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CHAPTER 1 INTRODUCTION

Model-based parametric approaches for detection of time-correlated signals
in non-white Gaussian noise have been given considerable attention. The
utilization of these methods for radar applications has been considered in [1 -6].
An important feature of the model-based methods is their ability to utilize
modern parameter estimators in the signal processing. In this scheme, the
processes are whitened through a causal transformation of the observation data
[1] using prediction error filters. Implementation architectures utilize either
recursive or block processing methods to determine the weights in prediction
error filtering methods [3,51. An extension of these procedures to multichannel
vector processes has recently been addressed 17]. In [7], a multichannel
generalized likelihood ratio was derived using the conditional covariance matrix
of the complex vector observation processes given past and present data. It was
implemented using the model-based approach where the signal and the non-white
noise (clutter) vector processes are assumed to be characterized by the output of a
linear system driven by a white Gaussian noise vector. Furthermore, the
derivation made no assumption of statistical independence between the signal and
clutter processes and is thus expected to retain robustness in the presence of
multipath (or reverberation) for applications in radar and sonar problems.

The use of multiple channels provides additional information and results in
better performance than the single channel case. The additional information is
extracted by removing the redundant (i.e. correlated) information from the
observation data. This is achieved via estimation methods which "whiten" the data
in time and space (i.e., across channels). The resulting uncorrelated error
processes are the 'innovations' and contain in a compact form all the useful or
'new' information about the processes. In this analysis, they are utilized to
determine a sufficient statistic for the hypothesis testing.

Application areas include signal detection, estimation and discrimination
for radar, sonar, biomedical and geophysical problems. For radar problems, the
model-based multichannel approach establishes a framework for the consideration
of sensor systems using multi-frequencies and/or polarization diversity, the
centralized processing of netted sensor suites and the processing of diverse, yet
correlated, processes. In biomedical research, the procedure may be applied to
the processing of signals such as multiple EEG brain waves for seizure state
detection and classification.
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This report considers the Gaussian multichannel binary detection problem
in which the desired signal is random, the additive clutter disturbance is non-
white, and both processes have 'unknown' statistics. In the model-based approach
considered here, the signal and clutter are characterized by autoregressive (AR)
vector processes. In this case, the parameters of the underlying processes are
'unknown' and must be estimated from the observation data. Detection
performance is presented using a Monte-Carlo procedure as the estimators
approach their steady-state values (ie., when the time sample window sizes in the
estimation procedure are sufficient to obtain near optimai performance). These
results provide a determination of the detection performance as a function of the
algorithm convergence rates. Furthermore, these convergence rates are
considered as a function of both signal and clutter-to-noise ratios as well as the
temporal and cross-channel correlation properties associated with the signal and
clutter processes. These results provide insight as to the processing time
requirements associated with the estimators under various conditions of channel
diversity as well as signal and clutter power levels.

For the steady-state case, detection results have been obtained [7] and
validated with available detection curves [10] for the extreme cases of signal
temporal correlation as described by Swerling case I and II targets. The results
presented in this report are shown to converge to these values in the limit of large
data. Detection results are also considered for the case of unequal signal-to-noise
ratios on each channel thus revealing the impact of a degraded channel on overall
performance. Finally, in these detection computations, observation vector
processes are synthesized using a multichannel time series method [8,9] capable of
providing parametric variations in temporal and spatial (ie., cross-channel)

correlation as well as in the signal-to-noise (S/N) and clutter-to-noise (C/N)
ratios. As such, the signal generation method used in this investigation provides
target models which lie between the bounds of the Swerling temporal fluctuation
models as well as for varying degress of cross-channel correlation.

In chapter 2, the detection problem is presented along with a description of
the partially correlated signal models. Chapter 3 contains a derivation of the
multichannel likelihood ratio used to compute the detection results. The content
of these two sections has been described in [7,16] and is presented here for
completeness. Implementation architectures for the computation of the sufficient
statistic are shown in chapter 4 with Monte-Carlo results presented in chapter 5.
A discussion and summary of the results are contained in chapters 6 and 7,
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respectively. Finally, an abbreviated version of this report has been presented in
[17].
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CHAPTER 2 THE DETECTION PROBLEM

In this chapter, we discuss the multichannel detection problem addressed in
this report. In addition, the models of the random signal and clutter processes
are also described. The multichannel binary detection problem is expressed as

HI: x(n) = s(n) + f(n) + w(n) n =,2,...,N (la)

