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CONVERSION TABLE

(This Conversion Table is Unclassified)

MULTIFLY » BY » TO GET
TO GET <— BY < DIVIDE
angstrom 1.000 00C X E =10 meters (m;
atmosphers (normal) 1,013 25 X E +2 kilo pascal (kPa)
bar 1.000 000 X £ +2 kilo pascal (kPa)
barn 1.000 000 X € =28 meterd (n?)

British thermal unit (thermochemical) 1,054 350 X E 43 Joule (J)

calorie (tharmochemical) 4,184 000 Joule (J)

cal (thcnmhuniu'l/mz) 4,184 000 X E =2 mega Joulo/mz (m/mz)
curie 3.700 000 X E + 8g49a becquare! (G3q)
degres (angle) 1.748 229 X E =2 radian (rad)

degres Fahranheit t, = (21 + 459.67)/1.8 degree kelvin (K)
elactron volt 1.802 19 X E =19 Joule (V)

erg 1,000 000 X E =7 Joule (J)

erg/second 1,000 000 X E =7 watt (W)

foot 3,048 000 X E -1 mater (m)
foot-pound-force 1,358 818 Joule (V)

gallen (U.S. ldaquid) 3.785 12 X E -3 mater® (md)

inch 2,540 000 X E =2 mater (m)

Jork 1.000 000 X E +9 Joule (J)
Joule/kilogram (J/kg) radiation dose

absorbed 1.000 000 Gray (Gy)

kiletons 4.183 tarajoules

kip (1000 1bf) 4,448 222 X E +3 newton (N)

kip/inch® (ksi)

ktap

migron

mil

mile (international)

ounce

pound=~force (1bs avoirdupois)
pound-force inch
pound-force/{nch
pound-fom/footz
pom'acl-fm"&:c/'lm:l'\2 {pa1)
pound-mass (1bm avoirdupois)
pound-un-foo:z (moment of inertia)
pound-mlulfootal

rad (radiation dose absorbed)
rosntgen

shake

slug

torr (mm Hg, 0° ¢

6.894 757 X E +3
1.000 000 X E +2
1.000 000 X E -8
2,540 000 X E -5
1,609 344 X E +3
2.834 952 X E -2
4.448 222

1,129 848 X E -1
1.751 268 X E +2
4,788 026 X E -2
6.894 787

4,535 924 X E -1
4,24 011 X E -2
1.601 846 X € +1
1.000 000 X E -2
2.57% 76 X € -4
1,000 000 X E -8
1.459 390 X E #
1,333 22 XE -1

kile pascal (kPa)

mn-ueom/mz (N-l/mz)

meter (m)

matar (m)

meter (m)

kilogram (kg)

nawton (N)

newton -mater (N'm)

newton/matar (N/m)

kilo pascal (kPa)

kilo pascal (kPa)

kilogram (kg)

k11oormurz (kg'm

kﬂognm/mur’ (kg/ma)
“sGray (Gy)

cou lomb/k1logram (C/kg)

second (u)

kilogram (kg)

kilo pascal (kPa)

2)

*The becquerel (Bq) 1s the SI unit of radicactivity; 1 Bqg = 1 svent/s,
*sThe Gray (GY) is the SI un't of absorbed radiation.
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Chapter 1
INTRODUCTION

d.1l _General Problem

"Knowledge of the stress wvave ficld created within the earth
by an explosive detonation is required for the design of
hardened protective structures for weapon systems and for
the verification of conmpliance with nuclear testing
treaties. Models for this stress wave propagation are
developed in the "explosive effects community" by using
large scale finite difference codes and geologic material
models based on field and laboratory testing. These models
are validated and improved by comparing calculated stress
and motion fields with observations from field explosive
experiments. "Explosive effects community" is used in this
study to represent the scientists and engineers involved in
planning, designing, and analyzing nuclear and conventional
explosive nxp-rimontl.
P

A series of small scale field experiments conducted over
the past several years has astablished that scattering by
randon geologic heterogeneity has a significant influence

on explosively induced stress wave propagation (Reinke and

Stump, 1988; Reinke and Stump, 1991). Existing physical




models of stress wave propagation in the explosive effects
community are based on the assumption that the subsurface
geologic material properties can be divided into
homogeneous 1ayir-. This type of representation is often
inadequate ai demonstrated by small scale explosive
expariments, and may be responsible for much of <the
discrepancy which remains between observations from field

experiments and computational results.

Site investigation efforts performed at sites where field
experiments were <conducted have shown subsurface
heterogeneities (Reinke and Stump, 1988). These
heterogeneitas are not considered in the geologic material
models used in ground shock codes. The mean soil
conditions at test sites are defined by constant soil
parameters in the geologic material model. While the
constant solil parameters may be a reasonable dascription of
the mean conditions at a test site, this simplistic
representation of the subsurface geology cannot allow
ground shock calculations to correctly model the

phenomenology which occurs as the shock propagates through

the soil medium.




A.2 Goal

This study develops one-dimensional techniques for modeling
ground shock propagation through spatially fandom geologic
media. A geologic material property at a given point is
unknown until accurately measured, but it is not practical
to perform a site characterization effort in enough detail
to delineate each and every heterogeneity in the subsurface
soil (Vanmarcke, 1983). Therefore, stochastic modeling
techniques borrowed from the geophysical community were
applied to the problem of ground shock propagation through
spatially random geologic media (Frankel and Clayton, 1986;
Sudicky, 1986). Using thess techniques, the spatial
variability (as diltihguishod from point variability due to
imprecision in measurement of the properties at a given
location) in the material model is defined by (1) the type
of statistical distribution which defines the subsurface
heterogeneity; (2) the scale or correlation distance of the
variability; and (3) the mean and standard deviation of the
material property under consideration. For the site used
in this study, these statistical parameters have been
estimated from cone penetrometer testing, laboratory

material property testing, and seismic surveys.

The site of interest for this study is McCormick Ranch,

3




composed of dry alluvium. MeCormick Ranch is a test site
located on Kirtland Air Force Base (AFB), south of
Albuquerque, New Mexico. The subsurface spatial
variability at McCormick Ranch can be seen in Figure 1.
Figure 1 contains a set 6f data plots from 3 cone
penetrometear tests performed on the same azimuth (270
degrees) and at varying distances from the reference point
(centar of test bed). Test cv27012 was 3.66 m (12 ft) from
the test bed center, and tests cv27024 and cv27040 were
7.32 m (24 ft) and 12.2 m (40 ft) from the center,
respectively. As shown in Figure 1, a large degree of
variability is present in the data as a function of depth.
The tip resistance in cv27012 varies from 55 to 320 kg/om?
(782-4551 psi), and from 70 to 425 kg/cm® (996-~6045 psl) in
cv27040., There is also a significant amount of lateral
spatial variability present as evidenced by differences
from one hole to the next. To illustrate this, the tip
resistances from two arbitrary depths were selected to

describe the lateral variability:

REPTH £v27012 SV27024
(m) (kg/cnm?)

1,22 209 373 235

4.88 176 180 414
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Figure 1. Set of three cone penetrometer soundings
performed at McCormick Ranch, New Mexico.




Figure 1 demonstrates the geologic variability present in
the subsurface material which is ndt considered in ground
shock calculations. The subsurface geologic material
properties in ground shock calculations are defined as
homogeneous layers. Fiquri 2 shows a simplified site
profile of the McCornick Ranch, New Mexico test site
developed for use in ground shock calculations of high
explosive test events at this site (Grant, 1988). This
profile was developed trop a series of laboratory and field
test data which were cone penetrometer tests, seisnmic
refraction surveys, and borehole logs. Figure 2 shows the
subsurface material divided into 3 homogeneous layers. The
properties associated with each layer are p-wave velocity
(C;) » shear wave velocity (C,), and ucil'd-nlity (p). These
values are constants, which do not account for the geologic
variability present in Figure 1. The profile in Figure 2

simply describas the mean conditions at the site.

The main application of results from this study will be
used to reduce or quantify the uncertainty in performing
ground shock/motion calculations/predictions based upon

conventional and nuclear detonations.
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Figure 2. Simplified site profile developed for the
McCormick Ranch test site.




