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A Synoptic Comparison of Special
Sensor Microwave/Imager Displays
with Numerical Products

1.0 Introduction Marine forecasters have learned to depend on visible and infrared
satellite images as real-time “snapshots” of large ocean expanses. Years
of experience and a variety of training materials help forecasters interpret
these images correctly. Increasingly, satellite microwave images and
displays are becoming available to forecasters in real time, prompting
the need for new documentation. For example, using images from the
Scanning Multichannel Microwave Radiometer, Katsaros et al. (1989)
demonstrated that synoptic-scale fronts correspond to steep gradients of
precipitable water.

Data from the Special Sensor Microwave/Imager (SSM/I) aboard the
Defense Meteorological Satellite Program (DMSP) satellite can yield
environmental products over the oceans at a nominal 25-km horizontal
resolution (Hollinger, 1991). The SSM/I is a passive microwave
radiometer that collects radiation naturally emitted by the sea surface
and intervening atmosphere. In this report we will discuss displays of
three environmental parameters available from the SSM/I: precipitable
water, windspeed, and precipitation. To give these displays added meaning,
we will compare them with displays of numerical products.

2.0 Background Displays of microwave surface windspeed represent a radical departure
and Data from traditional depictions of windspeed on weather maps (i.c., using
2.1 Windspeed isotachs or wind barbs). While these new displays contain unprecedented

detail, their interpretation is not straightforward, since the satellite
retrievals do not include wind direction information. Anticipating the
operational forecaster’'s needs from the product, we present several
examples of SSM/I windspeed displays juxtaposed with winds from a
state-of-the-art forecast system.

Measurement of oceanic windspeed from space is a multifaceted
problem (Pierson, 1983; Ulaby et al., 1986). The magnitude of the
emitted microwave radiation sensed by the SSM/I is a partial function
of surface roughness. Surface roughness, in turn, is an excellent
indicator of windspeed, except when high winds induce foam and multiple
wave forms. Much of the emphasis thus far has been on the development
of statistical windspeed algorithms based on brightness temperatures.
Using SSM/1 data, Goodberlet et al. (1990) developed a multichannel
regression algorithm that estimates surface windspeeds within 2 m/s of
in situ buoy observations, an accuracy anticipated by Wentz and Mattox
(1986). The Goodberlet et al. global algorithm performs consistently in

A Synoptic Comparison of SSM/I Displays with Numerical Products 1




Table 1. Windspeed accuracy a variety of climatic regions and becomes unusable only in narrow

flags.” zones adjacent to ice or land masses. In addition to windspeed, the

STANDARD algorithm outputs “accuracy flags,” sometimes referred to as “rain flags,”

FLAG DEVIATION (ns) associated with various degrees of degradation to the windspeed analy-
0 <2 sis due to precipitation (Table 1).

1 2-5 In this presentation we do not consider windspeed values flagged

2 5-10 with values of 2 or 3 because of the persistent high bias of these retrievals

3 >10 (Goodberlet et al., 1990). Flagged regions, which we generally “white

out,” serve a secondary purpose of delineating areas of probable
precipitation. For more discussion see, for example, Spencer et al. (1989)
or Petty and Katsaros (1990).

*(from Goodberiet et al., 1990)

2.2 Precipitable Water The precipitable water displays represent a pixel-by-pixel application
of the nonlinear regression equation derived by Alishouse et al.
(1990). Valid for all the unfrozen oceans of the world, the equation
uses a combination of the 19-, 22-, and 37-GHz channels. While
precipitable water represents a vertical integration, its magnitude is
strongly correlated with absolute humidity in the marine boundary layer
(Liu, 1986; Hsu et al., 1989). Thus, the synoptic evolution of the
precipitable water field strongly depends on vapor advection within
the boundary layer.

2.3 Precipitation The precipitation rate algorithm used here was adapted from Hollinger
(1991). The 85-GHz channel, normally used in the formulation of rain
rate, was missing during the period of data collection used for the
products we present. Thus, the oceanic algorithm used a combination
of the lower frequency channels of the SSM/I instrument.

2.4 Forecast System Output The forecast system products used here result from the Navy
Operational Global Atmospheric Prediction System (NOGAPS) generated
at the Fleet Numerical Oceanographic Center (FNOC), Monterey,
California. NOGAPS consists of a multivariate optimum interpolation
analysis (Barker et al., 1988), nonlinear normal model initialization,
and a T79 spectral forecast model.

For comparison to SSM/I winds, we use a derivative of NOGAPS
termed the “marine winds.” To compute the marine winds, a nonlinear
variational analysis is performed to assimilate low-level cloud-track
winds and surface wind observations into the first-guess field based on
NOGAPS. The resulting analysis is heavily weighted toward ship
observations, buoys, and coastal observations. The height of the analysis
is given as 19.5 m above the sea surface, corresponding to the nominal
height of most ship observations and the reference level used by the
Goodberlet et al., (1990) algorithm. The forecast marine winds are
computed from NOGAPS boundary layer winds using a combination of
boundary layer theory and ad hoc adjustments.