Ho: x(n) = c(n) + w(n) n = l,2,...,N, (Ib)

where the discrete received observation process x(n) is a zero mean, wide-sense
jointly stationary Jxl baseband vector consisting of J channels. The vectors s(n),
c(n) and w(n) are zero mean, complex Gaussian random Jxl vector processes
describing the signal, non-white noise(clutter) and white noise, respectively. H1

and H0 denote the hypotheses under which the signal is present or absent,

respectively. The vector processes 1(n) and g(n) individually contain an arbitrary
correlation in time and between channels. In addition, correlation is allowed
between s(n) and Q(n). Finally, the vector w(n) is uncorrelated with itself in
time, but not necessarily across channels.

In this study, we compute detection results using a process synthesis method
described in [8,9] to generate time samples of 1(n), Q(n), and &(n). In [7], we
discuss the relationship between these synthesized processes and those denoted in
the radar literature as the Swerling models for which analytical detection
performance curves are available [10]. For two extremes of temporal and cross-
channel correlation, these latter models are used here to provide bounds on the
detection results. We designate model I(INCOH) as the signal model where all the
bandpass signal amplitudes in a pulse train of NT pulses are equal but vary

randomly from pulse-train to pulse-train according to a Rayleigh distribution and
the initial phase of each pulse is a statistically independent, uniformly distributed
random variable. This model is used to describe the case where the phases of the
echo returns are randomized due to phase instabilities associated with the
transmitted waveform. We designate model II(INCOH) as the signal model where
both the amplitudes and phases of the echo pulses are statistically independent
random variables with Rayleigh and uniform distributions, respectively. Models
I(INCOH) and model II(INCOH) provide the two extremes on the amplitude
correlation of the processes. For a coherent transmitted pulse train, we define
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model I(COH) as the signal model where the amplitudes over each entire pulse
train are totally correlated random variables as are the initial phases. However,
they are uncorrelated between pulse trains with Rayleigh and uniform
distributions, respectively. In [7], these models are generalized for the
multichannel case.

In (8,9], autoregressive processes AR(pg) of order pg are synthesized

individually for the signal (g=s) and clutter (g=c). The temporal correlation of
the jth channel is controlled by the one-lag temporal correlation parameter, k1i.
For low temporal correlation, Xjj-ýO; for high temporal correlation, Xij-- 1.

Likewise, the cross-channel correlation is controlled by the one-lag temporal
cross-correlation parameter Xjj (which relates to the width of the cross-
correlation function) and by the cross-channel correlation parameter lpijl where
Pij=Rij(0)/aii;jj and Rij(O) is the cross-correlation function at lag zero. Two
extreme cases occur when Xj=lpijl=O and Xjj=lpjl=Il for all ij=l,2,...,J. In the

former case, all of the J channel processes are uncorrelated both in time and
space (ie., across channels). In the latter, they are highly correlated in both of
these dimensions. These two cases of synthesized processes characterize the
multichannel model II(INCOH) and model I(COH) signals, respectively. Thus, the
detection results computed in this report are bounded by the analytical detection
curves associated with these models.

Finally, we point out that for certain applications such as radar and sonar
systems, E distinct Doppler center frequency may be obtained on each of the J
channels due to the operational characteristics of the multichannel system. This
may result for example when each channel contains data received using a separate
transmitter frequency. The result of this situation is the introduction of a non-
stationarity in the covariance matrices of the multichannel processes. In this case,
it may be necessary to pre-process the observation data to normalize the Doppler
frequencies on each channel to that of a selected reference channel. This pre-
processing procedure is discussed in [7,9] and is assumed to have been
implemented for the results presented in this analysis.
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CHAPTER 3 THE MULTICHANNEL LIKELIHOOD RATIO

In this chapter, we briefly present the derivation of a multichannel
likelihood ratio for the detection problem of eqs(1). The derivation is described
more thoroughly in [7]. First, we define the concatenated vector consisting of N
time samples of the vector x(n) as

T
X1,N = EXT(l) AT(2)...jT(N)]

where
xT(k) = [xl(k) x2(k)...x3 (k)] k = 1, 2, ... , N

and

Under hypothesis Hi i=O, 1, the multivariate joint Gaussian density can be written

as the product of conditional densities so that

N

Px(_1,NIHi) = p[x(l )IHi] I', p[P(n)I2Ll,n-1,Hi] i=0, 1 (2)

and all the conditional densities are complex Gaussian. Let J(nln.l,Hi) denote the
conditional expectation of &(n) given 41,n- I with multivariate conditional density

p[x(n),i&,n-1,Hi]. Then, J(nln-1,Hi) is the linear minimum mean-squared error
(MMSE) predictor of x(n) using past data 51,n-I assuming Hi is true. The JxJ

covariance matrix of this density function is the conditional covariance matrix
Kx(nln-1,Hi) such that