1.3 Previous Work

Several studies have found that medium inhomogeneities are
characterized by correlation analysis. The application of
correlation analysis to the study of wave propagation in a
medium with random inhomogeneities goas back to Chernov
(1960) . Chernov developed technigues to categorize mediunm
inhomogeneities. He studied the problem of amplitude and
phase fluctuations of wave fields when sound waves
propagated in the atmosphere and the sea, the twinkling of
stars, and the fading of radio signals.

Correlation analysis has also been used to characterize
spatial variation in earthquake induced ground motions.
The El1 Centro differential array data from the 1979
Inperial valley earthquake (Smith et al., 1982) weras
analyzed using correalation analysis and spectral ratios of
array averages. The differential array consisted of 6 DCA-
300 digital recording accelerographs in a north-south line
at distances of 0, 18.3, 54.9, 128.1, 213.4, and 304.9 n
(0, 60, 180, 420, 700, and 1000 ft). The exact location of
the array was not referenced by Smith et al. (1982).
Howaver, a map in the paper indicated that the Imperial
fault was located 5 km (3.1 miles) from the first recording

station (at 0 meters). For the Imperial Valley earthquake




the recording station at 304.9 m (1000 ft) did not trigger
(reasons were not given). 1In the correlation analysis, a
set of normalized covariance functions were calculated for
all possible pairs of recording stations to examine the
nature of the motion recorded on the differential
array. The covariance function measures the "fraction of
the power in the seismic signal that can be attributed to
a single nondispersive propagating wave". (Smith et al.,
1982, p. 248). The degree of correlation between pairs of
stations and velocity at which the propagating wave moves
across the array were obtained from the covariance
functions of the accelerations. The normalized covarianca
functions for the P-wave group demonstrated that about 95
percent of the power is in the form of a single propagating
wave across the array to about 50 m (164 ft), but the power
drops rapidly to about 75 percent at 85 m (279 ft). Across
the entire triggered array, a distance of 213 m (700 ft),
the normalized covariance is about 60 percent. The amount
of power or energy uncorrelated between stations appeared
to be related to scattering. Scattering is caused by the
interaction of seismic waves with the inhomogenaities

present in the material properties of the geologic medium.

The same type of measurable variability was obsarved at a
small-aperture seismic array at Pinyon Flat, California

9




where eight local earthquakes were recorded (Vernon et al.,
1991). The array consisted of nine recording stations set
up in three nested equilateral triangles. Three stations
were located 300 m (984 ft) from the center point at angles
of 0, 120, and 240 degrees. The middle triangle of
stations were located at a distance of 100 m (328 ft) from
the center point at 60, 180, and 300 degrees. The inner
triangle stations were located 30 m (98.4 ft) from the
center point at 30, 150, and 270 degree angles. Pinyon
Flat was selected because of its homogeneous geology
(granite) and its planar topography. If the geoclogy werae
truly homogeneous, the waves would propagate effectively as
a plane acrcoss the array. However, this did not occur.
There was measurable variability in the power spectra and
the waveform coherence was low when the station spacing was
greater than 300 m (984 ft) for wavelengths shorter than
300-400 m (984-1312 ft). Coherence is a measure of the
correlation between two processes as a function of

wavelength.

Characterizing spatial variability is also of great
importance to groundwater pollution problems. The
complexity of groundwater systems, physical and chemical
properties of the subsurface materials that affect solute

transport, is being analyzed as spatially random fields.
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Sudicky (1986) examined the spatial variability of
hydraulic conductivity at a site where a long term tracer
test was performed in the Borden aquifer. Permeability
measurements were obtained from a series of core samples
taken along two cross sections at the Borden tracer test
site. The samples revealed that the aquifer was comprised
of numerous thin, discontinuous lenses of contrasting
hydraulic conductivity. An exponential autocorrelation
function was used to ocbtain a statistical model which would
represent the aquifer. The exponential model with a
vertical correlation distance of 0.12 m (0.4 ft), and
horizontal correlation distance of 2.8 m (9.2 ft) closaly
approximated the estimated autocorrelation functions. The
statistical description of the Borden aquifer was used to
determine the dispersion of the injected tracer, and then
comparad to the dispersion rates observed during the long-
term tracer test. Because the results were consistent,
Sudicky believes that a statistical understanding of random
hydraulic parameters will provide meaningful estimates of

transport parameters in other aquifers.

Correlation functions were used by Frankel and Clayton
(1986) to study the scattering of elastic and acoustic
waves in two-dimensional media with random spatial

variations in seismic velocity. The paper was concerned
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with variations in seismic velocity in the earth’s crust
with scale lengths (correlation distances) ranging from
tens of kilometers down to tens of meters. The scattering
model consisted of a random vaelocity perturbation applied
to a homogeneous velocity field. The perturbation fields
(also called random media in the paper) were characterized
by a correlation function, correlation distance, and
standard deviation. The Gaussian, exponential, and Von
Karman correlation functions were used to construct the

random media.

The nmethod used by Frankel and Clayton to construct the
random media is of great importance to this study because
a similar procedure was utilized. The procedure used to
construct the random media on a two-dimensional grid was
outlined in the paper as follows: "First, a random number
generator assigned a velocity v(x,z) sequentially to each
point of the grid. The random velocity field was then
Fourier transformed to wave number spacae, filtered to
achieve the desired spectrum, and transformed back to the
spatial domain to yield the velocity field for the
simulations" (Frankel and Clayton, 1986, p. 6469). The
results from the simulations were then compared to actual
observations to constrain models of the crustal

hetarogeneity. The results demonstrated that the Gaussian,
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exponential, and Von Karman random media with correlation
distances greater than 10 km (6.2 miles) produce

correlation functions similar to the actual observations.

This literature review concentrated on the usage of
correlation analyses in various disciplines. The
correlation analysis was used to characterize the spatial
variation in strong ground motions, examine the spatial
variability of hydraulic conductivity, and study the
scattering of elastic and acoustic waves in media with

random spatial variations in seismic valocity.

1.4 Objectives of Study

To achisve the goal, the specific objectives of this study

wvere to do the following:
1. Develop a one-dimensional random geology
generator to generate the random geologic variability
profiles to be used in finite difference calculations.
2. Modify a ground shock finite difference code to
incorporate ths random geologic variability factors.
The factors will be used to perturb the average soil
material properties to generate random geologic
material property profiles that represent the

13




inhomogeneities present in the subsurface material.
3. Perform linear elastic calculations using the
modified code.

4. Compare the results of the calculations with

closed form solutions and with experimental data.

1.5 Specifics of This Study

This research is unique within the explosive effaects
community in the following ways. F:I.r;st, stochastic
taechniques are used to produce spatial perturbations in the
material model. These perturbations simulate the
subsurface heterogeneities. Existing solutions for plane
wave propagation in a heterogeneous material have baen
obtained by using probabilistic techniques (Rohani, 1982),
which do not incorporate the concept of spatial
variability. Second, the spatial random geologic
variability factors are directly incorporated into the
AFTON-1D finite difference ground shock code which has not

been done previously (Trulio, 1966).
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i.6 Organization of Thesis

The organization of this thesis is as follows: chapter 1
is the Introduction which states the problem, goal, review
of literature, and objectives. Chapter 2 is Theory and
Methodology. The topics covered in chapter 2 are
autocorrelation functions, random geoclogy gyenerator,
theoretical and computed autocorrelations, AFTON~1D finite
difference code, and code modifications and calculations.
The results and analysis are presented in chapter 3. 1In
chapter 4, conclusions are drawn based on the results from
the various calculations and recommendations are given for

future work in this area.
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Chapter 2
THEORY AND METHODOLOGY

2.1 _Autocorraelation Function

Random or stochastic processes are commonly characterized
through autocorrelation functions or spectral density
functions. The spectral density function is simply the
Fourier transform of the autocorrslation function of a

rarndon process.

