AD-ESTO N Lo
UNCLASS'HED (Conv 17 of 49 coples =

AD-A261 9
AR I'I! !Illlll'

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut

Bill Brykczynski, Task Leader

December 1992

Prepared for
Strategic Defense Initiative Organization

Approved for public release, unlimited distribution. January 13, 1993, “|

| 93-06000
83 3 23 045 AR A

INSTITUTE FOR DEFENDE ANALYDMEDS
1801 N. Beaurcgard Street, Alexandria, Virginia 22311-1772

UNCLASSIFIED IDA Log No. HQ 92-042571

DEFINITIONS .
DA publishes the following documents to repart the resuits of its work.

Reporis

Reports are the most authoritative and most carefully considered products IDA publishes.
They normatly embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. 1DA Reports are reviewsd by outside pansis of experts
1o ensure their high quality and relevance to the problems studied, and they are rsleased
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
paneis composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewsd by the senior individuals
responsibie for the project and others as selected by 1DA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers

Papers, aiso authoritative and carsfully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expectsd of refersed papers in professional journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the procesdings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intanded use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defenss. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
refiscting the official position of that Agency.

© 1992 Institute for Defense Analyses

The Government of the United States is granted an unlimited license to reproduce this
document.

REPORT DOCUMENTATION PAGE OMB Noy 07040188

Public reporting burden for this coliection of information is estanated to average 1 hour per r including the time for reviewing mstructions, searching existing daia sources,

gathering and maintaining the data needed, and campleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headdgt Services, Di for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Examination of Selected Software Testing Tools: 1992 MDA 903 89 C 0003

Task T-R2-597.21

6. AUTHOR(S)

Christine Youngblut
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. mpo%-ht«mc ORGANIZATION REPORT

Institute for Defense Analyses (IDA) IDA Paper P-2769

1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
SDIO/SDA REPORT NUMBER

Room 1E149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, unlimited distribution. January 13, 1993. 2A

13. ABSTRACT (Maximum 200 words)

This paper reports on the examination of 27 tools that provide for test management, problem reporting, and
static and dynamic analysis of Ada code. It provides software development managers with information that
will help them gain an understanding of the current ilities of tools that are commercially available, the
functionality of these tools, and how they can aid the development and support of Ada software. During the
course of the examination, the static and dynamic analysis tools were applied to a sample Ada program in order
to assess their functionality. The test management and problem reporting tools were also subject to a practical
examination using vendor-supplied data. Each tool was then described in terms of its functionality, ease of use,
and documentation and support. Problems encountered during the examination and other pertinent
observations were also recorded. Available testing tools offer important opportunities for increasing software
quality and reducing development and support costs. The wide variety of functionality provided by tools in the
same q:ltegory. however, and, in some cases, lack of tool maturity, require careful tool selection on behalf of a
potential user.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Testing Tools; Static & Dynamic Analysis; Problem Reporting; Ada. 504
16. PRICE CODE

17.SECURITY CLASSIFICATION| 18. SECURITY CLASSIFICATION [19.SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT SAR
Unclassified Unclassified Unclassified

- Standard Form 298 (Rev. 2-89) ‘
NSN 7540-01-280-5500 p.,%o? ANSI Std Z%9-18

UNCLASSIFIED

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut Aecosion For

Bill Brykczynski, Task Leader NTIS CRA&I g
O

DTIC TAB
Ui annou.:ced
Justification

Dist ibutio)]
.
Availability Codes

December 1992 Dist Avail and]or

Special
A-1

C o my yor
DTIU CAVINPNY L 4 Lw-::xcm 1

Approved for public release, unlimited distribution. January 13, 1993.

D

]

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.21

UNCLASSIFIED

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the Strategic
Defense Initiative Organization (SDIO) as a follow-on effort for Subtask Order T-R2-
597.21, “Software Testing of Strategic Defense Systems.” The objective of this subtask is
to assist the SDIO in planning, executing, and monitoring software testing and evaluation
research, development, and practice.

In support of this objective, IDA conducted an examination of 27 tools that support soft-
ware testing. These tools provide for test management, problem reporting, and static and dy-
namic analysis of Ada code. This paper presents the results of the examination and provides
software development managers with information on current capabilities of available test-
ing tools.

This paper was reviewed by the following members of the IDA research staff: Dr. Rob-
ertJ. Atwell, Dr. Dennis W. Fife, Dr. Randy L. Garrett, Ms. Deborah Heystek, Ms. Audrey
A. Hook, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, and Dr. Richard L. Wexelblat.

SUMMARY

Software testing is labor intensive and can consume over 50% of software development
costs. Rarely is sufficient, effective testing performed as evidenced by the fact that a failure
rate of 3 to 10 failures per thousand lines of code is typical for commercial software. More-
over, the cost of correcting a defect increases as software development progresses; for ex-
ample, the cost of fixing a requirements fault during operation can be 60 to 100 times the
cost of fixing that same fault during early development stages. Consequently, timely defect
detection is important. Automated testing tools can alleviate these problems by providing
managers with more insight into the progress of test activities, by reducing the traditionally
manual nature of testing, and by encouraging the application of improved testing practices.
Yet reviews of testing practices and tool usage reveal extremely poor exploitation of avail-
able testing tool support. Recent surveys of test practitioners indicate that there are few
common test practices and only scattered tool usage.

Over 600 testing tools from some 400 suppliers were identified during the course of this
study. From these, 27 tools were selected for examination. These tools support test manage-
ment, problem reporting, and static and dynamic analysis of Ada code. Consideration of
tools that are dependent on special hardware, limited to regression analysis, or form an in-
tegral part of a computer-aided software engineering (CASE) system was postponed for a
later effort. Also, care was taken not to duplicate the tool assessment efforts of other groups.
During the course of the examination, the static and dynamic analysis tools were applied to
a series of Ada programs in order to assess their functionality. The test management and
problem reporting tools were also subject to a practical examination using vendor-supplied
data. Each tool was then described in terms of its functionality, ease of use, and documen-
tation and support. Problems encountered during tool use and other pertinent observations
were also recorded. ‘

Significant findings from this study include the following:

» Test management tools offer critically needed support for test planning and test
progress monitoring. This category of test tool is perhaps the latest to come to mar-
ket. With the exception of reliability analysis tools, which are becoming more com-
mon, progress monitoring capabilities are infrequently available and primitive.

vii

Nevertheless, the ability of these tools to manage a collection of test information is
very valuable and the data available from the analysis of this information is urgently
needed to support the documentation and management of test activities.

Problem reporting tools offer additional support for test management by provid-
ing insight into the status of software products and the progress of development
activities. These tools are primarily intended to support the tracking of identified soft-
ware problems and the management of problem resolution. They also provide infor-
mation on the status and quality of software products; in particular, they capture the
data needed for software reliability modeling. This data can also provide valuable
insights into the status and quality of the software development processes themselves,
and so support continuous process improvement.

Available static analysis tools are essentially limited to facilitating program
understanding and assessing characteristics of software quality. They provide
some minimal support for guiding dynamic testing. The types of defects tradition-
ally found by static analysis tools are now routinely checked for by Ada compilers.
Currently, complexity analysis, control flow analysis, and software browsing are the
most common static analysis functions supported.

Although many needed dynamic analysis capabilities are not commonly avail-
able, tools are available that offer considerable support for dynamic testing to
increase confidence in correct software operation. Dynamic analysis is the princi-
ple method used for software validation and verification. Here automated support for
the preparation of a test bed, generation of test data, and analysis of test results is
urgently needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human testcr and increase software quality by
supporting test data adequacy analysis and test repeatability. Tools that offer elements
of this type of support are available.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. Existing testing tools are generally easy to use and sup-
ported by good documentation. There were instances during this study, however, where dif-
ferent tools gave different results when performing the same function, for example,
calculating cyclomatic complexity. Moreover, some of the tools contained faults. While
most failures were trivial, others rendered a tool unusable.

Available testing tools offer important opportunities for increasing software quality and

reducing development and support costs. Even so, there are a number of specific problems
with these tools and a lack of needed functionality that may handicap testing of Ada soft-

» There is a lack of tool support for testing concurrent Ada software.

« There is a need for increased tool integration to provide more complete coverage of
testing activities.

viii

*» There is a need for integration of testing tools into CASE systems to provide
improved feedback into development activities.

* There is a lack of data on the cost effectiveness of particular test techniques and tools
that can be used to encourage and guide tool use.

ix

PART 1 STUDY OVERVIEW

1. INTRODUCTIONoooiiricieeeteirieeneeesiesearessessesee e stassenssssstsnsssssssesssasnsesssssssenssnsas 1-1
L1 PUIPOSE ..voeerieeeerecenitieiiineiss e tsat s se e st s te e esss e e s sse e b e st assase st auns e saasnasas 1-1
1.2 SCOPE vereeeneiretencnrcstetnetsr st sn s st sa s s s bbb s s an s e s s s s b se st ar s et esnasesaanaanas 1-1

2. STATE OF PRACTICEoceoeereeeceserenteeenreseeseenesesaeesesensaesssesssmsssesesnsssessssneosesss 2-1

3. TEST REQUIREMENTS AFFECTING TOOL USEccccovvincinicniniiinacenns 3-1
3.1 Affect of SDIO Software Test Requirements on Tool Useccoevueevinnens 3-1
3.2 Affect of the SEI Process Maturity Model on Tool Usecoecerircncennecnncas 33
3.3 Affect of the Software Metrics Program on Tool Usecccocccoviieininvciccinancne 3-5

4. APPROACH AND METHODSooiiireeeerecsenncetsnresessensesstsacenessessesssnesnens 4-1
4.1 TOOI SEIECHON ...oocoverereerreecrecerereensteriaessieasstessasssesssssssssessssssssssesssssessessnsasssssnses 4-1
4.2 Method of EXaMINALONccceievereenrrnienrnentesseersecteesencerssessessasesssnessessaesseessesessns 4-4
4.3 CASE System Support for Software TestiNgc.ccoveeivuecrmernnicnierisnsseceenens 4-5
4.4 Development Environment Support for Software Testingccccocoovevivnnienennns 4-5

5. TEST MANAGEMENTcuocrrinireerinresesneersenestssensssstsseenssassacssnsesesesmsss 5-1
5.1 Test Planning and DOCUMENLALIONcocceeeriveiirirnnnnntinmereienscsrserecuesessesnsssessins 5-2
5.2 Requirements MapPiNgcccoceeimevceienenrerseseirnsssssessinieisssssessmssesasssssssssesssasens 5-3
5.3 Test Progress MOMItOTINGcocoeviviiinreieiseisnseesnesnsissessisessssssssessessessessennsns 5-3
5.4 Productivity ANALYSIScccceovniereeiirseenrsnesasstensssnessessnesssssnsessosostosessessssnsossssens 5-5

6. PROBLEM REPORTINGcccosmmiireeirecerenncennenesensesssesosestsssssssnensatsensasssssssoses 6-1
6.1 Report Types and Details Capturedccccieeevevernnisircessinveccsscsssensnssessnesssaeens 6-1
6.2 IMPOTt CapabILitycoceruerererinccnsirarnnsnssarsansansscssassonssarsssestssosenssssesasesesasesssosassons 6-2
6.3 Reporting Capabilitiescoceeerrcrsenrensenrenneseecsssscessanssnssesasssssnesssssessessessseseen 6-2
6.4 Standards CONfOIMANCEcccceccruenrrreeceereencsnesnentessssssansessanensssssnssssssennossoeessssns 6-3
6.5 Distributed ATCRItECIUIEcccecveerierierseererecerransesssaessessnessscssasnossessssssssnnsssessasssses 6-3

T. STATIC ANALYSIS ... rirntinreentnesnrnssentsesessesasanestascessoreesssotsnssassesssses 7-1
7.1 Complexity ANALYSIScccocirviiiennnicreenenssonnecresnesnssenesssenesssssesssesesassessassssences 7-1
7.2 Data FIow ANalySiscoveuivecvmnneeniinrenncsniesscsessiesssneessesssssnsssssssessessnsasasensas 7-3
7.3 Control FIOW ANALYSIScccoeeeevrnncrsnnrirrecnenscraeseessensnsscnnssssssesecssssessssassessesssssnaes 7-3
7.4 Information FIOW ANALYSIscccccvrirneenrinrrnnincsniennescnrenseensssssseesessscnsassnnesssn 7-5
7.5 Standards Conformance ANAlySiscccccceerieerreesinecseessaeeneesssessessesseessecasanesons 7-5
7.6 QUality ANALYSIScccovvviiieirtiriiiirrecrceneereeaeseeserstessessrnessessseserasesesaresessessesseones 7-6
7.7 Cross-Reference ANalysisc.ccoceeveereecnniesenrnssensncsssnvaressssesssesseesosesessosenenssene 7-6
T.8 BIOWSING ..coccueiriciniinrcnninirisinisesinenssestssssssssssassessnessessaessssasessssssossssssssassssssnsessas 7-7
7.9 Symbolic EVAlUGLIONcuceiierinerrteneerevecnenvenessesnosnasssnsssssssensssassasssssessssas 7-7
7.10 Specification Compliance Analysiscccccveereccnrreerenrneceeseseereeseseesesesssasens 7-8
T 11 PIEtty PHNUNEooviurriirnieiintiinestsencsesesrnassssnsaesssssasessesesssnssassesssnsssssesnsasssns 7-8

8. DYNAMIC ANALYSIS ...titetinsicnenennenneseenaesnersesssssestesesssessesassassesssnssssssssenens 8-1

8.1 ASSErtion ANALYSIS ...ccccveeriiririieeieenctiirireeneeeserectas e eresssecrsaneesssrecnsesssanessnsaesonee 8-1

8.2 Coverage ANAIYSISccooeroiiiceiiiiiiiiinec et e b 8-2
8.2.1 Structural Coverage Analysiscccceeerveniirencenreiiiicnneceecene et ceeceeeaes 8-2
8.2.2 Data Flow Coverage ANalysiscocccvovveeeciereverennecrnnnnnieessreseseesssnnnesenens 8-3
8.2.3 Functional Coverage AnalysiSccccceeeiiemerriereccernnnereneseneeessteessaesnnnes 8-4

8.3 PIOfIlING ..ceooinrriniieeeiiniininticece st sete st ense st csassnt st srassr b saes s eaneens 8-5

8.4 TImIng ANAYSIS ...ccccovimniiiinniiiiiieccciee et sbeab essareas 8-5

8.5 Test Bed GENETationccccceveiveeneiiiirruerrerreeesarasaessnessseosseraseesreessesstessnsessesssnen 8-5

8.6 Test Data Generation SUPPOTLcouoviiecirnrrermrneecesssnrssecrenseseesasosssessssesseseses 8-6
8.6.1 Structural Test Data GEnerationcccoeceereereiecciroemenceessessseceesseeeseenaens 8-7
8.6.2 Functional Test Data Generationcoccoccoeveeveecenvnnrneenrneecsseesnnnnennnnns 8-7
8.6.3 Parameter Test Data Generationccccecceevceveernneenrenenveeseesseersensaesannns 8-8
8.6.4 Grammar-based Test Data Generationccecceeeeeveeveenereeseenecnenennnne. 8-8

8.7 Test Data ANALYSISccovvierieeeniiruininneeserentescsennnteseesssstestresesssesseessessssaeesaassseas 8-8

8.8 Dynamic Graph GEnerationccoeeeeeeveenveeeineennreesicsesessseeeseessesessesssssessessones 8-8

9. FINDINGSooioeireeretreeereneeersseseeseescsansesasssessesssssessssessesssstessasasssssesssassssssansassans 9-1

9.1 Status of Available TOOISccecevirriimiirneinriirrecreseesere e eeaerrreeesassseesesevessansnanne 9-1

9.2 Significant DefiCIENCIESoeeeviriiniieeiinniiireecenntct et cnese s o 9-4

PART Il TOOL EXAMINATION REPORTS

10. INTRODUCGTION ... eeiieceeiccveesiercvessvvesvvservesssssssssssssrsessssssssssssssssesssenssnssssssesan 10-1
L1, AdAQUESLooouirieceeerecceeserensssnresnssncessernesssssesseessessaessessesseessessesssessessesssensessassaens 11-1
11,1 TOOL OVETVIEWccueeieceeerrrerirrreereienrnessseessnessssesssnosssssssssssssssessssssssssssssessassones 11-1
11,2 ODSEIVALIONScoeeveeerneerireecreesseresesesssssessesssassssssesssssssssesosesecssesesssesssnsssssss 11-3
11.3 Planned ADQIHONScccoviveieeicreenienieincieecereeeeeecsseesssesssesesssessssesssnssessmsanses 114
11.4 Sample OULPULSccovvverimriieniiritiaeneniresirncesteeeneeesesssssssssesesesnessecsensassaneos 11-4
12, AUIOFIOW-AQAQooeeererteeerreeeesertercctecnesressesseseesesssessensesassssossessssnsessssmsnss 12-1
12,1 TOOI OVEIVIEWcooveeveernrirnreereeereeenesieseesaessresssesssesssessssssssessrssssessessssessasannes 12-1
12.2 ODSEIVALONSccouecreecrerienrrnreeraestnreesessessesssessessesssessessesssssssosssssossessasssosssane 12-2
12.3 Planned AQAItIONSccceevueeiiercieereiiieciennioienseesssesressssesssessesesssssessssssssassnses 12-2
12.4 Sample OUIPULScocueriiiiiiiiniieeentreeteeeneseeesscseesas s s ssssasssesessesanssnsases 12-3
13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTS) ..coovveveeeeeeeveeeeennene. 13-1
13.1 TOOI OVETVIEWooeeveereiecireeenenreeserenresessseessssesnesseessesnsannessessssssessanseasasens 13-1
13.2 ODSEIVALONScocerrreneerieerernrenreeirensiseeresissesssessessesssssssssesonssnnessssssssessnsensssnes 13-3
13.3 Recent Changes and Planned Additionsc.c.ccveveeeecmencerineeneenceennenreene. 13-4
13.4 Sample OQULPULScooeviuimimieiriicrraeecteeeseeesreeene e ssestesesseaesessssesesessesssnns 13-4
14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA)ccveevveveennnn. 14-1
14.1 TOOl OVETVIEWceerivirirecrrenieitestinressessieeissessseseessesssosssesessnsonsessessssnssnsesnsan 14-1
14.2 ODSEIVALONSccccerreenrereererntrrenanrnersissreseessisssossessessesssessassssansesssssssasessessas 14-3

14.3 Sample QUIPULSccovvircviniiinmiiiinrerirniii ettt 14-3

15. LDRA TESIDEAoeooeeeeeereieieieiiiieisieeerreeesteeessesenresesassesaes ssteseanesssnnsassesssssessnsnennes 15-1
15.1 TOOL OVEIVIEW ...oeeeeeeieeereeeieseseererreesesenstssassessssnennesssssesassasstetstasasssrnsreasessosen 15-1
15.2 ODSEIVALIONS ..cceveeeeeeevererinrieeesseresssseessssrensnsssssasessasssssststassssessssessnensessnsssssans 15-5
15.3 Planned AQGQILIONSo.eeceeevvrineeesveseiiseesssssssesssessssassssssessacesssesssssssessnsessoessnsess 15-7
15.4 SaMPIe OUIPULS ...c.covrviimneiriicriniiriini e snssststas st st enenenene 15-7

16. LOZISCOPE ...covmrrmrrreininiieriniinsteneansersasstasasnsatssesssssssessssasssnstsnsessonsacasanonsssssasssossns 16-1
16.1 TOOL OVEIVIEWcoceirrririrreeeesrareesrsnterersssessssasssssssassesssrssasssssssssssesssessnsaessssans 16-1
16.2 ODSEIVALIONS .couveerenreeeverrrsresrsesessseescreersnssessassssesesassassssessasssssasssssasssssesssaseessass 16-5
16.3 Planned AQGQItIONSc.ccooveevereveriernecraeimesssessanessessssessessnssessesseesssnesssesssasssessasssn 16-6
16.4 Sample OQULPULSccccevicieriniiriiriiistirtarircsesesneseesssessetsesessessssnesssnasessaassasses 16-6

17. MALPAS oottt e sesestseesstesesasssstesessseasssssansesessstassneessstansnsnsesasssesaeeers 17-1
17.1 TOOL OVEIVIEW ...ceeeeereriecrereeresrneeesrnereessssseessraasessssnanssssscsosssansssssssassssossnassssssnns 17-1
17.2 ODSEIVALIONS ...ccceveeeereereeeesrrreecsreessssessssessssesssssessssesssassssessssssssssssenssassssessssssssscs 17-2
17.3 Planned AdQItIONSccoceeereeeenrnrerserosuneessseesueesescocsseeessnssssaasssssassannesnsssssssessnss 17-4
17.4 Sample QULPULSc.ccoveeuimniririiieeierseiniiissensssenssnssesssssstassssastesasasssasessesassasess 17-4

18. QES/MANAGERocoireieeiceeneneeirstnraesessnesesasesesssssssstsssssassssssessassorssssssesssensens 18-1
18.1 TOOI OVEIVIEWceoeeevrvecerveeesrrrresorvvressrnsssssssssssesssasssssssesessssesensasnsssssssanesssons 18-1
18.2 ODSEIVALIONS ...oeecvevverercnreerrnesaressseessssassssesssssssrassessasessassssasssscsesssnasssssnassssessns 18-3
18.3 Planned AdGItIONSccoovvveeeeirrrveenruiiecssrerisssssesesssssessssessessssnssacsnsesessrnsasasssns 18-4
18.4 Sample OQULPULSccrvieiiriiicriniitericcniiinteississesnssessessssessenessssessessessssasessases 18-4

1O, SOFITESL ...ceeeerieneerrniecrrersrneesrsresssssssssessstessasessssasessasssnssssssssssssasssassssssesassnsanssssnasses 19-1
19.1 TOOI OVEIVIEWeeveeeeeeeeninnneensntesssssneesssssnessssstsessssassosssnssssssssassssrasessassasseses 19-1
19.2 ODSEIVALUOMNScorvreeeeerrereeeecrrieeessseeruasrarsssessssessassssssssssssessacsssnsassrassesssssnsssss 19-3
19.3 Sample QULPULSc.ceeveirmnriirinnnreccterisirnssisesessesissesessesesnenssesassasssesesssnesess 19-4

20. SQA:IMAANAZETcovuireriniireecectenserestttireeseeeseresaeessnssaasssssessesssnsssssassassuassnnssssnasses 20-1
20.1 TOOI OVETVIEWceeenreeineerrreeirieeeseriesesessseesssasesssaesssssssassesssssssssassssssssasasssnsen 20-1
20.2 ODSEIVALIONSccceevererneerrreerrsrecsseeessteesssnsssssessossesssesssssessassssssssssssassssssssassessssans 20-4
20.3 Recent Changes and Planned Additionsccocvevevvininnninnicnncssenseccesennens 20-5
20.4 SaMPIE QULPULSceevurverimrreiirriiriitenrsesstesnnssssssstssnasesstsnsssssssssessessesssosssassnsns 20-5

2], SRE TOOLKIToveeiiecteeecttenireecntesnreessseesssesssessssssosssssssssessssnessssassssseossssesses 1-1
21,1 TOOl OVEIVIEWoceeerereeiecrreceecneeesisneerseesssassesssssssesssssesesssessssessssssssssssessane 21-1
21.2 ODSEIVALIONSceeereereeerreenreeasuenssnessnessecressesaesssaessasssasossassssssssessesssssssnsessnsssseses 21-2
21.3 SamPIe OQULPULScovvueuirinriceercnnnareeneessessssssessesssassssesessssescsnssensesssessasassesn 21-3

2, T eceeeeeceerteeeesrreesreesreesraessaesseessaresae s en e aasrse s ba st et e b ae R aeebaeea R e e Rs e st aesbnesnneenstann 22-1
22.1 TOOI OVEIVIEWeeirveecrnenrnrnrreninesesnenseesseressesssessseessseessesssassssessesesssssssassnessssene 22-1
22.2 ODSEIVALIONSeovvereenereveeseeassessseossuessseossessasersssessessssesssessssssssssosssssssssessnssassns 22-4
22.3 Recent Changes and Planned Additionscccceveveeuercnenesesnnnnrneereresessrenns 22-5

xifii

22.4 Sample OQULPULScoceceririiiiiieiiitecciits ettt er e eve e st sr e et 22-5
23, T-PLAN oottietteetectecte s e sttecbe st s esee s saesssaasnsaesstaesres s sbtasasaasssessnsanseeesiseasnns 23-1
23.1 TOOI OVETVIEWeeeeneeeeeeeietee e etiteeeetessseeesseessseassssessssssssaessseesssasensesssseesssnnnnss 23-1
23.2 ODSEIVALIONSeeeeeeeeeeeeiiorrereesseeeesseessssssesassssasesssssasssesessssssessssssesnssssssssssansnns 23-4
23.3 Recent Changes and Planned Additionsc...ccccoviniiinmnicnninvinnciinnienenenneeas 23-5
23.4 Sample FIZUIESccovoveeiiiiiieiiiicninis sttt r e s sa s 23-5
24, TBGEN and TCMONoooooiiriiireectiniieerstereeneenseessaesssessssassssasssssessssssssssssennns 24-1
24.1 TOOI OVEIVIEWovviiirirrieertreereneeeesuueeesiseesessanessssesasseneeosssnnasnsssesessasessssssnessnnes 24-1
24.1.1 TBGEN OVEIVIEW ..cocvveirverieiicieeeieeenrresnsesenessesesenenssesensesssesssssessnsans 24-1
24.1.2 TCMON OVEIVIEW ..ooviirieeiereiiernererneresesstesasseesecssennesssessessessssssasessssnses 24-2

24.2 ODSEIVALIONScccoovveernrreererrererseeeessueesssseessssnnsssssessssssseessurmesssnsessnssssssssseesasnns 24-3
24.3 ReCENt CRANEEScvveeeecremiurecerseariesiensesasssaeseteesssestsostesanesseessneseessssssnnsnsees 24-4
24.4 SamPle QUIPULScovirveeriiiireceseieiteesc st csns s esae st s sesssssasesanesrsesrnesns 24-4
25. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TSCOPE, & TDGenccccevveueennn. 25-1
25.1 TOOI OVETVIEWeeecrreeeeeecreereeestaennnesecessnesssessssessssssessaassssestesssssasssssessenanne 25-1
25.1.1 TCAT/Ada and S-TCAT/Ada OVEIVIEWccoveevmrimierrerneeecreeecrneeennnens 25-2
25.1.2 TCAT-PATH OVEIVIEWcccoveereeeciierrenieeerreseeeenanesseeesssesssssssssesanenns 25-3
25.1.3 TSCOPE OVETVIEWoeveerrirrererieenreeeisraeeseescesssessaessesssassssessassnssosas 25-4
25.1.4 TDGEN OVEIVIEW ..cuvvnriereccirenereneetennecreiesaessassscssrsrnseesssessssssesssssassssses 25-5

25.2 ODSEIVALIONSccoeverrreererecrnesrsesssrrersnesssessssaessasssssesssasssstasssasessassassesrssssssasansns 25-6
25.3 ReCemit CHANMGESc.cvvveereecrerinecreeruneseesseessenaesssssssesssessstassesnnsssssassssosseessssssns 25-7
25.4 Sample OUIPULScccourueiierinieeiinrirereectntntsecse st eess et sesassassesesessesesssssens 25-7
26, TST oeeerceerrerteceecresesesesaeessesssessnes s e sa st sesseesrbesasesssesssesssessnssbsesseessessntsnnents 26-1
26.1 TOOl OVEIVIEWccourieiireeeiienrenreriireneerterseersesstesssesseesssesssessssessesssssssessaennnes 26-1
26.2 ODBSETVALIONSccreereererceesserrenensesssensessessassansasssessaessssnsssansesssessesssssasstassassasss 26-3
26.3 ReCent ChanEEScccceereeereenreeriiiiicriessressiesseesesessessssssanesecssesssesssssssssssessssen 26-4
26.4 SamPIe OULPULSocceeeecercernrientiserernresseessesssessestessssesssesssessnessasssessssssssessssnnes 26-5
27. Test/Cycle and Metrics Managercocccceerverecenenenerenrennennesesssssesssessesasssnnens 27-1
27.1 TOOI OVETVIEWcoeccrereceeeieniernrcteneneeessensecseessessessessssssessssseessssssossessessssnsesnsos 27-1
27.1.1 TeSt/CYCle OVEIVIEWcccereueerrreerenreriereresensessesreneesssoseesessessessessessens 27-2
27.1.2 Metrics Manager OVETVIEWcccoecnreererereererenenrennsrerensessesesssessennses 274

27.2 ODSEIVALIONScccveereerrreeeerieesrescsesssessecsseosassssessseessesssssnsssnnsssessnssessossessssanes 27-6
27.3 Planned AddItIONScceeeeiieeeeitiiceecriceecetenteeeeeeseeeeeeeee e eeeeesnaesnennnesanes 27-6
27.4 SaMPIE OQUIPULSocueecerrienirrreerrenantesiesteeereeseetessestessensesessessessessonsorsensonsossans 27-7
28. TestGen, QualGen, GrafBrowse, and the ADADL Processorccooeeeevvvennnen. 28-1
28.1 TOOI OVEIVIEWcevvereeeeenriiecteesieeet it stesessresseeseentostesassssessesassnsesssesessssennen 28-1
28.1.1 ADADL Processor OVEIVIEWcccovuieuieeerreerierereessesssessersessesssesaens 28-2
28.1.2 TeStGEN OVEIVIEWccueeeeeeereniiiereeee e caeeseeseeeeseeeseessessesssnsssnssssan 28-3
28.1.3 QUAIGEN OVEIVIEWooverrreeereeeceece et eneece e seee e sessseseeeessaeneen 28-4
28.1.4 GrafBrowse OVETVIEWcovcveeeererreievreresiesiesisereessesesesessessessesssnssssenes 28-4

28.2 ODBSEIVALIONS ..veeeneveeireerereeeseeeasseeessessnssaartessssesssssessssessasssssssesssseesssessansessssens 28-5

28.3 Planned AdditIONSccccevivirieniiiiniincniiiercrenee ettt 28-6
28.4 Sample OQUIPULS ...c..oveiuririieeieereraercte sttt ettt st ent e st assasasnneseente st astessanses 28-6
REFERENCES ...c..ccoovsevsosseeseenssssssssssssssresssssssssssss s ssssssssssssssssssosssssssses s A-l
ACRONYMS AND ABBREVIATIONS........ccooiiiiirinceeiinintcnienceassanicsesssssnenns B-1
GLOSSARY ...ttt eestseesesse e st ssesasssesesessantass et stesensesesnasosas C-1

XV

LIST OF FIGURES

Figure 2-1. Tool Usage Reported in Software Test Practices Surveyc.cccooevirncuecene 2-3
Figure 11-1. AdaQuest Unit Nesting RepOrtcccceevieenennmnininninieenienceeereeseeninenes 11-5
Figure 11-2. AdaQuest Branch Report ... 11-6
Figure 11-3. AdaQuest Coverage Test Run Report...........cccooviinirininniccnnnncnnecinnennne 11-7
Figure 11-4. AdaQuest Unit Coverage Reportcooeiveviiniiiicntinienenenceneversesscesennnnn. 11-8
Figure 11-5. AdaQuest Branch Coverage Detail Report........cccoceeivvriveenencnccersenennnnnnen. 11-9
Figure 11-6. AdaQuest Branch Coverage Summary Reportc.cccocueenieneiiivncennnnnnn, 11-10
Figure 11-7. AdaQuest Branch Coverage Report Showing Test Runs............cccceceeneen... 11-11
Figure 11-8. AdaQuest Branch Coverage Not-Hit Reportc.cocooveevevnininevcninncnnnnn. 11-12
Figure 11-9. AdaQuest Coverage History Detail Report.........cccovvevceenirceninenecennennne. 11-13
Figure 11-10. AdaQuest Coverage History Summary Report..........cc.cceeveveeenvecerunnnnne. 11-14
Figure 11-11. AdaQuest Interval Test Run Report.........ccoceeveevenrecnenncnenrceneeenenenne 11-15
Figure 11-12. AdaQuest Interval Timing REPOTt........ccovceenirerecneerenencnerieeeresesecvcnnens 11-16
Figure 12-1. AutoFlow-Ada Page 1 of 6 Flowgraph for Function ALTERNATE............. 12-4
Figure 12-2. AutoFlow-Ada Page 2 of 6 Flowgraph for Function ALTERNATE............. 12-5
Figure 12-3. AutoFlow-Ada Page 3 of 6 Flowgraph for Function ALTERNATE............. 12-6
Figure 12-4. AutoFlow-Ada Page 4 of 6 Flowgraph for Function ALTERNATE............. 12-7
Figure 12-5. AutoFlow-Ada Page 5 of 6 Flowgraph for Function ALTERNATE............. 12-8
Figure 12-6. AutoFlow-Ada Page 6 of 6 Flowgraph for Function ALTERNATE............. 12-9
Figure 13-1. DDTs Sample Defect REPOItccceerecrreerrreceeeeneersrsiseraseeessessessesesssssenes 13-5
Figure 13-2. DDTs Management Summary Report: Defect Reports.........c.cccoreceevencnnennnnne 13-6
Figure [3-3. DDTs Management Summary Report: Defect Arrival and Repair Rate

(AILLEVEIS)ueeereereeeereeceensrcieeessessesssesssessssssssessessassssesssesossressesssnssnnenes 13-9
Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate

(SEV. 1 & 2).ueeiiiitirrceiiccsenenneeresnrasnssesescssnssnassessssssssassssssssssesessnsasaes 13-10
Figure 13-5. DDTs Management Summary Report: Sample Histograms........................ 13-11
Figure 13-6. DDTs Management Summary Report: Bug Summaries..............ccccovenn....... 13-14
Figure 13-7. DDTs Management Summary Report: General Statisticsc.cceveve...... 13-15
Figure 13-8. DDTs Examples of GUI QUtpUuts.........cccoeveeverenenrerereensincsinenserenconsssmenses 13-17
Figure 14-1. EDSA Threads View of Compilation Unit LL_TOKENS...........cccocereenn..... 14-4
Figure 14-2. EDSA Breaks View of Compilation Unit LL_TOKENScccceueuee..e.. 14-5
Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable.......... 14-6
Figure 14-4. EDSA Screen of Statement Traversal Using Control Flow in Unit

LL_TOKENSoonncntntnereresnreseresesesssessssssssssesesessasssesessssasssosssssens 14-7
Figure 14-5. EDSA Annotations Example in Compilation Unit LL_TOKENS................. 14-8
Figure 14-6. EDSA Pebbling Example in Compilation Unit LL_TOKENS...................... 14-9
Figure 15-1. LDRA Testbed Management Summary for LL_COMPILE.......................... 15-8
Figure 15-2. LDRA Testbed Static Call Tree of LL_COMPILEccceuvnenenennn.... 15-14
Figure 15-3. LDRA Testbed Dynamic Call Tree of LL_COMPILE..................cc........ 15-15
Figure 15-4. LDRA Testbed Data Flow Analysis of LL_COMPILE............................... 15-16
Figure 15-5. LDRA Testbed Information Flow Analysis for LLFIND............................ 15-19
Figure 15-6. LDRA Testbed Complexity Analysis for LLFINDcccooeceevereeeruennn.n. 15-20
Figure 15-7. LDRA Testbed System View McCabe’s Complexity Measure................... 15-25

xvii

Figure 15-8. LDRA Testbed System View Knots Complexity Measurec..c...... 15-26

Figure 15-9. LDRA Testbed Kiviat Graph for LLFINDccccconiviiininiicccninnenns 15-27
Figure 15-10. LDRA Testbed LCSAJ Analysis for LL_COMPILEccc..... 15-28
Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND........................... 15-30
Figure 15-12. LDRA Testbed Dynamic Analysis for LL_COMPILE 15-31
Figure 15-13. LDRA Testbed System View Statement Coveragecocccovveicrinencenee 15-39
Figure 15-14. LDRA Testbed System View Branch Coverage............ccoccovvvcnvincrcnceeee 15-40
Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage..................... 15-41
Figure 15-16. LDRA Testbed Coverage Achieved Comparison.........ccocceccvueeerevrceenvennne 15-42
Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM...........ccccrvinvcnennen. 15-43
Figure 15-18. LDRA Testbed Data Set Analysis for LLFIND........c.cccecviveecreennnennrnnne. 15-44
Figure 15-19. LDRA Testbed Profile Analysisc.cocoeuvmiieionniiniininiiinceciiiecenecnenace 15-45
Figure 16-1. Logiscope Control Graph of Function LLFINDc.ccccoiiiiiininincnnnnnn. 16-7
Figure 16-2. Logiscope Textual Representation of Control Graph of Function LLFIND . 16-8
Figure 16-3. Logiscope Basic Counts for Function LLFIND.........cc.ccccccvvevrvennnnincennnnee 16-9
Figure 16-4. Logiscope Commented Listing for Function LLFIND.c.ccccccecvrene.. 16-10
Figure 16-5. Logiscope Kiviat Graph of Function LLFINDccccoccecnvrvnunnnennannn. 16-11
Figure 16-6. Logiscope Criteria Graph of Function LLFINDcccoviiiinnninnnunnen. 16-12
Figure 16-7. Logiscope Kiviat Graph of All Componentscccoovivvrsenveenncrccnenns 16-13
Figure 16-8. Logiscope Overall Metrics Distribution for Program Length...................... 16-14
Figure 16-9. Logiscope Overall Metrics Distribution for Cyclomatic Complexity 16-15
Figure 16-10. Logiscope Components per Metrics Category for Number of Statements 16-16
Figure 16-11. Logiscope Overall Criteria Distribution for Testability.........c.ccccveeueueenenn. 16-17
Figure 16-12. Logiscope Overall Criteria Distribution for Simplicity fevenens 16-18
Figure 16-13. Logiscope Quality REPOTt........ocooviuiieuininennciiiecsseiiarcescnnseneesneseseesnens 16-19
Figure 16-14. Logiscope Excerpt from Default Quality Modelccccovveevrrnrnnen..... 16-20
Figure 16-15. Logiscope IB Coverage of Function LLFIND..........ccccevrivinrrcerecrverrennenne. 16-22
Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT 16-23
Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT 16-25
Figure 16-18. Logiscope IB Coverage Histogram............ccccceereeersenenerreneereeresseneseseennens 16-28
Figure 16-19. Logiscope DDP Coverage Histogram............cccccecevrcivevencnrneseeresenerennns 16-29
Figure 16-20. Logiscope Overall IB Coverage for Input testl.lex.........ccocecerenerevennne.. 16-30
Figure 16-21. Logiscope Overall DDP Coverage for Input testl.lex..........ccccccovvrenrenenn.. 16-31
Figure 16-22. Logiscope Metrics Table of ROOL........ccceocrenrrrrenieseeerinnreereneerenseessssennens 16-32
Figure 16-23. Logiscope Call Graph Path Testability of Root.........cccccceuvrreevenrrnncnnnnnn. 16-32
Figure 16-24. Logiscope Call Graph Component Accessibility of Root.......................... 16-33
Figure 16-25. Logiscope Call Graph Calling/Called Components of Root...................... 16-33
Figure 16-26. Logiscope Dynamic Call Graph of RoOt..........ccccvvvrvecrerereeeenrerereneennnn 16-34
Figure 16-27. Logiscope List of Call Graph Components per Level from Root.............. 16-35
Figure 16-28. Logiscope PPP Coverage of RoOt...........cccouevirrveninenvenreneneienenreresensennens 16-36
Figure 17-1. MALPAS Sample Pascal Code Illustrating MALPAS Analyses.................. 17-5
Figure 17-2. MALPAS Intermediate Language Translation of Sample...........c..ccuu........ 17-6
Figure 17-3. MALPAS Control Flow Analysis of ADVANCE.............ccccoveeerenvreenenen. 17-8
Figure 17-4. MALPAS Data Use Analysis of ADVANCE.............ccccoomevenneecvrenernennnne. 17-8
Figure 17-5. MALPAS Information Flow Analysis of ADVANCEccueuenn..... 17-9

Xvifi

Figure 17-6. MALPAS Semantic Analysis of ADVANCE..........ccccoonnniiniiien 17-10

Figure 18-1. QES/Manager Report Layout..........cccocoevieiiienineniinininniienncicnee e 18-5
Figure 18-2. QES/Manager Map of Master DIIVer.........ccccvvevicriinniincniincniccnienneen 18-6
Figure 18-3. QES/Manager Problem Reportcoceeiiiviiinoiienrcierecercee e 18-7
Figure 19-1. SoftTest Graph Entry Phase Inputcc.cccoovvvvuvemmiriencnenincncecrecnene 19-5
Figure 19-2. SoftTest Variation Analysis Phase Output..........ccccoocveiciinicniinniicnnnnn. 19-9
Figure 19-3. SoftTest Test Synthesis Phase Outputcccoceveeriieeiceicncenvennncnenienneneee 19-12
Figure 19-4. SoftTest Functional Variation Coverage Matrix..........cccoccercruecceieeencneennnn. 19-17
Figure 19-5. SoftTest Test Case vs. Node Name Definition Matrixcccoecenennrennceee. 19-19
Figure 19-6. SoftTest Cause-Effect Graphc...cocvvviimniieininniniiccrrrecneeeececeee e 19-21
Figure 19-7. SoftTest Functional Requirements Report...........ccccccooveeninvcnninncincennrennnn, 19-24
Figure 19-8. SoftTest 2167A Document Templatecccccooeveevvinvnnenrinnnreneenecennne. 19-27
Figure 20-1. SQA:Manager Test Plan for ACTIIIO2PN.........cooienireeeeenrcreneenennen 20-6
Figure 20-2. SQA:Manager Test Specification Report for Test Spec ACTIII02DS........... 20-7
Figure 20-3. SQA:Manager Test Case Report for Test Case INVPRN.............................. 20-8
Figure 20-4. SQA:Manager Test Procedure Report for Procedure CHKRUNS 20-9
Figure 20-5. SQA:Manager Software Items Report..........ccooeireencreennenceneennvnenenrernnns 20-10
Figure 20-6. SQA:Manager Test To0l REPOTt..........ccovieveirveerrenerirnctenreeerenente e e esaenes 20-10
Figure 20-7. SQA:Manager Test Log REPOTt..........ccovreeviinrecmniecieneeneeneeseeneeneesnennes 20-11
Figure 20-8. SQA:Manager Test Case Report for Test Case INVPRN..........cccocevveeeeene 20-12
Figure 20-9. SQA:Manager Problems Table..............ccccevenevennreecrererienierenecreneeeessnenens 20-12
Figure 20-10. SQA:Manager Fixed Problems Ready for ReTest........c.ccecerrvenrcceennnnen. 20-13
Figure 20-11. SQA:Manager Cost of Repair Table.........ccccceeeereeennvcrenrnecerireniecseeeenene 20-13
Figure 20-12. SQA:Manager Cost of TESHNE.........c.ccererreererrenrereenterressneseesesseesessassnssessnes 20-14
Figure 20-13. SQA:Manager Cost of Repair Graph..........ccccoeeeeeeveeereeeerneerennenssneressene 20-15
Figure 20-14. SQA:Manager Cost of Testing Histogram.............ceceeveecrereerecrererreeceennnnen 20-15
Figure 20-15. SQA:Manager Reliability Analysis Table and Graph............ccccceceevrurnneen. 20-16
Figure 20-16. SQA:Manager Failure Intensity Table and Graph.............cccoeeeereenennnee.. 20-17
Figure 20-17. SQA:Manager Plot of Incidents by Symptomccoeecevcereeseererennnenen. 20-18
Figure 20-18. SQA:Manager Plot of Problems by Severityccccocceveerermevernreveerncnnnnen. 20-18
Figure 21-1. SRE Toolkit Generated Reliability Measures..........c.ccoceceerreeerrrenreeeresererenene 214
Figure 21-2. SRE Toolkit Failure vs. Execution Time Plot..........c.ccooveevererreveerirernenenennas 21-5
Figure 21-3. SRE Toolkit Initial Intensity vs. Execution Time Plotcc.cocvvveeneereeneneen. 21-6
Figure 21-4. SRE Toolkit Present Intensity vs. Calendar Time Plot..........ccovveeeeveeenenennne 21-7
Figure 21-5. SRE Toolkit Completion Date vs. Failure Data..............ccoccvruvrereeneereeencrnnnne 21-8
Figure 21-6. SRE Toolkit Testing Resource Usage Parameter Estimation......................... 21-9
Figure 21-7. SRE Toolkit Reliability Demonstration Chart.............cccceveevereereieseevenenene 21-10
Figure 21-8. SRE Toolkit Completion Date vs. Failure Intensity Output......................... 21-11
Figure 21-9. SRE Toolkit Life Cycle Cost and Failure Intensity Objective Plot............. 21-12
Figure 22-1. T Sample SDF ...ttt cscreceessseessessesestesssssesnsssssserennes 22-6
Figure 22-2. T Software Description Verification..........ccceecececeeerenerereneereneeesseseereneseenes 229
Figure 22-3. T Software Description MEtTics...........cccovvevvreercrinrerieneeneeseereresse et esesennas 22-10
Figure 22-4. T Design Rule Verification............ccueeeieieemieeceenecinicecrernsestesesseessenns 22-11
Figure 22-5. T Test CAtAIOZ.......covuvieeeeriinrinneriiieserieseenecceresesaresessseseessosessessseseessesessons 22-13
Figure 22-6. T Sample Generationcccuevruerierrneeecrenrneeneseneeensessesessessesessessssessessence 22-14

xix

Figure 22-7. T Test Case Definitions...........ccoevvcmnierinriiiieniniiieieerinece s 22-17

Figure 23-1. T-PLAN Test Model Functional Condition List Report..............cccccevnninn. 23-6
Figure 23-2. T-PLAN Test Model Sample Print for Input Ref ... 23-7
Figure 23-3. T-PLAN Test Model Input & Output References for Test Spec FIN............ 23-%
Figure 23-4. T-PLAN Test Model No Screen Data Testing for FIN..............c.cccoee. 23-9
Figure 23-5. T-PLAN Test Model Output Print for FIN ... 23-9
Figure 23-6. T-PLAN Test Model Test Specification Information for FIN..................... 23-10
Figure 23-7. T-PLAN Test Dictionary Function, Input, Output Reference Index 23-13
Figure 23-8. T-PLAN Test Dictionary Functions, Inputs, Outputs Used in FIN 23-14
Figure 23-9. T-PLAN Test Dictionary Condition Impact on Data Profiles 23-14
Figure 23-10. T-PLAN Test Dictionary Change Impact for Function MME, Input

EIN, Output FIS.......c.ooiniiiiiiinniiniitsnsrinaer st sesssacsessssencesssssneasennes 23-15
Figure 23-11. T-PLAN Test Dictionary Test Specification Indexcococecenievnnn. 23-15
Figure 23-12. T-PLAN Test Management Service Query Report for SQ 00002............. 23-16
Figure 23-13. T-PLAN Test Management Test Spec/SQ Log for FINc.ccccevenineennne 23-16
Figure 23-14. T-PLAN Test Management Service Query Reports.......c..ccoveevveieeceennnne 23-17
Figure 23-15. T-PLAN Overall Progress for IBS..........ccconvmreiiiiieencreceenee 23-18
Figure 23-16. T-PLAN Test Management Service Query Reports............cccocceerueeceennnn 23-19
Figure 23-17. T-PLAN Test Management REpOrtsccueiviniinnicnninnccccnnecesennens 23-20
Figure 24-1. TBGEN Record File.......c..cceivieininminsnniiintinseiieneneesennneeraeeneeresneseennnns 24-5
Figure 24-2. TBGEN Trace File.........cccccovinnnninininnnnneinicnincnensiseeeseteensecenesesssessenes 24-6
Figure 24-3. TBGEN Generated Log Fileccoovmmvemmiieceiiiicecciecn e 24-7
Figure 24-4. TCMON Profile Execution LiStING........ccccccocineniirunnernccsencrneecraneseenneseenennanes 24-8
Figure 24-5. TCMON Log File........ooovervriniiininniieiniisinnceisesssiscseesenasssesesssnsesesesses 24-9
Figure 24-6. TCMON Coverage SUMMATYccceeeeiiiemsenniesnssisesnssisessnsssscsessessssssssenens 24-10
Figure 25-1. TCAT/Ada Reference Listing for LL_COMPILE................cccecenverereruennee. 25-8
Figure 25-2. TCAT/Ada Instrumentation Statistics for LL_COMPILE............................. 25-9
Figure 25-3. TCAT/Ada Directed Graph for LLFIND from LL_COMPILE................... 25-10
Figure 25-4. TCAT/Ada Segment Coverage Report using testl.lexcccceeeccnveerennn 25-11
Figure 25-5. TCAT/Ada Segment Coverage Report using testl.lex & sample.lex.......... 25-14
Figure 25-6. TCAT-PATH Segment and Node Reference Listing for LL_COMPILE ...25-18
Figure 25-7. TCAT-PATH Instrumentation Statistics for LLFIND...............c.cccceuvuene.... 25-19
Figure 25-8. TCAT-PATH Cyclomatic Complexity of Function LLFIND 25-19
Figure 25-9. TCAT-PATH Segment Count for Each Module in LL_COMPILE............ 25-20
Figure 25-10. TCAT-PATH Digraph of Function LLFIND...........cccocevveeerreereerervrrnencns 25-20
Figure 25-11. TCAT-PATH All Paths for LLFIND.........ccccoconteininnnninierereernrenrreennes 25-21
Figure 25-12. TCAT-PATH Basis Paths for LLFINDccccceceueninnevereetrereeeereneeenes 25-21
Figure 25-13. TCAT-PATH Path Statistics for LLFIND...........c.ccccceevererenreierenrirenenen. 25-21
Figure 25-14. TCAT-PATH Path and Segment Information for LLFIND....................... 25-22
Figure 25-15. TCAT-PATH Coverage Report for BUILDRIGHT using testl.lex.......... 25-23
Figure 25-16. S-TCAT/Ada Call Graph for LL_TOKENS...........cccceoeverrrrerreeeernrererennes 25-24
Figure 25-17. S-TCAT/Ada Call-Pair Coverage using testl.leX.........cccoovreivrerrrmnnennncnc. 25-25
Figure 25-18. S-TCAT/Ada Cali-Pair Coverage using testl.lex Accounting for All

Call-PaiTscoviiririinniersseniseesnesssesssssesesserssssessasssssssesssssssssessssesasesssns 25-27
Figure 25-19. S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.lex................ 25-29

XX

Figure 25-20. TSCOPE Dynamic Display of Coverage on Directed Graph for LLFIND 25-33

Figure 25-21. TSCOPE Dynamic Display of Coverage Accumulation for LLFIND 25-33
Figure 25-22. TDGen Sample Value and Template Filescooeeoiinininnin, 25-34
Figure 25-23. TDGen Table of Sequential Combinations for Initial Files....................... 25-34
Figure 25-24. TDGen Qutput of First Random Execution...........cccoveennininiiininnne, 25-35
Figure 25-25. TDGen Output After 3 Executions with 1st Value File............c.ccccccco.... 25-35
Figure 25-26. TDGen Output After 2 Executions with 2nd Value Filec..... 25-35
Figure 26-1. TST Test Configuration File for Function LLFIND.......cccceoiiiiiennnnni, 26-6
Figure 26-2. TST Parameter Report for Function LLFIND ..., 26-7
Figure 26-3. TST Execution History Report for Function LLFINDccccoerennenna... 26-9
Figure 26-4. TST Execution Summary Report for Function LLFIND................c....... 26-10
Figure 26-5. TST Sample Test Data File for Function LLFIND..........cccconiinncne. 26-11
Figure 26-6. TST Function LLFINDccovvninnnniinniitinensenssesesesesesesesasse s 26-12
Figure 27-1. Test/Cycle Requirements Hierarchy Report........ccoceeveeeienioenieinnicnannne 27-8
Figure 27-2. Test/Cycle Requirement Description Report.........coeveineiereeeiecenesenennnnnne. 27-10
Figure 27-3. Test/Cycle High-Level Validation Matrix Screenccovveeeeeeiinvenennnan, 27-11
Figure 27-4. Test/Cycle Intermediate Level Matrix Screencoeeeeeenseiesnsnsenennnnen. 27-11
Figure 27-5. Test/Cycle Detail Level Matrix Screen...........cccoevvereeeineniennisnssesniessnnnnennen 27-11
Figure 27-6. Test/Cycle Build Description Report.........ccoevivivienernienenreeenreiicecnnnenen, 27-12
Figure 27-7. Test/Cycle Components Description REport...........ooveueevveneinnceeecneiennnnnnnens 27-13
Figure 27-8. Test/Cycle Test Run Description REPOItc.vcvveieenverreemntenieeniainsssncnena, 27-14
Figure 27-9. Test/Cycle Requirements Validation Status Screen...........cococvvvevueccveennncnes 27-15
Figure 27-10. Test/Cycle Test Run Validation Status Screenooeeevvievvniennvenncnnnnn. 27-15
Figure 27-11. Test/Cycle Test Case Description Reportcccvvevveenceeniennecenennncnnes 27-16
Figure 27-12. Test/Cycle Test Case Linkages SCreenccccvcceemevemmrenrmnecnnsenuencnnnens 27-17
Figure 27-13. Test/Cycle Test Case Referenced by Requirement Screen.............c......... 27-17
Figure 27-14. Test/Cycle Test File Description Report..........cccvveierenmnenninicninsenensenseene 27-18
Figure 27-15. Test/Cycle Work Request Description.......c..c.coveinincnmnennennsnciincnannne 27-19
Figure 27-16. Test/Cycle Work Request Log Report........cccoeevnnivinecrnenninnnscininnnenas 27-19
Figure 27-17. Metrics Manager Database Full Report............ccccoevveevivccnncrsnnncnniccnncne, 27-20
Figure 27-18. Metrics Manager Enterprise & MIS Metric Summary Report 27-28
Figure 27-19. Metrics Manager Function Points Productivity vs. Type of Effort............ 27-30
Figure 27-20. Metrics Manager Development Defect Removal Efficiency vs. Size

Of PTOQUCT.....ceiiiiitit ittt teesestnese st e st saassesaaesssssssssnsessonsesannnns 27-31
Figure 27-21. Metrics Manager Development Defect Removal Efficiency vs.Tools

USEA ...ttt sacssssesssa sesssssssesssssesssssssssascaiesesscnsssseas 27-32
Figure 27-22. Metrics Manager Development Unit Cost vs. Size of Product Showing

INAUSHTY Data........cviiiiiiictiirercccente et sn e e seans 27-33
Figure 28-1. ADADL LiStNEcoovriiiiiiiiniineictnceiensnicasssssenaessssnssstencesssesntesesnenensens 28-7
Figure 28-2. ADADL Program Unit Cross Reference Report...........c.ccecerceneencrvenennnnnnee. 28-8
Figure 28-3. ADADL Object Cross Reference Report..........c.cccooeveneemeeccnnnescoriveernnresaennns 28-9
Figure 28-4. ADADL Type Cross Reference Report..........ccoeveevrnerveevncenccneceninesennennenens 28-10
Figure 28-5. ADADL Declaration TT€E.......cccoueureireeierenverrenennrrienseresessassesnesessessesessaesesses 28-11
Figure 28-6. ADADL Invocation TTEeoccovviveriivircenscrnnerenneenenneesearnesesossosesesseassensens 28-12
Figure 28-7. ADADL Additional Cross Reference Reports.........cccccecereevreerecrnnvereennenenne. 28-13

xxi

Figure 28-8. ADADL Complexity Summary Report ..., 28-15

Figure 28-9. ADADL Program Unit ID Report..........cocvvviiiiinininiiiiiinis 28-16
Figure 28-10. ADADL Objects Declared but Not Used Report..........ccoeerienriinnnnnnee, 28-16
Figure 28-11. ADADL Types Declared But Not Used Report...........ccoooviniiiinnn. 2%-16
Figure 28-12. ADADL Program Units Declared But Not Used Report........................... 28-17
Figure 28-13. ADADL Program Units with High Complexity Metrics Report............... 28-18
Figure 28-14. ADADL Error Cross Reference Report..........cccvieviiiiiincniniiinnicncene. 28-18
Figure 28-15. TestGen Test Conditions for Path Testing of LLFIND 28-19
Figure 28-16. TestGen Test Case Effort Report..........ccoveeeniiniiecincncnninncncsenene. 28-21
Figure 28-17. TestGen Unreachable Statement Report for LL_COMPILE..................... 28-22
Figure 28-18. TestGen McCabe Complexity Report for LL_COMPILE......................... 28-23
Figure 28-19. TestGen Test Coverage Summary using testl.1excoccovviniininncnuennnne 28-24
Figure 28-20. TestGen Sub-Program Invocation Count Report using testl.lex............... 28-25
Figure 28-21. TestGen Statement Execution Report using testl.lex for ADVANCE...... 28-26

Figure 28-22. TestGen Branch Path Coverage Analysis using test].lex for ADVANCE 28-27
Figure 28-23. TestGen Structured Testing Path Coverage Analysis using testl.iex

fOr ADVANCE ... iiceeiereneneceeeecerssesesnestsanessosessesnessesnesnsssessassensnns 28-28
Figure 28-24. TestGen Test Coverage Summary using testl.lex & sample.lex............... 28-30
Figure 28-25. QualGen Report EXCEIPt........cccceiiveenveniimeseneninnicsecensntesctscssrseessssanessens 28-31
Figure 28-26. GrafBrowse Flat Invocation Graph of LL_COMPILE 28-34
Figure 28-27. GrafBrowse Declaration Tree of LL_COMPILEcccccoeeevinunnannen.. 28-35
Figure 28-28. GrafBrowse Flat Callby Tree of LLFINDc.c.ccooeeeviniennecenreernineennens 28-36
Figure 28-29. Grafbrowse Browsing LLFIND...........cccceveeiiircennennnenteeenenercruesennesennas 28-37

Xxii

LIST OF TABLES
Table 2-1. Practices Reported in Software Test Practices Survey.........ococeviiiiiinns 2-1
Table 2-2. Practices Reported in Software Measures & Practices Benchmark Survey..2-2
Table 3-1. SDIO Test REQUITEMENLS......c..coomirmieiiniiinrennerinieriereetesseseessis e esaesreeseesseenne 3-2
Table 3-2. PMM-Implied Test ReQUIrements...........cccceceveercrenenenenseneenenrcnecreseesaasnens 3-4
Table 3-3. Software Metrics Plan Implied Test Requirements...........cccceceveeriiievennnennn. 3-6
Table 4-1. Tools Examined in the CRWG and STSC Studies........cccccoceeruevcnrnnevcnnenne 4-2
Table 4-2. Tools Examined in the IDA Studycc.ooovieieecennieeccreecrrecree st 4-3
Table 4-3. Tools Planned for Future EXaminationccccoeoeeeeneneeenennncnrneeensencene 4-4
Table 4-4. CASE-based Testing SUPPOTL.......cccoiririrrereenienreneerersneneseesscsnessessessessessesnenes 4-7
Table 4-5. Ada Development Environment-based Testing Support..............c..cecvnnn... 4-8
Table 5-1. Test Management Capabilities of Examined Toolscccccccceuvrinrerennnnnne 5-1
Table 6-1. Problem Reporting Capabilities of Examined Tools............cccoovrnurennn..... 6-1
Table 7-1. Static Analysis Capabilities of Examined Tools..........ccoccevvveeunrvrenrerivmnnenens 71
Table 7-2. Supported Complexity MEASUIESccceerreerrernenirrniereneesanresenrnsresessensssenees 7-2
Table 8-1. Dynamic Analysis Capabilities of Examined Tools..........ccocecueeurrnenncnne... 8-1
Table 8-2. Structural Coverage Analysis CharaCteristiCs.......c..oceeeeurererereerevrereereeenenees 84
Table 8-3. Test Bed Generation CharaCteristiCscceverrereernnrrreressersrersereessnsseseenes 8-6
Table 10-1. TOOI PrOfIIESc.cceietrneienenricceirereenrenreesasseseeessnassssessssasessensssesssssssessanes 10-2
Table 10-2. SUPPLIEr Profiles.........ccovuieenineninenrinrenesecssessesceseesesesseessesessnnssosessessenses 10-4

xxiii

PART I

° STUDY OVERVIEW

PARTI Introduction

1. INTRODUCTION

1.1 Purpose

This report provides software developers with information that will help them gain an
understanding of the types of software testing tools that are available, the functionality of
these tools, and how they can aid the development and support of Ada software for the Stra-
tegic Defense Initiative (SDI).

1.2 Scope

Tools are available to support a variety of testing tasks at different stages in the software
life cycle. To make best use of available resources, the work described here was initially
limited to the examination of tools that support the static and dynamic analysis needed for
testing Ada code. Code-based testing was selected as being one area where automated sup-
port is critically needed, both to increase software reliability and to reduce development and
support costs. Restriction to the Ada programming language [ANSI/MIL-STD-1983] was
adopted in view of Department of Defense (DoD) Instruction 5000.2 [DoDI 1991]. The
scope of the study was subsequently extended to include test management and problem re-
porting tools. The purpose of this extension is to accommodate DoD’s increasing trend to-
wards the use of software metrics to support the management of software development and
as a basis for continual process improvement.

The report is divided into two parts. Part I starts by setting the scene for the following
discussions by taking a brief look at the current state of practice in software testing. Special
software test requirements imposed by the Strategic Defense Initiative Organization
(SDI10), and how automated test tools could support meeting these requirements, are also
discussed. Part I goes on tc describe how particular tools were selected for examination,
identifies the tools so selected, and outlines the method of examination. The following sec-
tions summarize tool functionality in the areas of test management, problem reporting, stat-
ic analysis, and dynamic analysis. This first part of the report concludes by summarizing the
findings resulting from this work.

Based on the experience gained during their examination, Part II provides a usage-based
description of the tools and example report outputs. This more technical presentation is in-
tended to provide further insight for the potential tool user.

1-1

Introduction PART

This is a follow-on report to IDA Paper-2686 [Youngblut 1991]. The earlier report dis-
cusses the examination of some 10 tools for the static and dynamic analysis of Ada code.
For convenience, those discussions have been updated as appropriate and are included here.

N

® PART! State of Practice

2. STATE OF PRACTICE

® The high cost of software testing has long been recognized by the software community.
In the early 1970s, data collected during development of a number of large software systems
(e.g., SAGE, NTDS, Gemini, Saturn V, and IBM OS/360) revealed that 50% of develop-
ment costs were incurred by software testing [Boehm 19801.! This figure holds true today

® [AFSCP 1987, Korel 1991, Yourdon 1990]. Even with this level of effort, operational soft-
ware still fails. Commercial software typically experiences 3 to 10 failures per thousand line
of code (KLOC) and industrial software experiences 1 to 3 failures per KLOC [Boehm
1988].

® Recent surveys of current testing practices help to explain these figures. The Software
Test Practices Survey [SQE 1990}, conducted at the Seventh International Software Testing
Conference, for example, found that software test practices were weak at the unit testing
level and only slightly better for system and acceptance testing. In fact, when common test-

® ing practices were defined as those which more than 60% of respondents ranked as standard
practice, no common practices for unit testing could be identified. Table 2-1 shows the per-
centage of responses indicating testing process and management practices as standard.

Table 2-1. Practices Reported in Software Test Practices Survey

o
Percentage of rexanses Indicating practices [Unht Test
common or standard [System Test
ptance Test
Process Practices Acceptance Test
Software risks are systematically analyzed. 11} 30| 32
Test cases & ures are formally documented. 25] 521 60
Test are ified before software design. 6] 15} 15
o Test cases & procedures are saved after testing. 20] 58] 54
Formal report of test results is produced. 33] 65 60
Requirements coverage is analyzed or traced. 17 551 54
Code coverage is analyzed or traced. 18} 28} 27
Design coverage is analyzed or traced. 151 32| 38
Formal exit criteria used to specify test completion. 2] 18] 17
Tests are rerun after software changes. 18] 39 38
Test process is systematic and ardized. 39] 70| 65
o Test cases & procedures assigned unique names. 21 55| 54
Management Practices Boldface print
A record of time spent on testing is produced. 14| 42| 39 |indicates common
Cost of testing is measured nndg . 11| 28 | 24 | practice (>60%)
A record of faults and defects found is produced. 26| 68 70
The patterns of faults and defects regularly analyzed. 10 271 24
Defect density is measured. 101 19] 16
o User or customer satisfaction is measured. 17 42] 42
Number of changes or change requests is measured. 8] 16| 16
Test effectiveness and efficiency measured & reported. 91 20| 21
Testers are formally trained. 107 30| 23
The test process is documented in standards manual. 4] 22} 3
o 1. For NASA’s Apollo program, 80% of the total software development effort was incurred by test-
ing [Dunn 1984).
2-1

State of Practice PARTI

Xerox Corporation and Software Quality Engineering conducted a joint survey called
the Software Measures and Practices Benchmark Study [SQE 1991]. The first part of this
work provided a preliminary assessment of typical software practices and measures in use
in indﬁstry. The results of this initial work were used to identify those organizations that
employ the most of what industry generally considers to be good practices. The organiza-
tions selected were AT&T, E.I. DuPont de Nemours, GTE Corporation, IBM, NCR Corpo-
ration, Siemens AG, and Xerox Corporation. Each was asked to pick one or two of their
“best” projects from which to provide data for the survey. Table 2-2 reproduces some of
the resuits. Even though these organizations were selected as ones that most frequently em-
ploy advanced testing practices, very few testing practices were in common use at that time.

Although tools are more frequently used for system and acceptance testing rather than
unit testing, the Software Test Practices Survey found that there were no types of tools that
more than 60% of respondents cited as commonly used. As shown in Figure 2-1 the most
widely used type of tool was only used by 50% of the respondents. Similarly, the Software
Measures and Practices Benchmark Study found only scattered use of tools.

Table 2-2. Practices Reported In Software Measures & Practices Benchmark Survey

Mean scores for practical usage Low
Mo
Process Practices High
Software risks (potential failures) are systematically analyzed. 100§ 1571 1.94
Test planning & specifications are stated in requirements phase. 90 147] 2.14
Unit test plans/specifications are prepared. 1.19] 196] 2.53
Someone other than programmer performs/reviews unit testing, 87| 154| 2.59
Module or program complexity is measured. 46] 1.16] 1.81
Software changes are analyzed for ripple effect and test impact. 147 1 197] 2.3
Unit branch & statement execution coverage is analyzed. 60| 124 149
Unit test results are recorded. 106 1 1.89] 2.71
Tests are cross-referenced to requirements. 1.00 | 165} 2.13
Test plans & specifications are formally reviewed. 191] 221 2.56
Code coverage is analyzed for entire system during system test. 681 151) 2.14
Random testing is used to evaluate reliability. 1.00 | 1.72] 2.26
Tests are systematically saved & reused.) 1.10 | 2.18 | 283 | Bojdface print
Features fixed in previous test cycles systematically retested. 1.70 | 2.21{ 2.67 | indicates common
Management Practices practice (>2.25)
Cost of quality activities is measured and reported. 57 1137}]241
Defects are analyzed to determine cause & when created. 1.00 | 155] 2.02
Defects found during testing are recorded & tracked. 242 | 2.70 | 2.89
Defect analysis & trends used to identify process changes. 100 | 147] 196
Number of defects found after release is measured. 1.62 | 2.62 | 3.00
Number of new defects introduced per “fix” is recorded. 133 | 1.87 1 291
Time to identify & correct defects is measured. 1.50 { 2.30 1 2.91
Test procedures & policies are clearly identified & described. 1.86 | 2.28 | 2.85
Scors Usage

< 1.25 Uncharacteristic
1.251.75 Scattered
1.75-2.25 Significant
>2.25 Accepted

2-2

PARTI State of Practice

100 -
Percentage of —
Common Tool %0]
Use —
80 T
707 5 22 Unit
60 : - System
— Acceptance
50 —
40 —
30 —
- 2
20 Z
10 —] 1% ‘
— 2y & 3 85 7 B
0 - =27 & & & = & :]
g g § E s g g] 'i Tools
g £ 2 =2 T & © 37 3
L] S >, S a £ s
& = g = s 3 = k] <
E a n & @ a & o
S % t 2 5 3 = £
= 2 £t & & E =8
g 3z F ¥ ¥
8] &) :- [

Figure 2-1. Tool Usage Reported in Software Test Practices Survey

Although the results from only two surveys are cited here, there is much data to support
these findings. Similar data is provided in, for example, the survey sponsored by the Mas-
sachusetts Computer Software Council [KPMG 1992].

PART I Test Requirements

3. TEST REQUIREMENTS AFFECTING TOOL USE

This section considers three major drivers that encourage the use of testing tools for the
development of SDI software. The first of these is the current set of SDIO documents that
provides policy and guidance for software development in general. The second driver is the
Software Engineering Institute (SEI) Process Maturity Model (PMM) [Humphrey 1987]
that routinely will be used in the near future to conduct evaluations of SDI contractors’ soft-
ware engineering practices. The final driver considered is the Global Protection Against
Limited Strikes (GPALS) Computer Resources Working Group (CRWG) software metrics

evaluation program.

SDIO requirements are not the only reason to use automated test tools. Indeed, because
of the complexity of detail involved in testing even the simplest program, tools are a pre-
requisite for most forms of static and dynamic analysis. Similarly, the ability to capture, an-
alyze, and present quantitative process measurement data in a meaningful form greatly
facilities test management. Although there is a lack of consis.ent data on the cost effective-
ness of particular testing tools, there can be no doubt that automated tools are able to im-
prove the cost effectiveness of testing. On: test practitioner, for example, cites reductions
in testing time of up to 70%, a 30% increase in overall software development productivity
{Graham 1991].

3.1 Affect of SDIO Software Test Requirements on Tool Use

SDIO encourages the use of automated tools to support testing. Candidate tool classes
identified in the Global Protection Against Limited Strikes (GPALS) Software Standards
[GPALS 1992c], for example, are test case generators, performance analyzers, complexity
analyzers, and regression analysis tools. The use of source code standards checking, formal
verification, and static and dynamic code analysis tools is also discussed. The Trusted Soft-
ware Guide annex to the GPALS Software Standards requires the use of an automated test-
bed for creating, executing, documenting, managing, and analyzing the completeness of all
tests, and for maintaining test documentation. The GPALS Software Quality Program Plan
[GPALS 1992a] requires the use of automated metrics data collection and reporting tools.

Additionally, the SDIO Software Policy [SDIO 1992b] and the SDIO Contract
Requirements Packages (CRPs) Guidelines for Computer Resource Issues [GPALS 1992b}
impose requirements on testing practices that, either directly or indirectly, foster tool use.
These special requirements and their sources are identified in Table 3-1. This table also

3-1

Test Requirements PART I

Table 3-1. SDIO Test Requirements

<
2| | 3
S| = Qo
= g %
Elgl &l el o POSSIBLE TOOL
w
TEST REQUIREMENT g] s g SUPPORT
Slw|lw|a| O
wm|lwlwnlwnnl v
EEEE
ahealeala]ea
n|C|VO|0|O
Continuous process improvement. Use of concurrent engineer- | ¥ N | Problem reporting, reliability
ing practices to provide continuous improvement in software engi- analysis, cost analysis, progress
neering processes and the visible quality of products. monitoring
Quality evaluation. Data collection and reporting of a minimum | ¥ | ¥ N | ¥ | Quality analysis
set of software process, product, and management metrics.
Minimum structural test covenﬁe.))
1) Structural test coverage for CSU/CSCI and regression testing of | ¥ V| Structural coverage analysis
all statement, branches, loops.
ii) Structural coverage and boundary value testing at the unit level, v Structural coverage analysis
demonstration of coverage at integration level.
Test traceability. Traceability of requirements, design, and code to Vi v | Requirements tracking, test
tests and test results. planning
Design and code inspections. Formal inspections for all software ¥ N | Browsing
designs and code products.
Review. Review of CSU tests and results. ViV Progress monitoring
Testable requirements. Demonstration of an objective and feasi- N | Requirements tracking, test
ble test of whether each requirement is met. planning
Functional testing. The process of exercising a system under ViV Test data & testbed generation,
operational conditions to determine that specified functional functional coverage analysis
requirements are implemented correctly.
Reliability measurement. Statistical techniques used to reduce ¥ Problem reporting, reliability
observed software defects to acceptable limits. analysis
Random testing. In addition to other methods for generating test N Test data & testbed generation
input, random input generated to overcome any test bias.
Penetration testing. Penetration tests required as part of establish-) -
ing software trust.
Regression testing. Retest modified software to verify that NV ¥ | Regression & change analysis,
changes have not caused unintended effects and software still requirements tracking, test
meets the requirements. planning
Test prngrrcss tracking. Progress tracked and compared to the ¥ Test planning, cost analysis,
Software Test Plan. progress monitoring, problem
reporting, requirements track-
ing
Static and dynamic code analysis. Complexity, structure, and ¥ Static and dynamic code analy-
style assessment, and checking for language violations, unused sis, test data & testbed genera-
code or data. tion
Source code standards compliance. Code portability and style ¥ Auditing, complexity analysis,
assessment. structure analysis
Test repeatability. The ability to repeat a test with the same inputs N[Test planning & documenta-

and operating conditions to yield the same results.

tion, testbed generation

PARTI Test Requirements

identifies the types of testing tools that can be expected to increase significantly the cost
effectiveness of the associated test activities.

3.2 Affect of the SEI Process Maturity Model on Tool Use

Starting in FY93, SDIO will require evaluation of contractor software engineering ca-
pabilities using the SE1 PMM. This evaluation will be routinely conducted as part of source
selection activities, and yearly during the course of a contract, by an independent team of
evaluators. Contractors will be encouraged to perform annual self-appraisals. The PMM is
used to rank software engineering capabilities as the following:

* Level 1 - Initial. The software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined and success depends on individual effort.

* Level 2 - Repeatable. Basic project management processes are established to track
cost, schedule, and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

* Level 3 - Defined. The software process for both management and engineering activ-
ities is documented, standardized, and integrated into an organization-wide software
process. All projects use a documented and approved version of the organization’s
process for developing and maintaining software.

* Level 4 - Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and
controlled using detailed measures.

* Level 5 - Optimized. Continuous process improvement is enabled by quantitative
feedback from the process and from testing innovative ideas and technologies.

As part of the evaluation, the PMM queries the use of automated requirements trackers, test
data generators, coverage analyzers, complexity analyzers, cross-referencers, and interac-
tive source-level debuggers. The testing-related questions that are asked in determining the
software engineering capability level are listed in Table 3-2. This table identifies the types
of testing tools that could be used to support the identified activities. The PMM also ad-
dresses the use of process and product measures for monitoring the status and quality of
both the developing product and the development process. In this case, data collected in the’
course of testing activities can serve several purposes. In addition to supporting the deter-
mination of the effectiveness of actual testing activities, this data provides valuable insight
into other development activities such as defect prevention, training, and software quality
assurance. Test-related data can also be used in the assessment of the benefits and effec-

Test Requirements PARTI

tiveness of existing and new technology. Test tools can support the collection of much of
this data.

The PMM is currently being revised. The new version, called the Capability Maturity
Model [Paulk 1991], extends the information sought on testing practices, such as the fol-

lowing:
Table 3-2. PMM-Iimplied Test Requirements
® POSSIBLE
>
KEY AREA PMM QUESTIONS 2| TOOL SUPPORT
Are statistics on software code and errors gathered? 2 | Problem reporting,
static analysis
Are code and test errors projected and compared to actuals? 4 | Problem reporting,
test planning
Are profiles maintained of actual versus planned software | 2 | Progress monitoring,
units completing unit testing over time? test planning
Process Metrics Are profiles maintained of actual versus planned software | 2 | Progress monitoring,
units integrated over time? test planning
Is test coverage measured and recorded for each phase of | 4 | Coverage analysis
functional testing?
Are software trouble reports resulting from testing tracked to | 2 | Problem reporting
closure?
Is test progress tracked by deliverable software component | 2 | Progress monitoring,
and compared to the plan?) test planning, cost
analysis
Is error data from code reviews and tests analyzed to deter- | 4 | Problem reporting
mine the likely distribution and characteristics of the errors
remaining in the product?
Data Management | Are analyses of errors conducted to determine their process- | 4 | Problem reporting
& Analysis related causes?
Is a mechanism used for error cause analysis? --
Is software productivity analyzed for major process steps?- 4 | Progress monitoring
Is there a mechanism for assuring that regression testing is -
routinely performed?
Process control Is there a mechanism for ensuring the adequacy of regression | 3 | Change analysis,
testing? coverage analysis
Are formal test case reviews conducted? 3
Are standards applied to the preparation of unit test cases? 3 | DoD document gen-
eration
Documented - - -
Standards & Are coding standards applied to each project? 2 | Auditing
Procedures
Are formal procedures applied to estimating software develop- | 2 | Progress monitoring,
ment schedules/cost? test planning, cost
analysis

34

PART I Test Requirements

« Verification of software requirements, design, and code according to the project’s
defined software process.
« Use of formal criteria to determine readiness for any level of testing.

» Review of test plan, test procedures, and test cases by peers of the developers of the
plan and procedures before they are considered ready for use.

« Appropriate change of the test plan, test procedures, and test cases whenever the allo-
cated requirements, software requirements, software design, or code being tested
changes.

» Determination of the adequacy of testing based on the level of testing performed, the
test strategy selected, and the test coverage to be achieved.

+ Performance of formal system testing of the software, according to the project’s
defined software process, to ensure that the software satisfies the software require-
ments.

» Performance of acceptance testing of the software, according to the project’s defined
software process and approved acceptance test plan, to demonstrate to the customer
and end users that the software satisfies the allocated requirements.

» Maintenance of consistency across the software engineering products, including the
software plans, allocated requirements, software reqmrements specification, software
design, code, test plans, and test procedures.

Here again, test tools can be expected to play an important supporting role.

3.3 Affect of the Software Metrics Program on Tool Use

No set of metrics for software project management has gained widespread acceptance
by software developers. Accordingly, the GPALS CRWG on Software Quality Improve-
ment and Standards (SQI&S) has developed a Software Metrics Evaluation Plan (SMEP)
[SDIO 1992a] designed to evaluate and provide SDIO with recommendations on metrics
and metrics tools that can be implemented SDI-wide. This on-going program will involve
the evaluation of several sets of metrics and metrics tools on a number of different SDI soft-
ware development projects. The first evaluation is expected to proceed through 1993 and
will be conducted on the SDI Level 2 System Simulator (L2SS).

The SMEP considers three functional classes of metrics: management, process, and
product metrics. The metrics chosen for initial evaluation include those identified by the
Army’s Software Test and Evaluation Panel (STEP) [U.S. Army 1992]. Metrics from the
Air Force’s Software Management Indicators [AFSCP 1986] and from Martin Marietta’s
Pro-90 Software Metrics Handbook [Martin Marietta 1991] will be used to estimate com-

Test Requirements PARTI

puter resource use. Table 3-3 identifies specific SMEP metrics and the types of tools that
support their evaluation.

Table 3-3. Software Metrics Plan Implied Test Requirements

CRWG
Evaluated Tool
Support
it METRIC POSSIBLE TOOL SUPPORT »
o 8
AEEHE
vijlmn|<i<|@A
Sizing Cost modeling N
Management Costing, Schedule, Manloading | Cost modeling v
Computer Resource Utilization --
Requirements Analysis Requirements tracking
Nonconformance Reporting Problem reporting v
SDP & Software Standards Auditing
Utilization of Software Tools Tool inventorying
Process Configuration Management Change control
Change Summary Process Problem reporting
Productivity Measures Progress monitoring N
Development Progress Progress monitoring
Cost Cost analysis
Bﬁcmny “Problem reporting v
Maintainability Quality analysis Vi
Cyclomatic Complexity Complexity analysis NN
1/O Statements Quality analysis, static analysis
Product Entry & Exit Points Quality analysis, static analysis)
Volume Complexity analysis v
Portability Quality analysis v
Reliability Reliability analysis ¥
Documentation Document generation

To date, the CRWG has sponsored the examination of the following five tools to assess
their support for the application of the SMEP metrics in the L2SS evaluation [Martin Mari-
etta 1992]:

« Software Architecture, Sizing, and Estimating Tool (SASET). A cost, schedule, and
sizing model that provides software development estimates.

* Software Problem and Change Report (SPCR). Tracks and reports on nonconforming
conditions and the status of closure and corrective actions.

PARTI : Test Requirements

 Analyze. Estimates productivity in terms of the ratio of the number of executable
lines of code to the total lines of source code and collects statistics on source code.

» Ada Measurement and Analysis Tool (ADAMAT). Collects some 150 parameters to
estimate software reliability, maintainability, and portability.

« Software Quality Management System (SQMS). Collects parameters to estimate soft-
ware reliability, complexity, and a quality index.

PARTI Approach & Methods

4. APPROACH AND METHODS

The overall approach taken to this work was to identify suppliers of testing tools, select
tools for examination, and apply the selected tools in the testing of sample pieces of code.
The tools examined to date are all available independently of any particular computer-aided
software engineering (CASE) system or Ada development environment. This section also
summarizes the types of testing support provided by these larger-scale products so that their
testing capabilities can be contrasted with those provided by the independent tools.

4.1 Tool Selection

Nearly four hundred suppliers of over six hundred tools were identified. From this ini-
tial set of suppliers, a short list was prepared of those tools that support static and dynamic
analysis of Ada code, test management, and problem reporting. Information was sought
from the appropriate suppliers. In several cases, suppliers gave in-house demonstrations of
their tools. Additional criteria were then applied to refine the short list to be compatible
with the resources available for tool examination. To ensure that the results apply to the
largest possible audience, it was decided that selected tools should be essentially indepen-
dent of processor architecture. Consequently, tools such as non-intrusive coverage moni-
tors which require special purpose hardware were not considered.

Tool selection also considered work performed by other groups. The GPALS CRWG
has examined and reported on five related tools. Most of these tools are available on VAX
or Sun platforms. The Air Force Software Technology Support Center (STSC) has reported
on several categories of software tools, testing tools being one of these categories [Sittenau-
er 1991]. The role of the STSC is to assist Air Force Software Development and Support
Activities in the selection of technologies that improve the quality of Air Force software
products and increase the productivity of its efforts; the focus is on the long-term develop-
ment and support of Mission Critical Computer Resources (MCCR) software. STSC
looked at test tools that support Ada, assembler, ATLAS, C, Fortran, and Jovial program-
ming languages running on DEC/VAX equipment, HP/Apollo and Sun workstations, or
IBM and Macintosh personal computers (PCs). The STSC 1991 report provides half-page
descriptions of some twenty eight tools, and tool critiques based on hands-on application
for eight of these tools. Table 4-1 identifies the tools examined in the CRWG and STSC
studies. Care was taken not to duplicate this previous work.

4-1

Approach & Methods

PARTI

Table 4-1. Tools Examined in the CRWG and STSC Studies

LANGUAGES TEST
SUPPORTED CAPABILITIES
- |2|E
TOOL $1E|.|2|2
2|2] e
STUDY NAME TOOL SUPPLIER E Y s|<|2
Flx|s|<|=s|2
elol 8T
e gle|s|2 A
RHEHBRHE ElE[2
] £1% g|E| ¥ 8
lolS|E|E)E|E|E| 2] &S
[STSC | Automator qa Direct Technology +{+]+]+]+ v
AutoTester Software Recording Corporation § + [+ [+ | + | + v
Bloodhound | Goldbrick Software +|+]+]+]+ v
Logiscope Verilog, Inc. VN "BE V[
PC Metric SET Laboratories, Inc. N YR v
VAX PCA Digital Equipment Corp. BEHE R E v
VAX SCA Digital Equipment Corp. B EREEE v
Test Manager | Digital Equipment Corp. +[+]+]+]+ v
CRWG ADAMAT Dynamics Research Corp. v v
Analyze Martin Marietta IS v v N
SASET Martin Marietta IS +[+]+]+]+ ¥
SQMS Martin Marietta IS VY YAEA E v
SP/CE Martin Marietta IS + [+]+]+]+ v
+ - Language independent

* - Most VAX supporied languages

Table 4-2 identifies the tools already examined in the IDA study and Table 4-3 identi-
fies several additional tools awaiting examination as part of this ongoing work. In most
cases, this latter group are new tools due to be released late in 1992 or early in 1993. Some
offer unique capabilities that fill identified gaps in testing tool functionality. PARTAMOS,
for example, is expected to provide for reproducible testing of concurrent Ada software.
Others provide capabilities that are, as yet, not commonly available. For example, Ada-
ASSURED and the Ada Quality Toolset will check for conformance of code with the Soft-
ware Productivity Consortium (SPC) Ada style guidelines [SPC 1991] selected by SDIO.
The U.S. Government is sponsoring development of ARC SADCA, and NATO the devel-
opment of the Test Support Toolset of the NATO Ada Programming Support Environment

2. The 1992 update of this report, divided into two reports Test Preparation, Execution, and Anal-
ysis Tools Report [Price 1992a) and Source Code Static Analysis Test Tools Report [Price 1992b),
does not include any tool critiques.

4-2

PARTI

Table 4-2.Tools Examined in the IDA Study

Approach & Methods

LANGUAGES TEST
SUPPORTED CAPABILITIES
2| £ 2|2
S| B £l=
TOOL NAME TOOL SUPPLIER Elg 'é 'E s
glels]|<|=
= s|E : g2
A HEIMEE:
ARMEHEHHEEBE
< ||V |=|OC]M= w | Q|
ADADL Processor Software Systems Design v [N v v
AdaQuest General Research Corp. v ‘BER
AutoFlow-Ada AutoCASE Technology ~N |y N
DDTs QualTrak Corp. + |+ |+]+ 1+
EDSA Array Systems Computing, Inc. v
GrafBrowse Software Systems Design ‘Bl v
LDRA Testbed Program Analysers, Ltd. EBEBRE N |[F NV
Logiscope Verilog, Inc. R EEEEERE viv
MALPAS TA Consultancy Services, Ltd. v IA NIy
Metrics Manager Computer Power Group, Inc. + [+1+]+1+1Y
QES/Manager Quality Engineering Software,Inc. [+ |+ [+ |+ | +
QualGen Software Systems Design CH B v N
S-TCAT Software Research, Inc. ~N Y NiY ‘RER
SQA:Manager Software Quality Astomation + 1+]+]+]+FV]Y
SRE Toolkit Software Quality Engineering + 1+]+ 1+1+0Y
SoftTest Bender & Associates + 1+]+]|+ |+
T Programming Environments, Inc. + 1+ l+fi+]+ N
T-PLAN Software Quality Assurance, Ltd. + 1+ l+1+1+0~TN
TBGEN Testwell Oy N[V N
TCAT Software Research, Inc. YIYINIY]AY)
TCAT-PATH Software Research, Inc. ‘B E Ny v |
TCMON Testwell Oy ‘RN N
TDGen Software Research, Inc. + |+]+]+]+ N
TSCOPE Software Research, Inc. + |+ + |+ N
TST STARS Foundation Repository ¥ NV
Test/Cycle Computer Power Group, Inc. + J+]+]+]+ 0~y
TestGen Software Systems Design v v

(APSE). Both of these toolsets are expected to provide a broad range of static and dynamic testing ca-

pabilities.

4-3

+ - Language independent
F - Future capability

Approach & Methods

PART |

Table 4-3. Tools Planned for Future Examination

LANGUAGES TEST
SUPPORTED CAPABILITIES
roounawz | TOOLpEvELOPER HAkE
alg|l=m|<]| s
= Slegls)® ‘g
Eis]2|2|2]|E g
2 1 E £ § E § | &
<O |V I=]|O)= wia|e
ARC SADCA Optimization Technology, Inc. Y v NV
Ada-ASSURED GrammaTech, Inc. v v
Ada Quality Toolset Marlstone Software Technology, Inc. | v v
Battlemap Analysis Tool McCabe & Associates YRR N N[N
CaseQMS A- 'y ; & Computer Systems, Inc. +)+ 1+ +]+ v
Instrumentation Tool for Ada M.Cabe & Associates N
PARTAMOS 7 Alcatel Austria v v K
QES/Architect Quality Engineering Software, Inc. + [+ 1+]+]+FY
QES/Programmer Quality Engineering Software, Inc. + 1+ l+]+]+ v
QTET QualTrak Corp. +]+]+]+ v v
QUES Software Productivity Solutions, Inc. [¥ N
QualityTEAM Scopus Technologies +{+ [+]|+ 1(+ v
Regquirements Tracer Teledyne Brown Engineering + |+ |+ V+]+0Y
SLICE McCabe & Associates ‘AR ‘B R ‘IR
START McCabe & Associates + 1+) +]+]+ v
SQMS Software Quality Tools Corp. + |+]+]+]+0V]Y
SWEEP Software Productivity Consortium + [+ [+=]+]+0Y

4.2 Method of Examination

+ - Language independent

Each static and dynamic analysis tool was used to test several small Ada programs. The goal of
these initial tool applications was to allow the examiner to gain familiarity with overall tool oper-
ation. Each tool was subsequently applied to the same Ada program. This software was the Ada
Lexical Analyzer Generator program that creates a lexical analyzer or “next-token” procedure for
use in a compiler or other language processing program [Meeson 1989]. It was developed for the
Software Technology for Adaptable, Reliable Systems (STARS) program and consists of several
Ada subprograms with a total of over three thousand lines of code. In the absence of a historical
test database, the test management and problem reporting tools were examined using the sample
test database provided by each supplier.

PARTI Approach & Methods

Generally, suppliers provided their latest tool release for the examination. In a couple
of cases, only demonstration versions were available. In each such case, however, the dem-
onstration version was fully functional and only limited by the number of inputs it could

accept.

4.3 CASE System Support for Software Testing

A recent survey of CASE vendors, performed on behalf of the U.S. Air Force, found
that nearly 25% of the examined products claim explicit support for software testing activ-
ities [Hook 1991]. The goal of incorporating testing support into a CASE system is to pro-
vide easy access to testing tools and so facilitate continual evaluation of evolving software.
This evaluation can be used to ensure timely detection of faults and provide the software
developer with feedback to guide the development process, thus encouraging a better inte-
gration of testing with other software development activities.

Table 4-4 indicates the types of test support provided by current CASE systems. At the
code level, coverage and performance analysis are the most common types of support pro-
vided. These capabilities are similar to those provided by independent test tools and are
sometimes available as stand-alone products. However, it is during earlier stages of soft-
ware development that CASE systems hold the most potential for improving the integration
of testing with other development activities. Several CASE tools provide requirements
traceability, use simulation and, occasionally, executable specifications to indirectly sup-
port testing. Recently, more direct support in terms of test generation, test plan tracking,
and specification analysis based on user-defined rules has become available. Examination
of testing tools that are part of a CASE system is still needed. In particular, the question of
how to achieve the necessary integration of independent and CASE-based testing tools to
provide a comprehensive automated test capability must be addressed.

4.4 Development Environment Support for Software Testing

A previous IDA study identified twenty eight U.S. companies that supply validated Ada
compilers [Hook 1991]. All these vendors provide a minimum set of tools for Ada code de-
velopment including the compiler, editor, debugger, library manager, and run-time envi-
ronment. The Ada language definition allows Ada compilers to provide considerably more
static analysis than is possible for older languages such as Fortran. Capabilities such as type

4-5

Approach & Methods PART I

checking and range checking, for example, are always provided, The other types of testing
support provided vary quite considerably. As shown in Table 4-5, coverage analysis, per-
formance analysis, and cross-referencing are the most common testing capabilities support-
ed.

Some vendors (DEC, IBM, and Verdix) demonstrate a movement towards providing an
integrated development environment that encompasses most phases of the software devel-
opment life cycle. In this case, for the implementation phase, there are tool sets offered with
the compiler. For requirements specification and design, these development environments
support various off-the-shelf CASE systems.

4-6

{001 Juusay oY1 etp - ®
1001 159) Juapuddapul SB PIMIAAIY - «

M sjurensuod Juiwy yim 'sads -oaxg | M ‘ou] ‘satdojouyoa |, uoljiwel 100
(7] M sajru pautjap-1asn £q Sunjoay) "pr] eonewWaIsAg Apurey JSA
..m e MMM MM ‘au] ‘satdojouyoa] aIpe) Jlomureaj
T b M M) BuusawBug umosg ukpaja) 73SVI/SDV.L
= p p aremjjos unjdog 193nydIy/19auiduyg WalsAg
o.M Juiyaayos 19jawered r 4qy &S
%] uone[nwW> 10J
% r uoneIauad vep 153) % '0ads "00xg ‘ouf *x13077-1 aewAelg
a sisAjeue “y1ad 79 suon
M. -Josse yum ‘oads -29xg M s38 Yyouaqyiom s48
a3e1aA00 7 '2ads ‘03X swaysAg uadifau] empuedg youaqylop sAgnN/al
k4 d S 1
MM SUOILEASSE (im ‘sads ‘2axg p swasAg Suruoseay INIJTY
8unyoen ueyd 1sa] > *auj ‘poNOid PopoId
so[na paurjop-1asn £q Jurouasa *ou] ‘uepijog onseB
MM ! ! Ju]
M 02 220 youaqpiomigN “THAOW
3 MM pIEYoR]-Na[MOH youaqiiopm dH
- Buioey) pim oads “s0xg | b ‘U] ‘SWIAISAS BUAIY y3isalog
m uotjesauad ejep iso) 3 oads -ooxg | M| M ‘ou] ‘A3ojouysa], armnyg uorsiaug
g sis[eue Anxsdwo) I8 101813u00) UdIsaq
0 M M SdS BPY JIssED)
M safru pautjap-1asn Aq Surysay) -ouj ‘sonydeIn 10uapy uolels SV
M Ayis1oatup) uolpIe) 4aavo
p ou] ‘sasudiaug OfY O-ony
r "PI] SWAISAS UOSYOR[[FBYDIN | JOTBURUY YOUIQRIOM [dV
3 « | & | umsisse mataa1uadxg M| -oul ‘uBisaqg swayskg aremyog (uansal yum) FSIV
uonesauad ssasord sisAjeue Anxa(dwos ‘vone
. «| & 1591 ‘Surjoayo owreuiqg -1ouad ases 1s9) ‘uonedtjusa onmig | M vsn Jopusp | (sdoosiBo qum) AOV/IVSY
(o) =3) 4] @ (®
SIRERIEIRIE 5 5|2
EEEI=IE|IDIEE @
2 |= o2 = £ |?
s{"IFIE ae % o
cE| EFERIE -3 s
% | Eir|sl* & g -
siz| 2B 3 ad£y yioddng ad£J, 1oddng S 13
m e e W g JOANIA JVN 3SVD
23| BIEEEE W
gl 2] EIFE
sl Bl |#
= 2
4a0d NODISAd NOILVOIIDAdS
uoddng Bupisa) paseq-3Sv9 ‘v-v eiqel
) ® ® o o ®) ° °)

PARTI

Approach & Methods

o ® | ® ® ¢ ® ® ®
A Jajyjoly [eonsnels
S UOHBISYIOM SCIV A ‘Wuawuoaaug wawdo[aaa(] epy ung ‘diopy xiprap
S IS MM Apwej zuanad L
M)A M IS SOIyajaL yosajal
M M Apuiey waysAs uonepdwo) SWA epY "ou] ‘satiojeIOqe] UEMR],
r p waysAS wawdolaad(] BpY ung SWIISASOISIN Ung
p M wawuonaug juawdo|aad(epy NODIOS s
A A A AL
S M Aqiurej awuonAug [euone Yy reuoney
p)uswuonaug wawdojaaa(q epy aremijos "y
I epY uBiplidjy ‘epy uad() | swaisAg aremyjog ueiplapy
A wawuonaug wawdoeaa(g epy swasg sandwo) SJTN
IS IS M uatiuonaug 153] % wawdo]aaa(aemyos epy D] ‘diop sopdwoy) auran
» MIABPY ‘WdwuonAug Juawdojaaa(] epy SHURULIANU]
p 0009/8PV X1V
M p MM Apurej oLe/PY WHI WdI
M Yau3gnjos/epy dH
M p wawuonAug aremyjos Sutwweidold spyxy prexoed MoK
M p wawuonaug voddng SutwuresSoly epy surH SURH
p waysAS 1wawdojaAa(] Bpy WRID}O] *au] ‘suIsAS-g
M M MM Apwej 13g [00] SOVA fpuonsw] Haqa
» NINER 3snd 03@
r p WEXVA d10)y wawdinbg pudiq
2 I I 1BULIOJBPY ‘JIIXEPY ‘AUNLBPY ‘3qOijepy
p M A wawuonaug wawdo[aaa(] ARMYOS BpY ‘ouf ‘sAsTy
p p waisAg wawdojaaag epvy/X4 swaisAg 1andwo)) iy
A adoogepy 195]00] Juawdo]aad(] arem)jos epy HO313v
—
S|e|S|®|C = Qleciylo w
AR BBRBHE
mwammmmummmmyam
m [Qo. w 2. m [m. ~ o ~Jd w A
3 m = 2 8 M. = W >lg 2 W > m
23] |512]e gld|el3le|E SLINAOYd (1STL) HIHLO HOANTA
w. m. .W] e M 13 S, ¥ LNTWNOUIANT INFWNJOTIATA ‘
= FALAN z(5]5|%|°
& > ® g
B 3
g .
..Aﬁ g
&

uoddng Bujisal peseq-juswuoljAug uswdoisaeq BpyY "S-b 8iqeL

4-8

PARTI Test Management

5. TEST MANAGEMENT

This section identifies key capabilities of the examined tools in terms of the support
provided for test management. It is intended to provide a quick overview of the types of
automated support available in each area and insight into how this support can be used to
facilitate software testing.