Global comparison from September, October, and November of 1990
indicate the marine winds analysis has a root-mean-square speed error
of 2 m/s with respect to fixed buoys. With respect to SSM/I speeds,
the marine winds analysis is slower on average by 0.5 m/s. The
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2.5 Comparison
Methodology

3.0 Case Studies

3.1 Fair Weather Over
the Northeast Atlantic and
Adjacent Seas

root-mean-square speed discrepancy between the SSM/I and the marine
analysis is 5 m/s.

In our comparisons of the marine winds to SSM/I winds, we illustrate
two scenarios. In the first, we interpolate the two nearest analyses to
the time of the DMSP overpass. This procedure creates the best case
scenario, suited for post-analysis applications. In the second scenario,
we interpolate an analysis and a 12-hour forecast to the overpass time,
illustrating a more realistic forecast situation.

The SSM/I instrument (Spencer et al., 1989) has a swath width of
only 1400 km; thus, there are significant gaps in coverage between
successive passes. Near the poles the coverage problem improves, and
poleward of about 58° N or S, the SSM/I will image a given region at
least once per 12-hour period. The SSM/I data will be received aboard
U.S. Navy ships via direct satellite readout by the Tactical Environmental
Support System (TESS), a shipboard computer system designed to support
nowcasting at sea. Because of the SSM/I coverage limitations, shipboard
forecasters will need to supplement gaps in high-resolution SSM/I
windspeeds with lower resolution forecast system winds. Where the
two data sets coincide, as in the following case studies, forecasters will
benefit from the advantages of both.

Relatively light SSM/I windspeeds appear over most of the study
area on 29 November 1989 (Fig. 1a). Level 1 accuracy flags (within
dotted outlines on Fig. 1a between the British Isles and Iceland) indicate
isolated regions of degradation, but the retrievals from within the degraded
areas are consistent with those from the surrounding regions. Overall,
the windspeed patterns generally agree with the corresponding marine
winds display (Fig. 1b). For example, the marine winds product and the
SSM/I winds show a similar increase in windspeed from the northern
coast of Spain to about S0°N. The two data sets generally also agree
over the North Sea, east of the British Isles, where the low SSM/1
windspeeds correspond well to the broad minimum of the marine winds
product. Nevertheless, the SSM/I data show details not resolved by the
coarser marine winds product, e.g., slight variations in windspeed to
the north and the east of the British Isles.

The relative minimum in SSM/I windspeed northeast of Iceland (red
patch on Fig. 1a) results from the disruption of strong southwesterly
flow by the rugged Icelandic terrain. Surface observations also suggest
this pattern (Fig. 2). Strong wind observations appear on the southwestern
coast of Iceland, but a nearly calm wind appears in the ocean to the
cast-northeast. The windspeed minimum off Iceland is a prevalent feature,
recurring often in the SSM/I windspeed displays we examined. The
minimum also appears in conventional climatological summaries
(Commander Naval Oceanography Command, 1981).

The marine winds field (Fig. 1b) places this lee minimum to a position
more directly to the north of the island. This misplacement stems from

A Synoptic Comparison of SSM7l—DispIays with Numerical Products 3



3.2 Deep Occlusion in
North Pacific

3.3 Frontal System OfT the
U.S. West Coast

the assimilation by the marine winds algorithm of southerly surface
observations (Fig. 2) on the southern coast of Iceland. These observations
represent flow that has recently backed from southwest over the ocean
to southerly over the island because of increased friction. The marine
winds field extends the influence of these observations to the offshore
waters, analyzing southerly flow. Thus, it places the lee minimum directly
to the north of the island.

To the east of the lee minimum in windspeed, the SSM/I data depict
a region of much greater windspeeds (green with embedded blue,
indicating speeds in the range of 16 m/s or 32 kt). A ship observation
of 35 kts in this region (Fig. 2) tends to corroborate these SSM/I wind-
speeds. The marine winds field (Fig. 1b) shows a broad region of
relatively high windspeeds in this region (greater than 12 m/s) but does
not depict the higher windspeeds shown by the SSM/I.

A deep, occluded low in the northeast Pacific Ocean produced
widespread cloudiness and high windspeeds on 1 December 1989 (Fig. 3).
A precipitable water display (Alishouse et al., 1990) overlaid with
marine wind streamlines (Fig. 4) shows the advection of very moist air
(dark gray) northward along the western edge of the pass. The occluded
nature of the cyclone is suggested by the “wrapping around” of the
moist air on the periphery of the system. Near the center of the cyclone,
the streamlines somewhat conform with the circulation suggested by
the SSM/I precipitable water field. However, improved agreement would
result if the streamline field were shifted by the amount indicated by
the black arrow (Fig. 4).