The antocorrelation function is defined as a measure of the
degree of linear relationships between neighboring values
in a random process (Bendat and Piersol, 1971). The

general autocorrelation function is defined as
1 N
Ry (L, t+t) = -A-r;;x,,(t)xk(tﬂ) (2.1)

N = number of samples

whers, R, = autocorrelation function of x,(t)
t = reference point

T = gpatial separation

The guantity R,, is always a real-valued even function with




a maximum at r=0, and may be either positive or negative.
In terms of the autocorrelation function, the mean value of

x(t) is given by
(2.2)

tx = VR ToT

Another form of the autocorrelation function is the
normalizaed autocorrelation function (correlation

coefficient)

X, (&) X (1)

=l
Elyg &

R (t, t+t) = (2.2)
JV&T X, (€] Var x,(t+7)
-1 $ Ry(%) <1 (2.4)

When the autocorrelation function is at a peak, the random
process has a high degree of linear correlation with itself
at t and t+r. When the autocorrelation function is near
zero, the random process is uncorrelated with itself at ¢

and t+r.

The autocorrelation function is used in many disciplines,
which include geotechnical engineering, statistics,
geophysics, and hydrology. The autocorrelation function is

commonly referred to as simply the correlation function in
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the literature. Throughout this paper, the ternms
autocorrelation and correlation will be used

interchangeably.

The most common autocorrelation functions usad to
characterize random Ggeologic variability in the
seismological and hydrological communities are the
Gaussian, exponential, and von Karman functions (Frankel
and Clayton, 1986; Sudicky, 1986). The correlation
function and corresponding 1-D power spectra equations are
shown in Table 1. The correlation functions in Table 1 are
theoretical squations for a Gaussian, exponential, and von

Karman distribution, respectively, and are always positive.

The data set from McCormick Ranch used to statistically
characterize the subsurface heterogeneity suggests that the
exponential and Gaussian correslation functions are most
appropriate for describing the spatial variability.
Therefore, this study has focussed on the Gaussian and
exponential correlation functions to define the subsurfacs
heterogeneities. The correlation functions and 1-D power
spectra are plotted in Figure 3. The 1-D power spectra
plots were generated with a correlation distance (a) of 50

cm.
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For Gaussian and exponential correlation functions shown in
Table 1, the correlation distance (a) marks the lag (r)
whers the correlation function has the value of e’
Therefores, when r=a the normalized lag (r/a) is equal to

R,=0.37 as shown in Figure 3.

Table 1. Correlation functions and 1-D power spectra
equations.

Correlation 1-D Power
Function Spectra
-
GAUSSIAN o-ri/a} EV el
EXPONENTIAL @-r/e —2a
1+k?a?
a
von KARMAN K, (r / a) W

wheras,
r = offset (or spatial lag)
a = correlation distance
k = wave number, k=2mw/\, where A is wavelength
K, = Bessel function

e = exponential function
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Figure 3. Gaussian and Exponential theoretical
autocorrelation functions and 1-D power spectra.
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4.2 Random Geolody Generator

A technique was developed to construct spatially random
geoclogic variability factors which would be incorporated
into the AFTON-1D finite difference code (Trulio, 1966) to
simulate the subsurface inhomegeneities. The technique has
been named the random geology gensrator. The procedure

used to develop the random geclogy generator is as follows.

1. First, the desired correlation function, £, is
constructed in the wave number domain using the

equations (1-D power spectrum) in Table 1.

2. Next, a random saquence, Yy, is generated using a
random number generator (discussed later in this
chapter). This random sequence is then transformed to
the wave number domain by means of a fast Fourier

transfornm.

3. A random phase term, 0, is obtained by

O=tan'{imag(¥(k))/real(¥(k))], where Y(k) is the
Fourier transform of the sequence y,. 0 is known as
the phasa angle of the Fourier transtorm, and imag and

real stand for the imaginary and real part of the
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Fourier transform, respectively.

4. Since a complex number (x+iy) can be written as

ileant(d)) .
x-riy'w/f’*_y’em x (2.5)

the random sequence is written as

X(k) = JT ot - (a.8)
where X(k) is a random sequence in the wave number
domain having the desired correlation function (f).
Transforming X(k) back to ths space domain yields x,

which is a random sequence in space.

S, The random sequence is then standardized to a
specific mean and standard deviation. The

transforming equation is

(xi = Py

)Od - ud = Xn (:-7’
ox

where u, and o, are the mean and standard deviation of
the random sequence ¥, u, and o, are the desired mean
and standard deviation, and x, is the sequence of

random geologic variability factors.

The program to generate the random geologic variability




factors is listed in Appendix A. The input parameters
needed to run the program are 1) the desired. correlation
function (Gaussian or exponential), 2) number of random
variables to be generated, 3) the desired mean and standard
deviation, 4) correlation distance, and 5) a seed for the
random number generator. The correlation distance in the
program is defined in terms of the number of sample

intervals.

2.2.1 Corraelation Distance

The correlation distance is a stochastic parameter used to
measure the size of variations in a data set. The
correlation distance is defined as a measure of the
separation distance where two measurements ars essentially

independent of each other.

The correlation distance used in this study is based on
work done by Jewell (1588). A cone penetrometer data set
from the McCormick Ranch test site on Kirtland AFB composed
of alluvium was analyzed for stochastic and statistical
properties. Various autocorreslation functions were used to
determine the spatial variability in the subsurface
properties. Correlation distances of 30-50 cm provided a
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good fit between the model and data. For this study, two

correlation distances of 30 and 50 cm were investigated.

2.2.2 Random Variability Factors

The Gaussian and exponential functions were used to
generate the random variability factors. The variability
factors are used to perturb the average soil material model
to generate random geclogic material property profiles that
rapresent the inhomogeneities in the subsurface material in
the ground shock code. Since the grid in the ground shock
code has a limit of 500 calls or zones and the number of
variability factors generated must squal 2°® for the random
gaology generator, n was chosen to bhe 5. Therefore, 512

variability factors were generated.

Figure 4 shows thae variability factors constructed with the
Gaussian function. The variability factors constructed
with the exponential function are shown in Figure 5. The
profiles shown In Figures 4 and 5 repressnt the subsurface
heterogeneities with depth. The variability factor
profiles were computed with different zone sizes.

Therefore, in order to compare the profiles directly, the
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variability factors are shown with respect to the
normalized distance in the figures. The . same input
parameters were used to generate the different profiles.
When these generated profiles are compared with the cone
data profiles in Figure 1, they appear quite realistic (see
Figure 6).

The variability factors from the exponential function show
more high frequency roughness or noise than those from the
Gaussian function. The roughness is due to the fall off
rate in the spectral amplitude between the two correlations
(see Figure 3). Both spectra are flat out to a specific
wave number (k), but at higher wave numbers the exponential
falls off at k"), yhere N is the number of space
dimensions (Fisk et al., 1991). The amount of roughness in
the profile is controlled by the fall off rate of the
spectra. The spectrum with more energy at higher wave
numbers shows more roughness in the generated variability

profiles.

2.2.3 Random Number Genarator

The random number generator from the MATLAB software
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package (PC-MATLAB, 1989) was utilized in this research (in
Section 2.2). MATLAB is a high-performance interactive
software package used for scientific and engineering
numerical computations. MATLAB prcocvides an easy-to-use
environment where problems and solutions are axpressed
almost exactly as they are written mathematically. A
specitic programming language is not required. Typical
uses for MATLAB ara general purpcse numerical computations,
algorithm prototyping, and solving problems with matrix
formulations that arise in disciplines such as automatic

control theory, statist:ics, and digital signal processing.

The MATLAB function RAND is a uniform random number
generator based on linear congruential methods. The
algorithm for this random number generator was proposed by
D. H. Lehmer (1951). The algorithm involves the choice of
two fixed integer parameters

(i) modulus: m - a large prime integer

{(ii) multiplier: a - an integer in the range 2,

3,.--0,m -1

and the generation of the integer sequence 2,, 2,, Zy,...,2,,

is defined by thaea recursive formula

(iii) 2, - (IZH) (mOd ‘) for 1 - 1' 2,-..




where Z, is the seed or starting value. To obtain the
desired random numbers, U on (0,1), the sequence of 2’s is

normalized by

(iV) U‘ - Z‘/m fOr i - 1' 2' LI

The values of a and m nust be selected in the manner that
the function, f£(2), is a full period generating function,
and the full period sequence, 2,, 2;,...,%,,, is random. The
modulus m = 2% - 1 was suggested by Lehmer (1951). The
multiplier a = 7’ = 16807 was suggested by Lewis, Goodman
and Miller (1969), based on the fact that

£(2) = 168072 mod 2147483647 (2.8)

is a full period generating function. This function has
also demonstrated evidence of randomness through various

tests (Lahmer, 1951).