Previously Table 4-2 identified six tools as providing test management capabilities and
one other, LDRA Testbed, as currently being extended to provide these capabilities in the
near future. The functionality of these tools is further detailed in Table 5-1.

Table 5-1. Test Management Capabllities of Examined Tools

. . Regs Progress
Test Planning & Documentation Map Monitoring
8
2|8 T
HHEMERRERERP
HRNE ggg Bl |E|B|E o
TOOL NAME &l |& AL
elel (E121El%| 218|523 AHEREE
5|2 u:[-klos—.aagg_ %“Umu-=
(= ele(g|8lE HAEHEIHERHEEHE
55 3:53:%3‘¢==5=E'\E<>~
=E,&6=wég§:‘”‘s"ﬂcz.°§
555’22"5&’:5:0& ozg-gelgﬂ
&|o ElE|IR|2]|E E?ovg“omé‘;ﬂag
HAHEAHHEEEHHHEHEHEED:
SlEIE(E(&E (2S5 =I&(S|E|2(5|E|2(E|S|2
"LDRA Testbed F
Metrics Manager v
QES/Manager v vV
SQA:Manager YR E AR EARBEREREAE v NV
SRE Toolkit _ NIy
T-PLAN NIVIV]A VIVIY NIV N
Test/Cycle AR ARRE Y FINI~NI~N]Y]Y N|F

F - Future capability
Two additional tools, SoftTest and T, are also discussed. Although not properly classed

as test management tools, both of these provide some support for requirements mapping
and progress monitoring. '

5-1

Test Management PART I

5.1 Test Planning and Documentation

Test planning is a prerequisite to effective management of test activities. It provides the
base against which required test activities can be scheduled, test resources can be estimated,
and the progress of test activities can be tracked.

Of the examined tools, QES/Manager, SQA:Manager, T-PLAN, and Test/Cycle pro-
vide explicit support for test planning, though they take somewhat different approaches.
QES/Manager and SQA:Manager incorporate a predefined test model that defines the rela-
tionship among test objects such as documents, test cases, and products. In the case of
SQA:Manager this model follows the Institute for Electrical and Electronics Engineers
(IEEE) standard test model [ANSY/IEEE 1983]. The QES/Manager test model groups test
cases into test drivers that specify an execution sequence for those test cases. Test/Cycle
defines the types of permissible test objects, but allows the user to define the links between
these. It is worth noting that software builds are one of Test/Cycles object types, allowing
this tool to explicitly support incremental software development. T-PLAN provides the
most flexibility. It requires a user to start by defining the underlying test model, although
an in-house developed test methodology can be used as the source of the test model if de-
sired.

With the necessary model established, these tools capture similar information for test
cases and groupings of these test cases. They differ in the other types of information cap-
tured. Most significantly, only T-PLAN and Test/Cycle explicitly capture requirements and
trace these to testing data (see Section 5.2), and only SQA:Manager, T-PLAN, and Test/
Cycle explicitly document a test plan. All the tools except QES/Manager do, however, trace
test data to the software items under test. (A capability offered by QES/Manager, unique
among these tools, is the ability to simulate the test data.) Examples of other information
that can be captured by some of these tools include a test schedule and an inventory of test
tools. All these tools provide user-tailorable templates to support data entry.

The tools also differ in their reporting on the contents of the test library. QES/Manager
requires the user to define all report formats, and Test/Cycle provides a range of predefined
report formats. SQA:Manager and T-PLAN support both predefined and user-defined re-
port formats. In addition to the available IEEE standards, SQA:Manager supports applica-
ble DoD standards DoD-STD-2167A and DoD-STD-2168, and military standard MIL-
STD-480.

5-2

ey

w

PARTI Test Management

5.2 Requirements Mapping

The ability to trace the relationship between software requirements and test items pro-
vides valuable insight into the completeness and effectiveness of both test planning and test
execution. It is also a prerequisite for the change analysis that determines the potential
scope of effect of a proposed requirements change. The ability to provide this support is
one of the major differences between the tools in this category. It is available with T-PLAN
and Test/Cycle.

Test/Cycle uses requirements validation matrices to cross-reference requirements
against software builds, test runs, and test cases. These matrices can be examined to ensure
that all requirements are appropriately covered, providing quick insight into test planning
completeness. T-PLAN links requirements to test cases via test conditions that can be
grouped to reflect, for example, valid/invalid categories, system releases or versions. It also
reports on the test items affected by a change to a test requirement, in addition to the change
analysis provided for other types of test items. .

SoftTest and T provide requirements traceability in a different way. Here a require-
ments specification is used to guide the generation of test cases. Hence, test cases are auto-
matically linked to defined functional requirements. Both tools provide matrices that give
a quick visual guide to the cross-referencing between functional requirements and test cas-
es.

5.3 Test Progress Monitoring

Test progress monitoring is important for effective management of test activities. By
tracking actual progress against planned progress, managers can get an early indication of
potential schedule slips to support timely decision making. The early identification of qual-
ity shortfalls is another piece of valuable information. The data collected during test
progress monitoring can also be used to assess various overall software development indi-
cators and quality indicators (see, for example, [AFSCP 86, AFSCP 87]). Progress moni-
toring is largely based on a log of testing activities. Data is entered into the test log
manually or, in some cases, can be imported from a test execution tool.

SQA:Manager and T-PLAN capture similar information for the test log. Using this in-
formation, SQA:Manager reports on the status of each test case, that is, the number of tests
passed, failed, and aborted, and the number of incidents raised. T-PLAN reports whether

5-3

Test Management PARTI

each test procedure has been tested, date of last test, and whether a re-test is required, to-
gether with details on the conduct of the individual tests performed. Using the schedule in-
formation entered for each test specification, T-PLAN also compares estimated and actual
levels of effort to determine the outstanding effort and report on the percentage completion.
This reporting is available for test planning, testing, regression testing and review activities.

Test/Cycle reports on the validation status of requirements, builds, and test runs in
terms of the percentage of test cases passed. It provides this for each leaf requirement or
requirement subtree in its requirements hierarchy. Additional reports summarize the overall
status of requirements, builds, and test cases, whereas a test log report provides detailed in-
formation on the status of individual test cases. '

SoftTest and T report on the requirements coverage achieved through testing to date.
SoftTest reports requirements coverage in terms of the number of functional variations test-
ed with respect to those testable; this requires the user to manually enter the results of test
case execution. T also maps user-supplied test results to requirements to report on test ad-
equacy with respect to requirements coverage. It provides a test comprehensiveness mea-
sure that, at the user’s choice, combines requirements, input/output, and structural cover-
age.

Reliability analysis is also used to monitor test progress against a stated objective. A
failure intensity objective, for example, specifies the expected number of software failures
per unit of time, whereas a reliability objective specifies the probability of failure-free op-
eration. By looking at the occurrence of software failures during testing activities, it is pos-
sible to estimate the number of defects remaining in a piece of software and determine (with
confidence intervals) the additional time or resources needed to reach the goal objective.
By predicting the reliability of software after modification, these measures can also help to
time the performance of maintenance activities, for example, the addition of new features.
Under the proper conditions, reliability measures can be used to help determine the effec-
tiveness of particular software engineering practices, or the effects of process improve-
ments.

Many different reliability models have been proposed. The two most common are Mu-
sa’s basic execution-time model and the Musa-Okumoto logarithmic Poisson execution-
time model [Musa 1987]. Both models characterizes failures as a nonhomogeneous Poisson
distribution. SRE Toolkit supports reliability analysis using both of Musa’s models, where-
as SQA:Manager uses the Musa-Okumoto model. Both tools provide failure intensity and
reliability reports that include the amount of additional testing time needed to meet a tar-

5-4

PARTI Test Management

geted reliability, and an estimation of how many more problems are likely to be found dur-
ing that additional testing. They both support cost analysis. SQA:Manager relates the hours
spent in test activities and in problem resolution to cost rates in a cost base to report the cost
of these activities. Using data on the cost of failure identification and correction, and the
cost of operational failure, SRE Toolkit maps total life cycle, system test, and operational
life costs against a specified failure intensity objective.

SRE Toolkit supports a number of additional features. For example, the user can spec-
ify a failure time adjustment to take account of incremental delivery of software to the sys-
tem test process and a testing compression factor to specify the ratio of field to test
execution time. The toolkit can be instructed to interpret individual failure entries as inde-
pendent failure events or to perform grouped data analysis. A suite of prototype programs
provides further information such as summary statistics for each recording period, esti-
mates of resource usage calendar time parameters from resource usage data, and plots of
completion date for testing and life cycle costs versus failure intensity objective.

In addition to that discussed here, information on the status of identified problems (see
Section 6) and the coverage achieved during dynamic testing (see Section 8.2) also provide
insight into the status of testing activities. '

5.4 Productivity Analysis

Productivity data, like quality data, can be used to monitor the efficiency of the software
development process. It supports the identification of those instances where process im-
provements are needed, and the effectiveness of process changes. While several tools sup-
port the collection and analysis of quality data, Metrics Manager is the only examined tool
that provides productivity analysis. As such, it looks at a user-defined Management Infor-
mation System (MIS) function, collecting data on a monthly, quarterly, or annual basis to
monitor the performance of the organization and track the impact of new methods, organi-
zational structures, and technologies. Metrics Manager is supported by an industry database
that allows comparison of organizational data against industry statistics.

3-5

PARTI Problem Reporting

6. PROBLEM REPORTING

The primary purpose behind problem reporting is to ensure that all identified problems
are addressed. The data inherent in this activity serves several additional purposes. It pro-
vides a valuable insight into both the software status and the progress of development and
test activities. Additionally, it provides much of the data needed to drive continuous process
improvement activities.

Four tools that support problem reporting were examined. One of these, DDTs, address-
es this function exclusively. For SQA:Manager, T-PLAN, and Test/Cycle, problem report-
ing is only one of the types of support provided for software testing. Consequently, it is not
surprising that there are several significant differences between these two types of support.
The capabilities of the tools are summarized in Table 6-1.

Table 6-1. Problem Reporting Capabiliities of Examined Tools

Report . . Stod. | Distrib.
T Details Captured Reporting Con. | Archit.
K) 2 2
5lgle 1RE £l |3
TOOL =8 > | B & =]
nave | [81E1E] (£ =§§§§§ SEBEHE
HHEEHRHERHHHEHEHBEBHEHE
éiégggégggggﬁééagzgéé
AHHAHEHHHEHEHHBHEREEE
s 9 im - { =~
HHHEEHUEEEEEOHEBEEHHEE
DDTs YENTAY M ER R ARAEERRA R EEEARARERAERAERERE]
SQA:Manager | ¥ AEARAEARRRBEBE v PR IE
T-PLAN vy v[v]3 v
Test/Cycle ' BB K v 31V v

6.1 Report Types and Details Captured

The ability to distinguish among different types of problems, and perform separate
tracking and reporting for each type, is very useful in monitoring the software development
progress and planning further development activities. The common types of problem re-
ports are incident reports, defect reports, and change requests. Only Test/Cycle has all these
problem types, collectively called work requests, built in. Although in its basic form DDTs

6-1

Problem Reporting PART |

only distinguishes between defects and change requests, it can be customized to also accept
incident reports. SQA:Manager distinguishes between incidents and defects. T-PLAN
tracks and reports a single problem type, called service queries.

By and large, all the tools capture similar details about identified problems. Data entry
is guided by user-tailorable templates. DDTs allows the provision of supplemental infor-
mation that is kept separately, but linked to a defect report. This additional information can
be used, for example, to include the data files needed to reproduce a problem. The test
item(s) to which problem reports are linked affects the type of tracking that can be per-
formed. SQA:Manager and T-PLAN link them to, respectively, test cases and test specifi-
cations. DDTs and Test/Cycle link problem reports to software items.

DDTs provides a good example of the additional power provided by tools that focus ex-
clusively on problem reporting. Here problems have a specified life cycle defined in terms
of states and state transitions. The system administrator is permitted to modify this life cy-
cle.

6.2 Import Capability

A flexible import facility is a valuable feature. It allows data generated using other
tools to be incorporated in a common problem database. This is useful, for example, when
different problem reporting tools are used, perhaps to cater for different development orga-
nizations or host machines. DDTs and SQA:Manager provide this capability.

6.3 Reporting Capabilities

T-PLAN, Test/Cycle, and DDTs provide predefined report formats. In the case of
DDTs, these reports conform to DoD-STD-2167A and the proposed IEEE standard classi-
fication for software errors, faults, and failures [IEEE 1987]. For T-PLAN the available sta-
tistical reports analyze the total numbers of defects, or queries, by classification. Frequency
of defects and defect resolution is also provided, as well as the percentage complete and
outstanding effort required to complete approved changes. Test/Cycle reports provide only
work request descriptions and a work request log. DDTs also allows a user to define his
own report formats, as does SQA:Manager. In these cases, a number of predefined report
filters and sorting keys are provided to support reporting based on any problem character-
istic.

PARTI Problem Reporting

SQA:Manager and Test/Cycle report on the costs associated with defect detection and
correction. Of the examined tools, only DDTs provides a capability for automatic weekly
reporting on problems.

In addition to its reporting facilities, DDTs provides advanced search and query func-
tions.

6.4 Standards Conformance

SDIO requires the reporting and tracking of identified problems but does not specify
how this requirement should be met. Some additional guidance is given in DoD-STD-
2167 A. This standard requires, for example, that problems are classified by category (soft-
ware, documentation, or design problem) and are assigned one of five levels of priority. It
also requires analysis of defect trends and the identification of any additional problems in-
troduced by a problem fix.

The examined tools vary in their ability to meet these requirements. As shown in Table
6-1, only DDTs and SQA:Manager provide five priority levels as a default option, al-
though, for the other tools, the user can generally modify the input template to allow a dif-
ferent set of levels. The ability to record problem classifications is highly variable.
SQA:Manager and T-PLAN, for example, allow user-defined categories, whereas DDTs
accepts free-form text for this information. None of the tools provides explicit support for
recording the introduction of new problems as a results of a problem fix. Several pieces of
information can support the analysis of defect trends. Problem classification and details on
when a problem was inserted, detected, and the first opportunity for its detection, for ex-
ample, are all useful. DDTs, SQA:Manager, and Test/Cycle capture at least part of this in-
formation.

6.5 Distributed Architecture

The dedicated problem reporting tool, DDTs, is network based. This tool uses electron-
ic mail to provide automatic notification of changes in problem status and to support remote
problem entry. It also supports multiple projects. DDTs also provides access controls and
various other administrative capabilities. These additional capabilitics range from checking
and repairing the database to template definition.

PARTI Static Analysis

7. STATIC ANALYSIS

Static analysis is used to determine the presence or absence of particular, limited classes
of errors, to produce certain kinds of software documentation, and to assess various charac-
teristics of software quality. Unlike dynamic analysis, static analysis can sometimes be per-
formed on incomplete or partly development products and does not necessitate costly test
environments. It cannot, however, replace dynamic analysis, although it can be used to
guide and focus dynamic testing. Previously Table 4-2 identified fourteen tools as support-
ing static analysis. The functions provided by these tools are summarized in Table 7-1.

Table 7-1. Static Analysis Capabillities of Examined Tools

Control Flow
Analysis

TOOL NAME

Information Flow Analysis
Standards Conf. Analysis
Quality Analysis -

n| <] Cross-Reference Analysis
Specification Compliance

Data Flow Analysis
Structure Analysis
Path Analysis
Code Statistics
Flowgraph Generation
Call Graph Generation
Symbolic Evaluation
<} Pretty Printing

Browsing

<} Complexity Analysis

" ADADL Processor
AdaQuest
AutoFlow-Ada N
EDSA N N
GrafBrowse N v
v
N

e 7]

e}

<]
<]

[LDRA Testbed
Logiscope

I MALPAS vV
QualGen N
S-TCAT v N
TCAT
TCAT-PATH | N v

[TST 7 v y
TestGen v v

<] <]

<
<] 2]
2] 2] <]
2]]
<] 2] <

2| <]

F - Future capability

7.1 Complexity Analysis

Complexity measures are put to various test-related uses. McCabe has developed a
method, called Structured Testing, that uses cyclomatic complexity to guide the selection

7-1

Static Analysis PARTI

of a minimum set of required paths to test [McCabe 1982]. Complexity measures are also
used to estimate the number of defects present in a piece of software and to identify pieces
of code that are potentially defective.

Models for estimating program complexity have been based on various characteristics
of software structure and semantics. The best-known set of complexity measures are all ap-
plied at the program unit level. They are McCabe’s cyclomatic complexity metrics [McCabe
1976] and Halstead’s software science metrics [Halstead 1977]. Whereas cyclomatic com-
plexity is control oriented, the Halstead metrics are text oriented. As well as variations on
each of these measures, there are many other program-level measures. In contrast, relatively
few measures for assessing design-level complexity have been proposed. Perhaps the most
common design-level measures are those developed by Mohanty that are based on a call
graph [Mohanty 1976], and basic subtrees, a variation on cyclomatic complexity. Measures
for assessing requirements complexity are similarly scarce and not supported by any of the
examined tools. Table 7-2 identifies the different types of complexity measures that are pro-
vided.

Table 7-2. Supported Complexity Measures

Unit Level 3‘:3
_1)
15| - ' 5
:%::OEAEQ s g«g-’:‘g
TOOL NAME ~|®|E|2]|=I|C]|E Blzlz]|E |8
AR HEHEHEE AN
§E‘%UVE£= ?ae.mg.m
2= |g|E[R[E|RIZIBIS|IE|E13|2(F
2lels|sls|5|E(5|8|8|8|z]l2|e]s
-t | w | w | =]
HHEHHEEHHRHHEEEHE
ADADL Processor N
LDRA Testbed B ERE R EBRERERER
Logiscope N v |
MALPAS
TCAT-PATH N v [V BB B A
TestGen v 3

7-2

PARTI A Static Analysis

Twenty years of theoretical and empirical evaluations have failed to produce consistent,
hard evidence of the accuracy of particular measures or on the respective value of alterna-
tive measures. Consequently, these measures should be used as indicators, rather than ab-
solute measures of software properties.

7.2 Data Flow Analysis

Data flow analysis is based on consideration of the sequences of events that occur along
the various paths through a program. It is used to detect data flow anomalies, of which three
types are commonly recognized: (1) a variable whose value is undefined is referenced, (2)
a defined variable is redefined before it is referenced, or (3) a defined variable is undefined
before it is referenced. While the first of these indicates an actual program defect, the latter
two types of anomaly may indicate questionable variable usage rather than specific defects.
Since the analysis technique assumes that all paths through the program are feasible, some
reported anomalies may be superfluous. Data flow analysis also can be used to categorize
procedure parameters as referenced only, defined only, both defined and referenced, or not
used. '

LDRA Testbed, MALPAS, and EDSA support static data flow analysis. LDRA Test-
bed performs weak data flow analysis to identify data flow anomalies of the types men-
tioned above. It also analyzes procedures calls across procedure boundaries to report on
procedure parameter usage. MALPAS refines the classification of data flow anomalies. For
example, a data variable that is redefined before it is referenced may be classified as either
an instance where data is written twice without an intervening read, or as data being written
with no subsequent access on a given path. Given a list of procedure input and output pa-
rameters, MALPAS compares these with the classes of data to produce a table of possible
errors. EDSA uses interactive data flow analysis to facilitate program browsing.

7.3 Control Flow Analysis

Control flow analysis is a process of examining a program structure and identifying ma-
jor features such as entry and exit points, loops, unreachable code, and paths through a pro-
gram. This information can be used to determine program complexity and to aid in planning
a dynamic test strategy. It can help to decide on strategies for further analysis, for example,
to identify where it might be beneficial to partition the code to reduce the number of paths

7-3

Static Analysis PARTI

and, hence, facilitate semantic analysis. The results of control flow analysis can also be
used to prepare a diagrammatic representation of the program structure that can aid a user
in documenting and understanding a piece of software.

Control flow analysis is provided by the majority of tools that support static analysis.
MALPAS, TestGen, LDRA Testbed, and TCAT family all report on unreachable paths.
These may be generated as a result of program syntax, for example, as a result of end if
statements, or the position of a return statement. Even though they do not necessarily imply
an defect, the occurrence of unreachable paths should be checked. Some of the examined
tools go farther. LDRA Testbed, for example, also reports on unreachable branches and
other structural units.

Several of the tools use control flow analysis to generate a graphical representation of
a program’s structure as a logical flow chart or directed graph. This allows visual inspection
of program structure and complexity, and can facilitate program understanding at the unit
level. AutoFlow-Ada, LDRA Testbed, Logiscope, TCAT, and TCAT-PATH all generate
fairly sophisticated graphical representations of a program’s structure. AutoFlow-Ada, in
particular, provides a user with considerable flexibility in generating a high-quality graph-
ical flow chart. TestGen uses textual facilities to produce a more primitive graph represen-
tation. Although MALPAS does not directly produce a directed graph, its list of nodes, with
identification of successor and predecessor nodes, helps a user to draw this graph. Graphi-
cal representation of the calling relationship between program units also facilitates program
understanding. GrafBrowse, LDRA Testbed, Logiscope, and S-TCAT generate call graphs
or call trees.

The identification of paths through a program is useful for estimating the resources
needed for dynamic analysis and then guiding this testing. AdaQuest, LDRA Testbed, Lo-
giscope, MALPAS, TCAT-PATH, TST, and TestGen all provide this capability. Even
more useful, LDRA Testbed, Logiscope, and TestGen explicitly identify the values of log-
ical conditions necessary to cause particular paths to be followed. Logiscope, TCAT,
TCAT-PATH, and S-TCAT report on various code statistics. These statistics range from
measures such as the number of each type of operator and operand occurring in the soft-
ware, to measures of the average, minimum, and maximum path length. EDSA provides
interactive control flow analysis to facilitate browsing along program paths.

MALPAS, LDRA Testbed, and Logiscope perform structure analysis to verify a pro-
gram’s conformance to the principles of structured programming. Here LDRA Testbed
matches templates of acceptable structures with the directed graph of a program on a mod-

7-4

PARTI Static Analysis

ule by module basis. Matching structures are successively collapsed to a singie noae until
either a single node is left, indicating a structured program, or an irreducible state, indicat-
ing an unstructured program. MALPAS and Logiscope perform a similar reduction to eval-
uate the structure.

7.4 Information Flow Analysis

Information flow analysis is used to examine program variable interdependencies. This
helps to isolate inadvertent or unwanted dependencies, to indicate how a program can be
broken down into subprograms, and to identify the scope of program changes. For security
applications, it can be used to aid the identification of spurious or unknown code. Addition-
ally, it supports dynamic testing by identifying which inputs need to be exercised to affect
which outputs.

Both LDRA Testbed and MALPAS provide this capability. Currently LDRA Testbed
is limited to identifying backward dependencies on a procedure by procedure basis and
characterizes variables as strongly or weakly dependent. Future versions of LDRA Testbed
will include forward dependencies to identify variables that can be affected by a particular
input variable. It will also support information flow dependencé assertions to allow com-
parison of expected dependencies with actual dependencies.

MALPAS identifies all of a program’s inputs and examines each executable path to
identify dependencies for each output variable. These dependencies include the input vari-
ables, constants, and conditional statements on which it depends. It reports on program unit
inputs and outputs, which may be more than those passed as parameters. MALPAS also
identifies redundant statements.

7.5 Standards Conformance Analysis

Auditors are used to check the conformance of a program to a set of standards. For SDI
software, the SPC Ada Quality and Style: Guidelines for Professional Programmers [SPC
1991] defines the required standards. Although none of the tools reported here supports
these guidelines, ADAMAT discussed in the CRWG study does. Two new tools, Ada-AS-
SURED and the Ada Quality Toolset, are advertised as providing this support.

7-5

Static Analysis PART!

LDRA Testbed checks conformance to a set of standards that are of interest to the pro-
gramming community; this includes much of the Safe Ada Subset. Individual standards can
be disabled and the user can weight particular standards or specify acceptance limits, where
appropriate. TST reports on conformance to a set of portability standards.

7.6 Quality Analysis

As already mentioned, several tools report on particular quality characteristics such as
complexity and compliance with standards. There are, however, many other quality char-
acteristics that provide insight into, for example, code maintainability and portability.

One of the examined tools, Logiscope, employs the Rome Air Development Center
(RADC) quality metrics model to allow user-defined quality measurement at three levels
of abstraction [RADC 1983]. At the lowest level of the model, the user can defined upper
and lower bounds for a predefined set of primitive metrics. Logiscope distinguishes be-
tween unit-level metrics and architectural metrics, reporting on both. The user can then
specify algorithms to weight and combine the primitive metrics into composite metrics.
These composite metrics are, in turn, used to define quality criteria that allow classifying
components as, for example, accepted or rejected, based on their computed quality values.

QualGen analyses both design and code complexity and currently interfaces with Lotus
1-2-3 for quality reporting. It provides some 200 primitive metrics which, via Lotus, can be
combined into user-defined higher level measures. Software Systems Design, the develop-
er of QualGen, is currently mapping the correspondence of QualGen metrics to the SPC
Ada style guide.

7.7 Cross-Reference Analysis

The information acquired from cross-referencing program entities serves many purpos-
es. Perhaps one of the most important of these is identifying the scope of a program change
or aiding in the diagnosis of a software failure.

The ADADL Processor provides extensive cross-referencing capabilities. It reports on
the cross-referencing between program units, objects, and types. It also reports on the oc-
currence of with and pragma statements; the occurrence of interrupts, exceptions, and ge-
neric instantiations; and the usage of program unit renaming. LDRA Testbed cross-

7-6

PARTI Static Analysis

references all data items and classifies them as global, local, or parameter and also cross-
references procedure usage. Through its browsing capabilities, EDSA provides interactive
cross-referencing of data items and Ada objects.

7.8 Browsing

A browser facilitates program understanding by allowing the user to create and present
different views of the software. This may include views that show the same piece of soft-
ware at different stages of development and views that omit some information in order to
focus on other details. A browser also may provide the user with the ability to follow the
control flow or data flow in browsing through code. These capabilities may be used for sev-
eral purposes, for example, to aid in reviewing a program or in diagnosing the cause of a
software failure.

EDSA focuses on browsing source code at the unit level; it allows browsing forward or
backward via data flow or control flow. The user can construct views that suppress or omit
irrelevant code details to help him to focus on the concern at hand. Special annotations are
available to keep track of the progress of formal code verification. GrafBrowse chiefly op-
erates at the integration level. Here the user can move through graphical invocation hierar-
chies (or declaration or call-by hierarchies), pulling up the relevant pieces of code as
required. The TCAT family of coverage analyzers also allows moving between graphical
depictions of program and module structure and the associated source code.

~ Although not examined in the course of this work, the new version of Logiscope also
supports source code browsing.

7.9 Symbolic Evaluation

This type of static semantic analysis provides a more complete examination of a pro-
gram’s operation. Instead of actual input data, symbols such as variable names are used to
simulate program execution. This allows the reporting of the mathematical relationships
between inputs and outputs for each semantically possible path. It has three primary uses.
The relationships can be compared against a program specification to check for consisten-
cy. The identified path condition, together with the expression detailing the set or range of
input data which causes this path to be executed, supports test data generation. Finally, the

7-7

Static Analysis PART!

relationships can aid in determination of the expected output for a set of test data. Only
MALPAS provides this very useful capability.

7.10 Specification Compliance Analysis

Specification compliance analysis takes semantic analysis a step further by automati-
cally comparing a program against its formal specification to identify deviations. This type
of analysis is very powerful, but requires additional work on the behalf of the user.

Here again, MALPAS was the only examined tool that provides this capability. It re-
quires program specification details to be embedded in its intermediate language. (These
details may already be available if a formal specification language such as Z, VDM, or OBJ
is being used in the development effort.) The output of the compliance analyzer is a set of
threat statements that, if the program does not meet the specification, presents the relation-
ships between inputs that cause a deviation to occur.

7.11 Pretty Printing

A useful documentation capability, pretty printing is provided by the ADADL Proces-
sor, AutoFlow-Ada, EDSA, LDRA Testbed, and TST.

7-8

PARTI Dynamic Analysis

8. DYNAMIC ANALYSIS

This section reports on the capabilities provided by the examined tools for dynamic
analysis where software is evaluated based on its behavior during execution. Dynamic anal-
ysis is the primary method for validating and verifying software. Additionally, it is the
source of much of the information used in monitoring testing progress and software quality.
Traditionally an unstructured and labor-intensive activity, dynamic analysis is a significant
cost driver. This study examined the dynamic analysis capabilities of fourteen tools. Table
8-1 identifies the particular functionality provided by each.

Table 8-1. Dynamic Analysis Capabilities of Examined Tools

Coverage Prof- Test Data
Analysis iling Generation 9
) g 2 Els
AP CAR] g =&
SN 2l2la 8 ZI° IS
TOOLNAME |8 |5 |& IR K 3..5:
ol - = Cle]|2|3 El=lzlx < @ |z |8
g|B|E|E E|1s|<|® g 2lalgle|e
AR R El2|1B|»|21B|5|E|E|E|= E|E
tlE|E el8]ele|s|=|BlE|E|E|S
AHHHEHHHAHHEHHEHAHE
z|1Z|18|2|5|E|E|18|&|Z2|2|&|5|8|&8]a
'AdaQuest F 1~ o) F
LDRA Testbed vy F R v CR K
Logiscope N Y N N NV
SoftTest Kl
S-TCAT | N
L_f v v
TBGEN v
| TCAT N v
TCAT-PATH N N N
"TCMON v v ~
TST NV N v
TDGen Y
TSCOPE! v v
TestGen v v v

1. Used in conjunction with TCAT, TCAT-PATH, or S-TCAT to animate coverage resulits.
F - Future capability

8.1 Assertion Analysis

An assertion is a logical expression specifying a program state that must exist, or a set
of conditions that program variables must satisfy, at a particular point during program ex-
ecution. Assertion analysis is used to determine whether program execution is proceeding

8-1

Dynamic Analysis PARTI

as intended. In some cases, it may be desirable to leave assertions permanently in the code
to provide a self-checking capability. When present in code, even if commented out, asser-
tions can provide valuable documentation of intent.

Of the examined tools, only LDRA Testbed currently supports dynamic assertion anal-
ysis. Assertions are embedded in Ada comments and can be used to (1) specify pre- and
post-conditions for a section of code, (2) check whether inputs satisfy pre-determined rang-
es, and (3) check whether loop and array indices are within bounds. Should any assertion
fail, a user-tailorable failure handling routine is executed. Assertion checking can be
switched on or off, allowing assertions to remain permanently in the code.

8.2 Coverage Analysis

Coverage analysis is the process of determining whether particular parts of a program
have been exercised. Its importance is illustrated by academic studies and the experience
of the software testing industry that have shown that the average testing group that does not
use a coverage aﬂalyzer exercises only 50% of the logical program structure. As much as
half the code is untested and therefore many errors may go undetected at the time of release.
By identifying those parts of a program that have not yet been executed, a coverage analyz-
er can help to ensure that all code is exercised, thus increasing confidence in correct soft-
ware operation. By measuring the coverage achieved during execution with particular
set(s) of test data, these tools also provide a quantitative measure of test completeness.
Some tools also aid in determining the test data needed to increase the coverage. Although
coverage analyzers do not directly measure software correctness, they are valuable tools for
guiding the testing process and monitoring its progress.

There are two basic types of coverage analyzers. Intrusive analyzers instrument code
with special statements, called probes, that record the execution of a particular structural
program element. The addition of extra code in the program incurs both a size and timing
overhead. The alternative, non-intrusive analyzers, requires special hardware and is not ad-
dressed in this report.

8.2.1 Structural Coverage Analysis

Several levels of structural test coverage have been proposed. The basic levels for unit
testing are statement, branch, and path coverage which require, respectively, each state-

8-2

PART I Dynamic Analysis

ment, branch, or path to be executed at least once. They impose increasingly stringent lev-
els of testing with statement coverage being the weakest and path coverage the strongest.
Since path coverage can be difficult to achieve, various additional levels that lie between
branch and path coverage have been proposed. The best known of these additional levels
are McCabe’s Structured Testing and Linear Code Sequence and Jumps (LCSAJs) [Hen-
nell 1976].

Although unit-level measures can be applied during integration and system testing, they
do not provide the additional information that is pertinent at these levels. During integration
testing, for example, a measure of the extent to which the relationships between calling and
called units has been executed is useful. Functional measures provide a more appropriate
measure of test coverage for system testing (see Section 8.2.3).

Table 8-2 summarizes the structural coverage analysis features of the examined tools.
As shown in this table, the examined tools vary considerably in the support they provide.
The requirements for a test driver to execute the instrumented program is one of these dif-
ferences. LDRA Testbed and TCMON automatically generate this test driver, as does
TestGen under certain circumstances. The generated test drivers also differ. For example,
TCMON provides a command-driven test driver that allows the user to explicitly control
the handling of generated trace files. Where necessary, both LDRA Testbed and TCMON
allow special actions so that this interface can be omitted. There are other significant dif-
ferences. For example, LDRA Testbed provides different handling of trace data to support
host/target testing. It also separates out the data collected from a concurrent program to al-
low separate reporting for each task.

8.2.2 Data Flow Coverage Analysis

Data flow coverage has been proposed as another measure of test data adequacy. While
the traditional structural coverage testing approach is based on the concept that all of the
code must be executed to have confidence in its correct operation, data flow testing is based
on the concept that all of the program variables must be exercised.

While there are several tools that provide this capability for C programs, production
quality tools for data flow testing of Ada code are not yet available. The data flow testing
capability of LDRA Testbed, however, is currently under beta testing.

Dynamic Analysis PARTI

Table 8-2. Structural Coverage Analysis Characteristics

Unit-Level Coverage Reporting g
L | = <z E
@ ® g%g"g% J'E’-':' 5:3
& %l o ;‘_Egz poll - S|1E8|5
% &|E| Sletz|s|E Et..g&*
TOOL NAME SEESE'%ESS%%?Q-@-EE%?
Llz]lz|Q]e &E|le| S @ 2 "'-§
HEHRAHEHEHHEERAEAEIEE
AR HEHEHBHHEHH G HA R EE:
glelx|BlClals| S| 2IE|lElE 2| B2 g
S|IBlOlS|& AR I EHEHEHBEIEE
slalS|o|S|&|2|E|<|<c|=[E[B|E|Z|S]S
[~ AdaQuest) N) 0
LDRA Testbed o N v MEIE v
Logiscope ' RER K v v R v
S-TCAT N |y NV v
TCAT v v v M
[TCAT-PATH Kl v
“TCMON v N v R EREBERE v
TSCOPE! v v ~
TestGen A K| NIV N v v

1. Used in conjunction with TCAT, TCAT-PATH, or S-TCAT to animate coverage results.

8.2.3 Functional Coverage Analysis

Functional coverage, which may also be called requirements coverage, provides a mea-
sure of the extent to which tests have caused execution of the functions that the software is
required to perform. Unlike structural tests, functional tests can determine problems such
as the absence of needed code.

Two of the examined tools assess the functional coverage of tests. SoftTest provides a
measure of test adequacy in terms of the number of tested functional variations with respect
to the number of those testable. T provides a measure of test adequacy based on require-
ments coverage using user specified pass/fail results. An additional test comprehensiveness
measure considers requirements coverage, input domain coverage, output range coverage
and, optionally, structural coverage, where each factor can be user-weighted.

84

PARTI Dynamic Analysis

8.3 Profiling

Profiling provides a trace of the flow of control during software execution. This infor-
mation can aid in locating the cause of a failure and the position of the associated defect.
Of the examined tools, both LDRA Testbed and TST provides this capability as an optional
feature. In the case of LDRA Testbed, however, the Testbed may override the user request
if the resulting display exceeds a preset limit.

In general, the majority of computing time is incurred by only a few program segments.
This may be because these segments are called frequently, are computationally intensive,
or both. When a program needs to be optimized, therefore, it is more efficient to start by
identifying where the majority of computing time is spent so that the optimization effort
can be appropriately focused. Information on the number of times particular program seg-
ments are executed can aid this determination. The coverage analysis tools all give the
number of times examined program elements are executed, some additionally identify the
number of times each program unit is invoked.

8.4 Timing Analysis

Timing analysis serves several purposes. These range from supporting the validation of
software requirements that impose specific timing constraints on software functions to
identifying particular program units that consume a significant proportion of computing
time.

AdaQuest and TCMON provide timing analysis. Both offer the flexibility of user-spec-
ified placement of timers, and measurement using either clock or wall time. TCMON ad-
ditionally allows a user to request automatic timer instrumentation at the program unit
level. This tool reports on the placement of timers (and any counters used for structural cov-
erage analysis) to provide information that can be used to estimate the influence of instru-
mentation statements on measured time.

8.5 Test Bed Generation

Unit and integration testing require the ability to invoke the appropriate modules, pass-
ing necessary inputs and capturing the actual outputs so that they can be compared against
expected outputs. Integration testing may proceed in either a top-down or bottom-up man-

8-5

Dynamic Analysis PART |

ner. In the first case, testing starts with the most abstract, or high-level modules and requires
the use of stubs to represent those modules called by the module under test. In bottom-up
testing, the most detailed, or lower-level, modules are tested first. Here test drivers are re-
quired to simulate the modules that invoke the modules under test. Development of such
test drivers and stubs can be complex and greatly facilitated by automated support. In ad-
dition to eliminating the need for much manual labor, automatic generation also promotes
a standardized testing environment.

LDRA Testbed, TCMON, and TestGen all generate the test drivers needed for execu-
tion of an instrumented program. These are, however, very limited drivers primarily intend-
ed to handle the trace files used to collect coverage details. Of the examined tools, TBGEN
and TST are the only ones that provide true test bed generation, and only TBGEN supports
stub generation. Table 8-3 summarizes the test bed generation characteristics ~“ these two
tools.

Table 8-3. Test Bed Generation Characteristics

Command .

_§-§ L e Record Keeping

=))

2 1m =

m o

HREIHEHE gl |3

TOOLNAME |Z|E|&8|c|8|2|E 2 g
CI1Z12|S1E(E(8 ¥l |2

gz?‘ﬁa“eg - N 177 &

clg|E|= Ll (s = elEle]

Sl1Elzlels]2]z 2I8|E8|E|E

TERBHHUEEHEHHE

':38:586&3&@%98

Q||| =R |RI=m|E|n]w

TBGEN N EBREBREBREBEREREREREREREREREI

TST D) v v

8.6 Test Data Generation Support

Dynamic analysis requires software to be executed with a set of test data. The resulting
outputs are then captured and compared with the outputs expected for the given input data.
The traditionally manual and labor-intensive method of preparing test data has typically
limited the extent of testing that is performed. Although the available tools do not totally
replace the human effort required, they can make a substantial reduction to the amount of
human labor needed.

PARTI Dynamic Analysis

As mentioned above, dynamic analysis requires comparing expected results against ac-
tual results to determine the success or failure of a test. Determining expected results is an-
other traditionally manual and difficult task. Research into tools, called oracles, to
automate this task has been ongoing for many years. As yet, however, symbolic evaluators
(see Section 7.9) come the closest to supporting this capability.

8.6.1 Structural Test Data Generation

During testing, there are occasions where it is necessary to determine the test data that
will cause a specific branch or path to be executed. This occurs, for example, when it is nec-
essary to attain a specified level of structural coverage and existing test data has not exe-
cuted some structural elements.

Support for this activity is available at two levels. AdaQuest and TCAT explicitly iden-
tify the program segments that comprise particular program branches and paths. LDRA
Testbed, Logiscope, TCAT-PATH, and TestGen provide the same information and, addi-
tionally, explicitly identify the conditions required to cause each structural element to be
executed.

8.6.2 Functional Test Data Generation

Functional tests can be derived from a requirements specifications using three catego-
ries of methods: (1) algorithmic techniques such as cause-effect graphing, equivalence
class partitioning, and boundary value analysis; (2) heuristic techniques including fault di-
rected testing and the traditional error guessing; and (3) random techniques that employ
random generation of test data.

T supports all these techniques. Additionally, it is capable of incremental test data gen-
eration, that is, tests can be generated for software changes only. T is the only examined
tool that produces test data values ready for immediate use in testing.

SoftTest supports cause-effect graphing to compile a database of input conditions for
each unique function. The user then works from these conditions to determine the necessary
test data. In those cases where identified functions are not directly testable, for example,
because results produced by one function may be obscured by other functions, SoftTest
identifies intermediate results that, if observable, would enable otherwise obscured func-
tions to be tested.

Dynamic Analysis PARTI

8.6.3 Parameter Test Data Generation

Thorough test coverage at the integration level requires that each subprogram be exe-
cuted over a range of parameter values. Of the examined tools, only TST provides automat-
ed generation of test data for certain types of subprogram parameters. This generation
occurs in one of two forms. The user can specify that all possible values for a parameter be
generated (or first and last values for floating point numbers). Alternatively, the user can
request that these values are divided into a number of partitions and that the first, middle,
and last values from each partition be selected.

8.6.4 Grammar-based Test Data Generation

In those cases when the test data is simply structured, and this structure is amenable to
description, grammar-based test data generation allows rapid, automated generation of
large amounts of test data. This capability is particularly useful in random testing.

TDGen provides this functionality. Test data is generated according to location-specific
data, uniformly distributed data, or value-factored data. TDGen can generate data random-
ly, sequentially, or according to a user specification.

8.7 Test Data Analysis

Two types of test data analysis are considered here. In the first case, test data sets are
analyzed to identify which test data sets execute which lines of code. When particular lines
of code are changed, this information shows which test data sets are affected by the change
and must be rerun. The second type of test data analysis detects and reports on redundant
test data sets. This identifies test data sets that are essentially equivalent in effect and, there-
fore, can be eliminated to reduce testing cost without affecting test effectiveness.

LDRA Testbed is the only identified tool that supports these capabilities. The analyses
are performed on data collected during structural coverage analysis.

8.8 Dynamic Graph Generation

A visual representation of the execution flow of a program can aid in understanding that
program and diagnosing the cause of failures. LDRA Testbed and Logiscope provide this

8-8

PARTI Dynamic Analysis

facility at both the unit and integration levels. TSCOPE uses the outputs of TCAT or
TCAT-PATH to animate the execution coverage on a directed graph; and the output of S-
TCAT can be used to animate coverage on a call tree representation of the program under

test.

8-9

PARTI Findings

9. FINDINGS

This study examined a number of software testing tools to the extent necessary to gain
a feel for their capabilities. However, none of the tools was examined in great depth. Only
tools supporting test management, problem reporting, and static and dynamic analysis of
Ada code were considered. Categories of tools such as regression analyzers and emulators
were ignored. Additionally, some promising tools that may fill some of the identified func-
tional gaps are still awaiting examination.

9.1 Status of Available Tools

Reviews of testing practices and tool usage reveal extremely poor exploitation of avail-
able testing tool support. In the last ten years software developers have placed much focus
on software development tools and there has been an explosion in the availability of CASE
systems and other types of development environments. Only in the last few years, b wever,
has much attention been paid to testing tools. These tools are now starting to comz > mar-
ket in increasing numbers. Even so, available evidence suggests that they are seldom used.

As the number of available testing tools has increased, some trends are emerging. Most
noticeably, there is an increased focus on test management and a movement towards cus-
tomer-oriented measures of software quality. On the technical side, there is a movement to-
wards graphical user interfaces using windows. There is, however, no evidence of
increased standardization in terms of testing functionality. Even within one category, no
single tool provides all desirable functionality, and different tools support different groups
of functions. These functional differences require a potential user to perform tool compar-
isons with caution and to select a tool very carefully.

The following findings relate to the potential for the use of testing tools in the develop-
ment and support of SDI software.

+ Test management. Test management tools offer critically needed support for test
planning and test progress monitoring. This category of test tool is perhaps the latest
to come to market. The capabilities provided for capturing test plans, test procedures,
and test cases are generally similar. Capabilities for capturing software requirements,
tracing these to particular tests, and supporting change impact analysis, however, vary
significantly. With the exception of reliability analysis tools, which are becoming
more common, progress monitoring is seldom available and primitive. Similarly, only
one tool that supports cost reporting was identified and the analysis performed is also

9-1

Findings PARTI

primitive. Nevertheless, the ability of these tools to manage a collection of test infor-
mation is very valuable and, even though its analysis could be improved, the data
available from this analysis is urgently needed to support the management and docu-
mentation of test activities.

» Problem reporting. In addition to their primary use in tracking identified software
problems and managing problem resolution, problem reporting tools offer support for
test management. They provide information on the status and quality of software
products; in particular, they capture the data needed for software reliability modeling.
This data can also provide valuable insights into the status and quality of the software
development processes themselves, and so support continuous process improvement.

Problem reporting tools fall into two classes. The network-based class of tools are in-
tended for use on multiple, geographically dispersed projects. They offer specific
support for customer submission of problem reports and provide automatic notifica-
tion of changes in problem status. Those tools that provided problem reporting as one
part of test management capabilities run on a stand-alone personal computer but cap-
ture much of the same types of problem information and provide similar analyses of
problem data. There are several problem reporting tools that could be brought into im-
mediate use, although some thought should be given to defining a standardized set of
problem data to be captured across all SDI software development efforts.

+ Static analysis. Available static analysis tools are essentially limited to facilitating
program understanding and assessing characteristics of software quality. They pro-
vide some minimal support for guiding dynamic testing. Static analysis requires little
in the way of test environment set up and a minimum of human intervention. It can
detect the presence or absence of certain, limited types of defects and allows these
defects to be detected reliably and early in the testing process. The types of defects
traditionally found by static analysis tools, however, are now routinely checked for
by Ada compilers. Currently, one of the main values of static analysis tools is in sup-
porting an understanding of software and guiding dynamic testing. Quality analysis
is a particular type of static analysis where assessment of a set of predefined quality
characteristics can be used to provide early indication of general software quality and
the identification of potential problem areas.3

In the types of tools examined, complexity analysis and control flow analysis are the
most common static analysis functions supported. A couple of examples of data flow
analysis tools have appeared and are expected to become more common in the future.
Two types of tools to aid a user in understanding and documenting a piece of code are
available: graph generators and browsers. Flow graph and call graph generations are

3. The role of quality analysis is discussed extensively in the GPALS Software Quality Program Plan
{GPALS 1992a].

9-2

PART I Findings

quite common, although they vary greatly in the quality of the representations used to
present these graphs. A few browsers are currently available and these are expected
to become more common over the next few years. This study and the CRWG’s study
of quality analysis tools have, between them, identified several tools that check con-
formance of code with a set of project standards. One of these, ADAMAT, checks for
conformance with the SPC Ada style guidelines. Two new tools that also support the
SPC standards have recently been identified. More advanced types of static analysis,
such as symbolic evaluation, are uncommon.

» Dynamic analysis. Although many needed dynamic analysis capabilities are infre-
quently available, tools are available that offer considerable support for dynamic test-
ing to increase confidence in correct software operation. Dynamic analysis is the
principle method used for software validation and verification. Here automated sup-
port for the preparation of a test bed, generation of test data, and analysis of test
results is needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human tester and increase software quality by
supporting such activities as test data adequacy assessment.

Structural coverage analyzers and profilers are the most common dynamic analysis
tools and are widely available on a range of operating platforms. The structural cov-
erage analyzers generally focus on statement and branch coverage, that is, relatively
low coverage measures. Support for path coverage analysis and structural coverage
at the integration level is less frequently available.

Support for other types of dynamic analysis is also infrequently available. Only two
of the examined tools provide timing analysis. Only two tools offer test driver gener-
ation for bottom-up testing, and only one of these also generates the stubs needed for
top-down testing. Few tools support test data generation for structural or random test-
ing, although two tools that support the generation of functional test data from a re-
quirements specification have been introduced. Assertion-testing is a relatively new
capability that is, as yet, only provided by one tool.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. In general, the examined tools require little sophistica-

tion on the part of the user and are supported by good documentation. Some actively guide

a user through necessary tasks, keep a record of test activities, and take extra steps to relieve

the user of repetitive tasks. In general, however, the tools employ primitive user interfaces

that could benefit from the application of human factors engineering. In several cases, the

need to refer to separate listings to identify objects referenced in reports complicated tool

use. There were instances where different tools gave different results when performing the

same function, for example, calculating cyclomatic complexity. Moreover, some of the

9-3

Findings PARTI

tools contained faults. While most failures were trivial, others rendered a tool unusable un-
til fixed by the supplier. In three cases, major failures occurred when using the tool on sam-
ple software supplied by the supplier. Consequently, prospective tool users should carefully
consider a tool’s usage history and the types of support options provided by the tool sup-
plier,

9.2 Significant Deficiencies

Available testing tools offer significant opportunities for increasing software quality
and reducing development and support costs. Even so, there are a number of problems with
these tools and a lack of needed functionality that may handicap SDI software testing. The
following problems are of particular concern.

*» There is a lack of support for testing concurrent Ada software. The vast majority
of current testing techniques are intended for testing sequential code. Concurrent soft-
ware, however, introduces special concerns. The inherent indeterminism of concur-
rent programs means that two executions of the same software with the same inputs
can produce different behaviors. This lack of reproducibility handicaps, for example,
determining the cause of a failure and retesting a modified program. Concurrent pro-
grams can also contain a new class of faults, called synchronization faults. Additional
tests are needed to check for existence of these faults. Testing techniques addressing
these issues are appearing, along with some prototype tools, such as AdaTDC being
sponsored by the National Science Foundation. One commercial tool that is expected
to support concurrent re-execution within the next year is PARTAMOS, under devel-
opment by Alcatel Austria. Meanwhile, the majority of the commercial Ada-based
static and dynamic analyzers are capable of recognizing all the concurrent Ada lan-
guage features, but not fully acting on them.

» There is a need for increased tool integration to provide more complete coverage
of testing activities. The majority of tools provide support for a specific, limited set
of testing activities. No single tool, or supplier toolset, provides all desirable function-
ality. While tools that support different types of activities can generally be used
together, simply applying them independently in sequence is usually not the most
cost-effective approach. It can incur unnecessary duplication of both human and com-
puter work and may require additional steps to make the output of one tool acceptable
to another. It also requires users to gain familiarity with a number of different user
interfaces, as well as requiring system administrators to support a number of indepen-
dent tools. Moreover, true functional integration requires some common, underlying
model of the software development process model. For example, a test log automati-

9-4

T T T T

PARTI Findings

cally captured by a test bed during test execution activities should be the same log that
a test management tools uses in monitoring test progress. This type of integration
would greatly increase the power of available tools and their ease of use.

« There is a need for integration of testing tools into CASE systems to provide
improved feedback into development activities. While some CASE systems do
provide support for code level testing, this support is generally less extensive than that
provided by stand-alone testing tools. At the same time, CASE tools are providing
more support for testing activities during early development phases than stand-alone
tools. A more careful look at the testing capabilities of current CASE systems is
needed, together with an evaluation as to which, and how, independent tools should
be integrated with them to provide a comprehensive test environment. Here again,
functional integration into a CASE requires that test processes and products are them-
selves integrated into the underlying software development process model. These
issues have yet to be addressed.

There is a lack of data on the cost effectiveness of particular test techniques and tools
that can be used to encourage and guide their use. Although there have been many studies
into the comparative value of certain test techniques, there is a lack of data on the practical
costs and benefits of particular testing techniques, and the tools that support those tech-
niques. This information is needed to determine, for a given set of circumstances, the most
appropriate techniques and tools to apply, the order in which to apply them, and the extent
of that use. It is also needed during planning activities, to support the estimation of needed
testing resources, and in monitoring test progress. The data captured in test logs and prob-
lem reports can be used for this purpose, imposing a minimal data collection burden on soft-
ware developers. Where this data is maintained automatically, it will be a simple task to
forward it to a central site for analysis, such as the Level 2 System Simulator (L2SS) soft-
ware metrics database.

A number of promising testing techniques have been proposed in the last decade that
have failed to progress beyond prototype status. One example of this is the software fault
tree analysis used for error cause and effect analysis in support of risk management. The
Anna toolset is an example of a suite of prototype tools for assertion-based testing of Ada
code. Further development of such techniques and supporting tools could start to fill some
of the gaps in needed testing capabilities.

Additionally, there are needed automated test capabilities that are provided for other
languages but not available for Ada. Examples of capabilities available for other languages
include error seeding as another measure of test data adequacy; support for test coverage

9-5

Findings PART |

analysis of kernel, daemon, and library code in addition to application code; and critical
path analysis. Similarly, while several tools supporting data flow testing of C code are
available, only one tool supplier with plans to provide data flow testing of Ada code has
been identified. Here again, further tool development could start to fill some of the gaps in
needed testing capabilities.

9-6

e e

& e

)

PART II

TOOL EXAMINATION REPORTS

PARTII Introduction

10. INTRODUCTION

This part of the report describes the selected tools in terms of their usage. Tools are
grouped by supplier and the report details the operating environment and the functionality
provided. Where applicable, price information, accurate at the time of examination, is also
included. Each description is supported with observations on ease of use, documentation
and user support, and Ada restrictions. Problems encountered during the examinations pro-
vided insight into the reliability and robustness of each tool. Each description is accompa-
nied by sample outputs.

Table 10-1 summarizes the details given for each tool. It also identifies available bridg-
es between testing tools and CASE systems. Table 10-2 presents relevant supplier data.

10-1

PART Il

Introduction

o o o @ o o o o o
‘smopuip
10J 159], 1JOsoInp
auunyisa]/y
‘1531 -A "0Iisa)
1090Y:yDS
‘eb J0jpWOINY
‘gD UAsaLonvi W » plooszs | nooi<] 1€ i86l 1531)J0§
R DJld| sieuuo) paugaq p p M p] 668 | nooz< | 11°E {0661 njjoo], S|
1090y VOS| W stauaauodl MMM A M M se68 | nooi< | 07 os6l| 1988usiN:VOS
W smo d OlMIMIMIA M ooo'vs | so1> | 1T |8861 uapendy
1auyary/s30| W $13}13AU0D stoppauo)] fMJd]p rlooszs | nos< | zz Jie61] sedsuspysad)
Youaqyop safeuejy 103(01d apAONSIL| N 1108V d[p r jose'vis] soe< | zoz [ess1] o9sump somap]
R M p 000'09$] nos< | 1's [os6l SVdTVIN]
Wwodiuaf)
‘sSHYJu
‘jod ydunsysog
aueld yoeyg v._dacow .._uu_uu:: .ng
‘youaquog dH ‘asndxeq g | ‘a1mosg ‘11osv 110SV I MMIMIML Jooovisinooos<] zE fss6l adoosio
- JI0MWEI] ‘123U 1dussisod
-18ug wass ‘dLS 109se NZogL| W | ‘sweuuoj paugaq] sieunoy paugagf A A JOIM M LALLM LN [000TIS] SOOP< |108YIVL6T] PAQISAL 55.&
W| 10dH 1diwsisod MIMIAIAERL LN JoOS'SS | SO1> JTTT 1661 asmoigyeing
$20S 'sJ¥ W MMAMMPMM]IM]osLES] no1> | 0T J1661 vsad]
$20S ‘SO¥ "youaquos dH ETLRE e} e I TN E MM 000'9$ | sooi< | 91T (6861 sLadf
wdinsisod ‘Old
mI'May ol “19dH ISV d d{p d p | 0s6'68 {n000'>] Z0'1 [z661 Mmooy
Homawrey F§VO o) M M oos'9s | ne> | 11 1661 153n0RpY)]
W (o} A 000'ss | sooz< | 3es ¥861] 00id 1@vavi
Jm = = - T 5 DMMW..P.HPWMN[JM.I 2 B |
> T 5| $ £ BUERRBFEEE 5| 8 |62
< & 5 a 2 -4H g SEIR| B | § | B =
e = g m - &3 Elg| = 3 a | ®
5 g 3, g g alzle SEl 7| g 1512
3 s |5 g B OEISE Bl 2| § |5 |%
4 3 s & z [EIER g m. & lawvn 1001
3 3 e B | °
2
SI0 |dwgdel
STOOL YAHLO OL SAUNI'T SOLLSILVLS TO00L
INFWNOUIANT DNILVIAIO

§9]1§01d 001" }-01 8iqEeL

@
=

—

10-3

reuondo - O
dnosg se pjos - q USAUD PUBLIIOD pue NUIA - § sAg - S
nnu 351003 3uiuren Kep-¢ 10j 33U - , UIAUP prewwo) -) SIaS() - N
.M.w feuotiewIu] HAJ Aq pAleNJew UOISIIA - . 9AUD NUSW - W yuowdojaaap sopun Anpiqede)) - 4
=
T | uomumal gis 01e43190xg W ol [olrMIMIMIMIMTJ009'YS 0000 I<] T2 |V861 ua0isa
& YyouaqyIoM Xwony3y ‘SYH
£ | 1a8eumpy 10aloq *apohpy| 108vuspy somapy| W | ‘dudsisoq ‘[1DSY MM Mloos'es | soi< | zoe Jos6! AONSIY
W pp p 'A0D £< 0T J6861 1SL
+¥ogjoo] SV 1-0ad N30€l} O o) * pIpJoocs| soe< | Tz Joset NOWO.L
»X0gjoo] 3SVJ 1-0ad| NOWOL ‘viall o Ofp{Mlelprlpr]p]os82s] SOE< | 1€ 9861 N3OE.L
H1vd-1lvOl
'LVOL-S 'LVOL| W p S p M |006vsinoosz<] T1]6861 3d00sy
g o] {ofp p p 00s$ | noos- | z€ Josel U3
JSN4 230 'Y2uaqyos dH 3doosl| g p ofp p MM |q006'v8]Nn00S'T<] €1 |L861 IVOL-§
asN4 234 "YPuaqos dH 3d0osl| € ol [o]) p MM [006'vS[n00ST<| 8 8861 HIVd-LVOL
3snd 0dd ‘Yduaqos dH 3doosl| 8 o}l {o]|) M MM [006'v8 N 000T<) €1 9861 1voll
smo] smo]
= 8b Jojewoiny| W ‘asvepdial asveaedial |prjop MM MM] 00S'6F | nozi< | 0T f6861 NV1d-L
m jomwea]] Jouunyy ‘PUd . . .
M 'd1S '4d] ‘10ieI9[2xg asajoiny| g | L1 3391 ‘HOSV MIMIMIMIMEM LML J000'LS | SOOE< | OE {1861 L
/S0 10}
100, 159, 2a108
-12Ju] UONBISYIOM = = o N. - o~ et
<D = B W Z
3 g € g EEECREEEI 5| & |£|2
2 E gl 3 3 BREI[[FEE E| 5 |2z
) = 5 = = B|=|a -[E = | 8|8
: = B d T HEIR B
= 2 s s 5 [BIE w d FWVN TO0L
& § 5 ik
S/0 |unpPBN
STOOL ¥3HLO O SYNIT SOLLSLLYLS 1001
LNFWNOUIANT ONLLVIEJO
S3|yo.id [00], -panuljuod J-0] 3iqe],

PART I

Introduction

L J ® L [o o ® | ®
Aupiqedes axming - 4
N 19ppingooq
IS MM 30039/49V
p J VSv/dov adoosido] E | M 9861 | 07> | £659-1vZ (¥12) Vs 3ojuap
NOWOL ‘N3ogdL] M z661 | s> | vovsor-1€ 8oe+ AQ 113misal |
lossasold 1Avayv
‘aSMolgJeIn)
I 135j00), FIS1V|) ‘UeDIenD ‘Uapisal] M 3 €861] 01> LY19-S29 (P1L) udisa] swasAg ammyjos
| YIANOVIL
IS JILVLS
p d41ax3| 3d0OSL ‘¥2oal
M AVEdVD ‘H1Vd-1VOL
p A SLAVIAS] LvoL-s‘IvoLl AL ML ML A p Leel | sz< | 1wpi-Lg6 (S1Y) U] ‘Yoreasay aMYOs
ool FAS Mopipfoser] ¢ 8L£8-€Ty (008) Suussuidug Aifend) armyos,
p 1090%:vOs 188ue VOS] p 6861] 1 | zz66-822 (008) vonewolny Altfend) alm1yos
Z<4n_.t dj I MMM ¥861 81 SIYPLE-LLTO v+ | PV ‘2ouinssy Aiend) ammyos
LSL 6861 6 L186-v6s (40g) | Aionsoday uonepuno SYVLS]
SVATVINL ML MT M M M pLel| 0TV | pIPIIL-TST VPt "pI] ‘se01A1ag LOUBNSUO) V)
d d 1310 ..—
A _sLaay siaay pl Al p p 9861 | zi | (988-vLT (80V) dioD yei1jend)
d owureidold/sad
d wadxz/s3d
d 35220)/$30 "ouj
10AYIY/STD 1dewreN/S30] M M MM T66I] OT> TTL-8LT (£00) ‘ammyjos Juusewdug Lend
p suuny LI M A p 1861 | 0> | 0110-816(806) | "oul ‘siuswuostaug Suiwumigord
poqisaL V1| M| M| M p 1861 | 1 | 8788TS-S€90 v+ Py ‘siaskpeuy weiold
MM 08dAXY
MM SAVLL 15anQepY p M| s0961] 000'1~] tZLL-¥96 (SO8) ‘d10)) Yoreasay [8I3U30)
Ia3eue\ SOURBI
.o_o.aU\zom MM A S 8961 | 000'€<] OE0E-bLS (80L) -au] ‘dnozp 1amod ndwo)
1sajyos| p MA LL6l | o> | 9616-+26 (S1¥) SABI0SS Y %P 19puag
EpY-mojjony| M M| 8861 | 01> £LTT-9vP (30¥) .So_o.:_ow._.. Jsvoony
ysdad A .w A 18611 05> | 0060-9¢L (O1p) I __-ou ‘Sunndwo) swaisks Aviry
] F4 ar m @
JHEEEER HHERHERRIE
uMmmmw clelalP|z(ElEl E| B
2l=|2|B |8 mwwu.ﬂsmm 3
s|>|E = am aweN j00] ©w|3|§ m m 2 8 @ | sequny auoyg
AEEE sooy pautwexg |3 g ® AWVN IS
=2l |28 W 2
% |2 h - e
&
aiaairoud
ST001 ¥31'1ddNS 3LV 1ad SADIANAS SOLLSLLVLS ¥AI'1ddNS

$011jo4d sey1ddnsg "zZ-01 eiqeL

il
=
—

PARTII AdaQuest

11. AdaQuest

The AdaQuest toolset provides a variety of static and dynamic techniques for testing
Ada software. It is based on two earlier verification and validation systems, RXVP80 and
JTAVS, that, respectively, support Fortran and Jovial testing.

The static analysis capabilities of the current version of AdaQuest are limited to iden-
tifying program branches and the lexical nesting structure of specified compilation units.
Existing dynamic capabilities consist of coverage and timing analysis.

11.1 Tool Overview

AdaQuest was developed by General Research Corporation. The first version of this
toolset, version 1.1, became available in December 1991. It runs on VAX/VMS platforms.
At the time of evaluation, the price for AdaQuest started at $6,500.

AdaQuest requires that code to be analyzed resides in an AdaQuest program library.
Each library is associated with a VMS directory that contains the intermediate files of the
relevant compilation units. Several library management commands are provided. These in-
clude commands to set a current library and build a working set of compilation units. Spe-
cial facilities are provided for reading source files into a library; in the current version of
the toolset, source files are limited to containing a single compilation unit.

The AdaQuest Analyzer generates branch reports and unit nesting reports for user-spec-
ified library units. In the first case, the result is an annotated source code listing that iden-
tifies and numbers each decision branch in each program unit of a specified compilation
unit. This report is needed to select locations for the insertion of coverage and timing probes
(see below). It is also required for interpretation of branch coverage reports. The unit nest-
ing report shows the lexical nesting of the program units in a compilation unit.

Each program unit can be instrumented to collect either coverage data, timing data, or
both. The user specifies the library unit bodies and subunits to be instrumented, and each
instrumented unit is written to a separate file. Instrumentation is performed by inserting
special statements into the source code. Where necessary, individual source code state-
ments are first transformed so that these insertions will be syntactically legal. An exir state-
ment, for example, may be replaced with if and goto statements.

11-1

AdaQuest PARTII

Two different types of probes are available to collect coverage data. Branch coverage
probes are inserted automatically at each branch point (including at the start of each accepr
and block statement). Any code transformations necessary to ensure correct coverage mea-
surement are also made automatically. The second type of probe, called test case probes,
are used to partition the data collected from an instrumented program. They allow, for ex-
ample, measuring the coverage achieved in each execution of a loop. Test case probes are
inserted at user-specified points in the source code and take the form of procedure call state-
ments. It is the user’s responsibility to ensure that these are placed in a syntactically legal
fashion; AdaQuest does not check the placement. The resulting instrumented files include
file header information that identifies the unit, original source file, and type of instrumen-
tation performed. They are accompanied by files containing two additional AdaQuest-gen-
erated units needed for the collection of coverage data.

For timing analysis, probes are also inserted at user-specified locations. In each case,
the user gives a start and stop location in the form of source code line numbers; these loca-
tions may reside in different program units within a compilation unit. Again, it is the user’s
responsibility to ensure that insertions at these defined locations will be syntactically legal.
The user also specifies whether data should be measured in terms of CPU or wall clock
time.

Compilation and linking of the instrumented program is performed using the standard
VAX facilities. AdaQuest does, however, provide a compilation script that can be used to
compile the two AdaQuest-generated run-time units. When executed, the instrumented pro-
gram collects coverage and timing data in an automatically created trace file. (As with the
other tools that write coverage details to a trace file, a program run must terminate normally
so that the trace file is closed by the operating system.) If desired, the user can allocate a
name and description to the trace file.

AdaQuest maintains a test history for each body or subunit in a library in order to allow
reporting on the cumulative coverage achieved over a series of test runs. Initially empty,
the user specifies when a trace file should be appended to the appropriate histories. Nor-
mally, the test history for a unit is cleared when the program library is updated. In certain
circumstances, the user can override this function to keep a history, although this ability
must be used with great care.

The reports that are available can be produced for all or only user-specified program
units. The Test Run Report identifies the original source code file(s) and indicates how it
was instrumented. Coverage reports are generated using data from a single trace file, called

11-2

PART i AdaQuest

the current test run, and, in most cases, user-specified test histories. Between them, the cov-
erage reports provide counts of the number of times each program unit, accept statement,
and block statement was executed, counts of the number of times each conditional branch
was executed, the execution status (first-time hit, never hit) of each branch, and the percent-
age coverage of the branches in each unit. In some cases, histograms are provided to com-
pare the execution counts of different items. Two additional reports can be generated using
coverage information from the test history files alone. Timing analysis reports are generat-
ed from a single trace file. They detail the timing probe placement, the number of times
each selected code segment was invoked, and the minimum, maximum, and average time
taken for each segment. Timing data is not accumulated in test histories.

11.2 Observations

Ease of use. The user interacts with AdaQuest through a command interface. This in-
terface requires considerable memorization on the user’s part (the Analyzer, for example,
has some 27 different commands) and exhibits some inconsistencies. Although the ability
to explicitly specify the locations for coverage and timing probes can be valuable, the need
to manually refer to the annotated source code listing is tedious and a possible source of
error. This inconvenience could be reduced by providing, for example, some automatic in-
sertion of timing probes to measure the time spent in named units. Output listings are han-
dled in an unusual manner; all commands that produce an output listing automatically
invoke the VAX edlin editor.

At the time of evaluation, the on-line help provided summary information on only a
small number of available commands, although this should be a useful feature when com-
pleted.

Documentation and user support. A complete AdaQuest user manual was not avail-
able at the time of examination. The documentation that was provided, however, was well-
written and easy to follow. One nice feature is a command dictionary that provides a useful
reference manual. Tool installation was straightforward.

Instrumentation overhead. AdaQuest allows the user to control the extent of instru-
mentation by requiring the user to explicitly identify the units to be instrumented. Two spe-
cial run-time units are provided that must be included in an instrumented executable to
handle the creation and recording of a trace file. Including these special units, full instru-

11-3

AdaQuest PART Il

mentation for branch coverage of the Ada Lexical Analyzer Generator gave an approxi-
mately 19% increase in the total source code size.

Ada restrictions. AdaQuest supports the full Ada language, including extensions de-
scribed in Chapter 13 of the Ada Language Reference Manual. The only exception is the
Ada terminate alternative (see LRM 9.7.1) which contains no statements and cannot be in-

strumented.

Problems encountered. No problems were encountered during the examinations of
this tool. AdaQuest operated exactly as described in the documentation provided.

11.3 Planned Additions

Future versions of the static analyzer are expected to generate dependency reports and
check for logic errors (such as infinite loops, unreachable statements, and uninitialized
variables). Conformance checking against standards relating to the use of forbidden con-
structs and those specifying maximum/minimum constraints on the quantity of Ada con-
structs appearing within a certain scope is also anticipated. A source code profiler will list
any non-zero counts for some 228 Ada features. AdaQuest is also expected to include a
query facility that provides direct access to this data for quality analysis tools.

Additional dynamic analysis capabilities expected to become available include the use
of assertions for checking unit- and interface-level design constraints. Finally, a task ana-
lyzer is also planned that traces the actual synchronization relationships between Ada tasks,
creating timing diagrams to help in diagnosing synchronization errors such as deadlock and
starvation.

11.4 Sample Outputs

Figures 11-1 through 11-12 provide sample outputs from AdaQuest.

11-4

PARTII AdaQuest

27-JAN~1992 10:45
Library: ADALEX;WORK

ADAQUEST UNIT NESTING REPORT PAGE 1
Comp Unit: LL_COMPILE:BODY

27-JAN-1992 10:35:12

Structure Unit Unit Kind Starting Linpe
LL_COMPILE Procedure Body 26
. + LLNEXTTOKEN Procedure Spec 136
. . LLPIND Function Body 140
. .LLPRTSTRING Procedure Body 165
. + LLPRTTOKEN Procedure Body 177
. « LLSKIPTOKEN Procedure Body 190
. . LLSKIPNODE Procedure Body 203
. +LLSKIPBOTH Procedure Body 217
. « LLFATAL Procedure Body 234
. .GET_CHARACTER Procedure Body 246
. .MAKE_TOKEN Function Body 264
.+..CVT_STRING Function Body 271
. .LL_TOKENS Package Spec 326
... .ADVANCE Procedure Spec 328
. . LL_TOKENS Package Stub 334
. - LLNEXTTOKEN Procedure Body 337
. . LLTAKEACTION Procedure Stub 349
« - LLMAIN Procedure Body 352

. . READGRAM Procedure Body 383
...... BUILDRIGHT Procedurs Body 389
...... BUILDSELECT Procedure Body 449

. PARSE Procedure Body 499
..... .ERASE Procedure Body 505
...... TESTSYNCH Procedure Spec 522
...... EXPAND Prooedure Body 525
veesss . MATCH Punction Body 533
+o e+ TESTSYNCH Procedure Body 593
s ooy . SINCHRONIZE Procedure Body 596

27-JAN~1992 10:45 ADAQUEST UNIT NESTING REPORT PAGE 2

Library: ADALEX;WORK

Comp Unit: LL_COMPILE.LL_TOKENS

27~JAN-1992 10:39:35

Structure Unit Unit Xind Starting Line
LL_TOKENS Package Body a5

. . ADVANCE Procedurs Body 49

++ . .GET_CHAR Procedure Body 56

.+« . CHAR_ADVANCE Procedure Body 69

.+ + . LOOK_AHEAD Procedure Body 86

Figure 11-1. AdaQuest Unit Nesting Report

11-5

AdaQuest PART i

27-JAN-1992 10:45 ADAQUEST BRANCH REPORT PAGE 1
Library: ADALEX;WORK Comp Unit: LL_COMPILE:BODY
27-JAN~1992 10:35:12

140 function LLFIND{ ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER is
141 -- rind item in symbol table —— return index or 0 if pot found.
142 == Asgumes symbol table is sorted in ascending order.
143 LOW, MIDPOINT, HIGH: INTEGER;
144 begin
swaat BRANCH I PROGRAM UNIT START
145 LOW := 1;
146 HIGH := LLTABLESIZE + 1,
147 while LOW /= HIGH loop
eewes BRANCH 2 1LOOP TEST FAIL
ewwss BRANCH 3 LOOP TEST PASS

148 MIDPOINT := (HIGH + LOW) / 2;

149 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then
sawss BRANCH 4 IF TEST PASS

150 BIGH :=~ MIDPOINT;

151 elsif ITEM =~ LLSYMBOLTABLE(MIDPOINT).KEY then
eesws BRANCH 5 ELSIF TEST PASS

152 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then

seeee BRANCH 6 IP TEST PASS

7326 begin -- LL_COMPILE
sssees BRANCH 142 PROGRAM UNIT START
727 CREATE (STANDARD_ERROR, OUT_PILE, "std_erxor", *");
728 LLMAIN;
730 CLOSE (STANDARD_ERROR):
731 end LL_COMPILE;

BRANCH SUMMARY

Branch Kind Branch ID Begin End Branch Statement Path
PROGRAM UNIT START 1 . 145 147 145 146 147
LOOP TEST PAIL 2 147 161 147 161

LOOP TEST PASS 3 147 149 147 148 149

I? TEST PASS 4 149 147 149 150 147
ELSI? TEST PASS 3 149 152 149 152

IF TEST PASS § 152 153 153 153

PROGRAM UNIT START) 142 727 730 727 728 730

* = Branch contains an Infinite Loop
Unreachable Statements =) —— NONE --

Figure 11-2. AdaQuest Branch Report

11-6

PARTII AdaQuest
27-JAN-1992 12:13 ADAQUEST TEST RUN REPORT PAGE 1
Trace File + USR: {ADATEST)ADAQUEST.ETF ;16
Time of Run : 27-JAN-1992 12:08:39
Name : EXAMPLE_1
Description : Run with 1st test file

of Test Cases : 1

Test Run Units :

Ll,_COMPILE:BODY
Instrumented From File :
USR: {ADATEST.ADALEX2]LL_COMPILE,.ADA;10
Instrumentation Parameters :
Coverage

LL_SUPPORT:BODY
Instrumented From File :
USR: (ADATEST.ADALEX2]LL_SUP_BODY.ADA;1l
Instrumentation Parameters !
Coverage

Figure 11-3. AdaQuest Coverage Test Run Report

PART lI

AdaQuest

SBUBBIFEBUSBBUBLILIBILINISBENNLS
BUVIBIIUNBUIIIGISIIISBINSIBIIING
BEINNBENGBEN RSN RASNANBUATRISIRIIBLITIISENEBYEESY

SREBVIRIIBIEIIINININPIIEYY

uodey abes8no) Jun isenpepy ‘p-11 ainbi4

EXIT YL YT

- e
LRl

- -
-

NMFIIV4 FWoLs Kag Joud el
ivadad Xaa omnad voeEt
NOIlao Xad ORna L8Z1

S3ONWY TOUSK KGE ONnd €O%
SIVNYILTV X0E dHod (6

90:LEOT 266T-NNL-LT
4008:3404408 TT

llllllll B

(3312

.
2222222)
sys9833

]

L]
L1222 11

b ol -S4
ww awn
"~

o™
-t
—— — — ——— - ——

-t @ W -t

.

HOIW Xad Ound £ES

anvdxa Xge JoMd €2§

aswa g4 D0¥d SOS
dsNvd X0E D0Nd 66F

10373SA1INE Xa€ J0Nd 6%)
IMOINGTING X08 D03 68E
RdDavad Xa9 O0uMd €6¢€

NIVNTT XqQ8 Jodd Z6¢

NDIOLIXANTT Xq€ D0Md LLf

GNIATT X0€ MDA OVT

FI1gw00 T1 Xad D0Nd 92

— e ——— — ———— T ——

2TiG€I0T 66 T-M¥L~LE
KQOE:TTIZNND T1

!
|

i oot 08

] WOMIENE O3 POIJ{YWION - FUCTIWDOAUY

\
1]

]
(1]

\
0z

§ | suoyIwdeaur |
o_ _
_

Ajun westasg

PumN LA ohpt

WHOAIXTIVAY 3ATvIqTT

4 aova 1¥0dTd 2OWYIADD IINN ISAN0VaY PT2ZT 266T~-NVC-LZ

T T oN @ sswy Ive} Lg
- - - SWUIJITYND l¥0day - - -

1 : sese) 88l §

®TF3 3983 IFT Y3fa uni uojydizoseq

1 FIaNeXa : saey

6€:0012T ZE6T-RYL-LZ ¢ uny Jo saly

9T /413" 15anOVAV(ISYIVAVI:uSn : o[1d eowiy
- « - NOTIVWYOJNI MNN 1§31 - ~ -

MUONIXTTVAY :ATeIqy]

T 20N N0aT FOVGEBA0D 1IN ISINOVQY 2T TH61-MNL-L2

11-8

AdaQuest

uoday jje1ag abeiero)d ysuelg 1senpepy s-41 ainbid

|==R~-1| ITH JeaeN | so-oot (1941 } sbeieac) jus)y 103
I 38 | 3TH sayl 3exy4 Rp &8 19 | Itun Ut sagouwiq
| | [] L ITH seyouvag
I | | €6s (11 SUOFITI0AUT ITUN
! ! | 2A13VIOANND RO 1831 SIHI
[} | | savsssssvasvennasvs | PEE i LSt VS ISTT | @
L | | (] [131 Juvd asTT | L
9 | | sesnssne | SET | zst S5V 1583 JI | 9
S ! ! sasvnves | SET I 181 SS¥d IS21 JISTI) §
[| | ssvessvsnssnavssnssansns | 620 1 et SSYd ISTL AT | ¥
€ 1 | swssvsasuvssnsssnsonsesssaranssrvorssssnsonsssvoss | 968 [29 S5¥d 1531 #0017 | €
4 | | sess | €9 (IR 24 7TIVA 3581 3007 | 2
1 | | sssvsesssvs | B6T 1t IUVLS IINN WVWOOMd | T
TUGEZ0T ZEGT-NYL-L2 AGOATTISND T1 ¢ ITun dwod ug
- 0¥y * ®uUjT W
- AGNI3ATT & jun weaboxg Q.,
[+ o p —
P —
o Joqung | w/3 | | od | | ! | [} 93TH 30 ! ¢ supq PUTN youwlg | sequng
Youwig | | o001 os 09 oy oz o\ Jequny | | yourig
] t Wnugxel 03 peIflvuION - 8JTH JO Jaqump | | |
MoK IXTTVAV :A1wIqy]
€ a0vd J¥0A3Y TINIZQ FOVNIA0COD HONVNE 153n0OVAV 00:€T Z66 T-NNC~62
s8x : pespnyoul £303syy 398y
. on @ osw) Isel g
= =~ - SUFIJITNAD J¥oddd - - -
t ¢ sesw) 3sel §
_ _ GE3N0IZY ZEGTI-MVCL-LZ t uny Jo ewiy
T1213°T A Isandvaviisaivav] susn @ o\ 1d soviy
- = ~ ROIIVWHEOANE NNN 1S3 ~ - -
QUM | N/3 | fememmmmee)emneeeaen] I -1 I | ®3t 3o | § supt PUTX youweag | Jequny
Youwig | | oot 08 09 o 14 [Joquing | | Youwag
| J STWIRYH 03 PIZTIYWION - SITH JO Iaquan i | : |
MION EXTIVAY 3KI03qTT]
1 aoNdg 2¥04aY TINLIRA FOVMEA0D HONVYE 1sandvav 00:€T Z66T-NNL~62Z
- ., v - —d.. — - el — .

PART Il

AdaQuest

Hodey Atswwing ebeieao) ydueig i1senpepy "g-11 einbi4
| P i _
80°0S s] 9 | so0°0§ § 9 | ot (B 114 MIELINE TUOLS
80°0§ 4 z 1 | s0°0% z 1 | 1] | voeY ivaday
$0°0S 4 2 t | %0°0§ z 1 |] | Lozt no11d0
80°001 £ 3 1 | %0°00% € T | €) €01 SNV AU
[YAd () 1 t (29 i s L (2) Lt) L6 ALONNALTY
| | |
8Q:LE:QT ZE6T-NYC-£2 A008:3¥04dN8 1T t JINA dMOD NOd FOVNEAOD
i i [
(124 (3 s [(11 [1 2 1 s (114 | L [N 113 HOIWH
(LM 7] 3¢ 1 114 I 99°v8 144 1314 | (1 | s2§ anvaxa
$0°007 [[96E 1 80°00T 1 [111 | [I so§ IsNd
(Y47] 44 11 T [T £] 11 1] Ly | 660 asiuve
20°00¢ € € 2] I s0°001 € 1] | € | 6% 30TTd8011NE
sL'98 €1 3 11 [YA 1 €1 2] | st (1] 18918aTINE
40°00T 1t 44 1 | 80-001 14 1) 1 | gof RNDAVEN
$0°00T 1 1 1 | s0°00T T) 4 | 1 | 2s€ NIVNTT
80°001 € € (141 | %0°001 € (734 | € | LeE NDACIIAINTT
S Lo L L 861 I a§°e8 L [}) [} | ort an1d1I
807001 1 1 1 | s0°001 1 T] 1 192 IO 11
1 1 |
ZUISEIOT ZEET-NVL~LT - AQORITIIINOD 11 & JIND dWOD ¥OJd TOVERACD
aowganod | TvIog A3l | SUOTIWDOCAUT | ZOWNIAOD | 3ITH | suojawdcAuT | 3JfUp VI | § w1 ajun weazboza
INZD ¥ad | ~-3ITH esyduwag-- | ayun | INED ¥ad | seyouwag | atug | segouvag |
FATITIVINKAOD ! NnY 1531 SIHI) }
MAON IXTIVGY 41w2qL
2z aovd JY0dAN ANVSINS TOVNEAOD HONVNE 1S3NOVaY S1:ZT TEET-NUC-LT
o8k : pepnioul K10ISTH I8l
of : ese) 3se}l Ag
- = - SYFTATIVND W04 - - -
1 : seswd I88] §
STT3 383 38T Y3IIA uny & uojadfioeeq
U IdNNXT ¢ suey
6€380:2T Z661-NNC-LZ ¢ uny Jo swyy
STtALE 3SANOVAYIISAIVAVY) SN @ 8113 sowlg
= = = NOILVWNOJNI MDY ISAL ~ - -
WWON IXTINAGY sAIv2q3T
1 aNd JNOQTY XNVIGIAS ZOVNEAOD HOMWNE 1SanOVaV STIZT ZE6-MNL-LZ

11-10

AdaQuest

suny 1se) Buimouys uodey efeieno) youerig isenpepy -1 1 emnbiy

t0°00 9 € 1 | s€o€e $ [} | st | 68¢ JHOINGTING

0083 FTIHI0O 11 ¢ JINN &WOD NOd FINNIA0D

SREINSBTISIIINISINS SHSULBBUSIDISNSRIINBLES

sssvssraves AGOR:FTISN0D T1 ¢ 3ITUQR YOTINTTANOD JO sessee
[TTYTTY T YYYY 96 : UswsPIg 1w BUTPUT 44,
[T YT PYYY Y F 2 | dsV)Y 1881 [TY)
C.C-OC"..CIICC'.CI..CCCCCICC..CIC.CI...'.CC....C..I.CC.ICC'C.'C.C.O.C.CI.OC.-CC.I'.IC..CCI. IV BBYBIGE C'CC'C.C...C.....IGOCO.NUF
3OWHAAQD | w30 WON | SUOTIWDOAUT | FOVWIAAOD | IIH | suot3eoaur | afup Ul | @ Supq Ajup weiboig
1IN ¥3d | ~-3ITH seyduwig-- | Tup | IN3D ¥Bd | seyouwag |} run | seqouwag | -
FATINTNANHND | A8V¥D 1833l SIHZ | | MIOK {TAONd XFIVAY :K31%1qi]
€ aonNg JMOdIN INWHHNS TONAIAOD BOKVNS 183n0VaV 20307 Ze61-MNC~1E
s0°02 [4 € 1 | %0°02 € 1 { st 1 e8¢ IHOINQTING
ez 8] 1 1 s '] ¢ | it)| €0t WGV
$0°001 1 1 1) s0°00T 1 3 | T | zs¢ SINTT
%0°001 T 1 14 | s0°001 T 4 [4 1 92 TI14NO0D T1
PO9ZIEL T661-NYC-OE A00E:TTINOD T1 ¢ JIND 4MOD ¥OJ IINVNIACD
T CC.I.ICC-.I.IICCI..IICII.C.C.C.CCCC.C.C.!IIII'IC.IIIICCCII-..'.C'C.CC.ICCCICC -.C..C'..I..C” 88 e S8883888 —
o XLITYITYI TS XQO€:TTIINGD TT ¢ ITUQ UOTINYTAN0D JO sssvessssve .I..
< syssvasvess 06E ¢ JUNeITIL I BUIPUT sesescssnse —
o LIXIYTYZ YT t ¢ 3I8S¥D Jsa e —
’CCICll"'..lll.Cl!iﬁiCCC‘.'.C'IC'I-CCCCCCIOCCC.CCCI.'CCCC.CCCCC".I..CI'ICCIIHOC.CCC’...CCCCCC..-C...l......'l..Ci’........
F9NIaA0D | 1303 L | suoyjwacaur | FOVYIACD | I | suogjwdoau] | v v | & sy jun weabozg
INBD ¥3ad | --3TH sayouwag-- | Ijun | INED ¥3d | sayouwig | Tun | ssyouvag | -
FATILILYTOKRAOD 1 SV 1532 §IHI 1] MIOK1ZGONE XTTIVQY 1 K3vaqyl
4 dove JNOIT AYVHMNS TOVEIA0D HONVME 1SINOVAV 00T T6GT-NVL-1E
8% & pepnyour Az0387H Iee}
% 3 sew) 388y AQ -
= - - SYIIJITVAD VO - ~ -
LT ¢ sesel Iveg §
9GITOSST TE6T-NVC-0C ¢ unM Jo swil
812413 1SANOVAV(ISalvay] susa * ®11d »ovay .
= = = ROIJVWNOJINI WOM 3831 - - -
2INAA0D | 1*302 AN | SUOTIWDOAUT | ZOVNRADD | ITH | suoyjwsoauy | WU UL | ¢ sup Ijun weazboad |
INAD ¥W3d | ~-37H seyouwig-- | un | INZD W3d | ssyouwig | Tun i sagouvig -
AATIINTANRDD] 38VY 1533 sI18B3) [} WIOK !FQOMJ” XTTVIY :LIwaqyy
1 avd JN04TY ZNBANS TOVNZACD HOMVIE 1s3nbvav 20301 TG T-MNL-1C
|
!
- - - — . - - - |

PART I

AdaQuest

uodey 1H-10N abBBieno) yosueig isenpepy 'g-11 einbid

90€ LOE 90€ sOE 1Ot I. s I s0°0S I zzet NNZLLVd FWOiS
662 962 | 4 1 so'0S | voct Pl P
$62 »62) z 1 s0°0$ I tozt _ WO13d0
(114 | 1 I so°o08 | gLzt NYBIIVA 2N NOOT
| 0)} sp‘00T | €OT $I0NN Ao
(1 (3¢ Lt €1 44 1 ot 6 (] 9] ot [Y44 {7 1 t6 2YNILLTY
| |]
$0:LE:0T Ze6T1-NNL-LZ XQO9I1¥0dans T ¢ JINN EWHOD NOd FDVNIACD
1 } |
11 (1] | z 1w | €€S HOIVH
L] G T | 4 1 9°ve | sT§ anvaxa
| 0 | so°00r | 0§ asvig
€€l EET 26T €T OETl 621 |] [I YA 1] | ¢6¥ asuvd
| 0 I %0°00T | 6p) 333138a7100
29 Ls | z (I YA T] | ¢9¢ IHOT¥QTING
| 0) %0700 | €9€ Hengvnl
| 0 I sg-00r | Zse i
1 0 1 s0°00T) Lce NDIOIIXINTI
L | ¢ [1Y] | oyt ANIITI
" 0 | so-oot “ L1 TIISNO T
1
TTGE0T 2661-NVr-L2 - XQOU:TTIANOD T1 & JINA SHOD NOd FOVNIAOD
TH 10N seyouvig Jo 8q1 | ITH oM | ebwieacd | ¢ supy ITun weaboaa
| Seyouwag | 3Jue) 18z |
) A2A12IVIONOD |
NYOR L XTTVAY :KIwaqy]
z NG I¥Od IIH-10N TOVWEACD HONVWE IsTNOVAV 2132T Z66T1-NYr-L2

se)X : pspnrouy A10381H jeey
o : esv) ive] Ag
- - - SUILAITVND N0 - - -

1 : seve) Iweg §
S113 1983 I8 Yaja uny : uojadiioseg
1 o ¢ ooy
€C:0022T TEET-MNC-LT ' uny JO swyy
$T/313°38200VAVIISIIVAV] :uSn © w73 sowvI]
= = - NOIZVINIOJNI MOW JSEI -~ - -

WNOR IXTIVAY 3 A3waqia
1 20V INOdIN IIH-ION ZOVWIAOD HONWNE 1SINOVAY 93T TS T-NVr-L2

14 Z66T SS:9Y:0T §Z uUep eng TURT 3TqI0U° 400 pom

11-12

AdaQuest

PART Il

uoday peleg Ai0isiH eBeiaa0) 1senpepy ‘6-11 8inbid

sss Kadme 97 3TUN $7Q3 203 A1038Y 1981 YL ses

d9VI3AAN0D | 130} ney | suoypndaxy

INED ¥3d | -~-1IH sayoduelg-- | JO Jequny
FATIIVINRHAD

SE6E:0T T66T-NYC-LT

SHINOL 1T TTIINOD 11T :31Tup dwod

Z anNg

SOWMAA0D | W |
IN3D W3a | seypueag |
nmny 18ag

JNOdEN TIVIZA ZNOIFIN FOVYIACD ISINDVOY

suojaIndexy
30 aequny
STHI

| ssyouwig

| 30
|

| ¢ suyg 1tun wwiboag
Taquny |
|

Mion ! XTTVaY 141w1qyq
PIIZT TEET-MNL-LZ

-

(12803 S 0 ris (I 1 2 1 S 032 | L | €€8 HOIVM
98 8 0 1384 (I 2 0]] | 84 032 | 0 | ST% anvaxa
10001 S 0 »oe | s0°00T S 0y | s | go08 asvia
sL°h9 1t 0 4 [T 1t t | Lt t 66¥ asuvd
20°001 €] (13 I\ 8000t < (1] { € | &¥% 10712801I0E
sL°98 £t 0 [141 [YA 1 4 (1] | St | e8¢ IROINaTING
\0° 001 1t 0 z | s0°00% i8¢ 4 1 1 { cog Kngoavas
s0°001 1] H | s0°001 1 1 | 1 1 zse I
807001 € [oLz | %0°001 € [149 i € I te€ ADIOLLXINTT
40" 001 [1 56¢€ | s0‘o00T] L6t |] | ovt ANILTT
%0°001 T 0 z 1 e0°00¢ 4 T [14 192 FIISOO T1
’ 974415° I5anDVOY{3S2IVQY) usD o[14 ®ae1l
80:T212T TEET-NVL~(Z t UOjInDexz jJo eayy
Z¢ mou 3185112
143
(12813 [S »S? [1 28 () S 114 | L | €€S HOLWNR
(1] 1t 1t 1214 (It AT) 144 ¥sT \ (44 | sT§ anvaxs
s0oo0t s S a6¢ | s0°001] [113 | S | sos aswa
(YA 4] 14 1 1 [N TR 1) 1t T] L | ¢6? asuvd
L0001 € € [}] I s0-o0t € 11} l 4 | oo 20F1asaIat
sLo98 14 (3¢ » (I YAS 1) 4 1] § st | s8¢ IROTNCTING
80°001 14 ¢ n 1 | s0°00% 1t T | 144 | e9€ - snidaval
20°001 1 ¢ t i s0-o00t T t | |4 (113 AIWTT
s0° 00t € € 1134 I so0-o001 € (131 | € b Leg RDIOILAIXTT
L9 t L 861 t es¢ee i 861 !] [121 GN1dTI
30°001 1 T 1 I so0°001 1 1 | 1 [IK 14 TS T1
T£412° 1 W0y 35Endvav(3sAIVOV] susn : o114 vy
CEI003ZT Z66T-NNC-LZ : voTINOeX] jJOo swil
T¢ AnY 1833

n
FDWAN0D | 1m0l asyl | wuoranoexaz | FONWAAOD | M | suog I qounig | § euil Iyup weiboly

INZD WAd | --3TH seyouwig-- | Jo IequnN | IRED Wid | seqouvig | Jo lsqunn | jo Jequny |

FAIIVTIONND | MnY IS¥I SIHI 1 |

2T:GE:0T Z661-NVL-LT
X00E:TIIANOD T 13Tun dwod
T 3w

S04 TIVISA XWOLSIH TOVNIAOCD Isandvay

WIORIXTINGY :43vaqT]
Pyt Te61-mNC-L2

11-13

PART I

AdaQuest

uoday Aewnwng Ai01s|H eBei0A0D 1senpepy ‘01-1 1 8anb)iy

t as°29 | 60€ ! ({24 “ s SIVIOL sas
| (| _
80 LOE 90€ SOE TOC | s0'0s ot | s | zzet NIAIIVE TNOLS
662 962 { s00s | ’ i 4 t voct ivaani
S62 62 i 8008 | [l z I ezt _ NOIld0
[T1 i so'o8 | S | ’ I ELet MIRLINE N %007
982 | s0°0 I 1 l [} (T4 OGVEHY %0071
i sc00T | 4 i € 1 g0t SZONV TOWEH
Lt z1 s 1 sv'ze | Lt 1 " (1Y ALY
B0:LESOT ZEET-NVL-LZ X008:140ddns 1T : ITUn dwoD 10j SHEINA0)
| 80°0 | [1] | [} 1 sss S(PIOL o
[T2 < 4 74 2 0T 61 ()4 Lt | | | |
9t st (2SR 4 | zt n ot 6 i) | i
] L 9 s ’ € z T ! %20 ' 1] | 0 sz NOIIOVDIVITI
TT:VEDT ZEGT-NVP-LT NOILOVANVITI TIIAH0I T1 ¢ ITuUN dwoDd 30] s6RIsA0)
| s0°0 | L1 | 0- | ses BTPIOL oes
® L ’ S i so0°¢ i ’ |] (1] TOUVAQY AVHD
v € z ¥ 1 so0'0 I v | 0 1 96 NVHD 139
95 13 1 13 } | | 1
s 13 05 6y o Ly 9 11 I w00 | 41 I 0 (' Dduvaav
SEI6E:0T 266 T-NVP-LZ SNDIOL T TTIIAN0D TT : 3ITun dwed 103 ebeieao)
I YAL T Wt | 7] t ess BTPIOL sos
6t 1 800 | 1 | ° | etz . HIOBIINSTE
ot I %0°0 1 1)] | €0z FOOMIIASTT
Lt] 800 | 1 | (] | o6t NDUOLIINSTT
9t st "n I %0°0 i € | 0 (TR KDUOIINETT
(S S 3 ¢ 1 (] SE | s0°0) s | 0 IXT) - OMINISINGTT
€T 2t 131 o 6 1 %00) s) 0) s9t ONINISINGTT
| s0°00T | » | ’ | ort aRIIT1
t 80001 | 1 | t [1 TITMOD T1
TUSE0T Z66T-NVC-LT 0081 TTIMON 3T ¢ ATup dwod Joj ebrisac)
ITH 308 seyourig Jo ISYT | FOVYEAOD | 3Itun ur | EY (] 1 ¢ suy7 atun wezboig

{ INZD W34 | seyouwag ¢ | weyouwsg ¢ |

JNOdAN X4INS INOISIH TIIVWEAOD 1SAndvav

NyouIxaTvaY :&iwexqpt
€H:2T TOOT-NNC~LT

11-14

PART lI

AdaQuest

08-MAR-1992 12:01 ADAQUEST TEST RUN REPORT PAGE

Trace File
Time of Run
Name
Description

: USR: (ADATEST]SUN_RUN4 .ETF;1

: 08-MAR-~1992 11:35:06

: TINING_RUN_1

: Sample run for timing data using test file 1

4 of Test Cases : 1

Test Rum Units :

LL_COMPILE:BODY
Instrusented From File :
USR: (ADATEST]LL_COMPILE.ADA;1
Instrumentation Parameters :

Timing = CPU

Timing Intervals (Start/Stop Source Line Numbers)
394 - 446
453 - 459
463 ~ 496
653 - 663
667 - 717
721 - 723
7237 - 730

LY,_SUPPORT: BODY

Instrumented Prom File :
US!:[AnA!!sr.ADALI!Z]LL_SUP_;OD!.ADA;I
Instrumeantation Parameters :

Timing
Timing
320
asl
365
465
508

= CPVU

Intervals (Start/Stop Source Line Numbers)
- 2083

- 351 *

- 460

- 501

- 546

Figure 11-11. AdaQuest interval Test Run Report

11-15

AdaQuest PART Il

08-MAR-1992 12:02 ADAQUEST INTERVAL TIMING REPORT

Start / Stop Number of Minimum Time Maximum Time

PAGE

1

Average Time

Interval Line Number Executions hh:mm:ss.cc bh:mm:ss.cc hh:mm:ss.cc
~ = = TEST RUN INFORMATION - - -

Trace File : USR: [ADATEST) SUN_RUN4.ETF;1

Time of Run : O08-MAR-1992 11:35:06

Name : TIMING_RUN_1

Description : Sample run for timing data using test file 1

Test Cases : 1

= = = REPORT QUALIFIERS - — -
By Test Case : No
08~MAR-1992 12:02 ADAQUEST INTERVAL TIMING REPORT PAGE 2
start / Stop Number of Ninimum Time Maximum Time Average Time

Interval Line Number Executions hh:mm:ss.ce hh:mm:3s.cc hh:mm:ss.co

CPU TIMING FOR COMP UNIT : LI, COMPILE:BODY'®
1 394 / 446 64 00:00:00.00 00:00:00.01 00:00:00.00
2 453 / 459) 64 00:00:00.00 ©00:00:00.01 00:00:00.00
3 463 / 496 1 00:00:00.3¢ 00:00:00.34 00:00:00.34
5 667 / 717 1 00:00:00.43 00:00:00.43 00:00:00.43
6 721 / 723 1 00:00:00.78 00:00:00.78 00:00:00.78
7 727 / 730 1 00:00:00.82 00:00:00.82 00:00:00.82

CPU TIMING FOR COMP UNIT : LL_SUPPORT:BODY
4 465 / 501 4 00:00:00.01 00:00:00.01 00:00:00.01
H 508 / 546 3 00:00:00.00 00:00:00.00 00:00:00.00

Flgure 11-12. AdaQuest Interval Timing Report

11-16

[

PART Il AutoFlow-Ada

12. AutoFlow-Ada

AutoFlow-Ada generates flowcharts from Ada source code. These flowcharts can be
used to help understand an Ada program and to document it. Versions of AutoFlow that op-
erate on C, Cobol, Fortran, and Pascal code are also available. In addition to flowcharts,
these other versions generate structure charts and can interface with the KnowledgeWare/
ADW and the Texas Instruments IEW CASE systems via an import file. The C version also
includes the capability to instrument source code to report on test coverage at the branch
level; results can then be automatically annotated on flow charts.

