisfied member compa-
ny needs. This work, at the behest of member companies initially focused on software (as opposed
to system) requirements. This is the first report on the technical approach and results.

The project first focused on assimilating existing technology, inventing new technology only where
necessary. This ensured that time was not wasted in developing new techniques or tools where suitable
technology was already available. The goal was to create a single method that incorporated the best
of a few proven technologies, the choice of technologies being driven by the member company needs.

The first cycle of method development described in this report focused on integrating two key technologies
that, together, address most of the high-priority member company needs: Paul Ward's CASE Real-Time
Method and work by David Parnas and colleagues on embedded system requirements. The resulting
method has the following features:

"• Modeling and specification of real-time systems.

"• Object orientation providing for separation of concerns, locality, and concurrent development.

"* Management of fuzzy or changeable requirements.

"* Equivalent graphic and textual specification using existing notations.

"• Document- and standard-independent behavioral and data models.

"• Precise, testable, and nonalgorithmic specification.

"* Applicability with existing tools.

"• Formal basis suitable for automation and eventual formal validation.

xvii

Executive Summary

To the extent that the Consortium has validated the proposed method with small examples, the
approach appears sound. It has achieved the initial technical goal of merging a strong, graphic-based
method with a formal text-based method with the desired result of exploiting the best features of each
approach. It has successfully applied the method to a small, real-time problem with results that are
consistent with the high-priority member needs.

A variety of needs remain to be addressed. These include specific mechanisms to handle traceability,
the extension to command and control applications, and guidelines for mapping the method and its
products to specific standards. Of particular concern are issues of scale and integration with the sys-
tem requirements process. The work to date confirms the need to address at least some aspects of
the system requirements problem to fully address open issues in software requirements.

Work in the next development cycle will concentrate on the remaining member company needs. Work
in the remainder of this year will focus on completing the first cycle of tool prototyping and on arrang-
ing a suitable pilot application of the method in an IR&D effort. The pilot application and supporting
method development in 1992 will focus on the remaining needs and provide more realistic examples.
The Consortium will address all of the critical issues necessary to a practicable method by the end
of 1992. A complete guidebook on the method is scheduled for 1993.

xviii

1. INTRODUCTION

The Consortium's Requirements Engineering (CoRE) method is being developed in response to the
member companies' need for improved requirements technology. Prior work by the Requirements
Project and member company personnel produced a detailed statement of needs. This report de-
scribes the technical progress in meeting those needs. It gives an overview of CoRE and illustrates
CoRE with a small example. It also discusses the technical rationale for the method in terms of the
stated member company needs.

Because the report describes ongoing work, the methods discussed are necessarily incomplete. While
parts of CoRE are well-defined, several issues remain open. In particular, the Consortium has not
yet fully addressed global issues relating to the overall system development process and scale-up. For
this reason, the focus of this report is on conveying an intuitive understanding of the technical ap-
proach rather than on a detailed technical description of CoRE. The report is intended to provide
information about the development of CoRE that the reader can use to assess progress against the
member company needs. Goals of the report include initiating feedback from the members on the
technical content and stimulating interest in a pilot (IR&D) project applying CoRE.

1.1 APPROACH TO METHOD DEVELOPMENT

"Two key principles drive the Consortium's method development approach: customer orientation and
use of available technology. To develop a methodology (or tool) that is usable by line projects, address-
es their problems with requirements, and represents a substantial improvement over available meth-
ods, there must be an ongoing dialogue between method developers and method users. For this reason,
there is a continuing effort in the Requirements Project to understand and capture member company
needs and to evaluate its products against those needs. The project initially captured these needs in
a set of requirements that CoRE must satisfy.

The method requirements drive the project's technology acquisition. A basic assumption of the
method development approach is that there is technology available that addresses the bulk of member
company requirements. While no single methodology may satisfy all requirements, the best parts of
a small number of methodologies will suffice. Thus, the approach is to acquire and integrate existing
methods using the method requirements to evaluate the suitability of candidate technologies. The val-
ue added by the project includes integration of the component methods into a eoherent whole, case
studies to demonstrate applicability in member company environments, detailed guidebooks and ex-
amples targeted to project personnel, and prototype tool support. It will also include tools directly
supporting the advanced features of CoRE.

Work on CoRE itself has followed a development strategy of rapid prototyping and reuse. The project
first focused on assimilating existing technology, inventing new technology only where necessary. This
ensures that time is not wasted in developing new techniques or tools where existing technology

I

1. Introduction

satisfies the method requirements. The goal is to create a single method that incorporates the best
of a few proven technologies. The project chose this approach because prior work showed that, while
no single available method meets all the member needs, there are available methods that possess com-
plementary strengths with respect to the method requirements. Further, these methods are based on
common technical assumptions. While these methods differ in process and notation, they agree on
what information must be captured and on the underlying technologies appropriate to capture it.

The project used the rapid prototyping strategy for risk mitigation and incremental validation. This
strategy included not only the creation of prototype tools supporting CoRE, but rapid cycles of devel-
opment and application of CoRE itself. A few steps or features were added to CoRE at one time, then
tried out on a sample problem. This allowed a quick determination of whether proposed approaches
addressed the method requirements as intended.

Since this report describes ongoing work, the methods discussed vary in their relative maturity. It
addresses the basic approach, underlying formal models, and supporting technologies in some detail.
However, it addresses broader life-cycle issues such a., he overall development process and issues
of scale-up only superficially. Since the example problem (Appendix B) illustrating CoRE was also
produced under these constraints, it represents a mix of technologies at different levels of develop-
ment. Subsequent efforts will increase the scale of the examples with pilot projects, providing more
realistic examples.

1.2 THE METHOD REQUIREMENTS

The Requirements Project determined the qualities CoRE must have from guidance provided by the
Technical Advisory Board (TAB), the Requirements Workshop (Faulk et al. 1991), and the
Requirements Technical Advisory Group (TAG). In discussions with the TAG, the method require-
ments produced by the workshop were consolidated and an agreement was made concerning which
needs should be addressed in the initial development cycle covered by this report. The order follows
the priorities set by the workshop.

The remainder of this section provides an overview of the method requirements. The requirements
addressed by the current work are given first in approximate order of priority. Then the open critical
requirements are listed. These will be addressed over the remainder of 1991 and by work in 1992.

1.2.1 REQUIREMENTS ADDRESSED IN THE CURRENT METHOD

The current CoRE method addresses the following requirements:

"* Member Company Applications. CoRE must support the development of precise, testable
specifications for real-time/embedded systems.

" Changing Requirements. CoRE must support developing requirements specifications that are
easy to change throughout the software life cycle. When requirements change, it must be easy
to tell what parts of the requirements specification and other work products are affected.

" Audience. CoRE must support the development of requirements specifications that are
understandable and useful to the specification's entire audience. The notation used by those ap-
plying CoRE must be understandable to systems engineers, hardware engineers, and software

2

1. Introduction

staff. CoRE should use familiar abstractions that eliminate the need to understand underlying
formalisms. It must support the ability to present customer-oriented views of system
requirements.

"System Interface. CoRE must provide mechanisms that allow the description of system
boundaries and the precise definition of system interfaces. It must provide mechanisms that
allow the description of both a system and the environment in which it operates. The
environment may include other systems that are under development.

" Document andFormat Independence. CoRE must include principles, guidelines, and techniques
for representing requirements independent of particular documents or work products.

" Separation of Concerns. CoRE must support the definition of requirements as a set of distinct
and relatively independent parts. It should support localizing requirements that are fuzzy or
incomplete and allow work to proceed where requirements are well understood.

" Derivation from System Requirements. CoRE must include guidelines and examples of required
inputs for the software requirements process and the form such inputs must take.

" Nonalgorithmic Specification. CoRE should allow nonalgorithmic specification of
requirements (where an algorithm is not actually required).

" Consistent Requirements. CoRE must define what makes a set of requirements consistent
(unambiguous). It must include principles, guidelines, and techniques for determining wheth-
er requirements are internally consistent and for keeping them internally consistent after
changes have been made to them.

" Complete Requirements. It must be possible for users of CoRE to determine where the
requirements specification is internally incomplete. It must permit definition and use of in-
complete requirements. For example, CoRE must allow detailing and checking of one part
of the requirements before another is complete.

1.2.2 NEEDS REMAINING TO BE ADDRESSED

In this initial method development cycle, the CoRE method did not address or only partially address
a number of aspects. In most cases these represented method requirements for which a solution de-
pends on the choices made in developing CoRE. For instance, most process issues cannot be ad-
dressed in detail until the scope and content of the work products are determined. Similarly, the
relation to other life-cycle work products (e.g., traceability to system requirements or the mapping
to design) cannot be effectively addressed until the requirements method is reasonably well-defined.
This section gives an overview of the requirements remaining to be addressed in subsequent method
development cycles.

"* Command and Control. CoRE must support specification of requirements for command and
control systems.

"• Traceability. CoRE must support tracing between components of a requirements specification
and components of other work products, including design specifications and test plans.

3

1. Introduction

"Specification of All Requirements. CoRE must support the development of specifications of
functional requirements and nonfunctional requirements (it currently supports functional but
does not directly address some nonfunctional requirements).

" Process. CoRE must be amenable to waterfall and nonwaterfall software processes. It must
be tailorable specifically to the Consortium's Evolutionary Spiral Process and to processes
that involve prototyping. It must address where in the process executable requirements models
are appropriate, and it must support evolution to the Synthesis process.

" Life Cycle. CoRE must provide guidelines, strategies, and techniques for interfacing with other
activities in the software life cycle. It should provide to systems cngineering a definition of the
inputs from systems engineering (and the form the inputs must take) required for specifying
software requirements. It must be possible to transition to commonly used design methods.
Transition to Consortium design methods must be well-defined.

" Standards. CoRE must support adherence to selected current and emerging standards. CoRE
must provide guidance on producing requirements work products that are acceptable to
DOD-STD-2167A.

" User Interface Requirements. CoRE must include principles, guidelines, and techniques for
specifying user interface requirements. It should be possible to generate prototypes of the
interface from the specification.

" Multiple Views of Requirements. CoRE must specify how to convert from an object-oriented
representation of requirements to a functional representation and back.

1.3 KEY ASSUMPTIONS AND FEATURES OF THE METHOD

The method requirements are manifested in CoRE in two ways: first, in the basic set of assumptions
the method makes about the requirements process and its products; second, in determining which
existing technologies are suitable candidates for incorporation in CoRE. These are treated briefly here
and in more detail in Section 5.

1.3.1 MEmToD AssuMPrioNs

The basic assumptions of the CoRE method are:

" Reactive System Orientation. Member company needs focus on methods for real-time
embedded systems and command and control. The project's initial work concentrates on
real-time embedded systems. The work assumes some characteristics typical 6f such systems
such as the fact that these systems typically maintain ongoing relationships with the environ-
ment. Because such systems must react to environmental changes, they are sometimes called
reactive systems (Harel and Pnueli 1985). Subsequent work will extend CoRE to command
and control applications.

" Front Loading. Formal studies (e.g., by Boehm [Boehm 1981]) and member company
experience confirm that the early development phases have the highest cost leverage. The ap-
proach calls for front loading in the sense that sufficient resources will be expended on the

4

1. Introducuion

requirements phase, and on subsequent maintenance and refinement of requirements, to
develop a high-quality requirements specification that will serve the many users of software
requirements throughout the life cycle.

* Document Independence. CoRE will be practiced in many member environments with different
internal standards for documentation. CoRE should not assume anything about the way the
final product is documented except that it must be possible to use a variety of formats
including DOD-STD-2167A.

* Nonalgorithmic Specification. CoRE must be able to express all behavioral requirements of
system software without mandating a particular design or implementation (although these
must be allowed by CoRE if such are actual requirements). The underlying model must
support such nonalgorithmic specification.

* Existing Notations and Tools. The cost of training and tools support dictates the use of existing
resources. The approach to developing CoRE assumes that existing notations and tools should
be incorporated wherever possible to reduce the cost of acquiring and using CoRE.

1.3.2 TECHNICAL FEATURES

The technical features of the CoRE method are:

" Graphics and Text. The ability to quickly develop and communicate system overviews was
determined a key capability as was the ability to precisely express detailed requirements. The
first requirement is better supported by graphic-based methods where the second is better
addressed by text-based approaches. The method integrates technology from each camp, with
equivalent semantics where the graphical and textual representations overlap.

" Object Orientation. Key needs include scaleability, ease of change, and the ability to separate
concerns. Object-based models provide the necessary encapsulation and abstraction to ad-
dress these requirements so that the method uses an object model in its definition and organi-
zation. The object model also addresses concerns for transition to designs, especially in Ada.

" Machine-Based Model. The approach uses an underlying model based on expressing
requirements in terms of concurrent state machines. This addresses member concerns that
extensive training in formal methods not be required to apply the method or understand the
specifications produced. It also addresses concerns for the ability to perform nontrivial analy-
sis of properties like completeness and consistency. While having many of the analytic virtues
of formal methods, the approach is generally simpler and more intuitive to use than methods
that express requirements entirely in statements of a formal logic. Formal logic can still be
exploited freely behind the scenes to build tools that aid in requirements analysis.

1.4 TECHNICAL APPROACH TO THE METHOD

Technical work in this first increment of method development focused on combining key technologies
from two methods, Paul Ward's CASE Real-Time Method (Ward 1989) and work by David Parnas
and others (Parnas and Madey 1990) on embedded system requirements. These were chosen as the
first components of the method because:

5

1. Introduction

" The two approaches shared a common set of assumptions about what information must be
captured in requirements.

" The approaches used much of the same technology (e.g., finite state machines, functions) to
specify requirements.

"• The two approaches had complementary strengths, each addressing some critical needs.

"* Together, the two methods addressed all of the key requirements that the method is scheduled
to satisfy in the first increment.

The proposed method currently uses a front end based on Ward's object-modeling techniques and
a back end based on Parnas' formal methods. Early phases of understanding system context, problem
analysis, problem modeling, and requirements organization were taken from Ward's oljert-oriented
model for requirements analysis. The graphic approach to static and dynamic system modeling em-
ploying existing notations were also based on Ward's work. This approach allowed any of a set of com-
monly available graphic notations to be used so commonly available CASE tools could be exploited.
The characteristics of the behavior model were based on Parnas's four-variable model for embedded
system requirements. Techniques for capturing detailed requirements in the behavioral model, timing
and accuracy requirements, and methods for analysis of completeness and consistency were also
based on the work of Parnas and his colleagues. These complementary methods were integrated in
the overall process described in Section 3.

Subsequent work will seek to integrate other promising technology for formal reasoning about
requirements, execution of high-level specifications, and automated support for assessing completeness,
consistency, timing constraints, and safety properties.

1.5 REPORT ORGANIZATION

Section 2, The Behavioral and Data Models, gives an overview of the standard behavioral model and
the document-independent data model that underlies CoRE. It describes the underlying formalisms,
the essential information in a specification developed using the model, and how pieces of information
are related. It is the qualities of these models that determine the character of CoRE so this section
should be read before reading about CoRE itself.

Section 3, The Conceptual Method, provides an overview of the analysis and specification approach based
on the behavioral model. It gives an overview of the requirements process envisioned for CoRE and dis-
cusses how CoRE is applied to develop a requirements specification. The steps and methods of specifica-
tion are discussed in some detail in terms of the behavioral model and docunment-independent data model.
This part of the discussion does not assume any particular notation, documc'ntation standard, or format

Section 4, Methods of Representation, discusses a variety of methods for organizing and representing
requirements. These include graphic notations, specification templates, and specific techniques for
specifying state machines and functions. This work is included for several reasons. First, to actually
try CoRE and produce examples, particular methods of representing requirements specification had
to be chosen. This discussion helps familiarize the reader with the conventions and notations so the
examples can be fully understood. Second, the method requirements specify existing notation be ex-
ploited. This section describes how that is accomplished. Finally, since the choice of notation is
important, the section discusses the rationale behind particular choices.

6

1. inlroduction

Section 5, The Technical Rationale and Progress, answers the questions, How are the member
company needs addressed by CoRE? and Why has a particular technique or approach been used in
the method? It discusses why the Consortium chose the component technologies and encompassing
methods in terms of how they satisfy the method requirements. For instance, the section discusses
the reasons the technologies used in CoRE support development of complete or maintainable require-
ments. It also describes how much progress has been made in addressing the method requirements
defined by the member companies.

Section 6, Conclusions, summarizes the state of CoRE, the method requirements that CoRE does not
yet address, and what the project plans to do in 1992 and 1993.

The appendixes provide an example requirements specification and discussion.

Appendix A provides a walk-through of the specification from the point of view of different users.
It should be read before or in conjunction with the example (Appendix B). This section conveys how
the benefits of CoRE are realized in using the product (e.g., for maintaining requirements or develop-
ing scenarios and test cases) by showing how different users would use the specification to get an
overview of the system or answer detailed questions about required behavior.

Appendix B contains a detailed specification of a small, real-time system, the Fuel-Level Monitoring
System (FLMS). The example illustrates the basic approach and features of the method from the
top-level decomposition into objects to the detailed specification of the system inputs and outputs.
The example is necessarily small and does not address issues of scale. These will be addressed in
subsequent examples that will be provided as addenduums to this report.

For the reader seeking to understand CoRE and its rationale, the report should be read in order.
Readers interested only in understanding CoRE itself can skip Section 5.

1.6 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font Publication titles.

Boldfaced serif font Section headings and emphasis.

7

1. Introduction

This page intentionally left blank.

2. THE BEHAVIORAL AND DATA MODELS

Much of the leverage of the Consortium's approach comes from standardizing the underlying models
used to capture behavioral requirements and organize requirements information. CoRE is
object-oriented in the sense that objects are the primary architectural component used to structure
requirements information. The approach differs from many of the object-oriented methods in that
a standard, formal model of embedded system behavior (called the four-variable model) guides the
object decomposition and definitions. The behavioral model defines what kinds of information can
be provided by an object interface and used by other objects. It also determines what information
must be included in the object definitions. The use of the standardized model (behavioral data) allows
the method to provide explicit guidance to the developer in choosing an appropriate set of objects,
in writing the object definitions, and in deciding when the specification is complete and consistent.

Where the behavioral model determines what information must be captured, the data model describes
how the information is organized. It formalizes the contents of a requirements specification in terms
of a document-independent model of the information. The developer can then map the contents of
the data model to different document formats, depending on member company needs.

The remainder of this section describes the two models. Since this is an introductory report and the
work is yet incomplete, the emphasis is on conveying an intuitive understanding. Subsequent work
will further refine and formalize the model. Subsequent reports will provide more formal, detailed,
and complete descriptions. The discussion of the behavioral model itself is, in part, summarized from
works by Parnas (Parnas and Madey 1990) and van Schouwen (van Schouwen 1990). A more formal
discussion of the behavioral model and its mathematical basis can be found in these and the other
works by Parnas and others.

2.1 THE STANDARD BEHAVIORAL MODEL

While CoRE concentrates on software requirements, the originating technology addresses both system
and software requirements. The originating technology assumes that any system to be built exists within,
and interacts with, a particular environment. The nature of the application dictates which aspects of the
environment are of interest. For instance, an engine control system needs information about the ambient
air pressure but not current altitude, while an aircraft control system requires information about the alti-
tude, the barometric pressure being only a means to the desired quantity. These physical quantities of
interest are called the environmental variables and are represented in the behavioral model with mathe-
matical variables "in the way that is usual in engineering" (Parnas and Madey 1990). Constraints exist
between the environmental variables due to the properties of the physical world (e.g., force of gravity),
the physical characteristics of the overall system (e.g., the maximum rate of climb of an aircraft), or the
characteristics of other systems in the environment. The system itself, since it affects the environment,
will introduce other constraints on the environmental variables.

9

2. The Behaviorpt and Data Models

Refinement of the system specification to a software specification requires introducing additional
constraints, i.e., those corresponding to the required behavior. The system design determines which
constraints on the environmental variables are maintained by the software and which are maintained
by the hardware. The allocation of certain system constraints to the hardware creates additional envi-
ronmental constraints for the software. The system design process also determines what computing
and other resources the software will have available. These choices determine the precision with which
the software can determine or affect the values of environmental variables. Figure 1 (van Schouwen
1990) shows the standard model of the system interacting with its environment.

Monitored F1 Computer Controlled
"ariables 'IVariables

Inputs Outputs
i(t) o(t)

Figure 1. Standard Embedded System Model

From the point of view of the software requirements, the environmental variables are monitored,
controlled, or both. The monitored variables represent quantities in the environment that the system
must track. Controlled variables represent the things in the environment the system controls (e.g., a
valve, display, or firing mechanism).

Engineers capture the required software behavior as a set of relations among the values of monitored
and controlled variables. This corresponds to the intuitive notion of required behavior in that it relates
specific, observable changes in the environment (e.g., the trigger is pressed) to observable system ac-
tions (e.g., the weapon is released). In defining the externally visible behavior, there are two relations
of interest, called NAT (for NATure) and REQ (for REQuired). The NAT relation describes those
constraints placed on the system by the external environment (e.g., physical laws and the properties
of physical systems). When talking about software requirements, NAT includes the properties of the
interfacing hardware. The REQ relation describes the required system behavior. Engineers complete
the specification is completed by specifying the values provided by the system's hardware devices (or,
if necessary, suitable abstractions of those values) called the input data items and output data items.
These describe the available hardware resources control and monitor how the environmental vari-
ables. This is expressed in two additional relations called IN (for INput) and OUT (for OUTput).
Figure 2 shows the variables and relations.

2.1.1 REtATIONs NAT AND REQ

To specify the required behavior, engineers represent each environmental variable by a mathematical
variable and clearly define the association between the physical quantity and the mathematical variable.
Each such variable then has a value that is a function of time. For this discussion, the function giving
the values of the set of all monitored variables over time is denoted as m(t) and that giving the values
of all controlled variables is denoted as c(t). Then, the relations NAT and REQ define the constraints

10

2. The Behavioral and Data Models

Monitored 2ons

onth evionenal Variab~lesdtrie yextra atos(Q. physicallaws)adtoehestm

IN OUT

ter[Data Itemns

Figure 2I The Requirements Relations

on the environmental variables determined by external factors (e.g., physical laws) and those the system

is required to maintain, respectively, where each is a relation from m(t) into c(t). In summary:

" Relation NAT The external environment and other systems constrain the possible values of the
environmental variables; for instance, the rate at which the fuel level in a tank can change when
a pump is turned on or the maximum rate of change of the temperature in a reaction vessel.
NAT is defined as follows:

- NAT is a relation from m(t) into c(t).

- The ordered pair (m(t), c(t)) is in NAT only if the controlled variables can take the
values described by c(t) when the monitored variables have the values given by mr(Q.

" Relation REQ. The computer system is intended to impose additional constraints on the values
of the controlled variables. These constraints are what are typically thought of as the functional
requirements. For instance, the heater is required to be on if the temperature in the reaction
vessel falls below 500 degrees (equivalently, and more formally, the controlled variable that
is the heater state is constrained to have the value "on" whenever the state of the environment
is such that the monitored variable corresponding to the vessel temperature has a value less
than 500 degrees). REQ is then defined as:

- REQ is a relation from m(t) into c(t).

- The ordered pair (m(t), c(t)) is in REQ if and only if the computer system may permit
the controlled variables to take on the values given by c(t) whenever the monitored vari-
ables have the values given by m(t). The implementation must take on a subset of the
values allowed by the relation so that there is a controlled variable value corresponding
to every possible state of the monitored variables.

Typically, NAT is a relation rather than a function since there are many possible values of the
controlled variables for a given environmental state. REQ is a relation rather than a function because
there is typically tolerance in the required behavior. That is, the system must display the temperature
to within plus or minus 0.05 degrees, so there are a set of possible values the system could display
for a given temperature and still satisfy the requirements.

2.1.2 RELATioNs IN AnD OUT

Ultimately, the system design process must identify the resources available to the software to
determine the values of the monitored variables and affect the values of controlled variables. Early

11

2. The Behavioral and Data Models

in the process, engineers may represent them by abstractions of the ultimate inputs and outputs. When
the hardware becomes defined, the interface devices provide these values. In any case, where the soft-
ware is required to do its job using certain inputs and outputs, the software requirements must reflect
these inputs and outputs. The model captures them with two additional relations, one giving the corre-
spondence between the monitored variables and the system inputs over time i(t), and the other giving
the correspondence between the system outputs over time o(t) and the controlled variables:

"Relation IN. Relation IN describes what the software will see in terms of the available inputs
for possible values of the monitored variables. This specifies the accuracy with which the
system can measure the environmental values of interest. More precisely, IN is defined as:

- IN is a relation from m(t) into i(t).

