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The Use of Spectral Decomposition in
Determining the Plane Wave Spectrum of the
Incident Acoustic Field on a Rough Sea Surface

Guy V. Norton and Richard S. Keiffer
Naval Oceanographic and Atmospheric Research Laboratory
Acoustic Theory and Simulation Branch
Stennis Space Center, Mississippi 39529-5004

Abstract: One hybrid approach to studying the effects of scattering from a rough sea

surface on acoustic transmission in a waveguide makes use of a description of the incident

acoustic field in terms of its plane wave spectrum (PWS). This is a convenient form because

many scattering models assume plane wave incidence. In this paper, an expression for the

PWS of the acoustic field incident on a flat sca surface is developed from a spectral
i l 2decomposition of the depth coordinate operator [Q = pk pV 6 + k0(r,z)] and a source term

provided by a finite element parabolic equation (FEPE) model [I]. Previously, the spectral

decomposition method was used to couple the scattering from a spherical target in free space

to an ocean waveguide [2]. Details of the coupling between the propagation and scattering

model are presented. A numerical experiment is considered in which the PWS is used to

develop input to a wedge assemblage (WA) scattering model [3-51 in order to simulate a

canonical one convergence zone backscatter experiment.

1. INTRODUCTION

Acoustic propagation models have generally been developed with the assumption
that the air-water interface (sea-surface) is flat and that the pressure-release boundary
conditions prevail on this boundary. On the other hand, scattering models generally assume
that the propagating medium is a homogeneous halfspace. It seems appropriate to attempt to
marry these two efforts in order to develop a hybrid approach aimed at better simulating
acoustic transmission though an ocean waveguide with a rough upper boundar'. This paper

will describe a general approach to such a hybrid model that, specifically, is used to couple a
propagation model (Parabolic Equation model) with a WA scattering model.

Generally speaking, models for the scattering from a rough sea surface require that
the incident field on the surface be specified in some form and, of course, that some
description of the surface roughness or its statistics be known. A convenient form to specify
the incident field is in terms of it's PWS (i.e.. the magnitude and phase of the collection of
plane waves that define the incident field). This is so because many scattering models
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assume plane wave incidence and point sources can always be placed sufficiently far away to
achieve this effect.

In mode theory, assuming a layered medium, one can determine the horizontal
eigenvalues of the propagating or discrete modes, and associate with each mode (in each
layer) an angle of propagation. The problem with using mode theory to determine the PWS
is that there is a significant computational burden associated with calculating the strength of
each mode. In addition most normal mode programs handle range dependency by requiring
that range dependent properties change in an adiabatic manner. A better technique would be
to allow an accurate range-dependent acoustic propagation model to determine the propagated
acoustic field and then use this field to determine the field incident on the sea surface in terms
of its PWS.

We present the following coupling scheme. First propagate the acoustic signal in the
waveguide using a Parabolic Equation (PE) based model, (in our case, FEPE). At the range
of interest, take a vertical section of the field throughout the depth of the waveguide.
Spectrally decompose the depth coordinate operator associated with the PE equation, taking
the vertical field as the source term so as to obtain the eigenvalues and the magnitude of each
mode in the layer (isovelocity assumed) just below the air-water interface. Use this
information (the spectral decomposition function), to develop the PWS and feed this
information into the WA scattering model, which can determine the scattered field in either
the forward, backward or out of plane directions. Use this model (which assumes a
homogeneous halfspace) to determine the scattered field in depth. Use this vertical field as
the new source term in the spectral decomposition model in order to incorporate it properly in
the waveguide. Finally use this scattered field to properly perturb the incident field, and
propagate this new field in the waveguide. Once the spectral decomposition functions are
found, they need not be found again until the environment in which it was solved changes.

We will not present in detail the theory behind the PE model or the WA scattering
model. We will, however, include the necessary background information to properly follow
the paper. First we present the some background information on the WA scattering model.
Next we present the theory behind spectral decomposition along with describing how this
method is used to developed the necessary inputs to the WA scattering model. We next
spectrally decompose the depth operator for a typical deep water environment. After
obtaining the PWS at the sea surface, we use this information as input into the WA scattering
model to determine the resulting back scattered field in depth. This field is then propagated
back to the source.