12.1 Tool Overview

AutoFlow was developed by AutoCASE Technology. The AutoFlow family as a whole
has over 3,000 users. The first Ada version of this product was released early in 1992 and
has over 10 users. It runs on IBM PC machines under DOS (version 3.0 or higher) and OS/
2. The evaluation was performed on version 1.02 of AutoFlow-Ada. At the time of evalu-
ation, the price for AutoFlow was $9,950.

AutoFlow-Ada generates self-explanatory block-structured flowcharts using a flow-
chart layout copyrighted by AutoCASE Technology. It is intended for use on programs
with correct Ada syntax, that is, compilable programs. Compiler directives are treated as
comments and not expanded. Consequently, in some circumstances, it may be neczssary to
use the fully expanded preprocessed listing file provided by many Ada compilers as input
to AutoFlow-Ada. The tool can be used in interactive or batch mode. In interactive mode it
allows the user to both create and browse flowcharts, selectively saving or printing chosen
charts. In batch mode, all produced flowcharts are autornatically saved to disk.

Usually one flowchart is generated for each Ada procedure. Some of these flowcharts
may be very large and various options are provided for dealing with flowcharts that cannot
fit on a single page. The best of these is a block-structured page-break algorithm that uses
a top-down refinement approach to break a large flowchart into subcharts that can be pre-
sented on separate pages. Additional flexibility is provided by allowing the user to specify
the size of page used. Another option is to limit the size of the box in which flowcharts are
presented. In this case, flowchart elements that do not fit into the specified box are repre-
sented by a string of dots. Alternatively, the user can request that a flowchart saved to disk
is divided into strips that can be manually combined to make a large chart.

12-1

AutoFlow-Ada PART Il

12.2 Observations

Ease of use. The installation and operation of AutoFlow-Ada is straightforward. The
tool is fast: the documentation cites an example of generating flowcharts for an Ada pro-
gram in excess of ten thousand lines of code, where the average time to generate each flow-

chart page was less than (.5 seconds.

AutoFlow-Ada includes a number of special options and utilities that facilitate its use.
The utility mkdoall, for example, generates command files that will invoke AutoFlow-Ada
on multiple source files. Utilities and functions that support its use with non-IBM compat-
ible printers are also provided. Additionally, a file format conversion utility is available to
convert ASCII file into PostScript, HPGL, and PIC formats that can be sent to special out-
put devices, or used with desktop publishing software, to prepare high quality documenta-
tion.

Documentation and user support. The documentation is sufficient for tool use. Au-
toCASE Technology provided good support and was helpful and prompt in addressing en-
countered problems.

Ada restrictions. AutoFlow-Ada supports full Ada, the only restrictions being that
each procedure or function is limited to 2,048 basic blocks and that input source lines are
limited to 127 characters.

Problems encountered. AutoFlow-Ada ran on the sample Ada Lexical Analyzer Gen-
erator source code. Various problems were encountered if the size of generated flowcharts
was not constrained or when some particular page sizes were specified. These problems in-
cluded the process hanging and incorrect referencing between subcharts. AutoCASE cor-
rected the underlying problems and provided a new copy of the tool.

12.3 Planned Additions

Version 2 of AutoFlow-Ada is scheduled for release in the fourth quarter of 1992. It will
include the generation of structure charts and a graphical user interface. This version will
also be available on major Unix platforms.

12-2

PART Il AutoFiow-Ada

12.4 Sample Qutputs

Figures 12-1 through 12-6 provide sample outputs from AutoFlow-Ada.

12-3

PART ll

AutoFlow-Ada

31VNHI11V Uonouny 4o} ydeiBmojd 9 o | ebed epy-mojdomy “1-21 einbyd

TE6T SSELTI%60 60 fiow ASoTowmpag ZSWOORW (0°1 o) wpy-moTaouy iq paywxeuwd

s

r “uﬁ a W.E:Ewlihgluﬂﬂ. i

e —F

2 LOTE MIX ~ BN LEFT MR paw
v N QNN ~ IEVIWVA“IROTE WM 3F

b .k

-

SN - INVTENALZZY MM F¥

==

I

pR-q dns TT, OTIF UF SINEEAUVIN GoRoumg 103 ¢ 3o T eheg

12-4

AutoFlow-Ada

PART ll

31VNH3 LTV uopound 10} ydeiBmold 9 jo Z efed epy-mojoiny -zt esnbiy

T66T 953L1360 60 oy Kborouper IPDOUN (0°T *I9A) WN-ALOBN Iq paquzatso

aOW - IINTINA LTI FTS e

|

122X wWOeX

_n

-

(NG - ZSVTENA TSIX %679 20 T(™ = Tre Y

I

Jopeq dne Y, 9T13 U ZMEZDIY WOy 20j 9 Jo 7 ebey

12-5

PART I

AutoFlow-Ada

31VNH31TV uopound 10} ydesBmol4 9 Jo £ abed epy-mojJ0iny ‘€-Z einbid

66T 953L1160 60 Hew KSorrmpeg 25w0oIm (0°T *TeA) wpy-sorzopw Aiq pegurecns

{ZETI =t IEOON MaN

{ZEOTH ~3 LATT NAE SNGENEN ~ BN XXX F¥
-~ T L«.
(IReTY -+ U1 MIX ©
{ILTT =% LETT IR IV = LEVIEVA"IHSTE ¥

,epe-q dne T, OTTF O KINEEAITV SOF30ng I0F 9 Jo ¢ ebeg

12-6

AutoFlow-Ada

PART Il

31VNH3LV uopdund 40} ydeiBmol4 9 jo p eBed epy-mojJoiny p-z einbjJ

T66T LSILY60 60 Brow Aforompag ISVOOYN (0°1 *Z9A) wN-woTiouw Iq peymzemn

,epu-q dns TT, OTF3 UF TMOCKCIV SORROWNG 203 9 30 § ofeg

12-7

PART Il

AutoFlow-Ada

31LVNH311V uonidung Joj ydeiBmoj4 9 jo § ebed epy-mojd0iny ‘s-zi einbidy

TE6T LSSLTI%60 60 oy ASoyompag ZewoI (0°T *TeA) wN-morzoamy Aiq pmywIenss

,e-q dns [T, T UF TMMELIV W3oaeg 207 9 7o § abeg

12-8

AutoFlow-Ada

PART Il

31VNHILTV uonound 40} ydesBmoid 9 Jo 9 abeq Bpy-mol101nY "9-Z} inbid

T66T 851L1160 60 By Afoyowspeg ISWOPW (0°1 ZRA) wa-sotonn Ay pequreed

N
N

i

¢ (T IEOTE MAN)ZDISEENN =+ BT M
130" LEXT =% BN TIOTE e

${Tre- IR0 LETT) 2008 TILL M0 =3 IESTE MaN —
1D 1EXT -+ Se0n" LXx s | |1 (3T eI SETR) EINNREUIY ~¢ TESTE_ NOK
$(Tre" LET" 122T) , 3008 THKL, Ao =8 LEXT M $3AFT° TOIR =¢ LAXT MIK

E D F

om-q dne (T, STIT W SDORETIV SO0y 30 9 3o § ebey

12-9

PART Il | DDTs

13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTs)

The Distributed Defect Tracking System (DDTs) provides for tracking and managing
defects and change requests throughout the life cycle of a software or hardware product. It
is designed to support large organizations with multiple sites and so is fully distributed and
suitable for use in a heterogeneous network. DDTs supports multiple development teams,
allowing data to be maintained for several projects simultaneously. In addition to reporting,
searching, and query tools, DDTs informs appropriate users of changes to defect states to
provide closed-loop tracking.

13.1 Tool Overview

This product was developed by QualTrak Corporation and has been marketed since
1989. There are over 100 sites using DDTs, with some estimated 5,000 users. QualTrak
provides consultancy and training, and supports its product with a hot-line service and an
on-line users group. A newsletter is expected to become available in the near future. DDTs
is available under SunOS on Sun-3 and Sun-4 systems, under HP-UX on HP-9000, under
AIX on IBM RS-6000 and Apollo systems, under Ultrix on DECstations and VAXs, and
under SCO Unix. It uses troff, tbl, sort, awk Bourne shell Unix utilities, but is DBMS inde-
pendent. For a local network, it supports network file sharing (NFS), ethernet client/server
User Datagram Protocol (UDP), and the Transmission Control Protocol (TCP). Electronic
mail is supported for remote networks. The examination was performed on version 2.1.6 of
this product running on a Sun-3 system. At the time of evaluation, prices for DDTs started
at $6,000.

DDTs groups defects by project to allow reporting on both the defects in a particular
project and to support organizational quality assurance activities across projects. Each
project is associated with one computer system, known as the home system. All of a
project’s defects reside on that home system and on the submitters’ systems as well. In ad-
dition, a subscription facility to a project is supported; in this case, defects are maintained
on the home system and the subscriber’s system. A secure-in dial facility is available that
provides easy local access to defect information about remote projects. Closed-loop track-
ing means that defect submitters are automatically informed of all changes in a defect’s sta-
tus by electronic mail.

13-1

DDTs PART Il

DDTs can be used in either a menu-driven or command-driven manner. In the first case,
a user has two avenues of access; one provides the full set of functions suitable for a devel-
oper, and the other provides a subset of functions tailored towards defect submitters.

The system defines a defect life cycle which allows defects to be managed using a state
transition mechanism; both forward and backward transitions are supported. A defect life
cycle starts with its submission and, usually, ends with its resolution. There are nine pre-
defined defect states, though the user can define others by including them in a state transi-
tion table and defining allowable state transitions. (DDTs warns of any illegal transition
attempts.) Defects can be classified as enhancement requests and subsequently tracked by
DDTs.

DDTs uses a template to guide user entry of defect reports. Information is grouped into
the following areas: detection, submitter, laboratory, resolution, and verification informa-
tion. Detection information is used to specify, for example, the detection method, the de-
velopment phase in which the defect was detected, and defect severity (one of five levels)
in addition to identification of the test system operating system and affected project. When
available, information about the defect submitter is added automatically. The laboratory in-
formation captures information pertaining to diagnosing the defect. In addition to identify-
ing the responsible engineer, it records the type and cause of the underlying defect,
recommended change, and estimated fix time and date. The resolution information is sim-
ilar. Again the responsible person is identified, but this time the actual effort required to
make the fix, the development phase when the fix was made, and location of actual changes
are recorded. Finally, the verification information identifies who accepted the resolution.

Defect reports can be supplemented by enclosures. These are additional files containing
supplemental ASCII text. They can be used, for example, to include the data files needed
to reproduce a problem. There is no limit to the number of enclosures that can be linked to
a defect report. DDTs automatically brings up a change editor for creating enclosures. Al-
though the vi editor is used by default, the user can request other editors.

DDTs provides several predefined report formats. These conform with the proposed
IEEE Standard P-1044, and with DoD-STD-2167A. They include, for example, a list of all
unresolved defects for one or more projects and a list of defects in selected states. A number
of sorting filters are available for use in constructing specialized report formats. A nice fea-
ture is a weekly report program that can be used to produce reports automatically. The met-
rics provided in weekly reports include such information as the arrival rate, fix rate, number

13-2

PART I DDTs

defects assigned to each project engineer, resolved and unresolved defects, and when these
defects were found and/or fixed.

On-line defect report displays are also available. These allow a user to identify all the
defects he submitted or the unresolved defects he, or another engineer, is responsible for.
The contents of selected defect reports can be displayed with an index pointer used to move
between different defect reports. The user can also search this index for a given string. Ad-
ditional search and query facilities are provided to answer ad hoc questions. The search op-
tion allows displaying all unresolved defects and unresolved defects of severity 1 and 2 for
one or more projects. It matches a user-defined string against the one-line summaries of de-
fect descriptions kept for each defect. The query function allows the user to specify a search
string composed of defect keywords, operators, and values combined in a C-like expres-

sion.

DDTs provides explicit support for a number of administration functions. These in-
clude cleaning up log files, checking and repairing the database, showing the status of
DDTs projects, and managing projects. Setting up a new project involves setting applicable
template files and state transition rules. The administrator also specifies the individuals and
groups who should be notified of changes to defect states and those who are permitted to
change defect states. He can customize DDTs by adding or deleting a defect state, adding
or deleting a field in the defect reports, and changing the dialog that occurs with the user
when a state transition occurs. In addition to modifying the predefined management re-
ports, the administrator can create new report types. Finally, the administrator is provided
with guidance for converting existing defect reports to DDT's format.

13.2 Observations

Ease of use. DDTs recognizes two types of users: defect submitters, and developers
who repair defects. While the menu interface provided for each type of user is similar, this
distinction allows providing a simpler interface for defect submitters. Context-sensitive
help is available in both cases. Additional guidance for expert users is available as a set of
tips. These take the form of short excerpts from the on-line manual pages and provide an
introduction to the search and query functions. Expert users can also use DDTs through a
command interface.

Template file mechanisms provide for customization and specialized defect reports can
be defined to augment the predefined reports provided by DDTs. The system includes sev-

13-3

DDTs PART Il

eral levels of flexibility. For example, each project can employ different screens, prompt-

ing, and states transitions.

The DDTs import facility is a valuable capability. It allows the definition of converters
that take existing defect reports in a defined format, convert them to a defined DDTs for-
mat, and place them in the DDT's database.

Documentation and user support. DDTs is designed so that it can be used without
documentation. Nevertheless, it is well supported by documentation that includes a tutorial,
several examples, and sample outputs. Unix-like on-line manual pages provide for quick
reference and can be integrated into the on-line manuals supported by a Unix system.

Installation procedures are well described. They include special information that, for
example, helps a system administrator determine where to place the product by providing
an estimate of the rate of growth of the database, as well as estimates of dynamic storage
requirements.

Problems encountered. No problems were encountered in the use of DDTs.

13.3 Recent Changes and Planned Additions

A new product, Remote Distributed Defect Tracking System (RDDTs), released in
summer 1992, provides a restricted submit-only version of DDTs.

DDTs release 3.0 is due to be released in December 1992. This version will support an
X-11 graphical user interface as well as the existing 7ty interface. It will also support Post-
Script for enhanced graphical charts.

The QTET test hamness is a product under development to provide an interface between
DDTs and test execution tools. It is based on the public domain Test Environment Toolkit;
QualTrak Corp. has added a graphical user interface and bound the Test Environment Tool-
kit to DDTs. QTET is expected to become available in the second quarter of 1993.

13.4 Sample Outputs

Figures 13-1 through 13-7 provide sample outputs from DDTs. Figure 13-8 provides an
example of the outputs available with the DDTs graphical user interface; it was supplied by
QualTrak Corp.

13-4

PARTII DDTs

AR AR AN R AN R RN AR R R EN A AN P AR RN AN AN R RN RN AR AR RSN R AN T AR R R AN ER VAR EARRAARE AN TANES

Bug SFDaa03277 DDTs Submitted 910305
ASSIGNED defect report bugs(l), version 2.1 Assigned 910305
2 enclosures

*gnclosure date stamp is incorrectly updated®

DETECTION INFORMATION LABORATORY INFORMATION
Detection method: customer use Assigned engineer: rico
Detected in phase: post-release
Test program name: bugs
Test system:

Version of 0S:
Problem severity: 3
Affects project: ddts

Need fix by: 910909
SUBMITTER INFORMATION
Submitter: Mike Manley

Organization: QT LABX
Phone number: 33157
Address: mikey !mmanley

sasaswssswss Problem (Added 910305 by mmanley) t#sessnsass

Prom Lori Pope at Pacesetter

2. (New?) When we attempt to modify an existent enclosure by:

1. selecting "m" vhen viewing the enclogurs

2. exit the aditor without saving the modifications (eg. no

modifications were performed) - in vi you would exit with ":q!*
3. Exit ddts by typing "q°".

v VvVVvVYVv

dthe enclosure’s modification date is updated.
>Por now, the work around is to exit ddts by typing "x" iastead of
2'q" - this exits ddts without saving asy changes.

>That may not be satisfactory if you have made changes in othex SWRs
>that you wish to keap.

swesssnssens design ideas (Added 910606 by ddts) aresasenses
stat the file before going to the editor and see if the time changed

Figure 13-1. DDTs Sample Defect Report

13-5

DDTs

PART il

DDTS MANAGEMENT SUMMARY

of

DEFECTS by PROJECT by STATE

(Tue Jul 14 14:19:11 EDT 1992)

Project New Assnd Open Rslvd Verif Dup Postp Total
DDTs 1 18 0 84 0 0 0 103
TOTAL 1 18 0 84 0 (4] 0 103
Youngest Bug Date ~> 911221
Oldest Bug Date =) 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.5, Versions =) 4.1 4.0 Sun
Sun0S unk a
none any 3.5
DDTS MANAGEMENT SUMMARY
of
DEFECTS by PROJECT by SEVERITY
RESOLVED & UNRESOLVED BUGS
{Tue Jul 14 14:19:16 EDT 1992)
Project’ Sevl Sev2 Sev3 Sev4 Sev5 Total
DDTs 10 14 65 12 2 103
TOTAL 10 14 6 12 2 103
Youngest Bug Date => 911211
Oldest Bug Date => 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0

0.8. Versions -)

none any 3.5

Figure 13-2. DDTs Management Summary Report: Defect Reports

13-6

PART Il

DDTS NANAGEMENT SUMMARY

DEFECTS by ENGINEER by SEVERITY
UNRESOLVED DEFECTS ONLY
(Tue Jul 14 14:19:22 EDT 1992)

of

DDTs

Assigned Sev Sev Sev Sev Sev Total
Eagineer 1 2 3 4 S
mmanley 0 0) 0 0 4
rioco] 1 9 4 1 15
david 0 0 0 0 0 0
davep 0 0 0 0 0 0
carol 0 0 0 0 0 0
UNASSIGNED 0 0 0 0 0 0
TOTAL 0 1 13 4 1 19
Projects surveyed => DDTs
Youngest Bug Date => 911231
Oldest Bug Date => 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.S. Varsions «) 4.1 4.0 Sun

Figure13-2 continued: DDTs Management Summary Repont: Defect Reports

13-7

DDTs PART I

DDTS MANAGEMENT SUMMARY
of
DEPECTS by SUBMITTING ENGINEER by SEVERITY
(Tue Jul 14 14:19:35 EDT 1992)

Submitting Sav Sev Sev Sev Sev Total
Engineer 1 a 3 4 5

apanley 4 3 29 3 b 40
cindy 3 5 22 7 1 38
ddts 2 6 by 2 0 21
carol 0 0 3 0 0 3
rico 1 0 0 0 0 1
UNASSIGNED [] [} 0] 0
TOTAL 10 14 65 12 2 103

Projects surveyed => DDTs
Youngest Bug Date => 911221 .
Oldest Bug Date => 9010329

Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2,1.2 2.0 2.0.1
bar 1.0

0.S8. Versions => 4.1 4.0 Sun
Sun0S unk a

nons any 3.5

Figure13-2 continued: DDTs Management Summary Report: Defect Reports

13-8

PART Il DDTs

DDTS MANAGEMENT SUMMARY
DEFECT ARRIVAL § REPAIR RATE
ALL SEVERITY LEVELS
{Tue Jul 14 14:19:40 EDT 1992)

Week Date ¢ New # Resolved Diff # Unresolved
1 901028 1 0 1 2
2 901104 0 0 0 2
3 901111 3 2 1 3
4 901118 0 0 0 3
5 901125 0 [} [/] 3
6 901202 0 [} 0 3
7 901209 2 1 1 4
8 901216 1 0 1 5
9 901223 0 0 0 5

10 901230 0 0] 5
11 910106 1 0 1 6
12 910113 4 0 4 10
13 910120 1 0 1 11
14 910127 4 0 4 15
15 910203 [0 0 15
16 910210 1 1] 1 16
17 910217 0 0 0 16
18 910224 0 0 0 16
19 910303 & 0 6 a2
20 910310 0 0 [22
21 910317 1 0 1 23
22 910324 2 10 -8 15
23 910331 [} 0 0 15
59 911208 3 2 1 19

Projects surveyed => DDTs
Youngest Bug Date => 911321
Oldest Bug Date => 901029

Figure 13-3. DDTs Management Summary Report: Defect Arrival and Repair Rate (All Levels)

13-9

DDTs PART Il

DDTS MANAGEMENT SUMMARY
DEFECT ARRIVAL & REPAIR RATE
SEVERITY 1 & 2 DEFECTS ONLY
(Tue Jul 14 14:19:40 EDT 1992)

Week Date 4 New # Resolved DifE 4 Unresolved
1 201028 1) 1) 0 0
2 901104 0 0 0 0
3 901111 0 0 [0
4 901118 0 [} 0 0
5 901125 0 0 0 0
6 901202 0 0 0 0
7 901209 0 0 0 0
8 801216 0 0 0 0
9 901223 0 0 0 0

10 801230 0 0 0 0
11 910106 0 0 0 0
12 910113 [} (] 0 [+
13 910120 [} 0 0 0
14 910127 1 [] 1 1
1S 910203 0 0 (1] 1
16 910210 0 0 0 1
17 910217 0 [} 0 1
18 910224 (] 0 0 1
19 910303 1 0 1 2
20 910310 0 0 0 2
21 910317 0 0 0 2
22 910324 1 3 -2 0
23 910331 0 0 0 0
59 911208 1 1 [] 1

Projects surveyed =) DDTs
Youngest Severity 1 or 2 Bug Date =) 911213
Oldest Severity 1 or 2 Bug Date => 910131

Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate (Sev. 1 & 2)

13-10

PARTII DDTs

Arrival Rate of New Bugs (All Bugs)

16 + N |
¢ of N |
bugs N |

N |

12 + N |

N |
N |
N |
s + N N |
N N |
N N NN |
N N N NN N |
4 + NN N N N N NN N i
N NN N N NN NN NN N]
N N NN N N N NNN NN NN NN N N]
NN NN NNNNN NNN NN NNNNNNN NNN NN NNNNN N NN NN]
0 +NN |

0 s 10 15 20 25 30 35 40 45 S0 55 60

WEEK NUMBER
Fri Jul 17 11:46:59 1992
Start date = 901028 End date = 911208
Bug Resolution Rate (All Bugs)

16 +]
4 of |]
bugs | |

! |

12 +

|

] R R

| R R
8 + R . R

| R ® .

| R RR R 3

] R BR R RR |
4 + R | R ZR R RR

| R R R R RR RRRR

] ® R RRR RR R RRR RR RRRR

| = = R RRR R BRR R R RRRRRRRRRRR
0 +

g
3
3
4

S
r
+
4
L
+

Y + - e

20 35 30 35 40 45 S0 S5 60
WEEK NUMBER

Pri Jul 17 11:47:00 1992

Start date = 901028 End date = 911208

4
4
4

o+
w
[
(-]
[
(F)

Figure 13-5. DDTs Management Summary Report: Sample Histograms

13-11

'\

DDTs PART il

Total Number of Open Bugs (All Bugs)

¢ of
bugs

et e A e e S e, i, b S W o s ol St e

0 5 10 15 20 235 30 35 40 45 S0 55 60
WEEK NUMBER
fri Jul 17 11:47:01 1992
Start date = 901028 End date = 911208

Arrival Rate of New Bugs (Sev 1 & 2 Bugs)

4 + N N
of | N N
bugs | N N
] N N
3 + N N N
| - N N N
| N R N
| N R N
2+ N L N N
| N N N
| N N N |
| N » N
10+ N N NN NN N N NR®N NN N
| N N NN NN N N KNWN W N
{ N N NN NN N N NNON MN N
] N N NK KN N N NRN W N

WEEK NUMBER
rri Jul 17 11:47:01 1992
Start date =~ 901028 xnd date = 911208

Figure13-5 continued: DDTs Management Summary Report: Sample Histograms

13-12

PART i DDTs

Bug Resolution Rate (Sev 1 & 2 Bugs)

| |
#of3 + R |
bugs | R |
| R I
| R |
! 3 |
2+ R RR R BRR
R RR R RR
R RR R IR |
R RR R R
R RR R R
10+ R R R R R RRER RR RRR
R R R R R RRRR RR RRR
R R R R R RRRR RR RER
R R R R R RRRR RR RRR
R R R R R RRRR RR RRR

0 5 10 15 20 25 30 315 40 45 50 55 60
WEEK NUMBER
Fri Jul 17 11:47:01 1992

Staxt date = 901028 End date = 911208

Total Number of Open Bugs (Sev 1 & 2 Bugs)

8 + 0 |

tdof | 0
bugs | 000 00
| 000 00
6 + 00 0000 000
00 0000 000

4

2

0

0 L 10 15 20 35 30 35 40 45 30 S5 60
WEEK NUMBER
Pri Jul 17 11:47:01 1992
Start date ~ 901028 Xnd date = 911208

Figure13-5 continued: DDTs Management Summary Report: Sampie Histograms

13-13

DDTs PART I

DDTS MANAGEMENT SUMMARY
Three Line Bug Summaries
Tue Jul 14 14:20:02 EDT 1992

DEFECTS FOR PROJECT DDTs

Bug Number = 00Qaa00051, Project = DDTs,
SteN, Sv=3, Things to remember for the DDTs Installation Upgrade
Module: upgrade, Vexrs = 2.1,Engr = mmanley,Pound: 911019,Pixed: ??

Bug Number = Q0Qaa00079, Project = DDTs,
St=A, Sv=3, bugs(l) index printing needs to be much faster
Module: bugs({l), Vers = 2.]1,Engr = rico,Pound: 911213,Pixed: ??

Bug Number = 000aa00026, Project = DDTs,
St=A, Sv=3, Only 1 line should be repsated on pags forward thru index
Module: bugs(l), Vexrs = 2.1,Engr = rico,Pound: 910908,Fixed: ??

Bug Number = Q0Qaa00075, Project = DDTs,
St=A, Sv=3, This is a reminder about malloc(3)
Nodule: bugs(l), Vers = 3.0,Engr = rico,Pound: 911301,Pixed: ??

Bug Number = 0Q0Qaa00078, project = DDTs,
St=A, Sv=3, Adminbug nseds to set up CN stuff
Module: adminbug, Vers = 2.1,Engr = mmanley,Pound: 911212,Pixed: ??

Bug Numbar = QQQOaa00081, Project = DDTs,
StwA, Sve3, the mail.subject template file nseds documentation
Module: mail.subject, Vers = 3.0,Engr = rico,Found: 911213,Fixed: 7?7

Bug Number = Q00aal0086, Project = DDTs,
St=A, Sv=m3, CM-notify needs to be in proj.notify file
Module: adminbug, Vers = 3.0,Engr = smanley,Pound: 9113219, Fixed: ??

Bug Number = SPFDaa03265, Project = DDTs,
St=A, Sv=3, G.E. suggests moving & per-projecting some template files
Nodule: bugs(l), Vers = 2.1,Engr = rico,Found: 910114,Fixed: ?7?

Bug Number = SFDaa03270, project = DDTs,
St=A, Sv=3, G.E. wvants to bave a mechanism for total mail supression per sta
Module: bugmail, Vers = 2.1,Engr = rico,Found: 910130,Fixed: ?7?

Bug Number =~ SFDaa03276, Project = DDZTs,
SteA, Sv=3, Last-mod not updated vhen enclosure is modified
Module: bugs(l), Vers = 1.1,Engr = rico,Pound: 910305,Pixed: ??

Bug Numbar = SFDas03290, Project = DDTs,
8t=R, Sve5, New bugs loaded via bbox are not displayed
Module: bugs(l), Vers = 2.1,Engr = rico,Found: 910419,Fixed: 911221

Figure 13-6. DDTs Management Summary Report: Bug Summaries

13-14

PART Il

DDTS MANAGEMENT SUMMARY

of

General Statistics

Projects surveyed =) DDTs
Youngest Bug Date =) 911221
Oldest Bug Date => 901029
Software Versions =) 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.8. Versions =) 4.1 4.0 Sun
Sun0S unk a
none any 3.5
Assigned Engineer Statistios
0f 103 assigned bugs:
NO ONE assigned 0 bugs =>
smanley assigned 44 bugs =)
rico assigned 43 bugs =)
david assigned 15 bugs =)
carol assigned 1 bugs =>
Bug Submission Statistics
0f 103 bugs submitted:
mmanley submitted 40 bugs =>
cindy submitted 38 bugs =>
ddts submitted 21 bugs =>
carol submitted 3 bugs =>
rico submitted 1 bugs =>

How Pound Statistics
O0f 103 bugs found:

10 bugs
20 bugs
2 bugs
60 bugs
8 bugs
1 bugs
2 bugs

Now Resolved
of 84 bugs
53 bugs

4 bugs

6 bugs

13 bugs

3 bugs

S bugs

When Caused S

Figure 13-7. DDTs Management Summary Report: General Statistics

found by
found by
found by
found by
found by
found by
found by

Statistias
resolved:
rasolved by
resolved by
resolved by
resolved by
resolved by
resolved by

tatistios

source oode
design
documentation
po fix

0.00%
42.72%
41.75%
14.56%

0.97%

30,838
36.09%
20.39¢8
2.91s
0.97%

author code review
in~house normal use
group cods review
customer use
interactive test
random unplanned test
functional test

Y

unreproducible

not a bug

13-15

-)
=)
-
-)
-
-)
-)

-
-
-
-
-
=)

(Tue Jul 14 14:20:09 EDT 1992)

9.718
18.42%
1.94%
58.35%
7.77%
0.97%
1.94%

63.100
4.76%
7.14%

15.48%
3.57%
5.958

DDTs

DDTs PART lI
Of 81 bugs: B
15 bugs caused during design =) 18.52%
36 bugs caused during post-releasse =) 44.448
12 bugs caused during alpha test =) 14.81%
3 bugs caused during beta test -) 3.70%
10 bugs caused during implementation =) 12.35%
3 bugs caused during investigation =) 3.708
2 bugs caused during integration =) 2.47%

When Pound Statistics
of 103 bugs found:

12 bugs found during alpha test -) 11.65%
74 bugs found during post-relsase =) 71.84%
4 bugs found during implementation’ =) 3.808%
32 bugs found during design =) 1.948%
9 bugs found during integration => 8.748%
1 bugs found during ianvestigation =) 0.97%
1 bugs found during functionmal test =) 0.97%
¥hen Fixed Statistics
0of 80 bugs fixed:
51 bugs fixed during post-release =) 63.75%
13 bugs fixed during alpha teat =) 16.25%
2 bugs fixed during beta test -) 2.508
3 bugs fixed during integration =) 3.75%
3 bugs fixed during design =) 3.75%
6 bugs fixed during investigation -) 7.50%
2 bugs fixed during implementation =) 2.508%

Severity Statistics

Number of severity 1 bugs = 10 =} 9.718
Nuaber of severity 2 bugs = 14 = 13.59%
Rumber of severity 3 bugs = 65 => 63.11%
Number of severity 4 bugs = 12 => 11.63%
Number of severity 5 bugs = 2 = 1.94%
Status Statistics
Number of new bugs - 1 = 0.97%
Number of opan bugs - 0 = 0.00%
Number of resolved bugs = 84 => 81.55%
Rumber of postponed bugs = 0 = 0.00%
Number of duplicate bugs = 0 = 0.008
Number of verified bugs - ¢ = 0.00%
Numbex of assigned bugs - 18 =) 17.48%
Mumbexr of integrated bugs = 0 = 0.00%
Rumbar of released bugs - 0 = 0.00%

Figure13-7 continued: DDTs Management Summary Report: General Statistics

13-16

DDTs

PART i

Severe Defects in Selected Projects

All Defects in Selected Projects
Bugn by Stete (laciudes Severty 1,2, 3, 4,4 5)

Bugs by Stais (Includes Seventy 1, & 2)

AN N 1)

jects

Unresolved Defects in Selected Proj
Bugs by Severity (inchedas Statss 5. A, & O)

All Defects in Selected Projects
Bugs by Sevenity (nchces Sietes 5, A, O, B, & V)

- All Bugs

Bug Find & Fix Rates (inclodse Seversy |, & 2)

Severe Defect Amrival & Resolution Rate

ugs

Defect Arrival & Resolution Rate - All B
Bug Find & Fix Retee (lmchaces Seversty 1,2, 3, 4, & 5)

Flgure 8. Examples of GUI Outputs

13-17

PART Il EDSA

14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA)

EDSA is a browser that supports understanding and static analysis of Ada source code.
It provides such capabilities as control and data flow browsing, pretty-printing, elision-
based viewing, and search management. In addition, its annotation capability can support
the conduct of code reviews and inspections, as well as capture the progress of formal ver-
ification activities.

14.1 Tool Overview

This product was developed by Array Systems Computing, Inc. and has been marketed
since 1991. It has between 5 and 10 users. Array Systems Computing provides software
consultancy and training, and performs independent verification and validation activities.
Tool users are supported by a newsletter and hot-line support. EDSA is available under
Unix, VMS, and DOS. An X-Windows version is available. The examination was per-
formed on version 2.0 of this product running UNIX on a Sun-4 system with OpenWin-
dows. At the time of evaluation, prices for EDSA started at $3,750.

Use of EDSA starts with parsing an Ada source code file. This produces an attributed
syntax tree and symbol table that are stored in the user library. A successful parse is not
required for browsing and any errors encountered during parsing are reported, together with
appropriate warnings. When a program is contained in several files, compilation units must
be parsed in compilation order. The output of the parser is used for browsing and EDSA
can be invoked on any of the parsed files independently. If required, preparation of a pretty-
printed output version of the original source file is available. This uses standardized inden-
tation based on the parse tree to emphasize the control structures of the code.

EDSA supplements the traditional random traversal and string searching common to
many browsers and editors with several logic-based traversal methods. These additional
traversal methods allow a user to exploit the structure and meaning of the code. Specifical-
ly, the following types of traversal are supported:

» Random. Movement is achieved by usage of the cursor and scrolling keys, and by a
set of defined focus commands.

« String searching. String commands find specified items in the code, for example, the
statements that a particular statement depends upon.

« Syntax directed. This allows the user to follow paths defined by the syntax tree.

14-1

EDSA PARTII

« Dependency. Provides for tracing back all the statements that the currently selected
statement depends on (typically these statements are the controlling statement and the
statements that define its input variable values).

« Data flow. Allows tracing back to where a variable was originally given a value and
then ahead to every usage of that value until it is changed.

« Control flow. Follows the control logic of the source code.
« Object-usage. Allows visiting every statement where an Ada object (that is, a vari-

-able, parameter, component, or slice) appears in a specific context.
In each case, a stack and backtracking facilities are provided for switching between paths
when more than one path can be followed.

When browsing, the source text is pretty-printed in the view window. This window
changes as the file is a traversed or new views constructed. The message window displays
the most recent commands entered and, sometimes, messages relating to the current com-
mand. The response box is a temporary window used to notify the user of problems with
an entered command or to ask for verification of a command. During browsing, the user
can switch to an editor and, at the end of the edit, cause the syntax tree and symbol table to
be appropriately updated.

Views are provided to help mitigate the complexity of perusing large programs. Views
are a selection of some or all of the statements in the source code. By showing only specific
parts of the code, they allow a user to restrict himself to only those features of interest, for
example, those portions of the code that are within a particular depth, that use a specified
symbol, or that use a specified structure. Views can be created, modified, printed, and com-
bined.

EDSA’s statement annotations are useful for adding documentation to source code
without modifying the original source file. Whereas comments exist in both the source code
and syntax tree, annotations exist only in the syntax tree (although options to cause them to
be included in the source code are provided). This can be useful for recording temporary
observations during an analysis session or for recording other types of working notes. De-
pending on the value of a customization parameter, these annotations act like special com-
ments or are hidden from view until required. After editing, EDSA can cause the syntax
trec and symbol table to be appropriately updated and annotations inherited from the old
tree, adjusted if necessary, to conform to the changes.)

Pebbling is another type of annotation. Here the annotations, or pebbles, are used to
record the fact that statements have been examined and that some conclusion about their

14-2

PART Nl EDSA

correctness has been reached. The pebbling feature uses dependency information to link
each of a statement’s inputs to all of the statements that might provide values to those in-
puts. It propagates correctness information by automating a generalization of the following
rule from propositional logic: Given that A is true, and that A being true implies that B is
true, then it follows that B must be true. (A, A — B = B). The user places white pebbles
to indicate that the statement and its contributors are assumed to be correct, that is, globally
correct, for verification purposes. He places grey pebbles to indicate that only the statement
itself is assumed to be correct, that is, locally correct. If the contributors to a locally correct
statement are globally correct, EDSA automatically replaces a grey pebble with a black
pebble to indicate that global correctness has been derived, although not asserted.

14.2 Observations

Ease of use. A user can interact with EDSA using a command line with auto-comple-
tion, cursor keys or a mouse to move around the menus and command line, or key bindings.
In the latter case, default keys are bound to the most commonly used EDSA commands; the
user can adjust these bindings to customize EDSA as desired. Additional opportunities for
custornization allow modifying text appearance and system parameters. Examples of sys-
tem parameters include switches that specify whether annotations should be hidden and
whether the user should be queried for backtracking to previously skipped paths. Expertise
level is another system parameter. It allows a user to be assigned one of six levels of exper-
tise that are used to determine the extent of help, menus, and wamings messages provided.

Documentation and user support. The documentation is extensive and includes sev-
eral useful examples. Array Systems Computing were prompt and helpful in responding to
queries.

Problems encountered. EDSA performed exactly as described in the documentation.
No problems were encountered during its use.

14.3 Sample Outputs

Figures 14-1 through 14-6 provide sample outputs from EDSA.

14-3

EDSA PART i

separate (Ll_Coampile)
package body LL_TOKENS is

procedure Advance{ eos : out BOOLEAN; next : out LLTOKEN; more : in BOOLEAN
:=TRUE) is

procedure Get_Char(char : out CHARACTER) is

begin
if End_Of Frile(Standard_Input) then

elsif End_Of_Line(Standard Ipput) then
Skip_line(Standard_Xnput);

else

Get(Standard Inmput, char);
end if;
end Get_Charx;

end Next_String;
begin

— Skip white space and comments
wvhile (current_char=ASCII.ETX) or (current_char=ASCII.HT) or (
current_char=’ ’) or (current_char=’'-’) loop
if current_char='~’ then
Look_Ahead;

Skip_Line(Standard_Input);
end if;
Char_Advance;

end loop;
1f current_char=ASCII.EOT then

elsif current_char=’"’ then
Next_string;
elsif current_char=’’’ then
Next_Character;
elsif (current_char in UPPER_CASE_LETTER) or (current_char in
LOWER_CASE_LETTER) then
Next_Identifier;
else .
Next_Spec_Sym;
end 1f;

end Advance;
end LL_TOKENS;

Figure 14-1. EDSA Threads View of Compiliation Unit LL_TOKENS

14-4

PART I

separate (L1_Compile)
package body LL_TOKENS is

procedure Advance(eos : out BOOLEAN:; next :

:=TRUR) is

procedure Next_String is
begin

while current_char/=’*’ loop

EDSA

out LLTOKEN; more : in BOOLEAN

exit when End_Of_Line(Standard_Input);

.nq loop,

e

end Next_String;
begin

- Skip white space and comments

while (current_char=ASCII.ETX) or (curreant_char=ASCII.H?) or (
current_char=’ ’) or (current_char=’'~’) loop

{f current_char='~’ then

exit whan look_char/=’'-’;
end if,;

end loop;

end Advance;
end LL_TOKENS,

Figure 14-2. EDSA Breaks View of Compliation Unit LL_TOKENS

14-5

fs shelites! - /bIn/csh -
mg 1f;
:\:xt.lstri“&go) v ney M.slnlgﬂm (OTNERS
B ond lhnLCMnctor.

modunllu fler {
(] 1 Lé:um"s

te g

'Mlo vl char {) or (current_cher 1
fuﬁc‘"&um: tm"m:uw 18 O1GHT 3 oF e

. ﬂ::nmm"m' e 52
: mm::lu() i= current_cher;
ond {f;
ond %hu {H
tabl 1 - . H
'gh) v‘mx 3 I.Ig:(printvalue, UITERAL):
"ulolnau to LIMnd(“Identifior *. GROUP);
mt.utmhm = m "(o ’gmmms (OTHERS<>
ond Meut_Tdeetitlors Lt - printva ®
::,‘f“"" Hext_Spec_Sys 1s
1 . :
gr ::::::u(1) cg:nw
Char M'
ihthere vers or'm/mm.m..«
mlﬂm o«m'm\enLL Advance. hex tfler.1
»nant-alternative
@
o
o
o
Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable | ®
14-6
o

PART 1l EDSA
K] shelksel = /bin/csh K
" BTkt vhite space wnd coments
vhile { current_charsASCII.ETX) or gmmsm NTdoer(

.. i¢ ﬁ""‘“"‘!"" then
oxit vhen ook cher/e"-*:
skip_LineC Standsrd Input); .
ﬁvuf ' 1ine := TRUE;

. Char_Advance;

ond Yoop:
it mrrmkmr-lsm.tﬂ' then
ﬂﬂf :urnnt.dur-"' then

tr
olsif cqu{de\‘::: then
elstf { curren 10 UPPER_CASE_LETTER) or (current_cher 1n
LOWE then f

Next_Tdentifler:
slse
ya;

1f;
next.orintyalve o printvalue
leinden e ubloulu

. 1inenuaber e current_line:

o(forvard § of 2) €
>>nent-statsasn

t
m\u.‘l-(&) statesents 1
Inext-statenent

Figure 14-4. EDSA Screen of Statement Traversal Using Control Flow In Unit LL_TOKENS

14-7

EDSA PART Ui
& shelkae! - /bin/cah _)
[BTaY printvalual 17 1o currentcher:
fa2 Barabvences

cnd if:
ond 1F;
nma:urmdnr- -’ then

i “ﬁ":v"il C !,; current char:
atvaive! i
Ehum

ond 17
sise

Char
od if;
ummu {0 nm« printvalue, LITRRAL)2

c :- $o1;
m; m u.num(Standard Iaeut);

ond ¥
.rl .“uﬂ) 1 **%;

Advancs;
cablotndex 3= llﬂll(2Strimiit ", GhouP);
mt sttribute ¢ OYNERS=3>FAL SE
I Cancribstor 1 oF W‘W

22222222
JAXTIN2Y

shelRtse! - /Bin/esh

ond 1f;
wmnu [nm« printvalve, LITESAL);
1

Aext. attridute o new TREELNODE'C LIT. ANONYNOUS,
FALSE., u{n. orintvales);

ond

WM ring 1
t INTE 1 I.

mmlu(1) 1o 2%
il current char/e**’ 1
'ur t. [oed

then
:m_\tmu(1) te curront.char:

mzm Of _Line(§ 3
Sar. m..u-(tandard_Trput);

2238288

222222
JAA2IIZIZBIR

[A
aa srintve uo(1) e °%;
1+C contributor 1 of 1) EEEEEEEEEE
0t

viow lecatt

Figure 14-5. EDSA Annotations Example in Compliation Unit LL_TOKENS

14-8

PART li EDSA

9 < shalkae! ~ /bin/esh ~ R
Bl TabTetndex 1= LYFIAdU "OCher - BH
0096 ong 1f:
009? next.attribute 1o nev TREENODE(ATT, MICIVIOUS, (OTWERS=IFALSE)
0090 » FASE, FALSE. printvalue);
2099 ond 19;
aa ond Next_Cheracter;
0182 immﬁn dontifior s
J;‘“ . s INTE te 12
" i) 4 CASE_LETTER) or (currant_char a
® 1 a:‘: g l(.m))‘u current_char n SICIT) or (
. if ol
al! iﬁm\nt 1) 1o current_char;s
[3o 1o1;
1 o f;
HiH :
a:g t.,nmcu 1o LIF{n(printvaive, LITEAA);
a:g od :'. sindon :o LIFInSC “Xdontifier . ChOU);
e AONE. aEEributs o now TREENODE(IPENT, NKCNYNOUS, (OMMERSS>FALSE).
oy FALSE. primtwales);
) 0z od Hors
nn Nout_Spuc_Sye 13
0 ‘:
nM :dltnln(1) :- qwrm
ns
ng Cha, .o
3:- " srintvaive(2°) i» corremt_cher:
ﬂg od 1f; Advance;
[:54] ."'&PWM' ‘e’ then
® hm Saneribeters of 3 (laef TdoattPror(s: v EENIEENNENRNINS
:ﬂ\n tip18(2) contriduters |
fx) shelitanl - /bin/esh
[CaTeTnden 1= LTHadU "Oher ., 0P)i
0096 L AL
mwcm--mwtm.m ¢ ONERS->FALSE)
FASE,
: - :&Ru.m

precedure 1
1 =%"§5‘?§'

)

t’lo‘n‘- 1= L1P{nd(printvalm, LITEMAL)

'tr otndon 1o L1MndC “Tdentifior *. ChOW)
mmﬂm:-m C TOENT, AnCIumS. STMERS->PMSE).

FALSE . pri o)3

wd sz imttHan

2 ent_Spec_Sye 1s

:;hmlu(1) ;-‘umt_mn

Oher,
- g::tngn() ::.M

.clﬁr‘mrf'ngdy-':’ hen t
- Jo(contributer 1 of 1) EEEENLoos) NN

Contributers ouitted Prom soloction tist

M4+ 3

.. ot

W22 222222322222
SEABAARXSN2Y

éf

i

Figure 14-6. EDSA Pebbling Example in Compliation Unit LL_TOKENS

14-9

PART Il LDRA Testbed

15. LDRA Testbed

The LDRA Testbed provides both static and dynamic analysis. In static analysis, source
code is analyzed to give information on control, data, and information flow, logical com-
plexity, and procedure and variable usage. Conformance to user-weighted programming
standards is checked. Dynamic analysis capabilities provide assertion analysis and mea-
surement of test completeness in terms of subcondition, statement, branch, and Linear Code
Sequence and Jump (LCSAJ) coverage. Analysis of test data set redundancy is provided to
optimize the test effort. Identification of the test data sets that execute each line of code fa-
cilitates software modification.

15.1 Tool Overview

The LDRA Testbed was developed by Liverpool Data Research Associates. It is mar-
keted by a subsidiary company, Program Analysers Ltd., who also provide a series of train-
ing courses and consultancy services. Additional third party products are available in
Europe. The Testbed has been commercially available since 1974 and there are over 400
current licensees. It is available for eight languages (Ada, C, Fortran, Pascal, PL/M 86, PL/
1, COBOL, and Coral 66) on a wide range of operating environments. The following partial
list exemplifies the scope of this range of environments: Apollo machines under Unix, DEC
VAX under VMS, Unix, or Ultrix, IBM under CMS, DOS or TSO/MVS, Sun 3 and Sun 4
under Unix, and Hewlett-Packard under RTEA or HPUX. Using windowing capabilities, a
graphical interface is available for Sun, Apollo and, in some cases, VAX workstations. The
command line options available for the VAX/VMS and Unix environments differ. Unix us-
ers can set options to expand included files where possible, generate diagnostic printouts,
and initialize test profiles. Several additional options are provided in the VAX/VMS envi-
ronment, for example, the ability to create a log file of LDRA Testbed usage, to limit the
type of coverage monitored, and to format or pack the generated execution history.

The evaluation was performed on version 4.8.01 of the Ada testbed running on a Sun 4
under Unix. At the time of evaluation, prices for the testbed start at $12,000, depending on
the class of computer and language.

LDRA Testbed is a menu-driven tool. Its application begins with static analysis of the
software under test. This lexical and syntactic analysis produces a reference listing contain-
ing source code reformatted to LDRA Testbed reformatting standards. Reference line num-

15-1

LDRA Testbed PART Il

bers are given for each statement line. At the same time, the source code is searched for
violations to the applicable set of language standards provided with the testbed. These stan-
dards check for conformance to much of the Safe Ada Subset. Reporting on any particular
standard is optional, the user selects appropriate standards by awarding penalty marks
greater than zero for violations; the static analysis produces a total penalty award for the
analyzed source code. Where appropriate, the user can also specify acceptable limits for
particular standards.

Complexity analysis is based on the control flow structure expressed in terms of basic
blocks. The complexity is reported in terms of the number and average length of basic
blocks, the number of control flow knots, and cyclomatic complexity. In addition, two ap-
proaches are used to analyze program structure. First, interval analysis reports on the reduc-
ibility of the software and degree of nesting. Second, the program structure is evaluated
against a set of user-tailorable language construct templates, an Aapproach called structured
programming verification. Two further metrics, essential knots and McCabe’s essential
complexity, are provided to report on unstructuredness. The user specifies whether com-
plexity analysis should be applied to all program units or limited to an identified set of pro-
gram units. Kiviat diagrams are provided for reporting of the various complexity and
structure metrics. These diagrams allow diagramming multiple metrics simultaneously,
each with its achieved and user-defined upper and lower bounds.

The Data Flow Analyser reports procedure call information, data flow anomalies, and
procedure parameter analysis. Weak data flow analysis is applied to identify undefined data
variables and defined variables that are redefined or undefined without first referencing the
previous definition. Procedure parameter analysis classifies parameters as referenced only,
defined only, both referenced and defined, or not used; this analysis is carried out across
procedure boundaries.

Information flow analysis is a new capability that provides information on the interde-
pendencies of program variables. LDRA Testbed currently supports analysis of backwards
strong and weak dependencies on a procedure-by-procedure basis. This capability can be
used in two ways. First, as a source of documentation, for example, to support identifying
the consequences of a software change. Secondly, the user can s;iecify information flow de-
pendency assertions as special comments. The testbed then compares the expected depen-
dencies with actual dependencies, reporting the results.

The Cross Referencer performs a complete cross-reference of all data items used in a
program. The type of each data item is classified as global, local, or parameter. For each

15-2

- -

rF oo T e T — -w

PART Il LDRA Testbed

procedure, the referencer also identifies all other procedures that this procedure calls, and
all procedures that call this one.

LCSAJ analysis is the final type of static analysis provided. It aids the user in isolating
LCSAIs by highlighting, on a source code listing, the start and finish of the linear code se-
quence of each LCSAJ. Unreachable LCSAIJs, and any other unreachable code statements,
are indicated.

The Dynamic Analyser instruments source code with probes which, upon execution,
write information to an execution history file. This is usually done by writing to the host
disk at run time. To allow for host/target computer configurations, however, the instrumen-
tation can be adapted to channel the execution history generated by the instrumented target
image back to the host and stored for subsequent analysis. This may be achieved by using
a spare serial line. Alternatively, it may be possible to arrange for storage of the execution
history using an area of memory on the target, with this buffer subsequently uploaded to
the host.

After instrumentation, the user compiles and links the instrumented program in the usu-
al way. For simple programs, the resulting executable can be run under control of LDRA
Testbed, which queries the user for the names of input and output streams. Alternatively,
the program can be executed independently of the testbed. In either case, after the program
has run, the user invokes the Dynamic Coverage Analyser to anélyze the generated execu-
tion history and provide a name for the current test data set. The coverage analyzer takes
account of the results of previous test data sets to accumulate the execution coverage over
a series of test runs. (The user has no direct control over adding an execution history to the
accumulated coverage data; this is handled automatically.) For each of subcondition, state-
ment, branch, and LCSAJ coverage, the analyzer provides a list of the respective items con-
tained in the program and identifies the old, new, and total coverage percentage achieved
for each item. Unexecuted items are identified. In each case, this is followed by a summary
that reports the total number of executable statements, branches, or LCSAJs, as appropri-
ate, the number that were executed, the number not executed, and the corresponding test
effectiveness metric.

The user may request a dynamic trace to explicitly show the flow of control resulting
from the test data set. This trace may be limited to specified procedures, or to between a
user-specified range of code line numbers. The LDRA Testbed will override this request if
the resulting display will be too large.

15-3

LDRA Testbed PART Il

The testbed uses three Test Effectiveness Ratio (TER) metrics to report on the effec-
tiveness of the test data:

» TER1 = Number of statements exercised at least once / Total number of statements

» TER2 = Number of branches exercised at least once / Total number of branches

« TER3 = Number of LCSAJs exercised at least once / Total number of LCSAJs
In terms of coverage, TER3 lies between branch and path coverage. That is, LCSAIJs pro-
vide a measure that is more stringent than branch coverage without incurring the overhead
of path coverage. Additionally, LDRA Testbed reports the number of overlapping LCSAJs
containing each reformatted statement as the “density.” This figure can be used as a mea-
sure of the complexity encountered when reading or modifying the program.

When a program contains tasks, the generated execution history will contain the inter-
leaved execution histories of those tasks, LDRA Testbed can distinguish between these
multiple histories, but some special user actions are required to assist in the processing of
the separated histories.

The user can embed assertions in Ada comments. These special comments can be used
to specify pre- or post-conditions applying to a section of code, check that inputs satisfy
predetermined ranges, or check that loop and array indices are within bounds. When con-
formance checking is switched on, the testbed translates the special comments to execut-
able code and inserts a user-tailorable failure handling routine. The supplied failure
handling routine simply prints a message identifying the failing assertion and then raises a
fail exception. It is the user’s responsibility to determine appropriate assertion conditions
and to ensure that the assertions are positioned where valid executable statements are al-
lowed in the source code. The assertion format and, to some extent, syntax and semantics
are tailorable via means of a parameter file.

Two final capabilities provide some limited support for regfession analysis. A Profile
Analyzer is provided to compare the coverage profiles generated by a series of test data
sets. It identifies any data set(s) that are redundant, that is, those that do not contribute to
increasing the overall coverage. Where two or more redundant test data sets are identified,
LDRA Testbed will recommend removal of the one that generates the largest execution his-
tory. For each executable line of code, the Dynamic Data Set Analysis option identifies the
test data set(s) that execute that line. This allows the user to determine which test data sets
are affected by a modification and, therefore, the tests that must be repeated.

15-4

PART Il LDRA Testbed

The results of testbed analysis are examined using a viewing option. They can be
viewed at either the compilation unit level or system level (that is, for the full set of com-
pilation units). Various textual displays are available or the user may access a submenu of
graphical displays. Navigation through textual displays is command driven. Graphical dis-
plays are available as bar charts of complexity and coverage measures, Kiviat diagrams of
quality metrics, flowgraphs of the software control flow graph, and call-trees showing the
procedure hierarchy. Static and dynamic views of both call-trees and flowgraphs are avail-
able. The static control flow graph can be annotated with the results of coverage analysis.
In addition, the user can request an active flowgraph that illustrates the execution achieved
by the last test data set. Navigation through the graphical displays is provided via selection
from a set of icons that support such functions as automatic zboming and printing a screen.

15.2 Observations

Ease of use. Overall, LDRA Testbed is very easy to use and provides a broad range of
testing facilities. It automates all repetitive tasks and requires no redundant user input; for
example, a special script is provided to facilitate testing of software composed of many
source modules in separate files. This script, called tbset, allows a user to associate a name
with a set of files and manipulate, list, and select sets. LDRA Testbed can be invoked from
thset to apply user-selected testbed operations to a chosen set of files as a group. In this
mode, however, some usual testbed options are not available; in particular, the user cannot
limit processing to a named set of files or limit reporting to a named set of program units.
In addition, only system-wide analysis results, a call-tree display, and a variety of flow
graphs are available for viewing. (To access results for particular software units, the user
can view results through the testbed directly.) If necessary, tbset allows the user to spawn
a shell script for non-testbed related processing.

The Management Summary report provides useful high-level information on the qual-
ity of the software and on the effectiveness of testing to date. More detailed information is
provided in a series of analysis reports, some of which are very lengthy. While some users
may find the provision of multiple alternative complexity measures useful, others will find
much of this information redundant.

Graphical outputs are available on Sun, Apollo, HP, IBM RS6000, VAX, and most oth-
er types of workstations with windowing capabilities, histograms drawn in orthographic
projection are available for any terminal supporting VT 100 graphics. These histograms are

15-5

e ——————————————————————

LDRA Testbed PART I

used to profile coverage information and summarize information on the program quality,
complexity and structuredness. Full color is available for graphical displays. All graphics
displays can be exported as Postscript files.

Documentation and user support. The supplied documentation is well-written and
comprehensive. It includes a standard interface file to facilitate using LDRA Testbed out-
puts as inputs to other tools. This file allows testbed information to be viewed at three lev-
els: procedure/function, source module, and project (that is, some related set of source
modules). Through this interfacing facility, LDRA Testbed has been used with StP, Team-
work, Typhoon, System Engineer, Mascot, Infomix, and ASA CASE tools, and with the
TBGEN testing tool.

In all instances, the staff at Program Analysers were helpful and friendly and provided
quick resolution of encountered problems.

Instrumentation overhead. Full instrumentation of the Ada Lexical Generator for
statement, branch, and LCSAJ coverage gave a source code increase of nearly 100%. The
size of the instrumented executable program increased approximately 12%. The user can
limit the amount of instrumentation performed by requesting monitoring of only statement
coverage, or only statement and branch coverage. Since the user specifies the files which
are to be instrumented, instrumentation can be restricted to specific compilation units. It
cannot, however, be limited to specific program units within a compilation unit.

Ada restrictions. The LDRA Testbed supports full Ada. However, the documentation
lists the following constraints for version 4.8.01 of the Testbed:.

« For static analysis and cross-referencing: (1) The use of generics may not be correctly
Landled in some cases, (2) Analyses are limited to variables in the current module, (3)
Overloaded procedures may cause misleading messages about recursion, and (4)
Some combinations of literal procedure parameters are incorrectly analyzed.

» Calls between procedures in package bodies are only handled if their declaratives
appear textually before use.

» Incorrect branches are generated for certain nested select statements.

* In the case of information flow analysis, strongly-defined variables may be miscate-
gorized in the presence of exception handlers.

+ The analysis may be incorrect for loops implementing recursive functions of degree
greater than two.

Problems encountered. Difficulties encountered in installing an earlier version of the
testbed have been resolved. LDRA Testbed performed as described in the documentation.

15-6

e e —

PART i LDRA Testbed

15.3 Planned Additions

Currently under beta testing, dynamic data flow testing for Ada is expected to become
available in autumn 1992. Also under development are system-wide data flow analysis and

the assessment and reporting of reliability metrics.

15.4 Sample Outputs

Figures 15-1 through 15-19 provide sample outputs from LDRA Testbed.

15-7

LDRA Testbed PART i

R AN R AR RN RN AR AT TN AR RN R AN RSN RN RN AR SN N AR AR TR EARNER

TRNRRRRREW TARRRTRNEW
RRTRARRRAW MANAGEMENT SUMMARY [T TITITY
RARRARRRNW [T I S

AR AN R R R RN R R RN R R R R A RN IR AN R RN AN N RN N R RN TR AT RPN RN RN RN RN

TESTBED VERSION : 4.8.01
FILE UNDER TEST : adalex_dir_3/11 compile.a
DATE OF ANALYSIS : Mon Oct 12 11:53:18 EDT 1992

STANDARDS VIOLATIONS IN STATIC ANALYSIS

LINE PENALTY

NUMBER VIOLATION MARK
a8 1-0 package 1
82 USE clause 1
82 I-0 package 1
as Exception declaration 1
88 Number Daclaration b3
95 Predefined language environment name "INTEGER" 1

688 Identical name in scope "TESTSYNCH® 1
694 Predefined language environment name "INTEGER” 1
695 Identical name in another scope "I® 1
695 Predefined language environment name "INTEGER®" 1
744 Predefined language environment name "FALSE® 1
752 Raise statement 1
782 Predefined language enviromment name *TRUE" 1
797 Predefined language environment name "TRUE" 1

TOTAL PENALTY FROM STATIC ANALYSIS = 135
TOTAL NUMBER OF LINES IN PROGRAM = 868

SUMMARY OF EXECUTABLE BODIES :

START NO OF

NAME LINE LINES
LLFIND 152 2
LLPRTSTRING 179. 10
LLPRTTOKEN 194 1
LLSKIPTOKEN 210 10
LLSKIPNODE 225 12
LLSKIPBOTH 244 13
LLPATAL 262 9
GET_CHARACTER 278 14
CVT_STRING 307 10
MAKE_TOKEN 318 66

Figure 15-1. LDRA Testbed Management Summary for LL_COMPILE

15-8

PART I LDRA Testbed

LLNEXTTOKEN 400 8
BUILDRIGHT 455 66
BUILDSELECT 527 8
READGRAM 537 39
ERASE 587 14
MATCH 630 17
EXPAND 639 47
SYNCHRONIZE 697 62
TESTSYNCH 761 15
PARSE 778 75
LIMAIN 855 7
LL_COMPILE 864 5

THERE ARE 1 UNREACHABLE LCSAJS
THE MAXIMUM LCSAJ DENSITY IS 16 AT LINE 458

THERE ARE 1 SEQUENCES OF UNREACHABLE CODE
THE LONGEST IS 32 LINES AT LINE 167

THE TOTAL NUMBER OF UNREACHABLE LINES IS 10
THERE ARE 7 UNREACHABLE BRANCHES

1COMPLEXITY ANALYSIS PRODUCES THE FOLLOWING TABLE OF RESULTS

EXEC. BASIC AVG. ORDER 1 MAX ORDER E
PROCEDURE LINES BLOCKS LEN. INTERV. INTERV. REDUC. MCCABE KNOTS MCCABE KNOTS
LL_COMPILE 27 1 37.00 1 1 YES 1 0 1 0
LLPIND 22 13 1.62 3 2 YES 5 14 4 6
LLPRTSTRING 10 5 .00 2 2 TES 3] 3 2
LLPRTTOKEN 10 4 2.50 1 1 YES 2 1 1 0
LLSKIPTOKEN 10 1 10.00 1 1 YES 1 0 1 0
LLSKIPNODE 12 1 12.00 1 1 YES 1 0 1 0
LLSKIPBOTH 13 1 13.00 1 1 TS 1 0 1 0
LLPATAL 9 2 4.50 1 1 YES 1 0 1 0
GET_CHARACTER 14 6 2.3 1 1 YES 3 2 1 0
MAKE_TOKEN 68 17 4.00 1 1 YES 11 20 1 0
LLNEXTTOKEN L] 3 3.67 1 1 YES 2 0 1 0
LIMAIN 14 1 14.00 1 1 YES 1 0 1 0
CVE_STRING 10 7 1.43 2 2 YES 3 a 1 0
READGRAM 38 14 an 5 3 RS 6 5 1 0
PARSE 73 a3 3.17 2 2 YES 11 1 1 0
BUILDRIGH? 62 a0 3.10 3 2 TES 10 30 8 26
BUILDSELECT 8 4 2.00 2 2 YES 2 1 1]
ERASE 11 6 1.83 2 3 YES 3 4 3 4
EXPAND 43 13 2.87 4 2 YES 7 2 1 0
TRESTSYNCH 14 7 2.00 3 2 TES 3 2 1 0

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-9

@
LDRA Testbed PART I
-)
MATCH 16 9 1.78 2 2 YES 4 9 4
SYNCHRONIZE 59 23 2.57 7 3 YES 9 11 4
TOTAL 550 183 3.01 23 3 YE®S 69 116 21 S
THE PROGRAM CONTAINS 42 PROCEDURES
1STANDARDS VIOLATIONS IN COMPLEXITY ANALYSIS .
PROCEDURE VIOLATION PENALTY
LLFIND CONTAINS ESSENTIAL KNOTS 1
LLPRTSTRING CONTAINS BSSMIA_L KNOTS 1
MAKE_TOKEN MCCABE MEASURE GREATER THAN 10 1
PARSE MCCABE MEASURE GREATER THAN 10 1 o
BUILDRIGHT CONTAINS ESSENTIAL KNOTS 1
ERASE CONTAINS ESSENTIAL KNOTS 1
MATCH CONTAINS ESSENTIAL KNOTS 1
SYNCHRONIZE CONTAINS ESSENTIAL KNOTS 1
TOTAL PENALTY PFROM COMPLEXITY ANALYSIS = 8
1DATA FLOW ANALYSIS RESULTS .
1 VARIABLES WERE DECLARED BUT NEVER USED
40 TYPE UR ANOMALIES FOUND
17 TYPE DU ANOMALIES FOUND
41 TYPE DD ANOMALIES POUND
1DYNAMIC COVERAGE ANALYSIS REPORT .
PROFILES INCLUDED FOR THE POLLOWING TEST DATA SETS
1) testl.lex
2) sample.lex
DYNANIC ANALYSIS WARNINGS . .
8 MISSING LINEAR CODE SEQUENCE AND JUNP TRIPLES
6 MISSING BRANCHES
1STATEMENT EXECUTION EISTORY SUMMARY
EXECUTABLE NUMBER EXECUTED TER 1 @
STATEMENTS OLD NEW TOTAL OLD NEW TOTAL
LL,_ COMPILE 27 27 a7 27 1.00 1.00 1.00
LLFIND 17 16 17 17 0.94 1.00 1.00
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 10 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 10 0] 1] 0.00 0.00 0,00 .
Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE Y
15-10
o

———————————————————n)

PART i LDRA Testbed

LLSKIPNODE 12 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 13 0 0 0 0.00 0.00 0.00
LLFATAL 8 0 0 4 0.00 0.00 0.00
GET_CHARACTER 14 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 67 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 8 8 8 8 1.00 1.00 1.00
LIMAIN 14 14 114 14 1.00 1,00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRAM 38 38 38 38 1.00 1.00 1.00
PARSE 73 56 56 56 0.77 0.77 0.77
BUILDRIGHT 62 54 .54 54 0.87 0.87 0.87
BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 1 1.00 1.00 1.00
EXPAND 43 38 38 38 0.88 0.88 0.88
TESTSYNCH 14 0 0] 0.00 0.00 0.00
MATCH 15 13 13 13 0.87 0.87 0.87
SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00
TOTAL 540 283 204 284 0.52 0.53 0.53
SUB-CONDITIONS SUMMARY
NUMBER EXECUTED TER CON

SUB—-CONDITIONS OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFIND PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB—CONDITIONS
LLPRTTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPNODE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB~CONDITIONS
GET_CHARACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
MAKE_TOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
BUILDRIGHT PROCEDURE CONTAINS NO SUB-CONDITIONS
BUILDSELECT PROCEDURE CONTAINS NO SUB-CONDITIONS
ERASE PROCEDURE CONTAINS NO SUB-CONDITIONS
EXPAND 8 8 8 8 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS
MATCH 4 4 4 4 1.00 1.00 1.00
SYNCHRONIZE 12 0] 0 0.00 0.00 0.00
TOTAL a4 12 12 12 0.50 0.50 0.50

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-11

LDRA Testbed PART il

1BRANCH EXECUTION HISTORY SUMMARY

NUMBER EXECUTED TER 2
BRANCHES oLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLFIND 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 2 0 0 0 0.00 0.00 0.00
LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 3 0 0 0 0.00 0.00 0.00
GET_CHARACTER 7 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 31 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 5 4 4 4 0.80 0.80 0.80
LIMAIN 5 5 S 5 1.00 1.00 1.00
CVT_STRING 7 0 0 0 0.00 0.00 0.00
READGRAM a0 20 20 20 1.00 1.00 1.00
PARSE 39 25 a5 25 0.64 0.64 0.64
BUILDRIGHT 26 22 22 22 0.85 0.85 0.85
BUILDSELECT 4 4 4 4 1.00 1.00 1.00
ERASE 7 7 7 7 1.00 1.00 1.00
EXPAND 1s 15 15 15 0.83 0.83 0.83
TESTSYNCH 11 0 0 0 0.00 0.00 0.00
MATCH h & 7 7 ? 0.64 0.64 0.64
SYNCHRONIZE 26 0 0 0 0.00 0.00 0.00
TOTAL 292 133 134 134 0.46 0.46 0.46
1LCSAT EXECUTION HISTORY SUMMARY .
NUMBER EXECUTED TER 3
LCSAJS oLD NEW TOTAL OoLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLYIND 3¢ 10 11 11 0.29 0.32 0.32
LLPRTSTRING 10 0 0 9 0.00 .00 0.00
LLPRTTOKEN 13 0 0] 0.00 0.00 0.00
LLSKIPTOKEN 3 0 0 0 0.00 .00 0.00

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-12

PART Il LDRA Testbed
LLSKIPNODE 3 [} 0 1] 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00
GET_CHARACTER 6 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 33 0 0 0 0.00 0.00 0.00
LILNEXTTOKEN 7 3 3 3 0.43 0.43 0.43
LIMAIN 5 5 5 5 1.00 1.00 1.00
CVT_STRING g 0 ° 0 0.00 0.00 0.00
READGRAM 25 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68
BUILDRIGHT 32 24 24 24 0.75 0.75 0.75
BUXILDSELECT S 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TESTSYNCH 12 0 0 0 0.00 0.00 0.00
MATCH 12 6 6 6 0.50 0.50 0.50
SYNCHRONIZE 3s 0 0 0 .00 0.00 0.00
TOTAL 326 130 131 131 0.40 0.40 0.40
1SUMMARY OF EFFECT OF CURRENT TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAME TER 1 TER 2 TER 3
LL_COMPILE 1.00 1.00 1.00
LLFIND Increaged Increased Inorsased
LLPRTSTRING No Change No Change No Change
LLPRTTOKEN No Change No Change No Change
LLSKIPTOKEN No Change No Change No Change
LLSKIPNODE No Change No Change No Change
LLSKIPBOTH No Change No Change No Change
LLFATAL No Change No Change No Change
GET_CHARACTER No Change No Change No Change
MAKE_TOKEN No Change No Change No Change
LLNEXTTOKEN 1.00 No Change No Change
LLNAIN 1.00 1.00 1.00
CVT_STRING No Change No Change No Change
READGRAM 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDRIGHT No Change No Change No Change
BUILDSELECT 1.00 1.00 Ko Change
ERASE 1.00 1.00 No Change
EXPAND No Change No Change No Change
TESTSYNCH No Change No Change No Change
MATCH No Change No Change No Change
SYNCHRONIZE No Change No Change No Change

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-13

LDRA Testbed PART Il

Lesthed Graphies Output

Program name: 11_compile
Results produced oo: Moo Oct 12 11:53:35 1992 Using: ADA Testbed Version 4.8.01
Priat date: Mon Oct 12 12:29:54 1992 © LDRA. 192

Static call tres of program : ll_coapile

Figure 15-2. LDRA Testbed Static Call Tree of LL_COMPILE

15-14

LDRA Testbed

PART i

Using: ADA Testbed Version 4.8.01
©LDRA. 1992

Program name: 1l_compile

Results produced oa: Mon Oct 12 12:17:01 1992
Print date: Mon Oct 12 12:30:05 1992

pile

: 11_com,

Dynamic call tree of program

Figure 15-3. LDRA Testbed Dynamic Call Tree of LL_COMPILE

15-15

LDRA Testbed PARTII

PROCEDURE CALL INFORMATION

THE MAIN PROGRAM
BETWEEN LINES 31 AND 868
LL_CONPILE

CALLS THE POLLOWING PROCEDURES
LLMAIN

PROCEDURE
LLFIND
BETWEEN LINES 146 AND 174

DOES NOT CALL ANY INTERNAL PROCEDURES
IS CALLED BY THE FOLLOWING PROCEDURES

MAKE_TOKEN
PARSE

PROCEDURE
LLPRTSTRING
BETWEEN LINES 176 AND 188

DOES NOT CALL ANY INTERNAL PROCEDURES

1S CALLED BY THE FOLLOWING PROCEDURES
LLPRTTOKEN

LLSKIPNODE

LLSKIPBOTH .
SYNCHRONIZE

1

THE FOLLOWING VARIABLES WERE DECLARED BUT KEVER USED
VARIABLE DECLARED ON LINE

TABLEINDEX 453

Figure 15-4. LDRA Testbed Data Flow Analysis of LL_COMPILE

15-16

T

PARTII

TYPE UR ANOMALIES

LDRA Testbed

866 IN PROCEDURE LIMAIN
866 IN PROCEDURE LIMAIN

866 IN PROCEDURE LLMAIN

866 IN PROCEDURE LLMAIN

866 IN PROCEDURE LLMAIN

VARIABLE UNDEPINE REFERENCE
* GLOBAL' STANDARD_ERROR

180 180
' GLOBAL’ STANDARD_FRROR

200 200
RHSARRAY 436 859 IN PROCEDURE PARSE
' GLOBAL’ LLTABLESIZE

136 136
LLSYNBOLTABLE

136
LLEOTOKS 132
LLCURTOK . PRINTVALUE

135
LLCURTOK . TABLEINDEX

135
LLCURTOK . LINENUMBER

135
LLCURTOK . ATTRIBUTE

135

866 IN PROCEDURE LLNAIN

TYPE DU ANOMALIES
VARIABLE DEPINE

UNDEFINE

CHILDCOUNT 457
I 529
LOCOFANY 708
PRODUCTIONS 857 IN PROCEDURE READGRAM
RHSARRAY 857 IN PROCEDURE READGRAM
THISRHS 857 IN PROCEDURE READGRAM
LLSTACK.DATA 866 IN PROCEDURE LLMAIN
LLSTACK . ATTRIBUTE

866 IN PROCEDURE LLMAIN
LLSTACK. PARENRT

866 IN PROCEDURE LLMAIN
LLSTACK. TOP 866 IN PROCEDURE LLMAIN
LLSTACK . LASTCHILD

866 IN PROCEDURE LIMAIN
LLSYMBOLTABLE

866 IN PROCEDURE LLMAIN

LLSENTPIR 866 IN PROCEDURE LLMAIN
LLLOCEOS 866 IN PROCEDURE LIMAIN
LLADVANCE 866 IN PROCEDURE LLMAIN

520
332
852
861
861
861
868

Figure 15-4 continued: LDRA Testbed Data Flow Analysis of LL_COMPILE

15-17

LDRA Testbed PART Il ®
b1
TYPE DD ANOMALIES @
VARIABLE DEFINE REDEFINE
LLTOP 598 594
LLSTACK. LASTCHILD
669 61
LLSTACK.TOP 669 671
L
LLSTACK.ATTRIBUTE
784 785
LLSTACK.DATA 764 785
LLSTACK . LASTCHILD)
785 786
LLSTACK. TOP 785 786
LLSTACK. PARENT PY
785 786
LLSTACK.ATTRIBUTE
785 786
LLSTACK.DATA 785 786
LLTOP 827 IN PROCEDURE EXPAND 841 IN PROCEDURE ERASE
LLADVANCE 797 827 IN PROCEDURE EXPAND
LLADVANCE 841 IN PROCEDURE ERASE 797
LLADVANCE 797 821 IN PROCEDURE TESTSYNCH ()

1

PROCEDURE PARANETER ANALYSIS

PROCEDURE LLFIND ®
PARAMETER ITEM 15 SOMETINES REFERENCED INSIDE THE PROCEDURE
PARAMETER WHICH IS SOMETINES REFERENCED INSIDE THE PROCEDURE

PROCEDURE LLPRTSTRING
PARAMETER STR IS ALWAYS REFERENCED INSIDE THE PROCEDURE

Y

PROCEDURE LLPRTTOKEN
DOES NOT HAVE ANY PARAMETERS L

PROCEDURE GET_CHARACTER

PARANETER EOS . 1S ALMAYS DEFINED INSIDE THE PROCEDURE
PARAMETER NEXT IS SOMETIMES REFERENCED

AND DEFINED INSIDE TRE PROCEDURE)
PARAMETER MORE sses: IS NOT USED IN THE PROCEDURE weerw

®

Figure 15-4 continued: LDRA Testbed Data Flow Analysis of LL_COMPILE *
15-18

®

.

—

Path Analysis

paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
51 paths

- [- ¥} [
DWW OWH UMW DR Y

o0 W

Information Flow ~ Variable

PART Il LDRA Testbed
in procedure LL_COMPILE
in procedure LLFIND
in procedure LLPRTSTRING
in procedure LLPRTTOKEN
in procedure LLSKIPTOKEN
in procedure LLSKIPNODE
in procedure LLSKIPBOTH
in procedure LLFATAL
in procedure GET_CHARACTER
in procedure MAKE_TOKEN
in procedure LLNEXTTOKEN
in procedure LLMAIN
in procedure CVT_STRING
in procedure READGRAM
in procedure PARSE
in procedure BUILDRIGHT
in procedure BUILDSELECT
in procedure ERASE
in procedure EXPAND
in procedure TESTSYNCH
in procedure MATCH
in procedure SYNCHRONIZE

Dapendency Results

In Procedure LLFPIND

Strongly defined variables:

Strongly Weakly
Variable Dependent , Dependent
HIGH GLOBAL' LLTABLESILE
now GLOBAL’ LLTABLESILE

Weakly defined variables:
Strongly Weakly

Variable Dependent Dependent
MIDPOINT ’GLOBAL’LLTABLESIZE

Figure 15-5. LDRA Testbed information Flow Analysis for LLFIND

15-19

LDRA Testbed PART Il

STRUCTURED PROGRAMMING VERIFICATION WILL USE THE POLLOWING 7 STRUCTURES

SINPLE COLLAPSE
REPEAT LOOP
CASE

WHILE DO

IF THEN

IF THEN ELSE
FOR LOOP

1

AT RA R RN A RN RN AR AR R R R AN AR NN R EEN AN ARERACEANERSTNERTSONS
IQ.Il.'i'.t.'IQllt.l'.""...t't}..l.t.".l.t.'!'t."