- The ordered pair (m(t), i(t)) is in IN if and only if i(t) gives the possible values of the
inputs when the monitored variables have the values given by m (t).

"* Relation OUT Relation OUT specifies (mathematically) how the controlled variables are
affected by sending particular values to the output devices. OUT is defined as:

- A relation from o(t) into c(t).

- The ordered pair (o(t), c(t)) is in OUT if and only if the controlled variables will take
on the values given by c(t) whenever the outputs are assigned the values given by o(t).

IN is a relation since input devices have limited accuracy. Similarly, OUT is a relation because output
devices have limited precision. Both input and output devices have associated delays.

2.1.3 OE-r DECOMPOSITION AND DEFIMN ON

The requirements information specified according to the behavioral model is structured as a set of
communicating objects. The key feature of CoRE is that it defines all the objects and the information
communicated between objects in terms of the behavioral model. As in all object-oriented methods,
each object consists of a public part that other objects can use (called the object interface) and a pri-
vate part that cannot be used outside the object definition itself (called the encapsulated or hidden
information). The behavioral model constrains the contents of the object definitions, the types of infor-
mation that must be hidden, and the types of information that can be provided on a object interface.
In particular, the engineers must express all of the public information provided by the objects in terms
of the environmental variables. Thus, the object interfaces only provide information in terms of the
state of environmental variables, changes in their state, or the history of such changes. This keeps the
behavioral model consistent with the goal of providing nonalgorithmic specification. The object
definitions encapsulate information that is likely to change, such as the details of the hardware
interfaces. The data model in Section 5 illustrates this in more detail. Briefly:

Monitored and Controlled Variables. The engineers allocate definitions of monitored and
controlled variables among the system interface objects. They specify these as part of the ob-
ject's interface to the external environment. Every monitored variable must be input to at least
one object, and exactly one object contains the variable definition. Every controlled variable
is the output of exactly one object; that object encapsulates its specification. The system
interface objects, in general, hide the details of the environmental variable specifications.

12

2. The Behavioral and Data Models

" IN and OUT Relations. Details concerning how the value of a monitored variable is read from
the hardware or a controlled variable is set must be private to some object in the system. Where
there is a simple correspondence between the input/output data items and the environmental
variables (as there is in the FLMS example), the object that encapsulates the environmental
variable definition also encapsulates the corresponding data item definition and IN or OUT
relation specification.

" Shared State Information. Decomposition of the specification into objects means that different
information about the system state are specified in different objects. Where engineers must
use this information to define other objects (e.g., in the specification of the output functions),
they define it on the object interface. Engineers provide this information in the form of terms,
events, or modes.

A term deScribes some information about the system state, such as the current state of some
monitored variable. The behavioral model requires that the engineers write all terms as
functions of the monitored or controlled variables.

An event denotes the instant at which there is a change in the state of one or more
environmental variables. Events are always functions of the monitored variable time (and may
be functions of other variables in addition).

Information about the system history must also be shared among objects. Modes, classes of
system states, capture system history. Objects (called mode class objects) encapsulate the de-
tails of which events cause which state transitions (also called control objects in some meth-
ods). The mode class objects provide information about states and state transitions to other
objects in the system.

" REQ Relations. The object that defines the controlled variable on its external interface
encapsulates the controlled variable function, accuracy, and timing constraints. These objects
use the state information (terms and modes) provided by other objects in the system in
defining the controlled variable functions.

Heuristics for choosing objects or allocating requirements information among objects are still under
investigation. In particular, subsequent work will seek to define more detailed heuristics and address
issues of scale-up (hierarchical structures and subsystems).

2.2 THE REQUIREMENTS DATA MODEL

This section describes the information content of a requirements specification developed using CoRE
in terms of a document- and standard-independent data model. Since the model is still being devel-
oped and the focus is on conveying an intuitive understanding of the approach, only the first few layers
of the model are given. Subsequent sections address why particular information should appear in
requirements, how it should be developed and used, and how it should be presented.

2.2.1 NOTATION FOR DESCRIBING THE DATA MODEL

The underlying model for the requirements data model was derived from the semantic data model

13

2. The Behavioral and Data Models

(SDM) (Hammer and McLeod 1981). SDM represents data as a collection of objects1 . The SDM
groups objects into collections called classes. A given object can simultaneously be a member of one
or more classes. If C1 and C2 are classes, C1 is a subclass of C2 if every object that is a member of
C1 is also a member of C2.

Associated with each object is a set of attributes, which are named references to related objects in
the database. The classes in which an object is a member determine the attributes of that object.
Attributes can be single-valued or multi-valued.

Figure 3 shows the graphical notation used to describe the requirements data model. A class is
represented by a rectangle. The name of the class appears inside the rectangle. A rectangle contained
inside its superclass represents a subclass. Directed arcs to other classes represent the attributes of
a class. The arcs may be labeled with the name of the attribute. Arcs that terminate with a single arrow
represent single-valued attributes. Arcs that terminate with a double arrow represent multi-valued
attributes.

ClssMulti-Valued

Z lP I Attnrbute

Superclass

Subclass Single-Valued

Attribute

Figure 3. Data Model Notation

2.2.2 THE DATA MODEL

Figure 4 illustrates a top-level view of the information that appears in a requirements specification
developed using CORE. The requirements consist of a set of requirements objects 2 (which are modeled
using the SDM objects and classes), a set of classes, and a set of relations on the classes.

Associated with each class are a set of attributes. The attributes record common information about
objects in the class. For example, a set of similar input or output devices might be modeled as a class.
Common characteristics such as the fact that a two-position switch was used is given as part of the
class specification. This is illustrated in the warning displays in the FLMS specification which have
the use of the operator's CRT screen in common. The class relations include data modeling relations,
such as subtype and aggregation, and relations that are particular to a given domain. For example,
in the air traffic display domain there may be a relation named watches from the host aircraft class
to the potential threat aircraft class.

Associated with each object are an interface and encapsulated information. The interface contains
requirements information that engineers specify in the object and that is visible to other objects in
the requirements. Monitored variables, attributes whose values the system must be able to determine,

1. The objects and classes in SDM are distinct from the objects and classes that appear in the requirements data model.
2 The issues associated with subobjects or subsystems are not being addressed at this time.

14

2. The Behavioral and Data Models

Requirements]

i11

Csentironmt bNA latio

Class Interface Li i.IZae Mode Class
Information

Mode

AAttribute our-Variable Relation

in hesuclssEnvironment Variable.A Ev Ron enatVaiabl haasbcase forthemoireva-

aonitroed Variables c nt Datal temI~~~~ In eato uput Data Item

Controlled Variablecifications arepvt

rl Detonttae

OUT Relation

Figure 4. Data Model of Software Requirements

and the NAT relation may appear in the interface. Encapsulated information contains requirements
that are not visible to (i.e., may not be used in) other objects. Environment variables, the four-variable

relations, data items, and mode class definitions may appear in encapsulated information.

As shown in Figur e detaiclass attribute contains the specifications of the environmental variables
in the subclass Environment Variable Relation has subclasses for the monitored vari-
ables and controlled variables. Since a number of objects may use one monitored variable, the engineer
may define it in an object interface. Controlled variable specifications are private; hence, they are not
related to Interface.

The input and output data items are also encapsulated information since the details of device
intc.raction are hidden. Data Item has subclasses Input Data Item and Output Data Item. These
contain all the details of device interactions.

Four-Variable Relation has subclasses NAT Relation, REQ Relation, IN Relation, and OUT Relation.

Figure 5 shows these subclasses in more detail. The REQ, OUT, and IN relations each consists of a

15

2. The Behavioral and Data Models

set of functions. Each of the functions may have an associated tolerance and delay. The NAT relation
also consists of a set of functions.

REQ Relation f OUT Relation j
Cntrolled Variable OUT Function

Function

Input Data Item
Function

IN Relation NAT Relation

Figure S. Data Model of the Four-Variable Relation

16

3. THE CONCEPTUAL METHOD

To arrive at a practicable requirements method, the formal models must be fleshed out with an overall
process and a variety of techniques for actually producing work products. This section gives an over-
view of such a process, then describes the specific methods applying to each of the development steps.
The intent is to convey an intuitive understanding of how CoRE would be used in practice. Subsequent
reports will provide more formal and detailed description.

3.1 PROCESS OVERVIEW

Since CoRE is still under development, the requirements analysis process (i.e., a description of the
method activities with required inputs and expected outputs) supporting it is not fully defined. This
will be the subject of a subsequent report. However, the current model and supporting methods imply
much about the process and have been refined with an understanding of the basic steps and their
products. This section, gives an overview of the envisioned process to convey a sense of how require-
ments would be developed using CoRE and to provide a framework in which the application of the
component technologies can be better understood.

The process described is necessarily idealized in the sense that no real process would (or should)
exactly follow the sequence of steps outlined. In practice, different parts of the specification may be
resolved to greater or less detail at a given time, depending on which parts of the system are better
understood, which are most stable, and which represent greater risk. The constraints of a sequential
presentation prohibit the sort of recursion and iteration typical in a real specification process. Instead,
the usual convention of presenting the process and its products essentially top-down is followed since
this gives the clearest exposition.

Table 1 outlines the key steps of the process. With each process step, the table identifies the key
product in terms of the document-independent data model. Finally, it identifies one or more possible
representation techniques as used in the discussion examples and FLMS specification.

"Iable 1. The Requirements Process

Process Step Product Applicable Representation

1. Define the object model. Structure of environmental Information model diagram
objects and relations

_ __ Object definitions
2. Identify monitored and Environmental object attribute Context diagram

controlled variables. definitions
Attribute definitions

17

3. The Conceptual Method

Table 1, continued

Process Step Product Applicable Representation

3. Specify environmental NAT relation definitions Tables
constraints.

Equations

4. Specify externally visible Controlled waiiable functions and Tables
behavior, tolerances (REQ)

Equations

System mode class definitions State transition diagrams

Event definitions
5. Specify hardware Input data item specifications (IN Input data item template

interfaces. relations)
Tables

Outputs data item specifications Output data item template
(OUT relations) Ibbles

How much of these steps the software analyst must do as part of the software specification process
depends on what the system analyst did in the systems analysis step and what input he provides the
software analyst. In theory, the systems analyst should do steps 1 through 4 for the system as a whole
during systems analysis. Systems analysis should determine and specify what aspects of the environ-
ment the system must monitor and control, what the system as a whole must do to the controlled vari-
ables, and how the environment constrains the required behavior. Where the system analyst allocates
the job of monitoring and controlling certain variables to the software, these parts of the system speci-
fication then become part of the software specification. The software specification provides additional
constraints imposed on the software by the system hardware.

Since, in practice, these steps are incompletely carried out or carried out using a different approach,
this discussion (and CORE) assumes nothing about the specific processes or products of the systems
engineering step except that they contain certain basic information. CoRE assumes only that the soft-
ware analyst can determine from the system specification the jobs that the software is supposed to
do, the events in the world to which the software is expected to respond, and the things the software
controls to perform its tasks. The specification may be in any form, including English prose.

The overall approach begins by identifying and formalizing the aspects of the environment of interest
in the form of a set of interacting objects. The object model captures the relations among groups of
environmental quantities of interest, such as linked requirements that are likely to change together,
and provides a document-independent framework for organizing the software requirements. The engi-
neer completes the behavioral specification by specifying that behavior in terms of the standardized
model for embedded systems.

3.1.1 STEP 1: DEFINE THE OBECT MODEL

The first step in the process models the system in its environmental context as a set of objects,
attributes, and interobject relati,.Is. The object model establishes the top-level architecture of the

18

3. The Conceptual Method

system requirements data model. The engineer uses it to organize information about the system
environment by allocating the environmental quantities of interest to the attributes of objects in the
model. Grouping the attributes into objects helps abstract from irrelevant detail, provides an organi-
zational mechanism for managing change, and provides a basis for capturing relationships between
groups of environmental attributes.

The engineer chooses the objects to capture and organize distinct concerns relative to the software.
For example, objects capture devices such as pumps, pressure vessels, or displays that the system mon-
itors or controls as objects. The object organization helps separate concerns by grouping environmen-
tal attributes that the engineer should consider together. The object organization also models aspects
of the environment that may change together, such as the fact that there may be multiple targets and
that the attributes of each target are related. Often, objects will correspond to physical objects in the
environment but this need not always be the case.

The product of the object modeling is an initial specification of the object structure. Each object includes
in its specification its name and the names of each environmental variable associated with the object.
Where there are relations between system objects, the object model also defines these and specifies the
related objects and the name of the relation. It also gives any constraints on the cardinality of the relation.
For instance, if the system must track up to ten separate targets or there must be exactly one shut-down
switch for each pump, the specification provides these characteristics for the relations.

The engineer can graphically model and use the object organization to understand the system and
its context. Since the organization into objects provides a basis for separation of concerns, the object
organization carries through the specification of detailed requirements. The engineer encapsulates
details of requirements that are likely to change or are unnecessary to understand in the specifications
of particular objects. This helps limit the information that the engineer must read to answer a specific
question about the requirements. Similarly, he can constrain requirements cbhnges to a small number
of objects for a broad class of possible changes.

3.1.2 STEP 2: IDENTIFY MONITORED AND CONTROLLED VARUBLEs

The engineer captures the detailed, behavioral requirements in terms of the environmental variables
of interest. In this step, he identifies the physical variables monitored or controlled by the system (if
not provided by the system specification), and explicitly defines, and represents them by mathematical
variables. Environmental variables include physical quantities such as temperature, pressure, or alti-
tude. They also include information characterizing aspects of the environment of interest like the num-
ber and types of a set of target aircraft. He models each such distinct quantity (or set of quantities)
of interest with mathematical variables.

The engineer defines each variable by giving its name, its type, its physical interpretation, and its re-
quired precision. He can use graphic diagrams (e.g., data flow diagrams) to describe the dynamic in-
teraction of the system with its environment in terms of monitored and controlled variables. He
typically gives physical interpretations of the variables in prose or picture format.

3.1.3 STP 3: DEFINE ENVIRONMENTAL CONSTRAINTS

Once the engineer defines monitored and controlled variables, he must specify the environmental
constraints between them. Both the natural world and other man-made systems in the environment,

19

3. The Conceptual Method

including the system's own hardware devices, constrain the possible values of environmental values.
For example, the maximum rate of climb of an aircraft, maximum rate of change of velocity of a target,
the refresh rate of a display, or the maximum slew rate for an antenna are all externally determined
constraints on variables that the software helps to monitor or control. The engineer captures these
in the model in terms of the mathematical relation called NAT The NAT relation determines what
environmental quantities the developer will and will not be required to account for in the system be-
havior. This is important, both in determining the completeness of the specification and in assessing
the feasibility of requirements. For instance, the environmental constraint that an aircraft has a maxi-
mum and minimum possible altitude and a maximum possible rate of change tells the developer what
kinds of values he must account for in defining, say, the information represented on the head-up
display, and limits how frequently the system must sample the altitude to provide a given accuracy.

3.1.4 STp 4: DEFINE ExrEPRNAILY VISIBLE BEHAVIOR

The heart of the specification is in the definition of the software's externally visible behavior. The
groundwork done in carefully specifying what aspects of the environment are of interest to the software
in terms of monitored and controlled variables allows a systematic approach to the specification of
required behavior (how the software interacts with the environment).

The mathematical relation between the monitored and controlled variables called REQ captures the
relationship among environmental variables that the software must maintain. The method specifies
required behavior by defining the values of the controlled variables (i.e., the visible system outputs)
at all times. For every value controlled by the system such as the value of a display, the state of a valve,
or the attitude of a control surface, the specification provides a function specifying the value of that
variable for all possible states of the system. The output function captures the idealized, required be-
havior (i.e., the displayed value equals the altitude). An additional expression (i.e., tolerance of two
feet) allowed deviation or tolerance. The engineer writes the output functions entirely in terms of moni-
tored variables, ensuring that the specification describes only externally visible behavior. Finite state
machines (called model classes) capture the history of events, where the required outputs depend on
the history of events.

Since mathematical functions of the monitored variable states define the values of outputs, there are
well-defined notions of completeness and consistency that the engineer can apply to the specification.
For instance, the external behavior specification is complete when every controlled variable has a com-
plete function; i.e., the specification assigns one of the possible values of the controlled variable to
every possible system state. It is consistent if no state leads to two distinct outputs.

3.1.5 STEP 5: DEFINE HARDwARE INTERFACES

To develop a design, the engineer must also know what resources are available to determine the values
of the monitored variables and set the values of the controlled variables. These resources are the actual
inputs and outputs provided by the system hardware or, if this information is not yet available, a suit-
able abstraction of the expected inputs and outputs. On the input side, this requires identifying each
distinct system input or an abstract data item representing the input. The engineer creates an input
data item by giving a name and type to the input and describing its characteristics. He can do this
by filling in a standard template for describing data items. On the output side, he applies a similar
process to specify output data items.

20

3. The Conceptual Method

The final steps in the process establish the relations between the monitored variables and the system
inputs and the controlled variables and the system outputs. To determine that an implementation is
feasible, it is necessary to know if the system can determine the external characteristics it must monitor
the required precision from the inputs actually or typically provided. The relation called IN, from mon-
itored variables to inputs, specifies time. Similarly, the relation called OUT defines the relation be-
tween the system outputs and the controlled variables. The IN and OUT relations capture the
correspondence between actual or expected hardware behavior and the required system behavior
relative to the environment.

While this approach is successful for the small examples used so far, this is one area where much work
remains to be done before the method can scale up. Establishing the IN and OUT relations is not
difficult when the inputs and outputs are known, and there is a simple relation between these values
and the environmental variables. However, the work to date has not addressed more complex relations
such as instances where several inputs are required to determine the value of a monitored variable,
or the hardware is expected to change dramatically in form or function. The Consortium is currently
investigating these issues.

3.2 DEFINING OBJECTS

The engineer can describe the externally visible behavior of a system solely in terms of monitored and
controlled variables. However, treating bach of these variables as an independent component of the
system's environment will result in the loss of important requirements-related information. For exam-
ple, two monitored variables, such as the pressure and temperature of the liquid in a vessel, may be
interdependent because of the nature of the environment. System requirements may also impose de-
pendencies, for example, if a system interacts with multiple devices of given types, there may be related
groups of variables based on which monitored values are associated with which controlled values. Fi-
nally, the potential for variation in requirements may introduce dependencies, for example, if the de-
vices that monitor two distinct variables will always be replaced as a unit. The engineer can treat these
various dependencies in a uniform manner by clustering the monitored and controlled variables and
representing them as attributes of related object classes within the requirements model.

The engineer may define the association between a class of objects and the set of variables which are
its attributes in either a bottom-up or a top-down manner. A bottom-up approach identifies a moni-
tored or controlled variable (for example, a monitored liquid level), and then identifies the object with
which the variable is associated (for example, the liquid in a vessel). A top-down approach identifies
a class of objects (for example, targets for a weapons system), and then identifies the variables that
characterize these objects (for example, position and velocity vectors).

In general, the engineer can define object classes as components of the "problem space," or, more
specifically, as components of the system's environment. However, this does not mean that he can choose
a useful set of object classes by a naive enumeration of a system's surroundings. The choice of objects
requires an interaction between the model builder's understanding of the system's purpose and the char-
acteristics of the system's environment. As an example, consider the set of tracks detected by a rauar
system. A civil air traffic control system may consider all the tracks to be "flight" objects with very similar
significance. However, a military command and control system may divide the tracks bctween "friend"
objects and "foe" objects of very different significance. Similarly, a system may consider two mechanically
connected devices as two independent objects if their behavior is unrelated, while it may consider two
physically separated devices with related behavior as parts of the same object.

21

3. The Conceptual Method

Object types need not be tangible components of the physical world. For example, a mode class can
represent the system state transitions (also sometimes called a "procedure" or "plan") coordinating
two or more objects formally as a mode class. A mode class is associated with an object that encapsu-
lates the details of how the current state (mode) is determined, providing summary state information
as needed to specify other objects in the requirements. Such an object need have no (in fact, usually
will not have) physically independent existence within the problem domain.

For example, the engineer might define the control of a burglar alarm using common modes such as
unarmed, armed, and alarm sounding. These modes would be the visible properties of an alarm state
object which provides the state information used to define requirements in objects associated with
the alarm bell, intrusion detectors, and system users. However, the alarm state object corresponds
to no physical object in the system or environment.

Simple systems may have only one such state or mode object. However, more complex systems may
contain many such objects as well as nontangible objects of other kinds. In this method, it is the ab-
straction and encapsulation properties that motivate the use of objects, so the analyst is free to create
a requirements object wherever he can encapsulate requirements details. While physical components
in the environment may provide a useful starting point for choosing appropriate requirements objects,
they can be no more than a useful heuristic. Ultimately, the best choice of objects depends on what
qualities in the environment are likely to change together (or separately), and what requirements are
likely to change over time. Encapsulating information to reduce complexity and confine change results
in specifications that best meet the goal for ease of change. For embedded iystems, those objects also
typically coincide with physical components since these tend to change as a unit.

One type of object that is useful is the interface object. These objects, as their name implies, are an
interface between the system and an object in its problem space. They encapsulate details of the inter-
face (hardware devices and the nuances of objects in the domain, for instance) that are particularly
likely to change.

Assigning each attribute to a class of objects generally leaves some dependencies among the attributes
unexpressed. The requirements model must therefore define relations between object classes. In gen-
eral, relationships are based on some association between objects of one class and objects of another.
For example, in a weapons system, the relationship "is assigned to" exists between weapon objects
and target objects. A relationship serves as an organizing framework for information about the associ-
ation between the related classes. For example, relationships may connect one or many objects (more
than one weapon may be assigned to a single target). Also, a relationship may be mandatory or
optional (a target may have no weapon assigned to it).

A variety of notations can express object classes, relationships, and attributes. The diagram illustrated
in Figure 8 on page 44 is an example of one such notation, the entity-relationship diagram provided
by many CASE products.

3.3 IDENTIFYING MONITORED AND CONTROLLED VARIABLES

The ability to identity and define the monitored and controlled variables depends on having an
adequate description of the system boundary and the information crossing it. This understanding is
also essential to the specification of NAT and REQ-exactly what information belongs in which
relation depends on where the engineer draws the boundary.

22

3. The Conceptual Method

Since drawing these boundaries (equivalently, allocating tasks to system components) is part of the
system development process, the Consortium's current work does not deal with it explicitly. However,
to illustrate the kinds of information that must be available to determine the environmental variables,
as well as the contents of REQ and NAT, the results of the system development process must be consid-
ered. While CoRE makes no assumption about the system design process or the form of its products,
it is obvious that it will be easier to use the results of a compatible process (e.g., one that is also based
on modeling the system as objects) than one based on a completely different paradigm. Since it gives
the clearest illustration of the issues, the process of determining the environmental variables and rela-
tions based on such a model, those de;veloped as part of the CASE/Real-Time Method, is discussed.
Others commonly available models also contain the same kinds of information (e.g., Shlaer/Mellor).

For CoRF, it is only important that the information be available. This illustration only serves to
demonstrate that the graphic and other methods can make such system decisions quite clear.

3.3.1 DENNING THE DOMAIN AND SYSTEm BOUNDARY

For the sake of this illustration the initial step in developing the sy. m requirements is assumed to
model all of the relevant aspects of the problem, including those implemented by hardware, humans,
natural process, and so on using the CASE/Real-time Method. The collection consisting of all aspects
of the environment, system, etc., that are relevant to the problem is called the domain, and a model
of information in the domain a domain model. The domain model gives context for the system. It de-
scribes the environment in which the system operates: the objects with which it interacts, the attributes
of those objects that :he system may monitor and control, and the laws that govern the behavior of
those attributes.

The domain model is a set of formal models that describe a problem in its entirety without yet
representing decisions about which parts of the problem will be automated. One component of the
domain model representation is the domain information model. This is a data view of the pieces in
the domain represented as objects. An entity-relationship diagram represents this information. The
second is the domain transformation model. This view represents the dynamic relationship between
elements of the problem domain in the form of communication objects. It shows the information flow,
sources, sinks, and processes (state machines) using a real-time data flow notation (e.g. Ward/Mellor
or Hatley/Pirbhai).

System design embodies the process of deciding which jobs will be automated and by what part of
the system. A boundary placed around some set of the objects in the transformation model represents
such decisions in the object mode. This object model characterizes each object can be characterized
as outside the system, inside the system, or on the interface between the system and its environment.
Once the engineer decides which objects are in the system and which are not, he can readily identify
the monitored and controlled variables as well as which relations in the model are part 3f REQ and
which are part of NAT In particular:

" The monitored and controlled variables correspond to data from objects in the environment
that interact witn objects on the interface. That is, thie data that crosses the system boundary
going in defines what the system monitors, and the data going out defines what the system
controls.