Kx(nln-lHi) = E{[x(n) - R(nln-1,Hi)][x(n) - J(nn-1,Hi)]H) (3a)

= E[f(nIHi)FH(nIHi)] n = 1,2,...,N i = 0,1 (3b)

where

J(l10,Hi) i 0,1 (4)

due to the zero-mean assumption on x(n) and
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9(nlHi) = x(n) - ý(nln-1,Hi) i = 0,1 (5)

is the zero-mean MMSE vector. Assuming joint wide-sense stationarity on the
narrowband ban~dl.as processes, the conditional density functions can be
expressed as [17]

p[xL(n)ILjn 1,Hi]

(lty'Ixnn 1HrI P- [2LXn)-g(nln-1I,Hi)IH[Kx(nln- 1,Hi)]f'[X(n)-k(nln-1,Hi)])

i =0,1. (6a)

= (t)I~xnt1,H)Iexp(- .H(nIHi)[Kx(nln-1,Hi)I-lg(nIHi)) i= 0,1 (6b)

where

= (t)Ix( I0H) exp (- jH(1l Hi) [Kx(1 IHi)] 1  I 1IHi) i = 0,1. (7)

Using eqs(2), (6b) and (7), the log-likelihood ratio for the multivariate
joint Gaussian density function now becomes

lnAH =In Px(A1,N'11i) (8a)

N
(p[xL(1)1H 1 J HJ p[,&(n)I2L1,n..i,HiI

-In n= (8b)

n=2
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N
r- IKx(nIn-i,H 0 )l exp{-(:H(nlHl)[Kx(nln-l,H-[)]f'] (nIHj)}

In n=1
- N

1-1 IKx(nIn-1,H 1 )I exp{-H(nlHo)[Kx(nln-1,H 0)]'lf (nlH 0 ))
-n=l

(8c)

= Ih'Kx(nlnl-,H 1)l + eH(nlH 0 )[Kx(nln-1,H 0)]-lr (nIH 0 )
- xH(nIHj )[Kx(nln- I,H 1)]- l(nHO]. (8d)

Eq(8d) can be simpified further by a diagonalization of the conditional
covariance matrices and an orthogonal transformation of .(nI-{i) i=0,1 across

channels. Since these matrices are Hermitian and positive semi-definite, various
decompositions are possible. In [7], the LDLH and Cholesky CCH decompositions
are considered. The resulting likelihood ratios are shown to be

J N I n+H0 ) IyI(nlH0 )1l2 Iyj(nlH 1 )l2

lnAHIHo= 1: I ' 2  + - 2(9)
j=1 n=1 ao.(nIHI) 2 2

and

and = J N In Ic9 .(nlH 0)l2 _
InAHIHo= j I { lcj(nH1) - IjnlH )l (10)

respectively. The quantities yj(nlHi) and oaj(niHi) i=0,l are the jth channel error

vectors or innovations processes which are whitened both in time and across
2

channels under hypothesis Hi. The quantity aj (nIHi) is the error variance for

yj(nlHi) while the coefficients ca jj(nlHi) are contained along the diagonal of the

Cholesky matrix C and are related by [7]

8
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CHAPTER 4 IMPLEMENTATION PROCEDURES

A block diagram of the architectures used to compute the likelihood ratios
of eqs(9) and (10) are shown in Figs. I and 2, respectively. Fig. I is the
multichannel extension of the implementation reported in [3,5]. The lower
branch is used to compute the second term and the numerator of the first term in
eq(9), while the upper branch determines the third term and the denominator of
the first term. Analogous comments apply to Fig. 2. The quantity Yb is the

threshold for the decision procedure. We note that the specific choice of the
prediction error filter structure will depend on the assumed underlying model of
the observation processes [7]. A multichannel forward prediction error filter
with a tapped delay line architecture is utilized in this investigation and is shown
in Fig. 3. For this filter structure, the JxJ matrix tap weights are the forward
linear prediction coefficients [13,14]. In this analysis, these coefficients are
estimated directly from the observation data x(n) using the procedure described
below in subsection 4c.