*e L 2 4
L 1] L 3 3
" COMPLEXITY ANALYSIS FOR -
aw -l
*w L 1
e PROCEDURE LLFIND '
L 2 e
L 1] L 1]

AR N AR AN NN E R R R AN AR R EN RN AR AER AR R AN A EAARAERERNRAEAR
ARRE R R R AN RN AN AR N AR AN A RN RN AN NN R RN ANT ST AN ARARAAR

LIST OF KNOTS

FROM TO FROM T0 DOWN-DOUN UP-DOWN UpP-UP
155 172 163 869 T
185 172 165 869 T
158 172 171 155 T
157 160 159 170 T
159 170 163 869 T
159 170 165 869 T '
161 169 163 869 T
161 169 165 869 T
161 169 167 170 T
162 165 163 869 T
162 165 164 166 T
163 869 171 155 T
164 166 165 869 T
165 069 171 158 T
TOTAL NUMBER OF KNOTS - 14
NUMBER OF DOWN-DOWN KNOTS = 11
NUMBER OF UP-DOWN KNOTS =~ 3
NUMBER OF UP-UP KNOTS - 0

Figure 15-6. LDRA Testbed Complexity Analysis for LLFIND

15-20

B D A

PART i LDRA Testbed

BASIC BLOCK DISPLAY

BRANCH FROM LINE 163 JUMPS OUT OF PROCEDURE
THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,
IMMEDIATELY AFTER THE END OF THE PROCEDURE

BRANCK FROM LINE 165 JUMPS QUT OF PROCEDURE
THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,
IMMEDIATELY AFTER THE END OF THE PROCEDURE

LINE
NUMBER STATEMENT
146 function LLPIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) raeturn 1
147 INTEGER is 1
150 LOW, MIDPOINT, HIGH: INTEGER: 1
151 1
152 begin 1
153 LOW := 1; 1
154 HIGH := LLTABLESIZE + 1; 1
155 while LOW /= HIGH loop 2
156 MIDPOINT := (HIGH + LOW) / 2; 3
157 if ITEM ¢ LLSYMBOLTABLE(MIDPOINT).KEY then 3
158 RIGH := MIDPOINT; 4
159 elgif 4
160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY 5
161 then 5
162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then []
163 return(MIDPOINT); 1
164 else 8
165 return(0); 9
166 end if; 10
167 else 10
166 ~= ITEM > LLSYMBOLTABLE(MIDPOINT).KEY 10
169 LOW := MIDPOINT + 1, 11
170 end 1if; 12
171 end loop; 12
172 return(0); — iteam is not in table 13
173 end LLPIND; 13

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-21

LDRA Testbed PART I

AVERAGE LENGTH OF BASIC BLOCK = 1.62 LINES

BLOCK 8 IS UNREACHABLE - REMOVE FROM FURTHER CONSIDERATION
BLOCK 10 IS UNREACHABLE -~ REMOVE FROM FURTHER CONSIDERATION

PROCEDURE ENTRY AT BASIC BLOCK 1
PROCEDURE EXIT AT BASIC BLOCK 14

KNOTS
FROM TO FRON TO . FROM TO FROM TO
BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE
2 13 7 14 155 172 163 174
2 13 9 14 155 172 165 174
2 13 12 2 155 172 171 155
3 5 4 12 157 160 159 170
4 12 7 14 159 170 163 174
4 12 9 14 159 170 165 174
5 11 7 14 161 169 163 174
5 11 9 14 161 169 165 174
6 9 7 14 162 165 163 174
7 14 12 2 163 174 171 155
9 14 12 2 165 174 171 155

NUMBER OF BLOCK CONNECTIONS = 15
NUMBER OF BLOCKS - 12

COMPLEXITY MEASURE OF MCCABE = 5
RSN AN AR NN AR ANNARRRAANER

NUMBER OF KNOTS = 1

RN R RN RN NN RN RN R EANR AR NI AR NPENR Y

1INTERVAL ANALYSIS

INTERVALS OF ORDER 1

HEADER BLOCK 1
INTERVAL BLOCKS 1

HEADER BLOCK 2
INTERVAL BLOCKS 3 3 13 4 5 6 11 7 9 12 1a

NUMBER OF INTERVALS = 2
‘AVERAGE LENGTH OF INTERVAL = 6.00 BLOCKS

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-22

PART {I

INTERVALS OF ORDER 2

HEADER BLOCK 1
INTERVAL BLOCKS 1 2

NUMBER OF INTERVALS = 1
AVERAGE LENGTH OF INTERVAL = 2.00 BLOCKS

PROCEDURE REDUCIBLE IN THE INTERVAL SENSE

SRV EEERACRNEN SRR RNENP R RSN TRGIRNRRARNIUSORES

1STRUCTURED PROGRAMMING VERIFICATION

——=== CONNECTION DISPLAY ——--

BLOCK 1 COMNECTS TO BLOCKS 2
BLOCK 2 CONNECTS TO BLOCKS 3 13
BLOCK) CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 12
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 CONNECTS TO BLOCKS 7 9
SLOCK 7 CONNECTS TO BLOCKS 14
BLOCK 9 CONNECTS TO BLOCKS 14
BLOCK 11 CONNECTS T0O BLOCKS 13
BLOCK 12 CONNECTS T0 BLOCKS 3
BLOCK 13 COMNECTS T0 BLOCKS 14

THE LINES OF CODE CONTAINED IN EACH BLOCK ARE

BLOCK 1 CONTAINS LINES 146 154
SLOCK 2 CONTAINS LINES 155 155
BLOCX 3 CONTAINS LINES 156 157
SL0CK 4 CONTAINS LINES 158 159
BLOCK 5 CONTAINS LINES 160 161
BLOCK 6 CONTAINS LINES 163 162
BLOCK 7 CONTAINS LINES 163

9 COMTAINS LINES 165

8333333333313

BLOCK
BLOCK
BLOCK

BLOCK
BLOCK

BLOCK
BLOCK
BLOCK
BLOCK

LDRA Testbed

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-23

LDRA Testbed PART (I

~———— CONNECTION DISPLAY —-~—-

BLOCK 1 CONNECTS TO BLOCKS 2
BLOCK 2 CONNECTS TO BLOCKS 3 13
BLOCK 3 CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 13
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 CONNECTS TO BLOCKS 14

BLOCK 11 CONNECTS TO BLOCKS 12
BLOCK 12 CONNECTS TO BLOCKS 2
BLOCK 13 CONNECTS TO BLOCKS 14

THE LINES OF CODE CONTAINED IN EACH BLOCK ARE

BLOCK 1 CONTAINS LINES 146 T0 154 - BLOCK 1

BLOCK 2 CONTAINS LINES 155 T0 155 - BLOCK 2

BLOCK 3 CONTAINS LINES 156 T0 157 - BLOCK 3

BLOCK 4 CONTAINS LINES 158 TO 159 - BLOCK 4

BLOCK 5 CONTAINS LINES 160 TO 161 - BLOCK S

BLOCK 6 CONTAINS LINES 162 T0 163 - BLOCKS 6 TO 7

AND 165 TO 165 - BLOCK 9

BLOCK 11 CONTAINS LINES 169 TO 169 - BLOCK 11

BLOCK 12 CONTAINS LINES 170 T0 171 - BLOCK 12

BLOCK 13 CONTAINS LINES 172 TO0 173 - BLOCK 13

BLOCK 14 CONTAINS LINES 174 TO 174 - BLOCK 14

NO FURTHER STRUCTURE FOUND

ENOTS

FRON T0 FRON 70 FROM TO FROM T0

BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE
2 13 6 14 155 172 162 174
2 13 12 3 155 172 171 155
3 s 4 12 157 160 159 170
4 12 6 14 . 159 170 162 174
5 11 6 14 161 169 162 174
6 14 12 3 162 174 171 1s%

ESSENTIAL KNOTS = 6
RSN ANRNARNRANNENRER

ESSENTIAL COMPLEXITY OF NCCABE = 4
RN R A NI RRN AR AR RN NN ANS RN INNR AR

PROCEDURE NOT STRUCTURED

NN ARNNBNERERORAARNTSRY

Figure15-6 continued: LDRA Testbed Complexity Anatysis for LLFIND

15-24

PART Ul LDRA Testbed
Histogram Dump
Results produced on: o date available Using: ADA Testbed Version 4.8.01
Print date: Mon Oct 12 12:24:22 1992 ©LDRA. 1992
System View : NcCabe’s Measure

Figure 15-7. LDRA Testbed System View McCabe’'s Complexity Measure

15-25

—

LDRA Testbed PARTII

P

Results produced on: o date available Using: ADA Testbed Version 4.8.01
Priot date: Mon Oct 12 12:24:27 1992 © LDRA. 1992

System Vievw : Knots

L2/

W T

Figure 15-8. LDRA Testbed System View Knots Complexity Measure

15-26

LDRA Testbed

PART I

Using: ADA Testhed Version 4.8.01
©LDRA. 1992

Kiviat Diagram

Results produced on: Moa Oct 12 11:53:31 1992
Print date: Mon Oct 12 12:30:35 1992

Xiviat Diagrams

3308 2 § & 3 § % &

seésngAgvg ganiysgagng

%388 ¢ & 3 & 3 8 ¢

Go0e0HnrgrrndAndpnidns-o

1] mmt,wmmw
i diliilie
;m*d TH _:mmm
m_ HU BT
dilililililihng

LA AR R NN R R LE R RNNN NN

Figure 15-9. LDRA Testbed Kiviat Graph for LLFIND

15-27

_

LDRA Testbed

PART Il

DETERNINATION OF LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH LINE
LABEL LABEL NUMBER STATEMENT
PINISH 145 1
START 146 function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return 3
147 INTEGER is 3
148 == Trind item in symbol table —— return index or 0 if not founc
149 -— Agsumes symbol table is sorted in ascending order.3
150 LOW, MIDPOINT, HIGH: INTEGER; 3
151 3
152 begin 3
153 oW := 1, 3
154 HIGH := LLTABLESIZE + 1; 3
START FINISH 155 while 1LOW /= HIGH loop 6
156 MIDPOINT :« (HIGH + LOW) / 2: 4
FINISH 157 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then 4
158 HIGH := MIDPOINT; 3
FINISH 159 elsif 2
START 160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY 10
PINISH 161 then 10
FINISH 162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then 9
PINISH 163 return(MIDPOINT }; 8
164 else 0 UNREACE
START FINISH 165 return(0); 8
166 end if; 0 UNREACE
167 else 0 UNREACE
START 168 -~ ITEM > LLSYMBOLTABLE(NIDPOINT).KEY 1
169 LOW := NMIDPOINT + 1, 1
STARY 170 end 1if, 3
PINISH 171 end loop; 2
START FINISH 172 return(0); -— item is not in table 8
173 end LLFIND, 0 UNREACE
START 174 1
PINISH 175 1
START 176 3

procedure LLPRTSTRING(STR: LLSTRINGS) is

Figure 15-10. LDRA Testbed LCSAJ Analysis for LL_COMPILE

15-28

(

PART il

* 1LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH JUMP TO

LDRA Testbed

UNREACHABLE ssves

IN PROGRAM = 327

LINE LINE LINE
i 145 174
146 155 172
146 157 160
146 159 170
166 167 170
168 171 158
170 171 155
172 172 327
172 172 332
172 173 335
172 172 341
172 172 344
172 172 350
172 172 790
172 172 793
174 175 189
176 181 187
176 184 187
176 186 81
861 861 (11]
862 867 413
868 868 ~1
NUMBER OF LCSAJS
BRANCH PROM 164 TO 166
BRANCH FRON 167 TO 170
BRANCH PROM 270 TO 666
BRANCH FROM 270 TO 771
BRANCE FRON 2370 TO 851
BRANCE PROM 753 TO 756
BRANCH FROM 758 TO 775

IS UNREACHABLE
IS UNREACHABLE
IS UNREACHABLE
IS UNREACEABLE
I8 UNREACHABLE
I8 UNREACHABLE
18 UNREACHABLE

(1 UNREACHABLE)

Figure 15-10 continued: LDRA Testbed LCSAJ Analysis for LL_COMPILE

15-29

“

LDRA Testbed PART Il

ATTRIBUTE CODES
L LOCAL VARIABLE
G GLOBAL VARIABLE
P PARAMETER
16 LOCAL VARIABLE USED AS GLOBAL IN OTHER PROCEDURE

PROCEDURE LLFIND
START LINE 146 END LINE 174

CALLS NO PROCEDURES

IS CALLED BY THE PFOLLOWING PROCEDURES

NAME CALLED ON LINE
MAKE_TOKEN 328 330 333 339 342 348
PARSE 788 791

VARIABLE USAGE INFORMATION
NAME ATTRIB OCCURS ON LINE

' GLOBAL’ LLTABLESILE

G 154
HIGH L 150 15¢ 153 156 158
ITEM P 146 157 160
LLSYMBOLTABLE
G 157 160 162
Low L 150 153 155 156 169
MIDPOINT L 150 156 157 158 160 162 163 169
WHICH P 146 162

THE FOLLOWING VARIABLES HAVE ONLY ONE OCCURRENCE
NAME OCCURS ON LINE

LLCURTOK . TABLEINDEX 405
’GLOBAL’LLSTRINGS 308
’ GLOBAL' IN_FPILE s3s

I 529
/GLOBAL’ STANDARD_ERROR 661
LLCURTOK . TABLEINDEX 625
LLCURTOK.PRINTVALUE 724

Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND

15-30

PART I LDRA Testbed

DYNAMIC COVERAGE ANALYSIS REPORT

PRODUCED BY LDRA SOFTWARE TESTBED: DYNAMIC COVERAGE ANALYSER

DYNAMIC COVERAGE ANALYSIS REPORT OPTIONS SELECTED

PROCEDURE BY PROCEDURE PRINTOUT FOR ALL PROCEDURES

TRACING OPTIONS SELECTED

NO TRACE REQUESTED

PROPILES INCLUDED FOR THE POLLOWING TEST DATA SETS

1) testl.lex
2) sample.lex

1..l."‘..*.""."l..'...l.I.I.."i!'..'."..-".'.
*ssar THE POLLOWING PROCEDURE(S) WERE ENTERED sewes
#weas UNEXPECTEDLY. USUAL CAUSE IS- raxan
annew A) MISSING LEVEL (211
wesas B) ANALYSIS OF NODULE WITH NO MASTER sewsw
*sess THIS MAY CAUSE LOCAL TRACE AND STATEMENTswwse
wesaw EXECUTION PROFILE TO BE INCORRECT suaee
R ERN R RN AN AN AN AR R RN A NN N RO NN T I A NNV ACF AR TR S
CALL PROCEDURE (MISSING LEVEL) LLFIND
RETURNING FROM LLFIND

CALL PROCEDURE (MISSING LEVEL) LLPIND
RETURNING FROM LLPIND

AMISSING LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISR JUMPTO

LINE LINE LINE COUNT
160 163 398 130
160 163 399 90
165 165 3% b]

IMISSING BRANCHES

FROM T0
LINE LINE COUNT
163 398 130
163 399 90
165 398 2

Figure 15-12. LDRA Testbed Dynamic Analysis for LL_COMPILE

15-31

LDRA Testbed PART I

1R R SN RN R R RN AR SR A RN R R AR A RAS R IR RAR RN RE NN
RN RN AT IR AR R RN R AT E RN AN NN R AN AN TR RN EN AN ARARARN RN

4 3 R
e DYNANIC ANALYSIS FOR "
o PROCEDURE LLPIND »
e L X3

VAR RN R AN RN N AN RN RSN A AN R AR R RN RN R RN AR RN EAARERS
XA SRR R A RE R RN ER NN EA NN AR SRR RSN E R AN LSRN NI RANEERNRRNS

1STATENENT EXECUTION PROFILE

LINE
NUMBER STATEMENT
146 function LLPFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return
147 INTEGER is
148 ~~ PFind item in symbol table -- return irndex or 0 if not found.
149 ~— Assumes symbol table ig sorted in ascending order.
150 LOW, MIDPOINT, HIGH: INTEGER;
151
152 begin

153 LOW := 1;
154 HIGH := LLTABLESIZE + 1,
155 while LOW /= HIGH loop

156 MIDPOINT := (BIGH + LOW) / 2:

157 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then
158 HIGH 1= MIDPOINT,

159 elsif

160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY

161 then
162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then
163 return(NIDPOINT);

164 else

165 return(0);

166 end 1f;

167 alse

168 —~ ITEM > LLSYMBOLTABLE(MIDPOINT).KEY
169 LOW := NIDPOINT + 1,

170 end if;

imn end loop;
172 return{ 0); -— item is not in table
173 end LLFIND;

' OLD NEW
SUMMARY COUNT COUNT TOTAL
NUMBER OF EXRECUTABDLE LINES 17 17 17
NUMBER EXECUTED 16 17 17
NUMBER NOT EXECUTED 1 0 0
TEST EPFECTIVENESS RATIO 1 0.94 1.00 1.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-32

PART Il LDRA Testbed

1BRANCH EXECUTION PROPILE

PROM TO OLD NEW
LINE LINE COUNT COUNT TOTAL
155 156 8ge 1422 2320
155 172 63 B8 151
157 158 429 646 1075
157 160 469 776 1245
159 170 429 646 1075
161 162 135 224 359
161 168 334 . 552 886
162 163 135 222 as?
162 165 0 wwww 2 2
163 327 0 sawsw 0D zeem 0 sees
163 332 0 anew 0D mxew 0 swes
163 335 QO ssax 0 saxa 0 muwx
163 341 0 mane 0 sewn 0 wexs
163 344 0 weew 0 wene 0 *awe
163 350 0 raew 0 axew 0 wees
163 790 1 1 2
163 793 1 1 2
165 327 0 eeew 0 axen 0 weaww
165 332 0 weaw 0 2xwn 0 *ees
165 335 0 wmuss 0 suwa 0 waww
165 341 0 eexs 0 seex 0 weaws
165 kXY g wess 0 sewe 0 wsew
165 350 0 weew 0 senx 0 wamw
165 790 g wwnw 0 eexee 0 same
165 793 0 vene 0 wens 0 eanw
17 158 763 1196 1961
172 3a7 0 wene 0 tmen 0 ress
172 332 0 sxaw 0 sens 0 exaw
172 3a8 0 rums 0 zaee 0 rase
172 341 0 wene 0 wxww 0 wense
172 344 0 rune 0 sess 0 waws
172 iso D wwes 0 snmw 0 manew
172 790 0 swaw 0 wawe 0 sEamw
172 793 0 ®ens 0 sees 0 wewns
OLD NEW
SUMMARY COUNT COUNT TOTAL
NUMBER OF BRANCHES s 34 34
NUMBER EXECUTED 11 12 12
NUMBER NOT EXECUTED a3 22 22
TEST EFFECTIVENESS RATIO 2 0.32 0.35 0.35

Figure 15-12 continued: LDRA Testbed Dynamic Analysls for LL_COMPILE

15-33

LDRA Testbed

PART Ii

THE FOLLOWING BRANCHES HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

(163, 327) (163, 332) (163, 335) (163, 341l) (163, 344) (163, 1350)
(165, 332) (165, 335) (165, 341) (165, 344) (165, 350) (165, 790)
(172, 327) (172, 332) (172, 335) (172, 341) (172, 344) (172, 350)
{ 172, 793)
MISSING BRANCHES
FROM TO
LINE LINE COUNT
163 398 130
163 399 90
165 398 2
172 398 ag
1LINEAR CODE SEQUENCE AND JUMP EXECUTION PROFILE
START FINISH JUMPTO OLD NEW
LINE LINE LINE COUNT COUNT TOTAL
146 155 172 0 Taan 0 smws 0 waew
155 155 172 63 1] 151
146 157 160 22 as 60
155 157 160 447 738 1185
146 159 170 176 34 450
155 159 170 253 372 625
160 161 168 33 552 886
160 162 165 0 ewas 2 2
160 163 27 0 twes 0 swee 0 wxex
160 163 332 0 swrs 0 meas 0 weee
160 163 335 0 wawe 0 swee 0 wawe
160 163 341 0 wanw 0 mams 0 wees
160 163 344 0 *nse 0 sews 0 tewe
160 163 350 0 wneae 0 eeee 0 »uws
160 163 790 1 1 2
160 163 793 1 1 2
165 165 327 0 waew 0 asme 0 mean
165 165 332 0 Teuw 0 wens 0 swee
165 165 335 0 ®aaw 0 esene 0 wnse
165 165 341 0 weaw 0 waew 0 wnaw
165 165 344 0 *ene 0 snan 0 sxuw
165 165 350 0 wnee 0 sees 0 wese
165 165 790 0 sxws 0 sane 0 meee
165 165 793 0 eeee 0 weese 0 =use

(165,
{ 165,
¢ 172,

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-34

LS BN R)

PARTII LDRA Testbed

168 171 155 334 552 886
170 171 155 429 646 1075
172 172 327 0 wuns 0 wamw 0 meww
172 172 332 0 wnaw 0 whsx 0 swes
172 172 3as 0 wonn 0 wxsyw 0 s=wxx
172 172 341 0 wwaw 0 *waw 0 ewesw
172 172 344 0 wmene 0 wamw 0 ewww
172 172 350 0 senw 0 wxew 0 wewx
172 172 790 Q wwan 0 saxe 0 wewx
172 172 793 0 mess 0 sase 0 swes
OoLD NEW
SUMMARY COUNT . COUNT TOTAL
NUMBER OF LCSAJS 34 34 34
NUMBER EXECUTED 10 11 11
NUMBER NOT EXECUTED 24 23 23
TEST EFFECTIVENESS RATIO 3 0.29 0.32 0.32

THE FOLLOWING LCSAJS HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

146, 155, 172)
160, 163, 344)
165, 165, 341
172, 172, 327)
172, 172, 350)

160, 163, 327)
160, 163, 350)
165, 165, 344)
172, 172, 332)
172, 172, 790)

160, 163, 332) (160, 163, 335) (160, 163,
165, 165, 327) (165, 165, 332) (165, 165,
165, 165, 350) (165, 165, 790) (165, 165,
172, 173, 335) (173, 172, 341) (172, 172,
172, 172, 793)

MISSING LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH JUMPTO

LINE LINE LINE COUNT
160 163 398 130
160 163 399 90
165 165 398 3
172 172 398 88

1STATEMENT EXECUTION EISTORY SUMMARY

EXECUTABLE NUMBER EXECUTED TER 1

STATEMENTS . OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 27 27 27 27 1.00 1.00 1.00
LLPIND 17 16 17 17 0.84 1.00 1.00
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 10 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 10 0] 0 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-35

LDRA Testbed PART Il
LLSKIPNODE 12 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 13 0 0] 0.00 0.00 0.00
LLFATAL 8 0 0 0 0.00 0.00 0.00
GET_CHARACTER 14 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 67 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 8 8 8 8 1.00 1.00 1.00
LLMAIN 14 14 14 14 1.00 1.00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRANM 38 38 38 38 1.00 1.00 1.00
PARSE 73 56 56 56 0.77 0.77 0.77
BUILDRIGHT 62 54 .54 54 0.87 0.87 0.87
BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 1 1.00 1.00 1.00
EXPAND 43 38 s 38 0.88 0.88 0.88
TESTSYNCH 14 0 0 0 0.00 0.00 0.00
MATCH 15 13 13 13 0.87 0.87 0.87
SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00
TOTAL 540 283 284 284 0.52 0.53 0.53
1SUB-CONDITIONS SUMMARY
NUMBER EXECUTED TER CON

SUB-CONDITIONS OoLD New TOTAL OLD NEW TOTAL
LL_COMPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPIND PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB~CONDITIONS
LLPRTTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPNODE PROCEDURE CONTAINS NO SUB~CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB-CONDITIONS
GET_CHARACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
MAKE_TOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
EXPAND 8 8 8 8 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS
MATCH 4 4 4 4 1.00 1.00 1.00
SYNCHRONIZE 12 0 0 0 0.00 0.00 0.00
TOTAL 24 12 12 12 0.50 0.50 0.50

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-36

1BRANCH EXECUTION HISTORY SUMMARY

PART Il

LDRA Testbed

NUMBER EXECUTED TER 2
BRANCHES OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLFIND 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 Q 0 0.00 0.00 0.00
LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 2 0 0 0 0.00 0.00 0.00
LLSKIPNODE 3 0 .0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL P 0 0 0 0.00 0.00 0.00
GET_CRARACTER 7 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 3l 0 0 0 0.00 0.00 Q.00
LLNEXTTOKEN 5 4 4 4 0.80 0.80 0.80
LLMAIN 5 5 s 5 1.00 1.00 1.00
CVT_STRING 7 0 0 0 0.00 0.00 ¢.00
READGRAM 20 20 20 20 1.00 1.00 1.00
PARSE 39 a5 as a5 0.64 0.64 0.64
BUILDRIGHT 26 22 22 22 0.85 0.85 0.85
BUILDSELECT 4 4 4 4 1.00 1.00 1.00
ERASE 7 7 7 7 1.00 1.00 1.00
EXPAND 18 13 15 15 0.83 0.83 0.83
TESTSYNCH 11 0 0 0 0.00 0.00 0.00
MATCH 1 7 7 7 0.64 0.64 0.64
SYNCHRONIZE a6 0 0 0 0.00 0.00 .00
TOZAL 292 133 134 134 0.46 0.46 0.46
1LCSAJ EXECUTION HISTORY SUMMARY .
NUMBER EXECUTED TER 3
LCSAJS OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLPIND 34 10 11 11 0.29 0.32 0.32
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 13 0 0 (1] 0.00 0.00 0.00
LLSKIPTOKEN 2 0] o 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-37

LDRA Testbed PART Il
LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00
GET_CHARACTER 6 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 33 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 7 3 3 3 0.43 0.43 0.43
LLMAIN 5 S 5 5 1.00 1.00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRAM 25 . 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68
BUILDRIGHT 32 24 24 24 0.75 0.75 0.75
BUILDSELECT 5 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TESTSYNCH 12 0 0 0 0.00 0.00 0.00
MATCH 12 6 6 6 0.50 0.50 0.50
SYNCHRONIZE as 0 0 0 0.00 0.00 0.00
TOTAL 326 130 131 13 0.40 0.40 0.40
1SUMMARY OF EFFECT OF CURRENT TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAME TER 1 TER 2 TER 3
LL_COMPILE 1.00 1.00 1.00
LLFIND Increased Increased Increased
LLPRTSTRING No Change No Change No Change
LLPRTTOKEN No Change No Change No Change
LLSKIPTOKEN No Change No Change No Change
LLSKIPNODE No Change No Change No Change
LLSKIPBOTH No Change No Change No Change
LLPATAL No Change No Change No Change
GET_CHARACTER No Change No Change No Change
MAKE_TOKEN No Change No Change No Change
LLNEXTTOKEN 1.00 No Change No Change
LLMAIN 1.00 1.00 1.00
CVT_STRING No Change No Change No Change
READGRAM 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDRIGHT No Change No Change No Change
BUILDSELECT 1.00 1.00 No Change
ERASE 1.00 1.00 No Change
EXPAND No Change No Change No Change
TESTSYNCH No Change No Change No Change
NATCH No Change No Change No Change
SYNCHRONILE No Change No Change No Change

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-38

PART lI

LDRA Testbed

—————
Results produced on: o date available Using: ADA Testbed Version 4.8.01
Print date: Mog Oct 12 12:44:02 1992 © LDRA. 1992

System View @

Statapent Coverage

Figure 15-13. LDRA Testbed System View Statement Coverage

15-39

LDRA Testbed PART HI

Testhed Graphics Output

Histogram Dump
Resuits produced on: o date available Using: ADA Testhed Version 4.8.01
Print date: Mon Oct 12 12:44:13 1992 ©LDRA. 192

System Viewv : Branch Coverage

Figure 15-14. LORA Testbed System View Branch Coverage

15-40

_r

PART It

LDRA Testbed

Histogram Dump
Results produced on: 0 date available Using: ADA Testbed Version 4.8.01
Print date: Mon Oct 12 12:44:21 1992 ©LDRA.1992

System Viev : Test Path (LCSAJ) Coverage

Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage

15-41

LDRA Testbed PART I
Histogram Dump
Resuits produced on: on Oct 12 12:35:59 1992 Using: ADA Testbed Verxion 4.8.01
Print date: Moa Oct 12 12:46:18 1992 ©LDRA. 1992

Coverage Mstrios

Toet Puth (LCEAT) Coversge

Figure 15-16. LDRA Testbed Coverage Achieved Comparison

15-42

[PART Il LDRA Testbed

R e o

Program name: new_]1_compile
Results produced on: Thu Apr 30 13:47:41 1992 Using: Ada Testbed Version 4.8
Print date: Tue May 12 09:50:22 1992 ©LDRA.1992

Active flowgraph of procedure : READGRAM

O,
. © 0
o
Q.
)

Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM

15-43

LDRA Testbed PART I

N SRR B AR R AU RSN ERN AR RSN NE NS NR SR ARSI R AN AEN R ERERRNEER
R RAR NN AN RN SRR A AR SN TR A R TR R AN RN AN E RN AN AR RRRTRD

" L 1]
ek DATA SET ANALYSIS FOR bk
e L
" PROCEDURE LLFIND =%
e (1]

R AR NN AN AR T R A AR RN AR PR AN RN A N AN USSR R RO RONENYONY
AR ENERN R RN R AR AR TN RN R S SRR AN T AR ENOR NS AR RRNGEORS

1TEST DATA SET ANALYSIS

LINE DATA SETS USED

146 testl.lex
sample.lex

162 testl.lex

sampls.lex
163 testl.lex

sample.lex
164 LT

165 sample.lex

166 L 111
167 wers
168 testl.lex
sample.lex
169 testl.lex *
sample.lex
170 testl.lex
sanple. lex
171 testl.lex
sample.lex
172 testl.lex
sample.lex
173 sens

Figure 15-18. LDRA Testbed Data Set Analysis for LLFIND

15-44

PART Il LDRA Testbed

1PROPILE ANALYSIS

LIST OF DATA SETS

1) testl.lex
2) sample.lex

ANALYSIS OF EACH DATA SET IN TURN

DATA SET 1 CONTRIBUTES NOTHING. SIZE = 44900
DATA SET 3 IS NECESSARY SIZE = 72092
DATASET RECOMMENDED FOR REMOVAL IS5 1

Figure 15-19. LDRA Testbed Profile Analysis

15-45

PART Il Logiscope

16. Logiscope

Logiscope employs the RADC quality metrics model to provide analysis of a set of
user-tailorable quality metrics at both the unit and integration levels. It provides coverage
analysis of statement blocks, branches, and LCSAJs at the unit level, and procedure-to-pro-
cedure path coverage analysis at the integration level. Additional capabilities include the
generation of control and call graphs, structure analysis, and pseudo-code generation to
support re-engineering.

Logiscope is one element of a comprehensive suite of CASE tools. AGE/ASA is a
CASE tool supporting functional specification activities. Based on IDEFO and finite state
machine specification methods, it supports simulation and various static analyses including
complexity analysis. It also provides test scenario generation for automatic production of
functional test suites which can be fed into the simulator or used during code acceptance
testing to ensure compliance with requirements. Scenario coverage can be measured during
simulation. Support for design is available through AGE/GEODE. This tool is based on the
Consulting Committee on International Telegraph and Telephone (CCITT) standardized
language Specification and Description Language (SDL) and provides for design and sim-
ulation of real-time software with automatic code and application generation. AGE/GE-
ODE also provides test process generation to allow independently testing the coherence of
a process with respect to the rest of the design prior to system integration. A new tool,
VEDA, supports simulation and validation of protocols specified in the International Orga-
nization for Standardization (ISO) standard language Estelle. Finally, DocBuilder is used
to produce software documentation that can be configured to such standards as DoD-STD-
2167A. It is based on the Standard Generalized Markup Language (SGML) ISO Standard
8879.

16.1 Tool Overview

Logiscope was developed by Verilog, a European company formed in 1984. It has been
available since 1985 and there are over 5,000 users worldwide. Logiscope is marketed in
the U.S. by Verilog, Inc., the U.S. subsidiary. This company also provides consulting and
training services, and hot-line support for tool users.

Logiscope is available for over eighty languages and dialects, including Ada, C, C++,
and Fortran. It is supported on a variety of workstations and mainframes under both Unix

16-1

Logiscope PART Il

and VMS, with graphic capabilities available through a number of windowing systems. As
with all its tools, Verilog has focused on compatibility of Logiscope with international stan-
dards such as the Portable Common Tool Environment (PCTE), SDL, etc. Logiscope can
be integrated with DecFuse, HP’s SoftBench, and Software Back Plane. It supports host/
target testing via use of a serial port between the host and target machines.

The evaluation was performed on Logiscope/Ada version 1.6.3. running on a Sun 4
workstation under UNIX and OpenWindows. At the time of evaluation, prices for Logis-
cope started at $14,000.

Logiscope consists of several parts:

« Analyzer. Processes source code to provide the data needed for the Results Editor.

« Results Editor. Takes the results file produced by the Analyzer and, potentially, the
trace file produced by an instrumented program to generate various reports.

+ Formatter. Compacts the execution trace produced by an instrumented program.

« Static Archiver. Gathers various analysis results and manages results obtained for dif-
ferent versions of the software.

» Dynamic Archiver. Accumulates resulits for a set of test runs and enables multiple test
suite management.

While the Analyzer is unique to a particular programming language, the remaining tools
are language independent. All tools operate in both interactive and batch mode.

The Analyzer operates in either static or dynamic mode, although application of Logi-
scope begins with static analysis of the software under test. The software should have pre-
viously been compiled and, where several compilation units are employed, these must be
submitted in the compilation order (this restriction applies to Ada code only). In static
mode, the Analyzer calculates the appropriate set of basic counts that will be used to as-
sesses the quality of the software under examination. In dynamic mode, it instruments
source code for instruction block, decision-to-decision path, LCSAJ coverage, or proce-
dure-to-procedure coverage. Files are instrumented individually and, potentially, for differ-
ent types of coverage measurement. Dynamic analysis also provides path and condition
identification to aid test data generation. After instrumentation, the user compiles, links,
and then executes instrumented source code as usual.

In general, the Analyzer can analyze files singly or as a group. It generates a Results
File that the Results Editor uses to generate a variety of reports. There is a facility for com-
bining separate Results Files together to form a single file for a subsystem, or system. It can
search for such items as code based on keywords, or code that falls within certain values
for a given metric or criteria.

16-2

-

PART I , Logiscope

The Results Editor also operates in static and dynamic modes, presenting results at dif-
ferent levels: details for each application component, a synthesis of component results for
the entire application, and global application architecture information.

Quality analysis is the primary static analysis function and Logiscope employs the
RADC quality metrics model to define quality measurement at three levels of abstraction.
At the lowest level of the model there are thirty five predefined primitive metrics. The user
can define upper and lower bounds for these metrics to allow Logiscope to flag out-of-
bounds values. (Verilog provides default values for these bounds that are based on their ex-
perience over time.) The user can specify algorithms to weight and combine the primitive
metrics into up to fifteen composite metrics. Then higher-level quality criteria allow clas-
sifying components based on their computed quality values. These criteria can also be used
to get an overall quality value for a module and report on final acceptance or rejection based
on this value.

Logiscope distinguishes between unit-level metrics and architectural metrics. In the
first case, McCabe’s control-oriented measures are calculated, as well as Halstead’s textu-
ally-oriented Software Science measures. At the architectural level, Logiscope uses Mo-
hanty’s metrics to calculate accessibility, testability, hierarchy complexity, structural
complexity, system testability, call graph entropy, and the number of direct calls.

Quality results are displayed using the Results Editor in static mode. In addition to the
Results File produced by the Analyzer, the editor requires a Reference File that contains the
definitions of the metrics being used. (A different Reference File can be maintained for
each project, allowing customization across development efforts.) For quality reporting at
the component level, the user can request Kiviat diagrams to show achieved metrics values
with respect to the defined limit values. These diagrams are used to display up to 30 user-
selected metrics, graphically showing those metrics that fall out-of-bounds. Metrics can be
displayed by component, or as a statistical average over a group of components. Kiviat di-
agrams can also be segmented into quadrants to provide an additional layer of abstraction.
Criteria graphs are available to display information relative to all associations between met-
rics and criteria, while showing the situation of metrics with respect to limit values. These
graphs also specify the category to which the component belongs.

At the global level, histograms of metrics distributions and criteria distributions are
available. Additionally, when there is a large number of components, the user can request
a graphical distribution for a particular interval or a distribution of components as a func-
tion of the limit values defined in the quality model.

16-3

Logiscope PART Il

Finally, a Quality Report uses the components’ classification based on the quality cri-
teria to present a summary in the form of the percentage of coraponents within the set of
limit values. This report assesses whether quality recommendations for a given criteria
have been met, or computes a statistical average over a group of components.

Also in static mode, the Results Editor generates control graphs to provide insight into
component structure and behavior, and call graphs to describe the calling relationships of
analyzed components. Control graphs can be annotated with either source or pseudocode
line numbers. Logiscope supports control graph exploration with a zoom capability and the
display of a reduced or structured form of a control graph. The reduced form can be used
to verify that a program meets the requirements of structured programming and identify el-
ements that do not conform. The principle of control graph reduction consists of represent-
ing as a single node the control structures that have only one input and one output. The most
deeply nested structures are reduced at each successive reduction stage, and the user can
terminate this process when desired. Altematively, the structured view displays the under-
lying structures expressed in combinations of if-then-else statements and branch statements
to reveal the hidden structuring of the processing. Measurements of a set of intrinsic char-
acteristics are available for initial, reduced, and structured control graphs. This allows com-
paring the set of alternative, equivalent views of a complex control graph and can help a
user to determine how to improve the program structure.

Exploration of call graphs is also provided to support the identification of critical com-
ponents at the architectural level, and of design rules that have been violated. This is
achieved by display of partial views and manipulation of call graphs, and quality evalua-
tion. A call graph can be displayed from any root, and the display limited to a view of the
root’s descendants, ascendants, or both. Components can be grouped to clarify, for exam-
ple, which components can call that set. A call graph can be limited to display of the Logi-
scope analyzed components alone.

Before the Results Editor can be used in dynamic mode for coverage reporting, the trace
file produced by the instrumented program must be formatted. Subsequently, the editor can
report on the achieved coverage at both component and global levels. At unit level, the user
can request detailed reports on instruction block, decision-to-decision path, and LCSAJ
coverage. For each type of coverage this includes a listing identifying each instance of the
instruction block, decision-to-decision path, or LCSAJ unit, supported by the conditions re-
quired to execute that instance as appropriate, and whether or not it was executed. A path
list also indicates program paths that have not been executed. Unit coverage results can be

16-4

-

PART il Logiscope

annotated on dynamic control graphs to provide easy assessment of the completeness of
unit testing. Histograms of the distribution of components as a function of coverage rate are
available for rapid assessment of coverage progression throughout testing. These histo-
grams are accompanied by a distribution list that shows the coverage achieved for each
component. This distribution list shows the number of times each test case exercised each
coverage instance and can be used to determine how well particular test cases support or

duplicate each other.

The Dynamic Archiver is used to group the results obtained for a series of tests to allow
reporting on cumulative test coverage. Here formatted trace files are grouped into named
test suites that are stored in archive files. The Results Editor can then be run on an archive
file to generate, for example, distribution histograms for the accumulated instruction block,
decision-to-decision path, and LCSAJ coverage for all components.

At the global level, the editor reports on procedure-to-procedure path coverage. Here
coverage results can be annotated on call graphs to provide quick insight into the complete-
ness of integration testing. An accompanying textual report details the calling and called
relationships for each procedure-to-procedure path and whether that path was executed. An
additional report, the coverage table, identifies the particular paths invoked by each test
case.

16.2 Observations

Ease of use. The Results Editor provides on-line help with a list of available commands
and command descriptions. Coinponents can be grouped into a workspace to facilitate op-
erating on a set of components as a whole. A broad selection of graphical output formats is
available, including histograms, tables, and pie charts.

Logiscope provides the user with considerable flexibility in defining the quality char-
acteristics that should be assessed and reported. It comes with a series of default quality
models, one for each of five different programming language. These can be used as is, the
user can tailor them to his needs, or develop his own quality model from scratch.

Documentation and user support. The documentation is extensive and easy to follow.
Verilog provided excellent user support.

Instrumentation overhead. Full instrumentation of the Ada Lexical Analyzer Gener-
ator (all components except 1l_support) gave a size increase of just over 50%.

16-5

Logiscope PART Il

Ada restrictions. Pragmas are not processed by the Analyzer. It is not possible to mea-
sure the coverage of a terminate alternative in a selective wait.

Problems encountered. The Analyzer reported an error when analyzing one compo-
nent (lI_support; of the Ada Lexical Analyzer Generator and this prevented inswumenting
this component. Initially, some problems were encountered with reporting on LCSAJ cov-

erage.

16.3 Planned Additions

Version 3.2 of Logiscope with a Common OSF/MOTIF graphical user interface was re-
leased in fall 1992. This new version is menu driven and supports navigation between
source code (or pseudocode) and graphs. Multiple, integrated windows are simultaneously
available to provide a user with multiple perspectives of a single software component. In
this new version, Logiscope is integrated with DocBuilder to provide automatic documen-
tation of new or existing code. Meanwhile, Verilog is working to integrate Logiscope with
various configuration management tools.

A companion tooi which focuses on data flow analysis rather than control flow analysis
is under development.

16.4 Sample Outputs

Figures 16-1 through 16-28 provide sample outputs from Logiscope.

16-6

Logiscope

PART Ul

aNi477 uoniound jo ydesn jonuoy adoosiBon L-91 ainbiy

WEOALINI : uIN3oX :ITLLETT SONTULSTTL: ANIJTT/ ATIAR0D T1
:jueucdwos jo Yydexb joajuod

TA SUOTNISA
¥ay :ebenbuwy oIw 11% :uojivojrddy
§ = (B)A

~

- N s

16-7

Logiscope PART I

Begin
2 ADA_statement(s);
While LOW /= HIGH Do
1 ADA_statement(s);
If ITEM < LLSYMBOLTABLE(MIDPOINT).KEY Then
1 ADA_statement(s);
Elsif pot (ITEM < LLSYMBOLTABLE(MIDPOINT).KEY) and (ITEM =
LLSYMBOLTABLE(NIDPOINT) .KEY) Then
If LLSYMBOLTABLE(MIDPOINT).XIND = WHICH Then
Exit of Subprogram;
Else
Exit of Subprogram;.
end If;
Else
1 ADA_statement(s);
End I1f;
End of while;
End;

Text of component:
LL_COMPILE/LLFIND:LLSTRINGS : LLSTYLE: return: INTEGER

Application: all_axc

Version: vl
Language: ADA
rile : 11_compile.a

Figure 16-2. Logiscope Textual Representation of Control Graph of Function LLFIND

16-8

PART I Logiscope

Basic counts of component :
LL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:xeturn: INTEGER

Number of comments
Number of jump statements

Number of statements 11 !
|
Number of different operators | 13
l
l

|
Number of labels | 0
Total number of operators | 29
|
I

Total number of operands 28 | Number of different operands 11

Total number of calls 0 Number of different calls 0

Operators | Nbr .| Operators | Nbr |
() exp | 4| = | 2 |
() tab | 3 | ELSE | 2|
+ | 3 | ELSIF THEN } 1|
/ | 1| IF THEN .. END IF] 2 |
/=] 1 | RETURN i 3|
- | S | WHILE LOOP .. END LOOP | 1
< | 1| ! |
Operands | Nbr | Operands | Nbxr |
0 | 2 | LLSYMBOLTABLE(.).KIND | 1 |
1 ! 3 | LLTABLESIZE l 1
2 | 1| oW | 4|
HIGH | 4 | MIDPOINT | 7 |
ITEM | 2 | WHICH] 1|
LLSYMBOLTABLE(.) .KEY | 2 | | |

Figure 16-3. Logiscope Basic Counts for Function LLFIND

16-9

Logiscope PART I

21 with LL_DECLARATIONS, INTEGER_TEXT_ IO, TEXT_XO;
22
23 procedure LL_COMPILE is

161 function LLFIND (ITEM : LLSTRINGS; WHICH : LLSTYLE) return INTEGER is

162 —— Find item in symbol table —- return index or 0 if not found.

163 -~ Assumes symbol table is sorted in ascending order.

164

165 LOW, MIDPOINT, HIGH : INTEGER;

166

167 begin (* DDP 1 Begin =)
168

169 LOW := 1;

170 HIGH := LLTABLESIZE + 1;

i1 while LOW /= HIGH loop (* DDP 2 While »)
172 MIDPOINT := (HIGH + LOW) / 2;

173 if ITEM < LLSYNBOLTABLE (MIDPOINT).KEY then (* DDP 3 If *)
174 HIGH := MIDPOINT;

175 elgif ITEM = LLSYMBOLTABLE (MIDPOINT).KEY then (* DDP 4 Else -
176 (* DDP 5 Else-Ifw)
177 if LLSYMBOLTABLE (MIDPOINT).KIND = WHICH then (* DDP 6 If *
178 return (MIDPOINT);

179 else (* DDP 7 Else *)
180 return (0);

181 end if;

le2 elae (* DDP 8 Else *)
183 --= ITEM > LLSYMBOLTABLE(MIDPOINT) .KEY

184 LOW := MIDPOINT + 1;

185 end 1if;

186 end loop; (* DDP 9 End-WKhile r)
187 return (0);

188 -— item ie not in table

189

150 end LLFIND;

191

192 procedure LLPRTSTRING (STR : LLSTRINGS) is

193 -— print non-blank prefix of str in quotes

194

195 begin (* DDP 1 Begin)
196

197 PUT (STANDARD_ERROR, ’'"’);

198 for I in STR/range loop (* DDP 2 For_lLoop*)
199 exit when STR (I) = ' /; (* DDP 3 If »)
200 (* DDP 4 Else v)
201 PUT (STANDARD_ERROR, STR (I)):

202 end loop; (* DDP 5 End-For_Loop*
203 PUT (STANDARD_ERROR, ’'"’);

204

4 205 end LLPRTSTRING,

852 end LI_COMPILE;
853

Figure 16-4. Logiscope Commented Listing for Function LLFIND

16-10

@

Q

9 aNI4T7 uondun jo ydesn 1ejaly edoasiBon ‘-9 einbyd

0N

m. YEORINT : UINIBX : TILLETT: EONTULETT : ANIJTL/TIIAN0D T1

-l :queuodnoo 3o ydeib JuyATy

TA {UOTSIRA
Na¥ :ebenbueg 03w 1T :uojjeolrddy

- —

e SHINA N

g

[« B

6TIAT IVH
er"s 00°L 00°¢ mnui
8t'0 00°T 0T°0 ¥ WO
0 os T Idaoxa N
0 0 0 m&Bh.n.._
S (i1] 1 ¢ 6BIVA N
v S T STAT XN
S ot T 9A
Ls os¢ £ BIOT ¥4
1T 0s T SIRLS N
GOTVA 18 o1 oTuIEN
N i

16-11

PART i

Logiscope

QNI4T UoRduN4 Jo ydeio el edods)Bo ‘g-91 einbid

YADIINI : uxnI®X ATLLETT: SONINLETT: ANIJTL/TIIAR0D TI
:queucdmoo 3o tduib wire3§I1d

TA SUOTBISA
YQy :ebenbuwy oxw [Tv :uoyvoyrddy
wosad 4138 _
I s"aav AITTISIONT
FIAT XN
¥ wo0D
ud
DA
S oAV
OA
SINIS™H
o az14d00V ¢ ™NeO1D
IITIGNVISIL STAT VR ILIDITANIE @ W TTeeetet ZoTTEeReseees S
LNGHH0D OX © AINDS3d 4188
asSrdadonN ILITIGI09T

QEXLLEJOV ¢ ALIDITHOE
GALAGOON @ ILYITISVIREL

X800V ORI

16-12

Logiscope

PART Il

sjuauodwo) iy Jo ydess 18iap| edoas|Bon “2-9} 8inbid4

sjuaduodmo) 99
giusuodmoo 1Tv 3o ydexb utaty

TA IUOTEIOA

vay :ebenbuwy oxw [1e :uojjeotyddv
08°S 00°L 00°¢ 8 DAY
9T°0 00°T 0T°o ¥ ROO
00°0 0s 1 1a30x3 N
1o 0 0 sdRar N
99°6 08 T SHINd N
8Lt S L FIAT XN
10°9 ot T A
9£°L6 oSt [BIOT ua
00°9T oS T SINIS N

ROVHTAV 1" o1 OI¥IaN

16-13

YiBua weiboad 40} uolINQIAISIA SOHIOW l1e4eA0 @doas|Bon ‘g-91 einbi4

s3juauocdwo) 99 fuet wwiboxg IOFIION

QOTINATIISTP BOTIJON
B8TRAIOIUI T TA TUOTeINA
vay :ebunbueg oxw T :uoypjlwoyrddy

PART Il

HLOT 4d

188 T8 0TL €9°09S SY 00V L ore 60°0@ 0
1. |

N_

8S°T ot
ot
ot
ov
(]
09
oL
[+]

06

00t
(s) susuvodmo)

Logiscope

16-14

Logiscope

PART I

Axaidwiod 2118wi0j249 10} UCHNGIISIA SIMEW [1IB10AQ 0d0as1607 “6-91 ainbiy

sjuauodwo) 99 Iequnu ofJewoTaL) LOTIION
UOTINQTIISTD SOTIJON

sTwAIdlUT I TA IUOTSIGA

¥qay :abunbuwey oxwe (v :uopwofrddy

. V Y%

89 06°19 18°SS TL 6Y E9°EY ¥SLE 13 11 1 3 4 LT 6T BT €Y 60°L T
1 1 1

_ J 1 1 H

L 10 ¢

oT

ot

o€

oy

os

09

oL

a8

00T
(3) s3jueucden)

16-15

Logiscope PART il

| categori | Components | value |)]
es] | | |

1
b

LL_COMPILE/LL_TOKENS
L1_SUPPORT
3.03

'™

|
|
|
| LL_COMPILE
| LL_SUPPORT/LOOK_AHEAD:LLATTRIBUTE
| :return:LLATTRIBUTE

2 | LL_COMPILE/LLMAIN
|
|
|
|
|

NN

w N

LL_COMPILE/LL_TOKENS/ADVANCE/LOOK
_AHEAD .
L1_SUPPORT/ALTERNATE/MERGE_RANGES
: LLATTRIBUTE : LLATTRIBUTE: return:L
LATTRIBUTE

2 1LL_SUPPORT/COMPLETE_PATTERNS

2 LL_SUPPORT/EMIT_PATTERN_NAME:FILE
_TYPE: LLSTRINGS

2 | 11L_COMPILE/LLPRTTOKEN

2 LL_SUPPORT/CONCATENATE : LLATTRIBUT 4
E:LLATTRIBUTE:return: LLATTRIBUTE

w

-

W

2 | LL_SUPPORT/COMPLETE_PAT: LLATTRIBU | 30
TE
2 LL_COMPILE/LLMAIN/READGRAM/BUILDR 32
IGHT: INTEGER
2 LL_SUPPORT/COMPLETE_PAT/CONPLETE_ 39
ALT/RESTRICT : LLATTRIBUTE : SELECTIO
N_SET:return: LLATTRIBUTE

90.90
LlL_SUPPORT/COMPLETE_PAT/COMPLETE_
ALT/RESOLVE_AMBIGUITY: LLATTRIBUTE
Ll,_SUPPORT/EMIT_SCAN_PROC
LL_SUPPORT/EMIT_SCAN_PROC/EMIT_PA
TTERN_MATCH: LLATTRIBUTE : LLSTRINGS
: BOOLEAN : BOOLEAN : BOOLEAN
LL_CONPILE/LLTAKEACTION: INTEGER

56

84
85

85

w w

List of components per metrics category

Application: al)_arc

Version: vl
Language: ADA
Metric: Number of statements

e . s . S .

Components: 66

‘ Figure 16-10. Logiscope Components per Metrics Category for Number of Statements

16-16

Anngeise 10} uoINqLIsIQ BLRID J1eIeAQ odods)Bo “11-g1 einb)y

UOTAINGTIISTP VFISITID

ILITIGNISRL IUOYISITID

TA ‘UOTEINA
oxe 1@ :uorivoyrddy

0

~ ot
A
~ o€
- oy
~ oS
~ 09
oL
- o8

[~ 06

sLé

- 414} ¢
(s) sjusuvodmn)

@
a
(=]
]
0
Wv s3uaucdwod 99
-
sTvazdqUY £
y¥ay :ebunbuel
sayIobaze)
/ ZITEMEN O,
| 1
Tl
[+ o
<
Q.

16-17

PARTII

Logiscope

Ayaiiduns 10) uopnquIsia BHaIN) l1elaaQ 8doasiBo “Z1-91 ainb)4

sjusuodmo)

¥9

STUAIOUY §
Yqy :ebunbuet

UOTINQTIANTP VIINITID

ALIDIIANIS $UOTINITID

TA IUOTEIOA

oI TTe :uoy3ywoyTddy

satxobe3ye)
/ 100 oL / 1831701
1

P —————

$9°

/

T

OEASNI OL

/

s

oT
ot
413
oy
oS
09
oL

ﬁ o8

06

o 00T
(s) sjuevodmod

16-18

Logiscope

PART Il

uoday Ayjenp adoos)fo) ‘g1-91 ainbi4

sjusuodmo) »9

Ygy :ebunbue]

axoday Lagyend

TA iUOTRIBA

oav [Ie :uof3lworrddy

NIHNDOO 0L
1YddsNI ol
AIIYMEE OL
P—— [Y 4 naaguoa
st 0 1831 0L
s € 1DadsNI oL
s €L IRINOD0G OL
v L QRALITOOV
FONINIONRI XHOOZIND
o o ® ® o ® o

16-19

Logiscope PART I

{reference V3.1>

l
| Quality model definition
I

% 2 0 9% %

Quality Criteria Definition
MC

4 The aim of this table is to explain how the components
are classified for the TESTABILITY oriterion

¢
] TESTABILITY |
' I
¢ v6 |max_rvis| N_10 | associated diagnosis I
i |
$¢ OK | OK | OK | ((4t44#2)/10) * 100 = 100 ACCEPTED |
8 ox | ok | | ((4+4+0)/10) * 100 « 80 TO_STRUCTURE|
¢ ox | | Ok | ((440+2)/10) * 100 = 60 TO_CUT |
¢ ox | J] ((4+0+40)/10) * 100 = 40 .]
| ok | oK | ((0+4+2)/10) * 100 = 60 " |
] ox | | ((0+4+0)/10) * 100 = 40 " |
§ | | ok | ((0+0+2)/10) = 100 = 20 »]
! | | ((0+0+0)/10) * 100 = ©0 TO_REWRITE |
L
¢ For following languages :
4
/ADA
Component Level
¢ Text help definition
*AIDELECT® *CHAINE*
Rien = / ADA_statement(s)’
CONFIG Fise = ’'End Select’
Maxdec = 10
4 Users Metrics Definition
MD
Comments Frequency : COM R = N_COM/N_STMTS

Average size of statements : AVG_S = PR_LGTHE/N_STMTS

$ Editable metrics

SMEW*
N_STMTS I 1 50 MAX_LVLS b S
COM_R F 0.20 1.00 N_PATHS I 1 80
PR_LGTH I3 350 N_EXCEPT I
AVG_S F 3.00 7.00 N_JUMPS 10 0
vG 11 20

Figure 16-14. Logiscope Excerpt from Default Quality Mode!

16-20

50

Quality Criteria Definition

*MCw

TESTABILITY = VG + MAX_LVLS
ACCEPTED 100 100
TO_CUT 50 100
TO_REWRITE 0 50

40
10
0

PART lI

Logiscope

SIMPLICITY = 2#VG + 2*N_STMTS + AVG_S

LEGIBILITY = VG + PR_LGTH + MAX_LVLS + AVG_S SELF_DESCRIPTION = COM_R

ACCEPTED 75
T0_DOCUMENT 50
TO_INSPECT 0

Quality synthesis definition

100
75
50

BQ
ACCEPTED %0 100
TO_DOCUMENT 80 90
TO_INSPECT 50 60
TO_TEST 30 50
TO_REWRITE 0 30

ARCHITECTURE LEVEL

#

4 Users Metrics Definition

*AD%

20
15
0

Average Paths Number/Component :

4 Editable metrics
AEY

AVG_PA F 1.00
LEVELS) S |

KIER_CPX F 1,00
STRU_CPX P 0.50
ENTROPY F 1.00

2.00

5.00
3.00
3.00

Quality Criteria Definition

ACCEPTED 100 100 30
TO_DOCUMENT 80 100 25
TO_INSPECT 40 80 20
TO_TEST 20 40 10
TO_CUT 0o 20 0
ACCEPTED 100 100 10
TO_COMMENT 0 100 0

AVG_PA = CALL_PATHS/NODES

AC

MODULARITY = 3*HIER_CPX + 2*STRU_CPX + S*AVG_PA CLARITY = ENTROPY + 2*LEVELS
ACCEPTED 100 100 O ACCEPTED 100 100 ©
TO_DOCUMENT 80 100 O TO_DOCUMENT 60 100 O
NEED_LEVELS 50 80 0 TO_PACK 30 60 0
NEED_MODULAR 0o S0 o TO_CLARIFY 0o 30 0O

' L) L*4 ~ %4 L)

Figure 16-14 continued: Logiscope Excerpt from Default Quality Model

16-21

Logiscope

—— —— c—— —— i A

PART Il

1B | [{ [[

I 2 | 2 | 3 | & |
Test cases | | | | | Ccoverage
testl.lex | x | x | x | x | 100.00%
sanple.lex | x | x | x | x | 100.00%
Total | x | x | x | x | 100.00%

IB coverage of component:
LL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return: INTEGER

Application: all_are2
Version: Vi
Language: ADA

Test Suite: TEST1.LEX

Figure 16-15. Logiscope |1B Coverage of Function LLFIND

16-22

I
|
|

PART I Logiscope
DDP
1 2 3 4 5 6 7
Tast cases
| IDA Test | 64 | 174 | 174 50 | 61 | 46 | 13 |
| Total | 64 | 174 | 174 50 | 62 | 46 | 13 |
DDP
8 9 10 11 12 13 14
Test cases
| IDA_Test [4 | o | 79 95 | 144 | 30 | o |
| Total | 4 | o | 79 95 | 144 | 30 | o |
DDP
15
Test cases Coverage
| IDA_Test) 64 | 86.66% |
| Total [64 | 86.66% |

Version:
Language:
Test Suite:

DDP coverage of component:

Application: ida
V1

ADA
CURRENT_TEST_SUITE

LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER

Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT

16-23

Logiscope PART Il
DDP Line Type condition Executed
humber -
| 2 394 | Begin |] x |
2 397 | For_Loop I in x
THISRHS+1..THISRHS+PRODUC
TIONS (WHICHPROD) .CARDRHS
3 398	It	I <= LLRHSSIZE	x
4 402	case	CH = 71¢	x
5 407	case	CH = ‘a’ i X	
] 6 409	case	¢CH = ‘n’	x
7 4124	Case	CH = ‘g’] x]	
T 8 419 | case | CH = ’p’ | x |
l 9 421 I Else_Case CH <> ’'1*, ’'a’, ’'n’, ‘g’,
- 'p’
| 10 427 | It | END_OF_LINE (LLGRAM) | x |
| 11 429 | Else | not (END_OF_LINE(LLGRAM)) | x |
| 12 432 | It | END_OF_LINE (LLGRAM) | x !
| 13 434 | Else | not (END_OF_LINE(LLGRAM)) | x |
| 24 438 | Else | not (I <= LLRHSSIZE) | |
15 446 | End-For_Loop not (I in x
THISRHS+1..THISRHS+PRODUC
TIONS (WHICHPROD) .CARDRHS)
| DDP coverage { 86.66% |

DDP list of component:

LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER .

Application: ida’

Version:
Language:
Test Suite:

V1
ADA

CURRENT_TEST_SUITE

Figure 16-16 continued: Logiscope DDP Coverage of Component BUILDRIGHT

16-24

PARTII Logiscope
) LCSAT -
2 2 3 4 5 6 7
Test cases
| IDA_Test] 9 | o | 0 | 9 | 15 | 5 | 26 |
| Total i 9 | 0 | o | 9| 15 | 5] 26 |
LCSAT
8 9 10 22 12 13 14
Test cases
| IDA_Test | 0| o | ¢ | 13 | 46 | 61 | 38 |
| Total | o | 0 | 4| 13| 46 | 61 | 38 |
Lcsar
15 16 17 18 19 20 21
Test cases
| IDA_Test] 12| ol 79| o] 65 | 30 | 24s |
| Total | 12 | o | 79 | o | 65 | 30 | 144 |
LCSAT
22 23 24 25 26 27 28
Test cases
| IDA_Test | 30 | le4 | 51 | o | 2 | 3 | 26 |
| Total | 30 | les | 51 | o | 2 | 3| 26 |
LCSAT | -
29 30 n
Test cases Coverage
| IDA_rest | 48 | 14 | 0| 74.19% |
| Total | 48 | 16 | o | 74.19% |

LCSAJ coverage of component:
LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT:INTEGER

Application: ids
Version: vl
ADA

Language:
Test Suite: mm_rxsr_sum

Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-25

Logiscope PART Il
Line Label Type Condition
number)
Begin
395 2 Statement(s)
397 wWhile I in
THISRHS+1..THISRHS+PRODUCTIO
NS (WHICHPROD) .CARDRHS
399 If I <= LLRHSSIZE
399 2 Statement(s)
401 Case
403 4 Statement(s) CH = /17
408 1 Statement(s) CH = ’a’
410 4 Statement (s) CH = ‘n’
415 4 Statement(s) CH = g’
420 1 Statement (s) CH = 'p’
424 1 Statement(s) CH <> ’1’, 'a’, ’n’, ‘g’,
Ipl
425 Raise PARSING_ERROR
426 End of Case
428 Ir END_OF_LINE (LLGRAM)
428 1 Statement(s)
430 Else
430 1 Statement(s)
431 End IZ
433 Ir END_OF_LINE (LLGRAM)
433 1 Statement(s)
435 Else
435 1 Statement(s)
436 End If
437 1 Statement(s)
440 Else
441 1 Statement(s)
444 Raise PARSING_ERROR
445 End If
446 End of While
447 End
Type | LCSAJ numbers
Begin 12345678 e se ss se sw e es se ss o

2 Statement(s)
While

Ir

2 Statement (s)
Case

4 Statement (s)
1 Statement(s)

4 Statement(s)

12345678
12345¢6 ; 8

.23 4567¢8

.o 23 24 25

.o

.o 25

.23 4567 ..

.o 25

.23 4567 ..

oo 25

27
27
27
27

28
28
28
28

12

29
29
29
29

13
29

30
30
30
30
30

se se s e e

.o

e se s s e

Figure 16-17 continued: Logiscope LCSAJ Coverage ot Component BUILDRIGHT

16-26

PART I Logiscope

ve o0 28

Zlse . .« a . te se es 20 20 oo seo oo 18 ..

N .
[
‘.
N
LY
.

. se ee ae oo o

-
. e 48 80 ee co e® se se

1 Statement(s) . o .

4 Statement(s) e . . ve 22 il he v e ee ee e

1 Statement(s) . 20 v vo te se se ae 4o se ws
e e ae se sa 10 26 it th v ee o as :

1 Statement(s) e @ e e e . . se ee es 6o se se e ow we :

Raise PARSING_ERROR B 2T

£nd of Case L 7 10111223 21415 oL
ve ot e se ss ss ee se se se 30 ..

Ir . e se ee o0 1425 .. oL

1 Statement(s) e e e e s e . e 2o se oo 14 L. ol

Zlse . ee oo se oo o¢ A5 29
20 co v 41 ts ws es as e 2e se ws

1 Statement(s) .« o e e e e to se es oo e se oo 19
20 . 44 o6 o4 s ee o5 ss ae ws e

Znd If : . e es os oo 14 17 28 29

' 20 t4 44 oo se es se ee se aa se es

Iz . ee ss a0 se es e sa 17 28 29
20 44 4o 4o oo ce e ss sa 48 se ea

1 Statenment(s) e e e e . o o0 es se s e o0 17 .. 29

N
~
B

L) .o LR 3 - e e L) L) 17 L) 1’

e oo o9 ses oo e

End If « e v e
21 22 ..
1l Statement(s) . . s .

.o 21 22 ..

. ee oo 29 4o ss e 0o s e o

. ee se o9 we s e

Else 8

e e se se ss oo 16 4u os e

1 Statement(s) N P R

Raise PARSING_ERROR S I R

£ 17 S
o2 .

22 23
End of While
es o8 oo 22

hd 10.0-'-.ol.-na-..'cc.’.o-

. o 00 o8 eo e oe su 20 we s

® 8 ¢ o 8 & 8 6 8 s s v B & 6 e 8 s 4 B B e s 8 e s & s e s 0 8 8 N s s s s e s s o

]
H]
9

. s ®6 se ee ss we

e se oe oo 2‘ e se o2 ¢4 se ee o

. LCSAYT list of component:
LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT: INTEGER

Application: ida

Version: vi

Language: ADA

Test Suite: CURRENT TEST_SUITE

Figure 16-17 continued: Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-27

PART Ii

Logiscope

Yay :eabunbuwy

o o o o o L o o
weibois|H abeiano) gl adoasiBo 'g1-91 ainbid
sjuauodwo) e
weibol8Ty ebureaco g1
X1 TISIL OITNE ISdAL TA {UOYBIVA

goaw TTw :uofIwdfrddy

'

(y) ebexaaco d1
00T 06 08

oL

S8 EY

09

0S or

89sEd 9L T

ot
ot

11

oy

$9°0F

|

0s

00T
(3) s3jusuvodmo)

16-28

Logiscope

PART i

weisboisiH abrisno) daq 2doos|Bo “s1-91 @inbj4

sjusuodmo) €

XT1°TL6AL :93IFNE IWIL
Nay tebwnbuey

wexbolsiy abuwiaaoco aaqg

TA IUOFsIAGA
goxe [Te :uop3woyrddy

(s) ebuwzaaoco aaq
00T 06 08

867 LE

oL

0s

sesud 18001 ¢

ot

ot

(114

oy

L1 {3

LR

os
a9
B oL
[~ 08

- o6

00T
{(s) sjuauodu)

16-29

Logiscope PART Il
| Component | Number | IB
i | of IB | executed
| |)
| L1._COMPILE/LL_TOKENS | o | 0.00%
| LIL_COMPILE/LLMAIN/PARSE/TESTSYNCH { 3| 0.00%
| LL_COMPILE/LLMAIN/PARSE/TEST YNCH/SYNCHRONIZE | 10 | 0.00%
| LL_COMPILE/LLMAIN/PARSE/EXP} 'D/MATCH:INTEGER:return: | o | 0.00%
| INTEGER | |
| Ll_COMPILE/MAKE_TOKEN:NODE_T YPE: STRING: NATURAL: return | 13 | 0.00%
| :LLTOREN | |
| LL_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return:LLSTR : 2 { 0.00%
] INGS
| LL_COMPILE/GET_CHARACTER:BOCLEAN:CHARACTER:BOOLEAN | 3] 0.00%
| L1_COMPILE/LLFATAL | 1 0.00%
| L1_COMPILE/LLSKIPBOTH | 1| 0.00%
| LL_COMPILE/LLSKIPNODE | 1 0.00%
| LL_COMPILE/LLSKIPTOKEN | 1| 0.00%
| LYL_COMPILE/LLPRTTOKEN | 2 | 0.00%
| LL_COMPILE/LLPRTSTRING:LLSTRINGS | 3| 0.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT CHARACTER | 5| 40.00%
| LL_COMPILE/LLTAKEACTION:INTEGER | 68 | 51.47%
| LL_COMPILE/LLMAIN/PARSE | 12 | 58.33%
| LIL_COMPILE/LLMAIN/PARSE/EXPAND | 9| 77.77%
| L1_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER | 14 | 85.71%
| LI_COMPILE/LLMAIN/READGRAM | 9 | 100.00%
| LL_COMPILE/LLMAIN/READGRAM/BUILDSELECT: INTEGER | 3 | 100.00%
| LL_COMPILE/LLMAIN/PARSE/ERASE | 3] 100.00%
| LL_COMPILE/LLNEXTTOKEN 2 | 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_SPEC_SYM 13 | 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_IDENTIFIER] 5 | 100.00%
| LIL_COMPILE/LL_TOKENS/ADVANCE:BOOLEAN:LLTOKEN: BOOLEAN | 10 | 100.00%
| LIL_COMPILE/LL_TOKENS/ADVANCE/LOOK_AHEAD { 1] 100.00%
| LiL_COMPILE/LL_TOXENS/ADVANCE/CHAR_ADVANCE 3| 100.00%
| LI,_COMPILE/LL_TOKENS/ADVANCE/GET_CHAR:CHARACTER 3| 100.00%
| LL_COMPILE { 1| 100.00%
| LL_COMPILE/LLMAIN | 1] 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_ STRING | 4 | 100.00%
| LI_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return:INTEGER | 4 | 100,008

| IB coverage for test suite
| Application: all_arc2

| Version: vi

| Language: ADA

| Test Suite: TEST1.LEX

Figure 16-20. Logiscope Overall IB Coverage tor input test1.lex

16-30

PART Ul Logiscope

] Component | Number | Number | DDP |
| | of DDP |of calls| executed |
| I !

LI_COMPILE/LLPRTSTRING: LLSTRINGS | 5 | o | 0.008 |

LL_COMPILE/LLPRTTOKEN | 3| 0 | 0.00% |

LL_COMPILE/LLSKIPTOKEN | 1| o | 0.008% |

LL_COMPILE/LLSKIPNODE | 1 0 | 0.00% |
| LL_COMPILE/LLSKIPBOTH | 1| 0 | 0.00% |
| LL_COMPILE/LLFATAL | 1| o | 0.00% |

11_COMPILE/GET_CHARACTER : BOOLEAN : CHARACTER: BOO| 5 | 0 | 0.00% |

LEAN . | | | |
LIL_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return	5	0	0.00%
:LLSTRINGS		[
LL_COMPILE/MAKE_TOKEN:NODE_TYPE: STRING:NATURAL	15	0	0.00%
:return:LLTOKEN	}		
LL_COMPILE/LLMAIN/PARSE/TESTSYNCH/SYNCHRONIZE	17	o	0.00%
LL_COMPILE/LLMAIN/PARSE/TESTSYNCH	5	0	0.00%
LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_CHARACTER	5	31	40.00%
LI_COMPILE/LLTAKEACTION:INTEGER	69	659	52.17%
LL_COMPILE/LLMAIN/PARSE	19	2	57.89%
L%_COMPILE/LYL_TOKENS/ADVANCE:BOOLEAN: LLTOKEN:B	15	355	93.33%
oOLEAN			
1I._coMPILE	1 2	100.00%	
LL_COMPILE/LL TOKENS/ADVANCE/GET_CHAR:CHARCTER	5	2154	100.00%
LL_COMPILE/LL_TOKENS/ADVANCE/CHAR_ADVANCE	5	2152	100.00%
LL_COMPILE/LL_TOKENS/ADVANCE/LOOK_AHEAD	1	52	100.00%
LL_COMPILE/LLMAIN/READGRAM	11	2	100.00%
LL_COMPILE/LLNEXTTOKEN	3	355	100.00%
LIL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return:INT	9	510	100.00%
EGER l	l I		
LL_COMPILE/LLMAIN/PARSE/ERASE	5	1105	100.00%
11_COMPILE/LIMAIN	1 2	100.00%	
LL_COMPILE/LL_TOKENS	1 2	100.00%	
LIL_COMPILE/LLMAIN/READGRAM/BUILDSELECT: INTEGER	3	128	100.00%

DDP coverage for test suite

|

[

| Application: all_arc2

| version: vi

| Language: ADA

| Test Suite: TEST1.LEX

Figure 16-21. Logiscope Overall DDP Coverage for input test1.lex

16-31

Logiscope PART Il
Metrics	Mnemonic	value	!
Number of levels	LEVELS	2	
Hierarchy complexity	BIER_CPX	1.00	
Structural complexity	sTrRU_CPX	0.50	
Control entropy	ENTROPY	0.00	=
Average Paths	avG_pa	0.50	=
Number/Component	I		
Metrics table of root:			
:			
LI_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS			
Application: all_arc			
Vversion: vi			
Language: ADA			
Figure 16-22. Logiscope Metrics Table of Root			
I			
PATHS	Testability	Nodes	
“Li_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LL]		
STRINGS			
=“TEXT_YO/PUT:FILE_TYPE:CHARACTER	0.5000	2	

|
|
|
|
I
|
I

Call graph path testability of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vi
Language: ADA

Figure 16-23. Logiscope Call Graph Path Testabllity of Root

16-32

PART Il Logiscope

| Component | Access |

| LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE | 1.0000 |
| :LLSTRINGS I |
| TEXT_YO/PUT:FILE_TYPE:CHARACTER | 1.0000 |

Call graph component accessibility of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vl
Language: ADA

|
l
!
|
|
l
|

Figure 16-24. Logiscope Call Graph Component Accessibility of Root

| Num | Calling components | Num | Called components
| 49 | LL_SUPPORT/EMIT_PATTERN_NAME | 72 | TEXT_IO/PUT:FILE_TYPE:CHARAC |
] | :PILE_TYPE:LLSTRINGS | | TER)

Call graph calling/called components of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vl
Language: ADA

J
I
I
I
I
!
l

Figure 16-25. Logiscope Call Graph Calling/Called Components of Root

16-33

PARTII

Logiscope

100y jo ydein j1e) djweuiqg edoasifo ‘9z-91 e4nbid4

/7
:q00x 3o ydeixb 1TRD
X371 TISAL :©3TN§ IS3L _ TA UOFEI0A
XQy :ebunbuwy goxe {Te :uojjwoyrddy

16-34

| vl | Num | List of call graph components
1| 49 | LL_SUPPORT/EMIT_ PATTERN_NAME:FILE_TYPE:LLSTRINGS
1] 22| L1_COMPILE
1| 10 | LL_COMPILE/MAKE_TOKEN:NODE_TYPE: STRING: NATURAL: return: LLTOKEN
1 8 | LL_COMPILE/GET_CHARACTER:BOOLEAN:CHARACTER : BOOLEAN
1 § | LL_COMPILE/LLSKYPBOTH
1] 4 | L1 _COMPILE/LLSKIPTOKEN
2| 72 | TEXT_IO/PUT:FILE_TYPE:CHARACTER
2| 21 | LL_COMPILE/LLMAIN
2 | 9 | LI_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return:LLSTRINGS
3| 20 | LL_COMPILE/LLMAIN/PARSE
3| 14 | 11_COMPILE/LLMAIN/READGRAM
4 | 15 | LL_COMPILE/LLMAIN/PARSE/ERASE
4 | 17 | LL_COMPILE/LLMAIN/PARSE/EXPAND
4 { 12 | 11_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER
4 | 13 | LL_COMPILE/LIMAIN/READGRAM/BUILDSELECT:INTEGER
4 | 79 | TEXT_YO/CLOSE:FILE_TYPE
4| 78 | TEXT_IO/OPEN:FILE_TYPE:FILE MODE:STRING:STRING
$ | 16 | LL_COMPILE/LLMAIN/PARSE/EXPAND/MATCH: INTEGER:return: INTEGER
5| 19 | LL_COMPILE/LIMAIN/PARSE/TESTSYNCH
5| 80 | TEXT_YO/INTEGER_IO/GET:FILE_TYPE:NUM:FIELD
6 | 7 | 11L,_COMPILE/LLFATAL
6 | 18 | LL_COMPILE/LLMAIN/PARSE/TESTSYNCH/SYNCHRONIZE
7 { 11 | LL_COMPILE/LINEXTTOKEN
7| 66 | LL_COMPILE/LLTAKEACTION:INTEGER
8 | 30 | LL_COMPILE/LL_TOKENS/ADVANCE:BOOLEAN:LLTOKEN: BOOLEAN
13 | 39 | LL_SUPPORT/COMPLETE_PAT/COMPLETE_CONCAT: LLATTRIBUTE
13 | 55 | LIL_SUPPORT/EMIT_SCAN_PROC/EMIT_SELECT/EMIT_CHAR:CHRARACTER
14 | 71 | TEXT_IO/PUT:CHARACTER
14 | 68 | TEXT_I0/PUT:STRING
14 ! 33 } LL_SUPPORT/ALTERNATE: LLATTRIBUTE: LLATTRIBUTE : return: LLATTRIBU
T
14 ‘ 43 : LL_SUPPCRT/CONCATENATE : LLATTRIBUTE : LLATTRIBUTE : return : LLATTRI
BUTE
15 | 32 | LL_SUPPORT/ALTERNATE/MERGE_RANGES: LLATTRIBUTE: LLATTRIBUTE: ret
| | urn:LLATTRIBUTE
{ List of call graph components per level of root: |
I
| 77 |
] application: all_arc |
| version: vi |
| Language: ADA]

PART Ul Logiscope

Figure 16-27. Logiscope List of Call Graph Components per Level from Root

16-35

St T (. e o et S e S et e Tt i, e i S AP T, et i e, ot . e

Logiscope PART H|
PPP
1 2 3 4 5 6 7
Test cases
| IDA_Test | 1 1| 1] 1 | 2| 2 | 398 |
| Total | 1| 1 1| 1] 1| 2 | 398 |
PPP
8 9 10 12 12 13 14
Test cases .
| IDA_Test | 254 | 0| 13¢)| 230 | o} 254 | 0|
| Total | 254 | o} 13¢ | 230 | 0| . 25¢ | 0|
PPP
s 16 17 18 19 20 21
Test cases
| . IDA_Tast | 0| o | o | 0| o | o | o |
| Total | o | 0 | o | o | o | o | o |
PPP
8s 86 87 se
Test cases Coverage
| IDA_Test] o 1724 | 227 | 6¢ | 44.32% |
| Total | o| 127¢ | 227 | 64 | 44.31% |

Call graph PPP coverage of root:

LL_CONPILE
Application: ida
Version: vi

language: ADA
Test Suilte: CURRENT _TEST_SUITE

Figure 16-28. Logiscope PPP Coverage ot Root

16-36

PART I MALPAS

17. MALPAS

MALPAS comprises a suite of static analyzers that provide control flow, data use, in-
put/output dependency, and complexity analysis. It is unique among the examined tools in
providing symbolic execution and compliance analysis of code against a formal specifica-
tion.

17.1 Tool Overview

MALPAS was developed in the late 1970s at the United Kingdom Ministry of Defense
Royal Signals and Radar Establishment to verify avionics and other safety-critical defense
system software. Since 1986 it has been marketed and supported by TA Consultancy Ser-
vices, Ltd., formerly called Rex, Thompson & Partners (RTP). MALPAS has 50 users, in-
cluding 5 Ada sites. The Ada translator is a relatively new product released in July 1991.
RTP also markets seminars to introduce potential customers to MALPAS and training
courses. A user group is supported. MALPAS is available on VAX/VMS platforms. The
tools examined in this study were MALPAS Release 5.1, IL Version 5, Pascal-IL Transla-
tor 3.1, and Ada-IL Translator 1.01. The price for MALPAS and the Ada-IL translator at
the time was £60,000.

The analyses performed by MALPAS are intended to assure software safety, reliability,
consistency, and conformance to standards. They include the following:

» Control flow analysis to reveal the underlying program structure and unreachable
code.

+ Data flow analysis to detect uninitialized variables and successive assignments with-
out an intervening use.

« Information flow analysis to identify input-output dependencies.
« Path assessment to produce a structural complexity measure.

« Partial analysis using program slicing to reduce analysis time for semantic and com-
pliance analysis.

» Semantic analysis to provide symbolic execution for each loop-free path.
« Compliance analysis to verify code against formal specifications.

MALPAS analyses are based on an Intermediate Language (IL) representation of pro-
gram specifications or source code. Translators from several languages (including Ada, C,
Fortran, and Pascal) to IL are available. The approach of using a common intermediate lan-
guage for analyses simplifies the extension of MALPAS’s capabilities to other program-

17-1

MALPAS PART Il

ming languages. Formal program specifications can also be expressed in IL. At present no
automated translation tools for other formal specification languages such as OBJ, Vienna
Development Method (VDM), or Z are supported.

Analyzing application source code is a two-step process. First the code is translated into
IL. Since the Ada translator was not available when the tool examination started, the Pascal
translator was examined first. Pascal code is translated as a single complete program; this
is a straightforward process. The translation of Ada source code to IL is significantly more
complicated. The sample Ada code analyzed contained several separately compiled pack-
ages and subunits. First the generic input/output packages used by the program had to be
instantiated (by hand), translated, and loaded into an IL code library. Then each program
unit had to be translated and loaded into the IL code library.

The second step is to run the analyses on the IL code. A single tool controls all of the
available analyses. Options are selected by command line parameters and results are writ-
ten to files that can be printed. Default parameter settings for initial analyses of new code ®
were set up to include control flow, data use, and information flow analyses. Control flow,
data flow, and information flow analyses are fairly standard static analysis techniques.
Structured prograrmnming has largely eliminated control flow anomalies. Data flow and in-
formation flow anomalies, however, are still useful indicators of potential problems. Infor- ®
mation flow, for example, identifies all of a subprogram’s inputs and outputs, which may
be more than those passed as parameters.

The compliance and semantic analyses are computationally more complex. The partial

analysis capability allows these analyses to be restricted to particular modules or paths ®
within the program. MALPAS’s semantic analysis option provides symbolic execution of
loop-free code segments, that is, for each possible path through a segment, the value of each
modified variable is given as an algebraic expression in terms of the input variables. This
provides valuable feedback to a programmer about the meaning of the code and the resuits o
that will be produced when the code is executed. The compliance testing option uses this
same information to check formally specified requirements that have been added to the IL
code.
o
17.2 Observations
Ease of use. MALPAS is a batch-oriented tooi even though it may be invoked interac- ®
tively. The only user interaction is through the set of options that can be selected from the
17-2
o

e

PART i MALPAS

command line. The large number of options may make MALPAS “flexible” for expert us-
ers. Novice or casual users, however, may have some difficulty controlling non-default pro-

cessing.

Introducing the intermediate language for analyses may cause problems for some users.
All analyses and reports refer to the IL version of the program rather than to the original
source code. The mapping back to the original code must be done manually. The IL ap-
proach may simplify extending MALPAS to cover a range of different programming lan-
guages (by requiring only new IL translators), but it imposes a level of separation between
the actual source code and the analyses that must be compensated for by the user.

Translating Ada source code to the intermediate language was found to be somewhat
more complicated than expected. The sample Ada code analyzed contained several sepa-
rate packages and subunits, and normally requires several compilation steps. The MALPAS
Ada to IL translator, however, required several additional steps that Ada compilers either
do not need or are able to hide.

Documentation and user support. Installation and operating instructions were clear,
thorough, and accurate. Installation required simply editing sample command files to name
local directories and disks. The manuals included good examples and the tools operated ex-
actly as described.

Ada restrictions. Support for all aspects of Ada that can be analyzed statically is the
vendor’s eventual goal, however, the current MALPAS tools support only a subset of Ada.
The Ada to IL translator recognizes all valid Ada code but the translation to the intermedi-
ate language is not complete. The intermediate language, for example, does not include any
mechanism for concurrency, so Ada tasks cannot be translated. This restriction is particu-
larly unfortunate because execution-based testing of concurrent programs is often difficult
to control. Repeating a particular test, for example, might not produce the same results each
time. Rigorous static analyses of potential task interactions would contribute significantly
to identifying and correcting tasking problems.

Translation of Ada’s generic program units is not supported. Generic units provide a
powerful mechanism that simplifies programs and enhances reuse. Ada’s standard input
and output facilities, for example, are defined in terms of generic packages. MALPAS cur-
rently requires manual instantiation of any required generic units.

Access types (pointers) and dynamic storage allocation are not supported. Analysis of
unconstrained use of pointers, for example to detect potential “dangling” pointers, is virtu-

17-3

MALPAS PART I

ally impossible. A workaround for disciplined use of pointers for data structures such as
linked lists is to define abstract data types that encapsulate the pointers. MALPAS would
be able to analyze application code that used the abstract data types since the pointers are
hidden. MALPAS, however, would not be able to analyze an implementation of the ab-
straction that used pointers.

Problems encountered. The MALPAS tools performed as specified in their documen-
tation. No failures occurred in use.

17.3 Planned Additions

Version V6.0 of MALPAS (due for release in November, 1992) includes two additional
summary reports from the Semantic Analyser. These reports present key information from
the standard Semantic Analyser report in a form that may be easier to interpret. Both reports
present the conditions for and the assignments made on each path through each loop-free
section of code. The Paths Table report tabulates the conditions and the assignments made
to variables on each path. The Transforms report lists each variable and shows the condi-
tions under which each assignment will be made.

17.4 Sample Outputs

Figures 17-1 through 17-6 provide sample outputs from MALPAS.

17-4

PARTII MALPAS

program average (input, output);
{ This program shares a stream between two consumers by merging the)
{ processes and evaluating the result of the second process eagerly.)

type Tresulttype = integer; (consumer process result type)
streamelement = integer; { stream element type)

var conslresult: resulttype:; { result returned by consuner §1)
cons2result: resulttype; { result returned by consumer $2 }

{ Stream operations)
procedure advance (var eos: Boolean; var next: streamelement; more: Boolean);

const CR = 13; { Advance the actual input stream)
var ch: char;
bagin

if more then
if eof then
e0S := true
else begin
eos := false;
if eoln then begin
readln;
next := CR
end
else begin
read(ch);
next := ord{(ch)
end
end
end;

procedure consume; { Consume the input stream as one process }
var eos: Boolean; { (count stream elements and sum stream elements))}
next: streamelement;
begin
conslresult := 0;
consiresult := 0;
advance(eos, naxt,true);
while not eos do begin .

conslresult := consiresult + 1; { count stream elements)
consiresult := consiresult + pext; [sum stream elements }
advance(eos,next,true)
and;
end;
begin
CONnsuAe;

writeln(’The averag: of ’, consliresult:l,
! characters is "’, chr(cons2result div conslresult), ’'".’)

end.

Figure 17-1. MALPAS Sample Pascal Code lliustrating MALPAS Analyses’

1. Due to MALPAS's restrictions on analysis of Ada access types, the lexical analyzer code used as a
sample test program could not be thoroughly analyzed. To illustrate the reports that MALPAS produces a
simple Pascal program was substituted. This program and the MALPAS analysis reports are shown in the fol-

lowing figures.

17-5

MALPAS

(1}
fa)
[3]
(4]
16)

PART Il

TITLE average;

{ Pascal to Malpas IL Translator - Release 3.0)

_INCLUDE/NOLIST "USR: {ADATEST.PASCALIL30]FIXED.PREAMBLE"

*«r Including file USR: [ADATEST.PASCALIL3O)FIXED.PREAMBLE;]l *wx
*a% End of file USR: (ADATEST.PASCALIL30]FIXED.PREAMBLE;]l s=w

mn

_INCLUDE/NOLIST "USR: [ADATEST.PASCALIL30]TEXT.PREAMBLE"

»» Including file USR: (ADATEST.PASCALIL30}TEXT.PREAMBLE;1l #»»
**x End of file USR: [ADATESYT.PASCALIL30]TEXT,.PREAMBLE;1l »#+

(8)

(10)
{11}
(12}
[13)
(14])
{16)
an
(18]
[20)
[21})
[22)
(23}
[a4)

*2% WARNING :

(a5}
fas]
[an
{28)
139]
{30]

wx* WARNING :

(31]
(32]
[33)
(35)
(36}
{37}
[38)
[40]
(42]
{43]
(44]
145]
(46}
{47)
(48]
(49]
[50)
[51]
152)
(531

$1:
#3:
$5:

46:
47:
49:
#l0:

#11:
#132:
#8:

CONST cr : integer = +13;
CONST 1it__2__theaverage : char—array = "The average of *;
CONST lit__2__ characters : char-array = ® characters is ""*;
CONST lit__3 : char—array = """ .%;

[(* result returned by consumer #2 =]

[* Stream operations *)

PROCSPEC advance(INOUT aos : boolean,
INOUT next : integer,
IN more : boolean)
IMPLICIT ((** IL Global Parawater Saection =»]
INOUT ipput : text);

no DERIVES list specified for procedure advance

[* Advance the actual input stream *]

PROCSPEC consume

INPLICIT ([** IL Global Parameter Saction s*] .
INOUT conslresult, consiresult : integer
INOUT input : text),

no DERIVES list specified for procedure consume

{* Consume the input stream as one process *)
{* (count stream elements and sum stream elements) *}

MAINSPEC (INOUT input : text
INOUT output : text);

PROC advance;
VAR ch: char;
IF more THEN
IF eof_ _text(input) THEN
e0s := true
ELSE

eog = false;

IF eoln__text(input) THEN
text__readln(input);
next := cr

ELSE
text__read _char(input, ch);
next := char_pos{ch)

ENDIF

Figure 17-2. MALPAS Intermediate Language Translation of Sample

17-6

PART I MALPAS
{54] 4 ENDIF
(55]) #2; ENDIF
(56} #STOP: [SKIP]
[56) #END: ENDPROC [*advancer]
(57}
[58) PROC consume;
[60) VAR eos__6: boolean;
{61} VAR next__ 6: integer;
[63] 41 conslresult := 0;.
[64] 2 consiresult := 0
[65] $3:
[65] advance(eos__6, next_ 6, true);
*** WARNING : advance has not been fully specified
[66) 4 LOOP [while loop]
(67) #6: EXIT {while loop] WHEN NOT{ NOT eoB_ 6);
{e8] 47: conslresult := conslresult + 1;
[69) [* count stream elements =)
[70) 48: cons2result := coms2result + next_ 6;
{71} {* sum stream elements ¥}
(721 19:
[72) advance(eos__6, next__ 6, true)
=ws WARNING : advance has not been fully specified
[731 45: ENDLOOP {while loop]
{74} #STOP: [SKIP]
[74) $END: ENDPROC [*consumet]
[751
(76} MAIN
{79} VAR conslresult: integer;
[80] [* result returned by consumer #1 *}
[81] VAR consiresult: intager,
[83] #1:
[83] consume(),
*#% WARNING : consume has not besen fully specified
[84]) 42 text _write(output, 1it__1_ theaverage);
(950] #STOP: [SKIP) \
[90] #END: ENDMAIN
[93] [#a** WARNING : WARNINGS IN PASS 1 ... See Listing Frile)
{95] FINISH

= WARNING : Procedure body for text_ get has not bess defined
*** WARNING : Procedure body for text_ page has not been defined

*ws WARNING : Procedure body for text__writeln has not been defined

Figure17-2 continued: MALPAS Intermediate Language Transiation of Sample

17-7

MALPAS

HEmdadun
LI I I B IR I B B)

PART Il

After ONE-ONE, 13 nodes removed.
No nodes with self-loops ramoved.

Node id No of pred. Succ. nodes

$START 0 4END

#END 1

After KASAI (from ONE-ONE), No nodes removed.
After HECHT (from ONE-ONE), No nodes removed.
After HK (from HECHT), No nodes removed.
After TOTAL (from HK), No nodes removed.

Control Flow Summary

The procedure is well structured. .

The procedure has no unreachable code and no dynamic halts.

The graph was fully reduced after the following stages:
ONE-ONE, KASAI, HECHT, HK, TOTAL

The graph was not fully reduced after the following stages:
None

Figure 17-3. MALPAS Control Flow Analysis of ADVANCE

Key

Data read and not subsequently written on some path between the nodes

Data read and not previously written on some path between the nodes

Data written twice with no intervening read on some path between the nodes
Data written and not subsequently read on some path between the nodes

Data written and not previously read on some path batween the nodes

Data read on all paths between the nodes

Data written on all paths batween the nodes

Data xead on some path betwaen the nodes

Data written on some path betwsen the nodes

After ONE-ONE

From To Data Use Expression

node node .
#START {$END : ch input more

H
I : input AOTe

U : eos input next

V: ch eos next

R : more

E : ch input more
L:ch . e0s8 {input next

Susmary of Possible Errors

No errors detected

Figure 17-4. MALPAS Data Use Analysis of ADVANCE

17-8

PART Il

Information Flow

After ONE~ONE
From node #START to node $#END

Identifier may depend on identifier(s)
QOB IN8/INOUTs : eos input more
CONSTANTs : false true
next INs/INOUT@ : input more next
CONSTANTS : cY
input INg/INOUTs : input moxe
ch INs/INOUTs : input more
VARS/OUTs : ch
Identifier may depend on conditional node(s)
(Y- #3 41
next [2) 13 #1
input $7 43 1
ch #7 43 #1

Summary of Possible Errors

No errors detected

Figure 17-5. MALPAS Information Flow Analysis of ADVANCE

17-9

MALPAS

MALPAS PART Il

Semantic Analysis

After ONE-ONE

From node : $START
To node : $END

IF NOT(more)
THEN MAP
ENDMAP

(
ELSIF more AND sof__text(input)
THEN MAP

eos := true;
EINDMAP

[
ELSIF moxre AND eoln__text(ipput) AND NOT(eof__text(input))
THEN MAP

eos := false;

next := 13;

input := readln__text(input);
ENDMAP

[
ELSIF more AND NOT(eoln__text(input)) ANT NOT(eof__ text(input))
THEN MAP

aog :~ false;

next := char_pos(xead__text__char(input)).

input := gkip__text__ char(input);

ch := read__text__char(inmput);
ENDMAP ENDIF
{

Figure 17-6. MALPAS Semantic Anaiysis of ADVANCE

17-10

PART I QES/Manager

18. QES/MANAGER

QES/Manager is one component of the QES/Workbench. To fully understand the role
of QES/Manager, it is necessary first to look at the other workbench component, QES/Ar-
chitect. QES/Architect is a database system designed to create and manage testing data. It
has automatic capture/playback, test data generation, variable processing, and global edits.
Fully instrumented testcases can automatically change or generate test data via external
files, calculations, predetermined ranges, or system responses. Alternatively, test data can
be imported from external sources such as screen form builders or databases, or captured
from the workstation. Conditional execution is provided. By prototyping test data, usable
testcases can be created that provide a picture of the user interface. These testcases can act
as the specification and be used to simulate the system operation. QES/Manager is a subset
of QES/Architect. (The full QES/Architect product is expected to be examined in the near
future.) QES/Manager provides the data management facility that supports documenting
test plans and testing activities. It also provides for easy import of ASCII data and export
of data to automated test systems.

Additional workbench components expected to be released early in 1993 include QES/
Qease for keystroke capture/playback, QES/Programmer for automatic unit test design and
execution, and QES/Expert that aids a user in diagnosing the cause of a failure.

18.1 Tool Overview

QES/Manager is marketed by Quality Engineering Software, Inc. (QES). In addition to
quality assurance (QA) products, this company markets consulting and programming ser-
vices, specializing in showing customers how to improve QA and testing practices. A hot-
line support facility is available. QES/Manager was released in November 1991 and has
over 50 users. It is language independent and runs on IBM PC/AT, or compatible machines,
under MS-DOS 3.0 or higher. QES/Manager is compatible with local area networks
(LAN:s). It supports the following test environments: DOS, 5250/AS-400 emulation, 3270
emulation, asynchronous communications, UNISYS, and Tandem. Interfaces exist to sev-
eral test execution tools such as AutoTester.

The evaluation was performed on demonstration version 2.2 of QES/Manager running
on a WIN TurboAT. This demonstration version is fully functional, although limited in the

18-1

QES/Manager PART i

number and size of testcases that can be specified. At the time of evaluation, QES/Manager
prices started at $2,500. -

QES/Manager embodies a predefined test model. The basic test items are as follows:

« Testcases. Define the basic unit of test data. Each Testcase is intended to be an inde-
pendent, reusable testing element that tests one logical operation or module.

« Test Drivers. Group collections of Testcases so that a Test Driver consists of a list of
Testcases to be run in a specified order. Further levels of grouping are available: a
Test Driver List can be used to group Test Drivers, and Master Drivers to group Test
Driver Lists.

Together, Testcases and Drivers form the test plan. A map function showing the developed
organization of Testcases with Drivers is available from QES/Manager.

Relationships between test items are maintained using the standard nomenclature as-
sociated with databases. All named items have a keyword option which can be used for
such tasks as searching and forming organizational groupings. Testcases, for example, can
be classified by application or type of test, such as regression, acceptance, or system tests.

When prototyping test data, the contents of a Testcase are specified by user-defined
templates. When data is imported from another test tool, QES/Manager will automatically
define the necessary templates, without user intervention. In essence, a Testcase is equiv-
alent to a template with the associated input (keystrokes) and output (responses). Access is
provided to the sequence of keystrokes, not just the result. For example, once the Testcase
is created, the user can view both the sequence of keystrokes and the final entry format.
Different types of information can be attached to a Testcase to sequence, modify, identify,
and manage it. A full-screen editor is provided for creating and modifying templates. Tem-
plate fields can be either named or unnamed, however, global edits can be applied to named
fields. Default responses can be specified. Instead of manually entering test data, the user
can define converters that will import data from ASCII text files and transform it into QES/
Manager format.

Prior to using the Drivers to guide the execution of tests, the user can view actual se-
quencing of test inputs and outputs to assess their correctness. In sequence mode, QES/
Manager presents the operation of the application (as represented through its inputs and
outputs) in its natural flow. That is, it shows the sequence of default responses, keystrokes
applied to the default responses, and the response of the application to that input. A simu-
lation function provides a similar capability, although here the user can specify time delays

18-2

PART il QES/Manager

to be applied to the sending of keystrokes and responses and can manually control the flow

by stepping through the simulation.

The user can request reports on any test item. Essentially, the reporting facility acts as
a database query engine. Here again, the user specifies templates that define a report layout
in terms of cursor positions. These layouts can be saved for reuse and a copy-and-paste fa-
cility is provided, together with a sorting function.

QES/Manager provides a limited set of administration functions. These allow the sys-
tem administrator to assign new users with password and access permissions, or change the
access privileges of existing users. An authority matrix displays each user’s rights for ac-
cess to QES/Manager functions and data.

18.2 Observations

Ease of use. QES/Manager is a menu-driven system, with both mouse and keyboard
navigation. Listboxes are provided to show available items for selection. QES/Manager can
be customized to the extent of defining database paths, hotkeys, printer ports, and the use
of color in the display screens. Conformance to [EEE and Common User Interface (CUI)
standard nomenclature, interfaces, and menus is intended to facilitate use of all QES/Work-
bench tools.

The available on-line help includes context-sensitive help, a manual with hypertext
links and a print button, and a notepad for the user to add personal help information. A tu-
torial and on-line demonstration is also available.

An import capability provides for importing test cases in the form of ASCII text files.
These are converted into QES/Manager format using user-defined templates. A similar ex-
port capability is available. "

Documentation and user support. The documentation provided with the demonstra-
tion version of the tool was fairly limited. Although it provides good guidance for stepping
through one example use of the system, it does not provide a general overview of tool ca-
pabilities and usage. Installation was straightforward.

Problems encountered. QES/Manager operated as described in the documentation.

18-3

QES/Manager PART

18.3 Planned Additions

0OS/2 and Windows support is under development and expected to become available in
the fourth quarter of 1992.

18.4 Sample Outputs

Figures 18-1 through 18-3 provide sample outputs from QES/Manager.

18-4

PART Il QES/Manager

QES DOCUMENTATION FROJECTS

Froject Name: ONLINE MANUAL DOCUMENTATION PROJECT MANAGEMENT
Main Tasik: ARCHITECT MANUAL MANUAL PROJECTS FOR RBRCHITECT
Sub-task: DESIGN DESIGN MEN! DOCS
Menu Name: CAPTURE CBAPTURE Menu Deccumentaticn
New / Modify ___ Entry Name:
_HMow to.. __Glossary __Index -T.0.C. __Main entry _ Advert/pr
done: __ _— —_ — — -
QR: — — —_ —_— —_ —_
Menu Name: BUILD BUILD Menu Documentation
New / Modify __ Entry Name:
__How to.. _ _Glossary _Index __T.O.C. __Main entry __ Advert/pr
done: __ — _— _— — -
QA: — — —_ _— _ —
Menu Name: IMPORT IMPORT Menu Documentaticn
New / Mcodify __ Entry Name:
__How to.. __Glossary _Index __T.O.C. __Main entry __Advert/pr
dene: ___ — —_ — — —_—
Q8 — — _— -— —_ —
Menu Name: EXPORT EXPORT menu documentation
New / Modify ___ Fatry Name:
_ _How to.. __Glossary __Index _ T.0.C. __Main entry __Advert/pr
done: __ —_ — — — —_
QA: — - —_ — — —_—

Menu Name:
New / Mcaify ___ Entry Name:
__How to.. __Glessary _ _Index _ T.0.C. _Main e

k-
"

ry _ _Rdvert/pr

one: __ — _— —

4
QA: — — P —

Menu Name:
New-/ Mcodify ___ Entry Name:
__How to.. __Glossary _ Index _ T.O.C. __Main entry __Advert/pr
done: ___ —_ —

or: — — —_ —

tl

Menu Name: .
New / Modify ___ Entry Name:
__How to.. __Glossary __Index _ T.O.C. __Main entry __Advert/pr

dones ___

oA: — _ _

Figure 18-1. QES/Manager Report Layout

18-5

QES/Manager PART Il

MD: ONLINE manual
|— TDL: Architect manual
—~ TD: QES/intro
— TC: ABOUT QES
— TD: DESIGN
TC: CAPTURE
TC: BUILD
TC: IMPORT
TC: EXPORT
I~ TD: TEST

TC: RUN
E TC: SCHEDULE

TC: DISCREPANCY
t— TD: MANAGE
TC: KEYWORD
TC: TEMPLATE
TC: VARIABLE
TC: RECOVERY
TC: TEST DRIVER
TC: TESTCASE
TC: TEST DRIVER LIST
TC: MASTER DRIVER
—~ TD: SECURITY

TC: LOGIN
E TC: ASSIGN USERS
TC: CHANGE PASSWORDS

TD: REPORT
TD: UTILITY

E TC: BACKUP/RESTORE

Tl

TC: CONFIGURATION
TC: DEFINE TOOLS
- Tp: HELP
—~ TDL: Manager manual
}—~ TD: QES/intro
- TC: ABOUT QES
— TD: DESIGN
TC: CAPTURE
TC: BUILD
TC: IMPORT
TC: EXPORT
|~ TD: MANAGE
TC: KEYWORD
TC: TEMPLATE '
TC: VARIABLE
TC: RECOVERY
TC: TEST DRIVER
TC: TESTCASE
TC: TEST DRIVER LIST
TC: MASTER DRIVER
’—- TD: SECURITY
TC: LOGIN
EE TC: ASSIGN USERS
TC: CHANGE PASSWORDS
E TD: REPORT
T™0: UTILITY
j~ TC: BACKUP/RESTORE
TC: CONFIGURATION
TC: DEFINE TOOLS
l- tp: HELP
L TpL: Tech ref manual
TD: FILE INFO
TD: MESSAGE INFO

Figure 18-2. QES/Manager Map of Master Driver

18-6

PART NI QES/Manager

PROBLEM REPORT FORM

Number /Name: 0047(F/C/03)

Status:
Fix/€nh:

Severity:
Function:

Product:
Path:

A.Resolved
B.Fix
C.Critical
D.Runhable
E.QES Architect
PO3.Testcase

Process Key Problem

No further modifications needed
Error needs correction

Must be fixed in next release
Usable in Regression test

Form Generated: Tue Jul 28 14:50:57

Resolution Code (1-8)

PROBLEM RESOLUTION REPORT

1 = Fixed
2 = Cannot Reproduce

3 = Fixable, but Deferred

4 = Cannot be Fixed

Problem Summary

Problem Resolution

Resolution Version

= Withdrawn by Tester

= Works to Specification

= Disagree with Enhancement
= Enhancement Excepted

DO

Resolved By

Resolution Tested By

Date

Date

Figure 18-3. QES/Manager Problem Report

18-7

PART Il SoftTest

19. SoftTest

SoftTest supports requirements-based test analysis using cause-effect graphing. It de-
rives test conditions to guide the preparation of test data. It also provides a measure of test
adequacy in terms of the number of testable functional variations for which tests have been

specified.

19.1 Tool Overview

SoftTest was developed in 1987 and is marketed and supported by Bender and Associ-
ates. There are currently over 150 users. The tool runs on any IBM PC, XT, AT, PS2 or
compatible platform under MS-DOS; since it executes independently of the software under
test, the target or development environment of the software is not a restricting factor. Bend-
er also markets project methodology guidelines, consulting services, and training courses
on software quality assurance and testing. Interfaces via outline files of test case descrip-
tions exist to several capture/playback tools including Automator QA, AutoTester, Gate,
Microsoft Test for Windows, SQA:Robot, Sterling TestPro, V-Test, Workstation Interac-
tive Test Tool for OS/2, XRunner, and TestRunner.

The version of SoftTest examined was Beta Release 4.0, running on a Compaq Deskpro
386/20. At the time of examination, the price was $2,500.

SoftTest automates a requirements analysis technique called cause-effect graphing, de-
veloped at IBM in the early 1970s. The primary phases of analysis are as follows:

+ Extraction of node, relation, and constraint definitions from cause-effect graphs.

* Functional variation analysis to identify combinations of input conditions required for
tests.

» Test condition synthesis to consolidate variations and produce minimal test sets that
will exercise all the elementary functions specified.

Before using SofitTest, the user must prepare a cause-effect graph definition from the
functional specification of the software under test. This process starts with identifying the
set of input conditions (the causes) that a program must respond to, mapping these to the
set of output conditions (the effects) that the program must produce. Unique names are as-
signed to each cause and to each effect, called nodes. SoftTest distinguishes primary nodes,
that is, those that are basic inputs or final outputs, from intermediate nodes. In particular,
SoftTest assumes that all effects that are not inputs to any other relationship (that is, prima-

19-1

SoftTest PART I

ry effects) are observable and that effects that are input to other relationships are not ob-
servable unless explicitly specified as being forced observable. This special case of forced
observable allows intermediate nodes to be used to permit testing variations where the re-
sults of one functional variation may be obscured by other variations. Relations between
nodes are specified in terms of logical relations such as and and or. Finally, exclusive, in-
clusive, one-and-only-one, and requires constraints that restrict the invokable combinations
of cause states are identified. Another statement, the mask statement, is included in the con-
straint category. It is a qualifier that is used when the true or false state of a particular node
will render the state of other node(s) to be indeterminate; qualifiers work by causing spec-
ified nodes within a test case to be ignored under certain conditions.

The resulting cause-effect graph definition is expressed using a declarative, non-proce-
dural language based on Prolog. This language includes a facility for defining a data dic-
tionary of node names that is maintained independently of any particular cause-effect graph
definition; this data dictionary can then be imported as required. A subgraph facility pro-
vides for partitioning a large specification into several parts. |

Once the cause-effect graph definition has been prepared, SoftTest will perform a Vari-
ation Analysis to identify all the individual unique functions the software is required to per-
form. The thesis of this approach to testing is that although the number of possible
combinations of input conditions may be very large, a program can be thoroughly tested by
exercising this small set of unique functional variations. Some functional variations may
not be testable because, for example, it may be physically impossible for certain combina-
tions of input conditions to arise. These variations are flagged as infeasible. The Variation
Analysis can be set to report on primitive or full-sensitized variations. In the first case, only
primary nodes are included, whereas a full-sensitized analysis will include all nodes that
impact a variation. Two measures of graph complexity are reported: (1) the number of func-
tional variations divided by the number of primary causes, and (2) the number of functional
variations divided by the sum of the number of primary causes and the number of primary
effects. These complexity measures yield high values when inputs are combined in many
different ways and low values if inputs are used in simple relationships.

The cause-effect graph definition can also be input to the Picture Presentation phase.
This phase produces a pictorial representation of the cause-effect graph showing nodes,
their logical relations, and any applicable constraints. It is intended to aid the user in ensur-
ing that the cause-effect description accurately reflects his understanding of the specifica-
tion’s logic.