Random number generators can be subjected to empirical and
theoretical tests to determine how well the generated U/'’s
resemble values of a true independent and identically
distributed (IID) random variablae. In addition to the
statistical tests conducted in by Lehmer (1951), the chi-
square (empirical) test of uniformity was applied to
equation (2.5) in this study. The recults from the chi-

square test indicate the U'’s generated do not behave in a
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way which is significantly different from what -would be
expected from truly independent identically. distributed
random variables. The computations and results from the

chi~-asquare test are included in Appendix B.

2.3 Theoretical and cComputad Autogorrelations

The Gaussian and exponential correlation functions were
used to generate the random geologic variability factors.
The random factors are applied to the homogeneocus soil
material model to develop synthetic heterogeneous soil
profiles. 1In order to determine the validity of the random
geology generator, the autocorrelations of the variability
factors were compared to the theoretical autocorrelations.
The theoretical autocorrelation functions shown in Table 1
were developed based on integral Fourier transform theory
from - to +® over space. In order to construct a
numerical realization (random geologic variability
factors), a discrete process was used. The integral is no
longer from -» to +®, but rather from 0 to 512. Therefore,
the adequacy of the computed autocorrelations obtained from
the discrete, limited realizations was compared to the

theoretical autocorrelations.
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Figure 7 shows the theoretical and computed auto-
correlations for the Gaussian and exponential functions,
respectively, for a correlation distance of 50 cm. Figure
8 shows the autocorrelations for a correlation distance of
30 cm. The characteristics associated with the random
factors in Figures 7 and 8 are a mean of 1, a standard
deviation of 10 percent, and zone size of 10 cn. The

random number generator seed was set at 100.

The comparison between the theoretical and computed
autocorralations in both cases was extremely good.
Therefore, one would conclude that the random geology
generator constructing the discrete, limited realizations

is working correctly.

2.4 _1-D Finite Difference Code

The AFTON 1-D (one dimensional) finite difference code was
used in this study. The AFTON 1-D code is a finite
difference ground shock code designed to solve problems in
the field of dynamic continuum mechanics (Schuster el at.,
1984). AFTON 1-D may be used in any of the three 1-D
symmetric modes; plane, cylindrical or spherical. Figure
9 shows the three symmetric modes. The only direction of
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motion allowed in the three modes is that perpendicular to
the shaded area (A;) in the figure. The media are divided
into discrete cells, identified by J, and the code
cycles through the equation of motion for all active J's
using the output of the previous cycle to advanca each
timestep. The state of stress in each cell or zone was
calculated by a linear elastic model. The parameters that
define the linear eslastic model are material density (p =
1643 kg/m’), compressional wave velocity (¢ = 508 m/s), and

Poisson’s ratio (v = 0.25).

This code was used to perform homogeneous and random
calculations in the spherical mode with a pressure step
function (p = 1 MPa) appliad at the grid boundary
(spherical «cavity wall) to simulate ground shock
propagating through the grid from an explosive sourca. A

zone size of 10 cm was used throughout the grid.

2.4.) Validation of calculational Technigue

A% a chack on the validity of the c»lculationa) =echnique,
the homogenenus finite difference calculations were

compared to a closed form solution of wave motion
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developad by Sharpe (1942). Sharpe states the problem as
follows: "Given a spherical cavity of radius a within a
homogeneous, ideally elastic, infinite medium of density p
and compressional wave velocity ¢; to find the elastic wave
motion which results from application of an arbitrary
pressure P(t) to the interior surface of the cavity"
(Sharpe, 1942, p. 146). The problem is illustrated in
Figure 10.

The primary reason for the waveform comparisons between the
homogeneous finite difference and closed form calculations
was to validate both the parameter setup of the code, as

well as the geometric setup of the finite difference grid.

Figurs 10. Illustration of the idealized 1o0del.
(From Sharpe, 1942, p. 146)
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A computer program was written for Sharpe’s closed form
solution and is included in Appendix C along with the
equation derivations. The program was written to generate
velocity and displacement time hiastories at several

distances from the center of the cavity.

Comparisons between the closed form solution and the AFTON
calculations are shown in Figures 11 through 13 at
arbitrary ranges of 200, 500, and 500 cm from the cavity
center, respectively. The vertical scales in the figures
vary to show the maximum velocities and displacements at
the different ranges. Alsoc shown in Figures 11 through 13
are the time histories generated with different zone sizes.
In order to check the influence of fraquency and boundary
effects on the calculations due to the zone size, saveral
zone asizes were compared. The homogeneous calculations

were performed with 2, 5, 10, and 20 cm zone sizes.

The velocity and displacement waveforms from the closed
form sclution and AFTON calculations are similar. The
wavof&rm agresment increased as the distance from the
cavity wall also increased. The reason for the agreement
is explained by the simplified displacement equation usaed
by Sharpe (1942). The simplified equation is adequate for
displacements at distances more than a few times the radius
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of the cavity. The cavity radius for the calculations was
get at 175 cm, Based on the agreement between the closed
form solution and AFTON calculations, one would conciude

the parameter satup uscd in the code is adequate.

As shown in Figures 11 through 13, the difference in zone
size, between the 2, 5, and 10 cm zones, in the finite
difference érid was not significant. However, numerical
noise was present in the 20 cm 2cnhe calculation, and the
velocity peak values were lower. Therefore, a zone size
greatar than 10 cm would not bLe recommendad. Based on
these comparisons, the geometric setup of 10 cm zones for
the homogeneous and random calculations was used throughout

this study.

2.5 AFTON 1-D Code Modifications

In order to determine the influence of spatial geologic
variability on ground meotion, the AFTON 1-D finite
differance code was modified to incorporate the random
geologic variability factors. The variability factors were
assigned to each zone or ce.l on the grid. They were then
used to perturb the average scil material properties to

represent the inhomogeneities in the subsurface material.
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The AFTON 1~-D code consists of 53 subroutines which include
functions for initializing constants, setting up the
problem, adding new cells as the problem progresses,
setting the new timestep, and storing output data. The
subroutine of interest for this study was SUBROUTINE
ESINIT. The parameters from the linear elastic model are
read in at this subroutine and assigned to the zones. This
subroutine was modified so that the set of variability
factors could bs read in to the material model and applied
to the parameters in each zone. Since only a linear
elastic material model is being explored in this study, the
material parameters perturbed by the variability factors
are density, Poisson’s ratio, and seismic wave speed. The
material parametars were assigned to 500 zones and then
varied by 500 variability factors composing a Gaussian or

exponaential distribution.
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Chapter 3
RESULTS AND ANALYSIS

d.1 _Random Calculations

The randem calculations were generated with the modified
AFTON 1-D finite difference code. 1In the first phase of
the analysis, the statistical properties of the variability
factors were varied to examine the effects on the computed
output, velocity and displacement time histories.
Correlation distances of 30 and 50 cm were compared, and
the standard deviation in the variabiiity factors varied

from 0 to 20 percent.

... Correlation Distance Comparisons

The variability factors used in the random calculations to
compare the difference in correlation distance were
generated with an arbitrary standard deviation of 10
percent, and initial seed of 100. The correlation
distances of 30 and 50 cm are compared in Figures 14
through 17. The waveforms in Figures 14 through 17
correspond to ranges of 2n0, 500, 900, and 2000 cm from the

center of the cavity, respectively.
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The waveforms generated with the two correlation distances
vary slightly, but there are no significant differences.
The time of arrivals are the same for both cases at the

different ranges.

3.1.2 Standard Daviation and Initial Seed Comparisons

Tha differences in standard deviation and initial seed in
the random calculations are shown in Figures 18 through 21.
The three waveforms in each plot repressnt the soil
properties modeled as a homogeneous half space (sd=0), and
ags random geologic material property profiles generated
with a 50 cm correlation distance, different random seeds
(s=100, s=456), and standard deviations (sd=5%, sd=10%,
sdw15%, and sd=20%). Theso waveforms were gesnarated at a
raange of 500 cm from the center of the cavity. Figures 18
through 21 represent 5, 10, 15, and 20 percent standard

deviations, respectively.