"* The objects and relations inside the boundary represent the behavior that the engineer must
implement as part of the system. These become part of REQ.

23

3. The Conceptual Method

The objects outside the boundary that represent sources or sinks for the tcnvironmental
variables represent relations that exist in the problem domain but are outside the system itself.
These ultimately define part of the NAT relation.

For example, Figure 6 illustrates a domain transformation model. It shows the objects identified in
the information model for the FLMS, the boundary between the system and the domain, the informa-
tion that the objects exchange, and the direction of information flow. The figure identifies three types
of objects: those outside the system and hence part of the domain (Tank, Watchdog, Pump and opera-
tor), those wholly within the system (InOperation), and those that are interfaces between the system
and its domain (Operator Interface, Watchdog Interface, Fuel In Tank Interface, and Pump Interface).
Figure 6 represents the system boundary by drawing a dashed line through all the interface objects,
enclosing the object wholly within the system (here, just InOperation). The following sections discuss
these issues in more detail.

3.3.2 SPECIFYING MONITORED AND CONTROLLED VARIABLES

When the engineer determines the system boundary, he must decide which environmental quantities
the system must monitor and control. In any system complex enough to be interesting, there will likely
be more than one choice about what quantities to call monitored variables. Even for a system as simple
as the FLMS, there could be a debate about whether the monitored variable for the fuel should be
its volume, its level at some particular (but which?) point in the tank, the pressure in the tank, and
so on. In many cases, the engineer will be free to choose which o'fa set of related variables as monitored
and which to compute from the others. Procedures and heuristics for choosing a good set of monitored
variables remain an area of active investigation and will be discussed in subsequent reports. This dem-
onstration uses the simple heuristics of first choosing those quantities that seem to result in the sim-
plest specification, and then choosing variables that are not redundant (no one can be calculated from
any combination of the others). This approach appears sufficient for the small examples.

The simplest specifications result if the engineer chooses the controlled variables to reflect the
physical devices most directly affected by the computer (e.g., the heater rather than the external tem-
perature) since the state of the controlled variable is directly dependent on the outputs of the system.
In some cases, there may be a choice about whether the engineer should treat a variable as monitored,
controlled, or both. For instance, the FLMS monitors fuel level and controls the pump shutdown
switch. Given that opening the switch means the fuel level cannot change, it is possible to argue that
the system also controls fuel level. This relationship of indirect control, however, is a property of the
domain that results from a hardware design decision. It is better to state that the system directly con-
trols the pump shutdown switch. If it is necessary to interpreting the requirements, the NAT relation
can capture the relationship between the switch and the fuel leVel (see Section 3.4).

The engineer should choose variables and variable names that are commonly used for technical
communication concerning such systems. For instance, an embedded system for an attack aircraft
might have variables representing airspeed, angle of attack, altitude, and soon. This makes the specifi-
cation more understandable to customers and systems engineers. These guidelines will become more
specific, and may change, as experience in applying the method grows.

Once the engineer chooses the environmental quantities, he represents each with a mathematical variable.
The specification of the variable must include its name and its type. It must also describe precisely the
correspondence between the variable and the environmental quantity the variable represents. This may

24

3. The Conceptual Method

Sin- i InsideHys-

efPumpSwitch nump

OpWatcdogor

System Boundary V WDOpnet

Continuous Data Int

Pulse Data Watchdo

Figure 6. Fuel-Level Monitoring Domain Transformation Diagram

require the use of diagrams or pictures where such variables represent relationships between

environmental entities (e.g., angle of attack).

Tlypically, there are constraints on the possible values a variable can take due to properties of the
environment. For instance, a tank will have a maximum volume and fill rate, and an aircraft will have
a maximum velocity, altitude, or rate of climb. The NAT relations capture these constraints.

3.4 SPECIFYING ENVIRONMENTAL CONSTRAINTS: DEFINING THE NAT RELATION

The NAT relation specifies behavior that is possible in the problem domain. These include both
constraints on the individual variables in the domain (such as the maximum volume of a tank) as well

25

3. The Conceptual Method

as constraints imposed by the physical world on possible relations among the environmental
quantities of interest. For instance, the maximum rate the fuel level can change with the pump on is
a property of the environment in which the software must operate.

Describing the NAT relation constrains the set of possible requirements that must be specified in the
REQ relation. For example, if the aircraft has a maximum rate of climb of 30 feet/second, it is not
necessary to specify required behavior such as values of a rate-of-climb display for values above 30
feet/second. In general, any combination of values that are not possible in NAT need not be specified
in REQ (though the wise developer will account for likely changes).

The engineer may define NAT by starting from a domain transformation model, such as the one for
the FLMS shown in Figure 6. To define NAT, the engineer looks for relationships between attributes
of objects in the domain (that is, between monitored and controlled variables). Any formula that gov-
erns relationships between values of environment variables is a candidate for inclusion in NAT He
does not need to consider the variables shown inside the boundary. The software introduces these
quantities, and they are not parts of the domain. The REQ relation specifies these.

Defining NAT is a task for experts in the domain, since they have the requisite knowledge of laws of
interaction. NAT is expressed using notations appropriate to the domain. The FLMS, for instance,
uses a differential equation to capture the maximum amount that the fuel level can change over a given
period of time. An event table also describes the relationships between two components of discrete
domains (the reset switch and the pump switch).

Since environmental constraints may exist on individual variables as well as relationships among
variables, an expression defining NAT may involve any combination of monitored or controlled vari-
ables. Some will involve only one monitored or controlled variable. For example, the environmental
constraints on maximum and minimum fuel level due to the size of the tank and method of measure-
ment need only the monitored variable FuelLevel. Some constraints will involve both monitored and
controlled variables (or multiples of either kind). In the FLMS, setting the pump switch to Off implies
the change in FuelLevel will be zero until the system is reset. This can be stated as the implication:

if PumpSwitch(t) = off then d(FueU vel(t)) 0
1 dt I --

This constrains the possible combinations of variable values by showing that, once it shuts off the pumps,
the system need take no further monitoring action. The fuel level will remain in its current state.

3.5 DEFINING VISIBLE BEHAVIOR

The REQ relation specifies what the software must do-its externally visible behavior in terms of
monitored and controlled variables--is described with the REQ relation. That is, it describes the per-
mitted values of the controlled variables in terms of the possible .ates of the monitored variables over
time. Thus, CoRE needs techniques for capturing changes in state over time and relating such state
information to expected behavior.

3.5.1 SPECIFYING THE REQ RELATION

REQ specifies both the ideal behavior of the system and permissible deviations from that ideal. Ideal
behavior is possible only with devices capable of both infinite accuracy and instantaneous reaction

26

3. Tbe Conceptual Method

to external stimuli. The hardware devices that the software reads and writes are capable of neither.
They are of limited accuracy and take some small but finite amount of time to react to physical proper-
ties (in the case of input data items) or to influence them (in the case of output data items). Therefore
REQ includes a description of acceptable delays in reacting to changes in monitored variables and
a statement of how much deviation can be tolerated from the values computed for controlled variables
if the hardware had infinite precision.

To write REQ, the engineer must determine how he wants the controlled variables to behave-that is,
what values they are to assume. In general, he determines the values of controlled variables by the values
of monitored variables. He must therefore determine which monitored variables influence which con-
trolled variables. Then, for each controlled variable, he defines a function that specifies the variable's value
at any point in time. (A controlled variable has exactly one such function. However, the engineer may
describe all controlled variables whose values always change together by a single function.)

In most systems, past as well as current values of monitored variables determine the values of the
controlled variables. The value of current conditions alone is not enough to determine the required
behavior. For instance, the interpretation of a button on a digital watch depends on the current mode.
The current mode is a function of the number of times the mode button has been pushed. The engineer
specifies this type of behavior using finite state machines called mode classes to summarize the rele-
vant history of the monitored variables (see Section 3.5.2). Mode classes capture and encapsulate state
information that may be common to many of the controlled variable functions. The use of mode classes
simplifies the functions since the mode class objects hide the details of state determination. As the
engineer writes REQ, he needs to understand how the mode classes, and the modes within each class,
characterize system behavior.

The engineer specifies the required values of the controlled variables in the form of piecewise-continuous
functions reflecting the discrete nature of digital systems. He expresses the domain of these functions in
terms of conditions on the monitored variables, or on the current mode, or both. He therefore partitions
the domains of the functions that describe the REQ relation into formulas based on system modes, and
events and conditions defined on environment variables as necessary. It is generally easiest to write the
function to define ideal behavior, adding required timing constraints and tolerance as the details of the
requirements become better understood (see Sections 3.8 and 3.9). If he can establish upper bounds early
in the process, these can serve as place holders until more of the system details are decided (up to, and
including, the selection of hardware).

Some controlled variables need initial values. Often these do not fit the paradigm used to describe
the behavior at other times--specifically, it is not a function of the same monitored variables. For
example, in the FLMS, the HighAlarm is initially on. At all other times, it is a function of FuelLevel.
In cases such as these, it is convenient to specify the initial value separately.

The following example, using the FLMS, illustrates how REQ might be written. The focus is on the portion
related to displaying the fuel level to an operator. There are three environment variables of interest:

"* LevelDisplay, a controlled variable of type length. In the implementation, it is the value
conveyed on a CRT screen, labeled FUEL LEVEL.

"* FuelLevel, a monitored variable also of type length. Its value is the level of the fuel in the tank,
in centimeters, measured in a specified way.

27

3. The Conceptual Method

Time, measured in seconds. The variable Time is the time elapsed with respect to a fixed, but
arbitrary, reference point t.

In this example, the value of LevelDisplay depends on the system's execution history. Normally, it is
the value of FuelLevel rounded to one decimal digit. However, if the operator pushes a "self-test" but-
ton, then the value of LevelDisplay is different-it is a function of the amount of time since the button
was pushed. After 14 seconds, its value becomes that of FuelLevel again. Thus, the function giving
value of LevelDisplay is not just a function of current system conditions. A mode class needs to cap-
ture which event occurred most recently: the operator pressing the self-test button, or 14 seconds
elapsing since the last press. The InOperation mode class of the FLMS has modes: Operating, Shut-
down, Standby, and Test. If the operator has pressed the self-test button within the last 14 seconds,
the system will be in Test mode; otherwise it will be in one of the other three.

Define the function:

Round(x,y) = z

in which real z equals real x rounded to positive integer y decimal places. The value of the controlled
variable LevelDisplay is then given by the following set of equations, where to is the instant at which
the system entered Test mode:IRound(FuelLevel, 1) if in Operating, Shutdown or Standby mode

LevelDisplay = 0.0 if in Test mode and 0 s Time - to < 4

L(Time-toJ x 11.1 ifinTest mode and 4 : Time-t 0 < 14

0.0 if in Test mode and 14 Time - to

If the system is not in Test mode, the value of LevelDisplay depends on the monitored variable
FuelLevel. If the system is in Test mode, then the value of LevelDisplay depends upon the monitored
variable Time and how long the system has been in the mode. This function is a good example of the
typically piecewise-continuous behavior of embedded systems in that the controlled variable value
shows points of discontinuity on entrance to and exit from Test mode.

This equation defines a function controlling LevelDisplay that is part of REQ. This example specifies
the function by partitioning its domain by the system mode and, within the system mode Test, by
conditions defined on the environment variable Time.

This specifies the ideal behavior. In normal operation, the level display is simply the fuel level, rounded
to one decimal point. In Test mode, the level display is a function of the length of time that the system
has been in that mode. In reality, complete precision is not possible. The engineer must specify an
acceptable deviation between the value of FuelLevel and the value of LevelDisplay. He must also give
an acceptable delay between the time that FuelLevel changes value and the time that LevelDisplay
reflects that change (see Section 3.9). For instance, in modes other than Test, a deviation of 0.5 centime-
ters from FuelLevel, and a delay of up to 500 milliseconds from the time FuelLevel changes to the time
LevelDisplay changes, are acceptable in the implementation. Test mode allows a clock accuracy of
plus or minus 1 millisecond. It permits a delay of up to 500 milliseconds between the moment the
system recognizes a change in time and the moment LevelDisplay shows the new value.

3.5.2 DESClBNmG STATE AND STATE T1.NsroNs

All requirements methods for real-time systems must provide methods for representing the states and
state changes that a system must track and to which it must respond. Since there is interest in

28

3. The Conceptual Method

describing the system behavior in terms of well-defined mathematical functions of the system state,
the method for capturing state information must result in specifications that are also mathematically
well-defined. Thiu, both the Consortium's underlying model and the wethods used are more rigorous
than is common. This places some burden on the analyst in forcing him to be precise in his meaning;
however, the effort is repaid in specifications that are both precise and amenable to rigorous analysis
for completeness and consistency.

Two goals in developing CoRE are first, that it be usable with little formal training beyond that typical
of member company line engineers and second, that it be usable without deep understanding of the
underlying formalisms. For these reasons, this report does not treat the underlying mathematical mod-
el in detail. There is a small, preliminary discussion of the underlying model, with most of the discus-
sion focusing on conveying an intuitive understanding of CoRE. It should be clear from the discussion
that analysts can develop rigorous specifications with the intellectual tools they now have.

In general, embedded systems implement two distinct kinds of behavior. In some cases, the outputs
are a function of the present inputs only. For example, whenever a reset button is pressed while all
operating conditions are within an acceptable range, the system must turn on the pump. In other cases,
the outputs are functions of both the current inputs and the time-ordered sequence of previous inputs.
For example, one mouse click followed by another a second later may have a different meaning from
two in quick.succession. This is analogous to the difference between combinational and sequential
logic in hardware circuits. The remainder of this section discusses how the engineer captures these
distinct kinds of state information. Current state information is expressed in terms of conditions and
events, and sequential information in terms of modes.

The goal is to characterize the interesting aspects of the environments state in a rigorous and
systematic way: systematically, because this provides the developer the most guidance in understand-
ing what question to ask next and when the job is done; rigorously, because the meaning must be pre-
cise and specifications must be produced that can be meaningfully analyzed in a mechanical fashion.

3.5.2.1 State Conditions

At the most primitive level, conditions written in terms of monitored variables capture the system state
using conditions written in terms of the monitored variables. A condition is a predicate that character-
izes the state of the system for some measurable period of time. For instance, altitude > 500 ft. and
FuelLevel > 30 cm. might be conditions, the first representing all those states of the aircraft where its
altitude is above five hundred feet and the second characterizing all states of the FLMS where the
fuel level in the tank is above 30 centimeters.

Formally, by defining conditions, the engineer is defining sets. The universe from which he draws the sets
is the superset of all possible values of the monitored variables (i.e., all possible values of {m'1, nr4, ... , n}).
A particular state of the environment (e.g., where the fuel level is higher than 30 centimeters) is equivalent
to the set of monitored variable values where the variable FuelLevel has a value greater than 30 centime-
ters. The approach makes sense because the engineer chooses the monitored variables so they represent
all the quantities of interest in the environment. This allows him to characterize aspects of the environment
of interest (i.e., states) in terms of the values of these variables.

Formally, a condition is a truth-valued function that characterizes a distinct set of system states. The
function's domain is all possible assertions about the values of monitored variables; the range of the

29

3. The Conceptual Method

function is the values true and false. A truth-valued function of this sort (i.e., one that only takes on
the values true or false), is called a predicate. A predicate characterizes a set by giving a mapping
from elements of the doinain to the value true for those elements in the set being characterized. This
is the usual way of writing sets in algebra or in programming, so it is generally well understood by
systems and software engineers. For instance, the set of integers greater than ten would be written
{x I x > 10 and x E I}. Similarly, anyone who has programmed has become used to characterizing
the set of program states that select the true branch of an if statement by writing a predicate on the
states of the program's variables in the form of a boolean condition (e.g., if (x> 10) then...).

The developer can use the same technique to characterize state information in requirements with the
convention that he use only monitored variables in the expressions and (the usual convention) that
the expressions formed evaluate to true or false based on the values of the quantities measured by
the variables in the real world. This convention is typical of real-time methods (e.g., Ward/Mellor or
Boeing/Hatley), adding primarily the constraint that the variables used in state expressions be drawn
from the set of monitored variables.

The engineer can describe more complex conditions in the usual way by forming boolean expressions
over simple conditions. For instance:

(FuelLevel > 5 cm. AND FuelLevel < 30 cm.) OR SelfTest = Pressed

3.5.2.2 Events

For real-time applications, the interest is not only in the current state but in those points in time
associated with state changes (e.g., the moment a button is pushed or the fuel level has been too high
for some threshold interval). The engineer can capture these moments as changes in the values of con-
ditions; such a change is called an event. Whereas conditions persist for measurable periods of time,
events occur at single points in time; i.e., in the idealized model, events are instantaneous.

Events are a relation between the state before and after the change. For example, the event associated
with FuelLevel < 30 cm. refers to any state change where the value of the monitored variable FuelLevel
was thirty centimeters or greater and became less than thirty centimeters. An event is formed from
a condition using the following notation:

@T(condition)

This describes any moment at which there is a state change from a state in which the condition is not
true to one in which it is. Thus, the event given above is written as @T(FuelLevel < 30 cm.). Similarly,
@F(condition) denotes any moment condition becomes false.

Often, the engineer needs more information about the state to describe an event than just what conditions
have changed. The WHEN clause describes an event in which one condition changes at a time when
another holds:

@T(conditionl) WHEN condition2

For instance, @T(SelfTest = Pressed) WHEN FuelLevel < 30 cm refers to the event occurring when
the self-test button is pressed at a time the fuel level is below thirty centimeters. The event occurs only
if the value of condition] changes. The statement @T(FuelLevel < 30 cm) WHEN SelfTest = Pressed

30

3. The Conceptual Method

refers to the event of the fuel level going below thirty centimeters at a time the self-test button was
being held down.

3.5.2.3 Modes

Where required behavior depends on the order of events in time, the engineer captures this using mode
classes and modes. That is, whereas he captures combinational behavior in the method using condi-
tions and events, he captures sequential behavior using modes.

Formally, a mode class is a finite state machine defined on the states of the system-monitored variables.
Each state of the machine, called a mode, corresponds to a set of system states. Since events describe
changes in the system state, the machine "input" is events. Finally, the set of modes in a class must
partition the set of possible states. Thus, the system is always in one and only one mode of a given class.

Any large specification has a variety of functions concerned with very different aspects of the system state.
For instance, the flight control system for an attack aircraft must handle navigation, weapons delivery,
aircraft integrity, flight control, and so on. The navigation functions depend on factors such as the aircraft
latitude, destination, and which navigation devices are being used. The weapons delivery functions depend
on the weapons selected, characteristics of the target, flight characteristics of the weapon, and so on. In
such cases, where different functions require different state information, it makes sense to have more than
one mode class. In general, the engineer should introduce additional mode classes wherever two functions
are relatively independent and a simpler specification results. He writes the complete specification as a
set of concurrent state machines enabling the output functions.

In the model, a mode class is a named object consisting of:

"• A set of modes. The modes of the class partition the states of the system.

"• A set of events defined over the set of monitored variables.

"* A transition function (next state function) that defines the next mode for each possible
combination of current mode and event.

"* The initial mode-the mode in which the system starts when initialized.

For example, the FLMS has four distinct states. It must shut down the system only after the fuel level
has been out of the safe range for a specified length of time (the ShutdownLockTime). Thus, there
is a normal operating mode of behavior (called Operating) and a second mode that the system is in
while the fuel level is out of bounds but the ShutdownLockTime has not yet expired (called Snutdown).
As long as the fuel level keeps moving between the safe and unsafe levels without staying unsafe for
the lock time, the system will move between Operating and Standby modes, sounding alarms but never
actually shutting the pumps down. The required behavior changes if the fuel level stays unsafe longer
than the ShutdownLockTime. Now, the system must mechanically disable the pumps; they cannot be
started again without operator intervention. This distinct behavior is given another mode (called
Standby). Finally, there is a distinct set of behaviors associated with the self-test button being pressed,
so there must be another mode called Test.

The engineer makes the specification simpler using mode information than it would be just using
conditions. For instance, he can specify the possible transitions between the states represented by

31

3. The Conceptual Method

Operating and Standby modes in terms of mode transitions rather than the history of conditions (i.e.,
fuel level is out of bounds, and the fuel level has been out of bounds continuously, and it has not been
out of bounds for more tha.i the ShutdownLockTimes, ...). This makes the output functions easier to
specify while retaining formality. Further, he has now largely captured the state information in the
mode specifications where it can be read and understood distinct from issues of how it is used.

In addition, since the modes are well-defined state machines, the engineers can do certain
completeness and consistency checks on the output functions. Since a mode class partitions the set
of possible states, a function will be complete and consistent if it assigns exactly one required behavior
to each and every mode in the class. Section 3.10 discusses this in detail.

3.6 SPECIFYING THE IN RELATION

Once the engineer specifies REQ and once the hardware designers select the input and output devices,
the engineer can write the IN relation. This describes relationships between monitored variables and
hardware-generated inputs that the software reads. Alternately, he may opt to describe the hardware
registers as virtual devices. This practice is desirable in systems where the hardware is likely to change,
or where the engineer has not fully specified the hardware yet. The requirements will then be isolated
from nuances of the hardware.

The engineer starts specifying IN by considering the available set of devices (virtual or real). He
associates each device with a set of monitored variables. The FLMS, for example, has a panel device
with two buttons on it that correspond to the reset and self-test variables. The task is tL. t to associate
these devices with the actual values read (if known). He does this by defining a set of data items. Each
data item represents a datum produced by a device. (Some data items represent more than one datum,
or are associated with more than one device, but these cases are ignored to simplify the exposition.)
For each one, he specifies:

"* A unique name.

"* The device that produces the datum.

"* The actual values as read; for example, the number of bits and the portion of a register
receiving a datum (e.g., port C, bits 0 through 3).

"* The range of values associated with the data item; e.g., integers in the range [0, 255] or the
literal values on and off.

"• A mapping of the data item values to the actual input values read.

A data item serves two purposes. First, it states the association between devices and the values they
provide. Second, it provides a useful layer of abstraction. The data item represents the value provided
and abstracts from hardware-dependent details such as the specific representation conventions, regis-
ter used, scaling, etc. He therefore expresses the relations that form IN using data items, not the lower
level values generated by a device. The domain of the relation is a monitored variable, and the range
is a data item.

The engineer can specify IN relation using much the same techniques as for REQ. He can write the
relation using piecewise-continuous functions, partitioned by conditions. The main distinction is that

32

3. The Conceptual Method

he does not use system modes to specify IN (or OUT). System modes reflect information on system
behavior. The mapping to an input device should be independent of such behavior. This reflects the
fact that the engineer should define a device's value relative to a monitored variable whether or not
a system happens to be reading that device.

The specification of the relation between a data item (or items) and a monitored variable must define
the following:

"* A conversion equation between the domain of the monitored variable and the representation
of the device-generated value.

"* The loss of precision from the real world incurred by using the device.

", The delay introduced by the device.

Consider the FLMS example. It includes a monitored variable, FuelLevel. As it happens, there is a
simple correlation between fuel level and differential pressure of the fuel tank: the higher the fuel, the
greater the pressure. Thus, an input device measuring changes in pressure, called a differential pres-
sure unit, is used to measure fuel level. An input data item called DiffPress is created to show how
this device corresponds to FuelLevel. As part of IN, the following relation between FuelLevel and a
hardware register is then written:

rFuelLevel - (- 0.01902 x (B -A) + A) x2 if 0 ! FueLevel s 30
DffPress.03803 (BA)'0

if FuelLevel < 0
1255 if FuelLevel > 30

where A _< FuelLevel _s B

This converts FuelLevel into an integer value between 0 and 255, which is suitable for representation
as an 8-bit, unsigned quantity (which is what the hardware register requires). The values for A and
B define the acceptable precision. The delay is specified separately and is based on an understanding
of how quickly a differential pressure unit can react to changes in pressure. A value of 0.2 seconds
is reasonable.

Other monitored variables correspond to discrete events-the appearance of an aircraft in radar
surveillance range, for example-and are better described using events. The system timer in the FLMS
is another example of such a device. Although the monitored variable Time is continuous, the corre-
sponding device emits a pulse; this is conveniently related to Time using a data item ClkPulse, wit'
the following event-based relation as part of IN:

ClkPulse - @T([Time x 1000 + wi mod (54897 + k) - 0/ps)
where [k[a 54897.