19-2

PART Il SoftTest

The Test Synthesis phase generates the minimum set of test cases that will ensure that
all feasible functional variations are exercised. Each test case is given in the form of a test
specification that identifies the causes and effects that should be true and those that should
be false for this test case. (Prior to test execution, these test cases will be used to help in
manually determining the actual test data needed.) Test cases can be reported in three
forms. For each generated test case, a compact listing identifies the invokable causes(s) and
their state(s) and the observable effect(s) and their state(s). An expanded batch listing sup-
plements this with a full node description for each cause and effect. An expanded script list-
ing provides much the same information but groups related causes and follows them with
their associated effects for each test case. This phase also generates a fault coverage and
test definition matrix that can be used for planning and tracking the test effort. The fault
coverage matrix indicates the functional variations addressed by each test case and includes
statistics that report on the percentage of testable variations achieved. The test definition
matrix identifies the nodes * .. 1 .ded in each test case.

Test Synthesis is not . stricted to the generation of new sets of test cases. For example,
if a specification is changed, Test Synthesis can be used to report coverage of the revised
functional variations achieved by an existing set of test cases, or to determine the new test
cases that 1aust be added to an existing set to fully cover these functional variations. As a
final point, Test Synthesis itself may result in the identification of additional infeasible vari-
ations. These are variations based on any declared constraints and other relationships that
are found to be indeterminate.

The latest SoftTest release includes the ability to extract test documentation. A 2167A
reporting facility produces a requirements to test case traceability report that conforms to
DoD-STD-2167A Section 4.1 requirements. Additionally, a Structured English require-
ments specification can be generated from the SoftTest input file.

19.2 Observations

Ease of use. SoftTest’s user interface provides simple menu-driven commands to ini-
tiate processing, review, and print results. It is also possible to invoke one of a number of
third-party text editors from within the tool so that graph specifications can be modified and
analyses rerun without leaving the tool. The hard part is developing the complete cause-
effect graph definition for software to be tested; this is not a limitation of the tool, but re-
flects the difficulty of the underlying specification task. Even though the cause-effect graph

19-3

SoftTest PART it

language is clear and simple, writing specifications in this form requires some experience.
Training courses offered by the vendor may also prove useful.

SoftTest can be used interactively or in batch mode. A command queue facility pro-
vides for specifying a group of cause-effect graph file name specifications to which subse-
quent processing will be applied.

Documentation and user support. The tool documentation and user support were
quite good. Installation was simple and the tool operated exactly as described in the refer-
ence manual. Two tutorials were provided—one that worked through examples of how to
run the tool and one that discussed requirements-based testing in more general terms.

Problems encountered. SoftTest performed as documented. No problems were en-
countered in its use.

19.3 Sample Outputs

Figures 19-1 through 19-8 provide sample outputs from SoftTest.

19-4

,f

PART i SoftTest

11/06/92 03:53p.m. D1 \CUSTCEG\IDA\LEXICON.CEG

C/E Graph Input for: C-E Graph for 4.1: Lexical Pattern Notation

TITLE ‘C-E Graph for 4.1: Laxical Pattern Notation'.
/*Graphed 7-13-91 Dby Blaine Bragg*/

/*This graph covers page 4, section 4.1*/

/*WOTE: NT maans Non_terminal expression®/

/*NOTE: RE means Reqular_expression®/

/*NOTE: VB msand Vertical Bar alternative separator*/

NODES
START_ANAL='Begin the Laxical Pattern Notation Checking'.
SC_POUND= ‘A sami-colon was found'
|*A ssmi-colon was not found'.
SC_RRROR='Display the O SEMI-COLON POUND error messags’|/b.
DEF_LEX_END='A semi-colon was found-define as the end of the lexicon'|/b OBS.

AS_FOUND_8E=‘'The Assign_symbol was found before the and of the lexicon'
T"rh. Assaign_symbol was not found'.

AS_RRROR='Diplay the NO ASSIGNMENT SYMBOL error message’{/b.

BEG_NT_EVAL='Non_tsrminsl defined-Begin Non_terminal syntax check'|/b OBS.

CH1_EQ_LET='The first character of the Mon_terminal ie a letter’

] ‘The first character of the Non_terminal is mot a letter’.
CH1_ERROR='Display the INVALID FIRST WT CHARACTER error messagse’|/b.
VALID_CHi='The first character of the Non_terminal is valid' |/b oBS.

SUB_CH_VAL=‘'The subseqent characters in the KT are valid'

| ‘one or more of the subsequent NT characters are invalid‘.
SUB_CHAR_EM='Display the INVALID SUBSEQUENT CHARACTER(S) @Xror massage’ llb.
DUB_US='There is a DOUBLE UNDERSCORE in the ¥T -xpz.l.Lon'l/b.
DUB_US_EM='Display the DOUBLE UNDRSCORE error message’|/b.
LL_LT_1LN='The NT exsprassion is less than or equai to ones line long'

| "The NT expression is more than one line long'.
NT_OR_EM='Display the NT EXPRESSION IS 700 LONG error message’|/b.
VALID_NT='The Non_terminal expression is valid‘|/b OBS.
RE_CONT='The reqular expression containa ons or more characters'

| 'The reqular expression has mo charscers (is NULL)'.
NULL_RR_EM='Display the NO REGULAR EXPRRSSION error message'|/b.
BEG_RE_EVAL='Begin the REGULAR EXPRESSION syntax evaluation'|/b OBS.

QS_VALID='The Quotation Symbol syntax and contents ars valid'oBs.
QS8='There is one or more quotations symbols in the RE*

| *There is no quotation sysblols in the RE'.
QS_BAL='The quotation symbols balance’.
Q8_OKX='The quotation symbol syntax is OKX'OBS.
QS_CONT="'Thers is one or more characters within each set of quotes’.
QS_Il=*''|{/b OBS.
Qs _I2=''|/b OBS.
UB_QS_RM='Display the UNBALANCED QUOTATIONS error message’ |/b.
NULL_QS_EM='Display the EMPTY QUOTATION SYMBOLS error message'|/b.

VB_VALID='The Vertical Bar syntax and contents are valid'{/b OBS.
VBe'Thars is one or more VB alternative separators in the RE'|/b.

SoftTest 4.0(BETA) #3740-000 GRAPE ENTRY Phase Input -]l =

Figure 19-1. SoftTest Graph Entry Phase input

19-5

SoftTest PART Il

11/06/92 03:53p.m. D1 \CUSTCEG\IDA\LKXICON.CEG

ch Graph Input for: C-E Graph for é.l1: Lexical Pattern Notation

VB_LS_CONT='There is one or more characters on the left side of each VB’

| '*There are no character on ths laft side of each VB'.
VB_RS_CONT='There is one or more characters on the right side of each VB'.
VB_Il='"}/bOBS.
VB_I2=""|/bOBS.
VB_LS_EM='Display NISSING LEPT SIDE ALTERNATE error message’ |/b.
VB_RS_EM='Display MISSING RIGHT SIDE ALTERNATE error message’ | /.

DD_VALID='The double dot syntax and contents are valid' |/ oss.
DD="There is double dot notation in the RE’

| 'There is no double dot notation in the RE'.
DD_LS_INQ='The characters on the left side are in single quotes’

]'Tho character on the left side are not in single gquotes’.
DD_LS_CONT='There is one or more characters on tha left side of the DD’

| *There are no character on the left side of the DD'.
DD_RS_INQ='The characters on the right side are in single quotes‘.
DD_RS_CONT='There is one or more characters on the right side of the DD'.
DD_LS VAL='Thae left side of the DD is VALID'ORS.
DD_RS_VAL='The right side of the DD is VALID'0BS.
DD_LS_QEN='Display the MISSING LEPT SIDE QUOTATION error messags'’ |/b.
DD_LS_CEM=‘'Display the DD EMPTY LEPFT SIDE QUOTATION error mesesage’|/b.
DD_RS_QOEN='Display the MISSING RIGHT SIDE QUOTATION srror message’|/b.
DD_RS_CEM='Display the DD EMPTY RIGHT SIDE QUOTATION error message’ | /b.
bD_Il=''|/b OBS.
bD_I2=''}/b OBS.

BRA_VALID='The Braces syntax and contents are valid‘OBS.
BRA='There are one or more braces in the RE’
| ‘There are no braces in the RE'.
BRA_BAL='The Braces in the RE balance'
|'The Braces in ths RE do not balance'.
BRA_CONT='There are one or more characters within the braces’
| ‘There are no character within the braces'.
BRA_X1=''}/b OBS.
BRA_I2="'|/b OBS.
BRA_UB_RM='Display the UNBALANCED BRACES error message’.
BRA_EMPTY_EM='Display the EMPTY BRACES error message’.

BRK_VALID='The Bracket syntax and contents are valid'0BS.
BRK='There are one or more Brackets in the RE’
| ‘There are no Brackets in the RE'.
BRK_BAL~'The Brackets in the RE balance’
| 'The brackets in the RE do not balance'.
BRK_CONT=‘'There are one or more characters within the braces'
| 'Ther are no characters within the braces'.
BRK_Il=''|/b OBS.
BRK_I2='"|/b 0OBS.
BRK_UB_RM ='Display the UNBALANCED BRACKETS error message'|/b.
BRK_ENPTY_EM='Display the EMPTY BRACKETS arror message'|/b.

SoftTest 4.0(DETA) #3T40-000 GRAPN ENTRY Phase Iaput -3 -

Figure 19-1 continued: SoftTest Graph Entry Phase input

19-6

PART Il

SoftTest

11/06/92 03:53p.m. D: \CUSTCRG\IDA\LRXICON.CEG

C/E Graph Input for: C~E Graph for ¢.1: Lexical Pattern Notation

VALID_RE='The regular expression is valid'(/b OBS.
VALID_LEX='The LEXICON IS VALID'|/b OBS.
DO_NEXT='Begin checking the next lexical statemant’.

CONSTRAINTS
MASK(not BEG_RE_EVAL,QS,VB,DD,BRA,BRK).
MASK(not DEF_LEX_END,AS_FOUND_BE).

MASK(not BEG_NT_EVAL, CH1_EQ_LXT).

MASK(not VALID_CH1,SUB_CH_VAL,DUB_US,LL LT_1LH).
MASK(not VALID_NT,RE_CONT).

NASK(not QS,QS_BAL).
MASK(not QS_OK,QS_CONT).
MASK(not VB,VB_LS_CONT,VB
MASK(not DD, DD_LS_INQ,DD
MASK(not BRA,BRA_BAL,BRA_CONT).
MASK(not BRK,BRK_BAL).

i
:
:
:

RELATIONS

¥
8
:
a
gl
E

VAL and not DUB_US and LL_LT 1LX.
8UB

£
Rg
2
£

EI

ID:1-Q8_Il or QS_I2.
EM:-Q8 and not Q8_BAL.

08_EM:1-QS_OK and not QS_COMT.

$828%2
8
?

E%

a3

_12:-VB and VB_LS_CONT and VB_RS_CONT.
_Il:=-not VB.

38
g’y

g

5

B

8

S

3

§f
B
3

OD_11:1- DD_LS_
DD_I2:-not DD.

SeftTest 4.0(BETA) #37460-000 ORAPE ENTRY Phase Iaput

Figure 19-1 continued: SoftTest Graph Entry Phase input

19-7

SoftTest

11/06/92 03:53p.m.

PART Il

D1 \CUSTCEG\IDA\LEXICON.CEG

¢/t Graph Input for: C-F Graph for 4.1: Lexical Pattern Notatiocn

DD_VALID:-DD_I1 or DD_I2.

DD_LS_QEM:-DD and not DD_LS_INQ.
DD_LS_CEM:-DD and not DD_LS_CONT.
DD_RS_QEN:-DD and not DD_RS_INQ.
DD_RS_CEM:-DD &nd not DD_RS_CONT.

BRA_I1:-BRA and BRA_BAL and BRA_CONT.
BRA_I2:-not BRA.

BRA_VALID:-BRA_I1 or BRA_I2.
BRA_UB_EM:-BRA and not BRA_BAL.
BRA_EMPTY_EM:-BRA and not BRA_CONT.

BRK_I1:-BRK and BRK_BAL and BRK_CONT.
BRK_I2:-not BRK.

BRK_VALID:-BRK_I1 or BRK_I2.
BRK_UB_EM:-BRK and not BRK_BAL.
BRK_EMPTY_EM:-BRK and not BRK_CONT.

VALID_RE:-BEG_RE_EVAL and QS_VALID and VB_VALID and DD_VALID and BRA_VALID

and BRK_VALID.

VALID_LEX:-VALID_RE.
DO_NEXT:~VALID_LEX.

TESTS

SoftTest 6.0(BETA) #3740-000 GRAPE ENTRY Phase Iaput

Figure 19-1 continued: SoftTest Graph Entry Phase Input

19-8

PART Il SoftTest

11/06/92 04:00p.m. D1 \CUSTCEG\IDA\LEXICON.POV

Functional Variations: C-E Graph for 4.1: Lexical Pattern Notation

NOTE: <UNTESTABLE> and <INPFEASIBLE> variations from the Test Synthesis
phase HAVE been merged into this report.

Functional Variations for:
DEF_LEX_END:-START_ANAL AND SC_FOUND
1. If START_ANAL and §C_FOUND
then DEF_LEX END.
2. If not START ANAL
(and SC_FOUND)
then not DEF_LEX END.
3. If not SC_FOUND
(and START_ANAL)
then not DEF_LEX END.

Punctional Variations for:
SC_ERROR:~START_ANAL AND not SC_FOUND
4. If START_ANAL and not §C_FOUND
then SC_ERROR.
5. If not START_ANAL
{and not SC_FOUND)
then not SC_ERROR.
6. If SC_FOUND
(and START_ANAL)
then not SC_ERROR.

Functional Variations for:
BEG_NT_EVAL:~DEF_LEX END AND AS |)|
7. If DEF_LEX_END and AS_FOURD_BE

then BEG_NT_EVAL.
8. If not DEF_LEX END

Punctional Variations for:
AS_ERROR:~DEF_LEX END AND not AS_FOUND_BE
10. If DEF_LEX END and not AS_PFOUND_BE
then AS_ERROR.
11. If not DEF_LEX END
(and not AS_POUND_BE MASKed)
than not AS_ERROR.
12. If AS_FOUND_BE
(and DEF_LEX END)
then not AS_ERROR.

SoftTest 4.0(BETA) #5740-000 VARIATION ANALYSIS Phase Output -1-=-

Figure 19-2. SoftTest Variation Analysis Phase Output

19-9

SoftTest PART I

11/06/92 04100p.m. D1 \CUSTCEG\ IDA\LEXICON.POV

Functional Variations: C-E Graph for €.1: Lexical Pattern Notation

Functional Variations for:
VALID_ CBI:-BEG NT xm AND CH1 lQ_!.l‘l'
13 unzcm:m-ndcalnom
then VALID CH1.
14. If not BEG_| u'r EVAL
(and CcH1 | lq_m MASKed)
then not VALID_CH1.
15. If not CH1_EQ_LET
(and BEG_NT BVAL)
then not VALID_CH1.

Punctional Variations for:
CH1_ERROR:~BEG_NT_EVAL AND not CH1_EQ_LET
16. If BEG_NT_EVAL and not CH1_EQ_LET

17. If not m_m' EVAL

Punctional Variations for:
VALID_RT:~VALID_CH1 AND 8UB_CH_VAL »
19. Itmm_mmcvnca and not DUB US and
LL_LT_1LN
then VALID_|
20. If not VALID_t
(and SUB_CH VAL MASKed and not DUB_US MASKed and LL_LT_ALN
MASKed)thsn not mxn NT.
21. If not SUB_CH VAL
{and VALID_CH1 and not DUB_US and LL LT 1LN)
then not mxn o
22. I1f not LL LT 1LN
(mmmmmmcamuumnnus)
then not VALID_NT.
23. If DUB_US
(and VALID_CH1 and SUB_CH_VAL and LL LT 1LN)
then not VALID_NT.

Functional Variations for:
sva_mn_xs:-mm_cm AND not SUR CH VAL

24. If VALID_CHl1 and not SUB_CH VAL

then 8UB_CHAR_RENM.

26. If SUB_CH_VAL

SoftTest 4.0(SETA) #ST40-000 VARIATION ANALYSIS Phase Output -3 -

Figure 19-2 continued: SoftTest Variation Analysis Phase Output

19-10

PART Il SoftTest

11/06/92 04:00p.m. D1 \CUSTCEG\IDA\LEXICON.POV

Prunctional Variations: C-E Graph for ¢.1: Lexical Pattern Notation

VALID_RE:-BEG_RE_EVAL AND QS_VALID AND VB_VALID AND DD_VALID AND BRA_VALID AND
BRK_VALID
129. If BEG_RE EVAL and QS_VALID and VB_VALID and DD_VALID and
BRA_VALID and BRK_VALID
then VALID RE.
130. If not BEG_RE EVAL
(and QS_VALID and VB_VALID and DD_VALID and BRA_VALID and
BRK_VALID)then not VALID_RE.
131. If not QS_VALID
(and BEG_RE_EVAL and VB_VALID and DD_VALID and BRA_VALID
and BRK_VALID)
then not VALID_RE.
132. If not VB_VALID
(and BEG_RE_EVAL and QS_VALID and DD_VALID and BRA_VALID
and BRK_VALID)
then not VALID_RE.
133. 1f not DD_VALID
(and BEG_RE_EVAL and QS_VALID and VB_VALID and BRA_VALID
and BRK_VALID)
then not VALID_RRE.
134. If not BRA_VALID
(and BEG RE_EVAL and QS_VALID and VB_VALID and DD_VALID and
BRK_VALID)then not VALID_RE.
13S. If not BRK_VALID
(and BEG_RE_EVAL and QS_VALID and VB_VALID and DD_VALID and
BRA_VALID)then not VALID_RE.

PFunctional Variations for:
VALID_LEX:~VALID_ RE
136. If VALID_RE
then VALID _LEX.
137. If not VALID_RE
then not VALID_LEX.

Functional Variations for:
DO_NEXT:-VALID_LEX
138. I1f VALID_LEX
then DO_NEXT.
139. 1f not VALID_LEX
then not DO_NEXT.

==> There were RO Infeasible Variations.
==> There were NO UNTESTABLE Variations.

SoftTeat 4.0CBETA) #5740-000 VARIATION AMALYSIS Phase Output -1 -

Figure 19-2 continued: SoftTest Variation Analysis Phase Output

19-11

SoftTest PART i

11/06/92 04:01p.m. D3 \CUSTCEG\IDA\LEXICON.POT

Test Synthesis Output: C-E Graph for 4.1: Lexical Pattern Notation

(Format: NONOAeNAMES |MORAW(Streamlined]|ALLeffects|BXTensiveTcs
('N' = Synthasis of MEW tests specified.]
{*§' = Expanded-SCRIPT Test Cases requested.)

TEBST CASE 1:

Cause(s):
Begin the Lexical Pattern Notation Checking
A semi-colon was found
Bffect(s):
A semi~colon was found-define as the end of the lexicon
Cause(s): :
The Assign_symbol was found before the end of the lexicon
Bffect(s):
Non_terminal defined-Begin Non_terminal syntax check

Cause(s)s

The first character of the Non_terminal is a letter
Bffect(s):

The first character of ths Non_terminal is valid

Causa(s)t
The subseqgent characters in the NT are valid
The KT exspression is less than or egqual to one line long
Effect(s):
The Ron_terminal expression is valid

Cause(s)?
The reqular expression contains one or more characters
Bffect(s):
Begin the REGULAR EXPRESSION syntax evaluation

Caunse(s):
There is one or more quotations symbols in the RE
The gquotation symbols balancs
Rffect(a):
The quotation symbol syntax is OK

Cause(s):

Thers is one or mors characters within each set of quotes
Effect(s):

The Quotation Symbol syntax and contents are wvalid

Cause(s):
There is one or mors VB alternative separators in the RE
There is ons or mors characters on ths left side of each VB
There is ons or more charactars on the right side of each VB
Bffect(s):
The Vertical Bar syntax and contents are valid

SoftTast 4.0(BEVA) #3740-000 TEST SYNTRESIS Phase Output

Figure 19-3. SoftTest Test Synthesis Phase Output

19-12

o PART lI SoftTest

11/06/92 04:01p.m. D3 \CUSTCEG\IDA\LEXICON.POT

Test Synthesis Output: C-£ Graph for ¢.1: Lexical Pattern Notation

Cause(s):
There is double dot notation in the RE
The characters on the left side are in single quotes
There is one or more charactsrs on the left side of the DD
® Effect(s)?
The left side of the DD is VALID

Cause(s)!
The characters on the right side are in single quotes
There is one or more characters on the right side of the DD
Bffect(s):
The right side of the DD is VALID
o The double dot syntax and contents are valiad

Cause(s):

There are one or more braces in the RE

The Braces in thes RE balance

Thers are one or more characters within the braces
Bffect(s)!

The Braces syntax and contents are valid

not Display the UNBALANCED BRACES error message

not Display the EMPTY BRACES error message

Cause(s)s
There are ons or more Brackets in the RE
The Brackets in the RE balance
Thare are one or more characters within the braoces
Bffect(s):
The Brackst syntax and contents are valid
The regular expression is valid
The LEXICON I8 VALID
Begin checking the next lexical statement

Source: New test

SoftTest 4.0(RETA) #5740-000 TRST SYNTEESIS Phase Output <2 -

Figure 19-3 continued: SoftTest Test Synthesis Phase Output

19-13

SoftTest PART I

11/06/92 04:01p.m. D1 \CUSTCEG\IDA\LEXICON.POT

Test Synthesis Outputs C-E Graph for ¢.l: Lexical Pattera Notation
TEST CASE 181

Cause(s):
Begin the Laxical Pattern Motation Checking
A semi-colon was found
Bffect(s):s
A semi-colon was found-define as the end of the lexicon

Cause(s):

The Assign_symbol was found before the end of the lexicon
Bffect(s):

Non_terminal defined-Begin Non_terainal syntax check

Cause(s):
The firet character of the Non_terminal is a letter
Effect(s):
The first character of the Non_terminal is valid

Cause(s):
The subsegent characters in tha KT are valid
The NT exspression is less than or equal to one line long
Bffect(s):
* The MNon_terminal exprasesion is valid

Cause(s)s
The reqular expression contains one or more characters
Effect(s):
Begin the REGULAR EXPRESSION syntax evaluation

Cause(s)t
Thare is one or wmore quotations symbols in the RE
The quotation symbols balance

Bffect(s)!
The quotation symbol syntax is OK

Cause(s):

There is one or more characters within sach set of gquotes
Bffect(s)s

The Quotation Symbol syntax and contents are valid

Cause(s):
There is one or more VB alternative separators in the RE
Thers is one or more characters on the left side of each VB
There is one or more characters on the right side of each VB
Bffect(s)s
The Vertical Bar syntax and contents are valid

Cause(s)s
There is double dot notation in the RB
The characters on the left side are in single quotes
There is one or more characters on the left side of the DD

SoftTest 6.0(BETA) #5140-000 TEST SYNTAESIS Phase Output - 3L -

Figure 19-3 continued: SoftTest Test Synthesis Phase Output

19-14

“

’ PART li SoftTest
b 11/06/92 04:01p.m. D1 \CUSTCRG\IDA\LEXICON.POT
Test Synthesis Output: C-F Graph for ¢.l: Lexical Pattern Notation
Effect(s)!

The left side of the DD is VALID

Cause(s)s
The characters on the right side are in single quotes
There is one or more characters on the right side of the DD
Bffect(s):?
The right side of the DD is VALID
The double dot syntax and contents are valid

cause(s):

There are one or mors braces in the RE

The Braces in the RE balance

Thare are one or more characters within the bracss
Bffect(s):

The Braces syntax and contents are valid

not Display the UNBALANCED BRACES error message

not Display the EXPTY BRACES erxor message

Cause(s):

There are one or more Bracksts in the RE

The brackets in the RE do not balance

There are one or more characters within the braces
EBffect(s):

" not The Brackst syntax and contents are valid
Display the URBALANCED BRACKETS error message
not Begin chacking the next lexical statesent

Source: New test

SoftTest 4.0(BETA) #5740-000 TRST SYNTRESIS Phase Output - 32 -

Figure 19-3 continued: SoftTest Test Synthesis Phase Output

19-15

SoftTest PART Il

11/06/92 04:01p.m. D3 \CUSTCEG\IDA\LEXICON.POY

Test Synthesis Output: C-F Graph for 4.l1: Lexical Pattern Notation

-=> For n = 25 Primary Causes, then
-—> 2°n = 33,554,432 THEORETICAL Maximum Number of Teat Cases.

-=> SoftTest genarated 18 Test Casaes, which yields a
- 1,864,135 to 1 Test Case Compressios Ratio.

-=> SoftTest genarated 139 Functional Variations, which yields a
— 8 to 1 Punctional Variatioas to Test Case Coampression Ratio.

-=> Test Synthesis Rlapsed Time: 7 Minutes

softTest 4.0(BETA) #3740-000 TEST SYNTRERSIS Phase Output

Figure 19-3 continued: SoftTest Test Synthesis Phase Output

19-16

- 33 -

PART Il SoftTest

11/06/92 04:01p.m. D1 \CUSTCBG\IDA\LEXICON.POT

Test Synthesis Output: C-E Graph for 4.l1: Lexical Pattern Notation

('N* = Synthesis of NEV teste specified.)
Test Cass vs. Functional Variation COVERAGE MATRIX

v

A

R

1 T{rsivlvivivivis
ATTYTT?LT"’F!!I!!IE#I!!
Yi!EEEE!HEE‘Fl“""‘
1 1sjs|s|slsisisISISITIITITITITIVITIY
o [r{v(riv|riviviviviafr{ o aqaisir(efy
N 1112]3{4]5]6}7]|8}9]0i1]2]3)4]5]6}7]8
11X XX xpx]eixixixjxjx|x
2| Jx

3 X

4 }

S X

&% RIXIRIXINININIAIRNENININININ
7% X{xpeixpxixpxxixixixix
8] Ix

9 X

10 X

1" x

2)x x1xIx|x|xjepxjuixjnixijnix
13ix XIXIAIRINIXINIXIXIX[XIX]
% Ix X

15

16 X

171 Ix X

18ix XIXIXIXEXIX XXX XXX
191X XIREXIAIRIN|XiNIX
20| x XX

21 X

b X

- X

24 X

S| Ix XX

26x XEIxx)inheixixixix
o X

a1 Ix X%

21 xixl Ixhbeixfxlxixixixix
30 X

N Ix X%

321% A I ExIxinieinixninix
Iix xixixixixixixix
34 Ix RIREXX|%

35 %

36 X

37 x XIxpxix

mjx XM XX yx)x
39ix x| [xixix]x
40 X

41 x| 1

£2|x XIXIX|xix X[{X|XIXIX
431 Ix x[xix] Ix

) X

45 n

41X XIX YR AN Ix
&7|x X|X|Xj%|x X (X|x|x|x
48] IX]

49 Ay 1x] Ix

30 x| X

51 X

s2{x K] PXIXpXix
53 4

sS4 In XInix] 1x

51X XINIXINIX Fl Xxjxix
361X x] Ixixix
57 L

58 X X

Figure 19-4. SoftTest Functional Variation Coverage Matrix

19-17

SoftTest PART Il

n X

i X X

n X

x X|Xixixix

7 X

n X

n X

T9{x XIX|Xjxix xX{x] |xjx

8| ix X

81 4

82 X

83x XIRIXER X%

84 |x X[x{xixix n|x| {xix

8s{ Ix X

85 X| {%jx X

a7 4 X

L X

89{x Xpoxl jxix

90 X

n X

9n2yx X| [XIX}X|xix

3 X

% X

95ix XXX Ixix

9% X

” X

9%8ix X} JXIXIxIxX)x

"ix Xixixj Ix

100 X

104 X X

102 X

103 X

104X X{X|X|x[x|x]x

105§x XPxxix|x X|xix| |x

106{ |x X

107 X Ixix }

108 X X

109 X

110§x X|xixix| 1x

1" X

112 X

113)x x| (XIxix|xix

116 % AIRIXIX

15 X

114 X X

17 X

118 X

1191x XXX xxnix

120{x XIXIXIKIX XIxixix

1291 Ix X

12 X IXix X

13 X X

124 X

125|x XIXIXIX|x

126 X

127 X

128{x X1 (x|xixxjx

1291x X

130} jx XIX]Xx{x

131 X

132 X

133 X

134 X

135 X

136(x X

1371 |x REXpRIIxin] xpx|xinixixn|x

138x 1]

19 ix KIkininixin] Inixixixixixix
ejojojojojojojojolojoo]0j0]010]|0]0

vARj4j210]012|2]2]1212[2]4|6]4]4 4141416

T07|5]121312131313131312]4]3]31515/5]3]|S

SoftTest 4.0(BETA) #3740-000 TEST SYNTERSIS Phase Output

Figure 19-4 continued: SoftTest Functional Variation Coverage Matrix

19-18

SoftTest

D1 \CUSTCEG\IDA\LEXICON.POT

b= 0l 49 = o= @)

St b e e B e p e b b b B b b B b B fe b e G e

Do G o e Do G0 Do B B e B 0 B B Gy fo= A0 G B e M S B B B pm Bl B 08 W

T

b b e b e b b B b e B e b B e e hm P e e e O e b

B e o e B G G G B W b B P D G B A B B G (A M B e B P B P BB WA

) WO

= e B P P e b D P oo Gm B G P P G oo o oo G B P O P P

o A o b b e P S e S P A P e B P M B P M Al W P B P B L BA B S

PART I

= Bl 08 = o= 4y

0= b b e 0 W b G oo B G B B b P B B Bo e Do B P B B B

G G G M D= G = 0 G B G B = e Gl b B 00 B0 O B B0 W G B g B 0 A A

[l K.

-

= 0 b b b e b b B B B e b B b b B B e B b B e B

o G b A o G Do e B U B B O B B Bl P B Sue B b W D P G B O o A A

= "

)

B oo oo Joo o Me = B B o B Bon P B B b G B U B B G 0= P W

O B B e D Gy G G e G Do B Poe B B P B G B G Ak B 00 G0 S0 G0 O B B0 =

=0 40 b = N

00 e e et B B e A O e b b M e G B b e P e

O Ao S G P B Bm S0 S B S B B B M B P G0 G B Do G B0 B Bh Db Bh M D= A

ol K Lol ol od

T ™ - - - 3

b e B e b= Ao B B O B = e G AL B P B B B A e B B 0 B e e W

19-19

WO 00 b b = b e e b e b Wt G b W W W - - -
W= = e b b e e e e e = b e e e G e e P B A B e e Gl Do e 0 B Al e W Be pe B e B P e
-) W 0 - = v b bm b bo bm b b= be e Bo W B o S W W Do B fa, P D B B e G P B e S e o b G B G W W
T = 0= e v b i N Y Y Y R Y b B D e D= 0 b b S i B B P P B P - b B A N O B b B e e B
T X2 = b= Pebe pade b bmbmbe e b bo the Po ta G o e G b B B B B e B P e W B e e W B B B B A B W
P 4t O = = et b= te pebm b bm b b= b= B e G pm e e G A e e B M B B B e e b (e G N % b b O G e e O W
T I - [™ T T T LTI T T
— W - - [M P o e O e G = P W = N = B = e

= 0 W =0

e b

LA X 1 3 3 I X I A A NI)

- e b= S e P b P P

XXX

TTTTTF7??71!77'17?7777777

.l"l"'.l""l‘c'.l"l"'l""'I'l'l"l"

Test Synthesis Output: C-F Graph for 4.1: Lexical Pattern Notation

Test Case vs. Node Name DEPINITION MATRIX

(*W* = Synthesis of NEW tests specified.)

11/06/92 04:0l1p.m.

R

PR
Ust|

EFFECTS

-mum mnaauumunu»ua

uuommnﬂuam

oY .u.a.a.a.u a.u.n.n.......m P o

!
.u .un G n
g m

rl

tl

A . TR -

Figure 19-5. SoftTest Test Case vs. Node Name Definition Matrix

SoftTest PARTII
Cobe) DO_RS GEN|P]?] | Ye|¢|¢|€|f] 1F|T|FIF|E|R]E|F
cobed oo ms_cemlrbe| | Lelelete|¢] [e|rivie|ele|FiF
o saa_tilv]e] | [v{xv|c|vieieleielv]r]x|e|r
< sea_i2}sir] } 1#|slsislpielvis|ein)Fininle
<se> sma_vatro[tfr] | frlviris]vielv]ete]v]v]v]elr
(obs) SRAUS_BN|F tlele|ele} [e]v|ee|eielr|r
Cobe)SRA_ENPTY_EN(F tieleleiel lelelrieleielele
<> satrfv)e] | Ixle}elv|vieleieie|viv|eiv]F
L. -4 BRK_12|F]T siF|FipIF|FiYF|F E]F|B]F|F
<ss> s vAtto{r{v| | [s|rix(vive|v|e|e[v]T(z]Tie
Cobs) BAX_UB_EN(F tlelelele] [eiv]e|eie|sis]r
Cobe)sRX_ENPTY_EW|F tle|sleie] [elelviele|eiele
<ss> vautomE(v|e] | Ie|eieleleieivie|e|e|eleiele
<o vaLto_Lex|v|e| | [ele|eieleiev|e|e|e|Fle]e]e
cobe) oo_kexv(r{el | [r[r|rtriririv|eirie|eirele

SoftTest 4.0(BETA) #ST40-000 TEST SYNTEESIS Phase Output

11/06/92 04:101p.m. D1 \CUSTCEG\IDA\LEXICON.POT

Test Synthesis Output: C-E Graph for ¢.1: Lexicel Pattern Notation

«=» for n & 25 Primmry Causes, then
s> 2°n = 33,554,432 THEORETICAL Meximm tmber of Test Cases.

«op SoftTest generated 18 Test Cases, which ylelds »
aad 1,864,135 to 1 Test Case Compression Ratio.

«s» SoftTest generated 139 Functionsl Variatfons, which yields o
==>» 8 to 1 Puactiocnal Variations to Test Case Comprassion Ratio.

==> Test Synthesis Elapsed Time: 7 Ninutes

SoftVest 4.0(BCTA) #5740-000 ITBST SYNTHESIS Phase Output

Figure 19-5 continued: SoftTest Test Case vs. Node Name Definition Matrix

19-20

PART I SoftTest

11/30/92 12:30p.a. D3 \CUSTCEG\IDA\LEXICON.POP

Cause~-Rffect Graph for: C-F Graph for 4.1: Lexical Pattern Notation

h
£

STAR | oer_f—,
Ay
oo
§ S

]

|
h
a3}
‘988

F.s
J
u.g

)
th

[*F
L
| o
& 4
[+

]
-.l
RE

FIE
s
@

!I

L"'f

=
Ul
I"—l"
5
=
o
t
=
_)
i
o

Wt~ = as_t as_vi
| - Tolac
:_7!. -—E [1} F— _l:gup
es_C1-| va_! v_L =
E —l =T e 1@:7:
—
=

Figure 19-6. SoftTest Cause-Eftect Graph

19-21

—

SoftTest PART I

i o

I
8
_
(i

=
|:.*.74_@|~—] e

i
| :

Figure 19-6 continued: SoftTest Cause-Effect Graph

-y

E

19-22

PART Il SoftTest

BRK
A|ENPT

h

SoftTest 4.0(BETA) #5740-000 PICTURE PRESENTATION Phase Output

Figure 19-6 continued: SoftTest Cause-Effect Graph

19-23

SoftTest PART i

11/30/92 12:12p.m.

Functional Requirement Report File
Pilename: D:\CUSTCEG\IDA\LEXICON.DOC

This document was extracted from SoftTest~generated data using
the following file and format specifications:
D:\CUSTCEG\IDA\LEXICON
Created/Last Modified: 11/06/92 04:01 p.m.
Yormat: NONOAeNAMES|NORAW([Streamlined)] |ALLaffects|EXTensiveTC
‘N' = Synthasis of NEW tests specified.
'§* = Expanded-SCRIPT Test Casas reguested.

AN RRR NN AR NN R AN SN N O NN RN AR NS N O R AT N RN AN RN AR A AR AN ARNANRE RN RERAC LR AR RARES

[NOTE: This document was created using "SoftTest”: a Computer
Assisted Software Engineering product from Bender & Associates
Inc., Larkspur, California. SoftTest generates test case output
based on user-provided functional requirsments specifications.
Based on these specifications, the following Specification Document

has been prepared.)

Functional Specifications for: C-B Graph for 4.1: Laxical Pattarn Notation

1. IF Begin the lLaxical Pattern Notation Checking
AND A semi~colon was found
THEN A semi-colon was found-define as the end of the lexicon.

2. IF Begin the Lexical Pattera Notation Checking
AND A semi-colon was not found
THEN Display the NO SEMI-COLON FOUND error message.

3. IP A ssmi-colon was found-define as ths end of the lexicon
AND The Assign_symbol was found before the end of the lexicon
THEN Mon_terminal defined-Begin Non_teraminal syntax check.

4. IF A semi-colon was found-define as the end of the lexicon
AMD The Assign_symbol was not found
THEN Diplay the NO ASSIGNMENT SYMBOL error message.

S. IF Non_terminal definsd-Begin Mon_terminal syntax check
AND The first character of the Non_terminal ie & letter
THEN The first character of the Non_terminal is valid.

6. IF Non_terminal defined-Begin Non_terminal syntax check
AND The tirst character of the Non_terminal is not a letter
THEN Display the INVALID FIRST RT CHARACTER error message.

. .

7. IF The first character of the Non_tarminal is valid

SoftTest 4.0(BETA) #740-000 Punctional Reguiremeat Report File

Figure 19-7. SoftTest Functional Requirements Report

19-24

PART Il SoftTest

11/30/92 12:112p.m.

Functional Requirement Rsport File

30. 1P {There are one or more Brackets in the RE
AND The Brackets in the RE balance
AND There are one or more characters within the braces])
OR {There are no Brackets in the RE)
THEN The Bracket syntax and contents are valid.

31. IF There are one or more Brackets in the RE
AND The brackets in the RE do not balance
THEN Display the UNBALANCED BRACKETS error Message.

32. IF There are one or more Brackets in the RE
AND Ther are no characters within the braces
THEN Display the ENPTY BRACKETS error message.

33. IF Begin the REGULAR EXPRESSION syntax svaluation
AND The Quotation Symbol syntax and contents are valid
AND The Vertical Bar syntax and contents are valid
AND The double dot syntax and contents are valid
AND The Braces syntax and contents are valid
AND The Bracket syntax and contents are valid
THEN The regular expression is valid.

34. IF The regular expression is valid
THEN The LEXICON IS VALID.

35. IF The LEXICON IS VALID
THEN Begin checking the naxt lexical statement.

SRR RER IR R R RNR AN AEARNA N AREN RN AN R ON RN R VNSO RNV AN AR AV EN OV RN A CASRNARNNAO RN S

In addition, the following constraints must be applied
to tha above specifications:

1. WHEN NOT Begin the REGULAR EXPRESSION syntax svaluation
THEN the following condition(s) are INDETERMIMATE:
There is one or more quotations symbols in the Rk
There is one or more VB alternative separators in the RE
There is double dot notation in the RE
There are ons Oor more braces in the RE
There are One or more Brackets in ths RE

2. WHEN NOT A semi-colon was found-define as the end of the lexicon
the following condition(s) are INDETRRMIMATE:
The Assign_symbol was found befores the snd of the lexicon

THEN
3. WHEN NOT Non_terainal defined-Begin Non_terminal syntax check
THEN the following condition(s) are INDETERKINATR:
The first character of the Non_tarminal is a letter

SoftTest 4.0(0ETA) #3740-000 Punctional Reguirement Report Pile -4 -

Figure 19-7 continued: SoftTest Functional Requirements Report

19-25

SoftTest PART I

11/30/92 12:12p.m.

Functional Requirement Report File

4. WHEN MOT The firet character of the Non_terminal is valid
THEN the following condition(s) are INDETERMINATE:
The subseqent characters in the NT are valid
There is a DOUBLE UNDERSCORE in the NT expression
The NT exspression is less than or equal to one lins long

NOT The Non_terminal expression is valid
the following condition(s) are INDETERMIMATE:
The reqular expression contains one or more characters

There is no quotation sysblols in the RE
the following condition(s) are INDETERMINATE:
The quotation symbols balance

NOT The qQuotation symbol syntax is OK
the following condition(s) are INDETERMINATE:
There is one or mors characters within each set of quotes

MOT There is one or more VB alternative separators in the RE

THEN the following condition(s) are INDETERMINATR:

There is one or more characters on the left side of each V3
There is ons or more characters on the right side of each VB

9. WHEN There is no double dot notation in the RE
THEN the following condition(s) are INDETERMINATR:
The characters on the left side are in single quotes
There is one or more characters on the left aide of the DD
The characters on the right side are in single quotes
There is one or more characters on the right side of the DD

10. WHEN There are no braces in the RE
THEN the following condition(s) are INDETERMIMATE:
The Braces in thea RE balance
There are one or mors characters within the hraces

11. WHEN There are no Brackets in the RE
THEX the following condition(e) are INDETERMINATR:
The Bracksts in ths RE balance
There are one or more characters within the bracas

softTest 4.0(BETA) #3740-000 Punctional Requiremesnt Report Pile -8 -

Figure 19-7 continued: SoftTest Functional Requirements Report

19-26

PART i SoftTest

11/30/92 12:13p.m.

2167A Template Document File
Filename: D;\CUSTCEG\IDA\LEXICON.TXT

This document template was extracted from SoftTest-generated dats
ueing the following file and format specifications:
L D3 \CUSTCEG\IDA\LEXICON

Created/Last Modified: 11/06/92 04:01 p.m.
Format: NoNodeNAMES |MORAW(Streamlined]|AlLeffects|EXTensiveTC
'N* = gynthesis of NEW tests specified.
*$' = Expanded-SCRIPT Test Cases requested.

RSN AR NN AN NN NN O AN AR ARO NN AN E RN AR E R AR AN T ER VNN NCRCARNANRANAGE VANV RARRRAAN SNSRI

4.1 C-B Graph for 4.1: Lexical Pattern Notation

{ MOTE: This document was created using "softTest": a Computer
Assisted Software Engineering product fros Bender & Associatas
Inc., Larkspur, California. SoftTest generates test case cutput
based on user-provided functional requirsments specifications.

It is ismperative that ALL of the tests specified by SoftTest be
successfully run using the SAKE version of any program module(s)
under test in order to assure that full functional coverage is
achieved.)

SoftTast 4.0(BETA) #3740-000 2167A Template Document File -1-

Figure 19-8, SoftTest 2167A Document Template

19-27

e

SoftTest PART Ul

11/30/92 12:13p.a.

2167A Template Document Pile

4.1.1 TEST CASE LEXICON-01

This is a functional test case intended to demonstrate that the

requirements listed in the next section perform correctly.

4.1.1.1 LEXICON~01 REQUIREMENTS TRACEABILITY

This test case will test the following functional requirements:
1. I¥ Bagin the Lexical Pattern Notation Checking

AND A seai-colon was found
THEN A semi-colon was found-define as the end of the lexicon.

2. I Begin the Laxical Pattern Notation Checking
AND A semi-colon was not found
THEN Display the %0 SEMI-COLON POUND error message.

3. IF A eami-colon was found-define as the end of the lexicoa
AND The Assign_symbol was found before the end of the lexicon
THEN Won_terminal defined-Begin Non_terminal syntax chack.

4. IF A semi-colon was found-define as the end of the lexicon
AND The Assign_symbol was not found
THEN Diplay the NO ASSIGIMENT SYMBOL error messsge.

S. IF Noo_terminal defined-Bagin Non_terminal syntax check
mmtm:em-cu:ozmlouunmxu.m
mmtunemmuozmmmumm.

6. IF Non_terainal defined-Begin Non_terminal syntax check
AND The first character of the Non_terminal is not a letter
THER Display the INVALID FIRST NT CHARACTER error asssage.

7. IF The firet character of the Non_terminal is valid
AND The subseqent characters in the NT are valid
AND The NT exspression is less than or equal to one line long
AND WOT There is a DOURLE UNDERSCORE in the NT expression
THEN The Non_terminal expression is valid.

8. IF The first character of the Non_tarminal is valid
AND One or more of tha subsequent NT characters are invalid
THEN Display the INVALID SUBSEQUENT CHARACTIER(S) 6rror message.

9. IF The first character of the Non_teraminal is valid
AND There is a DOUBLE UMDERSCORE in the NT expression
THEN Display the DOUBLE UNDRSCORE error message.

10. IF The first character of the Non_terminal is valid
AND The NT expression is more than ons line long
THEN Display the NT EXPRESSION IS TOO LONG error message.

SoftTest 4.0(0ETA) #3740-000 2167A Tesplate Document File

Figure 19-8 continued: SoftTest 2167A Document Template

19-28

PART Il

11/30/92 12:13p.m.

SoftTest

2167A Template Docusent File

35. 17

{Thers are one or more braces in the RE

AND The Braces in the RE balance

AND Thare are oneé or more characters within the bracss]
[There are no braces in the RE]

THEN The Braces syntax and contents are valid.

36. IF There ars one Or more braces in the RE

AND The Braces in the RE do not balance

THEN Display the UNBALANCED BRACES error message.

4.1.1.2

4.1.1.3

LEXICON-01 INITIALIZATION

LEXICON-01 TEST INPUTS

Bagin the Lexical Pattern Notation Checking

A semi-~colon was found

The Assign_symbol was found before the end of the lexicon
The first character of the Non_terminal is a letter

The subseqent characters in the NT are valid

The NT exspression is less than or equal to one line long
The reqular expression contains ons or more characters
There is one or more quotations symbols in the RB

The quotsation symbols balance

There is ons or more characters within esach set of quotes
Therse is one or more VB alternative separators in the RE
There is one or more characters on the left side of each VB
There is one or more characters on the right side of each VB
Thare is double dot notation in the RE

The characters on the left side are in single quotes

There is one or more characters on the left side of the DD
The characters on the right side are in single quotes

There is one or more characters on the right side of the DD
There are one or more braces in the RE

The Braces in the RE balance

There are one or more characters within the braces

There are one or more Brackets in the RE

The Brackets in the RE balance

There are one or more characters within the braces

4.1.1.4 LEXICON-01 EXPECTED TEST RESULTS

1.
2.

A semi-colon was found-define as the end of the lexicon
Non_terminal defined-Begin Non_terminal syntax check

SoftTest 4.0(SETA) #3740-000 2167A Teaplate Document Pile

Figure 19-8 continued: SoftTest 2167A Document Template

19-29

SoftTest PART Il

11/30/92 12:13p.nm.

2167A Teamplate Document Pile

3. The first character of the Non_terminal is valid
4. The Non_terminal expression is valid

5. Begin the REGULAR EXPRESSION syntax svaluation
6. The quotation symbol syntax is OK

7. The Quotation Symbol syntax and contents are valid
8. The Vertical Bar syntax and contents are valid
9. The left side of the DD is VALID

10. The right eide of the DD is VALID

11. The double dot syntax and contents are valid
12. The Braces syntax and contents are valid

13. NOT Display the UNBALANCED BRACES error message
14. ¥OT Display the REMPTY BRACES error message

1S. The Bracket syntax and contents are valid

16. The regular expression is valid

17. The LEXICON IS VALID

18. Begin checking the next lexical statement

4.1.1.5 1EXICON-01 CRITERIA FOR EVALUATING RESULTS

4.1.1.6 LEXICON-01 TEST PROCEDURR

Cause(s):
Begin the Laxical Pattern Notation Checking
A ssmi~colon was found
Bffect(s):
A semi~colon was found-define as the end of the lexicon

Cause(s):
The Assign_symbol was found before the end of the lexicon
Bffect(s):
Won_terminal definsd-Begin Non_terminal syntax chack

Cause(s):

The first character of the Non_terminal is a letter
Bffect(s):

The first charscter of the Non_terminal is valid

Cause(s)s :
The subseqgent characters in the NT are valid
The NT exspression is less than or aqual to one line long
sffect(s):
The Non_terminal expression is valid

Cause(s)s
The reqular expresaion contains one or more characters

SoftTest 4.0(BETA) #3740-000 2167A Templats Documsnt File

Figure 19-8 continued: SoftTest 2167A Document Template

19-30

PART il SoftTest

11/30/92 12:13p.m.

2167A Template Document File

Rffect(s):
Begin the REGULAR EXPRESSION syntax evaluation

Cause(s):
There is one or more gquotations symbols in the RE
The quotation symbols balance

Rffect(s):
The quotation symbol syntax is OK

cause(s)s

There is one or more characters within each set of quotes
Effect(a):

The Quotation Symbol syntax and contents are valid

Cause(s):s
There is one or more VB alternative separators in the RE
Thers is one or more characters on the left side of each VB
There is one or more characters on the right side of each VB
Bffect(s)s
The Vertical Bar syntax and contents are valiad

Causa(s):
There is double dot notation in the RE
The characters on the left side are in single quotes
Thers is one or more characters on the left side of the DD
Bffect(s)
The left side of the DD is VALID

Causs(s)!?
The characters on the right side are in single guotes
There is one or more characters on thes right side of the DD
Bffect(s):
The right side of the DD is VALID
The double dot syntax and contents are valid

Cause(®):
There are one or more braces in ths RE
The Braces in the RE balance
There ars one or more characters within the braces
Effact(a)s
The Braces syntax and contents are valid
not Display the UNBALAMCED BRACES error message
not Display the EIMPTY ERACES error message

Cause(s):

There are ona or more Brackets in the RB

The Arackets in the RR balance

Thare are ons or more characters within the braces
Rffect(s):

The Brackst syntax and contents are valid

The regular axpression is valid

SoftTest L.O(BETA) #3740-000 2167A Template Documant File -7 -

Figure 19-8 continued: SoftTest 2167A Document Template

19-31

ﬁ

SoftTest PART lI

11/30/92 12:13p.m.

2167A Template Document File

The LEXICON IS VALID
Bagin checking the naxt lexical statement

SoftTest 4.0(BETA) #3740-000 21674 Template Documant File

Figure 19-8 continued: SoftTest 2167A Document Template

19-32

PART il SQA:Manager

20. SQA:Manager

SQA:Manager is a management information and decision support system for software
testing. Essentially SQA:Manager provides a cataloging system for test documents and in-
ventory items, and a tracking system to record incidents and problems found during the test
process. Problem data is used to forecast quality metrics such as reliability and failure in-
tensity. Cost data is used to report on the cost of testing and the cost of repair. The test pro-
cess supported by SQA:Manager is based on a standard IEEE test methodology. As
marketed, the tool can generate test reports according to the associated IEEE standards, or
to conform with the appropriate U.S. Government standards. The user can, however, tailor
existing formats and create new report formats.

SQA:Robot is a companion capture/playback and comparison tool for MS-Windows
and OS/2 PC environments. It writes test procedures, test cases, test case results and inci-
dents directly into the SQA:Manager database.

20.1 Tool Overview

SQA:Manager is marketed by Software Quality Automation. Based on-site needs as-
sessment audits, this organization also develops custom testing tools. A user hot-line is
available. SQA:Manager has been available since 1990, and has over 100 users. It is lan-
guage independent and runs on IBM PC/AT, or compatible machines, under MS-DOS (ver-
sion 3.0 or higher) with MS-Windows. It also runs under OS/2 and UNIX. A network
version that operates on Novell’s Netware and 3COM local area network product is avail-
able. The tool’s database implementation is based on Borland International’s Paradox com-
mercial product, a relational database in conformance with IEEE recommendations. The
export capabilities of this database can be used to convert SQA:Manager data for use with
other PC applications such as Lotus 1-2-3. Paradox reporting functions can also be used to
extend those of SQA:Manager.

The evaluation was performed on an evaluation copy of SQA:Manager version 2.0 run-
ning on a WIN TurboAT. At the time of evaluation, the price of SQA:Manager was reduced
from $3,500 to $995.

SQA:Manager provides a cataloguing system for test documentation and test inventory
itemns. It defines an entity-relationship model for the software components under test with
documentation and other data generated in the testing process indexed to this model. Thus,

20-1

SQA:Manager PART I

SQA:Manager operates on a database of test-related information specific to a software
product being tested. (Multiple database are allowed so that a separate database can be set
up for individual products.) The database maintains an inventory of reusable test resources,
specifically test cases, test procedures, and testing tools. The specific types of test objects
recognized are as follows:

« Test Plan. Details the entire testing process, that is, the items to be tested and how,
the resources to be used, and the timeframe within which the testing is to occur. It
provides the links between software components, test cases, and test procedures.

« Test Design Specification. Details the ways in which a software feature is to be tested
and identifies the specific tests to be used.

¢ Test Procedure. The detailed, step-by-step instructions for test setup and operation,
and evaluation of test results.

« Test Cycle. A series of tests within a release of software.

« Test Case. A test case is a set of test data designed to achieve a particular test objec-
tive. A series of test cases are run within a test cycle.

* Test Incident. An unexpected test result requiring analysis and further investigation.
» Test Log. A record over time of the details of test execution, including events for each
cycle of testing. Typically, holds all activities for testing one version of given prod-
uct. Test results are recorded and may reference a test incident.
These test objects can be linked to test items, that is, any software item that is to be tested,
and test tools. This allows, for example, identifying which testing tools are used to run dif-
ferent test cases.

Incidents and problems identified in both development activities and field operation
can be recorded. They are maintained separately. Problems may be entered directly into the
problem database, or by classifying an incident as a problem. Problems are given a sever-
ity, resolution type, and status. They can be assigned to a specific person for resolution and
so support the scheduling of resources for problem repair. Documentation of actual reso-
lution enables accounting of related costs.

In some cases, test log, incident, or problem data may be generated by some other tool,
or word processor. If this data is in the form of comma-delimited ASCII text files, tem-
plates can be created that define how it should be imported into SQA:Manager’s database.

Various types of reporting are available. For a given test cycle, SQA:Manager produc-
esreports identifying what test cases were run and their results, and the summarized results
of all test cases. For a given test case, the results through all test cycles can be reported.
Cost reports are available for the cost of testing and the cost of repair. General reporting on

20-2

PART Ii SQA:Manager

problems and incidents experienced is available. Problem data is also used to generate re-
liability metrics using Musa’s logarithmic Poisson execution time model. Failure intensity
reports indicate the expected number of failures per unit of time, whereas reliability reports
give the probability of failure-free operation. Both types of report provide additional infor-
mation such as the amount of additional testing time needed to meet a targeted reliability
objective. The accuracy of these estimates depends on the amount of problem data. SQA:-
Manager documentation recommends that the reliability model is only applied if there are
more than 100 problem reports, testers are at least 25% through testing, and the software
under test exceeds 25,000 lines of code. Finally, reports on the software under test, docu-

ments, inventory contents, and test log are available.

Many of the reports are available as either tables, bar charts, or line graphs. Before
printing any predefined report, the user can change the report title and x- and y-axis labels.
Some dozen filters are predefined for both incident and problems reports. These can be
used, for example, to limit problem reporting to problems not yet resolved. The user can
easily prepare templates that generate additional reports, defining the items to appear along
with primary and secondary sorting keys.

Predefined templates are provided for test plans and test design specifications. SQA.:-

Manager comes with three prepackaged template groups, as follows:

« IEEE Standards
a. IEEE Std 730, Software Quality Assurance Plans

b. IEEE Std 829, Software Test Documentation
c. IEEE Std 1008, Software Unit Testing
d. IEEE Std 1028, Software Reviews and Audits

« U.S. Military Standards
a. MIL-STD-480, Configuration Management

 U.S. Department of Defense Data Item Descriptions and Standards
a. DI-MCCR-80014, Software Test Plans

b. DI-MCCR-80015, Software Test Description

¢. DI-MCCR-80017, Software Test Report

d. DI-QCIC-80572, Software Quality Program Plan

e. DoD-STD-2167A, (Excerpt) Defense System Software Development

SQA:Manager includes a set of administration functions. These allow an administrator
to specify the relationships between a product, programs (a logical division of products),

20-3

SQA:Manager PART i

modules (a logical division of programs), documents, and versions. The ability to reference
a program, or module, from more than one product supports software reuse.

Security is provided by identifying allowable users, each of whom is given a password.
Users are distinguished by organization to allow, for example, identifying problems report-
ed by customers as opposed to those reported by testers. Each user is given a particular set
of access privileges. In the case of problem reporting, for example, a user can be given the
ability to add or change descriptions, set the status, enter resolution or follow-up action and,
for a problem, assign the person responsible for resolution. Setting up for a new project re-
quires establishing a cost base that will be used for cost reporting. Here the administrator
can define an unlimited number of cost codes, each of which has an associated hourly rate.
Finally, the administrator can establish the necessary operating profile, such as the phone
numbers and communications ports to be used with remote communications.

20.2 Observations

Ease of use. SQA:Manager provides a menu-driven interface, where the user may use
either the keyboard or mouse to make selections. Three types of screens are supported: field
entry screens, check boxes, and item selector lists. After a basic function has been selected,
the tool guides a user through the steps in that function, capturing information through tem-
plates. Where appropriate, a pick list function is provided to display the options for a text
field and allow the user to select from this list. Graphical outpuis are available in the form
of bar charts, line graphs, and tables. Context-sensitive on-line help is supported, but pro-
vides only terse messages.

A programming module is provided to facilitate customizing or extending SQA:Man-
ager. The tool can be customized in several ways. The text in reports and help messages can
be changed, along with field and button labels. The contents of field entry screens and item
selector lists can be modified. The document templates can be changed, for example, to re-
flect particular organizational or product requirements. As previously mentioned, the for-
mat and contents of reports can be modified, and new report types created. Additionally,
user-defined templates to convert comma-delimited ASCII text files support importing of
problems, incidents, and test logs.

Documentation and user support. The supplied documentation was well-written and
complete. The Technical Reference Manual provides information to not only customize
SQA:Manager, but to extend SQA:Manager functions and integrate them with other soft-

20-4

ﬁ

e PARTII SQA:Manager
ware packages. SQA staff were both friendly and helpful. They answered all questions
uickly.
° q y
Problems encountered. The installation of SQA:Manager was straightforward. No
problems were encountered in its use.
® 20.3 Recent Changes and Planned Additions
A new version of SQA:Manager running under MS-Windows has been released. A ver-

sion for the DEC Ultrix system is expected to enter beta testing soon.

20.4 Sample Outputs

Figures 20-1 through 20-18 provide sample outputs from SQA:Manager.

20-5

SQA:Manager PART II

Test Plan Report - Current Version

Plan ID: ACTIIIO2PN

Plan Name: AP & AR TEST PLAN

Description: TEST PLAN FOR VERSION 2.00 OF ENTIRE
AP AND AR PROGRAMS IN ACT III PRODUCT.

Version: 2.0
Effective Date: 11/3/90
Author: Beth Jones

Location: C:0CSACT20.PLN

Referenced Specifications:
ID: ACTIXIO2DS Name: AP & AR DESIGN SPEC

Referenced Software Components:
Product
Name: ACT IXII 2.00

Program
Name: ACCOUNTS PAYABLE 2.00
Name: ACCOUNTS RECEIVABLE 2.00

Module
Name: CHECK WRITER 2.00
Name: INVOICE WRITER 1.96

Test Plan Report - Revision History

Plan ID: ACTIIIO2PN

Plan Name: AP & AR TEST PLAN

Description: TEST PLAN FOR VERSION 2.00 OF ENTIRE
AP AND AR PROGRAMS IN ACT III PRODUCT.

Version: 1.5
Effective Date: 10/8/90
Author: Beth Jones

Location: DOCUMENTATION FILE CABINET
Version Description: FIRST VERSION

Version: 2.0 .
Effective Date: 11/3/90
Author: Beth Jones

Location: C:0CSACT20.PLN
Version Description: CONTAINS NEW SECTIONS FOR TESTING
PRINTING OF CHECKS AND INVOICES

Figure 20-1. SQA:Manager Test Plan for ACTHIO2PN

20-6

PART i

Test Specification Report ~ Current

Test Specification ID: ACTIIIO2DS

Test Specification Name: AP & AR DESIGN SPEC

Description: TEST DESIGN SPEC FOR VERSION 2.00
AP AND AR PROGRAMS IN ACT III

Version: 1.56

Effective Date: 12/6/90
Author: Beth Jones
Location: C:0CSACT156.DSN

Version Description: SAME AS VER 1.50 PLUS FIXES FOR
COSMETIC PROBLEMS.

Referenced Procedures:
ID: CHKRUNS Name: CHECK GENERATION TESTS
ID: INVRUNS Name: INVOICE GENERATION

Refereuced Test Cases:
ID: CHKDATA Name: CHECKING DATA PREP TESTS
ID: CHKPOST Name: CHECK POSTING TESTS

ID: CHKPRN Name: CHECK PRINTING TESTS
ID: CHKRPT Name: CHECK REPORT TESTS
ID: CHKSEL Name: CHECK SELECTION TESTS
ID: CHKSRT Namne: CHECK SORTING TESTS

ID: INV0001 Name: OPEN INVOICE REPORT TEST

ID: INVPRN Name: INVOICE PRINTING TESTS
Referenced Software Components:

Progran
Name: ACCOUNTS PAYABLE 2.00
Name: ACCOUNTS RECEIVABLE 2.00

Module
Name: CHECK WRITER 2.00
Name: INVOICE WRITER 1.95

Test Specification Report - Revisions

Test Specification ID: ACTIIIO2DS

Test Specification Name: AP ¢ AR DESIGN SPEC

Description: TEST DESIGN SPEC FOR VERSION 2.00
AP AND AR PROGRAMS IN ACT III

SQA:Manager

Version: 1.56

Effective Date: 12/6/990
Autbor: Beth Jones
Location: C:0CSACT156.DSN

Version Description: SAME AS VER 1.50 PLUS FIXES FOR
COSMETIC PROBLEMS.

Figure 20-2. SQA:Manager Test Specification Report for Test Spec ACTII02DS

20-7

SQA:Manager PART Il

Test Case Report - Current

Test Case ID INVPRN
Test case Name: INVOICE PRINTING TESTS
Description: TESTS FOR PRINTING INVOICES.

Tool ID:
Requirement ID:

Version: 1.2
Effective Date: 12/5/90

Developer:

Specification Location: C:CASESPECSNVPRN.DOC
Version Description: 2ND VER - ADD NEW PAGE LENGTH ROUTINE
C:CASESNDATAINVPRN. IN

C:CASESRESULTSNVPRN.OUT

Referenced Software Components:
Program
Name: ACCOUNT PAYABLE 2.00

Module
Name: INVOICE WRITER 1.95

Test Case Report - Revisions

Taest Case ID INVPRN
Test case Name: INVOICE PRINTING TESTS
Description: TESTS FOR PRINTING INVOICES.

Tool ID:
Requirement ID:

Version: 1.0

Effective Date: 9/10/90

Developer: Mike Brown

Specification Location: C:CASESPECSNVPRN. DOC

Version Desgcription: FIRST VERSION
C:CASESNDATAINVPRN. IN
C:CASESRESULTSNVPRN. OUT

Vexrsion: 1.2

Effective Date: 12/5/90

Developer:

Specification Location: C:CASESPECSNVPRN. DOC

Version Description: 2ND VER ~ ADD NEW PAGE LENGTH ROUTINE
C:CASESNDATAINVPRN. IN
C:CASESRESULTSNVPRN, OUT

Figure 20-3. SQA:Manager Test Case Report for Test Case INVPRN

20-8

PART I

Test Procedure Report - Current
Test Procedure ID CHKRUNS
Test Procedure Name: CHECK GENERATION TESTS

Description: TESTS FROM ENTERING CHECK DATA TO
POSTING CHECKS.

Version: 2.0
Effective Date: 10/30/90
Developer: Beth Jones

Procedure Location:
Version Description: MAJOR REV - ADDS PROCEDURES FOR CHECK
POSTING AND SELECTING TESTS.

Referenced Software Components:

program

Name: ACCOUNTS PAYABLE 2.00
Module

Name: CHECK WRITER 2.00

lest Procedure Report — Revisions
Test Procedure ID CHKRUNS
lest Procedure Name: CHECK GENERATION TESTS

Description: TESTS FROM ENTERING CHECK DATA TO
POSTING CHECKS.

SQA:Manager

Version: 1.0
Effective Date: 1/3/90
Developer: Beth Jones

Procedure Location:
Version Description: FIRST VERSION

Version: 2.0
Effective Date: 10/3090
Developer: Beth Jones

Procedure lLocation:
Version Description: MAJOR REV - ADDS PROCEDURE FOR CHECK
POSTING AND SELECTING TESTS.

Figure 20-4. SQA:Manager Test Procedure Report for Procedure CHKRUNS

20-9

SQA:Manager PART

Software Items Report
Date: 6/7/92

Product: ACT III 2,00

Program: ACCOUNTS PAYABLE 2.00
Module: DATABASE MANAGER 1.80
Module: CHECK WRITER 2.00
Module: JOURNAL 2.00
Module: USER INTERFACE 1.80

Program: ACCOUNTS RECEIVABLE 2,00
Module: DATABASE MANAGER 1.80
Module: INVOICE WRITER 1.95
Module: JOURNAL 2.00
Module: USER INTERFACE 1.80

Program: GENERAL LEDGER 2,00
Module: DATABASE MANAGER 1.80
Module: JOURNAL 2,00
Module: USER INTERFACE 1.80

Figure 20-5. SQA:Manager Software tems Report

Test Tool Report - lList

Tool 1D Tool Name

AUTOT AutoTester

ROBOT SQA:Robot 0S/2
ROBOT W SQA:Robot Windows
SQAM SQAManager
TESTPRO TestPro

Test Tool Report

Tool ID: TESTPRO

Tool Name: TestPro

Version: k P §

Vendor: Sterling Software

Purpose: Capture/Playback for MS-DOS

Date Acquired: 6/15/91
Location:

Figure 20-6. SQA:Manager Test Tool Report

20-10

P ==

PART I SQA:Manager

L Test Log Report
Test Log Name: ACT III VER 2.00 TESTING Test Log ID: ACT3320

Ref’d. Test Procedure:
Description: Testing for Alpha Releases A-H
of ACT III Ver 2.0

% Test Cycle Date Tinme Tester Test Case ID Incident ID
A 12/26/90 08:00 MIKEB CHKSRT 1
Garbage in upper left corner.
A 12/26/90 08:30 MIKEB CHKPRN 2
Truncated Payee Names (over 40 chars)
;. A 12/26/90 09:00 MIKEB CHKRPT 3
Mexory problem.
A 12/26/90 10:00 MIKEB 4
Exror 202 when AP selected from Main Menu - intermittent
A 12/26/90 11:15 NIKEB 5
Typo
A 12/26/90 15:00 MIKEB CHKSRT 6
Checks don’t appear in descending orderF
A 12/26/90 16:30 MIKEB CHKSRT)
Wrong system setup ~tests aborted
A 12/27/90 08:00 MIKEB CHKSRT 7
A 12/727/90 08:00 MIKEB CHKSRT 0
Second run was OK - operator error (I think)
A 12/27/9¢ 10:00 MIKEB CHKDATA 10
@ A 12727790 11:00 MIKEB CHKDATA 0
A 12/727/90 13:01 MIKEB 9
404 Exrorx
A 12/27/90 13:30 NIKEB INVO0O01 0
A 12/27/90 14:00 MIKEB INV0001 11
A 12/27/90 16:00 MIKEB 12
A 12/27/90 16:05 MIKEB CHKDATA 14
® A 12/27/90 17:00 MIKEB CHKDATA 0
A 12/27/90 17:15 MIXEB 0
A 12/27/90 17:50 MIKEB 17
A 12/27/50 18:00 MIKEB 18
A 12/27/90 18:30 MIKEB 20
A 12/28/90 08:00 MIKEB INV0001 23
A 12/728/90 09:00 MIKEB INV0001 0
® A 12/28/90 19:00 MIKEB 21
B 12/28/90 10:00 MIKEB CHKSRT 0
B 12/29/90 08:30 MIKEB CHKPRN 0
B 12/29/90 11:15 MIKEB INVPRN 0
B 12/29/90 13:00 MIKEB CHKDATA 0

Figure 20-7. SQA:Manager Test Log Report

20-11

SQA:Manager PARTII

Test Case Summary Report

Test Log Name: ACT III VER 2.00 TESTING

Ref’d. Test Procedure:

Test Log ID: ACT3320

Description: Testing for Alpha Releases A-H

of ACT III Ver 2.0

Passed : 9
Failed : 9
Aborted 1
Incidents 1?
Elapsed Time : 21.30

Figure 20-8. SQA:Manager Test Case Report for Test Case INVPRN

Problems By Repair Person

Est Fix Problem Asgn’d
Date I Progran Name Dev. Short Desc.
3 ACCOUNTS PAYABLE: 2.00 Checksorting- wrong order
S ACCOUNTS PAYABLE: 2.00 Checkprinting- Can’t use ind checks
6 ACCOUNTS PAYABLE: 2.00 Control Account—- selection error
8 GENERAL LEDGER: 2.00 Help doesn’t work
1o ACCOUNTS RECEIVABLE: 2,00
11 ACCOUNTS RECEIVABLE: 2.00 Open Invoice Rpt- last one missing
12 GENERAL LEDGER: 2.00
13 GENERAL LEDGER: 2,00
14 ACCOUNTS RECEIVABLE: 2.00 Postinvoices- missing posting date
15 GENERAL LEDGER: 2.00 CATHYW GL- won’t accept MM/DD/YY format
1/8/91 2 ACCOUNTS PAYABLE: 2.00 CATHYW Checkwriter- memory error.
1/78/951 7 ACCOUNTS PAYABLE: 2.00 CATHYW Checkrecording- Tasks Menu - in loop
1/8/91 9 ACCOUNTS PAYABLE: 2.00 CATHYW Chart of Accounts- Corrupted
1/718/91 1 ACCOURTS PAYABLE: 2.00 CATHYW Checkwriter- garbage
1/15/91 4 ACCOUNTS RECEIVABLE:2.00 CATHYW Checkdata- Unable to execute line 1232

Figure 20-9. SQA:Manager Problems Table

20-12

PART (I SQA:Manager

Fixed Problems Ready for Retest

Problem Submitter’s .
1D ip Status Fixed Program Module/Subsystem Short

1 MIKEB Submitted Check
2 MIKEB Assigned ACCOUNTS PAYABLE: 2.50 CHECK WRITER: 2.00 Check
3 MIKEB Submitted Check
4 MIKEB Submitted Check
S MIKEB Submitted Check
6 MIKEB Submitted Contr
7 MIKEB Assigned ACCOUNTS PAYABLE: 2.50 USER INTERFACE: 1.80 Check
8 MIKEB Submitted Help
9 MIKEB Assigned ACCOUNTS PAYABLE: 2.50 DATABASE WRITER: 1.80 Chart
10 MIKEB Submitted

11 MIKEB Submitted Open
12 MIKEB Submitted

13 MIKEB Submitted

14 MIKEB Submitted Posti
15 MIKEB Assigned ACCOUNTS PAYABLE: 2.50 GL -

Figure 20-10. SQA:Manager Fixed Problems Ready for ReTest

Repair Cost

Program Name: ACCOUNTS PAYABLE
Version: 2.00

Cost of Repair

Date Problem ID Developer 1D Time (bhours) Cost
12/728/%0 1 CATHYW 0.00
12/728/90 2 CATHYW 4.00 84.00
12/28/90 3

12/28/90 S

12/728/90 6

12/38/90 7 CATHYW 1.00 21.00
12728790 9 CATHYW 2.00 42.00
Total 147.00

Figure 20-11. SQA:Manager Cost of Repair Table

20-13

ﬂ

SQA:Manager PART I

Test lLog Report

Test Log Name: ACT III VER 2.00 TESTING Test Log ID: ACT3320

Ref’d Test Procedure:
Description: Testing for Alpha Releases A-H
of ACT III Ver 2.0

Cost of Testing

Date Time Tester Time (hours) Cost
12/26/90 08:00 MIKEB 0.50 - 10.50
12/26/90 08:30 MIKEB 1.00 21.00
12/26/90 09:00 MIKEB 0.75 15.75
12/26/90 10:00 MIKEB 0.50 10.50
12/726/90 11:15 MIKEB 0.25 5.25
12/26/90 15:00 MIKEB 1.50 31.50
12/26/90 16:30 MIKEB 0.50 10.50
12/27/90 08:00 MIKEB 0.25 5.25
12/27/90 10:00 MIKEB 0.50 10.50
12/27/90 11:00 MIKEB 2.00 42.00
12/27/90 13:01 MIKEB 0.75 15.75
12/27/90 13:30 MIKEB 0.50 10.50
12/27/90 14:00 MIKEB 0.75 15.75
12/27/90 16:00 MIKEB 0.75 15.75
12/27/90 16:0S MIKEB 0.25 5.25
12/27/90 17:00 MIKEB 1.00 21.00
12/27/90 17:15 MIKEB 1.00 21.00
12/27/90 17:50 MIKEB 0.50 10.50
12/727/%0 18:00 MIXEB 0.25 5.25
12727790 18:30 MIKEB 0.25 5.25
12/28/90 08:00 MIKEB 3.00 63.00
12728/90 09:00 MIKEB 0.75 15.75
12/28/90 10:00 MIKEB 0.50 10.50
12/28/90 19:00 MIKEB 1.50 31.50
12/29/90 08:30 MIKEB 0.50 10.50
12/29/%0 11:15 MIKEB 0.30 6.30
12/29/90 13:00 MIKEB 0.75 15.75
Total 442.05

®

Figure 20-12. SQA:Manager Cost of Testing
o
20-14
®
S

Cos<

PART Il SQA:Manager

BMU7 por-rmm s s T e e L T P R P R

Cost

s R R I I SR

FOVERE T (5 S S S S N S S

] —] - o]

72/ 1279/% 127317% W/ 17279 V. . .} 174791 17591
Dote

Figure 20-13. SQA:Manager Cost of Repair Graph

i .
...

:

"0
%%%%
N1 |1 .

Figure 20-14. SQA:Manager Cost of Testing Histogram

20-15

SQA:Manager

Lo

PART Il

Reliability Analysis
Poisson Geometric model

Date: 06/07/92

Program Name: TESTPROGRAM

Version: 1.00Aa

Total Testing Time (CPU hrs): 0

Total Failures Reported: 137
Target Reliability:
Confidence Interval: 908
Present Reliability .
0.00 /1.0 CPU hours

Low Limit:
Most Likely: 0.00 /1.0 CPU hours
High Limit: 0.00 /1.0 CPU hours

Additional Time Needed for Execution
CPU Time (hrs)

Low Limit: 224.8 936.9

Most Likely: 276.1 1150. 4

High Limit: 357.5 1489.8
Additional Failures to be Pound

Low Limit: 340 failures

Most Likely: 428 failures

High Limit: 568 failures

0.80 /1.0 CPU hours

Calendar Time (days)

Relidbility for

ACT Il] Version 2. 98

: ; a .
---------------- ?——-»---:——-—---.{~-..__----_-~_-'--_-_-_.’_~_—_..
- : ; : S
: H : : — Db jéct ive
: : : e :
B o : // . .
R T T i R TR B R
: -7 [~
--__w-------.-----,;g------; _______ [S J
JR S S U R
S S S (U S R S
H ‘
: :
J T g i- ------------ r--x
....................... T T TSR SR N A
............. -!-----__-_-___--E--_- --.:-__--.
: H |
: :
(1 J 28 F -4 b}

Figure 20-15. SQA:Manager Reliability Analysis Table and Graph

20-16

PART I SQA:Manager
Failure Intensity Analysis
Poisson Geometric modal
Date: 06/07/9%2
Program Naie: TESTPROGRAM
Version: 1.00A
Total Testing Time (CPU hrs): 0
Total Failures Reported: 137
Target Failure Intensity: 0.008000 failures/CPU sec
Confidence Interval: 908
Initial Failure Intensity .
Low Limit: 0.422475 fallures/CPU sec
Most Likely: 0.588194 failures/CPU sec
High Limit: 0.832898 failures/CPU sec
Present Failure Intensity
Low Limit: 0.075974 failures/CPU sec
Most Likely: 0.063783 failures/CPU sec
Bigh Limit: 0.054462 failures/CPU sec
Additional Time Needed for Execution
CPU Time (hrs) Calendar Time (days)
Low Limit: 1.5 6.2
Most Likely: 1.9 7.8
Bigh Limit: 3.5 10.3
Additional Pailures to be Found
Low Limit: 96 failures
Most Likely: 128 failures
High Limit: 180 failures
Failurae Intensity
______________ For ACT 111 Version 2. 00
__________________ I]
""""" e
\Prosant ST T N AR
N N S -
~ : :
e B) .
................ ‘.E\.‘.;f,....v.~..-...--_~_.. .
-
H
:Tf‘: IZ:IZ?:ZZZ?Z:ZI_:¥1?ZfZZ1ZIfZIf?"?&%;;';ii}m§§%§ff-.‘
- B s - e e e e e m m e e e et e e e ey - 4.._4.‘:“‘,4
-------------------- T I TR S FEO S|
..................... P - L e j P
. . !
L]

20-17

Figure 20-16. SQA:Manager Failure Intensity Table a:nd Graph

SQA:Manager PART Ul

Inc dents

Prek lems

[ncidents by Symptom
Forr ACT 111 Version 2. @4

R e e S P N S S 1ttt Sl uf e A
......................... \--
I \, RS
..

e o U B
5 s 7
Symp tom § St
tl-v—'rut tan
S Lot Mev

5 BF Tehy Baroier

Figure 20-17. SQA:Manager Plot of Incidents by Symptom

Problems By Severity
Forr ACT]11 Version 2. &4

'
. i

T H H : : T

.......................... = el e S S g =S I T e

7 | IR
Do)
Sever ity {1yt iERe

> ite Predsoed
Bystan Oresh

L 8 - Nejor Prebien

Figure 20-18. SQA:Manager Plot of Problems by Severity

20-18

PART Il SRE Toolkit

21. SRE TOOLKIT

The SRE Toolkit supports reliability growth modeling using the Musa-Okumoto soft-
ware reliability models. It takes a record of failure events, in terms of elapsed execution
time from the start of test, and estimates various software reliability measures that track the
progress of testing. This is particularly useful during system testing when the underlying
faults causing failures are removed and hence “reliability growth” is occurring.

21.1 Tool Overview

The SRE Toolkit is available from Software Quality Engineering who hold a license
from AT&T for this version of the AT&T software reliability engineering tools and accom-
panying training. The tools are provided as part of a consulting and training package. This
package typically includes needs assessment and planning. Assistance in conducting and
evaluating a pilot application is also available. The three day training courses are held at a
public location or at a client’s site. Attendance at a public course currently costs $995 per
person, while up to 20 people can attend an on-site course for a total cost of $10,000.

The tool has been available since 1990. There are two versions. One runs under Unix
System V on any supporting hardware. The other runs under DOS (release 3.3 onwards) on
an AT&T PC or compatible. Both versions of the toolkit require the awk program. While
screen graphics are available under MS-DOS, the Unix version of the tools generate pic
commands for a graphics output device and, therefore, need the associated pic utilities. The
evaluation was performed on the Unix version 3.11 of the toolkit.

The two main tools in the toolkit are est, the reliability estimation tool, and plot, the
graphics support tool. For est, the user specifies whether an exponential or logarithmic re-
liability model is required and the failure intensity objective that will be used to determine
when to stop testing. He can specify whether failure data entries should be interpreted to
correspond to individual failure events, or to the number of failures that occurred since the
previous failure entry or start of test interval (grouped data analysis). A testing compression
factor specifies the desired ratio of field execution time to test execution time allowing, for
example, more stress to be placed on in-house testing than fieid testing. In the case of the
exponential model, the user can also specify a failure time adjustment to adjust failure times
to take into account the incremental delivery of software to system test. For the logarithmic
model, a failure intensity decay parameter determines the rate of exponential decay.

21-1

SRE Toolkit PARTII

The est tool uses the fitted model to estimate several reliability measures over a range
of confidence limits. These reliability measures include the present failure intensity and the
additional failures, test execution time, and work days required to meet the specified failure
intensity objective. In the case of an exponential reliability model, the total number of fail-
ures that would be experienced after an infinite amount of execution time is also given. Fi-
nally, the expected calendar date when the failure intensity objective will be met and the
additional calendar time needed for testing that this implies are reported. In addition to such
tabular data, esr generates a file of plot commands for graphic output.

Prototype tools are included in the toolkit:

» resrusg. Uses simple regression analysis to estimate the testing resource usage param-
eters. It produces summary statistics for each recording period and estimates showing
the resources consumed per unit execution time and resources consumed per failure
parameter. resrusg also generates plots that show how well the regressions fit the orig-
inal data.

* reldem. Plots reliability demonstration charts that indicate, for a given failure inten-
sity objective, whether testing should continue.

* predat. Plots the completion date for testing, that is, when the failure intensity objec-
tive is met versus failure intensity objective. It also produces a table indicating testing
periods where a particular testing resource is a limiting resource.

« minfio. Plots the total life cycle costs versus failure intensity objective. It includes the
system test and operational life cost.

+ logmod. Plots the logarithmic reliability growth model using model parameters, ini-
tial failure intensity, and the failure intensity decay factor.

* expmod. Plots the exponential reliability growth model using model parameters, ini-
tial failure intensity, and total failures after infinite execution time.

21.2 Observations

Ease of use. The tools are written as shell scripts (or batch files in the case of the MS-
DOS version). Their operation can be tailored using parameters that are given in a param-
eter file or, in some cases, included with a tool’s input data. The parameters range from
specifying the formatting of an output plot to such details as the cost per failure identifica-
tion resource hour. They provide considerable flexibility in the application of each tool.

Documentation. The documentation provided in the form of Unix-like man pages is
both helpful and extensive. The definition of the file format for failure data facilitates im-
porting data. Installation was straightforward although minor problems arose due to system
dependencies.

21-2

SRE Toolkit PART Il

Problems encountered. The tools operated as described in the documentation.

21.3 Sample Outputs

Figures 21-1 through 21-9 provide sample outputs from SRE Toolkit.

21-3

SRE Toolkit PART I

FAILURE PARAMETER FILE IS tst_stg.fp

FAILURE TIME ANALYSIS WILL BE DONE

TEST COMPRESSION FACTOR OF 15.1 WILL BE APPLIED DURING ANALYSIS
FAILURE TIME FILE IS tst_stg.ft

FAILURE TIMES WERE ADJUSTED

ADJUSTED FAILURE TIMES FILE IS tst_stg.ad

GENERATING OUTPUT REPORT

SOPTWARE RELIABILITY ESTIMATION
EXPONENTIAL (BASIC) MODEL
TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

BASED ON SAMPLE OF 136 TEST FAILURES
TEST EXECUTION TIME IS 21.4559 CPU-HR
FAILURE INTENSITY OBJECTIVE IS 2.4 FAILURES/1000-CPU-HR
CURRENT DATE IN TEST 861109
TIME FROM START OF TEST IS 96 DAYS
CONF. LIMITS MOST " CONF. LIMITS
95% 90% 75% 508 LIKELY 50% 75% 90% 95%

TOTAL FAILURES 138 139 139 140 141 142 144 145 147

swsnrsnanes PATILURE INTENSITIES (FAILURES/1000-CPU-HR) swwsawnnswssw
INITIAL 1190 1234 1303 1370 1467 1566 1636 1710 1757
PRESENT 48.59 31.35 36.19 41.49 50.20 60.54 68.95 78.78 85.67

**% ADDITIONAL REQUIREMENTS TO MEET FAILURE INTENSITY OBJECTIVE ==«
FAILURES 3 2 3 3 5 6 7 9 10
TEST EXEC. TIME 12.91 13.79 15.38 16.84 19.33 22.20 24.52 27.23 29.15
WORK DAYS 3.08 3.29 3.70 4.15 4.95 5.97 6.87 8.00 8.85

CONPLETION DATE 861113 861113 861113 861114 861114 861117 861118 861119 661120

Y

GENERATING PLOT COMMANDS. COMPLETED! PLOT COMMAND FILE IS tst_stg.pc.

Figure 21-1. SRE Tookit Generated Rellability Measures

21-4

SRE Toolkit PART Il

Failures VS Exec. Time

- |

i 1
45 9 © 135 18 225

/]

e d ..,
—erm:

TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

Figure 21-2. SRE Toolkit Fallure vs. Execution Time Plot

21-5

SRE Toolkit

PART (I

Initial Intensity VS Exec. Time

2800 (- =
u60 |- i}
aol| i

1780

1440

1100

.. '... .:
': K . E “..'..o' o< L Sotesnssaneneenetttetiteccg,, .
» H P o *
%O 0\.‘.: . :n

LI H o X

s b

:..

1 1 1 |

o/

TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

Figure 21-3. SRE Toolkit Initial Intensity vs. Execution Time Plot

21-6

SRE Toolkit PART Il

Present Intensity VS Calendar Time

13012
10412 +

781.2 +

5212 |

2612 |

Objective = 24
1‘2 e i\ 1 L N 1
16.72 an 48.72 64.72 80.72 96.72

TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

Figure 21-4. SRE Tookit Present Intensity vs. Calendar Time Plot

21-7

PART Il

SRE Toolkit

Completion Date VS Failures

870328 |

870101 -
861119
861007

870213 |

108

81

TST DATA SET WITH STAGED DEVELOPMENT ADJUSTMENTS

Figure 21-5. SRE Tookkit Completion Date vs. Fallure Data

21-8

SRE Toolkit PART Il

Period Ident. Computer Appr. Corr. Items
Rate Rate Fail.Int. Work Corr.

1 26.8949 76.5281 39.1198 50.6 7

2 15.4162 25.7965 13,3607 87.5 6

3 22.3404 29.7872 27.6596 59 5

4 16.30866 31.9328 10.9244 170 19

5 24.2537 16.4179 10.4478 103.1 19

6 12,6506 11.8976 5.42169 66 19

? 6.17978 7.30337 3.37079 92.7 1o

8 6.39098 9.58647 4.51128 105.5 12

9 4.90716 8.32891 3.97878 75.1 20

10 5.13158 6.28947 1.31579 . 105.1 19

Failure Identification Resrources

thetai = 7.19208 hrs/CPU-br, mui = 0.571399 hrs/failure
Failure Correction Resources

muf = 6.05505 hra/fix

Computing Resources

thetac = 2.93493 hrs/CPU-hr, muc = 1.6195 hra/failure

Reformatted input is in file exéb.out

‘Work versus Items Corrected

1496 +

743

374

' e 1 H -

L 44 s + 132 176 2

Faflure Correction Ressurces

Figure 21-6. SRE Toolkit Testing Resource Usage Parameter Estimation

21-9

SRE Toolkit PART I

LIMITING RESQURCE PERIODS
DATE EX.TIME FAIL.INT. LIMITIING RESOURCE
CPU-HR F/KCPU-HR

901001 0 1000

FAILURE CORRECTION
901224 752.039 222.222

FAILURE IDENTIFICATION
999999 999999 0

CONTINUE

Figure 21-7. SRE Toolkit Reliabllity Demonstration Chart

21-10

|
g
&
g
-4

911111

910822

910602

910312

901221

901001

PART Il SRE Toolkit

COMPLETION DATE VS FAILURE INTENSITY (Fail/1000-CPU-HRS)

10 20 N 40 50

COMPLETION DATE AND FAILURE INTENSITY OBJECTIVE

Figure 21-8. SRE Toolkit Completion Date vs. Fallure Intensity Output

21-11

SRE Toolkit

PART Il

COST ($M) VS FAIL. INT. OBJ. (/1000-CPU-HRS)

.............. g,,.,“”
......... SE—
10 2 »))

LIFECYCLE COST AND FAILURE INTENSITY OBJECTIVE

Figure 21-9. SRE Toolkit Lite Cycle Cost and Fallure Intensity Objective Plot

21-12

PART Il T

22. T

T generates test data from requirements information and automatically provides tracing
between tests and defined software actions. Its goal is to generate the minimum number of
traceable, unique test cases that will exercise every operation and each of a set of vendor-
defined probable errors at least once. Test adequacy is assessed based on requirements cov-
erage, input domain coverage, output range coverage and, optionally, structural coverage.
T can be used during any software development stage; during maintenance test data is gen-
erated for software changes only. T is already used by various government organizations,
including the Naval Avionics Center, the Jet Propulsion Laboratories, Naval Coastal Sys-
tems Center, and U.S. Army Forts Monmouth and Sill.

Runner is a companion tool that provides test capture/playback for C.

22.1 Tool Overview

T was developed by Programming Environment Inc. In addition to T and Runner, this
organization markets consultancy and training services, and supports tool users with a quar-
terly newsletter. T has been available since 1987 and has over 1,000 users. It is available
for PC/MS-DOS and VAX/VMS platforms, and various workstations under Unix. Training
is a prerequisite for tool purchase and costs $1,500 per person at Programming Environ-
ments, Inc. or $10,000 for an on-site workshop. At the time of evaluation, prices for T itself
started at $7,000. T, and training materials, are, however, provided free to any university
that teaches courses on software testing.

Interfaces between T and some leading CASE tools are available. An interface to Team-
work is marketed by Cadre Technologies, Inc. and Interactive Development Environments
markets an interface to StP. (Boeing has developed a proprietary interface for the Exceler-
ator CASE and Texas Instruments for their Information Engineering Facility.) Support for
reverse engineering of TSDL specifications from existing code is also available. In this
case, Cadre markets tools to reverse generate a substantial part of TSDL specifications from
Ada, C, or Fortran. (Boeing is developing a proprietary tool providing the same function
for COBOL. Boeing is also developing tools to generate Ada and C code from TSDL spec-
ifications.) Code generation may also be supported by IBM’s current effort to convert from
TSDL to Z.

22-1

T PART I

To support test execution, interfaces between T and the AutoTester Corp. product Au-
toTester, the Mercury Interactive Corp. product XRunner, and Tiburon’s Ferret capture/
playback tools are commercially available.

The examination was performed on T version B3.0, running on a Sun SPARC worksta-
tion under Unix. This version was a demonstration copy of T, fully functional with the ex-
ception that only a limited number of data definitions and sentences can be processed at one
time and some reports are not generated. Additionally, the full set of test design rules is pro-
prietary information only available with purchase of full version; as a consequence, the
sampling rules cannot be changed and features such as random sampling are not available

in the demonstration version.

Before using T, the user must prepare a description of software actions, data, events,
and condition states. At the system level, this type of requirements information may be de-
rived from sources such as data flow diagrams, state transition diagrams, entity relationship
diagrams, and control diagrams. At the design or unit level, module descriptions will be the
primary source. The description is specified in the T Software Description Language
(TSDL), a superset of the Semantic Transfer Language (STL) [IEEE 1992]. TSDL allows
specification of operation statements and definitions for data items, conditions, and states.
It also supports event types with multiple inheritance for operations supported by temporal
conditions. Standard templates are provided to help write TSDL descriptions. The collec-
tion of resulting ASCII files is called a Software Description File (SDF).

Once an SDF has been prepared, the first component of T, called Tverify, can be run.
This translates the SDF into a Software Description Data Base (SDDB) and then checks this
database for syntax errors and to see whether it contains the necessary and sufficient infor-
mation for test case design and preparation. This verification also provides metrics such as
counts of actions, states, conditions, events, and data items defined in the SDF, and error
counts. A cross-reference report shows where every item is used (this report is not available
with the demonstration version).

After successful verification, the user can request T to design test cases. Here the sec-
ond T component, called Tdesign, takes information from the SDF to group actions into ap-
propriate states. Test design rules are applied to partition data item domains such that all of
the values of the data item in a partition will probably be processed in the same manner.
The test design rules used by T are derived from the following test techniques:

22-2

PART Il | T

« Functional testing. The input domain is partitioned into classes such that each mem-
ber of a class causes a given action to be executed. Test data is selected from these
partitions that will cause all actions to be exercised.

+ Equivalence class partitioning. The input domain is partitioned into a number of
equivalence classes such that a test of a representative value of each class is equiva-
lent to a test of any other value. The minimum set of test data that will invoke as many
different input conditions as possible is selected from these partitions.

» Boundary value analysis. The input domain is partitioned into a number of equiva-
lence classes. Test data is chosen that lies at the edge of these partitions to reflect the
boundaries of the input domain.

« Cause-effect graphing. The input and output domains are partitioned into classes that
specify which input classes cause which outputs to occur. Test data is selected that
will cause all effects to be exercised.

« State-directed testing. Test data is selected to cause every transition between states to
be exercised.

» Event-directed testing. Test data is selected to cause every event (some signal passing
from the external world) to be exercised.

A fault-directed approach is used to select samples from the partitions yielded by the

above techniques. This approach guides the selection of both valid and invalid samples that

are likely to detect errors. By default T selects the following samples:
* For the valid subdomain:

a. Low bourdary value,
b. Just above low boundary value,
c. Reference value (midway between the low boundary and high boundary values),
d. Out-of-type values 1 to n, '
e. Just under high boundary value, and
f. High boundary value.

« For the invalid subdomain:
a. Just below low boundary value, and

b. Just above high boundary value.

The actual values taken, of course, depend on the type of the data item in question. Out-of-
type samples for an integer, for example, are a decimal, single character, and list of charac-
ter values. As appropriate, additional samples are taken; for integers that include the value
zero, for example, a troublesome sample is taken, with value zero. Though not experienced
in the course of this examination, the user can define his own samples and modify the sam-
pling rules. For example, the user can add additional normal values and abnormal values.

22-3

T PART 1l

A technique called guided synthesis is used to combine samples. This method provides a
repeatable strategy for probing a two dimensional testing space where only one data item
is varied at a time, the others being held at a normal, or reference, value.

Tdesign also creates the Test Case Data Base (TCDB) which contains one file per test,
designed for easy use by test execution tools. Test design metrics provide all the non-sub-
jective values used for function point calculation. (The test design metrics report is not
available with the demonstration version. The trace report that provides a cross-reference
between software actions and tests is similarly not available; this information is, however,
included on a case-by-case basis in the test case summary report that details each generated
test case.)

T supports test execution by providing a model for calculating test coverage. T treats
test coverage as including requirements, input domain, output range, and structure cover-
age. These factors are weighted individually and summed to produce an overall Testing
Comprehensiveness (TC) measure. The user can adjust the weights to, for example, reflect
different priorities at unit, integration, and system test levels. Requirements and input do-
main coverage are automatically reported by T. Currently, the output range and structure
coverage must be recorded manually, and TC calculated manually. An on-line pass/fail re-
cording facility is under development that will allow a user to specify test priorities and
record dates of execution and test results to allow automating this calculation.

22.2 Observations

Ease of use. The demonstration version of T is easy to install and use; the difficult part
lies in creating the TSDL description. Although the demonstration version is limited to a
character-based menu user interface, the full version of T allows users a choice between
this and a graphical user interface, command line interface, or script interface. Context-sen-
sitive, multi-level on-line help is available.

Documentation and user support. The documentation provided with the demonstra-
tion version of T included a full description of TSDL and was adequate for its use. Pro-
gramming Environments, Inc. were very helpful in answering questions.

Problems encountered. The demonstration version operated as described in the docu-
mentation.

22-4

PART Il T

22.3 Recent Changes and Planned Additions

A new component is now being delivered with T. Called Tprepare, this component pro-
vides for rule-based preparation of test documentation. The user defines his own rules al-
lowing, for example, documentation to conform to DoD or IEEE standards.

Several new features are expected to be released in the first quarter of 1993. Torder, a
new T component, will order test cases and write test scripts to handle the necessary test set
up and clean up. Another component, Quantifier, will take user-supplied test results to au-
tomatically calculate and report on the TC coverage measure. T will also support generation
of an operational profile to support Musa’s reliability assessment.

An interface to the AutoTester test execution tool is under development.

22.4 Sample Outputs

Figures 22-1 through 22-7 provide sample outputs from T.