The velocity time history waveforms generated from the
homogeneous calculations (sd=0) show the initial peak and
then decay to zero. For the time histories generated with
the random variability profile calculations, the waveforms

do not decay as rapidly with time, but rather show the late
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time noise that is often present in measured field
measurements. The other significant difference between the
homogenecus and random calculations in Figures 18 through
21 is the reduction in the peak volocitylvaluo. As the
level of variability in the soil properties increases (from
0 to 20 percent standard deviation), the attenuation of the

ground shock motion increases.

Also illustrated in Figures 18 through 21 are the
differences in the random calculations due to the initial
seeds used in the random number yenerator. The random
variability factors generated by the two initial seeds
produced significant differences in the velocity and
displacement waveforms. Even though the two sets of random
variability factors are statistically the same, the initial
seed used in the random number generator influences the
computed velocity and displacement waveforms. In order to
account for the differences pruduced by the initial seeds,
representative random waveforms (mean and mean + 1 standard
deviation) were generated based on work performed by

Vanmarcke (1979).

Vanmarcke developed a methodology to probabilistically
characterize the variability of geotechnical parameters and
design sampling and testing programs to maximize the
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probabilistic information. Based on Vanmarcke’s findings
and experisnce, he suggests that a minimum of 6-8 data
points are needed to estimate means and variances or
coefficient of variation with a reasonable degree of
reliability. Therefore, representative random waveforms

were generated using 10 different seeds.

3.2 Representative Random Waveforms

In order to compare the results produced by the
introduction of spatial subsurface variability ¢to
homogeneous ground shock calculations and experimental
data, representative random waveforms (mean and me&»n *+ 1
standard deviation) were generated. The representative

random waveforms were generated with a 50 om corralation

distance,; a Gaussian distribution, soil properties with a

10 percent standard deviation, and by using 3 sets of 10
different seaeds (Set-1, Set-2, and Set-3). The seeds used

in the 3 sets are shown in Table 2.

nepresentative velocity waveforms were generated at varying

ranges from the pressure cavity center (200, 500, 900, and




Table 2. Three sets of random number generator seeds.

set 1 set 2 Set 3
234 1000 572
345 2000 802
456 3000 33
567 4000 534
678 5000 499
789 6000 955

W 890 7000 748
280 8000 554
1234 9000 624
2345 10000 89

2000 cm) for the 3 sets of independent seeds. The

waveforms are presented in Figures 22 through 27.

The soil properties in these random calculations were
varied by 10 percent based on down hole seismic cone
investigations conducted at the McCormick Ranch test site
by The Earth Technology Corporation (Final Report to Air
Force Weapons Laboratory, Contract No. F8PR0171120007,
1987).

3.2,1 _Analysis of Representative Random Waveforxms

The representative random velocity waveforms presented in

Figures 22 through 27 are shown in Figures 28 and 29 as
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peak velocity amplitudes versus range for Set-1, Set-2, and
Set-3, respectively. This type of data presentation is
useful for analyzing the decay rate of the random and
homogeneous calculations for the three cases. Figures 28
and 29 shov the mean, mean +1 standard deviation, mean -1
standard deviation, and homogeneous peak velocity

amplitudes.

In general, the peak velocity amplitudes from the
homogeneous calculation are larger than the mean amplitudes
and in some cases are not within the i1 standard deviation
bounds. These plots indicate that the ground shock
attenuation rate is larger for the random calculations

relative to the homogeneous calculations.

2.2.2 Coafficients of Variation

The peak velocities obtained from the random and
honogenecus calculations wera normalized to the mean
amplitudes for the three random cases to eliminate a biasad
comparison between the sets c¢f independent seeds. The
ratio is known as the coefficient of variation (Bendat and

Plersol, 19%971).
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The coefficients of variation for the peak velocity
anplitudes are shown in Figure 30 as a function of range.
The mean +1 standard deviation, mean -1 standard deviation,
and homogeneous peak velocity amplitudes were normalized to
the mean amplitude at the different ranges for each set.
The mean t1 standard deviation for the three sests are
represented by the open triangle, diamond, and circle
symbols. The homogeneous velocity amplitudes normalized to
the mean of each set are represented by the closed
triangle, diamond, and circle symbols for Set-1, Set-2, and

Sat-3, respectively.

The widths of the +1 standard deviation bounds or error
bounds are consistent for the three sets of sesds, except
for Set-l1 at the 200 cm range. The error bound for Set-l
is approximately 23 percent from the mean, where Set-~2 and
and Set-3 are only 13 percent from the mean. However, the
widths of the error bounds at the different ranges do vary.
The widths of the largest error bounds at the different
ranges are 23, 18, 25, and 14 percent for the 200, 500,
900, and 2000 cm ranges, respectively. The average error

bound is 20 percent for all ranges.
Figure 30 also shows the homogeneous peak velocity

amplitudes with respect to the mean amplitude and bounds.
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The homogenenous amplitudes for the three cases are closest
to the mean and within the bounds at the 200 cm range. At
the 500 and 900 cm ranges, the homogeneous amplitudes
normalized to the Set-3 means are outside the bounds. At
the 2000 cm range, the homogeneous amplitudes for the three
cases are outside the bounds. The average homogeneous
amplitude is 30 percent from the mean, whers the largest

error bound is 14 percent at 2000 ocm.

Figure 30 shows that the ground shock decay rate with range
for the homogeneocus calculations is smaller than the random

calculations.

d.2.3 Other Random Wavaform Effects

In the previous sections, only the peak amplitudes from the
homogeneous calculations were compared to those of the
representative random calculations. In this section, the
complete homogeneous velocity waveforms will be compared to

the mean random velocity waveforms.

Four homogeneous velocity waveforms are shown in Figure 31
as a function of range. The mean random waveforms for Set-

1, Set-2, and Set-3 are shown in Iigures 32 through 34,
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respectively.- The mean random waveforms which take into
account the spatial subsurface variability show a reduction
in the peak amplitudes as well as a shift to a lower
fregquency. The energy is spread out with time in the
initial positive cycle for the mean random waveforms. The
mean random waveforms alsco show the late time ringing or

noise often seen in experimental data.

3.3 _Experimental Data Comparison

In the final phase of the analysis, the random calculations
were compared to experimental data. The analysis was more

qualitative than gquantitative for the following reasons:

1. The random calculations performed in this study
were purely linear elastic calculations. All near
source explosion data involve non-linearity.

2. The calculations were l-dimensional, where the

actual conditions are 3-dimensional.

When an explosive test is buried sufficiently deep (no
surface effects), the experiment can be assumed to be 1-
dimensional. Therefore, the random calculations wvere

compared in a qualitative way to three approximately 1-
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dimensional explosive tests. These three tests are MERLIN,

MP~-2, and CHEAT.

Aude)  MERLIN Tegt

MERLIN was a contained underground nuclear experiment
conducted in desert alluvium in Yucca Flats, Nevada Test
Site (Perret and Bass, 1975). MERLIN was a 10 kiloton test
at a depth of 296 m (971 £t) with numerous gages placed at

shot depth approximating a one-dimensional configuration.

The instrumentation layout for the MERLIN test is shown in
Figure 35. The ranges at stations U3, U4, U5, and U7 are
350, 700, 1100, and 2503 ft, respectively, from the charge.
The velocity waveforms are shown in Figure 36. The
velocity waveform at U7 was obtained from an accelerometer
neasurement and not a velocity measurement, therefore, the
symbol | was placed in the plot. As seen in Figure 36, the
late time ringing or noise introduced into the random
calculation by the subsurface variability (see Figures 32-
34) is also seen in the MERLIN results for the various
ranges. In previous analyses of data of this type, the
late time ringing has been attributed to reflections from

various interfaces, or from surface spall impact (Murphy,
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1991). The random calculations, however, demonstrate that
a relatively small amount of spatial variability in the

material properties can produce similar effects.

d.3.2 Material Properties Test 2 (MP-2)

The MP-2 test consisted of a 20 ton nitromethane charge
buried 20 m below the surface in dry alluvium at the Yuma
Test Sita, Yuma, Arizona (Rinehart and Veyera, 1986). A
total of 178 gagee wers placed in this test on 5 different
azimuths. The results from this test were used to study
the variation in peak particle velocities at approximataly

the same ranges for 5 azimuths.