3.7 SPECIFYING THE OUT RELATION

The Consortium's work to date has not dealt with some of the difficult aspects of defining the OUT
relation such as the precise specification of user interfaces and specification of the sorts of complex
data types typically found in C31 systems. Subsequent workwill address these issues. The current work
has concentrated on controlled variables where the mechanism of display is trivial or where issues

33

3. The Conceptual Melhod

of the values to be displayed can be separated from the means of display. The use of objects facilitates
this strategy since the engineer can hide the details of how he represents a particular value to the user
from the rest of the requirements. For instance, the Operator Interface object in the FLMS specification
hides the details concerning how the value of the fuel level actually displays on the operator's CR1 screen.

The engineer specifies OUT relation using the same techniques that he uses for the IN relation.
However, instead of showing how a hardware-provided value maps to a monitored variable, the speci-
fication shows how writing a value to a device affects a controlled variable. It shows the effect of actual
software outputs on the environment. The specification of an output data item provides:

"• A unique name.

"* The device that accepts the datum.

"* The actual values given to the device (if available); e.g., the number of bits and the register
to which the value is written.

"* The range of values associated with the output data item; e.g., values "open" and "closed" for
a valve.

"* The mapping from actual values written to the data item values; e.g., writing 1 boo!ean results
in a valve value of open.

When writing IN, the engineer is typically concerned with truncating a real value into an fixed-length
integral representation. When writing OUI the opposite is true: he often must map a fixed-length
representation of a value onto an infinite domain. This may cause difficulties in writing the software,
unless he has been careful in writing REQ. The composition of IN and OUT involves a loss of
significant digits which cannot be recovered. REQ includes tolerances for this reason.

Another solution is to write REQ so that the values are consistent with the possible precision from
existing devices. The FLMS uses this approach for the controlled variable LevelDisplay. The function
that specifies its value rounds that value to a single significant digit. In other words, a variable of infi-
nite precision is monitored but one of fixed length is controlled. The engineer matches precision of
LevelDisplay to that of the differential pressure input device, so that he avoids the loss of precision.
He can write OUT without describing it.

3.8 SPECIFYING TIMING CONSTRAINTS

Timing constraints describe the way variables behave relative to each other with respect to time. The
engineer describes the constraints by a tolerance value representing a maximum permissible delay
between the change in value of one variable and the corresponding change in value (to be implemented
by the software) in the other. This delay, when taken in conjunction with the controlled variable func-
tion, describes a set of relations that differ only with respect to time. Any one of these relationships
is valid. In other words, given a delay of 0.2 seconds and the relation:

DiffPress = FuelLevel- Offset x 255
Scale

34

3. The Conceptual Method

really states that the differential pressure device behaves as follows:

There exists 6 < 0.2 such that DiffPress(t + 6) = FuelLevel(t) - Offset x 255
Scale

This style helps readers focus on the intended behavior by not increasing the complexity of the
"idealized" version of the relation. However, it still manages to capture a real-world constraint.

3.9 SPECIFYING ACCURACY CONSTRAINTS

Accuracy constraints describe the way variables behave relative to the inherent or allowed deviation
from the ideal. As with timing, the engineer describes an ideal behavior, then provides additional in-
formation that precisely captures the permissible deviances from this ideal. For example, the
differential pressure unit of the FLMS has the following (ideal) relationship to the fuel level:

DiffPress = FuelLevel - Offset x 255
Scale

This relationship can vary by * (k, + k), where k, accounts for the imprecision of the device's ability
to gauge fuel level in terms of pressure (approximately 2 percent), and k2 takes delays into consider-
ation. This sum is the accuracy constraint that the engineer expresses. He may therefore expect his
hardware to always measure the fuel level to within this deviation. Thus:

DiffPress - FuelLevel - Offset x 255 __ k, + k2
I ~ Scale

3.10 DETERMINING COMPLETENESS AND CONSISTENCY

The Consortium selected models in CoRE, as well as the possible represLntations, in part because
they are amenable to consistency and completeness checking. Because of the formal approach used,
these checks have several desirable properties. They do not require a detailed knowledge of the under-
lying formalisms or detailed knowle, iTe of the domain. They can be performed systematically and yield
ar unambiguous resolution of consisency or completeness. They have or can be extended to a formal
basis that is potentially automatable. Finally, they can be applied independently and concurrently.
This facilitates a requirements-writing process that catches problems early.

This section presents some of the consistency and completeness checks that engineers can apply when
using CoRE. There is no attempt to enumerate all of them. Instead, what is presented gives a feel for
the different kinds of checks that are possible and for how a check might be (manually) applied to
verify some aspect of a specification.

The examples are occasionally presented in the representation used for the FLMS specification.
However, the consistency and completeness criteria are independent of the representation. They de-
rive from properties of the underlying data models and would apply regardless of the representation
used. First stated are the criteria in terms of the underlying models. Then how the criteria are applied
using a specific representation is shown.

35

3. The Conceplual Method

3.10.1 DATA MODEL COMPLETENESS CHECKS

Since the data model reflects the set of parts that constitute a complete specification, many of the
completeness checks require simply checking for the presence of certain types of data. The following
completeness criteria illustrate this:

"* All attributes and data items must have a definition including type.

"* All monitored and controlled variables must have a physical interpretation.

"* All environmental variables and data items must participate in at least one relationship.

The appropriate technique for checking these criteria depends on the representation of the data. In
the case of the FLMS example, the engineer can do it by visual inspection of the graphic or textual
representations. For instance, the alarm attribute is defined as:

Alarm :ENUMERATED: Alarm = sound if the audible alarm is sounding.
Alarm = silent if the audible alarm is silent.

The attribute would be incomplete if it lacked either the definition of its type (":ENUMERATED:"),
possible values, or the physical interpretation.

The completeness of parts of a specification that an engineer can determine through inspection (or
by graph-searching strategies if automation is available) include:

* Every attribute must be associated with an object.

* Each term, event, or mode used in one object specification must be defined locally or on the
interface of another object.

These and many more checks are possible for each aspect of the model. For instance, the engineer
can easily represent the input and output data items in template form and check them visually or auto-
matically. It is easy to see such checks are feasible, although doing it on a large information model
would be tedious. Fortunately, most of these kinds of checks are automatable. This is true for most
of the completeness and consistency checks listed.

3.10.2 DATA MODEL CONSISTENCY CHECKS

Consistency checks of the data model help ensure that the information in the various models is not
self-contradictory. The engineer performs these kinds of checks by comparing the components of the
model. For example:

"* Every attribute or data item is defined exactly once.

"• There is exactly one function defining thevalue of each controlled variable or output data item.

3.10.3 BEHAVIORAL MODEL COMPLETENESS CHECKS

The behavior model is complete if the engineer specifies the system's effect on controlled variables
for all possible values of the monitored variables. The constructs in the data model that contain this

36

3. The Conceptual Method

information are mathematical relations. Whatever the representation, he must determine the
completeness by checking that each relation covers all values in its range and accounts for all values
in its domain (i.e., if it never assumes a possible value in the domain, the specification should say so).

Completeness checks in the behavior model can fall into two classes: those that can be accomplished
by inspection, and those that require analysis of the specifications semantics. The engineer former
can check by examining the specification to make sure all necessary information has been ih.cluded.
The presentation of the information in the FLMS specification has been chosen to make such
inspections easy. The following are examples of such checks:

"Each mode class must have an initial mode, and every mode must be reachable. In the pictorial
representation of the FLMS InOperation mode class, the initial mode is indicated by an arrow
without a source. Reachability can be determined by examination of the transition diagram.
See Figure 7.

Operatin Shutdown

Figure 7. Fuel-Level Monitoring System: InOperation Modes

"* The same event cannot cause a transition from one mode to two or more others.

"* The event that causes each transition to occur must be specified.

"* Each controlled variable function must specify the value for every possible mode of any
relevant mode class and must specify the cases corresponding to each possible controlled
variable value (even if the case is "never").

There are also analysis-based checks that require examination of the entire model. For example:

"* Each monitored variable must appear in at least one relation or mode transition.

"* Each monitored (controlled) variable must appear in at least one relation in IN (OUT).

"* Each input (output) data item must appear in at least one relation in IN (OUT).

Other checks relating to parts of the specification given in term of state machines or functions are
more localized. Consider the relations that define controlled variable behavior, specifically those spe-
cified as piece wise-continuous functions partitioned on conditions and modes. The conditions are

37

3. The Conceptual Method

defined in terms of monitored variables. The set of conditions and modes partition the functions
domain; hence, they must cover all possible states of the monitored variables. It follows that a function
is incomplete if all its conditions together do not cover the entire domain. Similarly, if a function is
partitioned based on modes of some mode class, it is complete only if the partition covers all modes
in the class. Consider the LevelDisplay function, which has the following definition:

r Round(FuelLevel, 1) if in Operating, Shutdown or Standby mode
0.0 if in Test mode and 0 s Time - to < 4

LevelDisplay = l(Time-to] x 11.1 if in Test mode and 4 -. Time - to < 14

0.0 if in tlst mode and 14 s Time - t0

This function is partitioned based on a combination of modes and conditions. By examining the
information in the right column, it can be determined that the partition based on modes is complete
since all four modes in the class are included. The function is further partitioned in Test mode based
on a set of conditions that divide the function over all possible values of the monitored variable. It
is therefore complete with respect to its domain.

Note that the function has actually been over-specified, since it is known by the mode transitions that
the condition Time - to > 14 seconds is impossible. The condition is included so that the function's
completeness can be verified.

3.10.4 BEjAvioRAL MODEL CONSISTENCY CHECKS

The aim of consistency checks is to find contradictions, so by their nature they are not template-based.
Instead, they require some analysis of certain portions of the requirements. The formal structure of
the data model in CoRE constrains the range of places where a given inconsistency can occur. That
is, checking the consistency of a given component generally means searching a fixed set of places for
specific conditions rather than searching the entire requirements specification.

The essence of consistency checking is to determine if any relation contains a contradiction. As with
the completeness checks in the externally visible behavior model, the types of analyses range from
simple checks for the presence of information to verification of certain mathematical properties. The
following are examples of such checks:

" The value assigned to a controlled variable must be consistent with the variable's data type.
For instance, the function that controls the Watchdog timer in the FLMS correctly assigns it
a value drawn from the domain TIME. This is verified by determining the function that assigns
a value to the variable and by ensuring that all pieces of the function result in a value of the
correct type.

" The delays associated with the hardware must not exceed those specified as required behavior.
More precisely, suppose a function F monitors m and controls c. Let i be the input data item
associated with m (i.e., there exists a mapping in IN whose domain is m and whose range is
i), and o be the output data item associated with c. If F has an associated delay d specified,
then the sum of the delays in the related IN and OUT mappings cannot exceed d (if it does,
the hardware is too slow to meet the system requirements). This is verified by determining
all delays associated with functions in REQ and then, for all such delays, locating the relevant
data items and checking the sum of their delays. For instance, in the FLMS the delay for

38

3. The Conceptual Me'hod

HighAlarm is ShutdownLockTime/2 - ims; the differential pressure unit has a delay of 0.2
seconds, and the alarm a delay of DisplayDelay. Therefore, this criterion is satisfied when the
relation ShutdownLockTime/2 - 0.001 < DisplayDelay + 0.2 holds.

The domain of the NAT relation must be a subset of the domain of the REQ relation
(otherwise there are naturally occurring states that a system cannot handle). This is in some
sense the inverse of the completeness check requiring that a function's domain be complete
with respect to the variables it monitors. Functions written this way, guarantee consistency
since the domains of variables being monitored are a superset of the domain of NAT This
consistency property is therefore checked by making sure each function completely covers its
domain and that all monitored variables and mode classes are used in some function.

In a relation represented using conditions, exactly one of the conditions must be true for any
possible set of values of the conditions (i.e., the external state). In other words, each function's
value must be unambiguously determinable. Consider the LevelDisplay function above, the
value of which in Test mode is represented by the following condition table:

Condition LevelDisplay -

0: -Time-to < 4 0.0

4 _< Time-to < 14 [Testl7me-4j x 11.1

Time-t o > 14 0.0

By inspection, it can be seen that none of the conditions in the left column overlap, which
satisfies the consistency property desired.

The mode transitions must be deterministic so that each event can be associated with only
one transition from a given state. Thus, given an event, the transition to occur, if any, is unique-
ly defined. This can be verified by identifying all modes with more than one outgoing transi-
tion. For each such mode, the conditions with the associated transitions must be disjoint. In
Figure 7, for example, there are two transitions emanating from the Operating mode. The
events triggering them are:

@F(LowFuelLimit < FuelLevel < HighFuelLimit)
WHEN [SltTst ; pressed]

@T(DURATION(Slf'st = pressed) >_ 0.5s)

Since the first event can only occur when the self-test button is not pressed, and the second
when it is, these clearly do not represent the same event.

39

3. The Conceptual Method

This page intentionally left blank.

40

4. METHODS OF REPRESENTATION

The method requirements state that the basic method should not assume any particular
documentation standard or format. Nonetheless, the Consortium's work must address some issues
of representation to satisfy the complete set of method requirements. For instance, the Consortium
must show that the method can be applied using common, existing notations. It must show that ways
exist of representing and presenting software requirements produced by the method exist that are un-
derstandable to a variety of audiences. Finally, it must produce realistic examples that it can demon-
strate satisfies these method requirements and the guiding principles, so it must choose particular
organizations and notations. This section, discusses issues of representation, describes the formats
and notations used in the examples, and discusses possible alternatives. Subsequent work will provide
explicit guidance for using CoRE with a variety of common notations and mapping the work products
to company or other standards (e.g., DOD-STD-2167A).

For any requirements specification, there will be several audiences with distinct needs (e.g., customers,
systems engineers, software engineers, testers, and project managers). The Consortium's assessment of
the member company problems leads to the conclusion that there is not one representation of the require-
ments that will adequately serve the needs of every one of the audiences. Some readers want an overview
or introduction to the software. Others want precise answers to specific questions that they have about
what the software must do or how quickly it must do it. Representations of requirements information
must serve not only to answer questions about the system being specified, but must also serve the creation
and recording of the information and the verification of its consistency and completeness.

The backgrounds of those in the audience vary widely. Some have been trained and are experienced in
computer science and related disciplines. Some are engineers trained and experienced in traditional engi-
neering disciplines. Some have been trained and are experienced in areas other than computer science
and engineering.

In addition to variety in the users of a requirements specification, there is a wide variety in the
standards to which organizations using a Consortium-produced requirements method must adhere.
Different member companies follow different standards for software development processes, meth-
ods, notations, and document organizations. Government customers impose many of the standards.
Member companies or organizations within member companies impose others.

The Consortium uses a two-part approach to address this variety in the audience of the requirements
specification and in the standards to which it must adhere. First, it defines a requirements data model
that defines the underlying content and organization of requirements information (Section 2.2).
Second, it shows how different views or representations of information in the model can serve the
needs of different audiences. This section illustrates some techniques for representation requirements
that satisfy the method requirements (e.g., serve different types of users). Future work will provide
guidance in mapping the model and methods of representation to specific standards.

41

4. Methods of Representation

4.1 REQUIREMENTS INFORMATION TO PRESENT

This section describes different collections of types of requirements information that are useful to
present to requirements specification users. Each of these collections may be thought of as a view of
the requirements. These views are discussed in the following order:

"* The environment of the system

"* The hardware/software interface

"* The behavior of the system

"* States of the system and state transitions

"* Timing and accuracy constraints

A description of the environment of a system can serve as an introduction to or an overview of the
system. Such a description should include characterizations of relevant classes of objects in the envi-
ronment and important relationships among the classes and objects. This information is recorded by
the following entities in the requirements data model:

"* Environment variables

"* Objects, attributes, and relationships in the information view

"* The NAT relation

Users of the requirements specification must be able to distinguish between behavior that the software
is responsible for accomplishing and behavior that is the responsibility of the hardware. Those who
are writing the software and those who are designing the hardware need to know what facilities the
hardware is providing and how to use them. This information is provided by the hardware/software
interface which is recorded by the following information:

"* Input and output data items

"* The IN and OUT relations

Those who are designing and writing the software, those who are testing it, and many of those who
use it need to know exactly what the software must do. Some users and others need an informal indica-
tion of what the software must do. All these needs can be served by a description of the behavior of
the system, which is provided by the following information:

"* Environment variables

"* The REQ relation

The behavior of a system often depends on the system's history, i.e., what has happened to it in the
past. Modes (classes of system states) characterize the history of the system. Those who need to know
exactly what the system must do often need to know what modes the system can be in and what can
cd use it to change modes. This view of requirements information is provided by:

"• System modes

"* Mode transitions

42

4. Methods of Representation

Designers, writers, and testers of the software need to know how often certain actions must be
performed, how long the system may take to respond to certain events, and how accurate its responses
must be. This view is provided by:

"* Timing constraints

"• Accuracy constraints

4.2 PRESENTING REQUIREMENTS INFORMATION

The previous section discussed the information that needs to be presented to users of the requirements.
This section discusses and illustrates with examples different ways in which the information can be pres-
ented. The examples are intended to be neither definitive nor exhaustive. For all the example presentations
there are alternative notations, some of which may be preferred in certain situations.

4.2.1 PRESENTING THE ENVIRONMENT OF THE SYSTEM

There are a number of ways in which users of the requirements can be presented with a representation
of the environment of the system. The user can be presented with an information view of the environ-
ment, that is a presentation of the s',atic structure of the environment. Figure 8 uses an entity relation-
ship attribute (ERA) diagram to present the information view. An ERA diagram represents the
entities (or classes of objects) in the environment and the relationships among and attributes of the
entities. In the figure, rectangles represent entities. The name of the entity is the name in bold in the
rectangle. The other names in the rectangle represent the attributes of the entity. Diamonds connected
by line segments to entities represent relationships among the connected entities. The diamond con-
tains the name of the relationship. The number annotating the relationships indicate the maximum
and minimum number of instances of each entity that may participate in the relationship. In the exam-
ple, for each entity participating in one of the relationships, there needs to be exactly one instance
of the entity. The diagram is drawn so that a sentence can be constructed from the names of a relation-
ship and the entities to which it relates by reading either top-down or left-to-right. For example,
operator operates FLMS and FLMS monitors Fuel in Tank.

Figure 9 illustrates another information view. The diagram presents an example of the
domain-independent subtype relation IS A. Both Host and Potential Threat are subtypes of Aircraft. Note
the annotation O:N on the tracks relation. It indicates that Host may track zero or more Potential Threats.

By itself, the information view can provide an informal understanding of the system. The attribute
definitions can help provide a more precise understanding. 'Tble 2 illustrates several.

alble 2. Example Fuel Level Monitoring System Attribute Definitions

Attribute Definition

PumpSwitch :ENUMERATED: If PumpSwitch = closed then the contacts for switches S1 and
S2 are closed. If PumpSwitch = open then the contacts for switches S I and S2 are
open.

WDTimer :TIME: Tume, in seconds, until the Watchdog system assumes that the FLMS has
failed.

FuelLevel :LENGTH range 0.0 .. 30.0: Level of fuel in the tank, in centimeters (cm), along the
vertical axis on the left side of the tank, 5 centimeters from the front edge. The level
is measured with respect to the scale.

43

4. Methods of Representation

Operator

slftst

reset

alarm

low alarm

high alarm

level display

1:1

Watchdog

WD timer

FLMS

mon1ito1:s F~uel in Tank

pump switch fuel level

Figure 8. Fuel-Level Monitoring System: Information View

A structured analysis context data flow diagram3 provides another useful presentation of the
environment of the system (see Figure 10). The information that the diagram presents includes the
relation between environment (monitored and controlled) variables and the entity with which each
is associated. In the example, the circle at the center represents the system (FLMS). The rectangles
represent entities in the environment. A labeled arrow from an external entity to the system represents
the monitored variable with that name. A labeled arrow from the system to an external entity
represents a controlled variable with that name. The dashed arrow to Watchdog indicates that the
value of the controlled variable WDTimer is not continuously available.

As with the information view, the context diagram by itself can provide some informal understanding
of the system. A more precise understanding of the system can be obtained by referring to definitions
of the environment variables (see Tables 3 and 4). These definitions can also serve as presentations
of the environment of the system. They represent variables in the environment whose values the system
must set (the controlled variables) and variables in the environment whose values the system must
monitor (the monitored variables) to determine the desired values of the controlled variables.

44

4. Methods of Representation

Aircraft

Altitude

AircraftID
Velocity

Rate
Location

Bearing

iI A

Host O: /•0N Potential Threat

E Range

Relative bearing

Figure 9. Aircraft Collision Warning Monitor. Information View

Table 3. Definitions of Monitored Variables

Monitored Variable Tyjpe Definition

Reset enumerated Reset = pressed iff the push button labeled RESET is
pressed.

Reset = released, otherwise.

FuelLevel length Range 0.0.. 30.0. Level of fuel in the tank, in centimeters
(cm), along the vertical axis on the left side of the tank, 5
centimeters from the front edge. The level is measured
with respect to the scale.

Table 4. Definitions of Controlled Variables

Controlled Variable "ype Definition

Alarm enumerated Alarm = sound iff the audible alarm is sounding.

Alarm = silent iff the audible alarm is silent.

PumpSwitch enumerated If PumpSwitch = closed then the contacts for switches S1
and S2 are closed.

If PumpSwitch = open then the contacts for switches S1
and S2 are open.

3. Structured analysis notation is used in several of the presentations. The interpretation of the meaning of the notation
(which is explained in the text) varies from the traditional structured analysis interpretation.

45

4. Methods of Representation

Watchdog

I WDTimer

Tak Fuel~evel Fuel-Level Pmsic
MkMonitoring Pump

Alarm LevelDisplay

S~Operator

Figure 10. Fuel-Level Monitoring System: Context Diagram

4.2.2 PRESENTING THE HARDWAP.E/SOFrWARE INTERFACE

One way of presenting the hardware/software of the system is to use the structured analysis notation
that was used to present the environment of the system augmented with a notation to represent devices
(see Figure 11). In this case, the circle in the middle of the diagram represents the FLMS software
(when representing the environment of the system, the circle represented the entire FLMS system,
hardware and software), the rectangles represent entities in the environment of the system (as before),
and the parallelograms represent hardware devices that are -art of the FLMS. A labeled arrow from
a device to the software represents an input data item on the interface between that device and the
software. The software can read the input data item and the device can control it. A labeled arrow
from the software to a device represents an output data item on the interface between that device and
the software. The software can set the output data item and the hardware can read it. Labeled arrows
between the external entities and the devices represent environment variables. An arrow from an exter-
nal entity to a device represents a monitored variable whose value the device can sense. An arrow from
a device to an external entity represents a controlled variable whose value the device can control.

As is often true of graphical presentations, this view of the hardware/software interface provides a
useful overview, but it dues not constitute a complete specification. The information needed to make
a complete specification of the hardware/software interface can be provided in the form of tables and
templates. These tables and templates represent another view of the interface.

46

4. Methods of Representation

Tank

Fuellvel

Difessrenta Difrs [e-e Shutdown Pm

Pressur Monitoring htdw
Unit Sfwr ea

PumpSwich

Pump

Figure 11. Fuel-Level Monitoring System: Software Context Diagram (Partial)

An example representation of the information that defines an input data item is as follows:

Aconym: DiffPress

Hardware: Differential Pressure Unit

Characteristics of Values:

Values: DiffPress E [0, 255]

Data Transfer:. ADC(0)

Data Representation: 8-bit unsigned integer

The form of the representation is a template.

An example representation for the output data item Shutdown is as follows:

Acron=; Shutdown

Hardywar: Pump Shutdown Relay

Characteristics of Values:

Value Encodings: operate (1b)
shutdown (0b)

Data Transfer PortC

Data Representation: Bit I of byte

47

4. Methods of Representation

The set of similar definitions for all the input and output data items represents a detailed view of the
hardware/software interface. This view can be made complete by representing the IN and OUT rela-
tions. The part of the IN relation that specifies the value of DiffPress that the hardware is responsible
for maintaining is represented as the decision table illustrated in Table 5. A decision table is divided
into two parts, the condition or top part, and the decision or bottom part. A condition or decision
that holds is indicated by marking it with an X. The column in which a mark appears is significant.
Marking a decision means that the decision holds while all of the conditions that have marks in the
same column as the decision's mark are true. If two o: more conditions are marked in the same col-
umn, then the decision that is marked for the column holds while the conjunction (and) of the marked
conditions holds. It can be seen from the table that if the fuel is within its calibration bounds, then
the value of the input data item DiffPress is a function of FuelLevel and the constants Offset and Scale
(whose definitions havc been omitted from this example).