22-5

T PART Il

/* This Software Description File, SDF, contains a partial s/
/* specification. There is enough information in this SDF to 74
/* illustrate the STL and the basic processing in T. There is */
/* not enough information in this SDF to specify a complete t/
/* lexical analyzer generator or to demonstrate T completely. L74
S_packet Adalex_1
has subject *Adalex_specification” ;
has content version b S
has description "This S_Packet sentence "
. "identifies the set of "
*information in thig file. "
#include <tsdl.std> /* This line includes standard definitions 74
/* The standard definitions will help this sdf, 74
/* but they will also causs soms extra definitions =/
/* to appsar in the report called verify.rpt \74
/. l/
/* =-———=——==--—— Begin Action Definitions ./
/* */

/* ————— The words, identifier and integer, are keywords in IEEE 1175 ~———a/
/* —=——— 80 they definition will cause T to generate comments. Howaver —--w/
/* ————=— there are no reserved words in the T scanner/parser $o0 the ————-—-u/

/* —=—— key words will be processed correctly. L74
Action Adalex
is actiontype internal;
is selected by *invocation® ;
is concluded on "termination® ;
uses dataitem context_and_lexicon ,
identifier, /* Patternsg =/
letter, . /* Patternsg */
digit, /* Patternzs =/
letter_ox_digit, /* Patterns */
integex, /* Patterng */

decimal_literal, /* Patterns */
operator_symbol, /* Pattexrns =/
left_parenthesis, /* Patterns w/
right_parenthesis, /* Patterns t/
combining option ;

produces dataitea a_new_lexical_analyzer,
Standard_Xrror File ;

has desoription *The scanner produced depends upon "
*three items: 1- A data typs, 2 .
“table, defining tokens, 2- A .
get_next_character procedure, and
*3- A make_token procedure. '

Figure 22-1. T Sample SDF

22-6

PART Il T
/* */
/* =~——=————=w——— Begin Data Definitions */
’* */
Dataitem context_and_lexicon
has placeholder value *this ishould be the input context an
has description "On page 5 of IDA Paper P-2100

[]
"the specification for Adalex .
*names a context_clause, a .
*generic_formal_ part, a separate '
*parent_name and a lexicon. The *

_"named items are not defined in
*p-2100 so they are illustrated "
" in this file with a placeholder *
"or to-be-defined value."

Dataitem identifier is an instance of datatype identifier_t .

Datatype identifier_t
is datatypeclass string;
has values //71A~2a~2]1,64_[A-Za-20-9)1,64// ;
has valid subdomain as_spaecified;
has invalid subdomain abnormal;
has description *p-2109 did not define the .
*allowed minimum or maximum "

"of identifiers. So a minimum of*
“one character and a maximum of "
*128 characters was assumed. .

.

Dataitem letter is an instance of datatype letter_t .

Datatype lettex_t
is datatypeclass string; .
has values //(A-2a=-21// ;
has valid subdomain as_specified;

has invalid subdomain abnormal;

Dataitem digit is an instance of datatype digit_t .

DataType digit_t

is datatypeclass character ;

has values /7/710-93//

has valid subdomain ag_specified;

has invalid subdomain abnormal.
Dataitem letter_or_digit is an instance of datatype letter_or_digit_t .
DataType letter_ox_digit_t

is datatypeclass character;

has values //1A-2a-30-91//;

has valid subdomain as_specified;

has invalid subdomain abnormal.

Figure 22-1 continued: T Sample SDF

22-7

T PART Il

Dataitem integer is an instance of datatype integer_t .

DataType integer_t
is datatypeclass charactaer;
has valueg //(0-911,64//;
has valid subdomain as_specified;
has invalid subdomain abnormal.
Dataitem decimal_literal is an instance of datatype decimal literal t .
DataType decimal_literal_t
iz datatypeclass string;
has values //10-911,16.(0-910,16//;
has valid subdomain .as_specified,
bas invalid subdcmain sbnormal.
Dataitem operator_symbol is an instance of datatype operator_symbol t .
Datatype operator_symbol _t
is datatypeclass string;
has values nyw, wom, l'-’ '/'l
has valid subdomain as_specified;
has invalid subdomain abnormal,;
Dataitem left_parenthesis
has fixed value &
Dataitem right_parenthesis
has fixed value "y,

Dataitem combining_option is an instance of datatype combining_option_t.

Datatype combining option_t
is datatypeclass string;
has values *is copied”, "is separate”, “is generic” ;
has valid subdomain as_specified ;
has invalid subdomain abnormal ;
has desoription *The combining option tells Adalex*
*how to package the genarated .
“scanner,"*
Dataitea a_new_lexical_analyszer
bas fixed value *ada source coda for a scannexr® ;
Dataitea Standard_Brror_File
has fixed value *A report of errors detected"
Dataitem EO0S
has fixed value : *"EOS is TRUR when the last character is reached
has description "EOS means End _of_stream. IOS is "

*FALSE as long as there are more "
*characters in the input stream. *;

Figure 22-1 continued: T Sample SOF

22-8

PART I T

T Software Description Verification Version 3.0 (Restricted)
Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

1 $#line 1 “"sat"

12 /* This Software Description File, SDF, contains a partial 174

13 /* specification. There is enough information in this SDF to u/

14 /* illustrate the STL and the basic processing in T. Thexe is »/

15 /* not enough information in this SDF to specify a complete =/

16 /* lexical analyzer generator or to demonstrate T completely. L74

21 S5_packet Adalex_1l

22 has subjact "Adalex_specification*® ;

3 has content version 1=,

F1 has description *This S_Packet sentence .
as *identifies the sat of .o
a6 *information in this file. "
27 .

28

29 #line 1 "/eval/tcode/tsdl.std"

1 #noecho
142 #line 30 ‘“gdf*

30 /* The stapdard definitions will help this sdf, 74
17¢ Dataitea next_charactexr
178 has fixed value *The output character should equal the i
176 .
177

<gnd of rile>

- finished translation with 46 recognisable TSDL sentences out of 46
- saving desoription data base)

translator messages
4 commant messages

Intexpretation

s_packet: Adalex_ 1
unitdate: Fri Oct 9 13:13:49 1992

Evaluation

Accept Reject Name

e Adalex

Figure 22-2. T Software Description Verification

22-9

PART Il

Extra dataitenms
EOS
next_character

Extra datatypes
Bit
Bit8string
Digit
LocalPhone
PrintableASCIX
USPhone
ZipCode5S
Z2ipCode9
boolean_integer
boolean_string

Extra states
<none?’

Extra statetransitions
<{none>

Figure 22-2 continued: T Software Description Verification

T Software Description Metrios Version 3.0
Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet: Adalex_ 1
unitdate: Pri Oct 9 13:13:49 1992

Total Extra Verified Unverified Dynamic

b | 0 1 0 action(s)
0 0 0 0 statetransition(s)

Total Extra Vexrified Unverified Static
In out In Out

0 0 0 o 0 0 condition(s)
15 2 11 2 0 0 dataitem(s)
18 i0 8 0 0 0 datatype(s)
0 0 0 0 0 0 state(s)
Deficiencies: 0
Inconsistencies: 0

Figure 22-3. T Software Description Metrics

22-10

T Design Rule Verification Version 3.0

PART It

Copyright (C) 1987-1992 Programming Environments, Inc.

Translation

VO~ d W

/* T Design Rule Generation Version 3.0
*» Copyright (C) 1987-1992 Programming Environments, Inc.

*/

T_Packet
8_packet

Local
Local
lLocal

CombinationRule
action

singular

SelectionRule
datatype
raeference
valid

SelectionRule
datatype
reference
valid
with

SelectionRule
datatype
reference

tpacket
Adalex_l1

context_and_lexicon .
left_parenthesis .
right_parenthesis .

CRO001

Adalex;
context_and_lexicon,
identifier,
letter,

digit,

letter_or digit,
integer,
decimal_literal,
operator_symbol,
left_parenthesis,
right_parenthesis,
combining_option;

SR0001

identifier t;

TBD;

as_specified

function, boundary, debug;

SR0002

lettex_t;

TBD;

as_specified

function, boundary, debug;

SR0003
digit_t;
TBD;

Figure 22-4. T Design Rule Verification

22-11

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

- finished translation with 13 recognizable TDRL sentences out of

valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

SelectionRule
datatype
reference
valid

.

SelectionRule
datatype
reference
valia

PARTII

with

with

with

with

with

as_specified
function, boundary,

SR0004
letter_or_digit_t;
TBD;

as_specified
function, boundary,

SR0005

integer_t;

TBD;

as_sgpecified
function, boundary,

SR0006

decimal_ literal_t;
TBD;

as_specified
function, boundary,

SR0007
operator_symbol_t;
TBD; ’
as_specified
function, boundary,

SR0008
oombining_option_t;
TBD;

as_specified
function, boundary,

pe_mark

debug;

debug;

debug;

debug;

debug;

debug;

13

Interpretation

s_packet: Adalex 1

unitdate:

t_packet: tpacket

casedate:

- saving

Fri Oct 9 13:13:49 1992

Fri Oct 9 13:17:42 1992

rules in test design data base
Figure 22-4 continued: T Design Rule Verification

22-12

T Test Catalog Version 3.0
(C) 1987-1992 Programming Environments, Inc.

Copyright

s_packet:
unitdate:
t_packat:
casedate:

Case

0001 +

0002 +

0003 +

0004 +

0005 +

0006 +

0007 +

0008 +

0095 +

Adalex_1

PART II

Fri Ooct 9 13:13:49 1992

tpacket

Fri Oct 9 13:17:42 1992

Purpose (+ exercises action, - fails to exercise action)

action Adalex
state <unspecified>

dataitem all at reference

action Adalex
state <ungpecified>

dataitem all at low boundary

action Adalex
state <unspecified)

dataitem all at high boundary

action Adalex
state <(unspecified?
dataitem identifier

action Adalex
state <unspecified)
dataitem identifier

action Adalex
state <(unspecified>
dataitem identifier

action Adalex
state <unspecified>
dataitem identifier

action Adalex
state <unspecified)
dataitem identifier

action Adalex
state <(unspecified>

dataitem combining_option

(valid as_specified low_bound)

(valid as_specified high_bound)

(valid as_specified comp(2]_reference)
(valid as_specified comp(2]_xreferance)

(valid as_specified 6onp(2]_:.f.r.nca)

- saving cases in test design data base

Figure 22-5. T Test Catalog

22-13

{(invalid out_of_type out_of_type_3)

T Sample Generation Version 3.0

PART I

Copyright (C) 1987-1992 Programming Environments, Inc.

s_packet: Adalex_1

unitdate: Pri OQct 9 13:13.:49 1992

t_packet: tpacket

casedate: Fri Oot 9 13:17:432 1992

combining_option

Index SubDomain Equiv.Class Label Value

[1] valid as_specified reference *is separate"

{ 2] valid as_specified low_bound *is copisd"

[3] valid as_specified high_bound *is generic"

{ 4] invalid not_in_list not_in_list "<not_in_list>"

[5] invalid out_of_type out_of_type_1 9

[6] invalid out_of_type out_of_type_2 9.9

{ 7] invalid out_of_type out_of_type_3 ‘a’
context_and_lexicon

Index SubDomain Equiv.Class Label value

[1] valid placebholder reference *This ishould be the input cont:
decimal_literal

Index SubDomain Equiv.Class Label Value

[1] valid as_specified reference "012.01"

[2) valid as_specified low_bound "3."

(3] valia as_specified high_hound *4567890123456789.2345678901234!

[4] valid as_spacified comp(2]_reference *g.89"

{ 8] valid ag_specified comp{2]_refereance *12.01"

[6] valid as_specified comp[3)_refersnce "345678901234567.23"

I 7] valid as_specified comp[2]_reference *8901234567890123.45"

[8) valid as_specified comp{2]_low_bound "456.°

{ 9] valid as_specified oomp(2]_low_debug “789.6"

{ 10] valid as_specified comp[2]_high_debug "012.789012345678901"

[11) valiad as_specified oomp[3]_bigh bound "345.2345678901234567°

[12) invalid bpot_in_list comp (0] _dropped *.89"

{ 13] invalid not_in_list comp[l]_dropped "67801°

[14) invalid onot_in list comp(0]_below_bounds ”.33"

[15] invalid not_in_list ocomp(0]_above_bounds °90123456789012345.45"

[16) invalid npot_in_ list ocomp[1]_below_bounds "67867"

[17] invalid onot_in_list comp[1)_above_bounds "901..89"

{ 18] invalid not_in_list ocomp(2]_above_bounds *234.01234567890123456"

{ 19) invaldd not_in_list ocomp{0]_wrong » e, 780

[20} invalid onot_in_list compl{l]_wrong *567 90°

[21) invalid 1not_in_list comp(2]_wrong "890. 1%#88&7 (), - /"

[33) invalid out_of_type out_of_type_1 9

[23] invalid out_of_type out_of_type_2 9.9

[24] invalid out_of_type out_of_type_3 ‘a’

Figure 22-6.T Sample Generation

22-14

PART [i

digit
Index SubDomain Equiv.Class Label Value
[1) valia as_specified reference ‘o’
[2] valid as_specified low_bound 'l
{ 3] valid as_specified high_bound r2r
[4] invalid not_ip_list comp[0)_dropped re
{ 5] invalid not_in_list comp[0)_wrong r
(6] invalid out_of_type out_of_type 1 9
{ 7] invalid out_of_ type sut_of_ type 2 9.9
[8] invalid out_of_type out_of_type_3 "<not_in_list)>"
identifier
Index SubDomain Equiv.Class Label Value
{ 1) valid as_specified reference "ABC_012"
[2] valid as_specified low_bound *p_3*
[3] valid as_specified high bound *EPGHIJKLMNOPQRSTUVWXYZabodefghi
{ 4] valia as_specified comp(2]_reference "Q_678"
{ 51 valid as_specified comp[2)_reference "RS_9AB"
[6] valid as_specified comp({2])_reference "TUVHXYZabcdefghijklmnopgratuv
{ 7] valia as_specified comp({2)_reference *efghijklmnopqgrstuvwxyzsABCDEFGHI
[8] valid as_specified comp{2]_low_bound *qgrs_I*
[9] valid as_specified comp(2]_low_debug *tuv_gJKk*"
[10} valiq as_specified comp[2]_bigh_debug "wxy_LNNOPQRSTUVWXYZabcdefghijkl
(11]) valid as_specified comp({2]_high_bound *zAB_MNOPQRSTUVWXYZabodafghijkls
[12) invalid not_in_list coap (0] _dropped *_orQ*
[13] invalid@ not_in_ list comp[1)_dropped *“CDERST*
[14] invalid not_in_list comp{2]_dropped "FGH_"
[15) invalid not_in_list comp[0])_below_bounds *_uvw*
(16] invalid not_in_list comp(0]_above_bounds *IJKLMNOPQRSTUVWXYZabcdefghijklx
{ 17) invalid not_in_list comp[l)_below_bounds *vWXabo”
{ 18] invalid onot_in list oomp{l]_above_bounds "Yza_ def®
{ 19) invalid not_in_list comp (2] _below_bounds “becd_*
[20] invalid ©pot_in list ocomp(2]_above_bounds “efg_ghijklmnopqrstuvwxyz012345¢€
(21] invalid ©pot_in_list comp (0]_wrong * v _dk1"
[32) invalid ©pot_in_list comp(l]_wrong *hij mno®
{ 23] invalid ©»ot_in_ list comp (2] _wrong klm_ | ""
{ 24] invalid out_of_type out_of_type 1 9
[25] invalid out_of_type out_of_type 2 9.9
{ 26] invalid out_of | out_of_type_ 3 ‘a’
integer .
Index SubDomain Equiv.Class Label vValue
{ 1] wvalid as_specified reference 1012’
[2) valid as_specified low_bound ry’
[3] valid as_speoified high_bound 74567690123456789012345678901234
{ 4] valid as_specified ocomp(0]_low_bound 4 L
[5] valid as_specified ocomp[0)_low_debug ’90’

Figure 22-6 continued: T Sample Generation

22-15

PART Il

[6] valid as_specifiad comp[0]_high_debug 71234567890123456769012345678901]

[7] invalid npot_in_list comp(0]_dropped e

[8) invalid out_of_type out_of_type_1 9

{ 9) invalid out_of_type out_of_type 2 9.9

[10) invalid out_of_type out_of_type_3 "<not_in_list>"
left_parenthesis

Index SubDomain Egquiv.Class Label Value

{ 1] valid {none> fixed_value ("
letter .

Index SubDomain Equiv.Class Label Value

[1) valid as_specified reference *A*

[2] valid as_specified low_bound 'B*

[3) valid as_specified high_bound 'c

{ 4] invalid not_in_list comp (0] _dropped .

[5]} invalid not_in_list comp[0)_above_bounds “DE"

[6] invalid not_in_list comp (0] wrong .o

[7] invalid out_of_type out_of_type_1 9

{ 8] invalid out_of_type out_of_type_2 9.9

[9] invalid out_of_type out_of_type_3 ‘a’
letter_or_digit

Index SubDowmain Equiv.Class Label Value

[1) valid as_specified raeference "o’

[2] valid as_specified low_bound ra’

{ 3] valid as_specified high_bound *a’

[4) invalid not_in_list oomp [0] _dropped e

[5] invalid not_in_list ocoap(0]_wrong ‘o

[6] invalid out_of_ type out_of_type_l 9

[7] invalid out_of_type out_of_type_2 9.9

{ 8] invalid out_of_type out_of_type_3 "<not_in_list>*®
operator_symbol

Index SubDomain Equiv.Class Label Value

{ 1) valid as_specified reference A

[2} valid as_specified low_bound +*

{ 3] valiad as_specified high_bound Wi

[4] valid as_spavified element_2 bk

[5] invalid not_in_list not_1in_list *<not_in_list>*

[6] invalid out_of_type out_of_type_1 9

[7] inovalid out_of_type out_of_type_2 9.9

[8] invalid out_of_type out_of_type_ 3 ‘a’
right_parenthesis

Index SubDomain Equiv.Class Label Value

[1) valid <none> fixed value "y

= saving samples in test design data base

Figure 22-6 continued: T Sample Generation

22-16

B —

' PART Ii

T Test Case Definitions Version 3.0
' Copyright (C) 1987-1992 Programming Environmentg, Inc.

s_packet: Adalex_l
unjitdate: Fri Oct 9 13:13:49 1992
t_packet: tpacket
casedate: Fri Oct 9 13:17:42 1992

) RS0 000000000000 0 0 N0 N R 0L R A 0 000 0 e
INDEX 0001
CASENAME 01000001
EXERCISES Adalex
IN STATE <unspecified’
REASON inputs all at reference values
INPUT DATA
Name —— Value

ocontext_and_lexicon
—— *This ishould be the input context and lexicon description.®
identifier
-—— "ABC_012"
letter
——— IAI
digit
4 o e
latter_or_digit
“m—— lol
integer
-— 7012’
decimal_literal
-— 7012.01"
. oparator_syabol
— Bg®
left_paranthesis
e ® (I
right_parsnthesis
ova— I)I
oombining option
. ~== "ig separate’

START BY iovocation
END BY termination
OUTPUT DATA

. NHame ~— value

a_new_lexical_apalyser
' == "Ada source code for a scanner’
Standard_grror_File
== "A report of erroxs detected"

TRANSITION <none’

Figure 22-7. T Test Case Definitions

22-17

PART It

LIRS A A A RS R ARSI I e e
INDEX 0002

CASENANE 01000002

EXERCISES Adalex

IN STATE <unspecified>

REASON inputs all at low boundary
INPUT DATA

Name --—— Value

context_and_lexicon.’

——— *This ishould be the input context and lexicon description.®
identifier . . .

— In_al
letter

m— QBI
digit

—— Ill
lettexr_or_digit

——— Ill
integex

— 31
decimal_literal

-— T3 "
operator_symbol

—— l*l
left_parentbesis

-—— !(I
right_parenthesis

——— l,l
oombining_option

—— "is copied®

START BY iavooation
XND BY termination
OUTPUT DATA

Name ——— Value

START BY insvocation
END BY tarmination
OUTPUT DATA

Name —— Value

a_nevw_lexical_analyser

=== "Ada source code for a socanner"
Standard_Exror_File

== "A report of exrrors detected®

TRANSITION <none>

Flgure 22-7 continued: T Test Case Definitions

22-18

PART Il T-PLAN

23. T-PLAN

T-PLAN is a test planning and modeling method with an associated PC-based tool. The
T-PLAN method is documented in a series of manuals that deal with strategic test planning,
resource organization, and management. These manuals include guidelines that help a user
to structure and partition testing into manageable pieces dependent on a series of factors
such as risk and budget. The associated tool supports planning, organizing, and document-
ing test activities. The following evaiuation focuses solely on the T-PLAN tool.

Aimed primarily at functional testing at the system level, the T-PLAN tool can be used
for testing activities throughout development. In addition to supporting the planning and
documentation of test activities, it provides statistical analyses to monitor these activities.
Change impact analysis identifies those parts of a system under test that are affected by a
modification.

23.1 Tool Overview

T-PLAN is marketed by Software Quality Assurance, Ltd. in England. This company
will examine a customer’s testing requirements to develop an implementation plan for T-
PLAN installation. This service can include T-PLAN customization through the develop-
ment of appropriate test models and data entry templates. Software Quality Assurance also
provides strategic test planning consultancy and independent system testing, as well as
training and seminars.

The tool has been available since 1989 and has over 120 users. It runs on an IBM PC,
or compatible, under either DOS (release 3.1 onwards) or Unix. T-PLAN employs a fourth
generation language and associated relational database. It can be networked on all major
PC networks to enable a team of people to design, document, and review testing details. At
the time of evaluation, T-PLAN prices started at £9,500. The evaluation was performed on
a demonstration copy of T-PLAN version 2.0. This demonstration software is fully func-
tional, except (1) only a limited number of records can be added to the supplied test data
base, and (2) test data input and output templates cannot be customized.

T-PLAN allows the user to define the underlying test model, although the model de-
fined by Software Quality Assurance can be used for this purpose. The structure of the re-
sulting test model is recorded in the T-PLAN Test Dictionary. Consequently, with T-
PLAN, the test process starts with establishing the structure of the underlying test dictio-

23-1

e

T-PLAN PART Il

nary. The desired structure is typically determined through a modeling activity that, based
on documentation such as the functional requirements description, specifies the expected
behavior of the system under pre-determined conditions. It is specified in terms of func-
tions, inputs, and outputs, called test entities. Specifically, the following object types are
recognized:

« Test Specification. The highest level entity that defines the overall test plan.

« System Function. A condition to be tested, given at the level where individual test
conditions can be identified for each function. Where necessary, system functions can
be equated to system properties such as performance, recovery, or stress.

« Source System Input. Content and format of the input data required for testing.
« System Output/Data Profile. The contents and format of expected output data.

« System Program. An optional entity that allows storing program reference . and cross-
referencing these to functions and files so that the affect of a program change on test-
ing can be assessed.

« System File. An optional entity that allows storing file references and cross-referenc-
ing these to functions and programs so that the affect of a program change on files can
be assessed.

« Service Queries. A record of the complete history of a change.

Once the dictionary structure has been established, Test Conditions are entered for the
identified functions. These provide descriptions of the functional conditions that are re-
quired to be tested. Usually, they drive the design of test inputs and expected outputs. Test
Conditions are captured with a unique reference and structured into Test Sets via a Function
Reference; further grouping of Valid and Invalid categories can be assigned. Conditions re-
lating to particular releases or versions of a system can also be grouped together. Test Con-
ditions are cross-referenced to test inputs and expected results. Additionally, common Test
Conditions that are to be centrally held and reused can be defined.

Test input data is created via user-tailorable templates. These are designed to match
source system inputs (usually screens), thereby giving the feel and look of using the actual
system. Special templates for “No Screen Data” testing can be used for scripting and allow
script narrative to be cross-referenced to Test Conditions. Scripting can be combined with
input templates as required.

The user also defines templates for expected output data, called Output Data Profiles.
These data profiles are designed to match system outputs or to give a logical pointer to
where output data is expected. Each represents a view of a record, file, or report of a spe-
cific data entity in a given time-frame. Thus, the history of a data entity can be recorded and
tracked through the entire test plan. A special “No Profile Data” template is available for

23-2

PART Il T-PLAN

capturing expected results. This template allows the user to give a narrative expected result
“Check List” and cross-reference it to Test Conditions. As before, this type of scripting can
be combined with the output data profile templates as required.

The dictionary employs cross-referencing at both the test entity level and the data level.
Various static analysis functions make cross-reference listings available to the user. This
cross-referencing enables T-PLAN to analyze the impacts of changes on Systems Func-
tions, Inputs and/or Outputs. By identifying areas of the system that are directly affected by
a change, and areas functionally dependent on the area being changed, T-PLAN helps to
identify regression testing requirements.

The test dictionary itself consists of test specifications that contain the information re-
quired to test and check test results for a given part of the system. A test specification can
contain one or more test paths, where a test path is a collection of tests that form a test run.
Test paths can be thought of as a timeframe in which a particular set of tests must be run.
They can, in turn, be grouped into test cycles to define a series of dependent test timeframes
and/or test specifications. A log of test data and dated records of test events are subsequent-
ly stored against a test specification to allow a history of testing activities to be maintained.
By mapping test specifications to software components, the dictionary provides for trace-
ability of test data to the software under test. If required, test data may be linked across test
specifications and its history tracked via Data Profiles. Traceability is also provided at the
entity level, that is, between test specifications and functions, inputs, and outputs. Test
schedule activities are defined in terms of a system, phase, package, and, optionally, soft-
ware build parameters. They are separated under three categories: test preparation, testing,
and regression testing, each of which has an associated review process. In each case, the
user can specify who is responsible for the activity, an estimate of the number of days re-
quired, the actual days completed so far, and an estimate of days outstanding. This data is
used to produce test progress reports. These reports include figures of, for example, per-
centage completed against schedule. The management reports provide information at the
system, build, or package and phase levels. A Test Management Summary reports on the
status of testing with respect to test paths. '

Changes, and change control information, can also be recorded against test specifica-
tions. The change control management system utilizes “Service Queries.” The user can
record queries and errors, whether or not they sponsor a change, as service queries. This
enables tracking the complete history of a change, including description, prioritization, es-
timates, actual and outstanding effort, query or error classification, and software library re-

23-3

T-PLAN PART Il

lease information. Management reports provide for monitoring the progress of changes. For
example, reports analyze the totals of errors or queries by classification, the frequencies or
errors and frequency of clear-up, as well as the percentage completed and outstanding effort
to complete changes. This type of information can be used to check test progress and assist
in planning future projects.

23.2 Observations

Ease of use. The tool provides a menu driven interface, where the user uses the key-
board to make selections and input data. Database-type search and display operations are
provided for viewing the test dictionary contents. There is no graphics capability. The on-
line help facility provides a description, derivation formula, and cross reference to user

manuals.

Templates are used throughout to facilitate data input. Since the user may customize ex-
isting templates, and create new templates, this provides some tailorability to the tool. To
keep stored test data in line with the templates, when a template is changed, all test data
stored for the template is automatically reformatted to match the new template. In certain
circumstances, data captured via input templates can be exported in external file formats to
aid in setting up file data needed for testing. The file formats available include DIF, dBase,
Lotus 1-2-3. Conversely, data in these formats can be imported into T-PLAN.

Another helpful feature is the ability to create central data profiles. These are centraily
held tables of data that can be accessed from input and output templates. This not only re-
duces the need to rekey repeated data but reduces the possibility of discrepancies between
repeated pieces of data. The tool comes with one centrally held file already set up to hold
a copy of Error Messages and Codes. (System error messages file data can be imported di-
rectly into the tool.)

Documentation. Only the documentation for the demonstration version of the tool was
supplied. This was adequate for its purpose. The full version of T-PLAN is accompanied
by four volumes relating to test management, strategy, test modeling, and technical issues.
Installation was straightforward.

Problems encountered. The tool operated as described in the documentation.

234

- - ————— - - -

PART Il T-PLAN

23.3 Recent Changes and Planned Additions

An interface from T-PLAN to Direct Technology Ltd. Automator-QA is now available.
This allows test input data stored in T-PLAN to be “played” directly into the software under
test via Automator test scripts. An interface to automatically feed test log information back
into T-PLAN is under development.

23.4 Sample Figures

Figures 23-1 through 23-17 provide sample outputs from T-PLAN.

23-5

T-PLAN PART ll

FUNCTIONAL CONDITION LIST AS AT 04/01/80 VERSION 1.1

FUNCTION REF : FXI FOR TEST SPEC REF: FA2
FUNCTION NAME : Foreign Exchange Input
SYSTEM : IBS
OVERALL FUNCTION : FX On-line Deal Processing
RELEASE NO. 1.0 INCLUDE/EXCLUDE I
INVALID/VALID : I
TEST CONDITION PATH =~ DEV DOC
NO. NO. REFS
01 A Deal Type not completed 0l sCsp2.1
01 B Deal Type not valid code 01 sCSsp2.1
02 B Deal Date later than value date 01 sCsp2.3
02 C Forward valued Deal Date before value date 01 SCSD2.3

FUNCTIONAL CONDITION LIST AS AT 04/01/80 VERSION 1.1

FUNCTION REF : FX2 FOR TEST SPEC RRF: FA2
FUNCTION NAME : Foreign Exchange 2nd Authorise
SYSTEM : IBS
OVERALL FUNCTION : FX On-line Deal Processing
RELEASE NO. 1.0 INCLUDE/EXCLUDE I
INVALID/VALID : 1
TEST CONDITION PATH DEV DOC
NO. NO. REFS
50 Attempt to 2nd Authorise a Deal that 05 sCsp2.3
has not been lst Authorised
51 Attempt to 2nd Authorise a Deal without 05 SCsD2.3
appropriate security level
52 Attempt to 2nd Authorise a Deal that SCsp2.3
has already been 2nd Authorized
S3 Attenpt to 2nd Authorise a Deal that 0s §CSp2.3
16 J Interest Arbitrage Deal (Deal Type FA) SCSp2.3

PERCENTAGE OF TESTS TO BE INCLUDED 84.00%

LI

Figure 23-1. T-PLAN Test Mode! Functional Condition List Report

23-6

PART I

INPUT REFERENCE EIN

+ — 4

+—+

FUNCTION KEY : ENTER

+ — 4

+—+

T-PLAN

o

TEST SPEC REF FIN PATH 01 SEQUENCE NO. 0010

+ —+

DLIN X FX DEAL INPUT
DEAL TYPE VN DEAL DATE 271290
COUNTERPARTY 001093
PURCHASED CURRENCY DEM
SOLD CURRENCY NOK AMOUNT 225,000
CROSS RATE 4.444444
STERLING RATE 2.934
VALUE DATE 271290 OPTION FROM TO
CONFIRMATIOM METHOD S PAYMENT METHOD N
DEALING METHOD 10 COVER PAYMENT REQUIRED N
SWAP BASE RATE CCY IF NOT US$
A-TYPE DEAL SPOT RATE FLAT CURRENCY
OUR RECEIVING AGENT C 00109HN0101
OUR PAYIMG AGENT A 00109DB0107
THEIR RECEIVING AGENT
BENEFICIARY ACCOUNT

FREE FORMAT
DL X SUPPLEMENTARY PAYMENT DETAILS AND CHARGES
A/C REF. CODE NARRATIVE CCY D/C AMOUNT

SUPPLEMENTARY PAYMENT DETAILS
50 :ORDERING CUSTOMER

NAM NAM
STR PIC
57 : "ACCOUNT WITH" BANK ACT/
NAM NAM
STR PLC
59 :BENEFICIARY CUSTOMER ACT/
NAM NAM
STR PLC

70 :DETAILS OF PAYMENT
sp .5
71 :DETAILS OF CHARGES DIRECT PAYMENT METHOD

ERROR MESSAGE

DDMMYY TERM OAlP

TERM OAlP
ERRORS/EXPANSIONS

TEST PLAN NOTES/SCRIPT

Note -~ Supplementary Payments screen should not appear

4 —_

+—t

Figure 23-2. T-PLAN Test Model Sample Print for input Ref

237

T-PLAN PART II

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / INPUT REFERENCE MATRIX

TEST SPEC REFERENCE : FIN

INPUT REFERENCE : DMN Deal Menu

INPUT REFERENCE : EEN Foreign Exchange Data Enquiry
INPUT REFERENCE : EIN Foreign Exchange Deal Input

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1 -
TEST SPECIFICATION / OUTPUT REFERENCE MATRIX

TEST SPEC REFERENCE : FIN Foreign Exchange Deal Input/Summary Reports

OUTPUT REFERENCE : DEL Deal
OUTPUT REFERENCE : FBS FX Batch Summary Report
OUTPUT REFERENCE : FIS FX Deal Input Summary Report

INDEX OF OUTPUT REFERENCES AS AT 04/01/80 VERSION 1.1

INPUT INPUT

REF NAME

DMN) Deal Menu

EAl Foreign Exchange Deal 1lst Authorise
EA2 Foreign Exchange Deal 2nd Authorise
EAM Foreign Exchange Deal Amend

EDE Foreign Exchange Deal Delete

ENE Foreign Exchange Deal Enquiry

MIN Money Movement Input

STA General Deal Status Enquiry Screen

INDEX OF OUTPUT REFERENCES AS AT 04/01/80 VERSION 1.1

OUTPUT OUTPUT

REF NAME

APL Monthly P&L Report

ATP Trial Balance Report

BEF Bulked Entry File

CAB C&N Average Daily Balance Summary
Ccac Customer Acount

cCcY Foreign Exchange Rates

SPA System Parameter Data

SW1 SWIFT Messages

Figure 23-3. T-PLAN Test Model input & Output References for Test Spec FIN

23-8

PART H T-PLAN

NO SCREEN DATA TESTING (NSD)

SOURCE INPUT REF : EIN Foreign Exchange Deal Input
TEST SPEC REF : FIN PATH NUMBER : 01 SEQUENCY NO. 0060

CONDITION REF TEST NOTES TESTED OK?

FXI21A Oxderer Client - 32345

FX121B Orderer Client - Non Swift 3«

FXI121G Orderer Client 68213 - Account With Bank 99-00-88
FXI21H Account With Bank MADGGGO02 -
FXI21I Account With Bank 02356

FXI121J Account With Bank 80197

FXI21K Account With Bank Non Swift @

FXI21P Details of Payment spaces - Details of charges BEF

Figure 23-4. T-PLAN Test Model No Screen Data Testing for FIN

OUTPUT DATA PROFILE NAME : DEAL DATA PROFILE

MAJOR SUB TIME DATA PROFILE
DP KEY KEY FRAME (PATH) REP
OUTPUT DATA PROFILE REF : DEL 003 00 01 DEL0030001
TEST SPEC REF : FIN
NOTES .
- Deal should be deleted after batch overnight run
DEAL NUMBER Syst gen DEAL TYPE SN DEAL DATE 271290

COUNTERPARTY 00203
PURCHASED CURRENCY GBP AMOUNT 10,000,000.00
SOLD CURRENCY USD
CROSS RATE 1.735
STERLING RATE 1.75
VALUE DATE 311290 OPTION FROM TO
CONFIRMATION METHOD S PAYMENT METHOD S
DEALING METHOD 10 COVER PAYMENT IF REQUIRED N
SWAP BASE RATE CCY IF NOT US$
A-TYPE DEAL SPOT RATE FLAT CURRENCY
OUR RECEIVING AGENT C 12973HNO505
OUR PAYING AGENT 23734HN0202
THEIR RECEIVING AGENT 45798
BENEFICIARY ACCOUNT
INHIBIT ADVICE TO RECEIVE?
71 :DETAILS OF CHARGES DIRECT PAYMENT METHOD

DEAL STATUS 01 CONF STATUS 01 PAYMENT STATUS 01
Figure 23-5. T-PLAN Test Model Output Print for FIN

23-9

T-PLAN PART Il

SPECIFICATION INSTRUCTIONS AS AT 04/01/80 VERSION 1.1
TEST SPEC REF : FIN Foreign Exchange Deal Input/Summary Reports
PAGE NUMBER : 01 AUTHOR : THEO CCUPIER

TEST SPECIFICATION PREREQUISITES AND INSTRUCTIONS

This Test Specification tests the following functionality in the IBM
system: -

Foreign Exchange Input

Foreign Exchange Enquiry (Part)

FX Batch Summary (Part)

FX Deal Input Summary (Part)

Note - Only part of some of the above functions are tested in this
Specification

The Test Spec has Input for the following days in the cycle:-
01, 05

The Tast Spec has output to be checked for the following days
01, 05

Before commencing testing for PATH 1, ensure that the following test
environment is in place:-
~ System Test Libraries correctly loaded
- System Test Base Data files correctly loaded
~ Customer and Account files
- Rates files
~ User & Password files
- System parameter file data for Day 1

TEST PATH SUMMARY REPORT AS AT 04/01/80 VERSION 1.1
TEST SPEC REF :FIN Foreign Exchange Deal Imput/summary Reports
PATH NUMBER 0S5

Logon to the system with User-id & Password X1AA

Enter Script Input from Path 05

Ensure that a note is made of all Deal Numbers allocated

After Entering all data and PRIOR to running Day 5 Batch Reports
Print DEAL file and check against data profiles

After running Batch Reports for Path 05 Check that Deals are correctly
deleted from DEAL file as noted on data profiles

TEST SPECIFICATION TESTING LOG BY PATH
TEST SPEC REF :FIN Foreign Exchange Deal Input/summary Reports

PATH NUMBER TEST DATE
01 PINO1 19/09/91
TESTER : GAH RETEST REQUIRED : yes
COMMENTS

service Query 1 raised
Figure 23-6. T-PLAN Test Model Test Specification Information tor FIN

23-10

PART II T-PLAN

Cycle (02)/Path Overview Report
TEST CYCLE/PATH OVERVIEW AS AT 04/01/80 VERSION 1.1
CYCLE /PATH NUMBER ;02
RUN SEQUENCE NO. : 001
TEST SPEC REF : MM1 Money Movement 1st Authorisation
COMMENTS

Initial MM 1st Auth testing
set-up of deals & lst auth

TEST CYCLE/PATH OVERVIEW AS AT 04/01/80 VERSION 1.1

CYCLE /PATE NUMBER : 02
RUN SEQUENCE NO. : 003
TEST SPEC REF : FA2 Foreign Exchange Deal 2nd Authorisation

COMMENTS
‘Base Data" setup for FX2 Testing

Cycle (02)/Path Summary Report

000 BAS Base data set-up

001 Frl Forex Fixed Deal 1st Authorisation

001 MM1 Money Movement 1lst Authorisation

001 FAl Poreign Exchange Deal lst Authorisation

001 DIl Discounted Items lst Authorisation

002 DEE genaral Deal Enquiries

003 PAD Foreign Exchange Deal Amend/Delete/VWrite-Off
003 PA2 Foreign Exchange Deal 2nd Authorisation

Test Specification Input/Condition Cross Reference Report for FIN

FXI12A
FXI12B
FXI12C °
FXI13A
PX113B
FXI14A
FXI14B

FXI20A
TEST SPECIFICATION INPUT BY PATH SUMMARY AS AT 04/01/080 VERSION 1.1
TEST SPEC REF : FIN Fforeign Exchange Deal Input/Summary Reports

Figure 23-6 continued: T-PLAN Test Mode! Test Specification Information for FIN

23-11

T-PLAN PART I}
PATH NUMBER 01 FUNCTIONAL INPUT
CONDITION REF REF
SEQUENCE NO. 0005 NOXREF DMN
SEQUENCE NO. 0010 FXIOlA EIN
SEQUENCE NO. 0020 FXIO01B NSD
FXIOZB
FXI102C
FXI102D
SEQUENCE NO. 0110 FXE1l EEN
FXE17
PATH NUMBER 01
| TESTED BY * DATE CHECKED BY * DATE |
I |
| » * |
l * |
PATH NUMBER 05 FUNCTIONAL INPUT
CONDITION REF REF
SEQUENCE NO. 0005 DMN
NOXREF
PATH NUMBER 05
] TESTED BY * DATE BY * DATE |
| |
| » - »]
] ® . * |

Test Specification Exception Report)

TEST SPEC REF : FIN Poreign Exchange Deal Input/Summary Reports

RELEASE NO. 1.0 INVALID/VALID V
FUNCTIONAL CONDITION REFERENCE
FXIa4x
PXI240
FXI1s0
FXI15P
FXI1SR
FXI24H
FUNCTIONAL CONDITIONS NOT CROSS REFERENCED AS AT 04/01/80 VERSION 1.1

Figure 23-6 continued: T-PLAN Test Mode! Test Specification Information for FIN

23-12

PART Il T-PLAN

INDEX OF FUNCTION REFERENCES AS AT 04/01/80 VERSION 1.1

FUNCTION FUNCTION NAME
REF

SYSTEM : IBIS
OVERALL FUNCTION : Call & Notice - Money Movement
Money Movement lst Authorise
Money Movement 2nd Authorise
Money Movements Amend
Money Movements Dealate
Money Movements Enquiry
Money Movements Input

11111

FUNCTION FUNCTION NAME
REF

SYSTEM : 1B1S
OVERALL PUNCTION : Position Enquiries
PCU Customer Positions
PCY Currency Positions
PDL Dealer Positions

Money Movement Enquiry
INDEX OF INPUT REFERENCES AS AT 04/01/80 VERSION 1.1

INPUT INPUT

REF NANE

DMA Daal Mebnu

EAl Foreign Exchange Deal lst Authorise
EA2 Foreign Exchange Deal 2nd Authorise
EAM roreign Exchange Deal Amend

EDE Foreign Exchange Deal Delete

Money MNovement Enquiry
INDEX OF OUTPUT REFERENCES AS AT 04/01/80 VERSION 1.1

OUTPUT oUTPUT

REF] NAME

CIR CeN Interest Rate Change Notification
CNS CsN Daily Summary Reports

cus Customer

DDD DBR Daily Detail Report

DEL Deal

Figure 23-7. T-PLAN Test Dictionary Function, input, Output Reference Index

23-13

T-PLAN PART Il

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / PUNCTION REFERENCE MATRIX

TEST SPEC REFERENCE : CIR Call & Notice Interest Rate Change Notification
FUNCTION REFERENCE : CIR C&N Interest Rate Change Notification

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / FUNCTION REFERENCE MATRIX

TEST SPEC REFERENCE : PIN Foreign Exchange Deal Input/Summary Reports
FUNCTION REFERENCE : ¥YBS FX Batch Summary

FPUNCTION REFERENCE : ¥1IS FX Deal Input Summary

FUNCTION REFERENCE : FXE Foreign Exchange Enquiry

FUNCTION REFERENCE : PXI Foreign Exchange Input

T~PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / INPUT REFERENCE MATRIX

TEST SPEC REFERENCE : PIN Foreign Exchange Deal Input/Summary Reports
INPUT REFERENCE : DMN Deal Nenu

INPUT REFERENCE : EAl Poreign Exchange Deal 1st Authorise

INPUT REFERENCE : EA2 Poreign Exchange Deal 2nd Authorise

INPUT REFERENCE : EAM Foreign Exchange Deal Anmend

INPUT REFERENCE + EEN Poreign Exchange Deal Enquiry

INPUT REFERENCE : EIN Poreign Exchange Deal Imput

T-PLAN TEST DICTIONARY A8 AT 04/01/80 VERSION 1.1
TEST SPECIFICATION / OUTPUT REFERENCE MATRIX

TEST SPEC REPERENCE : PIN PForeign Exchange Deal Input/Summary Reports
OUTPUT REFERENCE : DEL Deal

OUTPUT REFERENCE : FBS IFX Batch Summary Report

OUTPUT REFERENCE : FIS FX Deal Input Summary Report

Figure 23-8. T-PLAN Test Dictionary Functions, Inputs, Outputs Used in FIN

CONDITIONS IMPACTING ON OUTPUT DATA PROFILES AS AT 04/01/80 VERSION 1.1
ACROSS ALL TEST SPECIFICATIONS

DATA PROFILE REY : DELO02
PATH : 01 .
TEST SPEC : Foreign Exchange Deal Input/Summary Reports

DATA PROFILE REF : DEL0020001 CONDITION REF : FXI11
SOURCE INPUT KEY(SP
FINO1OO4OEIN

Figure 23-9. T-PLAN Test Dictionary Condition Impact on Data Profiles

23-14

PART ll T-PLAN

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
FUNCTION CHANGE IMPACT ANALYSIS REPORT

FUNCTION REF : MME Money Movement Enquiry

TEST SPEC REP : MM1 Money Movement 1st Authorisge

TEST SPEC REPF : MM2 Money Movement 2nd Authorise

TEST SPEC REF : MMA Money Movement Amend/Delete/Write-off
TEST SPEC REF : MMI Noney Noveament Input/Summary Reportes

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
INPUT CHANGE IMPACT ANALYSIS REPORT

INPUT REF : EIN Poreign Exhange Deal Imput

TEST SPEC REF : DEF General Dsal Enquiries

TEST SPEC REF : FAl Foreign Exchange Deal ist Authorisation
TEST SPEC REF : FA2 Foreign Exchange Deal 2nd Authorisation
TEST SPEC REF : FAD Foreign Exchange Deal Amend/Dslete/Write-off
TEST SPEC REF : FIN Foreign Exchange Deal Input/Summary Reports
TEST SPEC REF : PEN Position Enquiries

T-PLAN TEST DICTIONARY AS AT 04/01/80 VERSION 1.1
QUTPUT CHANGE IMPACT ANALYSIS REPORT

OUTPUT REF : FIS FX Deal Input Summary Report

TEST SPEC REF : FIN Poreign Exchange Deal Input/Summary Reports

Figure 23-10. T-PLAN Test Dictionary Chang?slmpact for Function MME, input EIN, Output

FP2 Porex Fixed Deal 2nd Authorisation

FFA Forax Fixed Deal Amend/Delete/Mrite-off
MM1 Money Movement lst Authorisation

MM2 Money Movement 22d Authorisation

MMI Money Movement Input/Summary Reports
MMA Money Movement Amend/Delete/Mrite-off
DIX Discounted Items InputSummary Reports

NWD Non-Working day
TEST SPECIFICATION INDEX AS AT 04/01/080 VERSION 1.1

TEST TEST SPEC ° AUTHOR
SPEC RANE
REPF

PSW Btach FX SWIFT Message Generation
PUP Batch Position Update/Report

Figure 23-11. T-PLAN Test Dictionary Test Specification index

23-15

T-PLAN PART Il
| SERVICE QUERY | AS AT 13/05/92
] NUMBER | TIME OF PRINT
| 00002 } 13:44:27
SYSTEM : IBS PHASE/PACKAGE : 1.1 SOPTVARE BUILD : 01
DESCRIPTION

Should not the FX Supplementary Screen only be Presented if
The Program Spec does not make it clear

AREA RAISED BY PGM WHO RAISED BY HHG DATE RAISED 01/09/91
PRIORITY CODE BY 02/08/91

SERVICE QUERY COMMENTS

No mention is in the program spec regarding the criteria for
display of the FX supplementary details screen

HHG - PGM
Spec amended accordingly
CDT - DES
No action for STT - Design spec specifies this
HR - STT

SERVICE QUERY STATISTICS
| pEsIGN 0.10 DESIGN 0.10 DESIGN 0.00 |
| prROG 0.00 PROG 0.00 PROG 0.00 |
| sYs TEsT o0.00 SYS TEST 0.00 SYS TEST 0.00 |
| oreer 0.00 OTRER 0.00 OTHER 0.00]
| roraL 0.00 TOTAL 0.00 TOTAL 0.00 |

SERVICE QUERY ACTION AUTHORISED BY IF
SERVICE QUERY CLASSIFICATION 03 MAJOR DOCUMENTATION ERROR

Figure 23-12. T-PLAN Test Management Service Query Report for SQ 00002

TEST SPECIFICATION/SERVICE QUERY 1LOG

TEST SPEC : PIN - Poreign Deal Imput/Summary Reports
SPEC UPDATE DETAILS

~~REGRESSION TEST
SQ Raised Date

No. foxr Logged ——Updated— —Checked— Regn. Test
Test Ragd By Date By Date Test By

00001 yes 19/09/91

| !
| | |
I | |
| | |
= Spac ? } ? { Reqd.?
| | |
| | |
I | i

00002 no 01/09/91

Figure 23-13. T-PLAN Test Management Test Spec/SQ Log for FIN

23-16

T

PART Il

SERVICE QUERY FREQUENCY & CLEAR UP REPORT

Period Serxv.

ice Queries

|
| Signed-off

10/08/91 - 17/08/91

|
]
|
From To | Raised
:
18/08/91 - 15/08/91 |

0
0

| 0
| 0

SERVICE QUERY ANALYSIS BY CLASSIFICATION WITHIN SCHEDULE

T-PLAN

] SYSTEM | PACKAGE |SOFTWARE| SERVICE QUERY CALSSIFICATION] QUANTITY

[| /PHASE | BUILD | |

[| | | |

| 1BS i | | |

] | 1.1 | | |

| | | 01 | I

{ { | | 03- MAJOR DOCUMENTATION ERROR | 1

| |] |

} | | | 07~ MAJOR PROGRAMMING ERROR | 1

| | | . |

| | | TOTAL for Software Build 01 | P!

| |]

I | TOTAL for Package/Phase 1.1 | 2

| |

| TOTAL for System IBS i 2
|

| OVERALL TOTAL | 2

Figure 23-14. T-PLAN Test Management Service Query Reports

23-17

T-PLAN PART li

OVERALL PROGRESS AS AT 16/03/92

TASK TASK [-==~=~--Totalg~————~] Percent

CODE DESCRIPTION ORIG ACT OUTST Complete

PHASE/PACKAGE 1.1 SOFTWARE BUILD 01

DEE General Deal Enquiries 13.75 5.00 8.25 37.74 &

FAl Poreign Exchange Deal 1st Authorisa 10.5¢ 5.75 5.00 52.38 &

FIN Poreign Exchange Deal Input/Summary 13.75 11.00 3.75 72.73 &
SOFTWARE BUILD TOTALS . 37.50 21.75 17.00 54.67 &

PRASE/PACKAGE 1.1 SOFTWARE BUILD 02

FA2 Poreign Exchange Deal 2nd Authorisa 15.75 2.00 13.75 12.70 &
SOFTWARE BUILD TOTALS 15.75 2.00 13.75 12.70 &
PRASE/PACKAGE TOTALS 53.25 23.75 30.75 42.25 ¢
OVERALL TOTALS 53.25 23.75 30.75 42.25 %

Figure 23-15. T-PLAN Overall Progress for IBS

23-18

T-PLAN

PART Il

suodey Asnd 99ja18s Juswebeusly 1891 NV 1d-1 "91-€Z 24nBi4

] %00°00Tj00°0 000 00°0 00°0 00°0 |09°0 00°0 ST'O SZT'O OL'0 [09°0 SC'O 00°0 SZT'O0 OO0 |IVIOL TIVERAO|

] s00°00T{00'0 00°0 00°0 00°0 000 09°0 00°0 ST'0 ST'0 OT'0 09°0 ST'0 00°0C ST'0 OT'O TNLOL WALSZS

800°00T|00°0 00°0 00°0 00°0 00°0 09°0 -00°0 ST°0 ST'0 oOT°C 09°C ST'0 00°0 ST'0 OT'0 |TVIOL JFOVADVWL

| %00°00T|00°0 00°0 00°0 00°0 00'0 09°0 00°0 ST'0 ST'O0 oOT°0 09°0 STZ'0 00°0 ST°0 OT'0 NIOL a1ING

200°00T|00°0 00°0 00°0 00°0 00°0 |OT'0 00°0 00°0 00°0 OT'0 |OT'0 000 00°0 00°0 OY'0 |ToooO
200°00T|00°0 00°0 00°0 00°0 00°0 |0S'0 00°0 SZ'0 GCL'0O 00°0 [0S0 SZ'0 00°0 SZ'O 00°0 |T0000
10
| | | | i
ONILSIL ONIISAT ONILSIL
ALITAWOD |'TVIOL UTHLO WILSXS D0¥d NOISIA|TVIOL WAHIO WILSXS DOHd NDISIA|TVIOL WAHIO RALSAS 50da NOISad| 'ON | aTing
INIO¥IA 0s |9vnLIOS
ONTANVISLINO STVOIIN SAIVRILSE ;
PEITTICTIW
z6/£0/91:uo pojuyagd T°Y ' SVHA/EAOVIOVG 841 ' WAISXS
SOIISIIVIS TINQGIHDS 1¥AND IDIANIS
T : SI91 WAISXS Y04 SIATUIND FDIAVAS FAIIOV 30 BIAWAN
T : 1°T FOVIDVA/ASVHEA ¥0d STTHAND FOIAYIAS IAIIOV 40 ¥ITHAN
‘IROTD I} eXwE jou saop oeds wewiboxg eql
‘PI®T3 ,peagnbey preta Kavjuewerddns, sqa uy asenbex sy ,1, IV
9HH WOd 16/60/£0 €0 d3 16/60/t0 4 9HE WOAa pejuasexzd eq ATuo wesros Xrvjuewatrddng xg Y3 30U PINOYS L0000
HLIM HIIM HLIM SSVID Xg9/03sIVd
OHM V@MV QIva OS I8 HINV 18 XII¥OIdd YAV NOIZJI¥DSAq YAGWAN OS
TE:L0:€T INING 30 TWILT 26/£0/9T IV SY XWANI X¥END FOIANAS FAIIOV T°T : FIOVIOVA/ASVHA $14I : WIISES

23-19

\\J‘-! \LH_Wf‘ \HHh" \\Millllllllln"llllllllllllll““llI-IIIlIII.l-h“Ill-IIIll--lIn"lIlllIlIIIIl-lh-lIllIlIIIlIlll_-lI-llIIlllllIIln—IIIIIIIlIlIlllln-lIIIII

PARTII

T-PLAN

o o ® e o o o ®
suodey Juewalbeuew 1531 NV 1d-L "L1-€Z anbid
W8S ¥9 05°8 SL'9T 00°¥C OS'T SL'T OS'E €9ad O00°L 00'¥T 0S°0C S'IVIOL TIVEIAQ
8S°¥9 0S°9 SL°9T 00°¥Z OS'T SL'Z OS'E €ad 00°'L 00'FT 0S°0L STVIOL EOVIOVA/ASVHA
SL9°9Z 06°S 00°ZT 0S'L 00T 00°0 00T €aa 0S¥ 00°'C 0s'9 STVIOL T1ING TUVMLIOS
%.9°9Z 0S°S 00°T O0S°L 00°T -00°0 00T €ad@ OS'¥ 00°t 0§°9 DJID wsiIOoyany puz Tweq ebuwgoxy ubjexos TVa
TO GIING FVYMIIOS 1T FOVAINA/ASVHAE
%Z8'T8 00°€ SL'FPL 0S°'9T 0S'0 SL'T 0S'T 0S°T 00°CI 00°¥T STVIOL aTIng FUVALIOS
200°00T 00°0 OS°L 00'9 000 OS'T 00°'T €ag 00°0 00'9 00°'S VOV Xzvwmng/yndur [weq sbueyoxz abieaoa NId
200°00T 00°0 SZ'% O0S°¥ 00°'0 SL'O 050 €ag ©00°0 US'€ O00'V VOV wejIoyany 3IsT [veq ebuvgoxy ubyexod 1Ivi
200°0S 00°€C 00°C 00'9 060 0S'0 00'Y €ad 0S'T 0S°Z 00°'S JdD seyrgnbug Tuveq yeIsusd ITud
10 Q1ING FIUVALIOS T'T @OVIOVA/ASVYHA
s3o[deo) ISINO IOV 9I¥Y0 ISINO IOV SI¥0 OHM ISINO IOV 9IH0 OHM NOIIATINDS3A 240D
VDIV [~—m=m STVI0L~——=) [—-mm=s yoogd derg-———-) [——- uopIeIvdeTg-———-)] AL WSVL

T6/€0/9T I¥ SV ONIXDAHD GNV NOILVUVATHd

S4I ¥04 SI¥0d3¥ SSAWO0Hd ONILSIL

23-20

T-PLAN

PART ll

spoday uawabeue 1S81 NV 1d-1 :panujiuod £i1-gz ainbiy

SELEE SL'ET 00°L SL°0Z SL'YT 00°0 SL'T SCH 00°CZT 00°L OO0 6T STNIOL TIVEIAO
SELEE SL°€T 00°L SL°OC SL'T 00°0 SL'T OCH 00°ZT 00°L O00°6T SINLOY IOVIINA/ASVHA
%00°0 0§°S 00°0 0SS OS'0 00°0 05'0 OfH 00°'S 00°0 00°S SINLOL aIING TUVALIOS
%00°0 0S°C 00°0 0§°S 0S°0 -00°0C 0S°0 SFH 00°G 00°0 00°S Xk wvsyIogany puz [weq obuwgoxz abjezol Tvd
TO QIING TAVMILIOS T'T ZOVAONI/ASVHI
S06°GY¥ ST°8 00°L ST'ST ST'T 00°0 ST'T 00'L 00°L 00°¥T STVIOL TIING TUVMLIOS
%€L°ZL 0S°T O0S'€E 0S°S 0S°0 000 0S'0 €@ 00'T 0S'€ 00'S HVD Xxvmmns/andur yeeq ebuvyoxz ubjezod NId
AES'EZ ST'E 0S'T SZ°F SZ°0 00°0 SZ°0 OCH 00°€E 0S'T 00'y HVD veyIoginy 3sT [veg eSavqoxy ubjezod 1vd
29€°9E OS°'E 00°'CT 0§'S 0S°'0C 00°0C 06'C SCH 00°€ 00°CT 00°S XX sefxinbug Teeq TeIewey JIqA
T0 QIING TUVAII0S T°T FIVIDVA/ASVHA
o3edwol ISIN0 IOV OI¥O ISINO IOV SIE0 OHM ISINO IOV OIWO OHM NOII3I¥DSIa 3000
jueo1ed {-~—--$TPIOL— -]} [--—u—- A09YD 3ISOL——~——-] [fuyisey 1 ASVL ASVL

T6/€0/9T IV SY ONINDIHD ONY ONILSIX

S4I ¥O4 SINOATW SSAUOOU3 ONILSAL

23-21

PARTII

T-PLAN

suoday uaweleuep 1591 NY1d-1 :PINUIU09 2}1-ZZ inbi4

%00°0 0S°8 00°0 0S'8 00'T 00°0 00'T OSCH O0S'L 00°0 O0S°L STINIOL TIVEIAQ

%00°0 0S8 00°0 0S'8 00T 00°0 00T OCH 0S°L 00°0 OS°L STVIOL AOVYOVA/TSVHAL

%00°0 SL'T 000 SL°T SC'0 00'0 SZ'0 OCH 0S'CT 060°0 OS'C STVI0L a1ING TYVMIIOS
$00°0 SL°T 00°0 SL°Z ST'0 "00°0 SZ'0 OFH 0S°T 00°0 0S'T VAd P©SFIONINY puZ Teeq ebuegoxy ubjelos rva
Z0 aIINE FUVALIOS T'T FOVADIVA/ASVHA

$0°00 SL°'S 00°0 SL'S SL'0 00°0 SL°O 00°S 00°0 00°S STVIOL QTINg TUVKILIOS
%00°00 ST'T 000 SL°T ST'0C 00°0 ST'O0 d9ad 00°'Z 00'0 00°T HON Xxvwwng/3ndur yweq ebuvwyoxmy ubjexod NIZ
$00°00 SL°T 00°0 SL°T ST'O0 00°0 SZ'0 OSCE 0S'T 00°C 0S'T EDN weyIoyiny 38T [eeq ebueyoxy ubyerod IVd
$00°00 SL°'T o00°'0 SL'I $T°'0 00°0 SZ'0 OSrH 06T 00°0 O0S'T Va4 sepxynbuz [waa Twaeuesy FIAQ
T0 QIING MUVMIIOS T°T FOVAOVA/ASYHA
vyeTdEo) ISINO IOV OI¥Y0 ISINO IOV OSINO OHM ISINO IOV OI¥0 OHM NOILJI¥ISAa 2000
3u90I9d [———-- STRIOL———-] [-——-YOOYD #89IBIUY~——u] [~e——ma uoyssesboy—~—-——} ASYT ASYL

T6/€0/9T IV SY ONINDIHD ANV NOISSITUOTY

S4I Y04 SIV0JIY SSTUO0Ud ONIISIL

23-22

PART 1l TBGEN & TCMON

24. TBGEN and TCMON

TBGEN generates test drivers that facilitate unit testing and bottom-up integration test-
ing. The latest version of this tool includes the generation of stubs so that top-dowa integra-
tion testing is also supported. TBGEN’s companion tool, TCMON, provides structural
coverage and timing analysis.

24.1 Tool Overview

Until recently, TBGEN and TCMON were marketed by ICL Personal Systems, former-
ly Nokia Data Systems. They are now available from Testwell Oy. These tools have been
commercially available since 1986 and 30 permanent multi-user licenses have been sold.
Designed to be hardware architecture, operating system, and compiler independent, these
tools are available for VAX/VMS, Sun-3/SunOS, PCs under MS-DOS and OS-2, and Ra-
tional machines. There are some minor difference between the versions available on differ-
ent operating environments; for example, unlike the Sun-3/SunQS versions, the VAX/VMS
tools do not allow escaping to the operating system command level. At the time of exami-
nation, TBGEN prices started at $2,850 and TCMON at $2,300. The versions examined
were TBGEN Version 3.1 and TCMON Version 2.2 operating on a VAX/VMS platform.

24.1.1 TBGEN Overview

Using Ada program unit specifications, TBGEN generates a test driver and a command
file for compiling and linking this test driver with the units under test. The user can control
the size of the resulting testbed by specifying particular subprograms or program objects to
be excluded. A log file automatically records pertinent information about testbed genera-
tion. The user executes the resulting testbed, interactively specifying the desired calling se-
quence and subprogram parameters, and observing the resuits. (Since the testbed takes
standard input from the keyboard for interactive communication with the user, some diffi-
culties may be encountered if a module under test also uses standard input.)

A powerful set of Ada-like testbed commands is provided. For example, testbed vari-
ables can be declared and their visibility directly controlled, and many of the entities de-
clared in Ada specifications can be accessed. Additional commands display information
based on current testbed settings and testbed status, or cause user inputs and testbed outputs
to be copied to a trace file for later examination. Instead of using a testbed interactively, the

24-1

TBGEN & TCMON PART I

user can specify testbed inputs in the form of a script file. Scripts may be user developed or
generated from a copy of previous testbed inputs. Conditional and iteration control struc-
tures, along with fixed and variable breakpoints, are provided for scripts. Assertions are
provided for automatic checking of test results against expected results.

24.1.2 TCMON Overview

TCMON instruments the contents of user-selected files with statements that act as mea-
surement probes. These probes provide for coverage analysis at the se2ment, condition, and
subcondition levels. In addition to structural coverage, probes provide for segment execu-
tion counts and true/false counts of conditions and subconditions. They also provide timers
that allow capturing execution times at the program unit level and the measurement of times
between user-specified events. Each subprogram can be instrumented for different types of
monitoring. A test monitor is generated. A command file for compiling the monitor and in-
strumented code and performing necessary linking is also generated, together with a log file
providing information about instrumented files and units generated. The monitor supports
a command-driven interface that provides the user with commands such as those required
to reset all counters and timers, save and append measurement data, produce a profile list-
ing, and run the instrumented program. Where necessary, this interface can be omitted by
inserting TCMON commands in source files as special comments and generating a dummy
monitor. Data generated by the instrumentation is recorded in a profile listing. This gives
detailed information about counter and timer places and values, and a histogram of state-
ment list execution counts is included. The profile listing also contains information that can
be used to estimate the influence of instrumentation statements on measured time. The TC-
MON Postprocessor (TCPOST) processes the profile listing to generate summary reports
at either the package or subprogram level.

Timers may include invalid data when two or more tasks call the same instrumented
subprogram or are of the same instrumented task type. The same is true for recursive pro-
cedures. If this happens, the affected timers are flagged in the profile listing. Although ge-
neric procedures and packages can be instrumented, multiple instances are not
distinguished. Also, when returning from a function, it is not possible for a timer within the
function to record the time spent in the evaluation of the return expression. Exceptions,
which are invisible to the instrumentor, may also distort timing results.

24-2

PART Il TBGEN & TCMON

24.2 Observations

Ease of use. The user interacts with TBGEN and TCMON through command interfaces
that are well supported with prompts to guide a user through necessary steps. Context-sen-
sitive help is available, together with general descriptions on user-selected topics. Error
messages are informative, though no specific help for resolving an error is provided; mes-
sages are written to both the display and the appropriate log file. When erroneous input is
detected, execution of the current command is terminated and the rest of the current input
line ignored. When a test script is being used in TBGEN, processing will continue with the
next line. Command files are provided to relieve the user of some repetitive manual labor.
Although the use of TCMON requires no special knowledge, the TBGEN command-inter-
face requires some knowledge of Ada. All reports are well-structured and clear, with useful
history-keeping information.

TBGEN is tailorable in several ways. The SPECIAL command implements environ-
ment or installation specific commands. Configuration parameters specified in a system file
can be changed, essentially to modify default file names. A system file gives the specifica-
tion for package STANDARD which can be modified to reflect some of the options avail-
able to Ada compilers. The template files used in generating testbed components can be
changed.

Some aspects of TCMON can also be altered by modifying the template file used for
generating auxiliary Ada units and the command file. This template file also contains the
configuration parameters that can be changed to alter default values. The TCMON User’s
Manual provides suggestions for modifying the parent type for counter variables, measur-
ing CPU time instead of default elapsed time, and including other cost functions.

Documentation and user support. The documentation is well-written and guides a
user through using each tool. The vendor provided good support and answered all questions
quickly and well.

Instrumentation overhead. TCMON is designed to minimize the introduction of un-
necessary instrumentation. It not only allows the user to select the files whose contents are
to be instrumented, but allows each file to be instrumented differently. TCMON also allows
the user to select between SAFE or UNCHECKED modes for the segment counter. The
vendor cites a 50% to 100% increase in code size for full structural instrumentation. For the
Ada Lexical Analyzer Generator, full structural instrumentation of all units gave a size in-
crease of 120%.

24-3

——
TBGEN & TCMON PARTII

Ada restrictions. TBGEN accepts any valid Ada code. Expressions, however, are
skipped with the result that the type of an array index cannot always be determined auto-
matically and the user may be asked to supply this information. Tasks, task types, and de-
pendent entities are ignored and cannot be accessed in testbeds directly. Similarly, testbeds
do not provide the user with access to objects of limited type, functions with results of lim-
ited type, array objects with a constrained array definition, and constrained subtypes of a
type with discriminants. TCMON may misinterpret overloaded operators returning boolean
values when these are used in conditions.

Problems encountered. No significant problems were encountered during the exami-
nations of these tools.

24.3 Recent Changes

TBGEN version 3.0 has been ported to Apollo/Domain environments. An upgrade, ver-
sion 3.1, is available on a limited set of platforms. The notable enhancements included in
the upgrade are a recording facility for user input to allow automatic repetition of interac-
tive test sessions and a blockwise USE command.

In November 1991, TBGEN version 4.0 was released and is now available for all the
previous environments, except Rational machines. This version introduces the generation
of stubs to facilitate top-down testing. TBGEN is the only identified tool that provides this
powerful and valuable capability.

TBGEN and TCMON are also available through DDC International as an integrated
part of its CASE Toolbox product. The Sun/SPARC version of these tools is also available
through DDC International.

Under certain circumstances both tools can be licensed in Ada source code form with
connection ports to Gould, Apollo/Domain, and some NEC machines (Unix environments).

24.4 Sample Outputs

Figures 24-1 through 24-6 provide sample outputs from TBGEN and TCMON.

24-4

PART I TBGEN & TCMON

-- Script file : USR: [ADATEST.TBGEN]CALENDAR.REC;1

-- Created at : 1991-08-15 10:37:14

~=- Created by : Test bed CAL_BED generated at 1991-08-15 09:00:03
SET TRACE FILE calendar.trxrc

DECLARE
USE calendar
moment : time := clock
current_year : year
current_month : month
the_day : day_num
seconds : day_dura
BEGIN

split(moment, current_year, current_month, the_day, seconds)

noment := time of({current_year, current_month, 15, 0.0)
DISPLAY day(moment)

moment := add__l(moment, 86400.0) -—- add__1 equiv to "+"
split(moment, current_year, current_month, the_day, seconds)
ASSERT the_day = 16 AND seconds = 0.0

now : time := clock
later : time := clock
ASSERT le__1l(now, later) = true -- le__1 equiv to "(="

moment := time of(1991, 2, 28, 0.0)
ASSERT NOT EXCEPTION

moment := time of(1991, 2, 29, 0.0)
ASSERT EXCEPTION(time_error)

END

SET TRACE CLOSED

SET RECORD CLOSED

Figure 24-1. TBGEN Record Flle

24-5

TBGEN & TCMON PART Il

P Y 32 22 eI I I3 28222 2222202202222 0223222222222 2220 22

Softplan (R) Ada Tools

hd TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems

Test Bed Trace Listing

®
L 4
*

PYL 132222 3223213332312 2332323222222 2220222 d%dRis i ittt il

Test bed generated at 1991-08-15 09:00:03., Time is now 1991-08-15 10:37:22

CAL_BED)
CAL_BED)
CAL_BED)
CAL_BED)
CAL_BED)>
CAL_BED>
CAL_BED>
CAL_BED)
CAL_BED)>

CAL_BED)
CAL_BED)>
CAL_BED)

CAL_BED)>
CAL_BED)

CAL_BED)
CAL_BED)
CAL_BED)
CAL_BED)
CAL_BED)
CAL_BED>
CAL_BED>
CAL_BED)
CAL_BED)
CAL_BED)

CAL_BED>
CAL_BED)
CAXL_BED)

DECLARE
USE calendar
moment : time := clock
current_year : Yyear
current_month : month
the_day : day_num
seconds : day_dura
BEGIN

split(moment, current_year, current_month, the_day, seconds)
YEAR (out) = 1991
MONTH (out) = 8
DAY (out) = 15
SECONDS (out) = 38266.8500

moment := time_of(current_year, current month, 15, 0.0)
DISPLAY day(moment)
15
moment := add__1(moment, 86400.0) -— add__l1 equiv to "+*
split(moment, current_year, current_month, the_day, seconds)
YEAR (out) = 1981
MONTH (out) = 8
DAY (out) = 16
SECONDS (out) = 0.0000
ASSERT the_day = 16 AND seconds = 0.0

now : time := clock
later : time := clock
ASSERT le__1(now, later) = true — le__1 equiv to "<(="

moment := time_of(1991, 2, 28, 0.0)
ASSERT NOT EXCEPTION '
moment := time of(1991, 2, 29, 0.0)

ssx gyxception CALENDAR.TIME_ERROR
ASSERT EXCEPTION(time_error)

END

SET TRACE CLOSED

Trace closed at 1991-08-15 10:43:46

Figure 24-2, TBGEN Trace File

24-6

PART Il TBGEN & TCMON

AN R R AR R R T RN R R R R R R A I N AR A R R R AR T RN RN NI R AR AR R R RN AR I AT AN AR AR RN

* Softplan (R) Ada Tools »
* TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems L
» Test Bed Generation Log File »

AR R R R AN R AN N R R R R R R R R R R AN AN R AR AN R AN NI R A SN R R AN R AAR AN NIRRT A TR NN RN NSNS
Licence identification of the generator:

Test bed timestamp...: 1991-08-15 09:00:03
Test bed name........ : CAL_BED

Generated Ada files..: calr.ada

Command file......... 1 calCMD.COM

Analysed source files:
File: TBGENSYS.STD
File: calendar.spe

The symbol table :

package STANDARD/8001/ is
type BOOLEAN/1/ is (
FALSE,
TRUR) ;
type INTEGER/2/ is Integer_Type;
type FLOAT/3/NoV/ is Float_Type;
type CHARACTER/4/NoV/ is (
<¥);:
subtype NATURAL/5/NoV/ is INTEGER <2) ;
- Type Class =) Integer_Type
subtype POSITIVE/6/NoV/ is INTEGER <2 ;
-~ Type Class => Integer_Type

function ">="/2015/(
LEFT : in CALENDAR.TIME <11> ;
RIGHT : in CALENDAR.TIME <11>)
return BOOLEAN <1> ; .
~= Alias Name => GE__1
TIME_ERROR/6006/ : exception;

end CALENDAR;
end STANDARD:

Execution of the generator successfully ended at 1991-08-15 09:01:02

Figure 24-3. TBGEN Generated Log Flle

247

TBGEN & TCMON PART Il

L2222 A2 R a2 2 A L2 R L {24222 2222222221223 22 1222

* TCMON System Version 2.2, (C) Copyright 1987 by Softplan

* Test Coverage Monitor / Program Bottleneck Finder *
* BExecution profile listing .
R A AN NN IR R R N RN R E AN R R P AN A AN R PR T AR R E P R RN E R E TR PR AN AN TES
Counters Timers
LINE EXECUTION LTBGEN/TCMON- PLACE START/ END/ AVERAGE
NO. COUNTS VEL DESCRIPTION TRUE FALSE TIME TIME
Source file => [~.adalex2]1l_decls.ada Instr =) (A,N,N,N)
Source file => 11 compile_dummy.ada Instxr => (A,N,N,Y)
P X 1 proc LL_COMPILE
120........000uh 2 func LLFIND
124=2eee))5)) 2 begin 198 02
127#=%x%3>3553>>> 3 while_loop 898 763 ?
Condition 898 63
Source file => [~ adalex2]ll_sup_spec.ada Instr => (A,N,K,N)
Source file =) 11_sup_body mt.ada Instxr =) (A,Y,Y,Y)
50, ..., 1 pack LL_SUPPORT 1] 0.0000
- 2 func ALTERNATE 14 0.0000 0.0000
170....... 2 func CHAR_RANGE 6 0.0013 0.0078
175wxnxnx) 2 begin 6 02
176 TIMER _CHAR_RANGE 6 0.0013 0.0078
178%es 3 1f_then 3 3
Condition 3 3
181nsex 3 if_else 3 3
183swnww)))) 4 for_loop 62 62
18Geenwse) 3 return 6 0
204.............. 3 proc COMPLETE_ALT 4 0.0039 0.0156

Median of nonzero counter values = 8

One asterisk (*) (=) 1

Numbexr of counters - 539

Number of timers - 36

Number of instrumented (sub)oconditions = 206

Minimum measurable time interval - 0,0001
Estimated cost of one timer operation = 0.0006
Estimated cost of one counter operation = 0.0000

The ipstrumentation was done 1991-08-14 13:15:27
This listing was produced ~ 1991-08-14 13:32:48

Data filea:
NAME =)gampleTIM.dat

Figure 24-4. TCMON Profile Execution Listing

24-8

PART Il TBGEN & TCMON

AN AN AN R R R AN R E R AR N AR NN RO NN NN R R AR R R RN R A AN AR ENRN RN AR NS

* TCMON System Version 2.2, (C) Copyright 1987 by Softplan =

* Tast Coverage Monitor / Program Bottleneck Finder .

* Log of TCMON preprocessor execution -

T 2223 YRR ISR 2R 22 R 2R 2R 222222 2202233 322222 2222 02%221% 3]
L Date and time =) 1991-08-14 13:15:27

Prafix =) SAMPLE

Generated files =) sampler. ada
Main procedure =) *not specifiedw
Code pattern file =) PATTERNS.TCM

b Source => 11_sup_body_mt.ada
Target => sample_ll_sup_body mt.ada
Instrumentation => (INC_NODE =) UNCHECKED
COUNTERS =) ALL
AUTO_TIMERS => YES

MANUAL TIMERS => YES
EXPAND_COMMANDS => YES)

package body LL_SUPPORT on line 50
function ALTERNATE on line 97
function MERGE_RANGES on line 103
function CHAR_RANGE on line 170
-~&& start timexr_char_range on line 176 expanded
-—&& stop timer_char_ range on line 187 expanded
procedure COMPLETE PAT on line 192

Summary Information

EANENRENERRAONRRRRS

Number of instrumented files = 6

Number of compilation units - 4

Number of body stubs - 2

Number of subunits - 2

Number of statement list counters = 539

Number of (sub)condition counters = 206 .

Number of timers - 36

Number of manual timer STARTs - 2 ... all expanded
Number of manual timer STOPs - 2 ... all expanded
Number of embedded commands - b ... all expanded

Command file for compilation and linking => SAMPLECMD.COM

ERRORS: O WARNINGS: O

Figure 24-5. TCMON Log File

24-9

TBGEN & TCMON PART ll

AR R RN R R AR R R AN N A RN AT NN R AR R AR AR NN A AR TR AR AR R AR AR N R RN NA N RN IR RR RN

= TCMON System Version 2.2, (C) Copyright 1987 by Softplan b
* Test Coverage Summary Report d
Y I IR R R R IR A A R R A L R LA R 2220 222222282222 2122202222222 31222232227
PROGRAM ST™ COND SUB OVER
UNIT LIST CVRG COND ALL
CVRG CVRG CVRG

Source file => ll compile_dummy.ada Ingtr =) (A,N,N,Y)
proc LL_COMPILE

func LLFIND 88 -~ 88 - 88 - 88 -
proc LLPRTSTRING 0 - 0 - o - 0~
proc LLPRTTOKEN 0 - 0 - 0o - 0 -
proc LLSKIPTOKEN o - o -
proc LLSKIPNODE 0 - 0~
proc LLSKIPBOTH 0 - 0 -~
proc LLFATAL Q- 0 ~
proc GET_CHARACTER 0 - 0 - 0 - 0 -
func MAKE_TOKEN 0 - 0 - 0 - o -
proc LLNEXTTOKEN 100 100 100 100

Proc LLMAIN 62 - 47 -~ 47 - 56 -~
body LL_COMPILE 100 100
proc LL_COMPILE 49 - 44 - 45 - 48 -
Source file =) {-.adalex2]ll_tokens.ada Instr => (A,N,N,N)
pack LL_ TOKENS

proc ADVANCE 83 - 71 - 74 - 79 ~
pack LL_TOKENS 83 - 71 - 74 - 79 -
OVERALL SUMMARY : 46 - 44 - 4 - 46 -

Number of partially instrumented or dropped compilation units : 0

This summary was generated at 1991-08-14 13:34:48, basod on the TCMON
execution profile listing file sample_out.dat.

The profile listing was produced at 1991-08-14 13:32:48, and the actual
TCPRE instrumentation was performed at 1991-08-14 13:15:27.

There were 103 places out of 128 where the coverage percentage was
below the selected warning level 100 &,

Figure 24-6. TCMON Coverage Summary

24-10

PART I TCAT Serles & TDGen

25. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TSCOPE, & TDGen

These tools are part of the Software TestWorks toolset that also includes SMARTS,
CAPBAK, and EXDIFF for regression testing. TCAT/Ada, TCAT-PATH, and S-TCAT/
Ada provide structural coverage analysis at unit and integration levels. TSCOPE provides
a graphical animation of the coverage achieved and software data visualization relating to
software quality, software performance, and software capacity. TDGen is a test data gener-
ation tool capable of generating test data randomly, sequentially, or using specified values
based on a user-defined template.

TRACKER and STATIC are two additional tools due for release in fall 1992. TRACK-
ER supports problem reporting. STATIC, which currently only operates on C code, per-
forms static analysis to look for such items as missing break statements, initialized or
unaccessed arrays and structures, loss of precision, and nonconformance with the ANSI C
programming language standard.

25.1 Tool Overview

Software TestWorks has been marketed by Software Research, Inc.for over five years.
Software Research also offers a range of software testing services, technical seminars, and
programming language validation suites. The tools are available on a large number of op-
erating platforms ranging from PCs to mainframes under Unix, MS-DOS, OS-2, and VMS
operating systems. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, and TDGen can each be in-
voked via a command line or through a windows-based graphical user interface in the OSF/
Motif environment. TSCOPE requires the graphical user interface. Prices depend on the
operating environment and, at the time of examination, started at $4,900 for TCAT, TCAT-
PATH, S-TCAT, and TSCOPE together. Over 2,500 licenses have been sold for this group
of tools. Prices for TDGen started at $500. Tool users are supported by both a newsletter
and hot-line support.

The examinations were performed on a Sun-4 copy of TCAT/Ada Versien 7.3, S-
TCAT/Ada Version 7.6, TCAT-PATH Release 7, and TSCOPE Release 2. These are all
recently released versions and still subject to beta testing. The final tool examined was TD-
Gen Release 3.2.

25-1

TCAT Series & TDGen PART li

25.1.1 TCAT/Ada and S-TCAT/Ada Overview

TCAT/Ada provides for segment or branch coverage analysis at the unit level and
STCAT/Ada for call-pair coverage analysis at the module integration level. Both of these
tools, however, operate similarly. The user starts by instrumenting the code under test.
Some control over the extent of instrumentation to be performed is provided by allowing
the user to specify a list of modules that are to be excluded from instrumentation. STCAT/
Ada additionally allows the user to provide a file containing a list of function calls to be
excluded and a switch that allows the user to specify the number of characters in a function
name that shall be treated as distinct. In addition to the instrumented code, the insrumentor
yields a reference listing that shows segment (or function) markers and instrumentation sta-
tistics on a module-by-module basis.

The instrumented program is then compiled and linked with a provided run-time file.
Software Research provides different run-time routines to allow some flexibility in the be-
havior and performance of the instrumented program. For example, standard trace file pro-
cessing is performed without internal processing or buffering, and the trace file is the full,
unedited trace of program execution. One option provides for in-place data reduction with
the entire coverage statistics being accumulated in memory and the trace file written after
the program exits. Another option allows the user to turn trace sampling on and off after a
specified number of trace records have been registered in memory. A special multi-tasking
run-time routine is needed to handle instrumented processes that run in parallel; in this case,
a trace file is produced for parent and child processes.

When running, the instrumented program queries the user for the name of the trace file
to which execution data will be written. This trace file is subscciucntly used by a reporting
utility to list the overall coverage achieved, identify hit and not-hit segments, and produce
histograms showing the frequency distribution of segment or function hits, using either lin-
ear or logarithmic scales. All information is given in terms of the segment (or function)
numbers shown in the reference listing. In the case of instrumented processes that run in
parallel, a special utility is provided for preprocessing of the generated trace file(s). This
utility splits tasking and non-tasking trace records into several files so that a trace file for
each task is created.

The reporting function can handle several trace files at the same time and provides for
cumulative coverage analysis by archiving trace file information into an archive file. With
the exception of information on the sequence in which segments were hit, archive files con-

25-2

PART Il TCAT Series & TDGen

tain the same data as a trace file. For cumulative reporting, information on newly hit or
newly missed items is provided. Finally, the user can restrict coverage reporting to a spec-
ified set of modules, request reporting on past coverage using only named archive files, and
cause named modules be deleted from the archive. The results of analysis can be used to
control the extent of subsequent instrumentation. This is achieved via a threshold switch
that causes any module with percentage coverage greater than or equal to this threshold to
be written to the de-instrumented file. (The user can specify the threshold value, or use the
default value of 85%.)

TCAT/Ada and S-TCAT/Ada both provide a utility for creating null archive files. This
is used to ensure that the coverage reporting covers all modules in a program whether or
not they have been executed. This prevents artificially high initial levels of coverage.

TCAT/Ada and S-TCAT/Ada also include an additional utility that takes the output of
the instrumentor to generate, respectively, directed graphs and call graphs of the code under
test. Both of these graphs are presented in textual list form unless the graphical user inter-
face is used. When the graphical user interface is used, a graphical representation of the ap-
propriate diagram can be supported by displays that show, for example, the associated code,
path statistics, and standards limits. In the case of S-TCAT/Ada, the call graph can be start-
ed from a user-specified root node and the outputs of instrumentation of several source files
can be combined to generate a call-graph for the whole program.

25.1.2 TCAT-PATH Overview

TCAT-PATH differs from TCAT/Ada and S-TCAT/Ada in that coverage reporting ad-
dresses the paths executed and is only provided on a single trace file; archive files are not
supported. As with the two previous tools, the user can limit the amount of instrumentation
performed by providing a file containing the names of functions not to instrument. TCAT-
PATH, however, allows the user to further limit instrumentation by inserting flags in the
code that switch instrumentation on and off; these flags are given as a special type of com-
ment and can be left permanently in the code. The user also can specify that instrumentation
of empty edges be suppressed.

In addition to the instrumented code and reference listing, the instrumentor generates a
separate file of directed graph information for each module. The same utilities as are pro-
vided with TCAT/Ada are available for using this information to draw directed graphs. The
information is also used to support the following utilities:

25-3

TCAT Series & TDGen PART il

« apg. This automatic path generator gives the complete set of paths for a named mod-
ule. The user can request that only basis paths are listed; that is, those paths that have
no iteration. Additional options include presentation of a set of path statistics, speci-
fication of the maximum limit on the number of paths to generate, and specification
of pairs of segments not to include in paths. In complex cases, apg can be applied to
a subgraph instead of complete directed graphs.

« pathcon. Presents the logical conditions, and associated predicates, that cause a path
in a particular module to be executed. It can be invoked for a single path, a set or range
of paths, or all paths.

« pathcover. Presents the essential paths in a module, that is, those required to be exe-
cuted to achieve 100% coverage. Essential paths are determined based on the order
of segment occurrence where this order may be adjusted by sorting path information
on various criteria. Population statistics on each segment are available.

» cyclo. Computes the cyclomatic complexity for the named module.

Since these utilities are invoked for a single module, they can require .nany repetitive op-
erations on the part of the user. Consequently, two additional utilities, DoPTH and DoCYC,
allow the user to request that, respectively, apg and cyclo are applied to all appropriate
modules. DoPIC provides a similar facility for drawing directed graphs

The instrumented program is compiled and linked as before and, again, a number of
special run-time routines are available to provide some control over its behavior and per-
formance. When executed, the instrumented program generates a trace file for subsequent
coverage analysis. The basic coverage utility analyzes this trace file to report on the path
coverage achieved for a named module. For each path in the module, the coverage report
specifies whether it was executed and, if so, how many times, together with an overall cov-
erage value. A special DoRPT utility invokes the coverage analyzer for all modules sup-
ported by apg-generated path information.

25.1.3 TSCOPE Overview

TSCOPE is used with the trace files produced by TCAT/Ada, TCAT-PATH, or S-
TCAT/Ada to animate test coverage. All TSCOPE commands are treated as primitives that
are invoked to present a variety of displays. Consequently, all instrumented modules can
be reported on a single X-Window screen and different kinds of reporting can be selected
for different modules. (Each program module can be instrumented for either segment, path,
or call-pair coverage; since these are incompatible, only one type of information can be re-
ported from each module.) Displays are positioned on the screen using a special configura-
tion file or interactively using TSCOPE menu options.

25-4

PART I TCAT Series & TDGen

The following types of dynamic displays are available:

«» TScldig. Provides dynamic display of segment or path coverage data on the directed
graph for a named module. Five different animation styles are available.

 TShisto. Provides a dynamic linear histogram of segment (or path) coverage and call-
pair coverage for a named module. This histogram reflects the percentage of times a
segment is hit. It is supported by data on the number of times a segment is hit and the
current segment coverage.

+ TSlhisto. Provides a dynamic logarithmic histogram of segment (or path) coverage
and call-pair coverage for a named module. This display provides similar information
to the linear histogram display, except that it shows the differences between relative
segment hit counts more clearly.

» TSsOcg and TSslcg. Provides dynamic display of coverage data for a named module
on one of two types of call tree. TSsOcg presents a call tree that shows each distinct
link between an invoking and invoked module; it is used for showing coverage with
respect to the percentage of modules invoked. TSslcg gives only one line for each
invoking-invoked relationship, regardless of the number of connections, and is used
for display of call-pair coverage data.

* TSstrip. Provides a dynamic strip chart that shows the accumulation of segment (or
path) coverage for a named module during a single test. This chart is supported by
data on the percentage of segments (or paths) that have been hit and the number of
times the module is called.

TSCOPE also supports two static displays. These are provided by the utility available with
TCAT/Ada and TCAT-PATH for graphical display of directed graphs, and that available
with S-TCAT/Ada for graphical display of call trees. A number of additional utilities sup-

port display management.

25.1.4 TDGen Overview

TDGen generates test data, or test files, from user defined specifications. It is particu-
larly useful for generating the large amounts of test data needed in stress testing.

TDGen works with two files. The Template File tells TDGen how to generate test data
based on data supplied in a Values File. TDGen replaces variable fields, called descriptors,
in the template with values from the Values File. Descriptors may be user defined or take
one of the predefined values (ASCII, alpha, decimal, and real). In the Values File, descrip-
tors are associated with potential values. Special notations are provided for specifying rang-
es of values and handling comments, blanks, and other white space. Once the Values and
Template files have been created, the user can invoke test data generation in one of three
ways to specify how values should be taken for the descriptors in the Template File:

25-5

TCAT Series & TDGen PART Il

« Specifically. The values for all or some of the descriptors are specified by integers.

« Sequentially. Values are taken sequentially from the Values File to generate every
possible combination of the given values.
+ Randomly. Selects values from the Values File randomly by taking one value from
each field in the file at random. For each field name encountered in the Template File,
a uniformly distributed random number is used to select a particular value from those
corresponding.
Additionally, the user can request TDGen to tabulate the number of possible test data
combinations that will be generated to allow a review of the size of the results before gen-

eration commences.

25.2 Observations

Ease of use. A user can interact with these tools using either a command-line interface
or a series of menus. Context-sensitive help and help frames discussing each function are
provided. No special knowledge is required to use these tools.

TCAT/Ada, S-TCAT/Ada, and TCAT-PATH all provide a number of utilities that can
be invoked for individual program units. In most cases, a special utility is available to apply
the utility for all available program units using a single command. Additionally, TCAT-
PATH supports Unix-like make files to facilitate repetitive compilation and linking tasks.

A limited amount of tailoring is provided by the use of configuration files. These allow
the user to adjust, for example, setting the maximum number of nodes to process, format-
ting options for diagraph display, and default path names.

Reports are generally well-structured. Since segments, paths, and call-pairs are referred
to by number, however, a user must refer back to the various reference listings to identify
the subject of each reference.

Documentation and user support. The tools are supported by extensive documenta-
tion that includes guidelines on appropriate minimum coverage levels.

Instrumentation overhead. TCAT/Ada, TCAT-PATH, and S-TCAT/Ada instrument
the contents of files specified as part of the tool invocation. In each case, all code is instru-
mented the same way. For TCAT/Ada, the vendor recommends a capacity of up to 2,500
segments (approximately 20,000 lines of code). The vendor estimates the size or perfor-
mance overhead for instrumentation at 20% to 30%, although this can be higher for very
complex programs. For the Ada Lexical Analyzer Generator, TCAT/Ada, TCAT-PATH,

25-6

PART I TCAT Series & TDGen

and S-TCAT/Ada instrumentation gave, respectively, 37%, 37%, and 28% increases in
source code size with corresponding increases of 15%, 12%, and 15% for executable code.
Versions of TCAT and S-TCAT that accomplish various levels of in-place buffering to en-
hance performance are available for C programs. Similar support is not available for the

Ada versions.

Ada restrictions. The TCAT/Ada and S-TCAT/Ada instrumentors have been validated
against the Ada validation suite, a set of programs that test compliance with the Ada stan-
dard.

TCAT/Ada and S-TCAT/Ada do not support conditional expressions in Ada; such ex-
pressions must be expanded to the explicit if-then-else form. TCAT-PATH does not handle
multiple instances of a task or exception handling. Variant records, compound conditions,
and the terminate alternative of a selective wait are not instrumented by any of these tools.

Problems encountered. Problems encountered with the runtime files and installation
instructions of earlier releases of these tools have been fixed. For each of TCAT/Ada, S-
TCAT/Ada, and TCAT-PATH, incorrectly inserted instrumentation statements prevented
compilation. In most cases, however, these errors were relatively easy to correct manually.
The TCAT-PATH pathcon utility gave a segmentation fault after processing the first record
of generated trace files, and the coverage reporting utility could not report the coverage
achieved for some program units; TSstrip was the only utility that consistently worked as
expected, though TScldig worked as long as certain command options were not given. It
was not possible to get several windows displayed on a screen. Software Research are in-
vestigating these problems. In TDGen, errors in values and template file, or in the specifi-
cation of program options, caused the program to hang.

25.3 Recent Changes

Software TestWorks has been integrated with IBM’s AIX Software Development En-
vironment Workbench/6000.

25.4 Sample Outputs

Figures 25-1 through 25-26 provide sample outputs from these tools.

25-7

TCAT Series & TDGen PART I

-=- TCAT/Ada, Release 2.1 for SUN (09/16/912).
-- (e¢) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
~—~ SEGMENT REFERENCE LISTING Fri Sep 25 13:26:32 1992

procedure LLFATAL is
~- To recover from syntactic error, terminate compilation
begin
—#* Nodule new_ll_compile.LLFPATAL *—
-=% Segment 1 <> *—
PUT(STANDARD_ERROR, "=« Fatal *);
LLPRTTOKEN,
PUT(STANDARD_ERROR, " found in line ");
PUT(STANDARD_ERROR, LLCURTOK.LINENUMBER, 1);
PUT_LINE(STANDARD_BRROR, * -- terminating translation.”);
raise PARSING_ERROR;
end LLFATAL;
——= End module new_ll_compile.LLPATAL *——

begin -- TESTSYNCH
--* Nodule new_ll_compile.TESTSYNCH *—
~=% Segment 1 <> s-—-
while LLSTACK(LLSENTPTR).DATA.SYNCHINDEX = 0 loop
--* Segment 2 <> ®—
-— no synch info there
if LLSTACK(LLSENTPTR).PARENT /= ¢ then
-—% Segment 3 <> *—
~— there really is a parent
LLSENTPTR := LLSTACK(LLSENTPTR).PARENT;
else
--% Segment 4 <) %=
LLFATAL;
end 1f;
end loop;
~=% Segment 5 <> *—
SYNCHRONIZE;
and TESTSYNCH;
-=* End maodule new_ll_compile.TESTSYNCH =—
begin — LL CONPILE
—* Module nev_ll_compile.lLl _COMPILE *—
~=~% Sagment 1 <> ®—
OPEN(LLSOURCE, IN_FILE, “SOURCE");
LIMAIN; .
CLOSE(LLSOURCE);
end LIL_COMPILE;

== END OF TCAT/Ada REFERENCE LISTING

—

Figure 25-1. TCAT/Ada Reference Listing for LL_COMPILE

25-8

PARTH

TCAT Series & TDGen

TCAT/Ada, Release 2.1 for SUN (09/16/92).