2. THE WEDGE ASSEMBLAGE SCATTERING MODEL

Briefly, the building block of the WA scattering model [3-5] is the Biot and Tolstoy
(B-T) exact solution [61 for the acoustic impulse response of an infinite, impenetrable
wedge. The solution applies for arbitrarily located point sources and receivers and all wedge
angles. A unique feature of this solution is that it provides a time domain picture of the
scattered wave that has two time-separable parts: a delta function arrival due to reflections
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from any properly oriented wedge faces and a diffracted pressure wave due to the wedge
apex. Both the B-T solution and the WA approach have successfully compared against
experimental data.

As it applies to 1 -D or long-crested surfaces like the one to be considered later, the
WA method of calculating the scattering from rough surfaces essentially consists of
modeling the surface of interest with an assemblage of rectangular facets (any cojoint facet
faces define a wedge) and numerically evaluating the B-T solution for each wedge in the
assemblage. It should be noted that for the backscattering geometries of relevance to this
study, reflections from facet faces are either unlikely or weak (or both). Thus, each
evaluation of the B-T solution results only in a time series for the diffracted wave. The
impulse response of the entire surface is then taken to be the sum, with due respect to
individual arrival times, of all the individual responses; an FFT is generally performed on
this time series to provide the scattered response for particular frequencies.

3. SPECTRAL DECOMPOSITION

The following discussion closely follows the work presented by Gilbert and Evans
[71, and Gilbert and Di [21, although we use cubic Hermite basis functions as opposed to
"hat" functions used by the previous authors. We start with the expression for the acoustic
pressure P in an azimuthally symmetric, depth dependent sound speed and density ocean
waveguide,

2p I ap D- + p -1 Z + k2(r,z)P = 0. (3.1)

where k is the wavenumber, p is the density of the fluid while r and z are the range and
depth coordinate respectively. We introduce the following variable P -Tr P and upon
substitution we obtain for a far field expression

+ 2P + p- (Lý-). + k2 (r,z)P = 0. (3.2)

Rewriting the above equation as a product of operators,

(-a+ N- a Q = 0 (3.3)

where Q = p p )-z + k2(r,z). Formally solving for SW/dr gives

S= + i • T. (3.4)

We are interested only in out going waves, therefore we chose +i1-Q. Solving for Tp gives,

'P(r,z) = eiArVrQ-P(ro,z) (3.5)
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where Ar = r-ro. We now need to obtain an explicit solution from Eq. (3.5) for TF. In order

to do this we use the spectral representation for a function of an Operator Q.

F(Q) = 2--- Q(3.6)

where I is the unit operator, 1/(xI-Q) represents the inverse of xI-Q and the limits of

integration are over the entire spectrum of Q. Using Eq. (3.6) with Eq. (3.5) and defining x
= K2, where x is the horizontal wavenumber and dx = 2KdK, we obtain

1 e iAN

P(r,z) = -L ý e' '(ro,z)icdic. (3.7)
71 K2 1-Q

Suppressing the unit operator and defining

I (ro,z) =- qI(,ro,z) (3.8)

KC2 
- Q

or
(Q - K2 ) D(I)(,ro,z) = -'P(ro,z) (3.9)

We now write the z dependence explicitly in a slightly different form as,C 2 1iapa (02
+ + - (2(,ro,z) =-(ro,z) (3.10)

where co is the angular frequency, c is the local sound speed which in general is both depth
and range dependent. Equation (3.7) is used in order to reconstruct the total field, and can
be rewritten as the following,

'(r,z) = •-1. eiArK 4((K,ro,z)Kdx. (3.11)

4. NUMERICAL SOLUTION

4.1 Galerkin Method

The following procedure is described in great detail by Sewell [81. We use the
Galerkin method to solve the partial differential equation, Eq. (3.10). Equation (3.10) along
with the boundary conditions at the surface and the bottom describe a steady state boundary
value problem. The boundary conditions are

D)(K,ro,z = 0) = 0 at the beginning of the interval R, designated as aRI = {z = 0)
(Dc,ro,z = Zmax) = 0 at the end of the interval R, designated as aR2 = ({z = Zmax}

where R is the interval [0, ZmaxJ. Recasting Eq. (3.10) into a more compact form

N"(K,ro,z) + p'(?'(Kro,z) + j" c(K,ro,z) - K2 4((K,ro,z) + 'P(ro,z) = 0 (4.1)
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where the primes indicate the partial derivative with respect to z. Multiplying Eq. (4.1) by a
smooth function, X(z), that vanishes on DR = {z = 0, Zmax land integrating over [O,Zmax]
gives