Thble 5. The IN Relation for DiffPress

Condition
LowerCalibrationBound <_ FuelLevel :< UpperCalibrationBound X

FuelLevel < LowerCalibrationBound X
FuelLevel > UpperCalibrationBound X

Decision

DiffPress = ((Fuelt tvel - Offset) / Scale) x 255 X
DiffPress = 0 X
DiffPress = 255 X

4.2.3 SYsTEM BEHAVIOR

4.2.3.1 Presenting an Overview

There are a number of ways in which an overview of the system's behavior can be presented. Such
overviews do not serve as specifications of the behavior. Rather, they are intended to serve as
introductions, reminders, and pointers. Several alternative presentations are:

"* Real-Time Structured Analysis (RTSA) context and level 1 diagrams.

"* Controlled variables as text or a table.

"* Text or table abstraction of controlled variable functions.

RTSA data flow diagram notation can present an overview of the system's behavior. A high-level view
is provided by the context diagram that was discussed earlier (see Figure 10). Figure 12 shows a more
detailed view. The circles represent objects that encapsulate parts of the requirements. An object that
encapsulates a mode class is distinguished by its dashed outline.

The interpretation of an arrow depends on whether the arrow connects one object to another or
connects an object to an entity in the environment (such entities are represented in the context diagram
only). Arrows between objects represent information about monitored variables. The information is