We now briefly describe three conditions pertaining to the use of 'a priori'
information regarding the statistics of the processes (for each of the hypotheses)
that is used in the estimation procedure.

4a. Known Covariance Matrix
In [7], we discuss filtering methods using multichannel linear prediction to

obtain ý(nIHi) and o(nIHi). For a known covariance matrix under each of the two

hypotheses, two sets of filter coefficients and error variances can be obtained
exactly. In this case, ýj(nIHi) and o(nIHi) will be minimum mean squared error

(MMSE) residuals at the output of a multichannel prediction error filter (such as
that- shown in Fig.3) designated under hypothesis Hi. It is this case that is

approached as the estimators reach steady-state.

4b. Unknown Covariance Matrix
For the unknown covariance matrix case, the filter coefficients, their order

and the error variances must be estimated. Thus, eqs(9) and (10) become
suboptimal generalized likelihood ratios. In practice, only one set of observation
data may be available to estimate the parameters (ie., the filter coefficients and
error variances) for each filter assuming the appropriate hypothesis is true. In the
practical implementation for this case, we must assume that the MMSE filters

10
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under each hypothesis have unequal orders so that the likelihood ratio will, in
general, have a value other than zero. This assumption is justified, for example,
when characterizing the underlying signal and clutter as autoregressive processes.
We note that the summation of AR processes and white noise is, in general, an
autoregressive moving-average (ARMA) process which can be approximated by a
higher order AR model. Thus, the order of the observation process under
hypothesis HI(signal present) is larger than that under Ho (signal absent).
Therefore, a higher order prediction error filter is used for filter F, than for F0

in the practical implementation architectures for the likelihood ratios. For single
channel processes, these considerations have been treated in [5].

4c. Use of 'A Priori' Data
In some applications, 'a priori' information can be used to predetermine

the filter orders, the error variances and the filter coefficients [4]. In this case,
data from a 'reference channel' is used to assess the hypothesis H0 condition while
data from a 'test cell' is used for that of H1. Under these conditions, the two data

sets are used to estimate the coefficients for filters F0 and F1 , respectively. In

radar applications, the 'reference channel' data is often collected from adjacent
resolution cells either in azimuth or range.

In this analysis, the filter coefficients are estimated with the Strand-Nuttall
algorithm [11,12] using the software routine from [13]. This algorithm is the
multichannel generalization of the Burg algorithm [14]. Since this algorithm
utilizes a block of data in the estimation procedure, 'a priori' data consisting of
NrC time samples per block are used. In some cases, coefficient averaging is
performed over NRC statistically independent block realizations and are assumed

to be collected from the 'reference cell' data. With the filter weights fixed, the
detection results are then computed using NT time samples per channel and NR

Monte-Carlo realizations.
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CHAPTER 5 DETECTION RESULTS USING MONTE-CARLO
SIMULATION

In this chapter, Monte-Carlo simulation results are presented using the
likelihood ratio described in eq(10) while comments on these results are deferred
until chapter 6. Details of the Monte-Carlo procedure are described in [7]. The
input observation data processes are generated using the process synthesis
procedure described in [8,9]. Detection performance results are determined as a
function of the channel signal-to-noise (S/N)j and clutter-to-noise (C/N)j ratios,

the temporal and cross-channel correlation of the processes and the time sample
window block sizes used to estimate the process parameters.

Two-channel (J=2) complex baseband Gaussian signal and clutter vectors
were synthesized as autoregressive AR(2) processes and added to a complex
Gaussian white noise vector. These observation data processes are used as an
input to the system architecture shown in Fig. 2 for eq(10). In this investigation,
the parameter estimators utilize 'a priori' data consisting of NTC time samples per
block and averaging over NRC independent block realizations to estimate the filter

weights as discussed in section 4c. All the detection results presented here were

computed using a probability of false alarm level of 6.93x10"4. The order of the
F1 and F0 filters used in this analysis was fixed 'a priori' at eight and four,

respectively. Empirical investigations have indicated insignificant performance
improvement beyond these orders for the processes considered here. With the
filter weights fixed, the detection results were computed via Monte-Carlo using
NR= 2 0 ,000 realizations and NT=10 time samples per channel. In [7], we

considered the special case of the signal in additive white noise detection problem.
Detection results were determined for NT pulses while parameter estimation was
performed using NTC=10,000 time samples per block and coefficient averaging
over NRC-=100 data blocks. Processing over these large data samples was