0= JOma ,{," + ( ,') ', + -2 _ K2 ¢ +T }Xdz. (4.2)

Integrating by parts and realizing that, X(0) = X(Zmax) = 0, we obtain

Zmax { 'X' + iPcb'X + W 2- 124X + W dz. (4.3)

Now Eq. (4.3) is almost equivalent to Eq. (4.1) in that if 0 is smooth and satisfies Eq. (4.3)
for any smooth X vanishing at DRI and aR2 the steps leading from Eq. (4.1) to Eq. (4.3)
can be reversed, so that 0 satisfies Eq. (4.1) and the natural boundary conditions at z=Zmax
and ( must satisfy the first (essential) boundary condition. The solution to Eq. (4.3) will

have the following form

M

O(K,ro,z) = fl(K,ro,z) + XaiXi (ic,ro,z) (4.4)
i=l

where {X .1.XM IMis a set of linearly independent "trial" function that vanish at DR1 and Q
is another function that satisfies the essential boundary condition Q = 0 at DR 1. It is required

that Eq. (4.3) be satisfied for X = X .....1 Xm each vanishing at DRI:

ma I-O'X'k + () P'O'Xk + -c'- OXk - K2()4Xk + 'FXk dz=. (4.5)

This can be written as a system of M linear equations for M unknown parameters

al, ...aM.;

M
XAkiai = bk (4.6)
i=1

where

bk = [TXk - 9''k + P'f2'Xk + -,f Xk K2- 2Xk dz, (4.7)
p C-

A Zmax [ 1 C2  K2X t . (4.8)
Aki = ýf I'k X'i - - P'XkX'i - -C2 k~i + *2kXi ]d.(48
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The essential boundary conditions are satisfied automatically by the proper choice of basis

functions. We choose the function Q to equal zero and the function X1 ... Xm was

chosen from the "cubic Herrnite" basis functions, defined by

Hk(z)-- 3kkZ 2- [1 - k--Zk-lj 3  for zk-1 <z < Zk

- 3[1Zk+- Z 2 - zIkk+ 1-- 12 for Zk < Z < Zk+ I= 3[kk+l_:Zk.] _ kk+]-Zk.]-

- 0 elsewhere, (4.9)

and

= (z-zk-1)2 + for Zk.) < z < Zk

(kk-Zk-l) (kk-zk-l)2

(zk+I-z)2  (zk+]-z)3  for zk < z < zk+1
(kk+l-zk) (kk+l-Zk) 2

-0 elsewhere, (4.10)

where z- 1 < 0 zo < zj < ... < zM = Zmax < zM+I. These functions are piecewise cubic

polynomials and are constructed so that they and their first derivatives are continuous. The

trial function is given as the following,

{fXI ... X2N+I } = (So. HI, S, ... HN, SNO (4.11)

so the number of unknowns and equations is M=2N+ I. The function 0 satisfies the

boundary conditions at aRl and aR2 and each Xk vanishes at both end points, so they are

acceptable trial functions.

Using the cubic Hermite basis functions specified above, the matrix A is banded with

half-bandwidth equal to 3. The integral in Eqs. (4.7) and (4.8) were evaluated numerically

using Gauss's 3 point rule, which is exact for polynomials of degree 5. The nodes were

spaced uniformly, zj = jAz (Az = Zmax/N).
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5. DETERMINING THE PWS

The expression developed here for the PWS incident on a particular patch of the
ocean surface from the spectral decomposition of the depth coordinate operator is analogous

to one developed earlier based from normal mode theory for a layered waveguide [9].
Therefore, it is appropriate to revisit the pertinent concepts of normal mode theory. It is well
known that in such an environment the acoustic field can be determined via a sum of normal

modes,

P(r,z) = C Y?(-YmZs) 4(YmZ) eiKmr
m 4 (5.1)r

where 0 is the vertical eigenfunction, -y and K are the vertical and horizontal eigenvalues
respectively and r is the horizontal range from the source to the receiver, zs is the source

depth and z is the depth of the receiver. The depth eigenfunction can be described as
follows,

4(ymz) = Am sin(ymz) + Bm cos(-ymZ), (5.2)

where Am and Bm are mode and depth dependent coefficients. Considering the top layer of
the waveguide, the coefficient Bm vanishes in order to satisfy the upper boundary condition.
Eq. (5.1) now becomes,

eil~mr
P(r,z) = C X-X)(ymZs) Am sin(ymz) e (5.3)mn ý K

which, expanding the sine in terms of exponentials, gives

P(r,z) C y(_Y(mZs) Am ei( Kmr+-tnz)-ei(cmr-'ymz)=~' (5.4)
mn 2iN KN-•r

Note that in the top layer the sum over normal modes is now expressed in terms of a sum
over up and down going plane waves. To obtain the field incident upon the sea surface
(which is assumed flat), the down going plane waves are dropped, leaving an expression

which when evaluated at z=O is the incident field on the flat sea surface.