48

4. Methods of Represenlalion

ResptSwitch FuelI.vel

SelfrestSwitch

SAu JibleAla•

Hglan Operator Watchdog Die
LowAlarm Interface Sl Test Interface

level/ --]D\Fueneelang

~~~Resetwih

( hOperation 4

FuelLeveilange

/ InsideHysRange

Interface FuelInTank

ResetSvitch
FuelLevel

Figure 12. Fuel-Level Monitoring System: Transformation Diagram

on the interface of the object at the tail of the arrow. The object on the head of the arrow uses the
information. Solid arrows between objects represent conditions, and dashed arrows between objects
represent events.

An arrow from an entity in the environment to an object represents a monitored variable. An arrow
from an object to an entity in the environment represents a controlled variable. A dashed arrow repre-
sents a variable whose value is not continuously available. A solid arrow with a double arrowhead
represents a variable whose value is continuously available.

The table of controlled variables in Table 4 represents another overview of the system's behavior.

4.2.3.2 Detailed Specification of the System's Behavior

The REQ relation specifies the system's behavior. Typically, a set of functions define REQ, each of
which specifies the behavior of one or more controlled variable. There are a number of ways in which

49



4. Methods of Representation

we can specify these functions. We can use conventional mathematical notation. (See, for example,
the specification of LevelDisplay in Section 3.5.1.)

A decision table can represent a controlled variable function. Such a representation is useful if the value
of the function depends upon a number of conditions, as is the case for LevelDisplay in Section 3.5.1.
A decision table representation of the LevelDisplay function is illustrated in Table 6 (Section 4.2.2 de-
scribes how to read a decision table). It can be seen from the second column of the table (the first column
of X's) that if the system is in one of the modes Operating, Shutdown, or Standby that:

LevelDisplay = Round(FuelLevel, 1)

"%Tble 6. Decision Table Representation of the Behavior of LevelDisplay

Condition

in mode Ope.ating, Shutdown, or Standby X
in mode Test X X X

0o Time-to <4 X

4 : Time-to < 14 X

14 s Time-to X

Decision

LevelDisplay - Round(WaterLevel, 1) X

LevelDisplay = [Time - toJ x 11.1 X

LevelDisplay = 0.0 X X

A tabular alternative to the decision table is the condition table (see Table 7). The condition table can
be thought of as a decision table that has been modified to better support consistency and complete-
ness checking (see Section 3.10) and to be more concise. The first column of the table (labeled Mode)
defines the modes that apply to each of the rows. The other columns correspond to distinct expressions
that specify values for the controlled variable. These expressions appear in the bottom row of each
column. The entry in the bottom row of the first column (LevelDisplay =) serves as a reminder of
the meaning of the expressions in the bottom row. An entry in one of the columns labeled Condition
defines the condition in which, when the system is in the mode identified in the first column of the
row, the expression at the bottom of the column specifies the required value of the controlled variable.

Table 7. Condition '1ble Representation of the Behavior of LevelDisplay

Mode Condition

Op,- -ting OR always
Shutdown OR
Standby
Test 0 S Time-to < 4 4 s Time-to < 14 14 : Time-to

LevelDisplay = Round(WaterLevel, 1)i 0.0 ime - to] x 11.1 0.0

50



4. Methods of Representation

For example, "always" in the first condition column indicates that whenever the system is in one of
the modes Operating, Shutdown, or Standby:

LevelDisplay = Round(FuelLevel, 1)

The third condition column indicates that if the system is in Test mode and 4 _ Time - to < 14, then:

LevelDisplay = LTime-toJ x 11.1

4.23.3 Presenting States of the System and State Transitions

Where required behavior depends on the order of events in time, mode classes and modes are used to
capture the ordering. A mode class is a finite state machine defined on the states of the system's monitored
variables. Each state of the machine, called a mode, corresponds to a set of system states. Since events
describe the state transitions, changes in the system state, the machine "inputs" are events.

Modes and mode transitions can be presented using any of the techniques used to present finite-state
machines. Some commonly used techniques are state transition diagrams, state transition tables, and
state charts. Figure 13 illustrates a state transition diagram representation of the InOperation mode
class from the FLMS. A circle labeled with the name of the mode represents each mode in the mode
class. The unterminated arrow to the Standby mode indicates that Standby is the initial mode. Arrows
labeled with the event that causes a transition indicate transitions between modes. In the example,
the expressions defining the events are too complicated to show in the diagram. Technical terms are
used instead. Table 8 shows the event that each term represents.

(Operating 1Shutdown

Figuare 13. Fuel-Level Monitoring System: Operating Modes

51



4. Methods of Representation

Thble 8. Definitions of InOperation Technical Terms

Term Definition

InOpI = @T(InsideHysRange) WHEN
(DURATION (INMODE (Shutdown)) < ShutdownLockTime)

InOp2 = @T(Reset) WHEN (InsideHysRange)

InShut = @F(FuelLevelRange = WithinLimits)

InStndl = @T(DURATION (INMODE (Shutdown)) > = ShutdownLockTime)

InStnd2 = @T(DURATION (INMODE (Test)) = 14s)

InTest = @T(SelfTest)

The same mode class is represented as the state transition table in "itble 9. The indication that Standby
is the initial state would be provided by some means other than the table. The first column of the table
lists the "current" mode of the mode class. The row at the bottom of the table lists the "new" mode. An
entry in the table is the event that causes a transition from the mode in the first column of the row to
the mode in the last row of the column. The same technical terms that were used in Figure 13 are used
in the table. An X indicates that the mode class cannot transition from the current mode to the new .node.

'Able 9. State Transition Thble Representation of the InOperation Mode Cass

Mode Thggering Event

Operating X InShut X In Test
Shutdown InOpI X InStndl In Test
Standby . nOp2 X X InTest
'ITst X X InStnd2 X
InOperation = Operating Shutdown Standby Test

For example, if the system is in Standby and the Reset event occurs (i.e., the operator presses the reset
button for three seconds) while the fuel level is within range, then the system transitions to Operating.
If the Selffest event then occurs (i.e., the operator then presses the self-test button for at least 500
milliseconds) the system will transition to Test mode. After 14 seconds in Test (the definition of
InStnd2) the system transitions to Standby. This example can also be used to trace through the state
transition diagram in Figure 13.

52



5. TECHNICAL RATIONALE AND PROGRESS

This section discusses the reasons behind the technical approach by relating the project's technical
direction to the method requirements (discussed in Section 1). It discusses the basic technical ap-
proach and how that approach relates to particular method requirements. It also discusses the state
of the current work in two parts: first, the state of CoRE itself relative to a complete, practicable meth-
od (e.g., how complete the method is); second, how CoRE products satisfy the method requirements
(e.g., completeness of a specification produced by CORE).

5.1 THE BASIC TECHNICAL APPROACH

CoRE represents an amalgamation of features, each of which has proven value by virtue of actual,
successful use in systems development. The Consortium made a conscious attempt to. tithesize the
best features of existing approaches rather than to invent anything new. This section uescribes the
prominent features of CoRE and discusses how these features help answer the method requirements.
The discussion is also intended to help the reader compare the properties and goals of CoRE to those
of existing methods.

5.1.1 RF•cnr'• SYSTEM ORIENTATION

A nonreactive system performs terminating computations, with all the inputs present as the system begins
its computation. A reactive system, on the other hand, maintains an ongoing interaction with its environ-
ment, during which it receives inputs and produces corresponding outputs on an ongoing, sometimes un-
predictable basis. Such systems have very different properties from nonreactive systems, and the require-
ments definitions must reflect these properties. For example, finite state machines often express the
properties of reactive systems well, specifying the effects of inputs in terms of the system's current mode
of operation. Since most real-time and embedded systems developed by member companies fit the
reactive system pattern, the Consortium took this pattern as a basis for the requirements method.

The reactive system orientation addresses the requirements both directly and indirectly. Directly, the
reactive orientation addresses the requirement that CoRE support real-time embedded systems. Indirect-
ly, the reactive orientation is exploited by developing a standard model for expressing system requirements
based on characteristics common to reactive systems. As discussed in Section 3, the system is modeled
as a state machine interacting with the environment. Requirements are expressed in terms of the ongoing,
real-time relations the system must maintain between the environmental variables monitored by the sys-
tem and those it controls. Using such a standard, formal model allows much of the requirements process
to be standardized as well and allows increased rigor in the specification. For instance, it is clear when
requirements are incomplete, and there are analytical tests for consistency and completeness.

5.1.2 FRONT LOADING

The requirements model is a detailed description of system structure and behavior which is created
at a very early stage of the development life cycle. This implies that significant time will be devoted

53



5. Technical Rationale and Progress

to analyzing the model to find errors and inconsistencies in requirements before the code is written.
In traditional systems development approaches, many such problems are not found until after the
code is written. This front loading of the development process should reduce overall development time,
since studies show that an error in the requirements model is easier to fix than the manifestation of
the same error appearing in the design and code. However, the implication is that estimates of relative
duration of project phases will have to be modified to accommodate the new approach.

5.1.3 INTEGRATION OF GRAPHICS-BASED AND TEXT-BASED METHODS

Schematic aspects of the requirements model (layout and connection of parts, decomposition of parts
into subparts) can be expressed in graphic form with supporting text. The graphic notations have a rigor-
ously defined syntax and semantics, and each graphic element has an alternate textual form. Thus, a model
can be expressed totally in textual form, or in a mixture of graphics and text. (The Consortium anticipates
that appropriate tools will ultimately be able to capture a model in either form and display or print it
in either form as required.) The graphics notations (entity-relationship diagrams, data flow diagrams, state
transition diagrams) are outgrowths of Real-Time Structured Analysis and are adapted from the CASE/
Real-Time Method (Ward 1989). Parts of the textual notations were adapted from those developed by
David Parnas and his colleagues (Henninger et al 1978; van Schouwen 1990).

Integration of graphics-based and text-based methods addresses concerns for improved
communication among a variety of audiences. The ability to provide a graphic representation allows
readers to quickly grasp essential relationships among system components and gain an overview of
its organization. By providing a consistent, formal textual interpretation, the graphics combine
smoothly with the detailed specifications best given in text. This allows developers to sketch ideas and
do early development in either the visual or textual medium and have the result carry over directly
into the formal specification. Finally, the method assumes the use of common data flow notations (e.g.,
Ward/Mellor), which satisfies the requirement for not inventing unnecessary new notations. The
Consortium will write future guidebooks for CoRE to allow the use of a variety of available notations
(e.g., Ward/Mellor, Hatley/Pirbhai, CASE Real-Time, Modecharts, or Statecharts).

5.1.4 INTEGRATION OF THE OBJECT-ORIENTED PARADIGM

CoRE expresses requirements in terms of classes of objects in the system's environment. The heuristics
for object identification cluster the monitored and controlled variables into groups, all of whose members
are likely to be affected by certain variations in requirements. The identification of objects is an extension
of the CASE/Real-Time Method and is compatible with the objective of organizing a model to facilitate
likely changes as the system evolves. Since objects of each class encapsulate data about themselves, the
requirements model obeys the principles of information hiding and data abstraction.

Use of the object-oriented model supports requirements for ease of change and separation of
concerns. Objects provide a mechanism for abstracting detail and encapsulating information. As can
be done in the software design, objects hide details in the requirements specification that are likely
to change. This limits the effects of changes to a small, well-defined part of the requirements in most
cases. Most requirements apply to a small number of objects, and many requirements changes apply
to a single object. Thus, readers can study, and maintainers can change, different aspects of the re-
quirements independently. The object model also supports the capabilities of dividing the require-
ments into separate work assignments and the ability to extend the development of selected parts of
the system through the implementation to support risk mitigation.

54



5. Technical Rationale and Progress

The final version of CoRE will also make use of hierarchical superclass/subclass relations among
classes of objects to handle more complex object relationships than are present in the small examples
used thus far.

5.1.5 NoNALGORITumic SPECIFICATION

The Consortium based its approach on specification of functional requirements as relations between
environmental variables. By describing only externally visible behavior using relations between moni-
tored and controlled variables, the method permits nonalgorithmic specification of software require-
ments. This does not mean that all decisions affecting design and implementation are excluded from
the requirements definition; rather, the developer is free to choose the level of detail, restricting the
specification to decisions about requirements if desired. For instance, the decomposition into objects
and the allocation of particular requirements to particular objects represents decisions about the re-
quirements that will constrain subsequent design and implementation decisions. In particular, the
decomposition will affect which requirements are most easily changed and, subsequently, which
aspects of the design should be easy to change.

The underlying model that CoRE uses defines all the functional behavior in terms of relations among
monitored and controlled variables. This allows the analyst to limit the kinds of decisions that he can
make to decisions about requirements (as opposed to design or implementation decisions). If more
detailed decisions, including specific algorithms, are actually system requirements, he can add these
to the specification as a more detailed resolution of the requirements decisions.

5.1.6 A "MAcoNc-LiK2" MODEL

Although the requirements model deliberately omits implementation details of the proposed system,
it is interpretable as a "virtual machine" for producing inputs from outputs. This positions the model
between traditional software designs and declarative, property-oriented formal methods that describe
systems in abstract mathematical terms.

Use of the machine model supports the need for a method that is easy to learn, use, and understand. In
general, the machine model is simpler than more formal methods and does not require as much training
to read, understand, or assess as do some of the more formal approaches. The model also supports the
requirement for explicit definition of the environment and control of system boundaries. The model explic-
itly identifies and defines the required information in the environment by modeling the environmental
variables of interest in terms of monitored and controlled variables. The REQ relation clearly identifies
the constraints on the environment imposed by the system while the NAT relation explicitly defines the
constraints imposed by the system environment. The definitions of the IN and OUT relations capture
the interfaces, including all assumptions about hardware devices (to any level of detail).

Finally, the machine model provides a sound basis for automation. The model has a formal basis that
can be made machine interpretable. This should provide a basis for developing such capabilities as
automated generation of rapid prototypes, semantic analysis of model (e.g., for deadlock), analysis
of timing constraints, and simulation.

5.1.7 EXISTING TOOL SUPPORT

The graphic notations are compatible with those provided by various CASE products, ensuring that
these products can provide a reasonable level of support for building of requirements models in the

55



5. Technical Rationale and Progres

absence of a tool optimized for CORE. For example, the teamwork products from Cadre Technologies,
the Software through Pictures products from Interactive Development Environment, and the Excele-
rator products of Index Technology Corp. use common notations (from structured analysis) identical
or very similar to those used in the examples. Current work is focusing on providing a complete de-
scription of applying the method on teamwork. This section discusses this in more detail later. The
Consortium will address additional platforms as demand exists.

This aspect of the approach supports the requirement that the Consortium consider prior member
company investment in existing tools.

5.1.8 DOCUMENT AND WORK PRODUCT INDEPENDENCE

In accordance with the expressed wishes of the member companies, the Consortium developed CoRE
to be independent of existing standards for project documentation such as DOD-STD-2167A. Rather
than defining the work products in terms of documents or the process in terms of sequences of docu-
mentation, CoRE focuses on the information that constitutes a requirements specification. The re-
quirements data model captures the structure of this information. The data model can be thought
of as a database schema for requirements. The Consortium developed it to embody only those as-
sumptions about requirements implicit in the method itself (and not assumptions about how that in-
formation should be formatted for a given user or customer). The data model provides the common
structural basis for different presentations, including DOD-STD-2167A.

5.2 QUALITIES OF CORE

This section discusses the current qualities of CoRE itself as opposed to the process implied by CORE
or its work products; for example, how complete the method description is at this time, how well it
does scale-up, and so on. It discusses how far along the work is in satisfying the overall member
company needs and identifies ongoing development work.

5.2.1 COMPLETENESS OF THE METHOD

CoRE is complete to the extent that a workable method is available that satisfies the requirements
set by the member companies. The project has developed the technical foundation for such a method.
The theoretical basis of CORE is sufficient to encompass the specification of all behavioral require-
ments for real-time embedded applications. The Consortium has demonstrated the practicality of
CoRE for small applications and is currently investigating scale-up. It has prepared an overview of
how the requirements definition process will be conducted when using CORE, but significant process
definition work remains.

The following are the areas in which additional development work on the technical approach of the
method will be necessary:

"* Specification of user interfaces (especially graphical user interfaces) in a manner that potential
end users can review.

"• Description of display and report formats.

"* Specification of accuracy and precision requirements.

56



5. Technical Rationale and Progress

The Consortium anticipates refinements to CoRE, and the detailed process for applying it (i.e., a
guidebook), during Member Company pilot projects.

CoRE does not require a specific notation, although this report uses one notation consistently. The
Consortium is evaluating alternative notations and will present them in subsequent project deliver-
ables. For example, to express information on system states, CoRE may use the statechart graphical
formalism as an alternative to the operating modes diagram in the example (Figure 16). Modecharts
(Mok 1991; Jahanian, Lee, and Mok 1988) offer additional formal mechanisms for evaluating real-time
properties implied by a specification as well as some available tool support.

The requirements for CoRE state that it must also support the description of software requirements for
command and control systems, in addition to the real-time embedded system domain. Extensions to the
method for the C2 domain are likely to be required in the underlying system model, reflecting the essential
role of a large database and a large amount of structured data, and in the methods used to specify system
performance and capacity requirements. The Consortium will address these issues in 1992.

5.2.2 SCALAILrrY

The current work only partially addresses scalability, but the basic technology developed to date will
scale to software systems of the size being built in the member companies. The most important reason
for this confidence in CoRE's scalability is the use of existing technology, on realistic-size applications
in developing the technical foundations of CoRE.

To demonstrate the scale-up potential, the Consortium needs a larger example in the embedded system
domain. The FLMS example given in this report is useful for illustrating the basic approach but is
not sufficiently complex to illustrate the potential for scale-up even where solutions already exist. In
particular, the FLMS examples does not illustrate the following scalability issues, even where CoRE
provides some capabilities:

"Determining the Objects and Their Attributes. In the present example the objects and attributes
appear "intuitively obvious" and their identification does not adequately demonstrate the
criteria used for decomposing a problem into objects.

" Monitoring and Controlling Several Object Instances Concurrently. CoRE defines the required
control in terms of multiple, concurrent finite state machines. Several real-time specification
methods including Boeing/Hatley, Ward/Mellor, Shlaer/Mellor, and the CASE/Real-Time
Method, have used this approach successfully, so it is clear that the basic approach will scale.
However, the FLMS example does not demonstrate this capacity since there is only one
common state machine of interest.

" Appearance and Disappearance of Objects During System Execution. In many systems, the set of
object instances is not stable during execution. For instance, a fire control system must track
a continuously changing set of targets. The FLMS example does not illustrate this, but CoRE
handles it by declaring classes of objects and indexing the instances in the specification.
Section 4 discusses this briefly.

" Specifying More Complex State-oriented Behavior. Although not illustrated by the current problem,
a number of real-time methods have used concurrent state machines to effectively capture
state-oriented behavior. Further, it has been shown (Drusinsky and Harel 1984) that a model

57



5. Technical Rationale and Progress

based in concurrent state machines is exponentially more powerful than a simple state machine
model (alternatively, the specification is exponentially simpler). These suggest that CoRE will scale
up. The Consortium is currently investigating more sophisticated graphic techniques such as
Harel's statecharts (Harel 1984) for illustrating complex state behavior. It is also investigating
methods such as Mok's modecharts (Jahanian, Lee, and Mok 1988) that provide an underlying
formal model for simulating or reasoning about absolute timing behavior.

Other issues of scaleability remain to be treated. For instance, it is likely that the Consortium will need
to define much more complex relations between the. monitored and controlled variable values. Work
is also under way in addressing the decomposition of a large system into a set of cooperating subsys-
tems. The method notation and process will support such an approach using multiple models of differ-
ent domains. In addition, CoRE will need to address scaleability of the graphic techniques used for
showing information models and data flows.

5.2.3 UsAiLrrY ON LUN PRoJiEcs

Although CoRE will be understandable and usable by software staff and many systems engineers in
the member companies, it has not been used to date outside of the development group. However,
CoRE is based on combining techniques that have been successfully applied on real-time, embedded
system projects similar to those done in the member companies. Additional method development
work needs to be done before member companies can use CoRE to define the requirements for com-
mand and control applications. Pilot projects to demonstrate the usability of the method on real-time,
embedded iystem applications will begin before the end of 1991.

5.2.4 TECHNICAL TRANSFER

The Consortium has invested a major effort to make CoRE notation more understandable than the
notations for other requirements methods based on a mathematically-defined system model (i.e., "for-
mal" methods). CoRE includes diagrams designed to provide system overviews and to facilitate access
to reference-oriented material. All graphic symbols have textual equivalents, so the engineer can use
the preferred notation. In particular, graphic presentation in the form of an information model or data
flow diagram provides a basis for resolving issues with the customer at all stages of development. The
common, underlying formal model also links the graphics to the specifications of external behavior.
This allows the developer to move between the graphic interpretation, the output functions, and user
scenarios, helping to ensure a common understanding between customer and developer.

Documents can derive from the requirements database to meet the needs of different audiences, ranging
from customers/end users to software designers. The Consortium is prototyping a hypertext-oriented
CASE tool to facilitate development, access, and updating of the requirements database. Pilot projects
will provide the definitive assessment of the understandability of the method results and their value as
a communication vehicle between the diverse audiences involved in the requirements process.

5.2.5 DOCUMENT PRODUcTION INDEPENDENCE

An important project goal is to support the production of documents from the requirements database
in a variety of documentation formats. The common underlying data model (based on the object orga-
nization) makes this possible. The next example will include the repackaging of the results in a form
compatible with DOD-STD-2167A. Future work will attempt to exploit existing document generation

58



5. lbchnical Rationale and Progress

capabilities in the member companies such as tools that generate DOD-STD-2167A documentation
from an existing tool database.

5.3 QUALITIES OF THE METHOD WORK PRODUCTS

The Consortium has chosen particular features of CoRE to address particular method requirements
such as the ability to analyze specifications for completeness or consistency. This section discusses
the rationale for these method design decisions and how these relate to the method requirements.

5.3.1 COMPLETENESS OF SPECIFICATIONS

CoRE must support analysis of specifications for internal completeness. A specification is internally
complete if every part of the specification is fully defined, so that answers to all questions that a reader
might have about the system's behavior are available in the specification. In contrast, external complete-
ness refers to whether or not the requirements state all behavior that the customer desires. Thus, analysis
of the specification alone can ascertain, at least in theory, internal completeness, which is a property of
the specification itself. Mutual consent (e.g., a contract) determines external, completeness.

Having a well-defined notion of completeness is important for two reasons. Most obviously,
incomplete requirements will result in the wrong system being built and, ultimately, higher costs to
correct the errors. Second, a notion of completeness is important to managing the development pro-
cess. The developer must know how complete requirements are to measure the progress being made.
Without a well-defined notion of completeness, it will not be clear how far along the project is or when
the requirements phase is done.

The current work concentrates on methods for assessing and achieving internal completeness. Many
of the activities associated with determining external completeness are part of the overall process of
customer/developer communication that the Consortium will not fully address until it defines overall
process (in 1992). Nonetheless, the two properties are related since the analysis of a specification for
internal completeness will point out areas where the developer has not fully analyzed the requirements.
For instance, an assessment of internal completeness might show that no values for a particular output
are specified for one of the system modes. In such a case, the developer must go back to the customer
to determine whether this represents an incomplete requirement or an instance where the customer
does not care what the output value is. The engineer then makes the specification internally complete
by specifying the required value or a "don't care" for the output, which accounts for all the possibili-
ties. Thus, this discussion will cover some issues of external completeness where these are related to
the analysis of internal completeness. It simply uses "completeness," without qualification, to refer
to internal completeness, being explicit when talking about external completeness.

CoRE addresses completeness in two ways. First, it uses a standard model (the four-variable model) for
organizing the requirements with well-defined parts. This allows the developer to assess a specification
against the model to ensure that it accounts for all the expected parts. Second, the engineer writes behav-
ioral requirements in terms of formal mechanisms like conditions, finite state machines, and functions.
These provide a formal notion of completeness that he can directly assess in a specification.

As discussed earlier, the Consortium's approach to specification is based on describing requirements
in terms of a specific set of relations on environmental variables. It is characteristic of CoRE that,
once the engineer defines the environmental variables, the model itself defines what it means for a

59



5. Technical Rationale and Progre

specification in terms of those variables to be complete. For instance, the developer must fully define
each of the component relations REQ, NAT, IN, and OUT Taking REQ as an example, the underlying
model determines what it means for REQ to be completely specified. Overall, the REQ relation must
have a domain that includes all of the possible values of the monitored variables (otherwise, the re-
quired behavior would be undefined for some input values). The range must include every one of the
controlled variables. The relation itself must associate a set of controlled variable values with each
possible state of the monitored variables at any time.

Breaking the relation into a set of parts makes. writing a complete definition of the relation (with
confidence) practical. There is exactly one output function written for each controlled variable. Along
with the function, the developer specifies the allowed tolerance in value and response time. This re-
duces the task of checking the completeness of the relation to that of checking the completeness of
the function-a procedure that is well-understood.

The use of formal mechanisms like predicates and finite state machines supports the ability to check
the controlled variable functions for completeness. The developer writes the states of the monitored
variables in terms of the states of finite state machines and conditions on the environmental variables.
Thus, he can appeal to the formal notion of a state machine to ensure that its definition is complete.
He can also check the conditions to see that he has defined a behavior for all boolean cases (their
union adds up to true). Then, if the function covers all the states and all such conditions, he knows
its domain is complete. If all possible values of the controlled variable are accounted for, the function
itself is complete. Similar techniques apply to the other relations.

Because the engineer knows what information must appear in each model, he can design a standard
form for its representation that makes it clear whether all needed information has been recorded. Each
form has particular characteristics that must be satisfied before a model expressed in that form is
complete. For example, the information model includes an ERA model. Such a model is incomplete
if an entity class exists without attributes. See Section 3.10 for the full list of completeness criteria.

Section 3 gives a more complete discussion of the specific techniques and method or representation
supporting those techniques (e.g., the use of tables). For instance, the use of a standard model allows
the developer to provide a standard view of the information in the model and standard templates for
representing such information. He can easily check these for missing information.

53.2 CONSISTENCY IN SPECIFICATIONS

A specification is consistent if it contains no internal contradictions. In other words, the specification is
not self-contradictory or ambiguous; there is no more than one behavior required for any given situation.
The method requirements dictate that CoRE will support the development of consistent specifications.
"Support" in this case implies two capabilities. During requirements analysis and specification, CoRE
should assist the analyst in writing consistent requirements. Second, the underlying model should have
a useful definition of consistency that permits a straightforward process for verifying consistency.

CoRE applies a two-part strategy. First, it uses formal models for which the notion of consistency is
well-defined. This allows the consistency of certain aspects of the specification to be demonstrated by
analysis. Second, it applies a set of principles that assist the analyst in developing consistent specifications
or the reader in assessing the consistency.

60



5. Technical Rationale and Progress

The ability to demonstrate consistency motivates, in part, the Consortium's choice to define the
behavioral requirements as a set of relations on environmental variables using predicates, state
machines, and functions to write the specifications:

"The use of predicates allows the appeal to boolean logic in developing consistent specifications
or checking for consistency. For instance, predicates define different states of interest as in:
"if x <y output a, if x > = y output b". Mutually exclusive predicates ensure the consistency
of such specifications; i.e., if one condition is true, the others must be false. Such analyses are
typically not difficult and are an exercise common to anyone who has programmed.

" The use of functions to specify the required values of controlled variables provides a formal
interpretation of consistency. By definition, a function maps each value in the domain to no
more than one value in the range. Thus, a well-formed function ensures the consistency of the
output specification.

" Similarly, the use of deterministic finite state machines supports consistency in the definition
of states and state transitions. For a deterministic state machine, a function again defines the
possible state transitions. For any given state/event pair, there is only one possible next state.
The developer can ensure that the state transitions specification is consistent by ensuring that
the state machine is well-formed in this regard. He can do this mechanically if the definitions
of events are consistent.

" These properties simplify the consistency checking of the controlled variable functions. The range
of these functions is defined in terms of the states of state machines (called modes) and conditions.
Since a finite state machine can be in only one state at a time, defining the function this way re-
duces the consistency check to ensuring that the conditions are exclusive and the same mode does
not correspond to two different outputs. Section 3 discusses this in more detail.

Specifications in which information about a particular requirement may be redundant or spread out
through the specification (as in typical in prose specifications) invite inconsistency. Over the course of
time, requirements will change. Where information is spread through the specification, it is likely that
some of the relevant parts are missing. Such specifications become increasingly inconsistent over time.

CoRE avoids such problems by applying the principles of nonredundant specification and separation of
concerns. The overall organization of the data model leads to specification in which there is exactly one
place to put or find a given piece of information. Further, the separation of concerns (implemented in
the object organization) localizes all of the information that is likely to change together in a single object.
As long as the object interface is not affected, all of the information that must change will be in the same
object. This makes it easy to find what must be changed and effect changes without introducing
inconsistencies.

A variety of other specific techniques are applied to assess consistency depending on the choice of meth-
ods of representation. For instance, the tabular representation of functions supports visual inspection to
determine some kinds of consistency. Section 3 discusses these issues in more detail.

5.3.3 SPECIFNG TIMING AND AccutAcy CONSTRAINTS

CoRE must manage timing and accuracy constraints for real-time systems. Developers can then
evaluate timing and accuracy constraints for feasibility and can remedy impossible or very difficult

61