performed in order to consider detection performance for the case where the
parameter estimates have converged to their steady-state values. Selected results
from [7] are shown here for the parameters listed in Table 1 with the simulated
detection results plotted in Figs. 4 and 5. Equal signal-to-noise (S/N)j ratios were

used on each channel at values of 3dB and -5dB. Sample standard deviations
associated with the Monte-Carlo method for these simulated detection results are
reported in [7]. We also plot the analytical probability of detection curves from
[101 for the model I(INCOH), model I(COH) and model II(INCOH) signals using
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case ___1 _22 1P121 (SIN)1 (SIN) 2

1 a,b,c 0.1 0.1 0,0.5,0.99 -5dB -5dB
2 a,b,c 0.9 0.9 0,0.5,0.99 -5dB -5dB
3 a,b,c 0.1 0.1 0,0.5,0.99 +3dB +3dB
4 a,b,c 0.1 0.9 0,0.5,0.99 +3dB +3dB
5 a,b,c 0.999 0.999 0,0.5,0.99 +3dB +3dB

Table 1 Signal Process Parameters used in the detection results
for Figs. 4 and 5.
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JNT=2 0 . In order to compare detection performance for incoherent integration

to that of coherent integration, the filter coefficients of the prediction error
filters F0 and F, are disabled; ie., the filter coefficients are set to null matrices

and the observation data is allowed to pass through the filters unaltered. In this
case, the error variances are replaced with the variances of the observation
processes under the respective hypotheses. We note that the simulated detection
results now range between the model I(INCOH) and model II(INCOH) curves.
Consistent with the cross-over of the analytic curves shown in Figs. 4, note that
the relative detection performance has reversed for the signal fluctuation models;
ie., for the lower S/N value of -5dB, the more highly correlated process of case
2c has a higher Pd than the uncorrelated process of case la. Whereas at the

higher S/N value of +3dB, the more highly correlated process of case 5c has a
lower Pd than the corresponding process of case 3a.

For Figs. 6 through 18, all parameter estimates were obtained using NRC=1
block realization consisting of NTC time samples. The estimates of the filter
coefficients for Fo and F, were obtained using observation data from a

'reference' and 'test' cell, respectively.
In Figs. 6 and 7, we plot the probability of detection versus the number of

time samples NTC per block for the Gaussian signal in additive Gaussian white
noise problem. A signal-to-noise (S/N)i ratio of 3dB was used on each channel.

Each of the three detection curves represents a specific case of signal temporal
and cross-channel correlation as designated in the figures. Similar detection plots
are shown in Figs 8 and 9 for (SiN)j = -5dB on each channel. Finally, it is noted
that the detection results of Figs. 6 through 9 at NTC = 10,000 are bounded by the

analytic detection curves of Figs. 4 and 5 representing the extremes in signal
correlation (temporal and cross-channel). 'Thus, the detection results are shown
to converge to those of optimal performance as the parameter estimates improve
with increasing sample window sizes.

For the remainder of the detection results presented in this report, we
include the presence of Gaussian non-white clutter noise. In Figs. 10 and 11, we
plot the computed detection results as a function of the signal-to-noise ratio
(S/N)j. For these results, (S/N)j and (C/N)j are equal on each channel with
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(C/N)j fixed at 20dB. The normalized referencet doppler frequency [7,9] to
pulse repetitien frequency (PRF) ratio also expressed as fsT and fcT for the signal
and clutter, respectively, was fjT=0.5 and fcT=O where T is the sample period
(l/PRF). Two sets of clutter cross-correlation parameters were used with

IP 121=0 and IPC121=0.9 to illustrate the effect of increasing cross-channel clutter

correlation. The temporal auto-correlation parameter for the clutter was

•Cii=0.9, i=1,2.