Figure 37 shows two velocity plots with 5 waveforms for
approximate ranges of 9.5 m (top plot) and 12.6 m (bottom
plot). These plots show the variability in recorded
measurements at the same distance, but different azimuths.
The peak particle velocities at the 9.5 m range vary from
20.5 to 27.5 m/sec, with an average velocity of 23.4 m/sec
and a coefficient of variation of 11 percent. The peak
particle velocities at the 12.6 m range vary from 4 to 18
m/sec, with an average velocity of 11.6 m/sac, and a

coefficient of variation of 14 percent. These 1 standard
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deviation bounds are similar to the uncertainty bounds for

the random calculations shown in Figure 30.

3,3.,3 contained High Explosive Alluvium Test (CHEAT)

The CHEAT experiment consisted of a 253 1lb TNT charge
detonated at a depth of 11.5 m in dry alluvium at McCormick
Ranch (Stump and Reinke, 1987) at a site near where the
cone penetrometer study was conducted. The instrumentation
layout is shown in Figure 38 (top pleot) for the CHEAT

experinment.

The only measurement of interest for this study is located
at a depth of 7.5 m from the surface, since all the other
measurements are close to the (free surface. The
acceleration, velocity, and displacement time histories are
shown in Figure 38 (bottom plots). The velocity time
history for this test again shows the late time noise or
ringing saen in the random velocity waveforms. Stump and
Reinke attributed some late time features of the waveforms
to free surface effects, but again the random calculations
show that a small amount of spatial variability can

introduce similar late time features into the waveforms.
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Chapter 4
CONCLUSIONS

4.2 . Techniguas

One-dimensional techniques for modeling ground shock
propagation through spatially random geologic media were
developed in this study. The subsurface spatial
variability was defined by a statistical distribution which
defines the subsurfacs heterogeneity, the correlation
distance of the variability, and the mean and standard
deviation of the material property being considered. These
parameters were chosen bagsed on the results of a field

investigation effort conducted in dry alluvium.

A technique was developed to construct spatially random
geologic variability factors which were incorporated into
the AFTON 1-D finite difference code to simulate the
subsurface inhomogeneities. This tachnigue was named the

Random Geology Generator in this study.

4.2 Implications

The results of the calculations which incorporated the
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spatial subsurface variability into the geologic material
model have several important implications for the explosive

effects community. The implications are as follows:

l. The calculations have shown that relatively small
percentages of variability (5 percent standard
deviation) result in changes in the ground motion
waveforms relative to the homogeneous calculations.
Inderstanding the effects +*“hat spatial subsurface
variability has on ground motion will reduce the
uncertainty involved when performing ground shock
calculations/predictions.

N

2. The introduction of spatial random variablility into
the elastic material caused broadening of peaks, and the
attenuation rate to increase relative to the homogeneocus
calculations. Dynamic material model parameters are
often obtained by adjusting finite difference code input
paraneters until the calculated waveforms match
exparimental waveforms in terms of attenuation rate, and
pulse width. By adjusting certain parameters, the
increased attenuation rate and pulse broadening might be
in correctly modeled as non-linear material aeffaects,
when they can be caused by spatial variability in a

linear-elastic material.
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3. The presence of spatial variability means a single
gage record at a given range for an experiment does not
provide a definitive view of the ground motion field.
Multiple gage records at the same range on different
azimuths are required to adequately define the ground

motion uncertainty and variability.

4. Incorporation of spatial variability into
calculational predictions of explosive effects on
structures wculd better define the uncertainty in the
predictions. For structures of larga areal aextent,
spatial variability in the ground motion field means
that different portions of the structure are subjected

to different loadings.

5. Random spatial variability may have a significant
influence on the determination of explosive yields under
nuclear testing treaties using near-source ground motion
data. The calculations performed in this study have
shown an increase in the attenuation rate relative to
the homogeneous cases. In addition, there is a
significant uncertainty band (maximum band was t 25
percent) for the velocity amplitudes. Again a single
gage at a given range may not adequately define this

uncertainty. Near-source heterogeneity may also have
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strong influences on the distant seismic signals
racorded from underground nuclear tests (Gupta, Lynnes,

and Wagner, 1991).

4.3 Recommendations

Since a site characterization effort cannot be done in such
detail to determine each and every heterogeneity in the
subsurface material for a test site, a new site must be
characterized statistically. Therefore, a methodology for
statistical in situ characterization must be developed to

account for the spatial subsurface variability.

Since the geologic material behavior in explosions is in
general non-linear, the l-dimensional mecdeling techniques
developed in this study should be applied to an elastic-
plastic material model. Therafore, a methodology for
estimating the variability in the material parameters used

in an elastic-plastic model must be developed.

Following this step, the modeling techniques should be
extended to a two-dimensional environment. A two-
dimensional random ceoclogy generator should he developed
and incorporated into a two-dimensional ground shock code.

84




REFERENCES

Bendat, Julius S. and Allan G. Piersol, 1971,lRandou
Data: Analysis and Measurement Procedures, John
Wiley & Son, Inc.

Chernov, Lev A., 1960, Wave Propagation in a Random
Media, McGravw-—Hill Book Company, Inc.

Fisk, M.D., G.D. McCartor, and W.R. Wortman, 1991, "Phase
Screen Simulations of Seismic Wave Scattering
Related to Monitoring Underground Nuclear
Explosions", Phillips Laboratory, Technical Report
PL~TR=91=-2084.

Frankel, A. and R.W. Clayton, 1986, "Finite Difference
Simulations of Seismic Scattering: Implications for
the Propagation of Short-Period Seismic Waves in the
Crust and Models of Crustal Heterogeneity’, Journal
of Geophysical Research, 91, No BS6.

Gupta, I. N.,, C. S. Lynnes, and R. A. Wagner, 1991,
"studies of Near-Source and Near-Receiver Scattering
and Low-Frequency Lg from East Kazakh and NTS
Explosions", Phillips Laboratory, Technical Report
PL-TR~91-2287.

Grant, L.T., 1988, "Experimental Determination of Seismic
Source Characteristics for Small Explosions", MS
Thesis, Dep. of Geology, Southern Methodist Univ.,
Dallas, TX.

Jewell, A., 1988, "Stochastic Site Characterization and
Modelling", Final Report, 1988 USAF~UES Summer
Graduate Student Research Program.

Law, Averill M. and W. David Kelton, 1982, Simulation
Modeling and Analysis, McGraw-Hill BooK Company,
Inc.

Lehmer D.H., 1951, "Mathematical Method in Large-Scale
Computing Units", Annuals Computation Lab. Harvard
University, 26, pp 141-146.

Lewis, P.A., A.S. Goodman, and J.M. Miller, 1969, "A
Pseudo-Random Number Generator for the System/360",
IBX Syst., J. 8, 2, pép 136-146.

85




Murphy, J. R., 1991, "Free-Field Seismic Observations for
Underground Nuclear Explosions", in Explosion Source
Phenomenology, American Geophysical Union.

PC-MATLAB for MD-DOS Personal Computers, by The
MathWorks, Inc., South Natick, MA, 1989.

Perret, William R. and Robert C. Bass, 1975, "Free-Field
Ground Motion Induced by Underground Explosions",
Sandia National Laboratory Report, SAND74-0252.

Reinke, R.E. and B.W. Stump, 1988, "Stochastic Geologic
Influences on Near-Field Ground Motions in
Alluviun', Bulletin of the Seismological Bociety of
Amerioca, Vol. 78, pp 1037-1058.

Reinke, R.E. and B.W. Stump, 1991, "Small-Scale
Experimental Studies of Stochastic Geologic
Influences on Near-Field Ground Motions", accepted
for publication in an American Geophysical Union
Monograph entitled "Explosion Source Phenomenology".

Rinehart, E. J. and G. E. Veyera, 1986, "Matarial
Properties Test 2 (MP-2) Review and Final Data
Analysis", Air Force Weapons Laboratory, Technical
Report AFWL-TR-86-66.

Rohani, Behzad, 1982, "Probabilistic Solution for One-
Dimensional Plane Wave Propagation in Homogeneous
Bilinear Hysteretic Materials", U.S. Army Engineer
Waterways Experinent Station, Misc Paper SL-82-7.

Schuster, Sheldon et al., 1984, "Crale Users Manual
(Ravision 1)", Air Force Weapons Laboratory,
Technical Report AFWL-TR-83-48.