5. Technical Rationale and Progress

constraints early in the development process. All of the relations-REQ, NAT, IN, and OUT-deal
with the behavior of physical things. All relations must take into account the variation from ideal
values (error) and delay inherent in all real systems.

Tolerance can have two slightly different meanings: it describes either the behavior that exists (i.e.,
NAT), or the behavior that must be satisfied (i.e., REQ). Tolerance refers to the variation and delay
that is acceptable kor the REQ relation the software must satisfy. This report refers to all requirements
constraining the allowed delay and variation as "timing and accuracy constraints."

'Timing constraints express offsets in the time parameter of the variables. Those offsets define the
amount of delay that is acceptable in the implementation, e.g., the allowed delay between the time
a button is pressed and the corresponding outputs are produced. The simplest delay would be a fixed
value. This method is also consistent with the complex behavior of delays associated with the real
world, such as device behavior.

Accuracy constraints describe the expected behavior of the environment and devices, NAT, IN, and
OUT They also describe the tolerable behavior of the system, REQ. In both cases, formal descriptions
of behavior introduce error terms and error functions. Expressing the controlled variables functions
allows end-to-end accuracy constraints to be expressed as an allowed tolerance in the values produced
by the function. Typically, this is easily expressed as an error term. The well-defined principles of error
and precision come from a formalization of behavior The calculus chosen to express behavior on the
variables should therefore support reasoning about error.

This method expresses behavior in terms of variables which are functions of time. This is ideal for
expressing timing constraints. Since each variable is a function of time, then the engineer can introduce
delay terms to accurately describe the time it takes for one variable to influence the values of other
variables.

53.4 TOOL SUPPORT

An important part of CoRE is its ability to exploit graphical editors and tools built to support other
methods. This satisfies the method requirement that the Consortium method exploit existing member
investment in CASE tools. Therefore, the Consortium is experimenting with the most commonly used
CASE tool (teamwork, according to the workshop results), to show its users how to extract the full
benefit from it when using CoRE. The Consortium will eventually provide more complete guidance
in using CoRE with teamwork so it can be used in a pilot project.

However, some features of CoRE, such as its underlying formal model, offer the opportunity to automate
aspects of the requirements analyst's job which have previously been unassisted. The Consortium is con-
structing a prototype tool intended to demonstrate such assistance. Ideally, this tool will serve both as
a prototype for pilot application and as the basis for a vendor alliance that will either develop such a tool
or add features to an existing tool (e.g., teamwork) so that CoRE will be supported directly.

5.3.4.1 The teamwork Tool

The Consortium has entered two models of the FLMS example into teamwork. One reflects the "ideal"
structure of the FLMS specification, independently of teamwork's methodological assumptions. The
other tries to maximize "cooperation" from teamwork, in the sense of arriving at a model which is clear
of offending messages, after applying standard error and syntax checks.

62



5. lTchnical Rationale and Progress

Both models were useful. Most of a model is readily stated within the assumptions of the CASE tool;
that is, the developer can readily phrase any specification created using the method in terms of a con-
text diagram, C-Specs, and other traditional components of Structured Analysis. Such a model shows
a slight loss of fidelity, but little that customers will care about.

For instance, one casualty is the font conventions used in the textual example. The teamwork tool does
not provide italic fonts in the presentation of its data directory, so predefined terms are not distin-
guishable from variable names. This aspect of the notation is of little interest to newcomers to the
method. Of more concern is the mapping from mode-tabular function descriptions: teamwork has
three forms of tables (state/event matrix, process activation table, and decision table), but none is an
exact match. However, omitting the syntax check on the state/event matrix allows at least an
appropriate cosmetic and the use of a generalized table editor to speed the entry process.

If the developer is willing to use the accepted conventions of a standard notation (such as the
Boeing-Hatley conventions), as the Consortium does in its "cooperative" model, then he may use the use-
ful input error detection which teamwork can apply based on the input conventions. In general, he can
enter all parts of CoRE's data model for subsequent retrieval. At this point, the Consortium would con-
clude that the attempt to cooperate with teamwork is more profitable than the attempt to fight with it.

A key part of the Consortium's development of CoRE was attention to creating a
representation-independent data structure. The reason for that attention was to ensure a reasonable fit
with existing CASE tools. Based on results, that effort was worthwhile. There is no reason to suspect that
either of the two paradigms for modeling with the CASE tool would preclude the use of existing extensions
for document generation (e.g., for compliance with DOD-STD-2167A). The real question is, how much
of the built-in error detection and syntax checking can be used, and how much must be bypassed.
The Consortium is currently exploring the limits with an eye to extending them.

5.3.4.2 Ideal Requirements Toolset

A conceptual prototype of an "ideal" requirements tool to accommodate CoRE is currently under
construction, on a Macintosh. It uses an underlying hypertext engine (Supercard) to support some of the
critical features of the approach. The Consortium chose the Macintosh/Supercard environment because
these facilities provide an excellent prototyping environment for trying and assessing tool features. Any
actual tool developed through vendor alliance would run on common member company platforms.

Of the requirements for a methodology which the Requirements Workshop emphasized, the prototype
most heavily focused on those which are not well met by available commercial products. The
Consortium's intention is that the user look at its prototype in conjunction with commercial tools for
lessons it teaches about what capabilities a mature CASE tool could and should contain.

Included novel features are:

" Requirements management facilities allow incorporation of pre-existing documentation into
the model, where it becomes accessible by hypertext mechanisms. Thus, the user gets
fine-grained access to details of the requirements database, while creating and editing the
model are actually simplified. Additionally, the user may present the entered requirements
with graphical or textual views, or both.

" Requirement objects may be reached by multiple paths. Consequently, multiple user-definable
views of system structure may be created. This allows the clearest possible communication

63



5. Technical Ralionale and Progress

between "producers and consumers" of the specification by allowing views designed for different
sets of needs and interests. Redundancy in the specification is not materially increased.

" Dictionaries may be associated with different paths of descent through the model. Thus,
definitions within an object may differ depending on the context in which the object is viewed.

" Models may be interpretable ("Executable requirements"). This is a consequence of the semantic
detailing extractable from the underlying formal model. This feature can provide considerable
dynamic diagnostic power, one use of which is to apply consistency checking against derived
requirements.

" Use of a representation-independent data structure, so that it is possible to map to diagram
types associated with presently-used methodologies (e.g., data flow diagram, state transition,
ERA) from the common data model. The prototype tool demonstrates this generative power.

" The tool allows user-defined graphic symbols ("visual macros").

5-3.5 VERIFICATION AND VALIDATION OF SPECI-ICATIONS

The requirements are the primary vehicle supporting verification and validation. Verification
comprises all activities directed toward ensuring that the implementation satisfies the stated require-
ments (does the job right). Validation is the task of ensuring that the software fulfills the intended
purpose (does the right job). Different methods vary in the the amount of support the resulting re-
quirements provides for these activities; e.g., the amount of detail provided, how easy the information
is to extract from the specification, or the ability to distinguish actual system requirements from inci-
dental behavior. The Consortium's approach, with its standard, formal model and emphasis on
observable behavior, provides for a systematic approach to both verification and validation.

5.3.5.1 Validation

Because validation inherently depends on subjective activities (i.e., the customer's perception that the
system described meets his expectations), there can be no strictly analytical process for validating re-
quirements. Typically, developers rely on a variety of techniques for summarizing and presenting the
expected behavicr in terms the customer will understand, such as scenarios, mock-ups, and proto-
types. A method supports such validation activities to the extent that it helps the developer determine
the complete, externally visible behavior in a straightforward and systematic fashion.

Although there is little empirical evidence to assess CoRE's support for validation, there are some key
features that directly support validation activities. First is the use of a rigorous model for describing exter-
nally visible behavior. The method explicitly identifies exactly those aspects of the external, visible environ-
ment affected by the system in the monitored and controlled variables. These variables (e.g., temperature,
pressure, position, velocity, etc.) are domain-specific and typically reflect the terms in which the customer
thinks about the problem. The required behavior of the system is then given as a set of piecewise-continu-
ous functions of these variables. That is, the functions directly express the relation between observable
changes in the system environment and the observable responses; e.g., the valve is closed when the temper-
ature exceeds 500 degrees. This allows the customer or developer to concentrate on the visible behavior
and explore it systematically without needing to understanid a lot of extraneous detail. This facilitates the
generation of accurate scenarios since the output functions make the behavior clear, particularly at points

64



5. Technical Rationale and Progres

of discontinuity. The customer can use the functions to quickly answer specific what-if questions.
Appendix A gives a more detailed walk-through of these activities, using an example spmificdtiun created
using CoRE as part of the guided tour of the example.

CoRE also facilitates prototyping and other activities based on simulating execution of the proposed
system. Since the specification is based on finite state machines and functions, the developer can step
the machine through sequences of events and systematically determine the resulting behavior. The
specification is not directly executable since the expected behavior is actually defined by a relation,
i.e., the specification gives the tolerance or allowed range of possible outputs. For instance, the require-
ments say that a weapon must be released within some acceptable window, say plus or minus 5 milli-
seconds of the pressing of the release button, or that a radar must be pointed to the required angle
plus or minus 0.01 degrees. Thus, the specification describes all acceptable implementations, not just
one. Prototyping the system from the requirements requires making some decision about the specific
behavior the prototype displays for each tolerance. Otherwise, CoRE describes the observable behav-
ior in a "machine-like" format; hence, the given specification need only be extended with such deci-
sions about the specific behavior.

5.3.5.2 Verification

All verification activities ultimately depend on associating a set of inputs with a set of outputs and
assessing the deviation from expected values. Testing remains the primary verification activity, al-
though the tester may use other activities, from walk-throughs to formal analysis. A specification is
verifiable to the extent that it facilitates such activities. In particular, it is important that the specifica-
tion resulting from CoRE serve as the "test-to" specification, allowing the developer to systematically
determine exactly the permissible range of outputs for a given input or input sequence.

Because verification is one of the most important downstream uses of the requirements, CoRE focuses
on producing a "test-to" specification. As discussed in Section 4, the REQ relation gives the externally
visible behavior in terms of the environmental variables monitored or controlled by the system. What
the developer additionally needs to make the specification testable is the precise specification of, on
one side, the system inputs and their relation to the monitored variables and, on the other, the system
outputs and their relation to the controlled variables. The In and OUT relations specify these com-
pletely and explicitly. The IN relation describes exactly what the system inputs are, down to the level
cf the command sequence for reading the registers and the unconverted bit strings received as neces-
sary (although the developer may also use a more abstract representation of input values if he does
not yet know or need of this level of detail). The IN relation defines how the input value corresponds
to a given monitored variable, e.g., which variable is being measured and with what accuracy and preci-
sion. The OUT relation provides similar information on the output side. This allows the tester to sys-
tematically extract all the values needed for testing. The tester can derive the observable behavior,
allowed tolerances, and points of discontinuity (e.g., maximum and minimum values in the input
range) from the REQ relations. He can then ascertain the exact inputs and outputs corresponding
to these values of the monitored variables from the corresponding IN and OUT relations. He can thus
systematically derive a complete set of test values and corresponding outputs with their acceptable
accuracy from the document. This systematic and rigorous approach offers the possibility of auto-
mated test case generation and links to formal verification methods in the future.



5. Technical Rationale and Progres

5.3.6 MAINTAINABIULTY AND EASE OF CHANGE

For many projects, the single greatest source of difficulty is changing requirements. This includes
changes during requirements analysis whether due to better understanding of the problem or the
whims of the customer, as well as changes originating in subsequent development phases whether for
system evolution, maintenance, or debugging. Regardless of the source, apparently minor changes in
requirements can potentially ripple not only through many parts of the requirements specification,
but throughout the products of all subsequent phases of development with increasingly deleterious
effect. Thus, managing such changes and limiting the effects is a key goal of CORE.

CoRE addresses the problem of changing requirements in five basic ways:

"Process. First, it develops an analysis process that gives forethought to which aspects of the
requirements are likely to change, and which are not, both in the short and long term. This
includes the use of domain or problem analysis in the early development phases (e.g., Ward's
CASE Real-Time Method for domain analysis), with explicit attention to capturing knowledge
about what is stable and what is volatile in the problem domain. These activities are outside
the scope of this report but will be addressed in subsequent detailed descriptions of the overall
process. (Ward 1989) provides a summary overview of some applicable techniques.

" The Semantic Model. The semantic model focuses on nonalgorithmic specification of the
externally visible behavior in terms of environmental variables. The environmental variables
of interest in a particular problem domain are generally more constant from one instance to
the next than subsequent (and dependent) decisions such as the choice of particular algo-
rithms. A given requirement specification in terms of environmental variables corresponds
to many possible designs and implementations and is correspondingly more stable for certain
classes of changes than a specification that relates inputs to outputs or expresses requirements
in algorithmic terms.

" Object Oriented Data Model. The Consortium chooses to specify requirements in terms of
objects. Objects provide a mechanism for encapsulating information likely to change and ab-
stracting from details. Just as objects to hide design decisions that are likely to change in the
system design, they can hide requirements details that are likely to change. The problem analy-
sis process explicitly identifies which requirements are stable and which are probably not, as
well as which requirements are likely to change together (e.g., all the attributes associated with
a target). The specification phase then encapsulates as many of the details that are likely to
change as possible inside objects. The object interfaces define aspects of the encapsulated
requirements that are not likely to change.

This approach differs from many of the current object-oriented analysis methods in that there
is no requirement that the objects correspond to distinct physical entities in the real world.
In this approach, the engineer chooses (creates) explicitly to hide information likely to change
and abstract from irrelevant detail. Clearly, objects chosen by these criteria will often corre-
spond to physical objects since physical objects tend to change as units, but this is not always
the case. For instance, the same hardware device may perform two or more tasks that are re-
lated only by the physical platform. Such a device might correspond to two or more objects.

* Mutable Representations. At the more detailed level, CoRE uses a set of techniques for
specifying requirements that make it easy to locate where particular changes must be made

66



5. Technical Rationale and Progress

and allow many kinds of changes to be made while affecting only a small part of the
specification. For instance, the use of state machines and function tables (treating tolerance
separately) simplifies many kinds of changes. Where the details of how the current state is
determined must change, these changes will be restricted to the state machine definitions. Or-
ganizing the functions as tables allows changes to the functions to be made row by row.
Subsequent sections discuss these issues in more detail.

Automation. While the developer can apply CoRE with little or no automation, the Consortium
explicitly designed it to benefit from tool support. The common underlying data model and rigor-
ous semantics provide a basis for tool-supported impact analysis, tracking, and dissemination
of changes. Such features are currently being developed in the tool prototype.

While no method can hope to deal effectively with every sort of unanticipated change, CoRE offers
a variety of methods to address those classes of changes that the Consortium can anticipate (while
providing a general robustness against unanticipated changes). This support runs from the early
phases of development in the modeling of the problem and analysis of likely changes, through the re-
quirements organization as information hiding objects, through the detailed specification techniques.

5.3.7 UNDERSTANDABILITY AND COMMUNICATION OF SPECIFICATIONS

The requirements specification necessarily serves a variety of purposes for a variety of users. It often
serves as the primary vehicle of communication between systems and software engineers. It is the de-
sign-to specification for implementors, the test-to specification for testers, the primary vehicle for
communicating between the developer and customer, and ultimately the basis of their contract. Ideal-
ly, the requirements specification should serve the needs of all these users equally. However, the ideal
is difficult to achieve since there is no generally agreed upon common language shared by all the inter-
ested parties. Furthermore, an organization of the information suitable for one purpose (e.g., as a
reference) will not be conducive to another (e.g., an overview of the system).

Though no single organization or presentation of requirements can hope to serve such a diverse
community of users equally, CoRE can do much to address the problem through a combination of
strategies.

"Use of Graphics and Text. By providing equivalent semantics in both a graphic and textual form,
the same information can serve more than one purpose. The graphic (information and data
model views) p.,resentation is useful during the more informal, initial phases of development
and provides a vehicle for quickly communicating relationships to systems components to sys-
tems and software staff. It also provides an easily learned language for communicating with
the customer. Even after the specification is complete, the graphic interface provides the
quickest way to get a grasp of the overall requirements organization and system purpose.

Because there is a textual equivalent, the same specification will also serve the needs of developers,
testers, and maintainers. Detailed requirements that cannot easily be expressed graphically are
given in textual form. This provides the reference capabilities needed by developers and
maintainers.

" Four Variable Model. Division of requirements into a set of relations based on environmental
variables helps separate concerns, allowing the needs of different users to be served. Generally

6 7



5. Tbchnical Rationale and Progress

the customer is interested in the visible effects of the system (what is it going to do for me?)
and not in the details of implementation (which inputs are used for what). This is exactly the
information that the REQ relation conveys. That is, the monitored and controlled variables
represent visible quantities with which the customer (or systems engineer) is familiar. Since
the REQ relation defines all the the visible behavior exclusively in terms of the monitored and
controlled variables, the customer (or others) can understand this part of the specification
without having to read a lot of extraneous detail (e.g., the IN and OUT relations). While more
formal and complete than scenarios can be, the REQ specification is written in much the same
terms.

"Relations. The detailed specifications are based on relations, functions, truth conditions, and
state machines. These have the advantage of both having strong formal bases and being famil-
iar to both hardware and software engineers through programming and basic math courses.
Such specifications also have the desirable property that they are easy to learn to read even
for those without the training to produce them.

" Common Data Model. Rather than offer a particular documentation format, CoRE is based
on a common schema for requirements information. Different projections of the underlying
data create different views of the requirements. This drives the equivalent graphic and textual
specification. The mechanism is intended to allow other views as well, so the views adapt to
the information needs of a particular class of users. One important case of this is the
generation of documentation conforming to MIL-STD-2167A.

A practical exploitation of multiple views requires tool support. This is one area where CoRE
has been developed with forethought about how automation will help address some problems
that paper documents cannot easily address. The Consortium's work in tool prototyping is
currently exploring issues in providing customized views of a requirements database created
using the common data model.

5.3.8 REDUNDANCY IN REQUIREMENTS

The use of redundancy in a requirements specification brings two goals into conflict. Redundant
information can support understanding and ease of use. For instance, it is useful to provide graphic sum-
maries of information that is given in detail textually. On the other hand, redundancy can lead to inconsis-
tencies. Where the same information appears in two or more places, the developer must ensure that the
information is consistent everywhere it appears. In many cases, a change made in one place will not be
reflected everywhere the information is redundant, so the specification becomes increasingly inconsistent
as the developer makes changes. This is particularly a problem where he uses prose in paper documenta-
tion and there is not a consistent, rigorous model for the specification semantics. The overhead of keeping
such documentation consistent is more than most projects can easily afford.

The Consortium attempts to get the benefits of redundancy with few of the drawbacks by using a
common, rigorous underlying model for the information structure and semantics of the requirements.
CoRE focuses on specifying the requirements information in a common, underlying information mod-
el called the requirements data model. Different representations of the requirements must be directly
related to this underlying model so that the transformation from one representation to another is well-
defined. In particular, CoRE defines the graphic representation and the textual representation so that
there are exactly equivalent representations in either where the semantics overlap. Thus, there is a

68



5. Technical Rationale and Progres

procedure for turning a graphic into a textual specification and vice versa. This allows the developer
to use the graphic form in sketching out ideas and exploring alternatives for the early phases of devel-
opment, or later to provide overviews of the system as is done in the example specification provided.
He can then directly translate the graphic view to a textual specification.

Fully exploidng these capabilities will require tool support. Where automation is available, the
developer can use data model to drive different views of the requirements, and he can automatically
reflect changes in view in the other views. The Consortium's work in tool prototyping is exploring
methods for implementing such capabilities.

5.3.9 FEsiiIuTf" OF REQUIREMENTS

The Consortium's approach to requirements differs from some other state-machine-based methods,
and particularly the work on "executable specifications" (e.g., [Zave and Schell 1986]) in that it focuses
exclusively on specifying required behavior. It treats the issue of whether the behavior required is, in
fact, feasible, as a distinct issue.

A set of requirements is feasible if there is at least one implementation that satisfies them. Clearly
it is important that the developer has feasible requirements if he is to develop any actual system. Thus,
demonstrating that requirements are feasible is a major part of risk reduction activities. Particularly
where the system must do new kinds of tasks, meet stringent timing constraints, or meet unprecedent-
ed levels of accuracy, it is important to ensure that some implementation satisfying the constraints
actually exists.

A variety of techniques can assess feasibility, including rapid prototyping and the use of executable
specifications. While the activity is necessary, its goals inherently conflict with other goals of the re-
quirements phase. In particular, it is generally in both the developer's and customer's best interest
to capture only the actual requirements, leaving the implementor as much freedom as possible to
choose the best implementation. Thus, a major focus in developing requirements methods has been
directed toward describing what the software does, leaving the description of "how" to the design and
coding phases. Since feasibility demonstrations inherently require that the "how" be specified, meth-
ods that focus on producing feasible specifications tend to unnecessarily constrain subsequent devel-
opment phases. Where these concerns are mixed together in a specification, the reader cannot tell
which part of the specification represents the actual system requirements and which part represents
arbitrary decisions made to support feasibility. The specification becomes substantially larger and
unnecessarily difficult to understand, use, or verify.

For these reasons, the Consortium's approach treats feasibility demonstration as an issue distinct
from requirements specification. In particular, the system values are given as relations (expressing
tolerance) rather than as functions, and the outputs are expressed in terms of monitored variables,
not the system inputs. Thus, the specification is not fully executable. To make the specification execut-
able requires adding information about how specific values are derived (i.e., how an aircraft's position
is calculated from accelerations of an inertial platform), and which values in the range of allowed toler-
ance are produced. This should be a simple extension of the current specification, but CoRE has not
yet directly addressed this. However, such demonstrations are a part of the CASE Real-Time Method.
so applicable methods for creating the necessary extensions exist.

6'J



5. Technical Rationale and Progress

This page intentionally left blank

70



6. CONCLUSIONS

To the extent that the Consortium has been able to validate CoRE with small examples, the approach
appears sound. The Consortium has achieved the initial technical goal of merging a strong, graph-
ic-based method with a formal, text-based method with the desired result of being able to exploit the
best features of each approach. The Consortium has successfully applied CoRE to a small, real-time
problem, with results that are consistent with the high-priority method requirements (see Section 5).
In particular:

"* CoRE provides suitable mechanisms for defining behavioral, timing, and accuracy requirements
for real-time embedded systems.

"* CoRE provides a variety of mechanisms to accommodate changing or fuzzy requirements.

" CoRE supports communication by allowing specification in problem-specific terminology,
behavioral modeling in terms of the problem domain, and the use of graphics.

" There is an underlying common data model that is document- and standard-independent but
appears mappable to DOD-STD-2167A.

"* The object-oriented approach supports separation of concerns, localization, and concurrent
development.

"* The underlying, standardized formal model supports nonalgorithmic specification and systematic
checking for completeness and consistency.

Since this is an interim report, a variety of needs remain to be addressed. These include specific
mechanisms to handle traceability, the extension to specification of command and control, and guidelines
for mapping CoRE and its products to specific standards. Of particular concern are issues of scale and
integration with the system requirements process. The work to date confirms the need to address at least
some aspects of the system requirements problem to fully address open issues in software requirements.

Work in the next development cycle will concentrate on the remaining member company needs. Work
in the remainder of this year will focus on completing the first cycle of tool prototyping and on arrang-
ing a suitable pilot application of the method in an IR&D effort. The pilot application and supporting
method development in 1992 will focus the remaining method requirements and provide more realistic
examples. The Consortium will address all of the critical issues necessary to a practicable method by
the end of 1992. It has scheduled a complete guidebook on the method for 1993.

71



6. Conclusions

This page intentionally left blank

72



APPENDIX A. FUEL-LEVEL MONITORING
SYSTEM INTRODUCTION AND GUIDED TOUR

A.1 INTRODUCTION TO THE FUEL-LEVEL MONITORING SYSTEM EXAMPLE

As a vehicle for exploring and validating the method during development, the Consortium applied it to
a small, real-time example. The result is a small requirements specification, the FLMS Specification, in
Appendix B. This example illustrates many of the features of CoRE including the use of both graphic
and textual specification, the organization by object, and the use of formal models. Section 3 discusses
the methods applied to develop the specification. Section 4 discusses the.notations and presentation tech-
niques used. This appendix provides a walk-through of the FLMS specification from the points of view
of different users. The walk-through serves as an introduction to using the specification and illustrates
how the specification would be read to answer the kinds of questions different users have.

While the example illustrates many of the issues addressed by CoRE, there are a few that are not.
In particular, the example does not deal with scale-up issues. Scale-up issues will be addressed in
future reports. It also does not address:

"• Nondiscrete feedback: All of the controlled environmental variables are discrete.

"* Creation and destruction of entities: All of the entities in the example are unconditionally
related to each other, which fails to deal with real-world examples such as target acquisition.

"° One-to-many relations: There are no instances in the example illustrating interesting object
relationships that are not one-to-one.

A.2 PROBLEM DESCRIPTION

The problem is a simplified version of a safety shutdown system that is part of a shipboard fuel-level
monitoring and control system. The overall system provides fuel to the engines and moves fuel between
the shipboard tanks to ensure a zonstant supply and help maintain trim. The safety shutdown system
is a separate component of the overall system that shuts down the fuel pumps under unsafe conditions
such as too low or too high a fuel level in a tank. The Consortium simplified the problem by allocating
a single tank and a pair of pumps to the software component specified (a similar system would monitor
the other tank/engine pairs). It also assumed a relatively simple method of measuring the fuel level
based on differential pressure in the tank; i.e., it did not address issues like extreme roll or pitch that
would complicate the measure of fuel level in a real shipboard system. The FLMS problem is based
on a similar problem (van Schouwen 1990). The prose description of the problem is as follows:

The design of a fuel control system typically comprises automatic and/or manual control mechanisms
(engine and fuel-level control) and safety monitoring devices. The safety monitoring devices include:

73



Appendix A. Fuel-Level Monitoring System Introduction and Guided Tour

fuel gauges and gauge cocks that convey the fuel level in the tank; fusible plugs or fuse alarms that alert
the operator when the fuel level is too low; fuel flow rate gauges and other gauges showing the engine
operating conditions. The FLMS is intended to replace and/or complement the above-mentioned de-
vices. It monitors and displays the fuel level in the tank, and provides visible and audible alarms for high
and low fuel levels. With the currently selected hardware configuration: fuel level is displayed in a win-
dow on a CRT display; two "annunciation" windows on the CRT provide visible indication of exceeded
fuel-level limits; and the computer's speaker provides the audible alarm.

In addition to annunciation windows and the alarm, the pumps are shut down under the following
conditions: (1) when the fuel level is too high, since an overly high fuel level can cause fuel-hammer,
leading to pipeline rupture; (2) when the fuel level is too low, since an overly low fuel level may result
in the engine running dry and being damaged; and (3) when the monitoring system itself fails as indicated
by its failure to reset a watchdog time-out mechanism. It is assumed that the shut-down mechanism is
relay operated. Hence, the FLMS outputs a single signal when the pumps are to be shut down.

The FLMS provides two push-buttons that are used for the following purposes: (1) the button labelled,
SELF TEST, allows the operator to check the FLMS's output hardware while the system is shut down;
and (2) the button labelled, RESET, allows the system to be brought nto normal operation, follow-
ing a shut-down or testing, as long as the fuel level is within a specitied range (van Schouwen 1990).

The Consortium's specification covers only the software (not system) behavior. One consequence is
that the Consortium does not directly address some issues of hardware failure (thus, van Shouwen's
mode class Failure and its submodes are not present in the FLMS problem). The behavior of the
FLMS is not specified for system failure.

A.3 A GUIDED TOUR OF THE EXAMPLE

The method requirements state that the specifications developed by CoRE must be suitable for a
variety of users. The requirements serve as the basis for interacting with the customer, they provide
the design-to specification for the software developers, and they are the test-to specification for those
verifying the implementation. Each such group approaches the specification with a slightly different
set of questions that the specification must answer. This guided tour illustrates how different users
might exploit the organization of the specification to answer their questions. In doing so, it also
illustrates how the specifications should to be read.

The software requirements specification of the FLMS is organized in a form that facilitates its use
as a reference. However, it-can be also used to obtain an overview of and an introduction to the soft-
ware requirements. This specification assumes there is also a system specification, so it does not pro-
vide a complete introduction to the domain in which software is to be applied. It is organized as a
reference document on the software requirements for software designers, implementors, and testers
who need precise answers to specific questions. It is the definitive set of software requirements and
will be used to validate the software.

To demonstrate how it can be used effectively by different audiences, this section contains three guided
tours:

" Section A.3.1 is a tour for readers for whom this is their first exposure to CoRE and who wish
to obtain an overall understanding of the FLMS and of the Consortium's approach to
requirements specification.

" Section A.3.2 is an example of how a software designer could quickly reference the
specification to obtain information (i.e., answer specific requirements questions).

74



Appendix A. Fuel-Level Monitoring System Introduction and Guided Ibur