In Figs. 12 through 18, we again consider the probability of detection as a
function of the number of block samples NTC used in parameter estimation for

processes containing clutter noise. Figs. 12 and 13 show the results for processes
with a signal-to-noise (S/N)=3dB on each channel for Pfa values 6.93x10-2 and

6.93x10"4 , respectively. Various signal correlation parameters are considered in
each of these figures. Also, two cases of clutter temporal correlation with
parameters kcii =0.9 and 0.7, i=-1,2 both with X C2=0.1 are shown in the upper and

lower group of curves, respectively. The latter case represents an increase in the
spectral spread of the clutter thus increasing the interference with the signal. In
Fig. 14, we present the corresponding detection results for the case where
(S/N)=-5dB on each channel with c.ci=0.9, i=1,2. In this plot, the curves for both

Pfa values are displayed.
Figs. 15 and 16 show the detection results for the slow fluctuating signal

case where again the clutter spectrum has different spectral widths; ie., the upper
curves have a temporal correlation parameter %,,=-0.9 on both channels whereas

the lower curves have c ii=0 .7 on both channels. As noted above, the latter case

represents an increase in the spectral spread of the clutter which interferes more
strongly with the signal thus causing the decrease in Pd. The center curve,

however, has XC11-=0.9 and Xc22=0.7; ie., the clutter spectrum on channel 2

interferes with the signal more than that on channel I due to its larger spectral
spread.

Fig. 17 shows the detection results versus NTC for variations in the cross-

channel correlation of the clutter at Pfa=6.93x10"4 . For these results, the more

slowly fluctuating signal model with high cross-channel signal correlation (i.e.,

t A reference doppler frequency must be considered in the multichannel case as noted in chapter 2 and is discussed
more thoroughly in [10].
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with Xsii=0.9, i=1,2 and fpsl= 0 .9 9 ) was used. Signal and clutter-to-noise ratios of

(S/N)=3dB and (C/N)=20dB were used on each channel. The results reveal a
decrease in probability of detection with increasing cross-channel clutter
correlation for the more slowly fluctuating signal model and th. spec•fic
detection parameters considered in this case. We note that the results shown here
labeled X and a at large NTc (ie., NTC =10,000) are consistent with those shown

in Fig. 11 at (S/N)=+3dB. In Fig. 18, however, the signal cro,;s-channel
correlation is varied for the more slowly fluctuating signal model (,?ksi,=0.9,

i=1,2) while the clutter correlation is held fixed with X,,i=0.9 and Ipc-=O. These

results reveal a decrease in probability of detection with decreasing cross-channel
signal correlation.

Finally, in Figs. 19 and 20, we consider the case in which one of the
channels contains a lower signal-to-noise ratio than the oth•.r channel. For these
results, (S/N)1 =+3dB on channel 1, (S/N) 2 on channel 2 ranges from +3dB to
-40dB and Xsl =Xs22=0.1 (a fast fluctuating signal). The detection results are also

displayed for signal cross-channel correlation coefficients 1P121= 0 , 0.5, and 0.99.
We also show the Pd value for channel I alone using NT=10. This last result

provides the basis for a comparison between the multichannel detection results
using (S/N) 2 < (S/N), and the results obtained with the superior channel 1 alone.

Additional plots are considered in [7].
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and Xc%., signal and clutter cross-correlation parameters ps and Pc,
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CHAPTER 6 DISCUSSION OF RESULTS

Inspection of the detection curves contained in this report reveals several
interesting features. First, in Figs. 4, 5, 10 and 11, we note the cross-over point
between the fast-fluctuating and slow-fluctuating signal detection curves. For
these detection results, the estimators used in the filters F0 and F, have reached
their steady-state values after processing NTC=10,000 time samples. In Fig. 5,
for example, the model I(COH) and model II(INCOH) curves intersect at S/N=
+ldB. In this case, we have considered the Gaussian signal in additive white
Gaussian noise. We have purposely selected processes with S/N values above and
below these intersection points in order to investigate the effect of the temporal
and cross-channel correlation on detection performance in both regions. We
anticipate that processes uncorrelated both temporally and across channels will lie
closer to the model II(INCOH) bound while those with high correlation will lie
closer to the model I(COH) bound. Thus, the effect of the temporal and cross-
channel correlation for both the signal and clutter on the detection results is
dependent upon the location along the detection curve with respect to this cross-
over point; ie., at (S/N) values above this point, the fast-fluctuating signal model
provides the superior performance whereas at (S/N) values below it, the slow-
fluctuating signal model dominates. Furthermore, the presence of the non-white
clutter process also effects the position of this cross-over point. Specifically, in
Fig. 11, where the processes have a clutter-to-noise ratio of 20dB on each
channel, we note that the cross-over point for the processes with high cross-
channel clutter correlation occurs at (S/N)=+6dB as compared to +9dB when no
cross-channel correlation is present. In general, the cross-over point for the
detection curves is a function of the temporal and cross-channel correlation of
both the signal and clutter processes as well as parameters such as (C/N)j, Pfa and
NT. We also note that for the cases with high cross-channel clutter correlation
(ie., IPc12