Pinc(r,z=O) = C Y,(/ymZs) Am ei mr= m (5.5)
m 2i- -r m im
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The grazing angle of each plane wave is given by Om = arccos(icm-cl/), where cl is the
sound speed in the top isovelocity layer. Note that because of the pressure-release boundary
condition at the sea surface, dropping the up-going plane waves from Eq. (5.4) and
evaluating the result at z=O would have resulted in a reflected field and PWS that, as
expected for flat pressure-release surface, differs only in sign from Eq. (5.5).

Now, following a similar line of thought, but starting from Eq. (3.11). Equating Eq.
(3.11) to Eq. (5.4):

1 eilcmr

- e 4i r (iC,ro ,z) X wdK = C j qp(Y m zs) A m sin(yfm Z) (5 .6)

m

and solving for Hm as in Eq. (5.5) yields

1 ý eiArK(dKro'z) KdK = 2ir J l-rlm sin(-mz) (5.7)
m

-12.__ eiKAro((Kroz) KdK -Xmlm (5.8)

sinCyz) m

The expression for the incident field becomes

Pinc(rz-40) = -I 1 eiKAr4((K,ro,z) KdJ (5.9)
P z 2ný sin(yz)

Equation (5.9) provides the PWS in terms of the spectral decomposition function. A few

words about the behavior of Eq. (5.9) is in order. Due to the surface boundary condition

which requires that the acoustic pressure goes to zero at the surface, the spectral decom-

position function (D(K,ro,z) will go to zero when z=O. However, the combination of
(I(xr 0 ,z) remains nearly constant in the top isovelocity layer as z goes to zero. This fact

sin(yz)
enables Eq. (5.9) to be evaluated at depths approaching zero, or approaching the surface

from the underneath side.

6. NUMERICAL EXAMPLE

In this section, a numerical experiment is described that aims at being illustrative and

of some practical interest. To those ends, the techniques developed in this paper are applied
to the problem of analyzing the backscattering from a rough sea surface one convergence
zone away from the source. In order to keep the problem relatively simple, the otherwise flat
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sea surface in the area of the convergence zone has been replace by a simple wedge-like
deformation of the pressure-release surface. Therefore, there is no back or forward scattering
in this experiment except for what is due to this wedge-like surface perturbation.

The waveguide in this experiment, is a typical deep water environment, see Fig. 1. A
source frequency of 250 Hz, results in approximately 246 modes. The source depth is 212
In. Figure 2 illustrates the acoustic field expressed as transmission loss as predicted by a
normal mode model. Note that between approximately 23 and 38 km there appears to be
high-angle energy incident upon the surface and a convergence zone begins at approximately
40 km.

Sound Soeed vs. Deoth
0

2000

1400 1450 1500 1550 16C0
Sound Sceed (m/s)

Fig. 1. Sound speed profile used in numerical experiment.
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Fig. 2. Transmission loss (dB re I m) field plot, (90 dB contour shown).
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Before developing the PWS we must demonstrate that the propagated 1ield as
determined by Eq. (3.11) agrees with the FEPE result. This capability is essential if we are
to be successful in determining the PWS, since Eq. (3.11) is the basis for determining the
PWS. We used a vertically distributed complex acoustic field that was determined by the
FEPE propagation model at a range of 5000 m from the source. This was the source term in
Eq. (3. 10). Once the spectral decomposition function was determined for a specific depth,

the total field 'P was reconstructed in range using Eq. (3.11). The integration was
performed by using an alternating extended Simpson's rule. Before discussing the results a
brief discussion on the integration contour is in order.