Section A.3.3 is an example of how a tester performing requirements validation might use the
specification.

A.3.1 TOUR FOR OVERALL UNDERSTANDING

The suggested reading sequence should take no more than 30 minutes and will provide familiarization
with both the method notation and the document organization. The tour is presented as a sequence
of steps. The discussion does not include the system-level views that are expected to be available for
reference. These would provide more context information than is given in a software specification.
For instance, the reader would look first at a system-level information view such as that given in Figure
8 (page 44) to understand how the software entities relate to the rest of the system before examining
the software specification itself. The following discussion will concentrate on the understanding of
the software specification:

* Step 1: Read the system purpose (Section B. 1.1, page 81) and study the figures. This gives an
informal, prose overview of what the software is to accomplish.

a Step 2: Study the context diagram, Figure 15 (page 83). This diagram illustrates the external
interfaces of the software and the entities in its environment (i.e., the system context) with
which the software interacts in terms of -the environmental variables. It graphically portrays
the environmental variables monitored or controlled by the system, of which the software is
a part. The environmental variables represent physical quantities in the real world with which
the system interacts. The diagram shows monitored variables as arrows to the FLMS and con-
trolled variables as arrows leaving the FLMS. The software specification will be written in
terms of these environmental variables.

Read the definitions of the monitored variables. These describe the information used by the
system. Find these definitions by looking up the variable names in the index for monitored state
variables (Section B.11.1). The bold index entry gives the page where the variable is defined.

The variable definition provides all the information needed to understand how the variable is
related to the environmental quantity the software needs information about and how that quantity
is represented. The variable definition gives its type and its physical interpretation, i.e., exactly
how the variable corresponds to an environmental quantity. For instance, it gives the definition
of FuelLevel in terms of a length corresponding to the level of the fuel in the tank along the vertical
axis at a certain point (assuming the tank is level and still). The corresponding NAT relation will
give any constraints on the variable behavior, e.g., the maximum rate of change of the fuel level
in the tank. This is usually more detail than is needed in a first reading.

Similarly, look up each of the controlled variables of interest using the index for controlled
state variables (Section B.11.2). These definitions describe exactly what the software affects
in the environment.

Step 3: Study the software information view. The information view (Figure 16, page 84) gives
the overall organization of the requirements. The information view presents the static view
of the requirements data captured in the specification.

Look at the objects in the information view and their relations. Each object corresponds to
a distinct subsection of the requirements specification. The information view presents global

7S



Appendix A. Fuel-Level Monitoring System Introduction and Guided Tour

information about how these objects depend on one another. The numbers on the relation lines
show the required relative cardinality, in this case, one-to-one for all of the objects. More com-
plex problems might require multiple instances of an object for each instance of another (pis-
tons to engine block) or a varying number (threats to aircraft). In the case of the FLMS, there
is only one tank to be monitored, but if there were to be multiple tanks, the line from monitors
to the Fuel in Tank Interface would be annotated 1:5 if five tanks were to be controlled. The
information view also shows class structuring (the "is a" relation) as is illustrated in Section 4.

Each block in the diagram corresponding to an object shows the object attributes. The attributes
represent the public information available on the object interface, i.e., requirements defined in
the object that can be used in the definitions of other objects. The attribute definitions can be
read now or after Step 4. Read the attribute definitions to get a top-level view of the requirements
in terms of the abstracted values provided by each object. These definitions may be found by
looking up each attribute name in the index for interface terms (Section B.11.4).

Step 4: Study the Transformation View, Figure 17 (page 85). The transformation view presents
an expansion of the software bubble (label,-d FLMS) in the system context diagram. It repre-
sents the dynamic structure of the requirements by showing what interface information is used
by which objects in the system. In particular, it gives an. overview of how the state machines'
(e.g., in the InOperation control bubble) drives the controlled variable functions. It also shows
the requirements objects which determine the values of the controlled variables. For instance,
since the value of each controlled variable is set by a single function, the definition of the
Operator Interface object should contain four functions.

The InOperation object represents the In Operation mode class. An arrow from it to an object
indicates that the value of the functions included in the object definition depends on the mode class.
In this example all of the functions depend on the single mode class, although in more complex prob-
lems some functions will depend on more than one mode class. An arrow without a source to an object
indicates that one or more functions included in the object definition depend on the value of the
monitored variable that labels the arrow.

Step 5: Scan the object definitions to understand what requirements information is captured
in the object definitions (or some subset of interest). Find the object definitions by looking
up each object, by name, in the index. Each object description has three major sections:

- Interface. The interface section provides information about the object that can be used
in other parts of the requirements specification. It specifies precisely what the writers
of other object definitions can assume will not tend to change about the object. The
interface sections provide information in the following categories: interface terms,
monitored variables, events, and modes. The interface section does not contain con-
trolled variables, since the information about how the system determines and sets a
controlled variables value is always local to one object description.

- Encapsulated Information. The engineer can change encapsulated information about
an object without affecting other sections of the requirements specification. By care-
fully deciding what information should appear in the interface section versus the en-
capsulated information, the engineer makes it feasible for users to quickly determine
the impact of requirements changes.

76



Appendix A. Fuel-Level Monitoring System Introduction and Guided Tour

The encapsulated information includes local terms and controlled variables output
functions. The controlled variables functions, in particular, should be scanned to un-
derstand what outputs the system must to produce in response to environmental
changes. This is the heart of the REQ specification.

- Input and output. The input and output section is also part of the encapsulated
information. It describes the input and output data items in the IN and OUT relations.
Objects encapsulate this information since the engineer writes the remainder of the
specification only in terms of the information on the object interfaces (monitored and
controlled variables, and terms written as functions of these variables).

For example, examine the Pump Interface object which defines the function that sets the values
of Shutdown and disables PumpSwitch. The definition of the function must give the value of
PumpSwitch under all possible conditions. The controlled variable definition specifies that
PumpSwitch has only two enumerated values, open and closed. Similarly, Shutdown is either
true or false. The NAT relations shows that the hardware constrains the current state of Pump-
Switch depending on the values of Shutdown, WDTimer, and ResetSwitch. In other words,
the software does not control the value of PumpSwitch directly, but enables it or disables it
by rontrolling the value of Shutdown (in this object) or the value of WDTimer (the Watchdog
Interface object). In particular, the table specifies that PumpSwitch can only be closed (so the
pump is running) if the reset switch is not currently pressed, the watchdog timer has not timed
out, and Shutdown has the value false.

Section B.6.2.4 give. the actual software requirements. Here the function table shows what
values that the variable Shutdown must have in each of the operating modes. For instance,
Shutdown must be true (hence the pump will be disabled) in either Standby or Test mode. The
tolerance specification shows that a delay of no more than 50 milliseconds is permitted in the
implementation.

Finally,the output data items specify the hardware resources available. This specification
shows what value must be assigned to the output i igister to change the value of Shutdown
and, consequently, the pump switch.

Step 6: Review the operating modes diagram, Figure 18 (page 86). The behavior of the software
is specified in terms of the operating modes, which are: Operating, Shutdown, Test, and Stand-
by. The events that cause a transition between modes are as encapsulated information in the
InOperation object.

To learn the basics of the notation for describing events, step through the definition of the event
that causes a transition from the Standby mode to the Operating mode:

InOp2 = @T(Reset) WHEN [InsideHysRange]

Sinc- InsideHysRange is an attribute of the Fuel In Tank Interface object, its definition is part
of the description of the interface of this object. Alternatively the index for the interface terms
(Section B.11.4) could have been examined. This term is a BOOLEAN that indicates whether
the fuel level is between the high and low limits. The transition to the Operating mode requires
the fuel level to be within these limits.

77



Appendix A. Fuel-Level Monitoring System Introduction and Guided Tour

To determine the meaning of the term Reset, look in the definition of the Operator Interface object,
of which it is an attribute. The object interface specification, Reset, is defined as an event. To ana-
lyze the boolean condition DURATION(ResetSwitch = pressed) > = ReseiDetected, note the at-
tribute definition of ResetSwitch. ResetSwitch has the pressed value when the push button labeled
RESET is held down; otherwise, it has a value of released. The boolean condition is true when
RESET is pushed for more than the time period denoted by ResetDetected; i.e., the event occurs
at the end of any interval in which RESET has been pushed and held down for three seconds.
The event corresponding to a system reset is public information. The details of how a reset is
actually detected are encapsulated by the object and can change without affecting the specifica-
tion of other objects. In summary, the transition from the Standby mode to the Operating mode
occurs if RESET is pushed for a specified time period when the fuel level is between the high
and low limits.

Work through the other event definitions since the modes of operation, and the conditions
under which the mode changes, are important to understanding the required behavior of the
software. The operating modes in Figure 18 (page 86) comprise the mode class InOperation.
Many problems will have multiple mode classes to represent complex state behavior, although
this problem has only one.

A.3.2 Tour for the Software Designer

The specification is organized to facilitate rapid reference for designers seeking to answer specific
questions about required behavior. Assume the function that sets the value of the controlled variable
PumpSwitch is to be designed. Some of the questions that might be asked are:

How is the value of PumpSwitch controlled?

How are the relevant modes determined for the portion of software being designed?

How is the allowable timing for setting PumpSwitch determined?

" Step 1. Get an overview of the required behavior of the software relative to PumpSwitch
through the graphic system overviews showing which object is associated with the controlled
variable, or through the index for controlled state variables (Section B.11.2). Either will identify
the definition of the PumpSwitch Interface object.

" Step 2. Study the definitions of the controlled variables to understand what environmental
quantity the variable models. The controlled variable definitions define the PumpSwitch vari-
able and describe its relation to the physical switch. The definition gives the value of Pump-
Switch under all possible conditions. The controlled variable definition specifies that
PumpSwitch has only two enumerated values, open and closed. Open corresponds to the
pumps being shut down.

Once the physical interpretation of the variable is clear, study the NAT relation to understand
the physical constraints on the variable imposed by the environment. In this case, the NAT
relation shows that the software does not control the value of PumpSwitch directly, but con-
strains its changes in value through the variable Shutdown. In particular, the NAT relation
shows that the hardware constrains the current state of PumpSwitch depending on the values
of Shutdown, WDTimer, and the ResetSwitch. The NAT table specifies that PumpSwitch can

78



Appendix A. Fuel-Level Monitoring System Introduction and Guided Tour

only be closed (so the pump is running) if the RESET is not currently pressed, the watchdog
system has not timed out, and Shutdown has the value false.

Step 3. Read Section B.6.2.4 to understand the externally visible behavior that the software must
implement. Here the controlled variable function is given in the form of a table relating the current
modes and other state information (if any) to the required value of Shutdown. For instance,
Shutdown must be true (hence the pump will be disabled) in either Standby or Test mode.

The function table is supplemented with information giving the allowed tolerance in the accuracy and
timing of the implementation. For instance, the tolerance shows that a delay of no more than 50 milli-
seconds is permitted in the running code from the change in mode to the setting of Shutdown.
Similarly, a nondiscrete output would also show a required level of accuracy.

"Step 4. Use the mode names and terms in the function table to find exactly what conditions
result in which behaviors (i.e., what conditions the implementation must test for). The
left-hand column of the table gives all the relevant modes. These can be used to look up any
needed information about the modes (through the index for modes [Section B.11.31). Where
the output is a function of additional conditions, these will either be locally defined, or im-
ported from another object. Where they are imported, the corresponding term can be looked
up in the Interface Terms and traced to the defining object. The defining object will specify
the meaning of the condition, give the definition of the monitored variables that determine
the value of the condition, and specify how those values are derived from the hardware input
devices. Such traces can be carried into the design decomposition as well.

"Step 5. Finally, to understand exactly how the software sets the value of Shutdown, find the
OUT relation on Shutdown. It shows the device behavior corresponding to software outputs.
For instance, the assignment of the value "operate" (1 on bit one of Port C) sets Shutdown
to false and "shutdown" (0 on bit one of Port C) sets Shutdown to true. Any loss of precision
between the device and controlled variable is also shown here so the implementor can verify
that the tolerance requirements are satisfied.

These steps provide all the information relevant to setting the PumpSwitch value while also giving the
software designer a detailed understanding of how the software interacts with the hardware to manip-
ulate the actual switch. Irrelevant portions of the document do not have to be studied; all of the
required information is quickly available through the indexes.

A.3.3 Tour for the Software Tester

The software tester will use much of the same information as the software designer but will want to
access it in a different order. This tour assumes the reader has already done the previous two tours,
and material presented in them is summarized here.

Assume that the job is to test the code that manipulates the pump switch. Test scenarios and test data
need to be generated:

Step 1. Review the definition of PumpSwitch and Shutdown, the NAT relations, and the
Required Behavior section (B.6.2.4) of the Pump Interface Object. This shows how the value
of Shutdown affects the value of PumpSwitch and how the modes of operation, in turn, affect
the value of Shutdown. Scerarios can be constructed showing that the value of Shutdown (in

79



Appendix A. Fuel-Level Monitoring System introduction and Guided Tbur

a valid implementation) will change on transitions from modes Operating or Shutdown to
modes Standby or Test and vice versa. Corresponding changes will occur in the PumpSwitch
as specified by the NAT relation. The scenarios suggest a sequence of tests at the points of
discontinuity corresponding to the mode transitions.

"Step 2. Find the definition of the InOperation mode class (through the index). This shows the
operating modes and gives the conditions under which transitions occur between the modes.
Since PumpSwitch is not included in the interface of the Pump Interface object, it cannot
change the mode.

" Step 3. Review the OUT relation to determine the virtual events related to PumpSwitch for which
tests must be prepared. This shows exactly what values must be generated (to the hardware or
equivalent stubs) during unit and other testing corresponding to the values of the controlled
variables.

80



APPENDIX B. FUEL-LEVEL MONITORING
SYSTEM SPECIFICATION

B.1 INTRODUCTION

B.1.1 PURPOSE OF THE FUEL-LEVEL MONITORING SYSTEM

The purpose of the FLMS is to:

1. Stop the pumps that pump fuel into and out of the tank when the fuel level is either toO high
or too low.

2. Provide information about fuel level.

3. Regularly notify the Watchdog system of nominal behavior.

Pum p P m

•Fuel

30.4cm 3 .0cm tn

"4 .. .... "to engine

Figure 14. Fuel-Level Monitc~ring System: Pump and Tank Configuration (Front View)

81



Appendix B. Fuel-Level Monitoring System Specification

B.1.2 NOTATION

This specification adopts the following notational conventions:

" VariableName. It uses initial capitals with interspersed capitals alid lower case to indicate
variable names. The variables may be monitored or controlled variables or input or output
data items. Examples are FuelLevel and CursorRow.

"* TechnicalTerm. It uses italicized initial capitals with interspersed capitals and lower case to
indicate technical terms. Examples are LowerCalibrationBound and Offset.

"* value. It uses all lower case to represent the values of enumerated variables. Examples are on
and off.

"* METHODTERM. It uses all capitals to represent method-defined terms. Examples are
INMODE and DURATION.

82



Appendix B. Fud-LUwel Monitoring System Specifcation

B.2 SYSTEM CONTEXT DIAGRAM

Figure 15 illustrates the context of the FLMS. The bubble represents the FLMS system. Inputs to
the FLMS are the monitored variables. Outputs are the controlled variables.

Watchdog

WDTimer

Tank Monitoring Pump

System

AudibleAlarm LevelDisplay

•--• Operator

Figure 15. Fuel-Level Monitoring System: Context Diagram

83



Appendix B. Fuel-Level Monitoring System Specification

B.3 FUEL-LEVEL MONITORING SYSTEM INFORMATION VIEW

Figure 16 illustrates the information view of the software. The boxes denote objects. The attributes
are requirements information available to other object definitions in the requirements. Cardinality
of the relations is shown on the relation links.

Operator Interface Wtho nefc

Self Test

1:1

Soperatesatces

1::1

InOperation Fuel In Tank Interface

monitor FuelLevel~ange

InsideHysRange

1:1

< Cont 
rols
1:1

Pump Interface

Figure 16. Fuel-Level Monitoring System: Information View

84



Appendix B. Fuel-Level Monitoring System Specification

B.4 FUEL-LEVEL MONITORING SYSTEM TRANSFORMATION VIEW

Figure 17 illustrates the transformation view of the software. It is the detail view of the FLMS bubble
in Figure 15. Arcs entering the diagram from outside represent monitored variables, and arcs leaving
the diagram represent the controlled variables. There is an internal arc where an object uses require-
ments information defined on the interface of another object. These show up in the information view
(Figure 16) as object attributes.

SeliTestSwitch esetSwitch FuelLevel

AudibleAlarmi

HighAlarm Operator Wtchdog WDTimer

LowAlarm Interface

LevelDisplay
\ Reset\

\ \ \

InOperation

FuelLevdRange

InsideHysRange

SShutdown Pum

IntefaceFuel In Tank
Interface

ResetSwitch FuelLevel

Figure 17. Fuel-Level Monitoring System: Transformation Diagram

85



Appendix B. Fuel-Level Monitoring System Specification

B.5 INOPERATION OBJECT

B.5.1 INTERFACE

The interface of the InOperation Object consists of four system modes, allowed transitions among
them (but not the events that trigger the transitions), and several terms.

B.5.1.1 Modes

SOperating Shutdown

Sln~p # \

Test Standby

Figure 18. Fuel-Level Monitoring System: InOperation Modes

B.5.1.2 Terms

ShutdownLockTime :TIME:
= 0.2 s
(0 < ShutdownLockTime < 0.2 s)

TestTime :TIME:
= DURATION (INMODE (Test))

B.5.2 ENCAPSULATED INFORMATION

B.S.2.1 Events

InOpI = @T(InsideHysRange) WHEN
(DURATION (INMODE (Shutdown)) < ShutdownLockTime)

86



Appendix D. Fuel-Level Monitoring System Specification

InOp2 = @T(Reset) WHEN (InsideHysRange)

InShut = @F(FuelLevelRange = WithinLimits)

InStndl = @T(DURATION (INMODE (Shutdown)) > =ShutdownLockTime)

InStnd2 = @T(DURATION (INMODE (Test)) =14s)

In Test = @T(Self Test)

87



Appendix B. Fuel-Level Monitoring Systcm Specification

B.6 PUMP INTERFACE OBJECT

B.6.1 INTERFACE

There is no externally usable information provided by this object.

B.6.2 ENCAPSULATED INFORMATION

B.6.2.1 Controlled Variables

Name TypeNalues Interpretation

Shutdown :Boolean:

true PumpSwitch = open

false PumpSwitch in {open, close)

PumpSwitch :ENUMERATED: •

closed The contacts for switches for fuel pumps are closed, pumps running.

open The contacts for switches for fuel pumps are open, pumps off.

B.6.2.2 Terms

SwitchDelay TIME: = 0.12 s

B.6.2.3 NAT Relation

Table 10. Behavior of PumpSwitch

Condition Behavior

Shutdown = false and WDTimer > 0 and ResetSwitch - released PumpSwitch = closed

Shutdown - true or WDTirner - 0 or ResetSwitch -pressed PumpSwitch = open

88



Appendix B. Fuel-Level Monitoring System Specification

B.6.2.4 Required Behavior

Table 11. Behavior of Shutdown

Mode Condition

Operating INMODE X

Shutdown INMODE X

Standby X INMODE

Test X INMODE

Shutdown " false true

Tolerance Delay: 0.05 s
Error: Not applicable

B.6.2.5 Output Data Items

Shutdown Signal

Acronym: ShutdownDevice

Hardware: Pump Shutdown Relay

Characteristics of Values:
Value Encodings: operate (1b)

shutdown (0b)

Data Transfer: PortC

Data Representation: Bit 1 of byte

B.6.2.6 OUT Relation

Thble 12. Relations on Shutdown

Event Act.-,q

@T(ShutdownDevice -- shutdown) Shutdown = true

-@T(ShutdownDevice = operate) Shutdown =false

Tolerance Delay: SwitchDelay
Error: Not applicable

89



Appendix B. Fuel-I.evel Monitoring System Specification

B.7 WATCHDOG INTERFACE OBJECT

B.7.1 INTERFACE

There is no externally usable information provided by this object.

B.7.2 ENCAPSULATED INFORMATION

B.7.2.1 Controlled Variables

Name TypetValues Interpretation

WDTimer :TIME:

00..MaxWDTi-me :TIME: Tine, in seconds (s) until the Watchdog system assumes the
FLMS has failed.

MaxWDTime JTIME:

= 0.9999 s

Timer Delay :TIME:

B.7.2.2 NAT Relation

WDTimer. The Watchdog Timer is a decreasing function of time and counts down to 0 in MaxWDTime
seconds. Its value is 0 when more than MaxWDTime seconds pass since the timer was set.

LastPulseTime (t) = MAX {t,: t < t AND WDTimer (t,) = MaxWDTime}

Condition Behavior

t - to WDTimer (t) = MaxWDTime

t > to WDTimer (t) MAX {0, LastPutseTime (t) + MaxWDTime - t}

B.7.2.3 Required Behavior

WDTimer. The timer should never be allowed to drop to 0.

Table 13. Behavior of WDThmer

Mode Behavior

Any INMODE

WDTirer > 0

Tolerance Delay: 0.05 s
Error: Not applicable

90



Appendix B. Fuel-Level Monitoring System Specification

B.7.2.4 Output Data Item

Computer Endurance Signal

Acronym DogCmd

Hardware: Watchdog Timer

Characteristics of Values:
Value Encoding pulsedog (41h)

Data Transfer: PORT (339h)

Data Representation: 8-bit unsigned integer

B.7.2.5 OUT Relation

'Tble 14. Relations on WDTumer

Event WDTimer =

Watchdog.Pulse MaxWD Time

Tolerance Delay: TimerDelay
Error: Not applicable

91



Appendix B. Fuel-Level Monitoring System Specification

B.8 FUEL IN TANK INTERFACE OBJECT

B.S.1 INTERFACE

The interface of the Fuel in Tank Interface Object consists of the monitored variable FuelLevel, the
part of NAT that constrains the value of FuelLevel, and several terms that are defined on FuelLevel.

B.8.1.1 Monitored Variables

Name 71pel~alues Interpretation

FuelL-evel :LENGTH:

0.O..30.0 Level of fuel in the tank, in centimeters (cm), along the vertical axis
on the left side of the tank, 5 cm from the front edge. Tle level is
measured with respect to the scale. Figure 14 illustrates the pump
and tank configuration.

B.8.1.2 NAT Relation

FuelLevel.

Id (FuelLevel (t)) / dt I•MaxLeve/Rate
0.0 cm :: FuelLevel :5 30.0 cm

B.8.1.3 Terms

HighFuelLimit :LENGTH:
= 26.0 cm.

(HighhuelLimit > LowFuelLimit)

InsideHysRange :BOOLEAN:
= [(LowFuelLimit + Hysteresis < FuelLevel < (HighFuelLimit

- Hysteres is)]I

Levelffigh :BOOLEAN:
= FuelLevel > = HighFuel~imit

Leve/Low :BOOLEAN:
= FuelLevel < = LowFuel~imit

LowFue[Limit :LENGTH:
= 14.0 cm

(LowFuelLimit < HighFuelLimit)

FuelLeveiRange :ENUMERATED: LevelLow, WithinLimits, LevelHigh

WithinLimits :BOOLEAN:

-LowFuelLimit < FuelLevel < HighFuelLimit

92



Appendix B. Fuel-Level Moniloring System Specification

B.8.2 ENCAPSULATED INFORMATION

B.8.2.1 Terms

Hysteresis :LENGTH:
= 0.5 cm
(0 < Hysteresis < (HighFuelLimit - LowFuelLimit))

ki :LENGTH:
= 0.01891 x (UpperCalibrationBound - LowerCalibrationBound) cm

k2 :LENGTH:
= Delay x MaxLevelRate

LowerCalibrationBound :LENGTH:
- 13.0 cm
(LowerCalibrationBound < LowFuelLimit)

MaxLevelRate :LENGTH/TIME:
= 0.375.cm/s

Offset :LENGTH:
= -0.01902 x (UpperCalibrationBound -

LowerCalibrationBound) + LowerCalibrationBound cm

Scale :LENGTH:
- 1.03803 x (UpperCalibrationBound - LowerCalibrationBound)
cm

UpperCalibrationBound :LENGTH:
= 27.0 cm
(UpperCalibrationBound > HighFuelLimit)

B.8.2.2 Input Data Item

Differential Pressure.

AcronWm: DiffPress

Hardware: Differential Pressure Unit

Characteristics of Values:

VXalues DiffPress e [0, 255]

Dat 1nsfeL ADC (0)

Data Representation: 8-bit unsigned integer

NOTE: The differential pressure unit is calibrated with respect to the scale on the tank (Figure 14).

93



Appendix B. Fuel-Level Monitoring System Specification

B.8.2.3 IN Relation

'Tble 15. Relations Between FuelLevel and DiffPress

Condition DiffPress =

LowerCalibrationBound <_ FuelLevel < UpperCalibrationBound ((FuelLevel - Offset) / Scale) x 255

FuelLevel < LowerCalibrationBound 0

FuelLevel > UpperCalibrationBound 255

Device failure 0

Tolerance Delay: 0.2 s
Error: k1 + k2

94



Appendix B. Fuel-L-evei Monitoring System Specification

B.9 OPERATOR INTERFACE OBJECT

B.9.1 INTERFACE

The interface of the Operator Interface Object consists of the monitored variables ResetSwitch and
Self~estSwitch and of events defined on them.

B.9.1.1 Monitored Variables

Name Type/Values Interpretation

ResetSwitch :ENUMERATED:

pressed The pushbutton labeled RESET is pressed.

released The pushbutton labeled RESET is not pressed.

B.9.1.2 Events

Reset :EVENT: @T(DURATION(ResetSwitch = pressed) > = ResetDetected)

Self Test :EVENT, @T(DURATION(SelfTestSwitch = pressed) > = SelftestDetected)

95



Appendix B. Fuel-Level Monitoring System Specification

B.9.2 ENCAPSULATED INFORMATION

Figure 19 illustrates the detail breakdown of the Operator Object. There is one bubble for each
controlled variable function encapsulated by the Operator Object.

FuelLevel Ran ge ihlrY mhl

Fuel~Function

FuelLe yeiRange L w l r o ~ a r

FuelLeveiRange

Figure 19. Operator Interface Object Transition Diagram

B.9.2.1 Monitored Variables

Name 'llypeIValues Interpretation

Self ThstSwitch :ENUMERATED:

pressed The pushbutton labeled SLFTST is pressed.

released The pushbutton labeled SLFTST is not pressed.

96



Appendix B. Fuel-Level Monitoring System Specification

B.9.2.2 Controlled Variables

Name Type/Values Interpretation

AudibleAlarm :ALARM:

sound The audible alarm is sounding.

silent The audible alarm is silent.

HighAlarm :ALARM:

on The alarm labeled FUEL LEVEL HIGH is on.

off The alarm labeled FUEL LEVEL HIGH is off.

LowAlarm :ALARM:

on The alarm labeled FUEL LEVEL LOW is on.

off The alarm labeled FUEL LEVEL LOW is off.

LevelDisplay :LENGTH:

0.00..99.9 The value conveyed by the display labeled FUEL LEVEL.

B.9.2.3 Terms

AlarmDelay :TIME:

ButtonDelay TIME:

Digit(x, k) :CHARACTER:{x mod 10+1 if x 0

Digit(x,k) = l x
space 10 0

HighlarmCol INTEGER:
=9

High4larmRow :INTEGER:
= 17

LevelDisplayRow :INTEGER:
=6

LevelDisplayDigit(i) :INTEGER:
20 if i = 0

LevelDisplayDigit(i) = 18 ifi = 1
17 ifi - 2
16 ifi = 3

97



Appendix B. Fuel-Level Monitoring System Specification

LowAlarmCol :INTEGER:
- 29

LowAlarmRow :INTEGER:
= 17

MaxCol :INTEGER:
= 39

MaxRow :INTEGER:
- 24

MinCol :INTEGER:
= 0

MinRow :INTEGER:
=0

P3 :LENGTH:
= 0.1 cm

ResetDetected MTIME:
= 3s

SelftestDetected :TIME:
= 0.5 s

SetDigit(x, i) :EVENT'
= @T(Character = Digit(x, i)) WHEN CursorRow =
LevelDisplayRow AND CursorCol = LevelDisplayDigit(i)

B.9.2.4 Required Behavior

Alarm AlarmName state. The three alarms AudibleAlarm, HighAlarm, and LowAlarm are specified
as instances of the class AlarmName. Table 16 specifies the behavior of the class. Table 17 specifies
the definitions of the variables for instantiating each of the alarms.

Initia Yakc: (AlarmName = InitialValue ), Systemlnit

98



Appendix B. Fuel-Level Monitoring System Specification

1Tble 16. Behavior of AlarmName

Mode Tiggering Event

Operating @F (LimitsOK) @T (ENTER) WHEN LimitsOK

Shutdown @F (LimitsOK) X

Standby X X

Test @T (Test Time > StartAlarmThrne) @T (TestrTae > EndAlarmTime)

AlarmName = AlarmOn AlarmOff

Tolerance Delay: ShutdownLockTime / 2 - 0.001 s
Error: Not applicable

"IAble 17. Instance Alarm Definitions

Variable Name Instances

AlarmName AudibleAlarm HighAlarm LowAlarm

Initial Value AlarmOff AlarmOn AlarmOn

LimitsOK FuelLevelRange = NOT FuelfvelRange NOT FuelLevelRange

WithinLimits LevelHigh LevelLow

StartAlarnTime 0 s 0 s 2s

EndAlarmTime 4s 2s 4 s

AlanmOn sound on on

AlarmOff silent off off

LevelDisplay.

UIble 18. Behavior of LevelDisplay

Mode Condition

Operating oR always
Shutdown oR

Standby

Test 0 r Time-to < 4 4 s Time- to < 14 14 5 Time-to

LevelDisplay = Round(WaterLevel, - LOG(P3)) 0.0 [Time- tol x 11.1 0.0

Tolerance Delay: 0.5 s
Error: 0.5 cm

99



Appendix B. Fuel-Level Monitoring System Specification

B.9.2.5 Input Data Items

Reset.

Acronym: ResetDevice

Hardware* FLMS Push-button Array

Characteristics of Values: Valuesm on (1b)
off (0b)

Data Transfer: PortC

Data Representation: Bit 5 of byte

Self Test.

Acronym: SelffestDevice

Hardware- FLMS Push-button Array

Characteristics of Values: Valug on (1b)
off (0b)

Data Transfer: PortC

Data Representation: Bit 7 of byte

B.9.2.6 IN Relation

Thble 19. Relations Between ResetDevice and ResetSwitch

Reset~evice =ResetSwitch-

pressed on

released Off

Tolerance Delay: ButtonDelay
Error: Not applicable

'Thble 20. Relations Between SellTestDevice and SeltTlst

SelfrestDevice =SeifrestSwitch=

pressed on
released off

Tolerance Delay: ButtonDelay
Error: Not applicable

100



Appendix B. Fuel-Level Monitoring System Specification

B.9.2.7 Output Data Items

Cursor Position.

Acronym: CursorRow
CursorCol

Hardware; Console

Characteristics of Values:
Value Encoding MinRow <= CursorRow < = MarRow

MinCol <= CursorCol <= MarCol

Data LAanskzr Softlnt (10h), function 02h
CursorRow8088 register DH
CursorCol 8088 register DL

Data Representation: 8-bit unsigned integer

Screen.

Acronym Character

Hardware: Console

Characteristics of Values:
Value Encodin

x = Value x = Value

space 32 vbar 179

46 Itee 180

0 48 Iceil 191

S... ... rfloor 192

9 57 uptee 193

A 65 dtee 194

rtee 195

Z 90 hbar 196

a 97 cross 197

.floor 217
z 122 rceil 218

bel 7 block 219

Data Tiansfer: Softlnt (10h), function OEh
8088 register AL

Data Representation: 8-bit unsigned integer

101



Appendix B. Fuel-Level Monitoring System Specification

B.9.2.8 OUT Relation

Thble 21. Relations on HighAlarm

Event Action

@T(Character - space) HighAlarm = off
WHEN CursorCol = HighAlarmCol and CursorRow = HithAlarmRow

@T(Character = block) HighAlarm = on
WHEN CursorCol = HighAlarmCol and CursorRow - HighAlarmRow

@T(Character # space Ao Character # block) HighAlarm is undefined
WHEN CursorCol = HighAlarmCol •r CursorRow = IAighAlarmnRow

Tolerance Delay: AlarnDelay
Error: Not applicable

Thble 22. Relations on LowAlarm

Event Action

@T(Character - space) LowAlarm = off
WHEN CursorCol = LowAlarmnCol and CursorRow = LowAlarmRow

@T(Character = block) LowAlarm = on
WHEN CursorCol = LowAlarmCol and CursorRow = LowAlarmRow

@T(Character # space Am Character # block) LowAlarm is undefined
WHEN CursorCol = LowAlarmCol and CursorRow = LowAlarmRow

Tolerance Delay: AlarmDelay
Error: Not applicable

"Thble 23. Relations on AudibleAlarm

Event Action

@T(Character = bel) AudibleAlarm - sound
WHEN MinCol < = CursorCol < - MaxCol and
MinRow < = CursorRow < = MaxRow

@T(DURATION(Character # bel) > 0.5 s) AudibleAlarm - silent

Tolerance Delay: AlarmDelay
Error: Not applicable

Thble 24. Relations on LevelDisplay

Event Action

SetDigit(X, i) for i in (0, 1, 2, 3) LevelDisplay - X

Tolerance Delay: LevelDelay
Error: Not applicable

102



Appendix B. Fuel-Level Monitoring System Specification

B.10 GLOSSARY

FLOOR (x: Real) :Integer:
Floor (x) = Max {i : Integer(i) and i < x}

LOG (x: Real) :Real:
10**log(x) = x.

ROUND (x : Real) :Real:
Round (x) = Floor (x + 0.5)

SystemInit .EVENT:
= @F(t = to)

Time :TIME:
Time, in seconds, elapsed with respect to a fixed but
arbitrary reference point to.

103



Appendix B. Fuel-Level Monitoring System Specification

B.11 INDEXES

In the following indexes, a bold page number refers to where the item is defined. Other references
are in italics.

B.11.1 MONITORED STATE VARIABLES

Operator
ResetSwitch, 83, 85, 88, 95, 95, 100
SelfIestSwitch, 83, 85, 95, 96, 96, 100

Thnk, FuelLevel, 83, 85, 92, 92, 94

B.11.2 CONTROLLED STATE VARIABLES

Operator
AudibleAlarm, 83, 85, 96, 97, 97, 99
HighAlarm, 83, 85, 96, 97, 97, 99
LevelDisplay, 83, 85, 96, 97, 97, 99, 102
LowAlarm, 83, 85, 96, 97, 97, 99

Pump
Shutdown, 85, 88, 88, 89
Switch, 83, 88, 88

Watchdog, WDTimer, 88, 90, 90, 91

B.1.3 MOvES

FLMS, InMode
Operating, 86, 86, 89, 99
Shutdown, 86, 86, 87, 89, 99
Standby, 86, 86, 89, 99
Test, 86, 86, 87, 89, 99

B.11.4 INTERFACE TERMS

FLMS, InOperation, TestTime, 86, 86

HighFuelLimit, 92, 93
ShutdownLockTime, 86

SystemInit, 98, 103, 103
Thnk, Interface

FuelLevelRange, 84, 85, 87, 92, 92, 96, 99
HighFuel-imit, 92
InsideHysRange, 84, 85, 86, 87, 92
LevelHigh, 92, 92, 99
LevelLow, 92, 92, 99
LowFuelLimit, 92, 92, 93
WithinLimits, 87, 92, 92, 99

B.11.5 MISCELLANEOUS VARIABLES

FLMS, 83
InOperation, 84, 85

Operator, 83
Interface, 84, 85, 96

Reset, 84, 85, 87, 95, 95
SelfTest, 84, 85, 87, 95, 95

104



Appendix B. Fuel-Level Moniloring System Spccification

Pump, 83
Interface, 84, 85

iank, 83
diagram, 81
Interface, 84, 85

Watchdog, 83
Interface, 84, 85
WDTimer, 83, 85

105



Appendix B. Fuel-Level Moniloring System Specification

This page intentionally left blanlc

106



REFERENCES

Boehm, B. Software Engineering Economics. Prentice-Hall.
1981

Drusinsky, D. and D. Harel On the power of cooperative concurrency, CS88-10. Department
1984 of Applied Mathematics, The Weizman Institute of Science.

Faulk, Stuart, James Kirby, Jr., Requirements Workshop Results Report. SPC-91062-MC.
Skip Osborne, D. Douglas Herndon, Virginia: Software Productivity Consortium.
Smith, and Steven Wartik
1991

Hammer, Michael, and Database Description with SDM: A Semantic Database Model,
Dennis McLeod ACM Transactions on Database Systems. 6:3.
1981

Harel, D. Statecharts: A visual approach to complex systems, CS84-05.
1984 Department of Applied Mathematics, The Weizman Institute of

Science.

Hard, D., and A. Pnueli On the Development of Reactive Systems. Logics and Models of
1985 Concurrent Systems. Edited by K.R. Apt. New York: Springer.

Heninger, Kathryn L. Specifying Software Requirements for Complex Systems: New
1978 Techniques and Their Application. IEEE TSE SE6:2-13.

Jahanian, E, R. Lee, and Semantics of modechart in real time logic. Proceedings of the 21st
A. Mok Hawaii International Conference on System Science.
1988

Mok, A.K. Towards mechanization of real-time system design, to appear in
1991 Foundations of Real-Time Computing.- Formal Specification and

Methods, Kulwer Press.

Parnas, D., and J. Madey Functional Documentation for Computer Systems Engineering.
1990 Queen's University Technical Report 90-287.

van Schouwen, A. J. The A-7 Requirements Model: Re-examination for Real-Time
1990 Systems and an Application to Monitoring Systems. Queen's

University Technical Report 90-276.

107



References

Ward, P The CASE Real-Time Curriculum. Software Development

1989 Concepts.

Zave, P., and W Schell Salient features of an executable specification language and its

1986 environment, IEEE TSE SE-12, 2:312.

108



BIBLIOGRAPHY

Chmura, Louis J. and David M.Weiss, The A-7E Software Requirements Document: Three Years of
Change Data.

Hester, S, D. Parnas and D. Utter, Using Documentation as a Software Design Medium. The Bell
System Technical Journal 60:1941-1977, October 1981.

Mills, H.D., How to make exceptional performance dependable and manageable in software
engineering. Proceedings COMPSAC Conference IEEE, October 17-31, 1980.

Parnas, D., GJ.K. Asmis, and J. Madey, Assessment of Safety-Critical Software. Queen's University
Technical Report 90-295, December 1990.

109



Bibliography

This page intentionally left blank

110