Sharpe, Joseph A., 1942, "The Production of Elastic Waves
by Explosion Pressures. I. Theory and Empirical
Field Observations", Geophysics, Vol. VII, pp 1l44-
154.

Smith, S.W., J.E. Ehrenberg, and E.N. Hernandes, 1982,
"Analysis of the El Centro Differential Array for
the 1979 Imperial Valley Earthquake", Bulletin of
the Seismological Society of America, Vol. 72, No.




Stump, Brian W. and Robert E. Reinke, 1987, "Experimental
Seismology: In Situ Source Experiments", Bulletin of
the Seismological Society of America, Vol. 77, No.
4, pp 1295-1311.

Sudicky, E.A., 1986, "A Natural Gradient Experiment on
Solute Transport in a Sand Aquifer: Spatial
Variability of Hydraulic Conductivity and Its Role
in the Dispersion Process", Water Resources
Research, Vol. 22, No. 13, pp 2069=-2082.

Trulio, John G., 1966, "Theory and Structure of the AFTON
Codes", Air Force Weapons Laboratory, Technical
Report AFWL-TR=66-<19,

vanmarcke, Erik H., 1979, "Probabilistic Soil Sampling
Program for MX-Related Site Characterization", U.S.
Army Engineer Waterways Experiment Station, Misc
Paper SL=79-26.

Vanmarcke, Eric, 1983, Random F¥ields: Analysis and
Synthesis, The MIT press, Cambridge, Ma., 372 p.

Vernon, F.L., J. Fletcher, L. Carroll, A. Chave, and E.
Sembera, 1991, "Coherence of Seismic Body Waves from
Local Events as Measured by a Small-Aperture Array",
Journal of Geophysical Research, Vol. 96, No. B7, pp
11981-11996.

Geologic Site Characterization Cone Penetrometer
and Seismic Techniques, 1987, McCormick Ranch Site,
Kirtland AFB, New Mexico, Letter Report by The Earth
Technology Corporation, Long Beach, CA.

87




APPENDIX A

RANDOM GEOLOGY GENERATOR PROGRAM

This is the listing for the random geology generator program.

This program was written for use in the PC-MATLAB software. It
requires

no formal coding language.

funetion x = randvar(dist,N,Mn,Sd,A,dg,s)

%
The Gaussian and Exponential correlation functions are defined in
the frequency domain., The random variables are generated through
the random number generator (RAND) and then fourier transformed
(FFT).

INPUT PARAMETES:

L ]

L ]

%

L ]

%

L ]

L ]

L |

L} dist = Gaussian (1), and Exponential (2)

) N = number of random variables to be generated
L) Mn = the mean

L Sd = standard deviation

L) A = number of sample intervals

L] dg = spatial sample interval

\ (NOTE: a = A * dg = correlation distance)
L s = gseed

]
L ]
L ]
L}
L
£

ol e ol e ool ool ol o o ok o o ol o ol e ol ol ol e ol e ol o ol el e o e o ol ol v ol e vl o e v sl vl e e ok s ol e e e o e e

Correlation Functions

or h=0:N/2;
Tpi=2.%*pi.*h;
1f (dist = 1)
f(h+l)=A, *dg . *sqre(pi) . exp(-(A"2,*Tpi*2./(N"2.))./4);
elseif (dist == 2)
£(h+l)=(2 . %A%dg) /(1+(Tpi/N)"2.%A"2.);
end
end
L
val
for h=N/2+1:N-1;
f(h+l)mf(N/2+1-v);
vey+l;
end
L]
disp('hit any key to plot Theoretical Transform of Autocorrelation’)




pause

plot(f)

]
% Writing output to file called auto.out
L
for 1 = 1:N/2;

fprintf('auto.out',’'se se\n’',1,£(1))
end
pause
)
\ Random Number Generator
L]

rand(’normal’);
rand(’'seed’,s)
x=rand(1l,N);

L
] FFT on random numbers
L]
x=fft(x);
y=x.,%conj (x);
s
disp(’'hit any key to display Powsr Spectrum of Random Numbers'’)
pause
plot(y)
pause
s
L] Realizations constructed by taking the square root of the
L] power spectrum and multiplying it to the phase term exp(i¥phi)
L ]

phi=atan2 (imag(x),real(x));
x=sqre(f) vexp(sqrt(-1).*(phi));
y=x.%conj (x) ]

$
disp(’'hit any key to display Filtered Power Spectrum of Random
Numbers'’)

pause
plot(y)
pausse
L]
L] IFFT required to transform random numbers to the space domain
L
x=1fft(x);
x=real(x);
L]
L] Data Standardization: Transforming to match the original
L] standard deviation
]

Xw(X-muan(x)) . *Sd, /std(x(1:N) )+Mn;
L
disp('hit any key to plot Filtered Random Numbers’)
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pause
plot(x)
pause
%
% Writing random number output to file called gaus.out for Gaussian
$ Correlation and exp.out for Exponential Correlation

L ]
for i=1:N;
if (digt == 1)
fprintf('gaus.out’, 'se se\n’,{ ,x(1))
fprintf('gausb.out’, 'se\n',x(i))
elseif (dist == 2)
fprintf('exp.out’, 'se se\n’,1,x(1))
fprintf('expb.out’, 'se\n’,x(1))
end
end
pause
L ]
% Construct autocorrelation by FFT of padded sequence
L ]
xmemean(x) ;
X=(x-xm);
xmffe(xX,N*2);
x=x . %conj (x);
x={£ft(x);
x=real(x);
x=x./x%(1);
%

for hwQ:Nw2-1
r(h+l)=h, %dg;
end
L
for ec=0:Nw2-1
rl(eac+l)=ec.*dg;
{f (dist == 1)
ex(ec+l)mexp(-(ec™2.%dg"2.)./((A*dg)"*2.));
elself (digt == 2)
ex(ec+l)=exp(- (ec*dg)/(Avdg));
end
end
%
disp('hit any key to display Final Autocorrelation’)
pause
plot(rl,ex,r,x)
pause
% Writing theoretical and computed autocorrelation to file final.out

]
for i=1:N;

fprintf(’'final.out’, 'se te te\n',r(i),ex(1),x(1))
end
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APPENDIX B
CHI-SQUARE TEST

B.l chi-Sqguare Test Deviations

The most direct way to test a random number generator is to
use it to generate the desired random numbers, U/’s, and
exanine the U;’s statistically to determine how closely they
appear to be uniformly distributed between 0 and 1. The
chi-square test, serial test, and runs (or runs-up) test
are a few empirical testc (Law and Kelton, 1982). A
computer program of the chi-square test of uniformity was

written to test the function,

z; = (7% Z,,) (mod 2% - 1) (B.1)
The following steps are required to apply the chi-square
test:
1. The interval (0, 1) is divided into k subintaervals
of equal length, and U, U;,...,U, are generated. (As a
rule, k should be at least 100, and n/k should be at

least 5.)

2, For j =1, 2,...,k, let £; be the number of the U's

“hat are in the jth subinterval, and let

91




g3 = an i (fj - TJ:)’ | (B.2)

3. For large n, x* will approximately have a chi-
square distribution with (kx - 1) df (degrees of
freedom) under the null hypothesis that the U,’s are
IID U(0,1) random variables. The null hypothesis is
rejected at level a if x* > x%,,., Where x’,,, is the
upper 1l-a critical point of the chi-square
distribution with k-1 Adt.

4. For large values of k, the approximation

Xk1,0-0 % (K= 1) (1 - TTK—Z-]T L (-a-ml_—l-;-)u')’ (B.3)

can be used, where 2z, is the upper 1 - a critical

point of the N(0,1) distribution.

The input parameters used in the chi-square test are:
1. The initial seed: 2, = 12,345,678
2. k = 27 = 4096

3. n= 2= 65,536
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The approximation for the critical point at a=0.10 is:

2

fimiias & (K2 2) (1 TSk -1y A (9(k2- 1) )1/2)3

Xioss,o.s = (4095) (1 -—2 __ 41,282 (

1/2\3
9 (4095) )

)
9(4095)
xi'ivl"‘ = 4211 . 11

x? = 4000.8

Therefore,

% < Xk-1,1-0
80 we fail to reject the NULL hypothesis at the 0.10 level.
The random numbers generated do not behave significantly
different from truly IID U(0,1) random variables, based on

the chi-squared test.