The integral of Eq. (3.11) stipulates that the integration limits must be over the
complete wavenumber spectrum. The branch cuts used were the same as those used by
Gilbert and Di [2]. There are two branch cuts, one above and one below the real axis. The
lower branch cut returns essentially the discrete contributions while the top branch cut
returns essentially the continuous contributions. It appears that as long as the two cuts
enclose the discrete spectrum and a portion of the continuous spectrum the results obtained
are quite good. Fig. 3 shows the magnitude of the spectral decomposition function vs.
horizontal wavenumber for the two branch cuts. Figure 3a is for the lower cut providing the
contribution of the discrete spectrum while Fig 3b is the upper cut providing the contribution
of the continuous spectrum. Figure 4 compares the output of Eq. (3.11), 4a, to the FEPE
output, 4b, for a depth of 4 m. The comparison is very good, thus indicating that the limits
of the integration (0.68, 1.08) were adequate to describe the incident field.

We now determine the PWS of the incident field upon the sea surface. Figure 5
compares the PWS as determined by Eq. (5.9) to that produced by Eq. (5.5). The field
produced by the spectral decomposition theory Eq. (5.9) is offset by 10 dB so as to allow a
better comparison of the two methods. Notice that in both cases the convergence zone is
well defined and in general the comparison is quite good. The next step was to place a
wedge at a range of 40 km from the source and to determine the PWS at that range incident
on the wedge. Figure 6 illustrates geometry of the wedge as well as the placement of the
receiver array. Once the PWS was determined, it was used as input into the WA scattering
model.

1I 
I

jA A' \ 00•

0.70 0.80 8.808.0 0.70 0.80 0.80 1.00
K-ý . VW110- (1i/-) N-4 CI t (1/-)

3a. 3b.
Fig. 3. Magnitude of spectral decomposition function vs. horizontal eigenvalue for

3a) lower branch cut, 3b) upper branch cut.
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Fig. 4. Transmission Loss (dB re im) vs. range using,
4a) spectral decomposition method Eq. (3.11) and 4b) the FEPE model.
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Fig. 5. Comparison of normal mode theory and spectral
decomposition theory for determining the PWS.
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Fig. 6. The geometry for the numerical experiment, showing
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The resulting scattered field was determined in depth, at a range of 1 m from the
wedge, Fig. 7 illustrates the field. The field has a maximum at a depth of 10 m. The field
diminishes quite rapidly in depth. This field was used as the source term of Eq. (3.10) and
the spectral decomposition function was determined. Using the same limits of integration
(0.68 m-1, 1.08 m-1) as before, Eq. (3.11) was used to recon-struct the total field in depth
since the original scattered field, (Fig. 7) lacked waveguide effects. Figure 8 shows the
results. It should be noted that expanded limits of integration (0.25 m-1, 1.25 m- 1 yielded
the same vertical pressure field. Notice that the field again has a peak at a depth of
approximately 10 m. The field still diminishes quite rapidly, but now there appears to be an
oscillatory pattern to the field. In general there appears to be an overall smoothing to the
original field. This field was used to start the FEPE model and propagated back to the
source. Figure 9 depicts the resulting field plot. The field is quite small, over 60 dB smaller
than the incident field. There appears to be two lobes of energy, one which insonifies the
bottom and the other which travels along the convergence zone path back to the source.

0 0

50. 50s

: 100 :S 100-

150 150

200C ,. .C. . 2CC •..._.*
C 5.10O- 1.0i0-4 1.5,,10"' 0

Maq't•ude of the field Phole

Fig 7. The magnitude and phase vs. depth of the scattered field
as determined by the WA scattering model.

500

IC: 100 •0

150- I 150

200o 1 . . . 200
0 2xl n0 -1

Meoqntwo Of tbe field

Fig. 8. The magnitude and phase vs. depth of the scattered field after
being incorporated in the waveguide via Eq. (3.11).
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Fig. 9. Transmission loss (dB re Ilm) field plot of the backscatteredfield
propagated back to the receiver. (Wedge is at 40 km and receiver is at 0 km.)

7. SUMMARY
A method of determining the PWS of the incident acoustic field on a rough surface

using spectral decomposition was discussed, details on the approach were provided. The
PWS was used as input to the WA scattering model. The WA scattering model generated the
scattered field vs. depth, Im in range from a wedge placed at the ocean surface. This vertical
field was then used as a source in the waveguide and propagated back to the receiver.

A major drawback to this technique is that the present numerical implementation of

this method is computationally intensive. Methods of overcoming this problem are being
investigated. The example given was range independent, however there is no limitation on
this method that requires the environment to be so.
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