INSTRUMENTATION STATISTICS

Module ¢ segments

new_l1_compile.LLFIN
nevw_l1_compile.LLPRT
new_ll_compile.LLPRT
new_ll compile.LLSKI
new_ll_compile.LLSKI
new_l1_compile.LLSKI
new_ll_compile.LLFAT
new_ll_compile.GET_C
nevw_ll_ocompile.CVT_S
new_l1l_compile.MAKE
nev_ll_compile.LLNEX
nevw_ll compile.BUILD
new_11_cocapile.BUILD
nev_ll_ compile.READG
nev_l1_compile.ERASE
new_11_compile.MATCH
new_l1l_compile.EXPAN
nev_ll_compile.SYNCH
nev_l1l_ compile.TESTS
nev_l1l_compile.PARSE
nevw_l1l_compile.LLMAX
new_ll_compile.llL_CO

)

'

[
WML e MR OUOKWD

fos

= e
=N WWWU

§ statements

1

~NOAO D~

[

[YE) » W
WhvumuwkHEANNOLDONOWM

»

Conditional statements

OO AW OAWNWNMWMKMKLANMODODODO OKM NW

Flgure 25-2. TCAT/Ada Instrumentation Statistics for LL_COMPILE

25-9

TCAT Series & TDGen

PART Il

] Ndiggic 23 [now_il_semplisiLNedly)
file Ptions S ¢ DGt Vo Sorw Patisties Prim ustation

-
wo |

1

\J

g

Ralgpie 925 - Rantietion

E
|

File ammet
Aabar of neivet

E
i

H

RE
il
it 1l

- ege g

Figure 25-3. TCAT/Ada Directed Graph for LLFIND from LL_COMPILE

25-10

-

PART ll TCAT Series & TDGen

Coverage Analyzer. [Release 8.2 for SUN/UNIX 03/16/92]
(ec) Copyright 1990 by Software Reseaxch, Inc.

Selacted COVER System Option Settings:

[-¢) Cumulative Report - NO
f{-p] Past History Report -— NO
{-n] Not Hit Report -— YES
[~H] Hit Report -~ YES
[-nh) Newly Hit Report - NO
{-nm] Newly Missed Report -- NO
{-h] Histogram Report -— YES
[-1] Log Scale Histogram - YES
{-Z] Reference Listing C1 -~ NO

Options read: 4

TCAT/C: Coverage Analyser. [Relesass 8.2 for SUN/UNIX 09/16/92)
(c) Copyright 1990 by Software Research, Inc.

Cl Segment Hit Report.

No. Module Name: Segment Coverage Status:

1 new_l1 compile.LL COMPILE All Segments Hit. C1 = 1008

2 naw_11_ocompile.LLMAIN All Segments Hit. C1 = 1008

3 nev_l1_compile.READGRAM All Segments Hit. Cl1 = 100%

4 new_l1l_compile.BUILDRIGHT 1 2 3 4 5 6 ? 8
1 12 13 25

5 new_11l_compile.BUILDSELECY All Segments Hit. Cl = 100%

6 new_ll_compile.PARSE 1 2 3 4 10 11 12 14
16 18

7 nev_ll_ocompile.LLFIND 2 2 3 4 5 7 8

8 new_l1_compile.LLNEXTTOKEN All Segments Hit. Cl1 = 100%

9 new_l1_tokens. ADVANCE 1 3 3 4 S 6 7 8

10 new_11_tokens.SCAN_PATTERN 1 2 3 4 5 6 7 s

37 as 39 40 43 45 47 49
62 63 64 65 66 67 68 69
71 74 75 76 (1] 1] 89 90
98 99 104 105 106

11 new_l1l_ocompile.GET_CHARACTER All Segments Hit. C1 = 1008

42 11_sup_body. ENIT_CHAR 1 10

43 11_sup_body.EMIT_PATTEAN_MATCE 1 9 10 12 13 17 18 20
a4 a5 a7 as 29

44 11_sup_body.BMIT_CONCAT_RIGHT 1 L

45 11_sup_body.EMIT_CONCAT CASES 1 2 3 5 7

Number of Segments Hit: 308
Total Number of Segments: 529
Cl Coverage Value: 58.22%

Figure 25-4. TCAT/Ada Segment Coverage Report using test1.lex

25-11

10

15

61
70
91

23

TCAT Series & TDGen PART Il

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92)
(c) Copyright 1990 by Software Research, Inc.

Cl Segment Not Hit Report.

No. Nodule Name: Segment Coverage Status:

1 nev_ll_compile.LL COMPILE Al Segments Hit. Cl = 1008

2 nev_ll_ oompile.LLNAIN All Segments Eit. C1 = 100%

3 new_l11_compile. READGRAM All Segments Hit. Cl1 = 100%

4 new_l1_compile.BUILDRIGHT 9 14

H new_l1_compile.BUILDSELECT All Segments Hit. Cl1 = 100%

[nev_l]_compile.PARSE 5 6 7 8 9 13 17

7 new_l1l_compile.LLPIND 6 .

8 new_l1l_compile.LLNEXTTOKEN All Segments Hit. Cl = 100%

9 nev_l1l_tokens.ADVANCE 9 10 11

10 new_l1_tokens.SCAN_PATTERN 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 a7
28 29 30 31 a2 33 34 k13 36

41 42 44 46 48 S0 51 52 33
54 55 56 57 58 59 60 72 73
77 78 719 80 L 5 82 83 85 86
87 92 93 94 95 96 97 100 101
102 103 107 108 109

1 nev_ll_oompile.GET_CHARACTER All Segments Hit. C1l = 100%

40 11_sup_body.EMIT_SCAN_PROC 2

41 11_sup_body.ENIT_SCAN_SELECT 15 17

42 11_sup_body.EMIT_CHAR 2 3 4 S 6 1 8 9 1
12

43 1) sup body ENIT PATTERN MATCE 2 3 4 5 6 7 8 11 14
15 16 19 21 23 26 30 31 332

44 11_sup_body.EMIT_CONCAT RIGHT 2 3 4

45 1l_sup_body.EMIT CONCAT CASES ¢ 6 8

Number of Segments Not Hit: a
Total Number of Segments: 529
€l Coverage Value: 58.22%

Figure 25-4 continued: TCAT/Ada Segment Coverage Report using test1.lex

25-12

® PART Il TCAT Series & TDGen

. TCAT/C: Coverage Analyzer. [Ralease 8.2 for SUN/UNIX 09/16/92}
(e¢) Copyright 1990 by Software Research, Inc.
Segment lLevel Histogram for Module: new_ll_compile.LlL COMPILE

| Number of Exacutions, Normalized to Maximun
| (Maximum = 1 Hits) X = One Hit
® | (Scale: 100.000 Fach X = 0.020 Hits)
Segment Number Of |
Number Ixecutions)-l-=——===30-- -4 0——————=60 8o 100
J
1 1 POI0400000000000000000000000000000000000008480805.0643
I
. Average Hits per Executed Segment: 1.0000
C1 value for this Module: 100.0000

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(¢c) Copyright 1990 by Software Ressarch, Ino.
Segmant Level Histogram for Module: new_ll_oompile.BUILDRIGHT

+

| Number of Executions, Normalized to Maximum
| (Maximum = 174 Bits) X « One Hit

| (Scale: 0.575 Bach X = 3.400 Nits)
Segment Number Of |
Nuaber Executions ’-1 20 4 - =B 0 -100
1 &4 XXXXXXXXXXXXXXXRLR
2 174 XXX XXX XL XXX XXX XXX XX XXX XX XX XXEXXXXXRX XXX XXXXX
3 174 XXX A XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXTXXXXX
4 50 AXXXXAXXXXXXXX
5 61 XXXXXXXXXATXXXXXX
6 46 XXXXXXXXXXXXY
7 13 XXX
8 4 X
9 L
10 79 XXXXAXXXXXXXXXXXXXXXXX
11 95 | XEXXXXXXXXXXXXXYXXXXXXXXXXXX
12 144 IXXXXXXX XXX LXXXTXXX XXX XX XX XXX XXX XL XAXXXX
13 30 XXXXXXXX
14 »
15 64 XXXXAXXXXXXXXXXXXX

(* = Lero Rits)
Avarage Hits per Executed Sagment: 76.7692
€1 Value for this Module: 86.6667

Figure 25-4 continued: TCAT/Ada Segment Coverage Report using test1.lex

25-13

I R ———

TCAT Series & TDGen PART I

Covexage Analyzer. {Release 8.2 for SUN/UNIX 09/16/92)
{c) Copyright 1990 by Software Research, Inc.

Selected COVER System Option Settings:

f-c] Cumulative Report -- YES
[-p] Past History Report -- NO
{-n] Not Hit Repoxt -- YES
[-B) Hit Report - YES
[-nh] Newly Hit Report -- YES
{-am] Newly Missed Report -- YES
(-h] REistogram Report -- NO

[-1] Log Scale Histogram -- YES
{=2] Reference Listing C1 -- NO
Options read: [

PTCAT/C: Coveragse Analyzer. [Releasa 8.2 for SUN/UNIX 09/16/912]
{c) Copyright 1980 by Software Research, Inc.

| Current Test | Cumulative Summary |

| No. Of l No. Of]
Nodule Number Of | No. Of Segments Cl1% | No. Of Segments C1t% |
Name: Segments: | Invokes Hit Cover | Invokes BHit Cover |
new_l)l_compile.LlL_COM 1 1 1 100.00 | 2 1 100.00 |
new_l1 compile.LIMAIN 1 1 1 100.00 | 2 1 100.00 |
new_l1_compile.READGR 11 1 11 100.00 | 2 11 100.00 |
new_11_compile.BUILDR 15 64 13 86.67 | 128 13 86.67 |
nev_l1 compile.BUILDS 23 64 3 100.00 | 128 3 100.00 {
new_ll _compile.PARSE 18 1 1 61.11 2 11 61.11 |
new_ll compile.LLFIND 8 312 8§ 100.00 510 8 100.00 |
new_11 _compile.LLNEXT 3 221 3 100.00 355 3 100,00 |
new_l1_tokens.ADVANCE 11 221 9 81.82 355 9 s1.82 |
new_l1_tokens.SCAN_PA 109 435 46 42.20 712 32 7.1 |
new_ll compile.GET CH 4 1385 4 100,00 2250 4 100.00 |
new_ll_tokens.CHAR_ AD 5 1238 3 60.00 2018 3 60.00 |
new_1] _tokens.CURRENT 1 | 220 1 100,00 353 1 100.00 |
new_l1_compile.MAKE T 15 220 13 86.67 353 13 86.67 |
new_ll compile.CVT ST S 3220 5 100.00 353 s 100.00 |
new_11l_compile.EXPAND 13 461 11 84.62 715 i1 84.62 |
new_l11_compile.MATCH 7 461 5 712.43 715 5 71.43 |
new_11_compile.ERASE 5 707 5 100.00 1105 S 100.00 |
new_l1_tokens.LOOK_AH 5 84 3 60.00 | 123 3 60.00 |
11_actions.LLTAKEACTI 69 429 36 $2.17 | 659 36 $2.17 |
11_sup_body.TAIL 18 2 4 22.22 2 4 22.22
11_sup_body .EMIT_AL? 7 12 7 100.00 12 7 100.00

Totals 614 7569 384 62.54 11884 s 63.68

P —
 —— ———

P Qe
4 — ¢

Figure 25-5. TCAT/Ada Segment Coverage Report using test1.lex & sample.lex

25-14

PART Il

(c) Copyright 1990 by Software Research, Inc.

Cl Seguent Hit Report.

No. Module Name:

1 new_ll_coapile.LlL_ CONPILE

2 new_ll_compile.LLMAIN

3 new_ll_compile.READGRAM

4 new_ll_compile.BUILDRIGHT

H] new_ll_compile.BUILDSELECT

6 new_ll_compile.PARSE

7 new_l11l_oompile.LLFIND

8 new_ll_compile.LLNEXTTOKEN

9 nev_l11_tokens.ADVANCE

10 new_ll_tokens.SCAN_PATTERN
11 new_11_compile.GET_CHARACTER
12 new_l1_tokens.CHAR_ADVANCE
13 new_11_tokens.CURRENT_ SYMBOL
50 11_sup_body.TAIL

51 11_sup_body.EMIT_ALT_CASES
Numbar of Segments Hit:

Total Number of Segments:

Cl Coverage Value:

TCAT/C: Coverage Analyzer.

n

Segment Coverage Status:

All Segments Hit. Cl = 100%
All Segments Hit. Cl = 100%
All Segments Hit. Cl = 100%
1 2 3 4 5 6
11, 12 13 15

All Segments Hit. Cl = 100%
1 2 3 4 210 1
16 18

All Segments Hit. Cl = 100%
All Segments Hit. Cl = 100%
1 2 3 4 5]

1 2 3 4 s 6
10 11 12 13 14 15
32 37 38 39 40 43
61 62 63 64 65 66
70 71 74 75 76 84

91 98 99 104 105 106

All Segments Hit. C1 = 100%
1 3 5

All Segments Hit. Cl1 = 100%

1 -] 14 16

All Segments Hit. Cl = 100%
5§14

63.68%

(Release 8.2 for SUN/UNIX 09/16/92]

(c) Copyright 1990 by Software Research, Ipo.

Cl Segment Newly Hit Report.

No.
7
9
10

50
51

Nodule Nama:

new_l1l_compile.LLFIND
new_l1l_tokens.ADVANCE
new_l1_tokens.SCAN_PATTERN

11_sup_body.TAIL
11_sup_body.EMIT_ALT_CASES

-

Segment Coverage Status:

6

9

10 11 12 13 14 15
2 107

12

16
45
67
88
107

16

14

17
47
68
89

17

TCAT Series & TDGen

10

15

9

a8
49
69
90

28

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using test1i.lex & sample.lex

25-15

TCAT Series & TDGen PART Il

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92)
(c) Copyright 1990 by Software Research, Inc.

Cl Segment Not Hit Report.

No. Module Name: Segment Coverage Status:

1 nevw_l1l_compile.lLl_ CONPILE All Segments Hit. Cl1 = 100%

2 new_l1l_compile.LLMAIN All Segments Hit. Cl1 = 100%

k| new_l1l_compile.READGRAM All Segments Hit. Cl1l = 1008

4 new_ll_compile.BUILDRIGRT 9 14

5 new_ll_compile.BUILDSELECT All Segments Hit. Cl = 100%

6 nev_ll_compile.PARSE 5 6 7 8 9 13 17

7 new_ll_compile.LLPIND All Segments Hit. C1 = 100%

8 new_l1l_compile.LLNEXTTOKEN All Segments Hit. Cl1 = 100%

9 new_l1l_ tokens.ADVANCE 10 11

i0 new_l1l_tokens.SCAN_PATTERN 18 19 20 21 a2 a3 24 a5 26
27 29 30 31 33 34 35 a6 41
42 44 46 48 50 51 53 53 54
55 56 57 58 59 60 72 73 77
78 79 80 81 83 a3 85 86 87
92 93 94 95 96 97 100 101 102
103 108 109

11 naw_l1_compile.GET_CHARACTER All Segments Hit. C1 = 1008

12 new_l1_tokens.CHAR_ADVANCE 2 4

13 new_ll_tokens.CURRENT_SYMBOL All Segments Hit. Cl1 = 100%

14 new_11_compile.MAKE_TOKEN 10 15

48 11_sup_body.RESOLVE_AMBIGUITY 4 5 8 9 10 11 12 13 14
15 16 17 18 19

49 11_sup_body . RESTRICT 4 7 13 114 15 16 22

50 11_sup_body.TAIL 2 3 4 6 7 8 9 10 1
13 13 15 17 18

51 11_sup_body.ENIT_ALT_ CASES All Segments Hit. Cl = 100%

Number of Segments Not Hit: 323

Total Number of Segments: 614

Cl Coverage Value: 63.60%

TCAT/C: Coverage Analyzer. {Release 8.2 for SUN/UNIX 09/16/92]

(o) Copyright 1990 by Software Research, Inoc.

Cl Segment Newly Missed Report.

No. Module Name: Segment Coverage Status:

10 new_l1_tokens.SCAN_PATTERN 66 67 68 68 70 71

40 11_sup_body.ENIT_SCAN_PROC 6

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using test1.lex & sample.lex

25-16

\

PART Il TCAT Series & TDGen

TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 095/16/92)
(c) Copyright 1990 by Software Research, Inc.
Segment lLevel Histogram for Module: new_l1 campile.LL COMPILE

+
-4

Logarithm of Executions, Normalized to Maximum
(Maximum = 2 Hits)
Segment Number Of
Number Executions

10 20-—~—=30~-~40--80-100

e
-

+
+

$——— v —_——
[

1 2 XXX XAXTAXX XXX XXX XX AX XXX XXX XXX XXX XXX XXX X XXX XXX
Average Hits per Exacuted Segment: 2.0000

Cl Value for this Module: 100, 0000

TCAT/C: Coverage Analyzer. [Release 0.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.
Segment lLavel Histogram for Module: new_ll_ compile.READGRAM

<+ N
r -+

Logarithm of Executions, Normalized to Maximum
(Maxinum = 1280 Hits)
Segment Number Of
Number Exeocutions » X 10 20——30-—-40--80-100
1 2 XXXXXXX
2 64 IXXXXXXXXIXAXAXXX X XXXX
3 1280 XXX XXX XXX XX XXX XXX XX EX XXX R XX AXXX XX XXX XXX AXXXXXX
4 64 ZXXXXXXXXXXXXXXTXXXXX
5 12 XXXXXXXXXXXX
6 52 XXXXXXXXRXXXXAAXXXE
7 2 XXXXXXX
8 128 ZEXLXXXEXXXXXXXX XXXXXX XXX
9 2 XXXT0XXX
10 L¥) IAXXXXXXXXTXXXAXXAX
1 2 ZXXXXXX

+

Average Hits per Exeacuted Segment: 150.9091
Cl Value for this Module: 100.0000

Figure 25-5 continued: TCAT/Ada Segment Coverage Report using test1.lex & sample.lex

25-17

TCAT Serles & TDGen PART I

-=- TCAT-PATH/Ada, Release 2.1 for SUN (09/18/92).
-- (e) Copyright 1989 by Software Research, Inc. AL. RIGHTS RESERVED.
~— SEGMENT REFERENCE LISTING Mon Oct 26 13:09:12 1992

procedure LLNEXTTOKEN;
-- get the next token from the input stream (defined below)

function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER is
-— Find item in symbol table -~ return index or 0 if not found.
-~ Assumes symbol table is sorted in ascending order.
LOW, MIDPOINT, HIGH: INTEGER;
begin
~-» Module new_ll compile.LLFIND *—
-=% DIGRAPH NODE 1 »—
-—* Segment 1 <) #*~—
Low := 1;
HIGH := LLTABLESIZE + 1;
-—# DIGRAPH NODE 2 w—-
while LOW /= HIGH loop
¢ =—% Segment 2 <> *—
MIDPOINT := (HIGH + LOW) / 2;
-—% DIGRAPH NODE 3 *—-
if ITEM < LLSYMBOLTABLE(NIDPOINT).KEY then
-~—* Segment 3 <) #%—
HIGH := MIDPOINT;
elsif ITEM = LLSYMBOLTABLE(NIDPOINT).KEY then
-=% Segment 4 <> w——
==-t DIGRAPH NODE 4 #*—
if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then
-—* Segment 5 () ww--
return(MIDPOINT);
else
~=% Segment § <) *—
return(0);
end if;
else - ITEM > LLSYNBOLTABLE(MIDPOINT).KEY
~—* Segment 7 () #-—
LOW = MIDPOINT + 1;
end if;
end loop;
-—* Segment 8§ <> *——
return(0); - item is not ip table
end LLFIND;
~—=* DIGRAPH NODE 5 »—
~% End module new_l]l compile.LLFIND *——

v

~— END OF TCAT-PATH/Ada REFERENCE LISTING

Figure 25-6. TCAT-PATH Segment and Node Reference Listing for LL_COMPILE

25-18

PART I TCAT Series & TDGen

== TCAT-PATH/Ada, Release 2.1 for SUN (09/18/92).

-- INSTRUMENTATION STATISTICS

== MNodule # segments ¢ statements ¢ Conditional statements
-- new_l]_compile.LLFIN 8 1 3
-~ new_l1_compile.LLPRT S 5 2
-- pew_l1l_coapile.LLPRT 3 4 1
-~ pew_ll_compile.LLSKI b 7 0
-- new_l]1 compile.LLSKI 1 L] 0
- pew_ll_compile.LLSKI 1 9 0
-- new_l)_compile.LLFAT 1 6 0
-~ new_ll compile.GET_C 4 7 1
~- new_ll compile.CVI_S 5 5 2
== new_ll compile.NAKE_ 15 18 4
-- pew_l1_compile.LLNEX 3 5 1
-—- new_1l1l_compile.BUILD 15 32 S
-- new_l1l_compile.BUILD 3 5 1
~- new_ll compile.READG 1 a4 5
—— new_ll_ compile.ERASE 5 7 2
- == new_ll_compile MATCH 7 6 3
-- new_ll_compile.EXPAN 13 21 6
-- new_l1l coapila.SYNCH 19 2% 9
— pew_l1_compile.TESTS 5 S a
— new_l]_ compile.PARSE 18 29 6
— new_ll compile.LINAX 1 2 (]
-- new_ll1 oompile.LL_CO 1 3 0

Figure 25-7. TCAT-PATH Instrumentation Statistics for LLFIND

cyclo [Release 3.3 — 9/26/90)

Cyclomatic Number = Edges -~ Nodes + 2 = 8 - 54+ 2 = §

Figure 25-8. TCAT-PATH Cyclomatic Complexity of Function LLFIND

25-19

TCAT Series & TDGen

Figure 25-9. TCAT-PATH Segment Count for Each Module in LL_COMPILE

digpic

o — v

new_l11_compile.
new_l1_compile.
new_ll_compile.
nev_l1l_compile.
new_ll_compile.
new_ll coapile.
new_l]l compile.
new_l)l_compile.
new_ll compile.
nev_ll_compile.

nev_l1_compile.
nev_1ll_compile.
nev_l1l_compile.
nev_ll_compile.
new_ll_compile.
nev_l1_compile.
new_ll_compile.
new_ll compile.
nev_l1l_compile.
nev_l1 compile.
new_l1l compile.

48}
(
{2
It
{3
[$
{4
[
(s

il 0
11
11 ¢ 0
)]
110 <
11
1< o
1}
1] <

o — v

Figure 25-10. TCAT-PATH Digraph of Function LLFIND

PART Il

LLPIND 8
LLPRTSTRING
LLPRTTOKEN
LLSKIPTOKEN
LLSKIPNODE
LLSKIPBOTH
LLFATAL 1
GET_CHARACTER
CVT_STRING
MAKE_TOKEN

. LLNEXTTOKEN

BUILDRIGHT
BUILDSELECT
READGRAM 11
ERASE S
MATCH 7
EXPAND 13
SYNCHRONIZE
TESTSYNCH
PARSE 18
LIMAIN 1
LL_COMPILE

1
28
-734

56

A —— e e e e €@

{Release 3.1 for SUN 386 3/3/89]

25-20

PARTII TCAT Series & TDGen

apg [version 3.3 -- 09/02/92) — paths for "new_ll_compile.LLFIND"

1245

1246

123 237)098
123((2371)) 45
123([(2371))46
127<¢(237)8
127({(2371))145
1271(237114°¢6
138

Total of 9 paths for ‘new_ll_compile.LLFIND’.

Figure 25-11. TCAT-PATH All Paths for LLFIND

apg [version 3.3 -- 09/02/92] — paths for "new_ll_compile.LLFIND”

45
46

[Ty
XYY

Total of 3 paths for ‘new_1l_compile.LLFIND’.

Figure 25-12. TCAT-PATH Basis Paths for LLFIND

apg [version 3.3 — 09/03/92) —— paths for "new_ll_compile.LLPIND"

Path Analysis Statistics

File name: new_ll compile.LLFIND.dig
Number of nodes: 5
Number of edges: 8
Cyclomatic number (E - N + 2): 5
Number of paths: 9
Average path length (segments): 5.33
Mipimum length path (segments): 3 (Path 9)
Maximum length path (segments): 7 (Path 6)
Most iteration groups: 1 (Path 8)
Path count by iteration groups:
0 iteration group(s): 3
1 iteration group(s): 6

Stopped at 1 iteration groups

Figure 25-13. TCAT-PATH Path Statistics for LLFIND

25-21

TCAT Series & TDGen PART Il

pathcover ~- Path Coverage Utility. (Release 1.2 -— 9/91])
(c) Copyxright 1991 by Software Research, Inc.

pathcover: FIRST INSTANCE FOUND BY SEGMENT

Module:: "new_ll_compile.LLFIND" Option:: *"-f"
Path# Path
1 1 121
2 2 232
3 3 344
4 4 455
5 5 456
6 7 32
7 8 258
da
OR
pathcover: POPULATION STATISTICS BY SEGMENT
Module:: "new_ll compile.LLFIND" Option:: "-c*
- Segment 4 of paths
1 3
2 2
4 2
5 1
[1
8 1

pathcover: FIRST INSTANCE FPOUND BY SEGMENT

Module:: "new_ll_compile.LLFIND® Option:: "-f"
Pathé Path

1 1 1245

2 2 1246

3 3 18

pathcover: LAST INSTANCE FOUND BY SEGMENT

Module:: "new_ll_compile.LLFIND" Option:: "-1°
4 Path# Path

1 1 1245

2 2 1246

3 3 18

Figure 25-14. TCAT-PATH Path and Segment Information for LLFIND

25-22

PART il TCAT Series & TDGen

Ct Test Coverage Analyser Version 2.1 (9/91)
(¢) Copyright 1991 by Software Research, Inc.
Module "new_ll compile.BUILDRIGHT": 26 paths, 8 were hit in 64 invocations.
30.77% Ct coverage

HIT/NOT-HIT REPORT

P# Hits Path text

1l a5 12341012 ¢<(234101213 11567829 14)> 15
2 None 12341013 <(234101213 11567889 14)> 15
3 None 1234131112<(2341012131156789 14) 15
4 1 12341113 <¢<{2341012131156789 14)> 15
5 None 12351012 «{ 234101213 11567 89 14)> 15
6 None 12351013 ¢<({ 23410121311 567 89 14)> 15
7 5 12351112¢<(23410121311 56789 14)15
8 None 12351123 ¢(234101213 115678914)> 15
9 11 123611012 <{ 2341012232256 78 9 14)> 15
10 None 12361013 <{ 23410121311 567 8914)> 15
11 None 12361112¢<{ 23 410121311567 89 14 }> 15
12 4 12361113 <({ 2341012131156 7 89 14)> 15
13 8 12371012¢<(23410121311567839 14)> 15
14 None 12371013 <{ 2341201213 11567 89 14)> 15
15 None 1237121113 <«<(23 410121311567 8914)> 15
16 1 12371113 <¢{234101213115678 9 14 }> 15
17 None 12381012 <{ 23 410121311567 89 14 }> 15
18 None 12381013 «<{ 23 410121311567 8914 }> 15
19 None 12361112<{23410121311567 89 14)> 15
20 None 12381113 <¢{ 234101213 11567 89 14)> 15
21 None 12391012 <¢{ 23 410121311567 89 14)> 15
22 None 123921013 <«<{ 23 410121311567 829 14)> 15
23 None 12391112<{23410121311567 869 14 }> 15
24 None 12391113<{ 234101213 11567 89 14)> 15
25 None 12214<(23410121311567 89 14)> 15

26 9 115

Figure 25-15. TCAT-PATH Coverage Report for BUILDRIGHT using test1.lex

25-23

TCAT Series & TDGen PART I

k3] Neaeic v38 (now..il_twines.Ls}
Fils Stim Jom o Bm A Yo lre Batisties Mt gestation

) Capyrsoin HI02 Sofmure Rsesreh, Ins.

juj
Figure 25-16. S-TCAT/Ada Call Graph for LL_TOKENS
o
®
25-24
L J
—

PART i TCAT Series & TDGen

Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.

Selected SCOVER System Option Settings:

[-e] Cumulative Report -- NO
{-p] Past History Report -— NO
[-n] Not Hit Report -~ YES
[-H] Hit Report -- YES
[-nh] Newly Hit Report -- NO
(-nm] Newly Missed Report -- NO
[-h] Histogram Report -- NO
(-1} Log Scale Histogram — NO

(-2] Reference Listing §1 -- NO
Options read: 2

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.

S1 Call-pair Hit Report.

No. Module Name: Call-pair Coverage Status:

1 new_ll compile.Ll_ COMPILE All Call-pairs Hit. S1 = 1008
2 new_ll compile.LIMAIN All Call-pairs Hit. S1 = 100%
3 new_l1_ compile.READGRAM All Call-pairs Hit. S1 = 100%
4 new_ll compile.BUILDRIGHT All Call-pairs Hit. S1 = 100%
5 new_l1l compile.BUILDSELECT All Call-pairs Hit. S1 = 100%
6 new_ll compile.PARSE 1 2 3 4 8 9 10
7 new_ll_compile.LLFIND All Call-pairs Hit. S1 = 100%
8 new_ll compile.LLNEXTTOKEN All Call-pairs Hit., S1 = 100%
9 new_l1_ tokens.ADVANCE 1l 3 3 4

10 new_l1_tokens.SCAN_PATTERN 7 8 9 11 17 18 19

22 23 24 28 31 32 33
38 41 42 43
11 new_ll_compile.GET_CHARACTER All Call-pairs Hit. S1 = 100%

12 new_ll tokens.CHAR_ADVANCE All Call-pairs Hit. S1 = 100%
13 new_1l1_ tokens.CURRENT_ SYMBOL All Call-pairs Hit. S1 = 100%
14 nev_ll compile.MAKE_TOKEN 1 2 3 4 5 6

40 11_sup_body.EMIT SCAN_PROC All Call-pairs Hit. S1 = 100%
41 1l_sup_body.EMIT_SELECT 1 2 3

42 11_sup_body.EMIT_CHAR All Call-pairs Hit. S1 = 100%

43 11_sup_body.EMIT PATTERN_MATCH 5 6 7 8 9 15 16
22 23 24 25

44 11_sup_body.EMIT_CONCAT_RIGHT 2

45 11_sup_body.ENIT_CONCAT_CASES 1 2 4 8 9

Number of Call-pairs Hit: 88
Total Number of Call-pairs: 162
S1 Coverage Value: 54.32%

Figure 25-17. S-TCAT/Ada Call-Pair Coverage using test1.lex

25-25

TCAT Series & TDGen

PART I

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.

S1 Not Hit Report.

Hwoqmmawuo-'g

o

11
12
13
14

40
421
42
43

44
45

Module Name:
new_ll_compile.LL_COMPILE
nevw_ll_compile.LIMAIN
new_ll compile.READGRAM
new_ll_compile.BUILDRIGHT
new_ll compile.BUILDSELECT
new_l)l compile,PARSE
new_ll_compile.LLFIND
nev_ll compile.LINEXTTOKEN
new_l1_tokens.ADVANCE
new_ll tokens.SCAN_PATTERN

new_l1l_compile.GET_CHARACTER
new_l1l_tokens.CHAR_ADVANCE
new_l1 tokens.CURRENT_SYMBOL
new_ll_compile.MAKE_TOKEN

11_sup_body.EMIT_SCAN_PROC
11_sup_body.EMIT_ SELECT
11_sup_body.EMIT_CHAR
11_sup_body.EMIT_PATTERN_MATCH

11_sup_ body.EMIT_CONCAT_RIGHT
11_sup_body.EMIT CONCAT_CASES

Number of Call-pairs Not Hit:
Total Number of Call-pairs:
S1 Coverage Value:

All Call-pairs Hit. S1

Call-pair Coverage Status:

All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. 8S1 = 100%
5 6 7 11

All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. S1 = 100%

S 6

1 2 3 4 5 6 10
14 15 16 25 26 27 29
36 39 40 44

All Call-pairs Hit. S1 = 100%
All Call-pairs Hit. S1 100%
All Call-pairs Hit. S1 = 100%
7

100%
4

All Call-pairs Hit. S1 = 100%
1 2 3 4 10 11 12
17 hY 20

1

3 5 6 7

74
162
54.32%

Figure 24-17 continued: S-TCAT/Ada Call-Pair Coverage Using test1.lex

25-26

e

PART Ul TCAT Serles & TDGen

Coverage Analyzer. {Release 8.2 for SUN/UNIX 09/16/92)
(c) Copyright 1990 by Software Research, Inc.

Selectad SCOVER System Option Settings:

[-c] Cumulative Report -= NO
(-p] Past History Report -- NO
[-n) Not Hit Report -- YES
[-B] Rit Report -— YES -
[-nh]) Newly Hit Report -— NO
[-nm] Newly Missed Report -- NO
[-h]} Histogram Report -- NO
(1] Log Scale Histogram -- NO
[-2] Reference Listing S1 -- NO

Options read: 2

S-TCAT/C: Coverage Analyzer. {Release 8.2 for SUN/UNIX 09/16/92)
(c¢) Copyright 1990 by Software Research, Inc.

S1 Call-pair Hit Report.

No. Module Name: Call-pair Coverage Status:

1 nev_ll_compile.LLFIND All Call-pairs Hit. S1 = 100%
2 nev_ll_compile.LLPRTSTRING All Call-pairs Hit. S1 = 100%
3 new_l]l_compile.LLPRTTOKEN

4 new_ll compile.LLSKIPTOKEN

5 new_ll_compile.LLSKIPNODE
- § new_ll compile.LLSKIPBOTH

7 new_ll compile.LLFATAL :

8 nev_ll_compile.GET_CHARACTER All Call-pairs Hit. S1 = 100%
9 nev_l1l_compile.CVT_STRING All Call-pairs Hit. 51 = 100%
10 nev_ll_compile.MAKE TOKEN 1 2 3 4 S 6

11 nev_ll_compile.LLNEXTTOKEN All Call-pajrs Hit, S1 = 100%
12 nevw_ll compile.BUILDRIGHT All Call-pairs Hit. S1 = 100%

X3

50 11 _sup body.EMIT PATTERN MATCH 5 6 7 8 9 15 16 19
22 23 24 35

51 11_sup_body.ENIT_CHAR All Call-pairs Hit. S1 = 100%
52 11_sup_body.EMIT_SELECT 1 2 3

53 11_sup_body.EMIT_ SCAN_PROC All Call-pairs Hit. S1 = 100%
54 11_sup_body.EMIT_TOKEN All Call-pairs Hit. 51 = 1008
55 11_sup_body. INCLUDE_PATTERN 1 3 4)

56 11_sup_body.LOOK_AHEAD ‘All Call-pajxrs Hit. S1 = 100%
57 11_sup_body.LOOK_UP_PATTERN All Call-pairs Hit. S1 = 100%
58 11_sup_body.OPTION All Call-pairs Hit. S1 = 100%
59 11_sup_body.REPEAT All Call-pairs Hit. S1 = 100%
60 11_sup_body.STORE_PATTERN

61 11_actions. LLTAKEACTION All Call-pairs Hit. S1 = 100%
Number of Call-pairs Hit: 88

Total Number of Call-pairs: 253

§1 Coverage Value: 34,768

Figure 25-18. S-TCAT/Ada Call-Pair Coverage using test1.lex Accounting for All Call-Pairs

25-27

TCAT Series & TDGen

S-TCAT/C: Coverage Analyzer.

PART

(c) Copyright 1990 by Software Research, Inc.

S1 Not Hit Report.

[Release 8.2 for SUN/UNIX 09/16/92]

No. Module Name: Call-pair Coverage Status:

b new_ll_compile.LL.,IND All Call-pairs Hit. §1 = 1008
2 new_ll compile.LLPRTSTRING All Call-pairs Hit. S1 = 100%
3 new_ll compile.LLPRTTOKEN 1

4 new_ll_compile.LLSKIPTOKEN 1 2

5 nevw_ll compile.LLSKIPNODE 1 2

6 nev_l1l compile.LLSKIPBOTH 1 2 3

7 new_ll compile.LLFATAL 1

8 new_l1l_compile.GET_CHARACTER All Call-pairs Hit. 81 = 100%
9 new_ll_compile,CVT_STRING All Call-pairs Hit. S1 = 100%
10 new_ll_compile.MAKE_TOKEN 7

11 nev_l1l compile.LLNEXTTOKEN All Call-pairs Hit. S1 = 100%
12 new_ll_compile.BUILDRIGHT All Call-pairs Bit. S1 = 100%
13 new_ll_compile.BUILDSELECT All Call-pairs Hit. S1 = 100%
14 new_ll_compile.READGRAM All Call-pairs Hit. S1 = 100%

48 11_sup_body.ENIT_CONCAT_CASES

3 S 6 7
49 11_sup_body.EMIT_CONCAT_RIGET 1
50 11_sup_body.EMIT_PATTERN _MATCR 1 2 k] 4 10 11 12 13 14
17 18 20
51 11_sup_body.EMIT_ CHAR All Call-pairs Hit. 51 = 100%
53 1l_sup_body.EMIT_SELECT 4

53 11_sup_body.EMIT_SCAN_PROC All Call-pairs Hit. S1 = 1008
54 11_sup_body.EMIT_TOKEN All Call-pairs Hit. §S1 = 100%
55 11_sup_body. INCLUDE_PATTERN 2

56 11_sup_body . LOOK_AHEAD All Call-pairs Eit. §1 = 1008
57 11_sup_body.LOOK_UP_PATTERN All Call-pairs Hit. S§1 = 1008
58 11_sup_body.OPTION All Call-pairs Hit. 851 = 100%
59 11_sup_body . REPEAT All Call-pairs Hit. S1 = 100%
60 11_sup_body . STORE_PATTERN 1

61 11_actions.LLTAKEACTION All Call-pairs Hit. 51 = 100%

Number of Call-pairs Not Hit: 165
Total Number of Call-pairs: 253
81 Coverage Valua: 34.70%

Figure 25-18 continued: S-TCAT/Ada Call-Pair Coverage using test1.lex Accounting for All
Call-Palrs

25-28

Coverage Analyzer.

PART Il

(c) Copyright 1990 by Software Research, Inc.

Selscted SCOVER System Option

[=-e)
[-p)
{~n]
(-H]
[-nh)
[-om)
{~h]
{-11
{-z}

Cumulative Report
Not Hit Report
Hit Report

Newly Hit Report

Histogram Report

Options read: 6

Past History Report

Newly Missed Report

Log Scale Histogram
Reference Listing S1

S-TCAT/C: Coverage Analyzer.

(¢) Copyright 1990 by Softw

Settings:
YES

NO

YES

YES

YES

YES

NO

YES

NO

{Release 8.2 for SUN/UNIX 09/16/92]

TCAT Series & TDGen

(Release 8.2 for SUN/UNIX 09/16/92]

are Research, Inc.

Current Test

Cumulative Summary

4+ — 4

I | I
| .)
| No. Of | No. Of]
Module Number Of	No. Of Call-pairs S1%	No. Of Call-pairs S1%
Name: Call-pairs:	Invokes Hit Cover	Invokes Hit Cover
pew_11_compile.LL COM 1 1 1 100.00	2 1 100.00	
new_1l_compile LLMAIN 2 1 2 100.00	2 2 100.00	
new_11_compile .READGR 2	1 2 100,00	2 2 100.00
new_11_compile BUILDR 0 64 0 100.00	128 0 100.00	
new_ll_compile.BUILDS O 64 0 100.00	128 0 100.00	
new_11_compile,PARSE 1] 1 7 63.64	2 7 63.64	
new_ll_compile LLFIND O	312 0 100.00	510 0 100.00
new_11_compile.LLNEX? 0	221 0 100.00	} 355 0 100.00
new_11_tokens.ADVANCE 6	221 5 83.33	355 S 83.33
new_l1_tokens.SCAN_PA 44	455 22 50.00	712 25 56.82
new_ll_compile.GET CH 0	1385 0 100.00	2250 0 106.00
new_ll_tokens.CHAR_AD 0	1238 0 100.00	2018 0 100.00
new_11_tokens.CURRENT O	220 0 100.00	353 0 100.00
new_11_compile MAKE_T 7	220 7 100.00	as3 7 100.00
new_11_compile.CVT_ST O	220 0 100.00	353 0 100.00
new_11_compile .EXPAND 3 461 1 33.33	715 1 33.33	
new_ll_compile.MATCH] 461 0 100.00	715 0 100.00	
new_11_compile.ERASE 0 707 0 100.00	1105 0 100.00	
new_11_tokens.LOOK_AH 0 84 o 100.00	123 0 100.00	
11_actions.LLTAREACTY O	429 0 100.00	659 0 100.00
] 11_sup_body.TAIL 18 2 0 0.00	2 0 0.00	
11_sup_body.EMIT ALT_ 8 12 8 100.00	12 8 100.00	
Totals 238	7569 132 55.46	11884 136 57.14

Figure 25-19. S-TCAT/Ada Call-Pair Coverage using test1.lex & sample.lex

25-29

TCAT Series & TDGen

S-TCAT/C: Coverage Analyzer.

PART il

(c) Copyright 1990 by Software Research, Inc.

S1 Call-pair HRit Report.

No. Module Name:

1 new_l1 compile.LL_COMPILE

2 new_l]_compile.LLMAIN

3 new_ll_compile.READGRAM

4 new_1l1 compile.BUILDRIGHT

5 new_ll_complile

6 new_ll compile.PARSE

7 nev_1l compile.LLFIND

8 new_1l1_compile

9 new_l11_ tokens.ADVANCE

10 new_l1_tokens.SCAN_PATTERN
11 new_l1 compile.GET_CHARACTER
48 11_sup_body.RESOLVE_AMBIGUITY
49 11_sup_body.RESTRICT

50 11_sup_body.TAIL

51 11_sup_body.EMIT_ALT_CASES

Call-pair Coverage Status:

.BUILDSELECT

. LLNEXTTOKEN

Number of Call-pairs Hit:
Total Number of Call-pairs:

Sl

S-TCAT/C: Coverage Analyzer.

Coverage Value:

All
All
All

Call-pairs
Call-pairs
Call-pairs
All Call-pairs
All Call-pairs
1 2 3
All Call-pairs
All Call-pairs
1 2 3

1 2 3

19 20 21
33 34 37
All Call-pairs

All Call-pairs

136
238
57.14%

(¢) Copyright 1990 by Software Research, Inc.

S1 Call-pair Newly Hit Report.

No. Module Name:

9 new_ll_tokens.ADVANCE

10 new_l1_tokens.SCAN_PATTERN

48 11_sup_body.RESOLVE_AMBIGUITY
49 11_sup_body.RESTRICT

51 11_sup_body.EMIT_ALT CASES

Hi:.
Hit.
Rit.
Hit.
Hit.
4 8
Hit.
Hit.
4 5
7 8
22 2
38 4
Hit.

10
36
4 5

11

Hit.

Call-pair Coverage Status:

L3

1 2 3

1 2 9

29 34 35
1 2 3

1 2 3

10 11
36

4 5
4 5

s1
sl
si
51
51

31
s1

3
1
s1

sl

[Release 8.2 for SUN/UNIX 09/16/92}

100%
100%
1008
100%
1008
9 10
= 100%
= 100%

9 11

24 28

42 43
= 1008

17
31

12 13 27
6 7

= 100%

[Release 8.2 for SUN/UNIX 09/16/92]

28

28

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using test1.lex & sample.lex

25-30

PART I TCAT Series & TDGen

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(¢) Copyright 1990 by Software Research, Inc.

S1 Not Hit Report.

No. Module Name: Call-pair Coverage Status:

b new_l1_compile.ll_COMPILE All Call-pairs Hit., 51 = 100%

2 new_l1_compile.LLMAIN All Call-pajirs Hit. S1 = 100%

3 new_l1_compile.READGRAM All Call-pairs Hit. S1 = 100%

4 new_ll_compile.BUILDRIGHT All Call-pairs Hit. S1 = 100%

S new_l1_coapile.BUILDSELECT all cCall-pairs Hit. 81 = 100%

6 new_ll compile.PARSE 5 6 7 1

7 new_ll_compile.LLFIND all Call-pairs Hit. S1 = 100%

8 new_l1_compile. LLNEXTTOKEN aAll Call-pairs Hit. S1 = 100%

9 new_l1_tokens.ADVANCE 6

10 new_l1_tokens.SCAN_PATTERN 4 5 6 10 12 13 14 15 16
25 26 27 29 30 35 36 39 4
44

11 new_ll_compile.GET_CHARACTER All call-pairs Hit. S1 = 100%

40 11_sup_body.EMIT_SCAN_PROC All Call-pairs Hit. S1 = 100%

41 11_sup_body.EMIT_SELECT 4

42 11_sup_body.EMIT_CHAR All call-pairs Hit. §1 = 100%

43 11_sup_body.EMIT_PATTERN_MATCH 2 11 12 13 14 17 18

4“ 11_sup_body.EMIT_CONCAT_RIGHT All Call-pairs Hit. 51 = 100%

45 11_sup_body.EMIT_CONCAT_CASES 3 5

46 11_sup_body.CVT_STRING All call-pairs Hit. S1 = 1008

47 11_sup_body.CVT_ASCII All Call-pairs Hit. S1 = 100%

48 11_sup_body.RESOLVE_AMBIGUITY 3 4 5 6 7 8 14 15 16
17 18 19 20 21 22 23 24 2
26 30 kh 32 Kk}

49 11_sup_body . RESTRICT 8 9 10 11 12 13

50 11_sup_body.TAIL 1 2 3 4 S 6 7 8 9
i0 11 12 13 14 15 16 17 1

51 11_sup_body.EMIT_ALT_CASES All Call-pairs Hit. S1 = 100%

Number of Call-pairs Not Hit: 102

Total Number of Call-pairs: 238

S1 Coverage Value: 57.14%

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92}
(c) Copyright 1990 by Software Research, Inc.

S1 Call-pair Newly Minsod.neport.

No. Module Name: Call-pair Coverage Status:
10 new_l1_tokens.SCAN_PATTERN 19 20 21
40 11_sup body.EMIT_SCAN_PROC 3

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using test1.lex & sample.lex

25-31

TCAT Series & TDGen PART I

S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: new_ll compile.LL_COMPILE

+

Logarithm of Executions, Normalized to Maximum
{Maximum = 2 Hits)

Call-pair Number Of
Number Executions

g

1 10 a0 30~--40--80-100

+

XAXXXXXX XX XXX XXX XK RAAXXXXOOXXAONRXXAXXKXXX

+ —_——t V—_——t

-+
*

Average Hits per Executed Call-pair: 2.0000
81 value for this Module: 100.0000

>
-+

S-TCAT/C: Coverage Analyzer. {Release 8.2 for SUN/UNIX 09/16/92]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: new_ll _compile.BUILDSELECT

No call-pairs present or hit
S-TCAT/C: Coverage Analyzer. [Release 8.2 for SUN/UNIX 09/16/92]

(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: new_ll_ compile.PARSE

| Logaxrithm of Executions, Normalized to Maximum
| (Maximum = 1105 Bits)
Call~pair Number Of |
Number Executions > 1 10 20-—=30~——-40--80-100
|
1 2] xxxxXXxXx
2 2 | xxotxxx
3 3 | xxxxxxx
4 3s3 l XXX XXX AXRXARXL XXX XXX X XXX XXIXXXXXXXX
5 i
6 |
7 = |
8 715 | P 8008000000000 000000800000000000400040040440444
9 659 [XXX XXX XXX XXX AXXXXAXX XXX XXX XXX XXX XX XXXX
10 1105 | XXX XXX XXX XXX XXX XXX XXX XXX A XK XX XXX XXX AKX
11+ |
I

+

(* = Zexro Hits)
Average Hits per Executed Call-pair: 405.4286
S1 value for this Module: 63.6364

.o

Figure 25-19 continued: S-TCAT/Ada Call-Pair Coverage using test1.lex & sample.lex

25-32

PART Il TCAT Series & TDGen
(x) shallaal - /8in/csh "
[eaniX <d Jeval/tscope]
/eval/tscope
) Tscepe (Tscidig 1) LA Aa/new_il_ ile.LLFIND 4ig]

—>
e__

Edges: []

Nodes: -]

Cyclaometic Number: &

Copyright 1990 Software Resesrch, Inc.
]

Figure 25-20. TSCOPE Dynamic Display of Coverage on Directed Graph for LLFIND

Lq

shalltnel - /bin/csh

X Tscepe (Vestrip 1.2)
Module: new_ll_cessile.LLFIND
100X
c1
ox
, Records Processed; 3049C1: 97.80x

RO BODOHOODDOOOOLDLDDOLDDLHDDL.
;u;ub»&»‘nhn&ub»‘uanbu&n.uhu

-1 1conpile. CVT_STRING
.1 1.conpite. LLFIND O

N

NEN N -

Figure 25-21. TSCOPE Dynamic Display of Coverage Accumulation for LLFIND

25-33

TCAT Series & TDGen PART Il

{8c values file 1: for variable number of initial TDGen executions.)

expr {¢ expr}{t op}{V expr) (% identifier]} (8% real_no)

op + -/

identifier variablel variable2 (% alpha 6)

real_no {s real £4.6) (¢t integl)E+{% integ2] (8 integl)E-{8% integ2}
integl [sxr 1..100)

integ2 {8z 3..6)

{8c .Vvalues file 2: for last two executions of TDGen.)}

expr variablel variable2 (% alphn.s) {8 real 4.6} (% integl)E+({% i1
op + =/ ®

identifier variablel variable2 (A alpha 6)

real_no [real 4.6) {8 integl)E+{$ integ2) (8 integl)E-(% integ2)

integl {sr 1..100}

integ2 {sx 3..6)

{Sc Template file: Produces arithmetic expression of varying)
{Sc complexity for use in testing a generated lexical analyzer.)

{8 expr)
Figure 25-22. TDGen Sample Value and Template Fllies
No. Table Cumulative Total
Fleld Entries Combinations
$ expr 3 3
8 op 4 12
§ identifier 3 36
$ real no 3 lo8
$ integl 100 10800
S integ2 4 43200

Figure 25-23. TDGen Table of Sequential Combinations for Initiat Files

25-34

PART I TCAT Series & TDGen

b {8 real_no)

(8 expr}(% opl}(% expr]
{s identifier}

{¢ expr}(s opl}{% expr)
{8 identifier)

L' (s identifier)

! {¢ expr}{% op}{% expr)
{8 real_no]}

{8 real_no}

{s identifier)

Figure 25-24. TDGen Output of First Random Execution

3E+6

{$ real 4.6)-variablel

RSBEz4

{8 integl)E-(% integ2)}-{% integl)}E-{% integ2)

variable2

variable2

{8 identifier}+*(% real_no}/(8% identifier)/({% identifier)
21E+4

47E-6

variablel

Figure 25-25. TDGen Output After 3 Executions with 1st Value File

3E+6

3092.703258-variablel

RSBEz4

S3E~-4-83E-6

variable2

variable2
G36dk5*26E-5/c1mHEJ/variable2
21E+4

47E~-6

variablel

Figure 25-26. TDGen Output After 2 Executions with 2nd Value File

25-35

PART Ul TST

26. TST

The Ada Test Support Tool (TST) is government owned. Designed to facilitate the test-
ing of Ada subprograms and task entry points, it provides test driver generation with test
data generation for program unit parameters. TST operates in batch or interactive mode.

26.1 Tool Overview

TST was developed by Intermetrics, Inc. under contract to the Software Technology for
Adaptable, Reliable Systems (STARS) Foundations program. It leverages off technology
developed for the Ada Test and Analysis Tools (ATEST) Intermetrics previously built for
the Worldwide Military Command and Control (WWMCCS) Information System (WIS)
program. The first version of this toolset became available in 1989. It is compiler indepen-
dent and designed to be portable. Intermetrics has hosted TST on the Alsys PC/AT, Alsys
Sun, and DEC Ada compilers. It is available at no charge from the STARS Foundation Ar-
chive.

The evaluation was performed on TST version 2 running in a VAX/VMS environment.

TST consists of three parts: a Shell, Source Instrumentor, and Testing Subsystem. When
used interactively, the Shell provides a test environment where the user can set various de-
fault parameters, such as the name of a separate directory to hold all the files generated dur-
ing instrumentation. It allows the user to invoke the Source Instrumentor and handle the
compilation, linking, and execution of the instrumented code. The Shell also provides for
the management of internal TST files, and screen and terminal handling.

Testing starts by invoking the Source Instrumentor to insert statements that allow call-
ing contained subprograms and task entry points into a library unit under test. The instru-
mentation caters for reading and writing of parameter values, assertion testing, and logging
of test results and program execution information. Both the specification and body of the
unit(s) under test are submitted to the Source Instrumentor. (Although statements are not
inserted in package specifications, the instrumentor does extract some information from
them.) Units containing type declarations that are used by the unit under test are also need-
ed. The user is required to submit additional information for testing generic items. For ex-
ample, instrumentation of a generic package requires the user to provide actual type and
subprogram names, whereas a generic formal type or subprogram requires a package name
and then the name of the actual type or subprogram. In the case of generic declarations, the

26-1

TST PART Il

user must provide type and subprogram names for generic parameters. One instantiation of
each generic unit is generated using specified names.

Statements for automatic test data generation for predefined parameter types are auto-
matically included in the source code. The user is queried whether test data generation for
user-defined types should be included. Test data generation is performed in two ways. In
one case, TST generates all possible values for a parameter (or the first and last values for
floating point types). In the other, the user specifies that all possible values are divided into
a given number of partitions, and TST then selects the first, middle, and last value from
each partition. The user is responsible for ensuring that the number of values generated is
not sufficient to cause the Ada exception Storage Error to be raised. This automatic test
data generation is not available for task, private, or limited private types. When requesting
generation for unconstrained types, such as an unconstrained array, record, or string, the
user must give a constraint. Optionally, constraints may also be given for character types.

Finally, the Source Instrumentor generates a test driver to call the routines contained in
the library unit. This test driver is included at the end of the instrumented source file. At the
user’s option, the Source Instrumentor also prepares a pretty printed source code listing.
This listing includes breakpoint numbers that are used in path analysis reports to identify
the statements that were executed.

Once the generated testbed has been compiled and linked, it can be invoked under TST
and then TST hands control to the Testing Subsystem. This subsystem provides a dual-win-
dow user interface. The user interacts with TST through the Dialogue Window, while the
Display Window provides useful information in the form of declarations for all the routines
that may be tested and for current assertions. (A TST option provides for handling data out-
put to the screen from the unit under test. This option allows, for example, directing the unit
output to the Testing Subsystem windows, or to another window superimposed over these.)

The user is asked for a test identification, and the name of the Test Data File (TDF) that
contains the assertions and calls that will be used to test the unit. If the named TDF does
not exist, the Testing Subsystem saves the user’s subsequent test input in the named file so
that a test run can be easily repeated. TDFs can also be created or modified outside of TST.
Testing proceeds by calling procedures, functions, and entry points within the unit under
test and making assertions about the output. Each routine is identified using the numbers
given in the display window and, when the user requests its call, TST queries for input pa-
rameter values. He may enter actual parameter values using named or positional notation.
Alternatively, the user may request automatic test data generation for a parameter. The user

26-2

PART Il TST

must also specify values for OUT mode parameters. These will be used for constraints
where required, for example, for string OUT parameters. The Testing Subsystem calls the
associated routine for each generated combination of test data. Once a test is complete, the
values of OUT and IN OUT parameters, or function results, are displayed in the Dialogue
Window.

Assertions can be given to check these test results. These assertions may be global, that
is, valid from the time the assertion is given until either the end of the test session or the
deletion of that assertion. Alternatively, local assertions are valid only for the next call com-
mand, or the multiple calls of a single routine that may be incurred by test data generation.
The validity of assertions is not checked when defined, but only when an assertion is eval-
uated for the specified results. When an assertion fails, a message is printed to the screen
and the testbed will either continue, abort and start report generation, or query the user
whether to continue or abort depending on how an Assertion_Handling flag is set.

The user can give a number of other commands to the Test Subsystem. These are used,
for example, to control the display area, manage assertions, and control the handling of any
screen output generated by the routine under test.

TST automatically generates a TST report at the end of a test execution. As well as gen-
eral identification information, this report lists the Ada declarations for all visible proce-
dures, subprograms, and entry points of the unit under test, test data that was generated, and
results of invoked routines and associated assertions. The user may request a path analysis
report to be included. This report provides a trace of the execution history and an execution
summary report that lists the number of times each statement (or group of consecutive state-
ments) was executed.

26.2 Observations

Ease of use. The on-line help provides summaries of Shell and Testing Subsystem com-
mands that are very helpful. A simple “?” provides a list of currently available commands.

Limited tailorability is available. The help file format is tailorable, allowing the user to
modifying existing messages or add new messages. The user can define the type of terminal
being used via an ANSI X3.64 Compatible Virtual Terminal Package Terminal capabilities
files, a variation of the TERMCAP developed in the Berkeley extensions to Unix. This al-
lows, for example, user-defined function keys.

26-3

TST PART)l

Documentation and user support. The installation instructions received with the software
from the STARS Foundation Repository had some minor omissions. The TST documentation itself
is easy to follow and helpful. No direct support for the tool is available, although Intermetrics an-
swered questions that arose during this examination.

Instrumentation overhead. The instrumentation performed by TST imposes a substantial
overhead. The degree of code expansion largely depends on the number and type of type defini-
tions encountered, and number of subprogram units being tested. In the case of the Ada Lexical
Analyzer Generator, the source code size of a library routine containing the function LLFIND
alone was four blocks. When instrumented for full test data generation, this size increased to 124
blocks.

However, since bottom-up testing requires units to be tested independently or in small groups,
with careful partitioning of the code, the instrumentation overhead may not be a significant prob-
lem.

Ada restrictions. The generated control program is subject to the same restrictions that any
program would be in calling package subprograms. For example, values cannot be given to, or re-
ceived from, objects declared as private. TST imposes additional restrictions largely to do with the
format and content of input data to the subprograms being tested. These restriction include the fol-
lowing: (1) values must be given for all parameters that do not have defaults and named notation
is required for use of defaults; (2) all parameter values and assertion values must be literal values,
and (3) test data generation is not supported for tasks types, private types, limited private types, or
records types with nested variant parts.

Problems encountered. A couple of problems during instrumentation required minor manual
editing before the instrumented source code would compile. After instrumentation, some Ada use
statements had to be manually inserted to cater for inserted with statement. Some problems were
experienced generating test data for string subtypes.

26.3 Recent Changes

Intermetrics has continued development of TST. The augmented version is, however, a propri-
etary Intermetrics tool.

26-4

‘——

) PART Il TST

26.4 Sample Qutputs

b Figures 26-1 through 26-6 provide sample outputs from TST.

26-5

TST PART il

Test Support Tool - Vexsion 2.0 Page: 1
Test Configuration Report

Progran Under Test: LL_COMPILE3

Test Date: 09/03/92

Test Day: THURSDAY

Test Time: 12:57:50 -

Data File: RUN3.TDF

Test ID: Test LLFIND Run 3
Executable File: Name = NOT AVAILABLE

Date = ??72??7???
Time = ??7?7?72?77??

Defaults: TST_DIR = [ADATEST.TST.TSTDIR)
RPT_CPL = 60
RPT_LPP = 54
ASSERTION_HEANDLING = CONTINUE
SCREEN_ECHO = ON

Test Support Tool - Version 2.0 Page: 2
Test Configuration Report

1 function LLFIND(
ITEM : LLSTRINGS;
WHICH : LLSTYLE) return INTEGER;

2 procedure LLMAIN;

Figure 26-1. TST Test Configuration File for Function LLFIND

26-6

PART Il TST

Test Support Tool - Version 2.0 Page: 3
Parameter Report

GLOBAL Assertion 1) 1 < 33

Unit Under Test: (2)

procedure LLMAIN;

LOCAL Assertion 1) 1 = 12
Unit Under Test: { 1)

function LLPIND(
ITEM : LLSTRINGS;
WHICH : LLSTYLE) return INTEGER;

Parameter Entering value Exiting Vvalue
ITEM *ldentifier ..."

WHICH GROUP

<RETURN_VALUE> 12

Unit Under Test: (1)
function LLPIND(
ITEM : LLSTRINGS;
WBICH : LLSTYLE) return INTEGER;

Test Data Automatically Generated

WHICH =) «
Parameter Entexring Value Exiting Value
ITEM "ASCII el
WHICH LITERAL
<RETURN_VALUE> 1o
ITEM "ASCII .
WHICH NONTERMINAL
<RETURN_VALUE> 0
ITEM "ASCII .
WHICH GROUP
<RETURN_VALUE? 0
ITEM "ASCII .
WHICH ACTION

Figure 26-2. TST Parameter Report for Function LLFIND

26-7

TST

PART Ui

{RETURN_VALUE> 0
ITEM "ASCII ceo®
WHICH PATCH

<RETURN_VALUE> 0

LOCAL Assertion 2) 1 =0
Unit Under Test: (1)

function LLFIND(
ITEM : LLSTRINGS;
WHICH : LLSTYLE) return INTEGER;

Test Data Automatically Generated

WHICH =) *

Parameter Entering Value Exiting value

ITEM . N

WHICH LITERAL

<RETURN_VALUE> 0

ITEM . .

WHICH NONTERMINAL

<RETURN_VALUE> 0

ITEM . .

WHICH GROUP

<RETURN_VALUE> 0
.............. R L R
WHICH ACTION

<RETURN_VALUE> 0
.................... R R TR E R EE RS
WHICH PATCH

<RETURN_VALUE> 0

LOCAL Asgertion 3) 1 = 12
Unit Under Test: (1)

function LLPIND(
ITEM : LLSTRINGS:
WHICH : LLSTYLE) return INTEGER;

Parameter Bnt.ring Value Exiting vValue
ITEM *ASCII LT

WHICH LITERAL

<RETURN_VALUE> 10

#x* LOCAL Assertion 3) 1 = 12 Failed

Figure 26-2 continued: TST Parameter Report for Function LLFIND

26-8

PART Il

Test Support Tool - Version 2.0 Page: 6
Execution History Report

Begin LI,_COMPILE3.LILMAIN.READGRAM.BUILDRIGHT
(773

Begin LI, COMPILE3.LLMAIN.READGRAM.BUILDSELECT
[52-55] [55) [55) [55) [55) [55) [55) [55) [55)[55] [55]) [55]
[55) [55]1 551 [55) [551 (551 [55]) [55-58]) [60] [55]

End LL_COMPILE3.LLMAIN.READGRAM.BUILDSELECT
Regune LI, COMPILE3,LIMAIN.READGRAM,BUILDRIGHT
(781 .
End LL_COMPILE3,LIMAIN.READGRAM.BUILDRIGHT
Begin LL_COMPILE3.LLFIND
[1-6] [10] [10] [7-8)
Epd L1, COMPILE3.LLFIND
Begin LI, COMPILE3.LLFIND
(1-6] (10] {7-8]
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFIND
(1-6] (10] (71191
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFPIND
[1-6] [10]) [71191]
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFIND
[1-6] (10) [7119]
End LL_COMPILE3.LLFIND
Begin L1,_COMPILE3.LLFIND
(1~6} [10) [71(9]
End LL_COMPILE3.LLFIND
Pegin LI COMPILE3.LLFIND
{1-6] [11]
End LL_COMPILE3.LLFIND
Begin Ll,_COMPILE3.LLFIND
(1-6] {11}
End LL_COMPILE3.LLFIND
Begin LL COMPILE3.LLFIND
(2-6] [11]
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFIND
{1~6] (11]
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFIND
{1-6] [11)
End LL_COMPILE3.LLFIND
Begin LL_COMPILE3.LLFIND
[1-6) [10] [7-8]
End LL_COMPILE3.LLPIND

Figure 26-3. TST Execution History Report for Function LLFIND

26-9

TST

TST PART lt

Test Support Tool - Version 2.0 Page: 21
Execution Summary Report

Statement Execution Count
LL_COMPILE}
(1-3) 12
{4-5] 65
(6} 50
[7} ?
(8] 3
9] 4
[10] 8
(11} 5
[12] 0
(13-15] 64
(16-19] 174
[20-23] 50
(24] 61
[25-28]) 46
129-32] 13
(33 4
[34-35) 0
[36] 174
[37) 79
[38) 95
[39] 174
[40] 144
[41] 30
[42] 174
[43-44) 0
(45-47) 64
[48-49] 227
{50-51] 64
{52-53] 1
[54) a2
(55) 640
[56-58] 32
159] 6
(60} 26
[(61-54) 1
{65-70)) 64
(71) 1
(72-74] 26
(75-78] 1

Figure 26-4. TST Execution Summary Report for Function LLFIND

26-10

PART I TST

GLOBAL_ASSERT(1 < 33)

-—n 2

—— 1

LOCAL_ASSERT(1 = 12)
CALL_ROUTINE 1 (

ITEM =) "Identifier .
WHICH =)> GROUP

Yi

— 1

CALL_ROUTINE 1 (

ITEM =) "ASCII .
WHICH => LITERAL

¥

CALL_ROUTINE 1 (
ITEM =) "ASCII »
WHICH =) PATCH

)i

—-—]
LOCAL_ASSERT(1
CALL_ROUTINE 1 (
ITEM => * hd
WEICH => LITERAL
y:

LOCAL_ASSERT(1
CALL_ROUTINE 1 (
ITEM =) * "
WHICH => NONTERMINAL

i’

LOCAL_ASSERT(1
CALL_ROUTINE 1 (
ITEM =) " .
WHICH =) GROUP

)i

LOCAL_ASSERT(1
CALL_ROUTINE 1 (
ITEM => " "
WHICH => ACTION
)i

LOCAL_ASSERT(1
CALL_ROUTINE 1 (
ITEM => * .
WHICH => PATCH

yi

— 1

LOCAL_ASSERT(1 = 12)
CALL_ROUTINE 1 (

ITEM =) "ASCII .
WHICH =) LITERAL

)i

0)

0)

o)

0)

o)

Figure 26-5. TST Sample Test Data Flie for Function LLFIND

26-11

PART I

with LL_DECLARATIONS, INTEGER_TEXT_IO, TEXT_IO;
package LL_COMPILE3 is
use LI _DECLARATIONS, INTEGER_TEXT_ IO, TEXT_IO;

PARSING_ERROR: exception; -- for fatal parsing errors
type LLSTYLE i1is (LITERAL, NONTERMINAL, GROUP, ACTION, PATCH):
type LLSYMTABENTRY 1is -- for symbol table entries
racord
KEY: LLSTRINGS; -~ literal string or group identifier
KIND: LLSTYLE; -- literal or group
end record;

LLSYMBOLTABLE: array (1 .. LLTABLESIZE) of LLSYMTABENTRY;

-- the symbol table for literal terms
function ILFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER:
procedure LLMAIN;
end LIL_COMPILE3;

with LL_DECLARATIONS, INTEGER_TEXT_IO, TEXT_IO;
package body LL_COMPILE3 is
uge LIL_DECLARATIONS, INTEGER_TEXT_ IO, TEXT_XO:

function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER is

== Pind item in symbol table — return index or 0 if not found.
=~ Assumes symbol table is sorted in ascending order.
LOW, MIDPOINT, HIGH: INTEGER;
begin
LOW := 1;
HIGH := LLTABLESIZE + 1,
while LOW /= HIGH loop
MIDPOINT := (HIGH + LOW) / 3;
if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then
HIGH := MIDPOINT;
elsif ITEN = LLSYMBOLTABLE(MIDPOINT).KEY then
if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then
return{ MIDPOINT);

else
return(0),
end if;
else — ITEM > LLSYMBOLTABLE(MIDPOINT).KEY
LOW := MIDPOINT + 1;
end if;
end loop;
return(0); -- item ip not in table
end LLFIND;

procedure LIMAIN is

end LLMAIN;
end LL_COMPILE3;

Figure 26-6. TST Function LLFIND

26-12

PART i Test/Cycle & Metrics Manager

27. Test/Cycle and Metrics Manager

Test/Cycle supports the definition of functional requirements and validation criteria
such as test plans, test runs, and test cases. It provides users with a graphical object-oriented
framework for developing test plans, managing of software testing efforts, and problem re-
porting. The concept of software builds supports incremental development.

Metrics Manager is a measurement system that focuses on productivity and quality im-
provement. It is supported with an industry data base of software metrics that allows Met-
rics Manager users to assess their productivity in relation to other organizations. Currently
with data from over two hundred projects from some twenty five Fortune 500 organiza-
tions, this database is expected to double in size in the near future.

27.1 Tool Overview

Test/Cycle and Metrics Manager are marketed by Computer Power Group, Inc. This or-
ganization primarily markets testing services, consulting, and training in software testing
and quality assurance. It is a founding member of the Quality Assurance Institute and still
serves as a board member. Computer Power Group continues to undertake research into
software quality measurement in conjunction with the Quality Assurance Institute and oth-
er groups.

Test/Cycle was released in 1990 and is used at some 10 to 15 sites. Metrics Manager
first became available in 1989 and is used at 30 to 35 sites. Both tools are PC based and run
under MS-DOS; Test/Cycle is available under Microsoft Windows. Both tools are avail-
able under IBM’s Ad/Cycle tool set. Metrics Manager can import project data from Project
Workbench; it also supports a bidirectional interface to Project Bridge for exchange of
function point data. At the time of examination, the price of Test/Cycle started at $3,500.
Metrics Manager is now marketed by ABT Technologies and its price currently starts at
$14,950; this includes a consulting project to set up appropriate metrics for the client. The
examinations were performed on Test/Cycle version 3.02 and Metrics Manager version
2.02.

27-1

Test/Cycle & Metrics Manager PART 1l

27.1.1 Test/Cycle Overview

Test/Cycle supports Computer Power Group’s Testing Management Methodology. The
underlying test model is based on the following object types:

« Project. The collection of all data associated with a system under test.
« Requirement. A functional specification of what an application must do.

+ Build. A build is a functionally independent group of modules that supports a well-
defined system function or a small logical subset of a system.

* Test plan. Initially records the overall testing strategy, test case design, and test case
execution. Subsequently includes information on the builds, test runs, and test cases
associated with the strategy, and records the test execution results.

» Test run. A series of related test cases combined to test specific requirements, or to
perform a specific category of testing.

+» Test case. Consists of the description of a program’s input data and expected output,
together with a description of the steps needed to execute the test case.

» Test file. An object containing information about the actual data that is used during
execution of tests. '

« Component. A product of the development process, primarily program names, source
code names, and libraries supported by a description such as what it contains, how it
is created, and who is responsible for maintenance.

Links are used to define the relationships between instances of these objects. While each
test case is automatically linked to a single test run, the user can define the desired links
between other objects. (The link between test runs and test cases is the only non-commuta-
tive link; it is established from the test case perspective so that every test case must belong
to a test run.) Test/Cycle does impose some rules that guide the definition of legal links; for
cxample, only leaf requirements may be linked to a test case.

A user starts by defining a project in terms of a unique identifier, organizational infor-
mation, and narrative ASCII text; similar information is captured for all object types. The
project description may be accompanied by characteristics that subsequently can be used
to classify both requirements and test cases.

Typically, the next step is to define the requirements that will be used to drive test plan-
ning. An initial high-level requirement is defined and successively refined, building a hier-
archical tree-like structure of progressively more detailed requirements. Each requirement
is automatically assigned a hierarchy level number that indicates its relative position within
the hierarchy. A special flag is used to indicate whether testing of a requirement is required.
A status of testing not required invokes special handling; for example, the user must give a
reason, and these exceptional cases cannot be linked to a test case or a test run.

27-2

PART I Test/Cycle & Metrics Manager

The user then proceeds to describe the other necessary objects. In addition to the basic
descriptive information, each type of object requires some special data. Builds, for exam-
ple, form a logical grouping of test runs and may require a build group number and group
sequence number to indicate build sequencing. Additionally, a test level attribute represents
the test level (integration, acceptance, or released) achieved by a build. Test runs are ac-
companied by a test log that identifies the person responsible for the testing and maintains
arecord of test events, and test run sequencing information that indicates dependencies be-
tween test runs. Test cases include information on test set up, the tester, and one or more
description steps. Each test case description step includes the results expected, a pass or fail
indicator, and failure action. Test/Cycle distinguishes between three types of test plan: unit,
integration, acceptance. In each case, the narrative description is given according to a pre-
formatted outline, and is accompanied by attributes and the actual test plan definition. Test
files are supported by capturing the record type for records contained in the test file. Final-
ly, components have a distinguishing predefined type such as a program type.

Based on its placement in the hierarchy and association with other requirements, a re-
quirement may be subject to one of three levels of testing: high, intermediate, and detail.
Test/Cycle generates a separate validation matrix for each level. In the High Level Valida-
tion Matrix requirements are cross-referenced to builds, in the Intermediate Level Valida-
tion Matrix to test runs, and in the Detail Level Validation Matrix to test cases. These
matrices show both explicit and implicit links. (An implicit link is one created when a re-
quirement in the subtree of a higher level requirement is directly linked to a build, test run,
or test case.) One of their primary purposes is to show which test cases test which require-
ments and thus provide insight into test completeness. Test/Cycle measures requirements
coverage as the percentage of requirements that are validated by a set of test cases. Based
on user entries, Test/Cycle also tracks the number of times a test run is executed. This al-
lows reporting on the number and percent of test steps that have executed successfully, with
the date and time a test case was 100% validated. In addition to ensuring that all require-
ments are tested and all test cases are used, these matrices provide additional types of in-
formation. The cross-reference between requirements and components, for example, helps
to identify the parts of a system affected by a requirement change and the tests that need to
be rerun.

Test/Cycle provides a range of off-line reports and several on-line reports. Off-line re-
ports are available to provide descriptions of the existing objects of each type. On-line dis-
plays provide various status information, for example, the status of each test case linked to

27-3

Test/Cycle & Metrics Manager PART (i

a leaf requirements and of individual test cases in the test plan. Additionally, an error/ex-
ception status report gives a series of eleven consistency checks of Test/Cycle maintained
data, for example, test cases with no requirements linked. Some of these checks employ
user-defined threshold values, such as the number of leaf requirements with more than an
acceptable number of test cases linked. Progress reporting is provided for each object. In
each case, an on-line validation status report summarizes the status of test cases or runs, as
appropriate, linked to that component. This information includes the number (and percent-
age) of test cases, or runs, that have passed, and cumulative validation statistics for the ob-
ject in question.

Test/Cycle reports and tracks Work Requests (WRs). These can be classified as prob-
lem, change, or other (other questions or discrepancies) requests. While roughly similar in-
formation is captured for problems and changes, less is captured for other requests. For
example, statistical information is only kept for problems and changes; details are kept on
problem insertion and discovery, a characterization, and cost to fix data (for problems) or
cost to implement data (for changes). Problem and change requests capture information
about the phase and activity when a problem was introduced and when identified; this pro-
vides some support for continual process improvement. They -allow five priority levels,
three severity levels, and distinguish between five different classifications.

For WRs in general, sequence numbers are automatically assigned to support an audit
trail. WRs are treated as an object type and, consequently, they can be linked to instances
of any other object type. A checklist is maintained showing the status of each WR. Pre-
defined reports are available to provide descriptions of individual WRs and a WR log.

27.1.2 Metrics Manager Overview

Metrics Manager supports the collection and analysis of quality and productivity met-
rics for management purposes. Data can be collected on a monthly, quarterly, or annual ba-
sis to monitor the performance of an organization and track the impact of new methods,
organizational structures, and technologies. The user starts by modeling the MIS function.
The highest level of structure is called the Enterprise. An Enterprise consists of MIS De-
partments, each of which has a number of products. For metrics reporting and graphing pur-
poses, products can be defined as members of an overall application or system, yielding a
composite product called an Application. Aggregates are a special subset of an application

27-4

PART I Test/Cycle & Metrics Manager

which combine products that are not part of a single application; they allow, for example,
reporting on all enhancements regardless of product identification.

Data is stored in a Basic Operating Database (BOD) which captures the lowest level
data for each enterprise, each MIS department within the cngg:rprise, and for each product
within each MIS department. This includes quality, produé‘givity, cycle time, cost, size,
scope, and reliability data as well as indicative and descriptive data used for comparison
and categorization purposes. Over three hundred measures and attributes are captured.
Once a set of basic data items has been entered in the BOD and validated, the quality and
productivity metrics can be computed. These are computed using data up to a user-defined
Period Ending Date, and only for products whose development cycle has ended by this date.
Subsequently database reports are available to provide information at the enterprise, MIS,
and product levels.

The computed data can also be used to produce a range of graphs depicting the enter-
prise performance. The user selects x- and y-axes from sets of predefined options and, op-
tionally, one of a number of predefined filters that select a subset of data for graphing. Up
to eight graph definitions can be stored for subsequent reuse. While basic metrics graphs
operate against enterprise data, the user can request graphs that compare the data from an
Enterprise to the data from the industry database. (The industry database is a regularly up-
dated, statistically validated database that has been built from client data.) The graphing
function also allows each enterprise to define a Critical Metric Set (CMS), that is, those
metrics that have been determined to be key management factors in determining enterprise
success. Graphs are accompanied by a graph audit report that prints the values from each
product that are used to develop each graph. This is intended for use in understanding the
metrics calculations and in comparing the same attribute or metric across all applicable
products. Graphs are displayed on the screen, but may be sent to a file for subsequent print-
ing on a dot-matrix or laser printer.

Finally, a merge/extract function is provided for those cases where multiple copies of
Metrics Manager are installed across an organization. It is used to consolidate data into a
single database for analysis and reporting purposes.

27-5

Test/Cycle & Metrics Manager PART Il

27.2 Observations

Ease of use. These tools use an object-oriented, graphical, Common User Access
(CUA) user interface to facilitate tool use. Both interfaces are menu driven with context-
sensitive on-line help and an analog box of information for selections where appropriate.

The user can use a mouse to select objects in different ways: “point and click,” double
click, or, unique to Test/Cycle, “drag and drop” which represents direct manipulation of ob-
jects; accelerator keys are provided as an alternative method of user interaction. Two types
of editing are available. The first is a limited edit using keyboard editing keys such as insert,
backspace, home. The second type available through the zoom narrative button is a full edit
which allows use of the Windows Clipboard Editing facility. The search filters and user-
tailorable project characteristics provide a basis for on-line searching of the test data base.
Test/Cycle also supports on-line browsing of the links between objects. Test/Cycle sup-
ports only limited customization: the test plan format can be modified by editing the test
plan narrative file to include a desired outline.

Documentation and user support. The documentation for these tools is easy to follow
and complete.

Problems encountered. No problems were encountered in the use of these tools.

27.3 Planned Additions

A new version of Metrics Manager is due for release in late 1992. This new release will
include additional functionality. For example, Metrics Manager will help a user to deter-
mine the scope of impact of a proposed requirements change, and allow reporting on this
maintenance effort independently from the rest of the system. Both Test/Cycle and Metrics
Manager will be integrated with ABT Technologies Project Manager Workbench and mar-
keted by ABT Technologies. In October 1992, Computer Power Group will release a ver-
sion of Metrics Manager that integrates with Test/Cycle.

Future versions of Test/Cycle will incorporate Microsoft Word to support entry and ed-
iting of requirements. Additionally, user-defined reporting and reliability analysis will be
supported.

27-6

PART I Test/Cycle & Metrics Manager

27.4 Sample Outputs

Figures 27-1 through 27-22 provide sample outputs from Test/Cycle and Metrics Man-
ager.

27-7

Test/Cycle & Metrics Manager PARTli

Page 1
Project: Gift Pack Order System
Wednesday, September 16, 1992
11:10:29

TEST/CYCLE REQUIREMENTS HIERARCHY REPORT

Ancestors:

None.

Parent:

Gift Pack Order System

Children:

1 System Entry (Main Window)
2 Maintain Order rile

3 Order Inquiries

4 Work Order Processing

5 Order Pick-up/Delivery

6 End-of-Day Processing

7 Report Generation

R E R

Page 2
TEST/CYCLE REQUIREMENTS HIERARCHY REPORT
Ancestors:

Gift Pack Order System

Parent:

1 Systea Entxy (Main Window) *

children:

Menu Selection +
Maintain User IDs -
Maintain Statistics -
Maintain Parameter Values -

1.1
1.2
1.3
1.4

Page 3

TEST/CYCLE REQUIREMENTS HIERARCHY REPORT

Ancestors:

Figure 27-1. Test/Cycle Requirements Hierarchy Report

27-8

Gift Pack

Order System

1 System Entry (Main Window)

Parent:

1.1 Nenu Selection

Children:

Xfer
Xfer
Xferxr
Xfer
Xfeaxr

:

1 Digp
2 Disp
3 Disp

-
-

P T O T P T I I T N G O™

"
&

5 Xfer
6 Xfer

o s s e e A S b A e S s B P
HB

Ancestors:

Gift Pack

Enter GPOS System
Pormat Main Menu
Validate Menu Selection
Validate User ID

to Order Entry Scr

to Work Ords Scr

to Ord Pick-up Scr

to End of Day Proc Scr
to Oxd Maint Sor

System

*110 Invalid Usexr ID" Ms
*120 Inv Select" Err Msg
"O0rd ooexxx Entered® Msg
to Inquiry Sex

to Reports Scr

to Paran File Maint

TEST/CYCLE REQUIREMENTS

Order System

7 Report Generation

Parent:

7.1 Report Menu

Children:

1.2 Maintai

n User IDs

7.1.1 Generate Analysis Report
Work Ordexrs on Request -

7.1.2 Print

Figure 27-1 continued: Test/Cycle Requirements Hierarchy Report

PART Il

g -

27-9

BIERARCHY REPORT

Test/Cycle & Metrics Manager

Page 11

Test/Cycle & Metrics Manager PART I

Page 1
Project: Gift Pack Order System
Wednesday, September 16, 1992

11:05:36
TEST/CYCLE REQUIREMENT DESCRIPTION REPORT
Requirement ID: 1.1 Menu Selection
Author: Jackie Jones
Requestor:

Testing Not Required: Not Applicable

Narrative:

No Narrative Found

Linkages:

To Characteristics:
None.

To Builds:
None.

To Test Cases:
None.

To Test Runs:
Main Menu Entries validation

To Components:
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-2. Test/Cycle Requirement Description Report

27-10

PARTII Test/Cycle & Metrics Manager

ik

Figure 27-3. Test/Cycle High-Level Validation Matrix Screen

Figure 27-4. Test/Cycle Intermediate Level Matrix Screen

=t oy "le

B e

Figure 27-5. Test/Cycle Detall Level Matrix Screen

27-11

Test/Cycle & Metrics Manager PART Il

Project: Gift Pack Order System
Wednegday, September 16, 1992
11:24:27

TEST/CYCLE BUILD DESCRIPTION REPORT

Build ID: 1-System Entry & Param Maint
Author: Jackie Jones

Narrative:

This build consists of the main menu and parameter file maintenance
functions. These functions allow the user to customize the system. The
main menu function allows the usexr to select one of nine functions: Order
Entry, Work Order Processing, Order Pick~Up, End-of-Day Processing, Order
Maintenance, Inquiry, Rsport Generation, Parameter File Maintenance, or
System Exit, When the user selects the exit function

Build Group Number:
Sequence Numbaear:

Test Level Achieved: Integration Demoted: No

Linkages:

To Test Runs:
None.

To Requirements:
System Entry (Main Window) Update Ord Status to Complete

To Components:
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-6. Test/Cycle Build Description Report

27-12

Page 1

PART Ul Test/Cycle & Metrics Manager

Page 2
Project: Gift Pack Order System
Wednesday, September 16, 1992
11:31:44

TEST/CYCLE COMPONENTS DESCRIPTION REPORT

Component ID: Programl
Author: Jackie Jonmes

Narrative:

This is a sample of a program description. It is used to ...
Kind of Component: Program
Linkages:

To Requirements:
Order Enquiries

To Builds:
None.

To Test Cases:
None.

To Test Files:
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-7. Test/Cycle Components Description Report

27-13

Test/Cycle & Metrics Manager PART I

Project: Gift Pack Order System
Wednesday, September 16, 1992
11:28:22

TEST/CYCLE TEST RUN DESCRIPTION REPORT

Test Run ID: MM Select validation
Author: Jackie Jones

Narrative:

The Maim Menu Select Validation Test Run consists of a set of test cases
that attempt to "break" the selection criteria of the main menu. In
addition to verifying that the standard selection methods work, the test
cases, which are a capture/playback of screen images, try to ...

Test Run Group Number:
Test Run Sequence:

Test Log:
Tom Smith 7/35/91

o e s e e

To Builds:
None.

To Requirements:
None.

To Test Cases:
None.

To Test Files:
None.

To Test Plans:
None.

To Work Requests:
None.

Figure 27-8. Test/Cycle Test Run Description Report

27-14

Page 1

PART i Test/Cycle & Metrics Manager

= TosCyale V182 - ; I=1s
I

L] Laef Reguivement e 8 Yoot Canns # Pawesd 9% Pussnd
FilveidUser - bieg 2 T e e
*129 lnv Soloat” Ew Mag 1 ' - [

“Ovd sencnce Extared Meg™ 1 [] "

2 [] -

1 [] -

Mann Selocies 4 [] -

[] 1 |]

ta End O) Doy Poec Sor 1 1 188

Sw 1 1]
1. 1 8 |v

Lauie with Vouting Sist Requised Loais with Ye Tost Cons
' Ovles Envy B o
= Wark Onde S Pusemater Velune "
Cumaiotve Aoyl i Sutiatios
8 Yool Casne Pesosdlil Test Cases « % Pasesd
| Hizs 0N I
- - P &add 'j | Bamnd

Figure 27-9. Test/Cycle Requirements Validation Status Screen

Figure 27-10. Test/Cycle Test Run Validation Status Screen

27-15

Test/Cycle & Metrics Manager

Project:
Wednesday, September 16, 1992
11:40:18

PART Ui

Gift Pack Order System

TEST/CYCLE TEST CASE DESCRIPTION REPORT

Inv IDs
Jackie Jones

Test Case ID:
Author:
Tester:

Setup for Test:

Systen Started, Main Nenu on Screen, cursor on User ID

field
Test Steps:
Pass Description of Test Expected Results Action if Pail
l. Yes Hit <ENTER) -Digplay ErrMsg "110
Invalid User ID"
=Cursor on User ID.
~User ID
Highlighted
2. Yes - Key "123" in User -Display ErrMsg
ID. "110 Invalid User
ID.*
Hit <ENTER) -User ID
Highlighted
Linkages: .

o e - e

To Characteristics:
None.

To Requirements:

Disp "110 Invalid User ID" Msg

Display Ord Inf for Pick-up

Narrative:

FPormat Main Menu
Validate Menu Selection

The Parameter rile must ocontain one or more valid user IDs for validation
of the Main Menu User ID and Selection entries.

Flgure 27-11. Test/Cycle Test Case Description Report

27-16

Page

PART Il Test/Cycle & Metrics Manager

3

- e e SeRyea . d=le
Tool KR
—— il aH & —=
Ohjasts Betnd Tost Cyme: © bs Table
Roguiraments Sulie Yoot Rume Test Coste
[Biepioy Gwi &l Uowr B
E::-.:,.. ™
Yo Ond Miuing
» Pusen Fiu
To Aupants §
Tost Plane Toot Fise et
]
—=_]

Figure 27-12. Test/Cycle Test Case Linkages Screen

Figure 27-13. Test/Cycle Test Case Referenced by Requirement Screen

27-17

Test/Cycle & Metrics Manager PARTII

Project: Gift Pack Order System
Wednesday, September 16, 1992

11:36:03

TEST/CYCLE TEST FILE DESCRIPTION REPORT

Test File ID: Main Menu Val IDs Param File
Author: Jackie Jones

Narrative:

The Parameter File must contain one or more valid user IDs for validation

of the Main Menu

User ID and Selection entries.

Test File Type: Sequential

Linkages:

To Test Runs:
None.

To Test Cases:
None.

To Components:
None.

To Work Requests:

None.

Figure 27-14. Test/Cycle Test Flie Description Report

27-18

Page 1

PARTII Test/Cycle & Metrics Manager

ID: 1 Category: Open Problem
Instigator: Jackie Jones

Requestor: .
WR Date: 1/8/92 Priority:

WR Type:

Narrative:

This is a sample work request for a problem report. It is used to ...

Status: None

Error: No Problem metrics record found for 1

Linkages:

Paradox ISAM Emulator(Cmp).

Figure 27-15. Test/Cycle Work Request Description

Page 1
Project: Gift Pack Order System
Wednesday, Septamber 16, 1992
11:44:10)

TEST/CYCLE WORK REQUEST LOG REPORT

Open Problem Work Requests

Cat 1ID Priority Typi Narrative Status
oP 1 <{some text® None
op 2 <{some text) None

Figure 27-16. Test/Cycle Work Request Log Report

27-19

Test/Cycle & Metrics Manager PART Hl

SAMPLE OUTPUTS FROM MARS .
09/24/92 11:20 METRICS MANAGER Page
{MDBOO1] V3.02 METRICS DATA BASE
Enterprise: 5550
PERIOD ENDING SEP, 1992
ENTERPRISE
TOTAL SALES REVENUE: $700,000,000
TOTAL NUMBER OF EMPLOYEES: 6,000
SIC CODE: -1
SECONDARY SIC CODE: -1

Figure 27-17. Metrics Manager Database Full Report

27-20

PART Il Test/Cycle & Metrics Manager
09/24/92 11:20 METRICS MANAGER Page 2
[MDB002] V3.02 METRICS DATA BASE

Entexrprise: 5550
MIS: Management Information Systeas

PERIOD ENDING SEP, 1992

HARDWARE BUDGET:
SOFTWARE BUDGET:
PERSONNEL BUDGET:
FACILITIES BUDGET:
OTHER BUDGET:

TOTAL BUDGET:

TOTAL FUNCTION POINTS
OF INSTALLED BASE:

NUMBER OF TERMINALS USED FOR
DEVELOPMENT AND MAINTENANCE -~
Mainframe Terminals:
PC Workstations:

TOTAL MIPS:

TOTAL PROGRAMS:
TOTAL KLOC:

TOTAL STAFF:
Total Maintenance Staff:
Total Technical Staff:

AVERAGE DEPARTMENT LABOR RATE:
MAINTENANCE LABOR RATE:

$2,000,000

$500,000
$7,000,000
$2,000,000
$2,000,000

$13,500,000

150
100

46.1

4,582
2,726

315
-1
85

$25.00
$-1.00

Figure 27-17 continued: Metrics Manager Database Full Report

27-21

Test/Cycle & Metrics Manager PART i

09/24/92 11:20 METRICS MANAGER Page 3
(MDBOO3] V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
Product: Product A - Development
PERIOD ENDING SEP, 1992

PRODUCT ATTRIBUTES

TYPE OF EFFORT: A - New Development
DEVELOPMENT END DATE: 04/88
DATE OF ORIGINAL REQUEST: . / 7/
DATE NEEDED: 02/27/87
DATE STARTED: 05/31/86
DATE OF FIRST PRODUCTION UTILIZATION: 04/30/88
DATE LAST COMPONENT INSTALLED: 04/30/88
DURATION: 700 DAYS
BACKLOG PERIOD: 0 DAYS
TARGET DATES

Original: 01/01/88 Revised: / / Actual: 01/01/88
DAYS VARIANCE: 0 DAYS
TOTAL KLOC: 29

FUNCTION POINT COUNTS (Actual Approved)
Adjusted Function Points (IFPUG): 1,630
Function Points Override: 0

USER INVOLVEMENT
Definition Phase: B
Construction Phase: H
Operation Phase: H
PERCENT OF MIS TO TOTAL PERSONNEL

Definition Phase: ' 908

Construction Phase: 90%

Operation Phase: 958
PROJECT MANAGER’S EXPERIENCE: 2 Years
STAFF APPLICATION EXPERIENCE: 2 Years
TECHNICAL YEARS OF EXPERIENCE: 6 Years
SYSTEM AVAILABILITY: 95%
SYSTEM RESPONSE TIME: 5 Seconds
NET PRESENT VALUE: -1
RETURN ON INVESTMENT: -1.00%
ACTUAL PEAK TEAM SIZE: 5

Figure 27-17 continued: Metrics Manager Database Full Report

27-22

PARTII Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 4
{MDBOO4] V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
Product: Product A - Development

PERIOD ENDING SEP, 1992

PRODUCT COST

DEVELOPMENT COSTS Original . Revised Actual
Labor $350,868 $575,984 $737,523
Hardware $70,000 $120,296 $263,153
Expense $0 $0 $0
TOTAL $420,868 $696,280 $1,000,676

ACTUAL TECHNICAL LABOR COST: $0

TOTAL PRODUCTION COST: $10,400
Production Rerun Cost: $-1

DEFECT REMOVAL Definition Construction Operation

COSTS Phase Phase Phase TOTAL
Labor $2,600 $14,325 $33,575 $50,500
Machine $-1 $5,900 $14,800 $20,700
TOTAL $2,600 $20,225 $48,375 $71,200

FAILURE COSTS .