Unlike the previous case, precipitation significantly degrades the quality
of the windspeed display (Fig. 5) such that much of the scene is accuracy-
flagged (Fig. 6). (Accuracy-flagged regions are “whited-out” on Fig. S
and appear in gray shades on Fig. 6). Even within the nonflagged
regions, there are important local discrepancies between the SSM/I
winds and the marine winds product. For example, a distinct minimum
in windspeed appears at 48°N, 150'W in the SSM/I analysis but at 49°N,
152'W in the marine winds analysis. The discrepancy is the same as
given by the black arrow in Figure 4. This difference in placement
between the two products, though small, leads to large local differ-
ences within the windspeed gradient region surrounding the circulation
center. Thus, a forecaster would have little confidence in the marine
winds product just southeast of the center where the SSM/I winds are
not displayed (accuracy-flagged region.). In contrast, the following case
illustrates a situation in which a forecaster would have a high degree
of confidence in the conventional wind product within an SSM/I accuracy-
flagged region.

Northerly flow pushed a frontal system southward along the California-
Oregon coast on 3 September 1990. An SSM/I precipitable water display
shows a “comma” pattern associated with this system, separating relatively
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dry air to the . .th from relatively moist air to the south (Fig. 7). The
strong gradient o, pearing between the two air masses indicates the frontal
position (Katsaros et al., 1989)

The SSM/I windspeed display (Fig. 8) places a band of accuracy
flags along the frontal position. To the south of the front SSM/I, wind-
speeds are relatively low, but a sharp increase appears just to the north
of the front, marking the leading edge of the advancing air mass. The
marine winds product (Fig. 8) does not capture the frontal windspeed
increase well, showing only a gradual increase in windspeed from
southwest to northwest through the front. The marine winds product
and the SSM/I agree well, however, concerning the position of the wind
maximum off the Oregon-Washington coast. This agreement would enable
a forecaster to be confident of the marine winds product within the
accuracy-flagged region (shaped like the head of a “comma™), which
appears within the wind maximum.

Both conventional and satellite products (Fig. 8) also depict a low
windspeed feature to the northwest of the high windspeed region. The
reversal of flow on either side of this elongated feature is consistent
with the corresponding precipitable water product. Poleward flow on
thr :stern side of this feature brings moist air northward (dark region);
e orward flow on the eastern side brings dry air southward (bright
r n) from continental sources (Fig. 7).

3.4 Strong Winds This case demonstrates how successive passes of the SSM/I over a

Off California region shift slowly to the east. This is caused by the natural precession
of the DMSP satellite over time. It also illustrates how the orientation
of the ascending pass differs from the orientation of the descending
pass.

A surface pressure analysis shows a 1028-mb high off the West Coast
of the United States on 27 April 1990 (Fig. 9). A pressure gradient
suggesting northerly flow lies over the West Coast. Figure 10 shows a
swath of the windspeed product off the west coast of the United States.
On the southeastern edge of the pass (west of California) high windspeeds
(dark gray) appear. The accompanying marine isotachs (black lines)
suggest that most of the high-wind area is to the east of the SSM/I pass
edge. (Note that the 14.2-m/s maximum is to the east of the SSM/I
pass.) To the west of the high-speed area lies a region of low windspeeds.
This low-speed region is well covered by the SSM/I pass. The SSM/1
data suggest completely calm winds in the middle of the high-pressure
area. The calm area agrees well with the position of the high given in
the surface pressure analysis.

Figure 11 shows the same region 12 hours later. Note that the different
orientation of this ascending pass changes the pattern of data coverage
as shown in Figure 10. The meteorological situation is relatively unchanged
at this later time off the California coast. Low windspeeds associated
with the center of the anticyclone still dominate the southern half of the
pass in Figure 11, but the southeast edge of the pass indicates faster
winds associated with the edge of the high windspeed region. As in

A Synoptic Comparison of SSM/I Displays with Numerical Products 5




3.5 Pacific Water
Vapor Advection Over
the Eastern Pacific

3.6 Effects of
Alaskan Terrain on
Marine Windspeed

Figure 10, the marine winds product indicates that the high-speed area
lies mainly to the east of the SSM/I coverage.

Figure 12 is the descending pass imaged 24 hours after Figure 10 and
12 hours after Figure 11. Notice that its geographical orientation is
identical to Figure 10, the previous descending pass, but because of
satellite precession the pass coverage is shifted several degrees to the
east. Although the synoptic situation has changed little in the southern
half of the study region, the eastward shift of the satellite has sharplv
improved the coverage of the high windspeed region. However, the
SSM/I coverage of the lowest windspeeds associated with the
high-pressure area is partially cut off on the far western edge of the pass.

This example illustrates how model low-level streamlines and
SSM/I precipitable water displays can be used to trace the advection of
moisture within oceanic systems. The examples show that two
SSM/I passes can appear on the same display to provide better spatial
coverage. In such situations the user must be aware that the observation
time for the two passes is about 100 minutes apart.