1=0 .9 ), the increasing cross-channel correlation causes a decrease in Pd

for the more slowly fluctuating signal (Xsii=0.9, i=1,2), but an increase for the

fast-fluctuating signal (X Sii=0.1, i=-1,2). These results can be explained by noting

that the increased cross-channel clutter correlation can be used to discriminate the
fast fluctuating signal from the clutter more readily than the more slowly
fluctuating signal. Finally, we point out that for the results shown in Figs. 10 and
11, the slow fluctuating signal model provides the higher performance results for
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(S/N) below values in the 4 to 9dB cross-over range. Thus, at the (S/N) values of
-5dB and +3dB which are primarily considered in this report, the slow-
fluctuating signal case in the presence of clutter provides the superior detection
performance over the fast-fluctuating case.

Next, we consider the 'transient' condition in which the estimators have not
reached their 'steady-state' values due to limited data sample sizes used in the
estimation procedure. The detection results in Figs. 6 through 9 for the various
signal fluctuation models in additive white noise, asymptotically approach those
shown in Figs. 4 and 5 and are bounded by the analytic detection curves
representing the extremes in signal correlation (temporal and cross-channel).
Furthermore, they are consistent with the detection performance reversal about
the cross-over point as described above. Thus, as the estimators approach steady-
state for large NTC, the detection results are shown to converge to their optimal
values. Likewise, the detection values shown in Figs 12 through 18
asymptotically approach those shown in Figs. 10 and 11. Analytic detection
curves for the latter will be reported in future investigations involving partially
correlated clutter processes.

Examination of Figs. 12 and 13 indicates that as the temporal correlation of
the clutter decreases from Xc.ii=0. 9 to XCii=0.7 , i=1,2 the detection performance

decreases significantly. This result is to be expected since the decrease in the
temporal correlation of the clutter causes an increase in its spectral width on both
channels. Thus, the clutter interferes more strongly with the signal at its
normalized Doppler location of fsT=0.5 in the frequency spectrum.

The detection performance shown on the the center curve of Figs. 15 and
16 with kc. 1=0.9 on channel 1 and XC22=0. 7 on channel 2 describes the situation
where the signal on channel 1 is less affected by the narrower clutter noise
spectrum than that on channel 2. The detection results for this case show that a
significant improvement in detection performance can be obtained for the case
where one of the two channels operates 'in the clear' as compared to the case
where both channels have high interference.

An interesting feature associated with the performance of the parameter
estimation procedure can be observed in several of the results. In Figs. 6 through
9 and 12 through 18, we observe that the rate at which the detection curves
approach their asymptotic values for increasing NTC is significantly affected not
only by (S/N)j and (C/N)j, but also by the process correlation. In the next several

cases, we observe that increases in the temporal correlation of the data processes
provide a faster convergence rate to the asymptotic detection values.
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In Figs. 6 and 7, we consider the Gaussian signal in additive Gaussian
white noise problem for (S/N)j=+3dB on each channel. At this (S/N)i value, the

detection performance for the fast-fluctuating signal model is higher than that for
the slow-fluctuating model when the estimators have reached their steady-state
values using high values of NTc. This is verified by observing the results shown
in Figs. 4 and 5 which describe the 'steady-state' case. Thus, for NTC>50, the

superior detection performance associated with the fast fluctuating signal model
at this (S/N) value dominates the results as expected. However, for NTC< 5 0 , we

note that the superior performance is obtained for the slow-fluctuating (more
highly correlated) signal model.

In Fig. 13, for the upper three curves with temporal clutter correlation
parameters X c11=X C22=0.9, we note that the probability of detection reaches

within 4% of its asymptotic value at NTC= 2 0 0 for signal processes with high
temporal and cross-channel correlation (X sj=0.9). However, for signal processes

with low temporal correlation (Xsjj=O.1), these levels are not achieved until

NTC=I,000. For the lower curves, however, where X X 1 =0.7, Pd is only
Cli= C22 '

within 50% of its asymptotic value at NTC= 2 0 0 as compared to the 4% value

noted above.
In Fig. 16, we also note that the convergence rate for the upper curve (with

high clutter temporal correlation on both channels) is significantly faster than that
for the lower curve (with lower temporal clutter correlation); ie., the upper
curve is within 5% of its asymptotic value at NTC= 2 0 0 whereas the lower curve is
only within 50% at this value.