Internal Labor: $25,900
Internal Machine: $1,000
Total Internal Failure: $26,900
External Failure: $-1
Production Rerun Cost: $-1
TOTAL FAILURE COST:' $26,900

Figure 27-17 continued: Metrics Manager Database Fuli Report

27-23

Test/Cycle & Metrics Manager PART Il

09/24/92 11:20 METRICS MANAGER Page
[MDB0O0S]) V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
Product: Product A — Davelopment

PERIOD ENDING SEP, 1992

PRODUCT EFFORT (HOURS)

DEVELOPMENT LABOR EFFORT

Original: 8,354 HOURS
Revised: 12,058 HOURS
Actual: 15,365 HOURS

ACTUAL TECHNICAL

LABOR EFFORT: 0 HOURS
DEFECT REMOVAL EFFORT

Definition Phase: 104 HOURS

Construction Phase: 573 HOURS

Operation Phase: 1,343 HOURS

TOTAL: 2,020 HOURS

SIS IRNeE s

INTERNAL FAILURE EFFORT: 1,036 HOURS

Figure 27-17 continued: Metrics Manager Database Full Report

27-24

T

PART Il Test/Cycle & Metrics Manager

27-25

09/24/92 11:20 METRICS MANAGER Page 6
[MDB0O6]} V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
Product: Product A - Development
L PERIOD ENDING SEP, 1992
PRODUCT QUALITY
% DEFECTS BY .
INSERTION PHASE Minor Moderate Severe Total
In Definition -1 85 -1 85
In Construction -1 66 -1 66
In Operation -1 167 -1 167
. TOTAL 0 318 0 318
DEFECTS BY
DETECTION PHASE Minorxr Moderate Severe Total
Definition -1 26 -1 26
Construction -1 125 -1 125
Operation -1 167 -1 167
TOTAL 0 318 0 318
Minor Moderate Severe Total
FAILURES -1 126 -1 126

Figure 27-17 continued: Metrics Manager Database Full Report

Test/Cycle & Metrics Manager PART Il
09/24/92 11:20 METRICS MANAGER Page 7
{MDBO07] V3.02 METRICS DATA BASE

Enterprise: 5550
MIS: Management Information Systems
Product: Product A - Development
PERIOD ENDING SEP, 1992

PRODUCT METRICS

MONTHS IN OPERATION: 12 Months
PRODUCTIVITY
KLOC Per Staff Month: 0.327
Function Points Per Staff Nonth: 18.388

CYCLE TIME (Elapsed Days / Function Point)

Overall Cycle Time: 0.000 Days
Development Cycle Time: 0.429 Days
COST / FUNCTION POINT
Development Unit Cost: $613.91
Development Labor Unit Cost: $452.40
Development Defect Cost Rate: $14.00
COST PER MONTH / YUNCTION POINT
Production Defect Cost Rate: $2.47
Failure Cost Rate: $1.38
Production Unit Cost Rate: $0.53
RELIABILITY
Mean Time To Failure: 0.0952 Months per Failure
Monthly Pailure Rate: 0.0064 Failures / Month / FP
Monthly Failure Rate 1st 6 Months: 0.0090 Failures / Month / FP
Monthly Pajlure Rate Last 6 Months: 0.0039 Failures / Month / FP
Pailures Per Execution Hour: 9.0000 Failures per Hrxr
Failure Rate Per Execution Hour: 0.0055 Failures per Hr / FP
PERFORMANCE .
Effort Variance: 27.00%
Cost variance: 44.00%
Schedule Variance: 0.00%
QUALITY
Defect Density: 0.195 Defects / FP
Development Defect Removal Efficiency
(Development Defects / All Defectsg): 0.475

CUSTOMER SURVEY METRICS:

Usexr Satisfaction Strategic Tactical
With Spp Value Value
8804: N/A

Figure 27-17 continued: Metrics Manager Database Full Report

27-26

PART Il Test/Cycle & Metrics Manager

09/24/92 11:20 METRICS MANAGER Page 8
[MDBOO3) V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
Product: Product B - 1st Enhancement

PERIOD ENDING SEP, 1992

PRODUCT ATTRIBUTES

TYPE OF EFFORT: B - Major Enhancement
DEVELOPMENT END DATE:) 01/89
DATE OF ORIGINAL REQUEST: 09/01/87
DATE NEEDED: 01/01/89
DATE STARTED: 06/01/87
DATE OF FIRST PRODUCTION UTILIZATION: 01/01/89
DATE LAST COMPONENT INSTALLED: 01/31/89
DURATION: 610 DAYS
BACKLOG PERIOD: ~92 DAYS
TARGET DATES
Original: 10/01/88 Revised: / 7/ Actual: 01/31/89

DAYS VARIANCE: 122 DAYS
TOTAL KLOC: 1

Figure 27-17 continued: Metrics Manager Database Full Report

27-27

Test/Cycle & Metrics Manager

PARTII

09/25/92 09:52 METRICS MANAGER Page 1
{MDBOO08] V3.02 METRICS DATA BASE
Enterprise: 5550
MIS: Management Information Systems
PERIOD ENDING SEP, 1992
MIS SUMMARY
Total products in MIS: 5
——— Bagic Measures Metrics
.KLOC PER STAFF MONTH: 1.027
TOTAL KIOC: 314 r/P PER STAFF MONTH: 18.388
TOTAL FUNCTION POINTS: 1,630 Cost / Function Point
DEVELOPMENT UNIT COST: $613.91
ACTUAL LABOR EFFORT: 52,981 DEVEL. LABOR UNIT COST: $452.47
ACTUAL DEVELOPMENT COST: $2,874,715 DEV. DEFECT COST RATE: $14.00
TOTAL DEFECT REMOVAL COST: $82,500 PROD. DEFECT COST RATE: $2.47
TOTAL FAILURE COST: $32,075 FAILURE COST RATE: $1.38
PROD. UNIT COST RATE: $0.53
TOTAL DEFINITION DEFECTS: 50 Quality
TOTAL CONSTRUCTION DEFECTS: 152 —————o
TOTAL OPERATION DEFECTS: 175 DEFECT DENSITY PER F/P: 0.1951
———— DEVEL. DEFECT REMOVAL
TOTAL DEFECTS: 377 EPFICIENCY: 0.536
TOTAL DEFECTS INSERTED IN —- Reliability
DEFINITION: 111 ~—————m————
CONSTRUCTION: 91 PAILURES PER EXECUTION HOUR: 2,3276
OPERATION: 175
TOTAL FAILURES: 135

Figure 27-18. Metrics Manager Enterprise & MIS Metric Summary Report

27-28

PART I

Test/Cycle & Metrics Manager

09/25/92 09:52 METRICS MANAGER Page 2
(MDBOO8] V3.02 METRICS DATA BASE
Enterprise: 5550
PERIOD ENDING SEP, 1992
ENTERPRISE SUMMARY
Total products in ENTERPRISE: 5
Basic Measures Metrics
KLOC PER STAFF MONTH: 1.027
TOTAL KLOC: 314 F/P PER STAFF MONTH: 18.388
TOTAL FUNCTION POINTS: 1,630 Cost / Function Point
DEVELOPMENT UNIT COST: $613.91
ACTUAL LABOR EFFORT: $2,981 DEVEL. LABOR UNIT COST: $452.47
ACTUAL DEVELOPMENT COST: $2,874,715 DEV. DEFECT COST RATE: $14.00
TOTAL DEPECT REMOVAL COST: $82,500 PROD. DEFECT COST RATE: $2.47
TOTAL FAILURE COST: $32,075 FAILURE COST RATE: $1.38
PROD. UNIT COST RATE: $0.53
TOTAL DEFINITION DEFECTS: 50 Quality
TOTAL CONSTRUCTION DEFECTS: 152 -- -
TOTAL OPERATION DEFECTS: 175 DEFECT DENSITY PER F/P: 0.1951
—————————— DEVEL. DEFECT REMOVAL
TOTAL DEFECTS: 377 EFFICIENCY: 0.536
TOTAL DEFECTS INSERTED IN -~ Reliability
DEFINITION: 111 ===
CONSTRUCTION: 91 FAILURES PER EXECUTION HOUR: 2.3276
OPERATION: 175
TOTAL FAILURES: 135

Figure 27-18 continued: Metrics Manager Enterprise & MIS Metric Summary Report

27-29

Test/Cycle & Metrics Manager PART lI

FUHCTION POINTS PRODUCTIVITY 10 &

S = A D T A e
Feriod Frem @808 7o 29°°¢

P -
! 0
P o 1 M
i/ , -
|
S: 16
T
a 1
F! .
oL
F:
"
10
|
]
!
]
1
g — e e o
A

New Major Convert Routine Minor Major Other

¥ ~ . i
- ¢ - - - ¢ < - - |y
De seioe thhance Maint Mod P’»\’y Mod } wJ

TYPE OF EFFORT

Figure 27-19. Metrics Manager Function Points Productivity vs. Type of Etfort

27-30

™

]

[}

PART I Test/Cycle & Metrics Manager

-~
-

B VB DR, DEFECT REMOVAL EFFICIENCY 151

"32Y 14X Feriad From 24/58 To 28°%

o

oy

Gl

Y, s
£

%

-

_1

P

~ 11 i . i
Veruy Smail Small Medi Large Veru Large

<SOFF (ISFR (TBOFP B FP = S FF

'SIZE OF PRODICT |

Figure 27-20. Metrics Manager Development Defect Removal Efficiency vs. Size of Product

27-31

Test/Cycle & Metrics Manager PARTII

e PR I 'L IC pEOE G |
S50 V5.0 DRV DEFECT REWOVAL EFFICIENGY 15:5 28.25%
Period From @4/GE To 09.% |
i

Figure 27-21. Metrics Manager Development Defect Removal Efficlency vs.Tools Used

27-32

PART I Test/Cycle & Metrics Manager

[ROy JE 11 l’-“:y . ":1:
D DEVELOPMEMT UHIT COST RO K
26Y 14X Far1ad From 4,88 To 0% ;
$ ' S - {
P oo 1 |
5 [d. & = ' l
Ei | |
R e It i
| A it o
; o I L L el
iF fhi ?

¥
2L

= 5

Y SRS
.

4
W

|
i
{
i
| s
P oM ,
i i
i ! |
- laae l i
| .
! i' 5
; - —— - !
J v ' ! : ' j
i - -~ 1 . .
Veru Smal!l Small Medium Lar3e Very Larze
S EC TR SD SN ED . ACHO FD = JC CT
g PR QSRR SRR BT = SRR

‘i
ll SIZ OF PRODUCT
2 e Tata s Industry

Figure 27-22. Metrics Manager DevelopmentD Unit Cost vs. Size of Product Showing industry
ata

27-33

F — - -

PART I TestGen Family

28. TestGen, QualGen, GrafBrowse, and the ADADL Processor

TestGen, QualGen, GrafBrowse, and the ADADL processor are part of the AISLE fam-
ily of software tools based on the Ada-based Design and Documentation Language
(ADADL). ADADL itself is fully compilable by any Ada compiler and has been selected
by the Joint Integrated Avionics Working Group (JIAWG) as the Ada program design lan-
guage (PDL) to use for the Army’s Light Helicopter (LH) and the Air Force’s Advanced
Tactical Fighter (ATF) programs.

The ADADL processor provides static analysis of ADADL designs and Ada code, and
produces the outputs needed by TestGen, QualGen, and GrafBrowse. These other tools also
operate on both ADADL designs and Ada code. TestGen supports the review of ADADL
designs, preparation of unit test plans, and test coverage analysis. QualGen reports on qual-
ity, using a user-tailorable metrics hierarchy. GrafBrowse supports code browsing and cre-
ates invocation trees to assist in reverse engineering.

Other AISLE tools include syntax-directed and graphical editors, an automatic docu-
ment generator, a design database analyzer, a requirements analyzer and tracer, and a com-
pilation order analyzer.

28.1 Tool Overview

The AISLE tool family is marketed by Software Systems Design. It has been available
since 1984 and has over 1,000 users. The tools are available on a wide range of machines
such as VAX, VAXStation, and MicroVAX under VMS, Unix, or Ultrix; and Sun-3 and
Sun-4, HP9000-800, Apollo, DecStation, and 80386-based PC systems under MS-DOS or
Unix. Where windowing is required, the tools support X-Windows, OpenWindows, Sun-
Windows, DECwindows, Tektronix, and Hewlett-Packard windows. Graphics output is
formatted for a range of devices. These formats include Postscript, Tektronix, and Graphi-
cal Kernel System (GKS). AISLE can interface to the Teamwork, StP, and Excelerator
CASE systems to provide automatic generation of designs from requirements. At the time
of examination, TestGen prices started at $4,600, the ADADL processor at $5,000, Qual-
Gen at $4,000, and GrafBrowse at $5,500. Training and consulting services are available.

The IDA study used the ADADL processor version 5.3.E, TestGen version 2.2.2, Qual-
Gen version 1.1, and GrafBrowse version 2.2.2 running on a Sun-4 system under Open-

28-1

TestGen Family PART Il

Windows. The examinations focused on application of the tools to Ada code rather than to
ADADL designs.

28.1.1 ADADL Processor Overview

The user starts the application of these tools by submitting the code to the ADADL pro-
cessor. When the code exists in several files, these must be submitted in compilation order.
The processor itself consists of over 25 tools, although these are transparent to the user.
While some of these tools operate only on ADADL designs, the majority apply to either
ADADL designs and Ada code, or just to Ada code. This latter category of tools includes
the following:

* A pretty printer.

 An object highlighter to highlight use of Ada entities.

* A program unit invocation tree generator.

« A program unit declaration hierarchy generator.

» Several cross referencers, including an object, type, subtype and derived type parent
reference cross referencers.

« Generic instantiation report shows the location of each generic instantiation.

+ Interrupt report generator shows how interrupts are declared and where they are used.

« With hierarchy generator shows the library units imported by each program unit.

* Quality analyzer identifies design or code portions that do not conform to quality
guidelines, for example, objects declared but not used, and program units with an
ADADL complexity greater than some maximum limit.

» Complexity analyzer computes the cyclomatic complexity and ADADL complexity
measures.

» Undefined identifier/spelling checker identifies possible spelling errors or the omis-
sion of a declaration.

Report formatting can be modified, or the production of specific reports disabled, using
ADADL processor commands. Like ADADL design statements, these are given in the
form of special Ada comments. Additional special comments include the following:

« Data dictionary definitions. Used to produce a data dictionary of all Ada program
units, types, and objects.

* Project management information. Used to define information useful to the project
manager, for example, dates of completion of design, coding, and testing activities.

The use of these special comments was not examined.

28-2

9

PART I TestGen Family

28.1.2 TestGGen Overview

TestGen supports structural testing at three levels: branch testing, structured testing
based on McCabe’s cyclomatic complexity number (also called basis path testing) [Mc-
Cabe 1976], and path testing. Using a selected technique, TestGen gives the number of nec-
essary test cases and then, for each test case, identifies the program conditions required at
each decision point to exercise the necessary program paths and shows the statements that
will be executed during that test. This information helps the user derive necessary test data
for structural testing. Since each level of testing may require a potentially very large num-
ber of test cases, TestGen provides an option that allows the user to first see how many test
cases will be required for each program unit using the different testing techniques. This in-
formation can be used to guide subsequent test case generation; it is also useful in estimat-
ing testing costs in terms of the number of test cases required for structural analysis.

Before instrumenting code ‘or coverage data collection, the user must establish a
TestGen library. Special utiuues are provided for such library creation and maintenance.
Once an appropriate library has been created and opened, the user specifies the files that
should be instrumented. The user can further limit the extent of instrumentation by request-
ing instrumentation of selected program units instead of all the units in the file. The instru-
mentation process also requires the creation of a simple test driver. If the program under
test contains a main procedure, TestGen can automatically generate the necessary driver.
(This driver performs a loop calling the instrumented program for as long as the user wish-
es.) Otherwise, a special test driver must be manually created by the user based on a tem-
plate supplied in the documentation.

The user manually compiles and links the instrumented code and test driver. When in-
voked, the test driver queries the user for a run identification and brief description. As the
program executes on test data, the instrumentation produces a trace history that records the
order in which statements were executed. (The run identification is used in naming the gen-
erated trace file.) The Test Coverage Analyzer is then used to analyze this trace history and
report on the coverage achieved. For each program unit, a Test Coverage Summary report
identifies the number of times that unit was executed, a count of the statements not execut-
ed, and the number of branch, basis, and complete paths that were executed. Further details
on which statements were executed and how many times these were exercised are provided
by annotating a program listing. Similarly, the user can request a report that details those
paths that were not exercised. Reporting on the coverage accumulated over a series of test
runs is achieved by requesting analysis of multiple trace histories. Although this reports on

28-3

TestGen Family PART Ul

the total coverage achieved with the related test data, the Test Coverage Summary does not
distinguish between the coverage achieved on different runs.

Additional TestGen utilities are provided to compute the cyclomatic complexity for
each selected program unit, identify any unexecutable paths, and provide a control graph
of the code. A final utility, the Design Review Expert Assistant, was not examined.

28.1.3 QualGen Overview

QualGen is currently packaged as part of the ADADL processor. It provides analysis of
both design and code metrics. QualGen comes with more than two hundred primitive met-
rics divided into major categories such as complexity, modularity, documentation, error
handling, system independence, and clean up. These metrics are taken from the works of
quality experts such as Boehm, Halstead, and McCabe. The Software Productivity Consor-
tium style guide was another a source of quality measurement guidance used by Software
Systems Design. The user can select which of the primitive metrics will be reported on.

QualGen results are imported into Lotus 1-2-3 for further analysis and reporting. Using
Lotus, the user can create formulae that define how primitive metrics should be combined
to yield higher-level metrics such as completeness, reliability, and portability. Lotus also
supports the preparation of graphical presentation of quality results.

28.1.4 GrafBrowse Overview

Primarily intended to support reverse engineering, GrafBrowse facilitates program un-
derstanding by allowing the user to graphically view the interrelationships between Ada en-
tities. As with the ADADL processor, it operates on both an ADADL design and Ada code.
Again, however, the IDA examination focused on the application of GrafBrowse to Ada
code.

When invoked, GrafBrowse presents the program invocation tree. Alternatively the
user can select a declaration tree or called-by tree. (The invocation and called-by trees can
be displayed in compact form, that is, with lines that potentially cross, or in a flat view with-
out crossing lines.) Where appropriate, the user can follow this selection with another to
select particular program units to focus on. Once a picture is displayed, a pop-up menu al-
lows the selection of a new view, browsing the related source code, or presentation of any
definition provided for the unit. Another menu allows some reformatting of the displayed

28-4

PART Il TestGen Family

view, annotating each unit representation with its formal parameters, and printing the view.
Since many of the generated charts will be large, the print option allows the user to request
reducing a view to fit on a page, dissecting and scaling a chart for presentation on connected
sheets of paper, or printing a chart as it appears on the screen using as many sheets of paper
as necessary.

28.2 Observations

Ease of use. The tools may be invoked independently from the command line. Alterna-
tively, the AISLE user interface provides a graphical interface to their use. In either event,
all the tools are menu driven. An on-line manual is available to provide on-line help. Error
messages are terse and only minimal checking of user input is provided. No special knowl-
edge is required to use the tools. All output reports are well-structured and provide easy-to-
read information. A major strength of this tool is the clear identification of the path condi-
tions that guide the execution of particular program paths. Other than setting default values
for files names, the user interface cannot be tailored.

Documentation and user support. The documentation was helpful and included sev-
eral useful examples. Software Systems Design staff provided quick and helpful support.

Instrumentation overhead. The entire program must be analyzed by the ADADL pro-
cessor before the Unit Test Strategy Generator can be used. Subsequently, TestGen func-
tions can be invoked for the files analyzed by the ADADL processor. The size of
instrumented code is minimized by allowing the user to specify which modules in the se-
lected file should be instrumented. All selected modules are instrumented in the same fash-
ion. Instrumentation of the Ada Lexical Analyzer Generator gave a 150% increase in code
size, and an increase of 27% in the object code.

Ada restrictions. The Unit Test Strategy Generator can analyze any Ada code, but the
Test Coverage Analyzer cannot instrument tasks. Source lines with multiple statements
may be instrumented incorrectly.

Problems encountered. Execution of the fully instrumented Ada Lexical Generator
caused storage errors to be raised. It is uncertain whether this problem was due to the
amount of tracing data being generated or to a fault in the instrumentation itself. Software
Systems Design are investigating this problem.

28-5

TestGen Family PART Il

28.3 Planned Additions

Software Systems Design is currently revising QualGen. This tool is being extracted
from the ADADL processor and being made independent of Lotus 1-2-3. It will itself gen-
erate histograms and Kiviat diagrams for presentation of metrics data and allow the user to
combine metrics into composite quality measures. The new version will also provide for
trend analysis of metrics data.

A new tool, called BugFinder, will examine program paths to look for potentially erro-
neous conditions, for example, a path in which the output is not set. This tool is expected
to become available in April 1993.

28.4 Sample Outputs

Figures 28-1 through 28-29 provide sample outputs from the ADADL processor,
TestGen, QualGen, and GrafBrowse.

28-6

83

84
8s

86
87
(1]
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
108

PART Il TestGen Family

noooonnouoanooononnonoononan

nann (aauun

nann (ean
10 ADADL PROCESSOR un
at nin
nn VERSION 5.3.F on
11N SERIAL NUMBER: LOAN-IDA nn
n i
(rn AUTHORIZED USER nn
0nn Software Systems Design nn
(110 0nin
(n o

aonan aonn

nanuaonooooaaooaoooaooannnonn

PAGR 4

function Llfind(Item: Llstrings; Which: Llstyle) xeturn Integer &

is
-- Pind item in symbol table -- return index or 0 if not found.
-- Assumes symbol table is sorted in ascending order.
Low, Midpoint, High: Integer;

begin
222122212 222221) 23
- -
* ADA CODB FOLLOWS *
L -«
L2222 2122121122112 2
Low :e }1;

High :« Lltablesize + 1;

while Low /= High loop

| Midpoint := (High + Low) / 2;
|] if 1Item < Llsymboltable (Midpoint).Key then

| | High :« Midpoint;

| elgjif Item = Lisymboltable(Midpoint).Key then

{ | if Llsysboltable(Midpoint).Kind = Which then
--------- return(Midpoint);

|
| else -- ITEM > LLSYMBOLTABLS (MIDPOINT) .KBY
] | Low := Midpoint + 1;

| ,

geturn(0); -- item is not in table

Figure 28-1. ADADL Listing

28-7

TestGen Family PART I

PAGE 42
PROGRAM UNIT CROSS REFERENCE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Advance <<Procedure specification?>

declaration 15 248 Package L1_Tokens
Buildright {<{Proceduraj>
declaration 19 302 Procedure Readgram
code ref a 394
Buildselect <<Procedure)>
declaration 21 358 Procedure Readgram
code ref 21 39S
Close <(Procedure specification’>
declaration ** LIBRARY *» Package Text_lo
code ref a3 403 Prooedure Readgram

Llfind <{<Functiop - Raturns Integexr)>

declaration 4 83 Procedurs Ll_Compile

¢ code ref 13 215 Punction Make_Token
code ref 13 217
code raf i3 219
code ref 13 222
code ref 13 24
code ref 13 227
code ref 29 563 Procedure Parse
code ref 29 565

Llmain <(<Procedurs)’
deolaration 17 269 Procedure L1 _Compile
ocode ref 30 613
Llnsxttoken <<Procedure’>

declaration 3 79 Procedure L1_Compile
code ref 7 136 Procedure Llskiptoken
ocode ref 9 163 Procedure Llskipboth
code ref 29 534 Procedure Synchronisze
code ref 29 566 Procedure Parse
code ref 30 573
declaration 16 a55 Procedure L1_Compile

Figure 28-2. ADADL Program Unit Cross Reference Report

28-8

PARTII

TestGen Family

PAGE 47

OBJECT CROSS REFERENCE REPORT

DEC/REF

Attribute <<Object)}
declared as =) Llattribute

set
set
set
set
set
use

Axiom <<Object>>

declaration
code ref
code ref

" code ref

code ref
code ref
code ref

declared as =) Integer

parameter
use

declaration
code ref
code ref

Caseindex <<In Parameter)>
declared as =) in Integer

cb <<Object>>

declaration

declared as =) Character

parameter
use
parameter
use

declaration
ocode ref
code Tef
coda raf
code ref

Childoount <(Object))
declared as =) Integer

set
set
use
use
set
use
use
set
use
use

Cr <<Object>>

declared as =) constant Character := CR

declaration
ocode ref
code ref
code ref
code ref
oode ref
code ref
code ref
ocode ref
ocode ref
code ref

declaration
code ref

LOCATION OF DECLARATION OR REFERENCE

PAGE NO.

16

LINE NO.

196
233
235
237
339
241
243

292

561

266

298
k353
312
377
379

303
307
314
314
315
a2
3

326
326
327

** LIBRARY **

11

185

ENCLOSING PROGRAM UNIT

Function Make_Token

Procedure Llmain
Procedurs Readgram
Procedure Parse

Procedure Lltakeaction

Procedure Readgram
Procedure Buildright

Procedure Readgram

Procedure Buildright

Package Ascii
Procedure &
Get_Character

Figure 28-3. ADADL. Object Cross Reference Report

28-9

TestGen Family PART Il

PAGE 58
TYPE CROSS REFERENCE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Boolean <<(Type)>
declarxed as => (Falea, True)

declaration we LIDRARY s* Package Standard

code dec 3 60 Procedure L1_Compile

code dec 3 68

code dec 3 69

code dec 11 178 Procedure §
Get_Character

code dec 11 178

code dec 15 248 Procedure &
specification Advance

code dec 15 248

code dec 17 272 Procedure Llmain

Character <<(Type)>
declared as =) se» UNKNOWN *ev

declaration *v LIBRARY *=* Package Standard
code ref 6 123 Prooedure Llprttoken
§ code dec 11 178 Procedure &
Get_Character
code dec 18 298 Procedure Readgran

Pile_Type <((Type»>
declared as =) limited private
declaration ** LIBRARY *v Package Text_lIo
code dec 18 299 Procedure Readgram

Integex ((Type>?
declared as =) (Iamplementationdefined)

declaration *¢ LIBRARY ®® Package Standard
oode dec 2 as Procedure L1_Compile
code dec 2 36

oode dec 3 53

code dec 3 53

oode dac 3 54

ocode dec 3 56

ocode dec 3 61

code dec 3 62

code dec 3 70

code dec 3 71

code dec 4 83 runction Llfind
code dac 4 [1]

oode dec 12 195 Function Make_Token
ocode dec 16 266 Procedure Lltakeaction
ocode dec 17 275 Procedure Llmain
cods dec 17 a7é

code

deao 17 280

Figure 28-4. ADADL Type Cross Reference Report

28-10

¢ PARTII TestGen Family

. PAGE 63
DECLARATION TREE

PAGE NO. LINE NO.

1 24 Procedure Ll1_Compile
3 79 | Procedure specification Llnexttoken
4 83 | Punction Lifind
s 106 | Procedure Llprtstring
o 6 117 | Procedure Llprttoken
7 128 | Procedure Llskiptoken
8 140 | Procedure Llskipnode
9 153 | Procadure Llskipboth
10 167 | Procedure Llfatal
11 178 | Procedure Get_Character
12 193 | Punction Make_Token
13 198 | | wrunction Cvt_String
) 18 247 | Package L1_Tokens
' 15 248 | | Procedure specification Advance
i5 252 | Package body L1_Tokens
16 255 | Procedure Llnexttoken
16 266 | Procedure Lltakeaction
17 269 | Procedure Llmain
18 297 | Procedure Readgram
i 19 302 | | Procedure Buildright
o 21 ass | | Proocedure Buildselect
23 . 407 | Procedure Parse
24 412 | | Procedure Erase
24 428 | | Procedure specification Testsynch
s 431 | | Procedure Expand
26 436 | | | runction Match
28 489 | | Procadure Testsynch
28 490 | | | Procedure Synchronize

Figure 28-5. ADADL Declaration Tree

28-11

TestGen Family PART I
PAGE 64
INVOCATION TREE
PAGE NO. LINE NO.
1 a Procedure L1 _Compile
17 269 Procedure Llmain
18 297 | | Procedure Readgram
** LIBRARY w# | | | Procedure specification Open
** LIBRARY w* | | | Procedure specification Get
*s LIBRARY == | | | pProcedurs spacification Skip_Line
19 302 | | | Procedure Buildright
** LIBRARY ®w | | | | procedurs specification Get
*¢ LIBRARY *¢ | | | | procedure specification Put
*s LIBRARY #w } | | | runction specification End_Of_Line
** LIBRARY #* | | | | Procedure specification Skip_Line
** LIBRARY v+ | | | | Procedure specification Put_Line
21 3se | | | Procedure Buildselect
** LIBRARY ** | 1 | | procedure specification Gt
** LIBRARY e* I | | | Procedure specification Skip_Line
** LIBRARY e | | | Procedure specification Close
a3 407 | | Procedure Parse
4 83 | | | runction L1find
16 255 | | | Procedure Llnexttoken
: 16 266 | | | procedure Lltakeaction
29 4989] | | Procedure Teatsynch
10 167 | | | | erocedurs Lifatal
*9 LIBRARY we i | | | | Procedure specification Put
6 117] | } | | Procedure Liprttoken
5 106 | | | Procedure Llprtstring
*® LIBRARY ws | | | | Procedure specification Put
** LIBRARY e»] | | Procedure specification Put
*% LIBRARY #®) | Procedure spacification Put_Line
as 490 | | | Proocadurs Synchronize
*® LIBRARY »w I 1 1 | Procedure specification Put
[117 I T Proosdure Llprttoken
H 106 | | Procedure Llprtstring
*» LIBRARY e« | | | Procedure specification Put
** LIBRARY #* | | Procedure specification Put
5 106 | Procedure Llprtstring
2 LIBRARY *% | | Procedure specification Put
** LTIBRARY #+] Procedure specification Put_Line
16 266 | | Procedurs Lltakeaction
16 2ss | | procedure Llbexttoken
25 431 | Procsdure Expand
26 436 | | function Mateh
** LIBRARY w¢ | | Procsdure specification Put_Line
10 167 | Procedure Llfatal
¢ LIBRARY ** [| proocsdurs specification Put
6 117 | | Procedure Llprttoken
5 106 | | Procedure Llprtstring
** LIBRARY sw | | | | Pprocedurs spscification Put

Figure 28-6. ADADL Invocation Tree

28-12

PART il TestGen Family

PAGE 67
WITH HIERARCHY

PAGE NO. LINE NO.

1l 24 Procedure Ll_Compile
#% LIBRARY #@ | Package L1 _Declarations

** LIBRARY # | Instantiated Package Integer_Text_Io
#* LIBRARY ## | Package Text_lIo

PAGE 68
INTERRUPT CROSS REFERENCE REPORT

DEC/REF

LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT
NO INTERRUPTS TO REFERENCE

PAGE 69
GENERIC INSTANTIATION REPORT

LOCATION OF DECLARATION OR INSTANTIATION
PAGE NO. LINE NO. ENCLOSING/INSTANTIATED UNIT
NO GENERICS TO REPORT

PAGE 70

Figure 28-7. ADADL Additional Cross Reference Reports

28-13

TestGen Family PART Il

EXCEPTION CROSS REFERENCE REPORT

DEC/REF LOCATION OF DECLARATION OR REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Parsing_Error <<{Exception)>
** No Dictionary Definition Given =**

declaration 2 26 Procedure Ll_Compile
raised code ref 10 174 Procedure Llfatal
raised code ref 19 334 Procedure Buildright
raised code ref 20 352
raised ocode ref 29) 532 Procedure Synchronize
PAGE 71

PRAGMA REPORT

LOCATION OF REFERENCE
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

NO PRAGMAS USED

PAGE 72
PROGRAM UNIT RENAMES REPORT

LOCATION OF RENAMING DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

NO PROGRAM UNIT RENAMES TO REPCRT

Figure 28-7 continued: ADADL Additional Cross Reference Reports

28-14

PART Il TestGen Family

PAGE 73
COMPLEXITY SUMMARY REPORT

N

Mc Cabe ADADL
COMPLEXITY COMPLEXITY
code design code design Line no Program Unit Name
10 1 13 1 302 Buildright Procedure

waas WARNING: the code complexity measure for this module is above the &

maximum level 10

2 b 2 1 358 Buildselect Procedure
3 1 3 1 198 Cvt_String Function

3 1 3 1 412 Erase Procedure

7 1 11 1 431 Expand Procedure

an YARNING: the code complexity measure for this module is above the &

maximum level 10

3 1 3 1 178 Get_Character Procedure
1 1 1 1 24 Ll_Compile Procedure

1 1 1 1 252 L1l_Tokens Package body
1 1 1 1 167 Llfatal Procedure

5 1 6 1 83 Llfind Function

b 1 1 1 269 Llmain Procedure

2 1 2 1 255 Llnexttoken Procedure
3 1 3 b 106 Llprtstring Procedure
2 1 2 1 117 Llprttoken Procedure

1 1 1 1 153 Llskipboth Procedure

1 1 1 1 140 Llskipnode Procedure

1 1 1 b 128 Llskiptoken Procedure
1 1 1 1 266 Lltakeaction Procedure
11 1 1 1 193 Make_Token Function

e¢# WARNING: the code complexity measure for this module is above the &

saxizmum level 10
4 1 S 1 436
11 1 13 1 407

Match Function
Parse Procedure

sxa® WARNING: the code complexity measure for this module is above the &

maximum level 10
6 1 6 1 297
10 1 16 1 490

Readgram Procedure
Synchronize Procedure

wsee WYARNING: the code complexity measure for this module is above the &

maximum level 10
3 1 3 1 489

Testsynch Procedure

Figure 28-8. ADADL Complexity Summary Report

28-15

TestGen Family PARTH

PAGE 74
PROGRAM UNIT ID REPORT
PROGRAM UNIT ID PROGRAM UNIT OR CONFIGURATION ITEM
NO PROGRAM UNITS WITH PROGRAM UNIT IDS
Figure 28-9. ADADL Program Unit ID Report
PAGE 75

REPORT ON OBJECTS DECLARED BUT NOT USED

DEC LOCATION OF DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

Caseindex <<In Parameter)?
declared as => in Integer
declaration 16 266 Procedure Lltakeaction

More <<In Parameter)>>
declared as => in Boolean := True
declaration 11 178 Procedure &
Get_Character

Tableindex <<Object?>

declared as =) Integer
declaration 19 304 Procedure Buildright

Figure 28-10. ADADL Objects Declared but Not Used Report

PAGE 76
REPORT ON TYPES DECLARED BUT NOT USED

DEC LOCATION OF DECLARATION
PAGE NO. LINE NO. ENCLOSING PROGRAM UNIT

NOTHING TO REPORT

Figure 28-11. ADADL Types Declared But Not Used Report

28-16

PART Il

TestGen Family

PAGE 77

REPORT ON PROGRAM UNITS DECLARED BUT NOT USED

DEC

Advance <{Procedure specification>>

declaration

Get_Character <{Procedure>>
declaration

L1 _Compile <<{Procedure>?
declaration

L1l_Tokens <<(Package body>>
declaration
declaration

L1_Tokens <<Package>>
declaration

Llgkipboth <<{Procedure)>
declaration

Llskipnode <<{Procedure’?
declaration

Llskiptoken <<Procedure>>
declaration

Make Token <<Function)>
declaration

LINE NO.

15 248
11 178
1 24
15 247
15 252
15 247
9 153
8 140
7 128
12 193

LOCATION OF DECLARATION

PAGE NO. ENCLOSING PROGRAM UNIT

Package L1_Tokens

Procedure Ll1_Compile

Procedure L1 _Compile
Procedure Ll_Compile

Procedure L1 Compile

Procedure L1_Compile

Procedure Ll_Compile

Procedure Ll_Compile

Procedure Ll_Compile

Figure 28-12. ADADL Program Units Declared But Not Used Report

28-17

TestGen Family PARTII

PAGE 102
REPORT ON PROGRAM UNITS WITH HIGH COMPLEXITY METRICS

INE NO DESIGN COMPLEXITY CODE COMPLEXITY PROGRAM UNIT NAME

302 13 Buildright << &
Procedure >?

431 11 Expand << &
Procedure)>)>

192 11 Make_Token << &
Function >>

407 13 Parse << Procedure &

>
490 16 Synchronize <« &

Procedure >>

Figure 28-13. ADADL Program Units with High Complexity Metrics Report

PAGE 103
ERROR CROSS REFERENCE REPORT
PAGE NO. LINE NO. ERROR MESSAGE
73 104 wesxws YARNING: Code complexity measure §

for a module is above the maximum level.

73 104 »2*2e WARNING: Code complexity measure &
for a module is above the maximum level.

73 104 »w»sx= YARNING: Code complexity measure &
for a module ig above the maximum level.

73 104 *#e*sx WARNING: Code complexity measure &
for a module is above the maximum level.

73 104 w=#**s YARNING: Code complexity measure &
for a module ig above the maximum level.

Figure 28-14. ADADL Error Cross Reference Report

28-18

PART I TestGen Family

AR R R RN R R A AR IR R RN AR A AR AN N N AT AR AN A RN TR AR RERN AR NN IR R NRARR TR RRRANRRN

* Testing all paths of Subprogram: Llfind

L2 223322 22 R 222 R R X2 2R R 222 22222222 f 22222 22df 82 i s2 222222222 R%X22}

Test conditions case 1 of 4 for subprogram: Llfind
Test conditions required for test case 1 are:

90: Set (Item < Llsymboltable(Midpoint).Key) to False
92: Set (Item = Llsymboltable(Midpoint).Key) to False

Statements to be executed during test case 1 are:

83: Procedure L1find is

85: Begin

86: Low := 1;

87: Righ := Lltablesize + 1;

88: While Low /= High loop

89: Midpoint := (High + Low) / 2;

90: If Item < Llsymboltable(Midpoint).Key then
sx* Condition is False

92: Elsif Item = Llsymboltable(Midpoint).Key
*xx Condition is False

98: Else

99: Low := Midpoint + 1;

100: End if —— for 90

101: End Loop

ewe pxit loop at 88 when (Low /= High) is false.

102:
103

Return (0);
End

Test conditions case 2 of 4 for subprogram: Llfind
Test conditions required for test case 2 are:
90: Set (Item < Llsymboltable(Midpoint).Key) to False

92: Set (Item = Llsymboltable(Midpoint).Key) to True
93: Set (Llsymboltable(Midpoint).Kind = Which) to False

Statements to be executed during test case 2 are:

83: Procedure Llfind is

85: Begin

86: Low := 1;

87: High := Lltablesize + 1;

88: While Low /= High loop

89, Midpoint := (Righ + Low) / 2;

90: If Item < Llsymboltable(Midpoint).Key then
«ws Condition is False

92: Elsif Item = Llsymboltable(Midpoint).Key
s%% Condition is True

93: If Llsymboltable(Midpoint).Kind = Which then
sw* Condition is False

95: Else

Figure 28-15. TestGen Test Conditions for Path Testing of LLFIND

28-19

TestGen Family PART Il

96: Return (0)
103: End

Test conditions case 3 of 4 for subprogram: Llfind
Test conditions required for test case 3 are:
90: Set (Item < Llsymboltable(Midpoint).Key) to False

92: Set (Item = Llsymboltabla(Midpoint).Xey) to True
93: Set (Llsymboltable(Midpoint).Kind = Which) to True

Statements to be executed during test case 3 are:

83: Procedure Llfind is

85: Begin

86: Low :=];

87: High := Lltablesize + 1;

88: While Low /= High loop

89: Midpoint := (High + Low) / 2;

90: If Item < Llsymboltable(Midpoint).Key then
se* Condition is False

92: Elsif Item = Llsymboltable(Midpoint).Key
% Condition is True

93: If Llsymboltable(Midpoint).Kind = Which - then
=** Condition is True

94: Return (Midpoint);

103: End

Test conditions case ¢ of 4 for subprogram: Llfind

Test conditions required for test case 4 are:

90: Set (Item < Llsymboltable(Midpoint).Key) to True

Statements to be executed during test case 4 are:

83: Procedure Llfind is

85: Begin

86: Low := 1;

87: High := Lltablesize + 1;

88: While Low /= High loop

89: Midpoint 1= (High + Low) / 2;

90: If Item < Llsymboltable(Midpoint).Key then
s** Condition is True

91: High := Midpoint;

100: End if -- for 90

101: End Loop

e Exit loop at 88 when (lLow /= High) is false.

102: Return (0);

103: End

Figure 28-15 continued: TestGen Test Conditions for Path Testing of LLFIND

28-20

PART I TestGen Family

Tecr Case Effort Report

page 1 of 2
Number of Test Cases Required for

Module Name Basis Branch Full Path

Testing Testing Testing
| Ll_Compile j 1] 1 | 1 i
[Llfind [¢ | 4 | 4 |
{ Llprtstring i1 | 2 | 2 |
Llprttoken	2	2 2	
Llskiptoken	1	2	3
Llskipnode	1	1	1
Llskipboth	1 I 1	2	
[Lifatal P 1 I 1	1		
Get_Character	3	3	3
Make_Token	11	7	35
cvt_string	2	2	2
Linexttoken	2	2	2]
Llmain	1	1	1
Test Case Effort Report

page 2 of 2
Number of Test Cases Required for

Module Name Basis Branch Full Path

Testing Testing Testing

| Readgram | 2 | 2 | 2 |
| Buildright) |7 | 22 I
| Buildselect | 1 | 1 | 1 |
| Parse | 10 | 8 | 32 }
| Zrase] 2 | 2 | 2]
Expand	6	4	10
match	3	3	3
Testsynch	2	2	2
Synchronise	6	4	10

Figure 28-16. TestGen Test Case Effort Report

28-21

TestGen Family

PART Il

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
97: End if ~- for 93

Ll_Compile

Llfind

There were 1 statements that could not be reached

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for modulae:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Ropoit for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

Unreachable Statement Report for module:
All statements can be reached.

28-22

Llprtstring

Llprttoken

Llskiptoken

Llskipnode

Llgkipboth

Llfatal

Get_Character

Make_Token

Cvt_String

Llnexttoken

Llmain

Readgran

Buildright

Buildselect

Parse

Figure 28-17. TestGen Unreachable Statement Report for LL_COMPILE

McCabe Cyclomatic Complexity Report

page 1 of 2
Module Name

PART I

Design

:

TestGen Family

| L1_Compile
| L1find

| Llprtstring
| Llpxttoken
| Llskiptoken
| Llskipnode
| Llskipboth
| Llfatal

| Get_Character
| Make_Token
| cvt_string
| Llnexttoken
| Llmain

| Readgram

| Buildright

T O T T T P T T Ty v

BOPNWHWUHBHRMDW LM

(-]

McCabe Cyclomatic Complexity Report

page 2 of 2
Module Name

Design

:

Buildselect
Parse
Erase
Expand
Match
Testsynch
Synchronize

B E e

[N

OV Wd QW N

Figure 28-18. TestGen McCabe Complexity Report for LL_COMPILE

28-23

TestGen Family PART I

Test Coverage Summary

Page 1 of 3
Module Calls Stmts Complete Branch Basis
Nanme Not Path Path Path
Done
| L1_Compile | 1} o] 171 (100%)] 171 (1008)| 171 (100%)]|
| L1fina | 298 | 4 | 374 (7583 374 (75%)] 374 (75%)]
Llprtstring I o | 10| or2 (osy| o2 (os)yl os2 (o%)|
Llprttoken | o 10| o/2 (o%)f o0/2 (0%y os2 (ony|
Llskiptoken | o 11} oza (o%y| os/1r (os)| o/1 (o)
Llskipnode] o 12| oz2 (o%)| os1 (os)| os1 (os)|
Llskipboth { o 13| o1 (¢ os)| o1 (os)| o1 (o8y
Llfatal | o 10| o2 (o8yl o2 (osy| o1 (omy|
Get_Character | 865 1] 373 (100%)] 373 (1200%)] 3/3 (100%)]
Make_Token | 133 9 | 5/35 (14%)| S5/7 (71M)| 1711 (9%y|
Test Coverage Summary
Page 2 of 3
Module Calls Stmts Complete Branch Basis
Name Not Path Path Path
Done
Cvt_String 133 | 1| 272 (1008)] 272 (100%)| 272 (100%)]
Llnexttoken 134 | 1] 272 (100%)] 272 (100%)| 272 (100%)|
Llmain 1 1} 1] 171 (100v)| 171 (1008)| 171 (1o00%)|
Readgran 1{ 11| 172 (sos)y| 272 (1008){ 172 (s0%)|
Buildright 64 | 7| 8722 (368)| S5/7 (71%)| 379 (33ny|
Buildselact 64 { 1] 171 (100%)| 171 (lo08){ 171 (100%)]
- Parse 1) 12| 5732 (168)| 278 (25%)| 1710 (10%)]
Erase 398 | 1] 272 (100%)| 272 (100%)| 272 (100%)|
Expand 254 | S5 | 5710 (SON)| 274 (SOM)| 2/6 (33%)|
| Match | 254 | 4| 173 (33%)] 173 (33%)| 173 (33wy
Test Coverage Summary
Page 3 of 3
Module Calls Stmts Complete Branch Basis
Name Not Path Path Path
Done
Testsynch | ol 12| oz2 (os)| o2 (os)| o2 (on)|
Synchronize ! o] 44| o710 (os)|] o4 (o%)| oz (o%)|
L1_Tokens | o 3| o2 (oxy{ o/1 (o8y os1 (ony
Current_Symbol | 233 | 1] 171 (1008)| 171 (1008)} 171 (100%)|
Advance | 13¢ | 7| S/8 (628)| 6s/8 (75%)| S/ (62%)|
Scan_Pattern | 257 | 129 | 16/585 (3%8)| 12740 (308)| 1/50 (a%)|
Char_Advance | 780 | 3| 173 (33%)| 173 (33%)| 173 (I3y
Look_Ahead | 39 | 2§ 173 (33%)| 173 (338)| 173 (33%)|
Lltakeaction | 230 | 77 | 32768 (47%)| 32/68 (47%)| 32/68 (47%)]

"
L ng

Figure 28-19. TestGen Test Coverage Summary using test1.lex

28-24

PARTII

TestGen Sub-Program Invocation Count Report

Module Name Invocations

|

| L1_Compile | 1

| 1L.1find | 198

| Llprtstring | 0

| Llprttoken | (1]
Llskiptoken | 0
Llskipnode | (]

| Llskipboth i 0

| Lifatal | 0

| Get_Character | 865
Make_Token | 133
Cvt_string | 133

| Llnexttoken] 134

| Llmain | 1
Readgram | 1
Buildright | 64

| Buildselect | 64

| Parse | 1

| Erame i 398
Expand | 254
Match | 254

| Testsynch | 0

| Synchronize | 0

| L1_Tokens | (]

| Current_Symbol | 133

| advance | 134

| Soan_pattern | 257

| Chax_Advance | 780

| Look_aAhead | a9

l Lltakeaction | 230

TestGen Family

Figure 28-20. TestGen Sub-Program Invocation Count Report using test1.lex

28-25

TestGen Family PARTII

AR R R AR R R RN AN R R AR AR NI R RN AR AR RSN RN RRER AN R EARR AN RANR AW

Statement Execution Report for Module: Advance

procedure ADVANCE(EOS: out BOOLEAN;
: NEXT: out LLTOKEN;
134: MORE: in BOOLEAN := TRUE) is

134: begin
134: EOS := FALSE;
134: loop
257: SCAN_PATTERN;
257: case CUR_PATTERN is
1: when END_OF_INPUT =>
1: EOS := TRUE;
1: return;
45: when END_OF_LINE => null;
9: when Character_Literal =)
9: NEXT := NMAKE TOKEN(CHAR, CURRENT_SYMBOL, CUR_LINE_NUM);
9: return;
78: whean Comment | White_Space => null;
64: when Delimiter | Number | Special_Symbol =>
641 NEXT := NAKE_TOKEN(LIT, CURRENT_SYMBOL, CUR_LINE_NUM);
64: return;
60: when Identifier =>
60: NEXT := MAKE_TOKEN(IDENT, CURRENT_ SYMBOL, CUR_LINE NUM);
60: return;
0: when String_Literal =)
0: NEXT := NAKE_TOKEN(STR, CURRENT_SYMBOL, CUR_LINE_NUM);
0: return;
0: vwhen othersg =)
0: NEXT ;= MAKE TOKEN(LIT, CURRENT_SYMBOL, CUR_LINE_NUM);
0: return;
123: end case;
123: end loop;

257 end ADVANCE;

ERRRNE AR R AR EA AN RN RN AR A AR SRR E R AR AR O R AN AN ORARNRACRENES®

Figure 28-21. TestGen Statement Execution Report using test1.lex for ADVANCE

28-26

¢ PART Il TestGen Family

. (I T3 3313333382032 32223 2222222222222 2112222332332}
Branch Path Coverage Analysis for Module: Advance

There were 2 paths not tested:

‘ AR R R R RN NN R AR R AN RN E RN A I NN ISR SN AR TN RN R AN AR AN AN AN SRR RNT RN

* Testing all statements of Subprogram: Advance
(3222232223 232 22220 2 0201301222232 03223233112 22122222412 1322323332222Z2X232322)

Test conditions case 1 of 2 for subprogram: Advance

Test conditions required for test case 1 are:
® 51: Set (Cur_Pattern) to String_Literal

Statenents to be executed during test case 1 are:

46: Procedure Advance is

47: Begin
48: Eos := False;
) 49: Loop

50: Scan_Pattaern;
51: Case Cur_Pattern is
=x% Case variable is String_Literal
66: When String_Literal =>
67: Next := Make_Token(Str, Current_Symbol, Cur_Line_Num);
68: Return ;
74: End

Test conditions case 2 of 2 for subprogram: Advance

Test conditions required for test case 2 are:
51: Set (Cur_Pattern) to others

Statements to be exscuted during test case 2 are:

46: Procedure Advance is

47: Begin
48: Eos := False;
49: Loop

50: Scan_Pattern;
51: Case Cur_Pattern is
*#** Cagse variable is others
69: When others =)
70: Next := Make Token(Lit, Current_Symbol, Cur_Line Num);
71: Return ;
74: End

32 of 8 paths were not tested.
This module iz 75 percent tested.

AR RN RN N RN R RS AR R RN AR RN AN RN R AR R RN AR RN RN AR R NN Y

Figure 28-22. TestGen Branch Path Coverage Analysis using test1.lex for ADVANCE

28-27

TestGen Family PART Il

YT R R 2R3 283322 Q222222 2222122222223 222222 32 4222213}
Structured Testing Path Coverage Analysis for Module: Advance

There were 3 paths not tested :

(I I A2 ST 3R 22223 R 0 22X 2224222222 2 22222223232 2323222322222322;

* Testing a Structured path selection of Subprogram: Advance

L 133112 2123211222222 232 22 2320l i 2 22 382222132 222120343232 22222223327]

Test conditions case 1 of 3 for subprogram: Advance

Test conditions required for test case 1 are:

51: Set (Cur_Pattern) to End_Of_Input

Statements to be executed during test case 1 are:

46: Procedure Advance is

47: Begin
40: Eos := Falge;
49: loop
50: Scan_Pattern;

51: Case Cur_Pattern is
=%t Case variable is End_Of_ Inmput
52: When End_Of_Input =)
53: Eos := True;
54: Return ;
74: End

Test conditions case 2 of 3 for subprogram: Advance

Test conditions required for test case 2 are:

$1: Set (Cur_Pattern) to String_Literal

Statements to be executed during test case 2 are:

46: Procedure Advance is

47: DBegin
48; Eos 1= False;
49: loop
50: Scan_Pattern;

51: Case Cur_Pattern is
#2% Case variable is String_Literal
66: When String_Literal =>
67: Next := Make_Token(Str, Current_Symbol, Cur_Line_Num);
68: Return ;
74: End

Figure 28-23. TestGen Structured Testlnglmg é‘:overage Analysis using test1.lex for AD-

28-28

PART li TestGen Family

Test conditions required for test case 3 are:

51: Set (Cur_Pattern) to others

Statements to be executed during test case 3 are:

46: Procedure Advance is

47: Begin
48 Eos := False;
49: Loop

50: Scan_Pattern;
S$1: Case Cur_Pattern is
#*ws Cage variable is othars
69: When othexrs =)
70: Next := Make_Token(Lit, Current_Symbol, Cur_line_Num);
71: Return ;
74: End -

3 of 8 paths were not tested.
This module is 62 percent tested.

AR RSN REA R R RN AR AR R AR R RN EN R RN NIREARCNAIRERRAN TR ERRNN

Figure 28-23 continued: TestGen Structured Testing Path Coverage Analysis using test1.lex
for ADVANCE

28-29

TestGen Family PARTII

Test Coverage Summary

Page 1 of 3
Module Calls Stmts Complete Branch Basis
Name Not Path Path Path
Done
11_Compile I 21 o} 171 (100%)] 171 (100%)	171 (100%)]				
L1find	520	2	474 (100%)	474 (100%)	474 (100%)
Llprtstring	o 10	o72 (os)] o072 (os)	os1 (o%y		
Llprttoken	o 10	o/2 (os)] o072 (os)] o072 (on)		
Llskiptoken	of 11] o2 ¢ o%)] o1 (ow)	o1 (ow)			
Llskipnode	o] 12	o/1 (o8	o1 (o%)	os1 (ow)	
Llskipboth	o 13	o2 (o%)	o/r (om)	o/1 (on)	
Llfatal] o 10	o7/2 (os)	o/1 (ox)	o712 (oO%)]		
Get_Character	a350 1	3/3 (1008)	373 (100%)	3/3 (100%)]	
Make_Token { 353 s	635 (17%)	6/7 (86%)	1711 (9%y		
Test Coverage Summary					
Page 2 of 3					
Module Calls Stmts Complete Branch Bagis					
Name Not Path Path Path					
Done					
Cvt_String	353 1] 272 (100%)	272 (100%)	272 (100%)]		
Llnexttoken	355 1	2/2 (100%)	272 (100%)	272 (100%)]	
Llmain	2 1	1732 (100%)] 171 (100%)] 171 (100%)]			
Readgram	2 1	173 (508)	272 (100%)]	172 (Son)	
Buildright	128 71 8722 ¢ 368)	S/7 (7a%)	379 (33wy		
Buildselect	128 1	171 (1008)] 171 (2008%)	171 (100%)]		
Parse	2 12	S/32 (16%)	278 (25%)	1710 (108%)	
Erase	1105 1	272 (1008)] 272 (100%)] 272 (100%)			
Expand	715 S	5710 (508)] 2/4 (50%)	2/6 (33%)		
Match	715 4] 173 (33%)	173 (33%)	173 (33ny]		
Test Coverage Summary					
Page 3 of 3					
Nodule Calls Stmts Complete Branch Basis					
Name Not Path Path Path					
Done					
Testsynch of 12	o2 (o%)] os2 (o%)	o2 (o8			
Synchronize 0] 44	o720 (o%)	ose (o%)	o6 (o%)		
Ll_Tokens ol 3} o2 ¢ o%)	os1 (o%)] o1 (o]			
Current_Symbol 353	1] 171 (1o008)	171 (1008)	171 (100%)]		
advance 355	4	5s8 (62%)) 748 (88%)	5/8 (62%)]		
Scan_Pattern 712	106	17/585 (3%)	13740 (32¢8)	1750 (2w)]	
Char_Advance 2018	3	173 (33%)	1/3 (338)	173 (33	
Look_Ahead 123	2	173 (33%)	173 (33	173 (33v)]	
Lltakeaction 659	69	35,68 (S1s)	35/68 (518)	35,68 (S18)	

v r

Figure 28-24. TestGen Test Coverage Summary using test1.lex & sampie.lex

28-30

TestGen Family

L4
(=3
v1698S10S°989 SL89°LISLTS LIFTSSISSI8 ISS 06€ vE I8 z R_m, e
LSYSTHIISOEE LSOPL S686Z8TYIL'LE €61 Zel ¥ o £ Youksiss, »
SOB66L691°9IE SL8OPS6006S 8ISGITIWBESE P9I ST1 44 6¢ 1 zymosgpuk w
$KT6LTII6'TTE €9S9L6S°L6ESI 6Z9LO0000T'LE 691 <A ¥z oF £ puedx; =
$6292£906' 111 91016ZET¥IVP 9ISSLSIT6EET EF ST st #1 v L= Q
SY1ELPITIS 98 19HTT086°601€ LOG100000E'ET TE 6l #1 ot € oser &
- Z60618S6V'S6V STISIO06LYT ZSTYSYVEI'ZF 967 We ¥4 9 T wwdpes; @
= 9R80L6Z0E'LIT Z6YPSSSL'LLVE STISIT €€ Lz #1 91 £ 107ISPIMy g —
m 171619b36°01E S896LII'ET6LS SLEVE 891 Y4 @ 14 £ m3upmy o o«
< 8T6SLOG0L'90Y LTLYYROV 6ZST SPIESESIVGOT 62 61 St €1 I uayonYIur = ®
a 6CvT08T6IT'LS IHZTSOIFI'LO9 LT608666661'S ST £l 8 o1 1 2dg) suayo LT m
6SSLYLSTS'L6T STISHLY'SYSTL S'8€ 981 €€l 44 8¢ 1 uayox oYvy)
88 65850090°098y 0T £€ 0z 91 8 4 LT INETN a3
8690V868L'ZZ1 SLEPSYO'EI6E SYIVOLITVEIT 8E 67 ¥l L 1 RNy 12 Ry
YI06EL88YS IL STIBLST6'SBIT SL'9 (44 8t 6 4 [mer &
EPSYPBLSO'6IT IPIGIOPS ILYT SL'L ¥ 1€ o1 0T I woqdpist ®
£T11066Z6°C1T €386790Z°91¥T 7S99LIELY68'L €E 0t o1 61 1 apoudppsy 5
6¥I06TIER IR IVTLLIPYOSTT 1THTZILSBTY9 €2 (174 6 »1 1 uwyoydpysT B
90IPEEHITTI6 TT6691¥TSBST 11 8z («4 £1 €l I wayonadp i
£008TBITEN'LY LPOETIBEPPLE ZSE6L99999'01 62 (174 St 6 1 Sumsdr
TLT998ET'9ST 8LOSOTO'BEIST ST906'9Z L9 v ¢4 o1 I puyy
_ HIONFT _ 10448 XLTQOLWIA SYOLVHEd0 SANVYAdO SYOLVHAJO SANVYHdO _ALLINA
ISTIVH X “ISH TVH X TVH X 101D 1oL D OINND “OINN D 1SEN D
A Y .. A w v Y v V- A w % Y ——

~N
-

—

N
-

PARTII
O o

OFTNANNNN=Om MANW0OONT =D
-
VTNV Te-nne

AT it et et A VIO O VTt e N DT VY

I
SANVYHd0 _SYOLVYEdO

1017s9a™0 “OINN SIA D “OINN S3A™D

TestGen Family

910991SH'8k¥9
6500182y ¥961
18Z€1199°L991
8sL1
TOVTILTVE OEE
901¥80E€8EET
SLEVSYIL'SO¥E
1€91ZVETP P6T
99L6SLEN'SEOT
66FOLOESL'OET
£2Y968LSL'ITT
LS6086Z'v381
186S00€00°EFT
YFETSTIEE TEE
LYTEOLTEYSLY
LLESLLY68IE
1¥S6LTSO'90E
SEESITEIS 6!
SI6L861Z0°SET
1€2291€99'WTT
8916029795
FNNTOA
IVH X

9L606V 67960
LEVLIIL60ISE'T
SELITTOIEE’T
6LTIIBLEOLT']
£091ZTL691H8'T
L988ZTI612¢E°1
SKY8EV6LO6'T
89819856601°C
P8LSTSI09TY'1
£815095K076'1
Y066L696L1E Y
IW8LIPTILT'L
L89TELOSLO9D
9ILTYEPBLIET
EELYTIB0958°E
16L1099201¢°S
LIOTILYPOI6Y
T8BY68ELIOL Y
€88650€€TV6'T
68SVELBLE08'0
SS6LEBSILLLO
ONv'T 1S3
IVH X

-

AABRRYIABIAITBER

-
~N

AA8R’R

€1006618L°8L
1Z19801L80°CS
S8YLYSS6TI LY
LTYI0BST LY
68LESASSINT
66PTYEPISS L
$TSLEBLISE 18
8TSTLIBET6YT
£$995LT610°6Y
£81€STISO'IZ
66191PPELYTT
6£PTI08TV6°8Y
1662051061°Z1
STIL68IL6L'LL
£P6160$820°9T
BE0GEISHSI Y
858rC8999L°8E
665S¥09LST0E
95T89€959E°IT
6EEL6BLOLY ET
o¥61¥016'0C

MIVH X

LLY6ILITZIO0
1€ZS1S19200

28-32

Figure 28-25 continued: QualGen Report Excerpt

TestGen Family

PART Ul

neeeTeTeswe

L6869TTHBI EY
£6019L98v6H1
LOLYLO686'01

€801V 16€9T €1
6118Ly90TTH'8
BTTOYELELEL'E
S¥806666569¢€
TI8909LERT01
108SP61811°%1
8TTGPELELLE'E
618ELTSSTYT

€0r001S65C°09
TLOOTILLBT €N
SLOEEVEIVY'ET
8TT6YEEEEEE'E
BTTGFELELEE'E
STIGYEELEEE'E
STTEVECELEL'E
STTGYELELEE'E
6118L¥90TTP 8
LEv6OTHEII YT

o) |

109TTI90€ST°0
sT0
L5089999997°0
LOISTHP8SST O
SLEO
LTEVEEEEEEE'D
18866666617°0
LS089999997°0
§TO
LTEELELEEE0
8S17708L61T°0
6¥86TY1LS8T0
LTEPECEELEE 0
9808TLTILILTO
LTEVEEEELEE'D
LTEVELEEEEL0
LTEPEEELEEED
LTEVELEELEL0
LTEPEELEEEE0
SLEO
T611000000¢°0

THAZT 1sH HIONHT HIONAT ISH JOAH ISH ALTOLHIAd SYOLVIA(
TIVH SIA X IVH SEAX “IVH SHA X TIVH S8 X IVH SHA X IVH S3d X IVH SEd X ~LOL SHA

SS99YBYST 8L
6T¥TO8T6IT €T
S1TI0¥9609°61
SL698STINSE
608SL88YSLTY
LBOSSLESKSLY
986TLBEEI' GV
S1Z10¢9609°61
62rZ08T6IT ET
L808SLESYSLY

LYO0016E0vY

LBOBSLSYSLY
LBOBSLESYSLY
LBOBSLBSYSLY
LBOSSLBSYSLY

L308SL88YSLY O

608SL88YSL'TH
Lr90016€0°vY

687969697981

PSI0EEEEEES™D

6PLLISBLI6ET ¥

VE6EVBEESHST
866TTETIOS

wm-gnuoae.mn
6£5TSEIEIEIL
YOLIZ999°TH1

8ST9L6666VL'E
95869999119
M—o!.g.«
T1T0SPSSVS v
8C19L6666¥L'E

18ZE11168°S2T ¥

0t
806S08k¥1°70¢
8L0SS68L1°BEL

€
€L06100005S"y
8S19L66666F°€

SLBBOK6BS6II €

POLLTRSST'SIE
0¢
0t
0t
0¢

£
9$1L6£C068°65
TTEOCETRYELT

TLLOS999999°E

MM

P19vL999999°C
98ESTECEEEE'S

9
0
L
[4
L4
£
[44
9
6
£
L4

—

(14
9
1
£
£
£
€
€
14
1

i

28-33

Figure 28-25 continued: QualGen Report Excerpt

PART Ul

TestGen Family

o | Sand | Bl | Ko | e | BT)] | eed | R

=== =] (=] =3 CEE=IEEC A =

(sToaeT 11e) °T1TdwoD 1 IO UOTIRDOAUI 1eld

Figure 28-26. GratBrowse Fiat Invocation Graph of LL_COMPILE

28-34

TestGen Family

PART Il

Y o

el | | it i K|)| M | B B M

(sToaoT TTe) oTTdwo) 11 JO uoTleIR[dad

Figure 28-27. GrafBrowse Declaration Tree of LL_COMPILE

28-35

PART i

TestGen Family

PUTITT

esIieg

UeYOL OYWR

ayew(I

oTdao) 11

(sToaeT TT®) PUTITTI FJO AqTTeD 3eld

Figure 28-28. GrafBrowse Fiat Caliby Tree of LLFIND

28-36

PARTII TestGen Family
o et tavecation of LL. Compile (all lovels) -
K] Flat Caltby of Litind (all loveis) K l’
L1 Owmptie

7] Jodalex diss m WMle® - w..l: l
fontion UFDIN ITDG LLSTNEN; BACH WETRE) revww BIEEER &
R T LU
-‘L.-.un!.mm)
LM t= 33 o r r
Spme
m:-m"h/a

od 16y
o basps
rotewnl ¢)7~ s fo Wt 1 Wble
urmm

1

| {4]}]

Figure 28-29. Grafbrowse Browsing LLFIND

28-37

[ANSVIEEE 1983}

[ANSI/MIL 1983]

[AFSCP 1986}

[AFSCP 1987]

[Boehm 1980]

[Boehm 1988]

[DoD-STD-2167A]

[DoD-STD-2168]

[DoDI 1991]

[Dunn 1984]

[GPALS 1992a]

[GPALS 1992b]

[GPALS 1992c]

References

REFERENCES

ANSVIEEE Standard 829-1983. February 1983. Standard for
Software Test Documentation. Institute of Electrical and Elec-
tronics Engineers, Inc.

ANSI/Military Standard 1815A. January 1983. Ada Program-
ming Language.

Air Force Systems Command Pamphlet 800-43. January 1986.
Software Management Indicators. Air Force Systems Command.

Air Force Systems Command Pamphlet 800-14. January 1987.
Software Quality Indicators. Air Force Systems Command.

Boehm, B.W. 1980. Software Engineering Economics. Engle-
wood Cliffs, NJ: Prentice-Hall.

Boehm, B.W. and P.N. Papaccio. 1988. “Understanding and
Controlling Software Cost.” IEEE Transactions on Software En-
gineering, Vol. 14, No. 10, (Oct), pp. 1462-1477.

DoD Standard 2167A. 29 February 1988. Defense System Soft-
ware Development.

DoD Standard 2168. 1 August 1986. Defense System Software
Quality Program. '

DoD Instruction 5000.2. 1 January 1991. Defense Acquisition
Management Policies and Procedures.

Dunn R.H. 1984. Software Defect Removal. NY: McGraw-Hill.

Strategic Defense Initiative Organization. 20 February 1992.
GPALS Software Quality Program Plan (SQPP), Annex D to the
GPALS CRLCMP. SDI-S-SD-92-000005.

Strategic Defense Initiative Organization. 30 February 1992.
GPALS Contract Requirements Packages (CRPs) Guidelines for
Computer Resource Issues. SDI-S-SD-92-000005.

Strategic Defense Initiative Organization. 15 July 1992. GPALS
Software Standards. SDI-S-SD-91-000003-01.

A-1

References

[Graham 1991]

[Halstead 1977]

[Hennell 1976]

[Hook 1991]

[Humphrey 1987]

[IEEE 1987]

[IEEE 1990}

[IEEE 1992]

[KPMG 1992)

[Korel 1991]

[Martin Marietta 1991]

Graham, D.R. 1991. “The MD Wants 100% Automated Testing:
A Case History.” In Proceedings 8th International Conference
on Software Testing, 17-20 June, Washington, DC.

Halstead, M.H. 1977. Elements of Software Science. NY: Elsevi-
er North-Holland Publishing.

Hennell, M.A., M.R. Woodward, and D. Hedley. 1976. “On Pro-
gram Analysis.” Information Processing Letters, Vol. 5, No. 5,
(Nov):136-140.

Hook, A.A. et al. June 1991. Availability of Ada and C++ Com-
pilers, Tools, Education, and Training. Alexandria, VA: Institute
for Defense Analyses. IDA Paper P-2601.

Humphrey, W.S. and W.L. Sweet. September 1987. A Method for
Assessing the Software Engineering Capability of Contractors.
Pittsburgh, PA: Software Engineering Institute. CMU/SEI-87-
TR-23.

IEEE Standard P1044. December 1987. Draft Standard of: A
Standard Classification for Software Errors, Faults, and Fail-
ures. Institute of Electrical and Electronics Engineers, Inc., The
Standard Classification for Software Errors, Faults, and Failures
Working Group of the Software Engineering Standards Subcom-
mittee.

IEEE Standard 610. 10 December 1990. IEEE Standard Glossary
of Software Engineering Terminology. Institute of Electrical and
Electronics Engineers, Inc.

IEEE Standard 1175. 20 August 1992. A Trial-Use Standard Ref-
erence Model for Computing System Tool Interconnections. In-
stitute of Electrical and Electronics Engineers, Inc.

KPMG Peat Marwick. January 1992. Software Quality Assur-
ance Survey. MA: Massachusetts Computer Software Council,
Inc.

Korel, B. and B. Sherlund. 1991. “Modification Oriented Soft-
ware Testing.” In Proceedings 8th International Conference on
Testing Computer Software, June 17-20, Washington, DC,
pp.143-152.

Martin Marietta. January 1991. Pro-90 Engineering Handbook,
Software Metrics.

A-2

-wo

[Martin Marietta 1992]

[McCabe 1976]

[McCabe 1982]

[Meeson 1989]

[Mohanty 1976]

[Mosemann 1992]

[Musa 1987]

[Paulk 1991]

[Price 1992a]

{Price 1992b]

[RADC 1983]

[SDIO 1992a]

References

Martin Marietta IS. 11 February 1992. Technical Report for the
Software Metrics Tutorial. NTB-137-25-02-01.

McCabe, T.J. 1976. “A Complexity Measure.” [EEE: Transac-
tions on Software Engineering, Vol. 2, No. 4 (Dec), pp. 308-320.

McCabe, T.J. December 1982. Structured Testing: A Software
Testing Methodology Using the Cyclomatic Complexity Metric.
NBS Special Publication 500-99. Gaithersburg, MD: National In-
stitute of Standards and Technology.

Meeson, R.N. 1989. Ada Lexical Analyzer Generator User’'s
Guide. Alexandria, VA: Institute for Defense Analyses. IDA Pa-
per P-2109.

Mohanty, S.N. June 1976. Automatic Program Testing. Ph.D.
Diss., Polytechnic Institute of New York.

Mosemann, L.K., II. 1992. “Improving Software Quality
Through Measurement.” CrossTalk: The Journal of Defense
Software Engineering, No. 36, (Sept), pp. 2-5.

Musa, J.D., A. Iannino, and K. Okumoto. 1987. Software Reli-
ability Measurement, Prediction, and Application. NY:
McGraw-Hill.

Paulk, M.C,, B. Curtis, and M.B. Chrissis. August 1991. Capabil-
ity Maturity Model for Software. Pittsburgh, PA: Software Engi-
neering Institute. CMU/SEI-91-TR-24, ESD-TR-91-24.

Price, G., G.T. Daitch, D. Murdok, and E. Hidden. April 1992.
Test Preparation, Execution, and Analysis Tool Report. Hill Air
Force base, UT: U.S. Air Force Software Technology Support
Center.

Price, G., B. Ragland, D. Murdok, and E. Hidden. April 1992.
Software Test Tool Report - Source Code Static Analysis. Hill Air
Force base, UT: U.S. Air Force Software Technology Support
Center.

Rome Air Development Center. July 1983. Software Quality
Measurement for Distributed Systems. RADC-TR-83-175.

GPALS Computer Resources Working Group, Software Quality
Improvement and Standards Committee. January 1992. Software
Metrics Evaluation Plan for the Level 2 System Simulator.

A-3

References

[SDIO 1992b]}

[SDIO 1992c]

[SPC 1991]

[SQE 1990]

[SQE 1991}

[Sittenauer 1991]

[U.S. Armiy 1992]

[Youngblut 1991]

[Yourdon 1990]

Strategic Defense Initiative Organization. March 1992. SDIO Di-
rective No. 3405 (Revision 1). Strategic Defense Initiative Orga-
nization (SDIO) Software Policy.

Strategic Defense Initiative Organization. 30 March 1992. Con-
tract Requirements Packages (CRPs) Guidelines for Computer
Resource Issues. SDI-S-SD-92-000005.

Software Productivity Consortium. 1991. Ada Quality and Style:
Guidelines for Professional Programmers. NY: Van Nostrand
Reinhold.

Software Quality Engineering. December 1990. Software Mea-
sures and Practices Benchmark Study. Jacksonville, FL: Soft-
ware Quality Engineering. TR-900.

Software Quality Engineering. 1991. 1990 Testing Practices Sur-
vey. Jacksonville, FL: Software Quality Engineering.

Sittenauer, C., G.T. Daitch, D. Samson, D. Dyer, G. Price, and J.
Hugie. May 1991. Software Test Tool Report. Hill Air Force
base, UT: U.S. Air Force Software Technology Support Center.

U.S. Army Armament Research, Development and Engineering
Center. June 1992. Software Metrics in Test & Evaluation: AMC
Guidance for Implementation of STEP Metrics. Draft.

Youngblut, C., B.R. Brykczynski, and R.N. Meeson. October
1991. An Examination of Selected Commercial Software Testing
Tools. Alexandria, VA: Institute for Defense Analyses. IDA Pa-
per P-2628.

Yourdon, E. 1990. “Object-Oriented Analysis.” In Proceedings
CASE World, 20-22 March. Los Angeles, CA.

Acronyms & Abbreviations

ACRONYMS AND ABBREVIATIONS

ADADL
ADAMAT
ADW
AFSCP
AISLE
ANSI
APSE
ASA
ASCII
AT&T
ATEST
ATF
BAT
BOD
CASE
cCcC
CCITT
CMM
CMS
COCOMO
CRP
CRWG

Ada-based Design and Documentation Language
Ada Measurement and Analysis Tool

Application Development Workbench

Air Force Systems Command Pamphlet

Ada Integrated Software Lifecycle Environment
American National Standards Institute

Ada Programming Support Environment
Advanced System Analyzer

American Standard Code for Information Interchange
Atlantic Telephone and Telegraph

Ada Test and Analysis Tools

Advanced Tactical Fighter

Battlemap Analysis Tool

Basic Operating Database

Computer-aided Software Engineering

Computer Command & Control Company
Consulting Committee on International Telegraphy and Telephon
Capability Maturity Model

Critical Metrics Set

Constructive Cost Model

Contract Requirements Package

Computer Resources Working Group

B-1

Acronyms & Abbreviations

CSCl
CSuU
CUA
Cul
DoD
DoDI
DDTs
DEC
GKS
GPALS
HPGL
IBM
ICC
IDA
IDE
IEEE

ISO
JIAWG
L2SS
LAN
LCSAJ
LDRA
LH
LRM

Computer Software Component Item
Computer Software Unit

Common User Access

Common User Interface

Department of Defense

Department of Defense Instruction
Distributed Defect Tracking System
Digital Equipment Corporation

Graphical Kernel System

Global Protection Against Limited Strikes
Hewlett-Packard Graphics Language
International Business Machines

Irvine Compiler Corporation

Institute for Defense Analyses

Interactive Development Environments
Institute for Electrical and Electronics Enginéers, Inc.
Information Engineering Workbench
Intermediate Language

International Organization for Standardization
Joint Integrated Avionics Working Group
Level 2 System Simulator

Local Area Network

Linear Code Sequence and Jump
Liverpool Data Research Associates
Light Helicopter

Language Reference Manual (Ada)

B-2

MALPAS
MCCR
MIL

MIS
MOD
NASA
NATO
NCR
NTDS

PC
PCTE
PDL
PMM
QA
QES
QUES
RADC
RDDTs
RTP
StP
SAGE
SASET
SDI
SDIO
SDL

Acronyms & Abbreviations

Malvern Program Analysis Suite
Mission Critical Computer Resource
Military

Management Information System
Ministry of Defense

National Aeronautics and Space Administration
North Atlantic Treaty Organization
National Cash Register

Naval Tactical Data System

National Test Bed

Personal Computer

Portable Common Tool Environment
Program Design Language

Process Maturity Model

Quality Assurance

Quality Engineering Software

Quality Evaluation System

Rome Air Development Center

Remote Distributed Defect Tracking System
Rex, Thompson & Partners

Software through Pictures
Semiautomated Ground Environment
Software Architecture, Sizing Tool
Strategic Defense Initiative

Strategic Defense Initiative Organization

System Development Language

Acronyms & Abbreviations

SEI

SES
SGML
SMEP
SPC
SPCR
SPS
SQA
SQE
SQI&S
SQMS
SRE
SSD
STARS
START
STD
STEP
STSC
TBGEN
TC
TCMON
TCP
TCPOST
TDF
TER
TST

Software Engineering Institute

Scientific and Engineering Software
Standard Generalized Markup Language
Software Metrics Evaluation Plan
Software Productivity Consortium
Software Problem Change Report
Software Productivity Solutions

Software Quality Assurance

Software Quality Engineering

Software Quality Improvement and Standards
Software Quality Management System
Software Reliability Engineering

Space Systems Division

Software Technology for Adaptable, Reliable Systems
Structured Testing and Requirements Tool
Standard

Software Test and Evaluation Panel
Software Technology Support Center

Test Bed Generator

Testing Comprehensiveness

Test Coverage Monitor

Transmission Control Protocol

Test Coverage Monitor Postprocessor
Test Data File

Test Effectiveness Ratio

Test Support Tool

UDP

us

VDM

WWMCCS

XG&M

Acronyms & Abbreviations

User Datagram Protocol

United States

Vienna Development Method

Worldwide Military Command and Control System Information System
Worldwide Military Command and Control System

Work Request

Xinotech Guidelines, Standards, and Metrics Analyzer

B-5

Glossary

GLOSSARY

The reader is assumed to be familiar with general software-related terms and, therefore,
this glossary focuses on testing and evaluation terms. The reader is referred to the /[EEE
Standard Glossary of Software Engineering Terminology [IEEE 1990] for definitions of
additional terms.

Acceptance Testing. Formal testing conducted to determine whether or not a system sat-
isfies its acceptance criteria and to enable a customer to determine whether or not to accept
the system.

Assertion. A logical expression specifying a program state that must exist or a set of con-
ditions that program variables must satisfy at a particular point during program execution;
for example, “A is positive and greater than B.”

Assertion Testing. A technique which inserts assertions about a program state or the rela-
tionship between program variables into the program code. The truth of the assertions is
determined as the program executes.

Audit. (1) An independent review for the purpose of assessing compliance with software
requirements, specifications, baselines, standards, procedures, instructions, codes, and con-
tractual and licensing agreements. (2) An activity to determine through investigation the
adequacy of, and adherence to, established procedures, instructions, specifications, codes,
and standards or other applicable contractual and licensing requirements, and the effective-
ness of the implementation.

Auditing. Checking for conformance of code to prescribed programing standards and prac-
tices.

Basic Execution Time Model. A software reliability model in which the failure process is
assumed to be a nonhomogeneous Poisson process with linearly decreasing failure intensi-

ty.

Basis Paths. Program paths that have no iteration.

Glossary

Block. (1) In problem-oriented languages, a computer program subdivision that serves to
group related statements, delimit routines, specify storage allocation, delineate the applica-
bility of labels, or segment paths of the computer program for other purposes. (2) A group
of contiguous storage locations, computer program statements, records, words, character-
istics, or bits that are treated as a unit.

Bottom-up Testing. A systematic testing strategy that seeks to test those modules at the
bottom of the invocation structure first. These modules are tested independently using test
drivers to invoke them, then modules at the next higher level that call these modules are

tested, and so on.

Boundary Value Analysis. A test data selection technique in which test data are chosen to
lie along boundaries of the input domain (or output range) classes, data structures, proce-
dure parameters, etc. Choices often include maximum, minimum, and trivial values or pa-
rameters.

Branch Testing. Testing designed to execute each outcome of each decision point in a
computer program.

Calendar Time. Chronological time, including time during which a computer may not be
running. ‘

Call Graph. A diagram that identifies the modules in a system or computer program and
shows which modules call one another.

Cause-Effect Graphing. A test data selection technique where the input and output do-
mains are partitioned into classes and analysis is performed to determine what effects are
caused by what inputs. A minimum set of inputs is chosen that will cover the entire effect
set.

Change Request. A document used to propose, transmit, and record changes to a specifi-
cation.

Clock Time. Elapsed time from the start to the end of program execution, including wait
time, on a running computer.

Code Auditor. An automated tool which checks for conformance to prescribed program-
ming standards and practices.

Glossary

Code Inspection. See Inspection.

Code Review. A meeting at which software code is presented to project personnel, manag-

ers, users, customers, or other interested parties for comment or approval.

Comparator. A software tool which compares two computer programs, files, or sets of
data to identify commonalities or differences. Typical objects of comparison are similar
versions of source code, object code, data base files, or test results.

Complexity. The degree of complication of a system or system component, determined by
such factors as the number and intricacy of interfaces and conditional branches, the degree
of nesting, the types of data structures, and other system characteristics.

Component. One of the parts of a system. A component may be hardware or software and
may be subdivided into other components.

Concurrent Processes. Processes that may execute in parallel on multiple processors or
asynchronously on a single processor. Concurrent processes may interact with each other,
and one process may suspend execution pending receipt of information from another pro-
cess or the occurrence of an external event.

Control Flow. The sequence in which operations are performed during the execution of a
computer program.

Control Flow Knot. A control flow knot occurs when two control flow jumps cross. It is
defined as: A jump (P, Q) and another jump (A, B) give rise to a knot if (1) P lies within (A,
B) and Q lies outside, or (2) Q lies within (A, B) and P lies outside. Variations on basic knots
include down-down knots, up-down knots, and up-up knots.

Correctness. See Program Correctness.

Coverage Analyzer. A software tool which determines and assesses measures associated
with the invocation of program structural elements to determine the adequacy of a test run.

Coverage Measure. In general, a measure of the testing coverage achieved as a result of a
test, often expressed as a percentage of the number of statements, branches, or paths that
were traversed.

Cross-Referencer. (1) A computer program that provides cross-reference information on
system components. For example, programs can be cross-referenced with other programs,

C3

Glossary

macros, and parameter names. This capability is useful in assessing the impact of changes
to one area or another. (2) A utility program which provides cross-reference data concern-
ing a program written in a higher level language. These utility programs analyze a source
program and provide as output such data as follows: 1. Statement labe!l cross-index, 2. Data
name cross-index, 3. Literal usage cross-index, 4. Inter-subroutine call cross-index, 5. Sta-

tistical counts of statement types.

Cyclomatic Complexity. A measure of program complexity derived from the control
graph of a program. The cyclomatic complexity of a program is equivalent to the number
of decision statements plus 1.

Data Flow. The sequence in which data transfer, use, and transformation are performed
during the execution of a computer program.

Data Flow Analysis. Consists of the graphical analysis of collections of (sequential) data
definitions and reference patterns to determine constraints that can be placed on data values
at various points of executing the source program.

Data Flow Anomaly. A sequence of the events reference (r), definition (d), and use () of
variables in a program that is either erroneous in itself or often symptomatic of an error.

Data Flow Testing. A testing technique which provides a set of successively more strin-
gent path selection criteria that guide the selection of test data to examine the relationships
between variable definitions and variable uses.

Debugger. A software tool intended to assist the user in software fault localization and, po-
tentially, fault correction.

Debugging. The process of correcting syntactic and logical faults detected during testing.
Debugging shares with testing certain techniques and strategies, but differs in its usual ad
hoc application and local scope.

Decision-To-Decision Path. A sequence of nodes on the control graph that starts at the
program entry point or at a decision node, terminates with the program exit or a decision
node, and has no decision node in between.

Directed Graph. Consists of a set of nodes interconnected with oriented arcs. An arbitrary
directed graph (digraph) may have many entry nodes and many exit nodes. A program di-
graph has only one entry and one exit.

C-4

Glossary

Driver. A software module that invokes and, perhaps, controls and monitors the execution

of one or more other software modules.

Dynamic Analysis. The process of evaluating a system or component based on its behavior

during execution.

Emulator. A device, computer program, or system that accepts the same inputs and pro-

duces the same outputs as a given system.
Entry Point. A point in a software module at which execution of the module can begin.

Equivalence Class Partitioning. A test data selection technique based on consideration of
partitioning the input domain of a program into a finite number of equivalence classes such
that (1) a test of a representative value of each class is equivalent to a test of any other value
and (2) each test case should invoke as many different input conditions as possible in order
to minimize the total number of test cases necessary.

Error. (1) A discrepancy between a computed, observed, or measured value or condition
and the true, specified, or theoretically correct value or condition. (2) A mental mistake
made by a programmer which may result in a program fault.

Error Guessing. A test data selection technique. The selection criteria is to pick values that
seem likely to cause failures.

Error Seeding. The process of intentionally adding known faults to those already in a com-
puter program for the purpose of monitoring the rate of detection and removal, and estimat-
ing the number of faults remaining in the program.

Essential Knots. A measure of unstructuredness based on control flow knots.
Essential Paths. Program paths that must be executed to achieve 100% coverage.
Exception. An event that causes suspension of normal program execution.

Executable Specification. A specification which is given in a sufficiently formal notation
to allow its execution by a computer.

Executable Statement. A statement in a module which is executable in the sense that it
produces object code instructions.

Glossary

Execution Time. (1) The amount of actual or central processor time used in executing a
program. (2) The period of time during which a program is executing.

Failure. The inability of a system or system component to perform a required function
within specified limits. A failure may be produced when a fault is encountered.

Failure Intensity. Failures per unit of time, the derivative with respect to time of the mean

value function of failures.

Failure Intensity Decay Parameter. In the logarithmic Poisson execution time model, the
parameter that represents the rate of exponential decay of the failure intensity as a function
of mean failures experienced.

Failure Severity. Classification of a failure by its operational impact.
Fault. A manifestation of an error in software. A fault, if encountered, may cause a failure.

Fault Tree Analysis. A form of safety analysis that assesses hardware safety to provide
failure statistics and sensitivity analyses which indicate the possible effect of critical fail-
ures.

Flowchart. A control flow diagram in which suitably annotated geometrical figures are
used to represent operations, data, or equipment, and arrows are used to indicate the se-
quential flow from one to another.

Formal Specification. In proof of correctness, a description in a formal language of the ex-
ternally visible behavior of a system or system component. Generally, a specification writ-
ten and approved in accordance with established standards.

Formal Verification. See Verification.

Function. (1) A specific purpose of an entity or its characteristic action. (2) A subprogram
that is invoked during the evaluation of an expression in which its name appears and that
returns a value to the point of invocation.

Functional Specification. A set of behavioral and performance requirements which, in ag-
gregate, determine the functional properties of a software system.

Function Points. Function points measure software by quantifying the functionality pro-
vided external to itself. It is based primarily on logical design.

C-6

Glossary

Functional Testing. Testing that ignores the internal mechanism of a system or component
and focuses solely on the outputs generated in response to selected inputs and execution

conditions.

Generic Component. A generic component is one which can be instantiated in a number
of predefined ways so that each occurrence of the component can be tailored to suit a par-
ticular usage. For example, a generic component which provides a set of queue handling
routines might be designed so that it can be instantiated to operate on queues with different
message formats.

Global Assertion. Those assertions which are valid for the whole program being validated.
Graph. See Directed Graph.

Incident. During testing, any event that occurs during the execution of a software test that
requires investigation.

Incremental Analysis. Occurs when (partial) analysis may be performed on an incomplete
product to allow early feedback on the development of that product.

Incremental Development. A software development technique in which requirements
definition, design, implementation, and testing occur in an overlapping, iterative manner,
resulting in an incremental completion of the overall software product.

Independent Verification and Validation (IV&YV). Verification and validation of a soft-
ware product by an organization that is both technically, managerially, and financially sep-
arate from the organization responsible for developing the product. See Validation and
Verification.

Infeasible Path. A sequence of program statements that can never be executed.

Information Flow Analysis. A study of the interdependencies of program variables. A
given variable A will depend on another variable B at a specific point in the program if the
path taken in reaching that point is such that the value of A depends on the value of B.

Inspection. A static analysis technique that relies on visual examination of development
products to detect errors, violations of development standards, and other problems. Types
include code inspections and design inspections.

C-7

Glossary

Instruction Block. A sequence of statements where execution of the first statement neces-
sarily leads to execution of the last statement.

Instrumentation. Devices or instructions installed or inserted into hardware or software to

monitor the operation of a system or component.

Integration. The process of combining software elements, hardware elements, or both into

an overall system.

Integration Testing. Testing in which software components, hardware components, or
both are combined and tested to evaluate the interaction between them.

Intervals. Derived from a directed graph, an interval is defined as the following: An inter-
val with head node H is the subgraph containing H plus any nodes that can be reached on
a path from H, and which have all their immediate predecessors in the interval. First-order
intervals give a count of the intervals that partition the graph into a set of disjoint compo-
nents. The maximum order is the number of interval iterations required to reduce a graph
to a single node.

Invocation. The transfer of control to an entity causing it to be activated.

Linear Code Sequence and Jump (LCSAJ) Program Units. Sections of the code
through which the flow of control proceeds sequentially until terminated by a jump in the
control flow.

Logarithmic Poisson Execution Time Model. A software reliability model in which the
failure process is assumed to be a nonhomogeneous Poisson process with exponentially de-
creasing failure intensity.

Maintainability. (1) The probability that specified unavailable functions can be repaired
or restored to their operational state in the system’s intended maintenance environment dur-
ing a specified period of time. (2) The average effort to locate and fix a software failure.

Metric. A quantitative measure of the degree to which a system, component, or process
possesses a given attribute.

Module. A program unit that is discrete and identifiable with respect to compiling, com-
bining with other units, and loading.

Glossary

Node. In a diagram, a point, circle, or other geometric figure used to represent a state, event,

or other item of interest.

Operational Testing. Testing performed by the end user on software in its normal operat-
ing environment.

Parse. To determine the syntactic structure of a language unit by decomposing it into more
elementary subunits and establishing the relationships among the subunits. For example, to
decompose blocks into statements, statements into expressions, expressions into operators

and operands.

Path. In software engineering, a sequence of instructions that may be performed in the ex-
ecution of a computer program.

Path Analysis. Analysis of a computer program to identify all possible paths through the
program, to detect incomplete paths, or to discover portions of the program that are not on
any path.

Path Testing. Testing designed to execute all or selected paths through a computer pro-
gram. (Often paths through the program are grouped into a finite set of classes: one path
from each class is tested.)

Performance. The degree to which a system or component accomplishes its designated
functions within given constraints, such as speed, accuracy, or memory usage.

Portability. The ease with which a system or component can be transferred from one hard-
ware or software environment to another.

Pretty Printing. The use of indentation, blank lines, and other visual clues to show the log-
ical structure of a program.

Program Correctness. (1) The extent to which software is free f~om design defects and
coding defects; that is, fault free. (2) Extent to which the software satisfies its specifications
and fulfills the user’s mission objects. (3) If for all initial states that belong to the set of le-
gitimate initial states, the program P terminates with a final state that belongs to the set of
legitimate final states, then program P exhibits program correctness.

Prototype. A limited implementation of a system built in order to capture or validate some
aspects of a system design. The fundamental concept is that a prototype of a system is more

C-9

Glossary

cheaply or more quickly constructed than the actual system. Hence, some aspects of func-
tion or performance are typically sacrificed.

Pseudo Code. A combination of programming language constructs and natural language
used to express a computer program design.

Quality. (1) The degree to which a system, component, or process meets specified require-
ments. (2) The degree to which a system, component, or process meets customer or user

needs or expectations.

Quality Assurance. (1) A planned and systematic pattern of all actions necessary to pro-
vide adequate confidence that the item or product conforms to established technical re-
quirements. (2) A set of activities designed to evaluate the process by which products are
developed or manufactured.

Random Testing. An essentially black-box testing approach in which a program is tested
by randomly choosing a subset of all possible input values. The distribution may be arbi-
trary or may attempt to accurately reflect the distribution of inputs in the application envi-
ronment.

Regression Testing: Selective retesting to detect faults introduced during modification of
a system or system component, to verify that modifications have not caused unintended ad-
verse effects, and verify that a modified system or system component still meets its speci-
fied requirements.

Reliability. The ability of a system or component to perform its required functions under
stated conditions for a specified period of time.

Reliability Model. A model used for predicting, estimating, or assessing reliability.
Reliability Growth. The improvement in reliability that results from correction of faults.

Requirement. A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally imposed doc-
ument. The set of all requirements forms the basis for subsequent development of the
system or system component. |

C-10

Glossary

Requirements Specification. A document that specifies the requirements for a system or
component. Typically included are functional requirements, performance requirements, in-
terface requirements, design requirements, and development standards.

Retesting. See Regression Testing.

Safety. The extent to which the program is protected from causing a specified set of haz-
ards.

Scope. The range within which an identified unit displays itself. Scope of activity refers to
the boundaries within which a data structure or program element remains an integral unit.
Scope of control refers to the submodules in a program that potentially may execute if con-
trol is given to a cited module. Scope of error denotes the set of submodules that are poten-
tially affected by the detection of a fault in a cited module.

Segment. A (logical) segment, or decision-to-decision path, is the set of statements in a
module which are executed as a result of the evaluation of some predicate within the mod-
ule. It begins at an entry or decision statement and ends at a decision statement or exit, and
should be thought of as including the sensing of the outcome of a conditional operation and
the subsequent statement execution up to and including the computation of the next predi-
cate value, but not including its evaluation.

Self-Checking Software. Software which makes an explicit attempt to determine its own
correctness and to proceed accordingly.

Simulation. (1) A model that behaves or operates like a system when provided a set of con-
trolled inputs. (2) The process of developing or using a model as in (1).

Sizing. The process of estimating the amount of computer storage or number of source lines
required for a software system or component.

Software. Computer programs, procedures, rules, and any associated documentation per-
taining to the operation of a computer system.

Software Fault Tree Analysis. A form of fault tree analysis used for analyzing the safety
of software designs or code.

Software Quality. (1) The totality of features and characteristics of a software product that
bear on its ability to satisfy given needs; for example, conform to specifications. (2) The

C-11

Glossary

degree to which software possesses a desired combination of attributes. (3) The composite
characteristics of software that determine the degree to which the software in use will meet

the expectations of the customer.

Software Reliability. (1) The probability that software will not cause the failure of the sys-
tem for a specified time under specified conditions. The probability is a function of the in-
puts to and use of the system as well as a function of the existence of faults in the software.
The inputs to the system determine whether existing faults, if any, are encountered. (2) The
ability of a program to perform a required function under stated conditions for a stated pe-
riod of time.

Software Reliability Model. A model used for predicting, estimating, or assessing soft-
ware reliability.

Software Science. Software Science measures the complexity of a software module by cal-
culations based on the incidence of references to operators and operands. The fundamental
measures calculated are program vocabulary, length, and volume.

Specification. A document that prescribes in a complete, precise, verifiable manner, the re-
quirements, design, behavior, or other characteristics of a system or system component,
and, often, the procedures for determining whether these provisions have been satisfied.

Specification Language. A language, often a machine-processable combination of natural
and formal language, used to specify the requirements, design, behavior, or other charac-
teristics of a system or system component.

Statement Testing. Testing designed to execute each staternent in a computer program.

Static Analyzer. A software tool that aids in the evaluation of a computer program without
executing the program. Examples include syntax checkers, compilers, cross-reference gen-
erators, standards enforcers, and flowcharters.

Stress Testing. Testing conducted to evaluate a system or compbnent at or beyond the lim-
its of its specified requirements.

Structural Testing. Testing that takes into account the internal mechanism of a system or
component. Types include branch testing, path testing, and statement testing.

C-12

®

Glossary

Structured Programming. A well-defined software development technique that incorpo-
rates top-down design and implementation and strict use of structured program control con-

structs.

Stub. A skeletal or special-purpose implementation of a software module, used to develop
or test a module that calls or is otherwise dependent upon it.

Symbolic Evaluation. See Symbolic Execution.

Symbolic Execution. A software analysis technique in which program execution is simu-
lated using symbols, such as variable names, rather than actual values for input data, and
mathematical expressions involving these symbols.

System Testing. Testing conducted on a complete, integrated system to evaluate the sys-
tem’s compliance with its specified requirements. '

Test. A unit test of a single module consists of (1) a collection of settings for the input space
of the module, and (2) exactly one invocation of the module. A unit test may or may not
include the effect of other modules which are invoked by the module undergoing testing.

Testbed. An environment containing the hardware, instrumentation, simulators, software
tools, and other support elements needed to conduct a test.

Test Case. A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify compliance
with a specific requirements.

Test Data. See Test Case.

Test Data Generator. A software tool that accepts as input source code, test criteria, spec-
ifications, or data structure definitions; uses these inputs to generate test input data; and,
sometimes, determines the expected results.

Test Driver. A program that directs the execution of another program against a collection
of test data sets. Usually the test driver also records and organizes the output generated as
the tests are run.

Test Management. Management procedures designed to control in an ordered way a large
and evolving amount of information on system features to be tested, on system implemen-
tation plans, and on test results.

C-13

Glossary

Test Path. The specific (sequence) set of segments that is traversed as the result of a unit
test operation on a set of test data. A module can have many test paths.

Test Plan. A document prescribing the approach to be taken for intended testing activities.
The plan typically identifies the items to be tested, the testing to be performed, test sched-
ules, personnel requirements, reporting requirements, evaluation criteria, and any risks re-
quiring contingency planning.

Test Repeatability. An attribute of a test indicating whether the same results are produced
each time the test is conducted.

Test Log. A chronological record of all relevant details about the execution of a test.

Testability. (1) The degree to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine whether these criteria have been
met. (2) The degree to which a requirement is stated in terms that permit establishment of
test criteria and performance of tests to determine whether those criteria have been met.

Testing. The process of exercising or evaluating a system or system component by manual
or automated means to verify that it satisfies specified requirements or to identify differ-
ences between expected and actual results.

Timing Analyzer. A software tool that estimates or measures the execution time of a com-
puter program or portion of a computer program, either by summing up the execution times
of the instructions along the specified paths or by inserting probes at specified points in the
program and measuring the execution time between probes.

Top-Down Testing. A systematic testing philosophy which seeks to first test those mod-
ules at the top of the invocation structure. '

Trace. A record of the execution of a computer program, showing the sequences of instruc-
tions executed, the names and values of variables, or both.

Traceability. The degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another; for example, the degree to which the re-
quirements and design of a given software component match.

C-14

Glossary

Unit. A separately testable element specified in the design of a computer software compo-

nent.

Unit Testing. Testing of individual hardware or software units or groups of related units.
See also Integration Testing and System Testing.

Unreachability. A statement (or segment) is unreachable if there is no logically obtainable
set of input-space settings which can cause the statement (or segment) to be traversed.

Validation. The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.

Verification. (1) The process of evaluating a system or component to determine whether
the products of a given development phase satisfy the conditions imposed at the start of that
phase. (2) Formal proof of correctness.

C-15

Glossary

END

C-16