From 7 through 9 April 1990 a large low-pressure area dominated
the eastern Pacific Ocean (Figs. 13-14). Figure 15 shows precipitable
water over two ascending SSM/I passes. Within the western pass,
streamlines suggest the cyclonic flow of the developing cyclone. Southerly
flow is advecting an elongated stream of moist air from the subtropics
northward toward the Aleutian Islands. In the northern portion of the
eastern pass of Figure 15, offshore flow from western Canada is advecting
dry air into the northwest Pacific Ocean. In the southern portion of the
castern pass, a small-scale cyclone is advecting another stream of moist
air northward from the subtropics.

Figure 16 is the same scene a day later. The northern portion of both
passes is now dominated by dry, offshore flow. In the eastern pass, the
streamlines help trace the cyclonic advection of the moisture around
the low center, indicating that the system is in the early occlusion process.
Figure 17 is the final scene in the 3-day sequence. Advected in by
strong northerly winds, the dry air originating in Alaska and western
Canada is now wrapping around the western edge of the cyclone. In
Figure 17 the cyclone is cut off from its supply of moist air to the south
and is dying.

On 29 November 1989, a small-scale cyclone prevails in the northwest
Gulf of Alaska. The marine wind field (Fig. 18) indicates a windspeed
minimum near Kodiak Island (Fig. 19). The SSM/ also indicates
a minimum in this vicinity. Of more interest, however, are the differences
in the two products within the offshore flow near the Aleutian Peninsula.
Northerly flow is common here in late fall and represents a combination
of synoptic forcing by the semipermanent Aleutian low and cold air
drainage from the frigid Alaskan land mass. Figure 18 shows two
terrain induced minima in SSM/I windspeed (marked on Fig. 19). One
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3.7 Aleutian Cyclone

3.8 Cyclone Over the

Black Sea

minimum lies just downwind of the Ahklun Mountains, the other lies
just downwind of the Veniaminof Volcano. The shielding effect in this
region also appeared in the SSM/I displays on 28 and 30 November
(not shown) due the persistence of northerly flow. The shielding effect
cast by the Ahklun Mountains is also supported by wind climatologies
from surface stations in the region (Brower et al., 1988). The marine
winds product (Fig. 18) has a much coarser resolution than the SSM/I
and fails to show either of the terrain-induced minimums.

In the previous case topographic features explained a significant portion
of the windflow. This example illustrates a case in the same region
where synoptic factors are the most influential. On 3 April a cyclone is
centered over the Aleutian Islands (Fig. 20). A water vapor (Fig. 21)
image shows dry air (light gray) being advected southward on the western
portion of the image, while moist air (darker gray) is advected northward
on the adjacent pass to the east. The black areas indicate ice pack.
Nearly calm flow in the middle of the cyclone appears in Bristol Bay
and very strong flow occurs to the southwest (Fig. 22). The concentric
isotach overlay (black lines on Fig. 22) illustrates the same pattern: the
lowest winds occur within Bristol Bay with much stronger winds to
the southwest.

Tactical operations often require the nowcasting of weather conditions
within relatively small, enclosed water bodies. In particular, the
SSM/I can show small-scale variations which numerical models might
not depict adequately. The disadvantage is that the surrounding land
areas create side-lobe effects, which contaminate the data near
the coastlines. The SSM/I windspeed product is especially sensitive to
coastal contamination. Also, research continues on whether the SSM/1
windspeed algorithm, developed and validated for open ocean, is valid
for inland water bodies. Thus, while the product can be used qualitatively
over enclosed water bodies as in the following example, the user cannot
strictly rely on the quantitative windspeeds.

Figure 23, a surface chart of the Black Sea region for 28 November
1989, shows the absence of a significant windspeed gradient over the
region. Thus, Figure 24, a windspeed image of the Black Sea, shows
only light speeds over the eastern two-thirds of the water area. (Disregard
higher windspeed areas near the coastline; these represent shoreline
contamination.) The accompanying marine wind streamlines (Fig. 24)
indicate westerly winds in the western portion of the Black Sea, shifting
to more southerly in the eastern half.

Twenty-four hours later a strong high-pressure area has advanced
into the region, creating a stronger pressure gradient (Fig. 25). Thus,
the marine winds product now develops northerly winds over the western
portion of the sea (see streamlines and isotachs on Fig. 26). The winds
are particularly strong in the northwest corner of the Black Sea. A

—

A

Synoptic Comparison

?fSSM/I Displays with Numerical Products 7




3.9 Frontal Systems in the
Western Atlantic Ocean

cyclonic circulation appears over the northeastern portion of the Black
Sea.

The SSM/I display (Fig. 26) clearly shows that the strongest winds
are in the northwest corner of the Black Sea in agreement with the
marine winds isotachs. Speeds are in the vicinity of 20 m/s (approximately
40 kt). In the Sea of Azov, east-northeast of the high-speed region,
windspeeds are much lower, around 6 m/s (12 kt). The precipitable
water image (Fig. 27) is consistent with the windspeed display: low
(dry) values on the western side of the image represent a cool, continental
air mass advected in from the north. High (moist) values on the eastern
side represent moister air with origins in the Mediterranean Sea. The
gradient in precipitable water, along v-ith the windshift (indicated bty
the streamlines), suggests a cold front which divides the Black Sea
approximately in half, notth to south (Fig. 27). A rain display (Fig. 28)
shows that precipitation is falling in the moist southerly flow ahead of
the front.