In Figs. 17 and 18, we observe the effect of the process cross-correlation
on the convergence rates. Fig. 17 shows the detection results versus Norc for

variations in the cross-channel correlation of the clutter. For these results, the
more slowly fluctuating signal model was used with Xsjj=0.9, j=1,2 and

IPs121=0.99. Signal and clutter-to-noise ratios of (S/N)=3dB and (C/N)=20dB,

respectively, were used on each channel. With the parameters considered here
and the more slowly fluctuating signal model, the results reveal a decrease in
probability of detection with increasing cross-channel clutter correlation. These
results are consistent with those shown in Fig. 11. We note from the two lower
curves at (S/N)=3dB in Fig. 11, however, that the opposite trend is obtained for
the fast fluctuating signal model; i.e., Pd increases with increasing cross-channel

clutter correlation. We also note in Fig. 17, that the convergence rate of the
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detection performance is superior for the case of no cross-channel correlation;
ie., for lPcl=0, the detection probability is within 5% of the steady-state value at
NTC= 200, whereas for lpci= 0 .9, NTC>lI,000 is required. In Fig. 18, however, the

signal cross-channel correlation is varied while the clutter correlation is held
fixed with XCii =0.9 and loci= 0 . These results reveal a decrease in probability of

detection with decreacing cross-channel signal correlation. It also appears that
the convergence rate has increased slightly for the case where lPsl= 0 .9 9 . Further

consideration of these observations will be made in forthcoming analyses.
The dependence of detection performance on NTC noted in the above results

is attributed to the fact that the error variance associated with the multichannel
paramfeter estimators is directly related to both the temporal and cross-channel
correlation of the processes as well as the data sample window size, NTc [15].

The interesting result noted in [15] is that, unlike the estimators for covariance
matrices, the error variance of parameter estimators, such as that considered
here, decreases with increasing temporal correlation. Thus, the detection
performance resulting when limited data is used is dependent upon the signal and
clutter correlation both directly as well as indirectly through dependence upon
the performance of the estimation procedure. In some cases, this direct and
indirect dependence may be inversely related as noted in Figs 6 and 7. In these
figures, the superior performance of the estimator using the more correlated
processes dominates with limited data (NTc small) whereas with larger data
window sizes (NTc large), the detection performance is dependent upon the

process correlation only.
In the previously results, we considered the situation in which (S/N)j was

the same on both channels. In Figs. 19 and 20, we consider the situation in which
(S/N)j remains the same on one channel but is lowered on the other channel. In

this case, the overall detection performance will degrade from the previous cases.
For the results shown here, (S/N), was held fixed at +3dB while (S/N) 2 was

varied from +3dB to -40dB. In each case, two channels each with ten
observations were considered (ie., J=2 and NT=IO). Again, we note that no

cross-channel correlation is considered on the noise processes. The coherent

detection results ar2 shown in Figs. 19 and 20 for Pfa= 0 .0 6 9 3 and 6.93x10- 4 ,
respectively, with signal one-lag temporal correlation parameters %I -=%22 =0-1"

The values are also displayed for signal cross-channel correlation coefficients

'P121= 0 , 0.5, and 0.99. We also show the Pd value for channel I alone using
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NT=10. This last result provides the basis for a comparison between the two-
channel detection results using (S/N)2 < (S/N) 1 and the results obtained with
channel 1 alone. These results indicate that the two-channel case shows improved
detection performance over that of the channel 1 case alone. Furthermore, as
(S/N) 2 decreases, the two-channel detection results for these cases approach that
of channel 1 alone. More examples are shown in [7].
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CHAPTER 7 CONCLUSIONS

In this report, we have considered the Gaussian multichannel detection
problem in which the signal and additive non-white clutter noise have 'unknown'
statistics. A multichannel generalized likelihood ratio is implemented using a
model-based approach where the sienal and clutter are assumed to be
characterized by autoregressive (AR) vector processes. In the case considered
here, the parameters of the underlying processes are 'unknown' and are estimated
using the Stand-Nuttall algorithm (a multichannel generalization of the Burg
algorithm). Detection results are obtained for a two-channel detection problem
using a Monte-Carlo procedure and performance is assessed as the estimators
approach their 'steady-state' values. Furthermore, the convergence rates are
considered as a function of the signal and clutter-to-noise ratios as well as the
temporal and cross-correlation of the signal and clutter.
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