The program written to test the random number generator

with the chi-squared test is included in the following

section.




B.2 Chi-Square Empixical Test Progran

CHI-SQUARE TEST

This listing is for the chi-square test program. The coding language
is Fortran,

PROGRAM RANDOM NUMBER GENERATOR TEST

¢ The chi-square test is designed to check whether the random
¢ numbers (U's) appear to bs uniformly distributed between O and
¢ 1. [0, 1] is divided into subintervals (s) of equal length
¢ and Ul, U2, U3,....Un are generated.
c
c
¢ List of symbols:
c
¢ bm = subinterval matrix
¢ RNUM « generated random numbers (MATLAB)
¢ 8 = number of subintervals
¢ ds = size of subinterval
¢ n = number of random numbers
¢ f = gummation of U's
¢ chi2 = equation to calculate chi-squared
c
c

double precision bm(4096,2) ,RNUM(66000),£(0:4096),ds,chi2 ,n,s
c

open(unit=10, file='rout’ status='old’)

open (unitwl, file=’output’)
c

ds = 1,0/4096.0

n = 65536.0

8 = 4096.0
[
¢ This loop will generate the values for matrix b - gubintervals
c

do 100 i=1,4096

bm(i,l) = ds * {
bm(i,2) = 0.0

100 continue
c
¢ These loops will count the number of U’'s in each subinterval
c

do 10 i = 1,65536

read (10,%) RNUM(1)

c
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{£(RNUM(L) .lt, 0.25) then
do 20 k=1,1024
1£(RNUM(L) .lt. bm(k,1)) then
. bm(k,2) = bm(k,2) + 1.0
J go to 10
endif
20 continue
else
1£(RNUM(L) .lt. 0.50) then
o do 30 k=1025,2048
- 1£{RNUM(L{) .1lt. bm(k,1)) then

. ba(k,2) = bm(k,2) + 1.0
go to 10
- endif
“ad 30 continue
- ealse

1i€(RNUM(L) .1t. 0.75) than
do 40 k=2049,3072
{£(RNUM(1) .lt. bm(k,1l)) then
bm(k,2)= bm(k,2) + 1.0
go to 10
endif
40 continua
slse
do S0 k=3073,4096
if (RNUM(1) .lt. bm(k,l)) then
bm(k,2) = bm(k,2) + 1.0

go to 10
endif
50 continue
endif
endif
endif
10 continue
[} c
£(0) =« 0.d40

¢ Generation of chi-squared value

do 90 j=1,4096
£(j) = (bm(j,2) - n/s)**2 ,d0
£(3) = £(3-1) + £(3)

90 continue
chi2 = s/n * £(4096)

¢ WUrite format statements to gensrate output

write (1,60)
60 format (1x,’'CHI-SQUARE TEST RESULTS:’,/)
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65

66

70

write (1,65) chi2

format (lx,’'chi2 = ',el7.10,//)

write (1,66)

format (5x,'SUBINTERVAL', éx, 'NUMBER OF Us’)
write (1,70) ((bm(i,j),j=1,2),1i=1,4096)
format (2(1x,el7.10))

stop

end

96




APPENDIX C
SHARPE’S CLOSED FORM SOLUTION

€.l _Equation Daviations

The displacement in the medium corresponding to the
application of unit function pressure to the interior
surface of the cavity is as follows (Sharpas, 1942):

oo B Tl i e

. (—:—_) VI sinu\']
where, u = displacenent
For displacements at distances more than a few times the

radius, Equation C.1 is simplified to the following

expression

2
8Py owtVE gin we c.2

2/26r

where,
a = cavity radius
P, = applied pressure
G = shear modulus
r = range of interest
w = 2v2¢,/3a

C, = P-wave velocity

4
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1. = £=((r-a)/C,)

t = time required to reach specified range

The velocity equation was obtained by taking the derivative
of the displacement equation C.2 (du/dr)

du . 2Py (. .ei/vz “er/VT
ve S m g WQoswt + (-w/V2) o sinwt| C.3
dt  2/Z6r [ / ]

where, v = velocity

The shear modulus is obtained from the following equations:

M-2v
G MK C.4
M\1/3
C. == C.5
P (p)

where,
M = constaint modulus
v = poisson’s ratio

p = soil density.

If Equation C.5 is written as M = C? and substituted into

Equation C.4, the following expression is obtained
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C;P(l - 2v) c.6
2(1 -v)

G n
Equation C.6 was simplified by letting the poisson’s ratio,
v, equal 0.25:

G=0.33 pCp c.7

A MATLAB program was written with Equations C.2, C.3, and
C.7 to generate the velocity and displacement waveforns

using Sharpe’s closed form solution.

The velocity and displacement waveforms were genarated with

the following input parameters:

Cavity radius (a) = 175 en
Applied pressure (p,) = 10e+10° dyne/cm’? (10 Bars)
Density (p) = 1.643 g/cm’
P-wave velocity (C,) = 50800 cm/sec
" Number of timesteps = 300
Timesteps = 0.0001 sec
Range of interest (r) = 200, 500, 900, and 2000 cnm
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€2 Closed Form Solution Program

Sharpe’s Closed Form Solution Program

This program was written for use in the PC-MATHLAB software. It
require
no formal coding language.

function x = sharpe2a(crad,po,rho,r,tine,T,c)

Sharpes solution for step function pressure applied to the wall
of a apherical cavity.

Symbols:
crad = cavity radius
po = applied pressure
tho = density
r = range
tinc = time step (make tinc small enough to catch
wavaform)
T = # of time steps to be evaluated
c = P wave velocity
G = ghear modulus (rigidity) obtained from following

equation (G = rhowecwe¥(l-2v)/(2(1l-v)), whers v is
the poizson’s ratio of 0.23)

u = displacement output

udot = veloecity output

NOTE: any units can be used as long as all are consistent

LA AR K R B W B B B B N N Y G A O B Y

e el e o v o v sl e ol ok s ol i e o ok vl e el v ok b e el ek ok e ok ek el s e e e ek T T e e e e ok
Yook
L]
s Time, td, required for wave to reach specified range r is computed
L

tde(r-crad). /¢

Tdl=td/tine
Tdl=sround(Tdl)
omm2%gqret(2)%c,/(3.%crad);
L
% Shear Modulus Computation
L]
G = 0.33%rho*c"2.
L]
A Delay or travel time is tacked onto front of sharpes waveform
‘ Al

for {=1:(Tdl-1);
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ti(i)=(i-1).%tine;
u(i)=0.0;
udot(1i)=0.0;

end;

]

h=0;

for i=Tdl:(T+Tdl);
h=h+l;
tau=(h-1)%tine;

Evaluation of aquation 13 and its derivative from Sharpes part 1
follows:

u(i)=(crad.”2.%po./(2%sqrt(2) . *G.*r)) . *exp((-tau,.%om)/sqrt(2)).*sin(t

au¥om) ;
ud=(crad.”2.%po./(2%sqrt(2).%G,*r));
derive=exp((-taukom)./sqrt(2)),.%om,%cos(tauvom);
derivederiv+((-om./aqre(2)).*exp(-taurom/aqre(2)) . ¥*sin(tauvrem));
udot (i)=ud,*deriv;

end

L ]
for h= Tdl:(TdAl+T)
ti(h)=(h-1)¥*tinc;
end
L]
disp('hit any key to plot displacement’)
Pauss
plot(ti,u)
pauses
disp('hit any key to plot velocity’)
pause
plot(ti, udot)
pause
8
8 Convert units to time = usec; velocity = cm/usec; displacement = cm;
L ]
for i = 1:(T+Tdl);
ti(i) = ti(1)./1.0e-6;
udot (i) = udot(l).*1l,0e-6;
end;
L
disp('displacement plot - cm v. gec')
pausas
plot(ti,w)
pause
disp('velocity plot - cm/usec vs usec’)
pause
plot(ti,udot)
pauses
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L
% vriting output to file called sharp.out, col 1 is time, 2 is
% vaelocity,
% 3 is displacement .
N .
for 1 = 1:(T+Tdl)
fprintf('sharp.out’,'se %e %e\n’', ti(i),udot(l),u(l))
end
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