10 April 1990 at 1200 GMT. On 10 April 1990 high-pressure domi-
nates the western Atlantic Ocean (Fig. 29) with a low-pressure region
approaching from the United States. Figure 30, precipitable water, shows
that the anticyclonic streamflow pattern is advecting a dry, continental
air mass into most of the study area. The southern and eastern edges of
this air mass are bounded by a rapid increase in precipitable water. This
strong gradient marks the frontal position (marked on Fig. 30), dividing
the dry, continental air from moist, subtropical air to the south.

The SSM/1 windspeed display (Fig. 31) shows light speeds near the
center of the anticyclone. The model streamline center is offset slightly
from the SSM/I windspeed minimum. To the south of the center lies a
“whited-out” band, indicating a precipitation band associated with the
cold front. To the south of this band, windspeeds are relatively light.
To the north, windspeeds are much greater.

Figure 32 shows the precipitation rates associated with the frontal
band. The central portion of the band lies in the coverage gap between
the two passes; thus, two fragments of the same band appear on the
display. The northeastern portion of the band contains significant
precipitation with embedded values of 5 mm per hour. The southern
portion coatains only light precipitation with amounts around 1 mm per
hour. The omega (vertical motion) field (Fig. 33) supports the precipitation
intensity observed on Figure 32. Negative values on this chart indicate
rising air at 700 mb; positive values indicate sinking air. The maximum
vertical motion of —6.25 microbars/second on the extreme eastern edge
of the display corresponds with the region of significant precipitation
as observed by the SSM/I display. On the other hand, the center of the
anticyclone is represented by an omega value of +3.€1 microbars/second,
indicating sinking motion.

10 April 1990 at 22 GMT. Ten hours later the high-pressure area has
moved slightly toward the northeast (Fig. 34). Figure 35, an SSM/I

A Synoptic Comparison of SSM/I Displays with Numerical Products



swath of precipitable water overlayed with marine level streamlines,
shows a large anticyclone distributing dry air throughout a large portion
of the study area. The SSM/I precipitable water gradient, marking the
frontal zone, has become stationary in the southern portion of Figure 35.

Figure 36 again shows SSM/I precipitable water as in Figure 35 but
now overlayed with NOGAPS isopleths of precipitable water. Note that
NC GAPS agrees with the SSM/I concerning the uniform dryness of the
air mass in the northern two-thirds of the scene (values on the order of
10 kg/m?). The increasing NOGAPS gradient of precipitable water in
the southern portion of the scene agrees well with the darker gray
shades shown by the SSM/I. The SSM/I windspeed display shows the
ridge line (elongated region of light winds) running through the middle
of the image (Fig. 37).

April 1990 at 12 GMT. Fourteen hours later the high-pressure area
still dominates the eastern portion of the study area (Fig. 38). However,
a 998-mb cyclone over Maine has begun to move into the study region.
The precipitable water product shows moist air wrapping around the
remaining dry air mass (Fig. 39). Model precipitable water isopleths
support this pattern (Fig. 40), indicating the advection of a narrow
stream of moist air northward along the East Coast of the United States.
The windspeed display (Fig. 41) shows an elongated belt of light winds
associated with the anticyclone to the east.

April 1990 at 22 GMT. On 11 April at 22 GMT a pressure trough
associated with the East Coast cyclone has begun to move offshore
(Fig. 42). The western pass of the precipitable water product (Fig. 43)
shows the edge of a tongue of moist air moving up from the south in
converging southerly flow. Dry air just to the rear of this tongue marks
an advancing dry air mass. A cold front marks the transition between
the two air masses. The eastern pass of Figure 43 continues to show
anticyclonic rotation of moist air around the retreating high-pressure
region. Much of the western pass of the windspeed product (Fig. 44) is
rain-flagged, making interpretation difficult. In the eastern pass of
Figure 44, lower windspeeds correspond to the ridge line of the
anticyclone.

12 April 1990 at 12 GMT. The trough line of 14 hours earlier has
pushed off the Atlantic coast (Fig. 45). The precipitable water product
(Fig. 46) indicates the associated cold front distinctly as the boundary
between dry air over the Atlantic nearshore waters and the tongue of
moisture farther offshore. Figure 47 shows that precipitation is falling
within the frontal band with embedded values as high as 5 mm per hour.
The precipitation is consistent with the omega (vertical motion) product
(Fig. 48), which shows a large band of negative values (rising air) off
the coast. Figure 49 again shows the precipitable water product but now
overlayed with model isopleths of precipitable water. The model isopleths
generally agree with the SSM/I precipitable water, except that the gradients
depicted by the model are much coarser than depicted by the SSM/I.

A Synoptic Compari;on of SSM/I Displ;y—s with Numerical Products 9




3.10 Winds in the Persian
Gulf and the Arabian Sea

4.0 Discussion
and Conclusions

The SSM/I windspeed product (Fig. 50) indicates generally light winds
in the southern and eastern portions of the study area, with stronger
winds in the northwest associated with the frontal system.

During a 2-day period (2-3 October 1990) windflow remained fairly
uniform over the Persian Gulf and the northeastern Indian Ocean
(Fig. 51). The marine winds streamlines show north to northeast winds
over the Persian Gulf but south to southwest winds over the Indian
Ocean. A convergence zone lies between (Figs. 52-55) the two wind
regimes.

The SSM/I displays, placed 12 hours apart, show persistent terrain
effects on the wind fields. For example, three of the four passes cover
the island of Socotra (Figs. 52, 54, 55). In each instance the SSM/I data
clearly show a small region of reduced windspeed to the lee of the
island. The overlay of the streamlines on the SSM/I product makes
interpretation of this effect much easier. Since the prevailing wind is
from the south-southwest, it is easy to conclude that these relatively
calm regions are lee effects.

Other lee effects also appear in the series. For example, reduced
winds appear, especially in Figures 52, 53 and 55, in the Gulf of Aden
downwind of mountainous terrain to the south. Reduced windspeeds
also appear south of the Zagros Mountains in the Persian Gulf
(Figs. 52-54).

The preceding case studies illustrate that the juxtaposition of
SSM/I and NOGAPS products can provide better nowcasting support
than either product by itself. This juxtaposition is perhaps most useful
in the nowcasting of marine winds. As a complement to the SSM/I
display, the marine winds product provides wind direction and consis-
tency in time and space. It also serves as a check on the SSM/I windspeeds
in areas of significant precipitation. As a complement to the marine
winds products, the SSM/I displays provide timely and detailed spatial
variations of surface windspeed. The SSM/I can be especially valuable
in areas affected by continental influences, such as the seas northeast
of Iceland (Fig. 1a), the Alaskan coastal waters (Fig. 18—19), and the
Indian Ocean/Persian Gulf (Figs. 52-55).

Work is underway to assimilate SSM/I windspeed retrievals directly
into numerical forecast systems (Goerss, 1989). Nevertheless, even when
SSM/I data are routinely assimilated, the integrated approach outlined
here still has advantages. First, real-time satellite readout will always
be more timely than forecast system output. Second, the high resolution
of the SSM/I enables the display of detail not possible using numerical
model output. Third, assimilation of SSM/I windspeeds into a forecast
system may suffer where the corresponding model wind directions are

10
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Figure 1.

(a) SSM/I windspeed analysis for
0540 UTC, 29 Novemberl989. In
the vicinity of the ice edge and
near coastlines windspeeds

are often anomalously high, e.g.,
the green ring off the southern
coast of Iceland. Regions
surrounded by dotted lines
(between the British Isles and
Iceland) indicate level 1 accuracy
flags (Table 1); (b) marine level
isotachs (m/s) and streamlines,
interpolated to 0540 UTC,

29 November 1989.
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Figure 2.

Surface chart for 0600 UTC,

29 November 1989. Winds are plotted
as: full barb = 10 kt, half = 5 kt,
isobars drawn every 4 mb.

Figure 3.

Surface chart for 1800 UTC,

1 December 1989. Winds are plotted
as: full barb = 10 kt, half = 5 kt,
pennant = 50 kt, isobars

drawn every 4 mb.
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Figure 4.

Grayshade display: SSM/I
precipitable water for 1510 UTC,
1 December 1989. Overlay: marine
level streamlines interpolated to
1510 UTC (based on

1200 UTC analysis and
Jollowing 0000 UTC forecast),

1 December 1989. Arrow
indicates shift necessary to move
the steamline field into better
agreement with the SSM/I
precipitable water product.
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Figure 5.

Grayshade display: SSM/I
windspeed analysis for 1510 UTC,
1 December 1989. Overlays:
marine level isotachs in m/s (black
lines) and streamlines (light gray
arrows) interpolated to 1510 UTC
(based on 1200 UTC analysis and
Jollowing 0000 UTC forecast),

1 December 1989. Blank (white)
regions correspond to accuracy-

Jflagged regions.
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Figure 6.

SSM/I accuracy flags for

1510 UTC, 1 December 1989.
Black = flag value of 3,

dark gray = 2, light gray = 1,
white (blank) = O (see Table 1).
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Figure 7.

Grayshade display: SSM/I
precipitable water for 1435 UTC,
3 September 1990. Overlay: marine
level streamlines interpolated to
1400 UTC (based on 1200 UTC
analysis and following

0000 UTC forecast),

3 September 1990.
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Figure 8.

Grayshade display: SSM/I
windspeed analysis for 1435 UTC,
3 September 1990. Overlays:
marine level isotachs in m/s (black
lines) and streamlines (light gray
arrows) interpolated to 1400 UTC
(based on 1200 UTC analysis and
Jollowing 0000 UTC forecast),

3 September 1990. Blank (white)
regions correspond to accuracy-
flagged regions.

26

A Synoptic Comparison of SSM/I Displays with Numerical Products




N H ‘.u\g\ A tod N % ?\'\;\
~., "~
~, ~. .

WINDSPEED (m/s)

™ FRONTAL

- ZONE )
L /000
gl

. \
-

WESTERN ™. @ % %

30°

A Synoptic Comparison of SSM/I Displays with Numerical Products




Figure 9.

Surface Chart for 0200,

27 April 1990. Isobars drawn for
every 4 mb.
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Figure 10.

Grayshade display: SSM/1
windspeed analysis for 0355 UTC,
26 April 1990. Overlays: marine
level isotachs in m/s (black lines)
and streamlines (light gray
arrows) interpolated to 0200 UTC,
26 April 1990. Blank (white)
regions correspond to accuracy-

Jlagged regions.
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Figure 11.

Grayshade display: SSM/I
windspeed analysis for 1500 UTC,
26 April 1990. Overlays: marine
level isotachs in m/s (black lines)
and streamlines (light gray arrows)
interpolated to 1400 UTC,

26 April 1990. Blank (white)
regions correspond to
accuracy-flagged regions.
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Figure 12.

Grayshade display: SSM/1
windspeed analysis for 0310 UTC,
27 April 1990. Overlays: marine
level isotachs in m/s (black lines)
and streamlines (light gray arrows)
interpolated to 0200 UTC,

27 April 1990. Blank (white)
regions correspond to
accuracy-flagged regions.
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Figure 13.

Surface chart for 1400 UTC,

7 April 1990. Isobars drawn for
every 4 mb.
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Figure 14.

Surface chart for 1400 UTC,

9 April 1990. Isobars drawn for
every 4 mb.
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Figure 15.

Grayshade display: SSM/I
precipitable water analysis for
1500 UTC, 7 April 1990. Overlay:
streamlines (black arrows)
interpolated 1o 1400 UTC,

7 April 1990.
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Figure 16.

Grayshade display: SSM/I
precipitable water analysis for
1430 UTC, 8 April 1990.
Overlays: streamlines (black
arrows) interpolated to 1400 UTC,
8 April 1990.
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Figure 17.

Grayshade display: SSM/1
precipitable water analysis for
1430 UTC, 9 April 1990.
Overlays: streamlines (black
arrows) interpolated to

1400 UTC, 9 April 1990.
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Figure 18.

Grayshade display: Blowup of
SSM/I windspeed analysis for
1553 UTC, 29 November 1989.
Overlays: marine level isotachs in
m/s (black lines) and streamlines
(light gray arrows) interpolated to
1600 UTC, 29 November 1989.
Blank (white) regions correspond
to accuracy-flagged regions or
ice-covered regions.
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Figure 19.

Topographic map of region
depicted in Figure 18. Contour
interval is 200 m.
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Figure 20.

Surface chart for 1600 UTC,
3 April 1990. Isobars drawn
Jor every 4 mb.
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Figure 21.

Grayshade display: SSM/I
precipitable water analysis for
1600 UTC, 3 April 1990. Overlays:
streamlines (black arrows)
interpolated to 1600 UTC,

3 April 1990.
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Figure 22.

Grayshade display: SSM/I
windspeed analysis for 1600 UTC,
3 April 1990. Overlays:
streamlines (light gray arrows)
and isotachs in m/s (black lines)
interpolated to 1600 UTC,

3 April 1990.
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Figure 23.
Surface chart for 0340 UTC,
28 November 1989. Isobars drawn

Jor every 4 mb.
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Figure 24,

Grayshade display: SSM/I
windspeed analysis for 0340 UTC,
28 November 1989. Overlays:
streamlines (light gray arrows)
and isotachs in m/s (black lines)
interpolated to 0341 UTC,

28 November 1989.
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Figure 25.

Surface chart for 0340 UTC,
29 November 1989. Contours
drawn for every 4 mb.
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Figure 26.

Grayshade display: SSM/1
windspeed analysis for 0340 UTC,
29 November 1989. Overlays:
streamlines (light gray arrows)
and isotachs in m/s (black lines)
interpolated to 0340,

29 November 1989.
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Figure 27.

Grayshade display: SSM/I
precipitable water analysis for
0341 UTC, 29 November 1989.
Overlay: streamlines (black
arrows) interpolated to 0340 UTC,
29 November 1989.
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Figure 28.
SSM/I precipitation rate for
0341 UTC, 29 November 1989.
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Figure 29.

Surface chart for 1200 UTC,

10 April 1990. Isobars drawn for
every 4 mb.
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Figure 30.

Grayshade display: SSM/1
precipitable water analysis for
1100 UTC, 10 April 1990.
Overlay: streamlines (black
arrows) interpolated to 1200 UTC,
10 April 1990.
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Figure 31.

Grayshade display: SSM/I
windspeed analysis for 1100 UTC,
10 April 1990. Overlay:
streamlines (black arrows)
interpolated to 1200 UTC,

10 April 1990.
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Figure 32.

Grayshade display: SSM/1
precipitation rate for 1100 UTC,
10 April 1990.
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Figure 33.

Vertical motion for 1200 UTC,

10 April 1990. Contours drawn in
units of microbars/second.
Negative values indicate rising
air at 700 mb; positive values
indicate descending air at

700 mb.

A Synoptic Comparison of SSM/I Displays with Numerical Products




 DOWNWARD H
. MOTION 3961

s

A Synoptic Comparison of SSM/I Displays with Numerical Produc?s

77




Figure 34.

Surface chart for 2200 UTC,

10 April 1990. Isobars drawn for
every 4 mb.
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Figure 35. Py
Grayshade display: SSM/I
| precipitable water analysis for
i 2300 UTC, 10 April 1990.
| Overlay: streamlines (black
arzcws} interpolated to 2200 UTC,
10 April 1990.
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Figure 36.

Grayshade display: SSM/1
precipitable water analysis for
2300 UTC, 10 April 1990.
Overlay: NOGAPS isopleths of
precipitable water (kg/m?) for
2200 UTC, 10 April 1990.
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Figure 37.

Grayshade display: SSM/I
windspeed analysis for 2300 UTC,
10 April 1990. Overlay: streamlines
(black arrows) interpolated to

2200 UTC, 10 April 1990.
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Figure 38.

Surface chart for 1200 UTC,

11 April 1990. Isobars drawn for
every 4 mb.
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Figure 39.

Grayshade display: SSM/I
precipitable water analysis for
1100 UTC, 11 April 1990.
Overlay: streamlines (black
arrows) valid at 1200 UTC,
11 April 1990.
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Figure 40.

Grayshade display: SSM/1
precipitable water analysis for
1100 UTC, 11 April 1990.
Overlay: NOGAPS isopleths of
precipitable water (kg/m?) valid
ar 1200 UTC, 11 April 1990.
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Figure 41.

Grayshade display: SSM/I
windspeed analysis for
1100 UTC, 11 April 1990.
Overlay: streamlines (black
arrows) valid at 1200 UTC,
11 April 1990.
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Figure 42.

Surface chart for 2200 UTC,
11 April 1990. Isobars drawn
for every 4 mb.
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Figure 43.

Grayshade display: SSM/1
precipitable water analysis for
2300 UTC, 11 April 1990.
Overlay: streamlines (black
arrows) valid at 2200 UTC,
11 April 1990.
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Figure 44,

Grayshade display: SSM/1
windspeed analysis for
2300 UTC, 11 April 1990.
Overlay: streamlines (black
arrows) valid at 2200 UTC,
11 April 1990.
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Figure 45.

Surface chart for 1200 UTC,
12 April 1990. Isobars drawn
Jor every 4 mb.
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Figure 46.

Grayshade display: SSM/I
precipitable water analysis for
1100 UTC, 12 April 1990.
Overlay: streamlines (black
arrows) valid ar 1200 UTC,
12 April 1990.

102 A Synoptic Comparison of SSM/I Displays with Numerical Products




b

PRECIPITABLE WATER (kg/m?)

N

NORTHWARD
FLOWOF
MOISTAIR

|

\ Synoptic Comparison of SSM!I Displays with Numeric

al Products

103




Figure 47.
SSM/I precipitation rate for
1100 UTC, 12 April 1990.
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Figure 48.

Vertical motion for 1200 UTC,

12 April 1990. Contours drawn in
units of microbars/second.
Negative values indicate rising air
at 700 mb; positive values indicate
descending air

at 700 mb.
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Figure 49.

Grayshade display: SSM/1
precipitable water analysis for
1100 UTC, 12 April 1990.
Overlay: NOGAPS isopleths of
precipitable water (kg/m?) valid
at 1200 UTC, 12 April 1990.
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Figure 50.

Grayshade display: SSM/T
windspeed water analysis for
1100 UTC, 12 April 1990.
Overlay: streamlines (black
arrows) valid at 1200 UTC,

12 April 1990.
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Figure 51.
Topographic map of study area
shown in Figs. 52-55.
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Figure 52.

Grayshade display: SSM/I
windspeed analysis for 0240 UTC,
2 October 1990. Overlay:
streamlines (black arrows) valid at
0300 UTC, 2 October 1990.
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Figure 53.

Grayshade display: SSM/T
windspeed analysis for 1520 UTC,
2 October 1990. Overlay:
streamlines (black arrows) valid
at 1500 UTC, 2 October 1990.
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Figure 54.

Grayshade display: SSM/1
windspeed analysis for 0225 UTC,
3 October 1990. Overlay:
streamlines (black arrows) valid
at 0300 UTC, 3 October 1990.
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Figure 55.

Grayshade display: SSM/I
windspeed analysis for 1501 UTC,
3 October 1990. Overlay:
streamlines (black arrows) valid
ar 1500 UTC, 3 October 1990.
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