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ABSTRACT 'I
The transition to turbulence in a boundary layer over a flat plate with mild surface

undulations is simulated using the parabolized stability equations (PSE). The simulations

incorl)orate the receptivity, the linear growth, and the nonlinear interactions leading to

breakdown. The nonlocalized receptivity couples acoustic perturbations in the free-stream

with disturbances generated by the surface undulations to activate a resonance with the

natural eigenmodes of the boundary layer. The nonlinear simulations display the influence

of the receptivity inputs on transition. Results show the transition location to be highly

sensitive to the amplitudes of both the acoustic disturbance and the surface waviness.
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I. Introduction

In the absence of significant cross flow or curvature, transition to turbulence generally

results friom the amplification of traveling eigennmodes such as Tollmien-Schlichting (TS)

waves or Squires modes. These traveling modes are generated through the process called

receptivity. While surface vibrations and atmospheric turbulence can activate receptivity

mechanisms, experiments have shown that the laminar-turbulent transition over a wing

surface is strongly affected by the acoustic field generated by the engines and the turbulent

boundary layer on the fuselage [1].

The interaction of the acoustic field with a single bump has been the focus of several

investigations in the past, e.g. Goldstein & Hultgren [2] and Kerschen [3]. These analyses

are "decoupled" from the downstream disturbance evolutions, and are solved independently

to provide the initial amplitudes for the evolution calculations. These and other receptivity

studies have been primarily theoretical or experimental, but there are some ongoing studies

based on numerical simulations, such as, for example, Lin, Reed & Saric's [4] simulation of

the receptivity to sound for a flat plate with a blunt leading edge.

A new mechanism has recently been forwarded by Crouch [5,6] based on small nonlo-

calized irregularities that cover the entire surface (e.g. undulations or roughness). Possible

origins for these undulations include the extrusion and plate rolling process at the manufac-

turing stage, and heat and pressure induced distortions during flight. Unlike the localized

case, the receptivity is mixed with the disturbance evolutions and both must be considered

simultaneously. Studies indicate that, if operative, this mechanism is likely to dominate the

receptivity process [7,8].

We employ the parabolized stability equations to simulate the boundary-layer transition

over a wavy surface; we include both the receptivity and the subsequent linear and nonlinear

evolutions. The relative efficiency of the PSE simulations accommodates the investigation of

the effects of "receptivity input parameters" on the path to transition. These investigations

display the strong effect which small, i.e. 0(1), changes in the wall roughness height and

geometry have on the transition process.

II. Wall geometry and acoustic field

We consider a flat plate immersed in an incomlpressible flow field with acoustic noise.

The plate surface is covered by small amplitude irregularities with length scales couiparable

to TS waves.

We employ a Cartesian coordinate system with the average plate surface in the .r*-z

plane, xr measuring streamwise distance, and .y* the distance norunal to the plate (the



symbol * denotes a dimensional quantity). We non(Iimensionalize quantities using tile free-= 't/ "*bigtjocto hr h
stream velocity UJ, and the length 6* = 0 *i/[*•,, with - leing the location where the

Reynolds number RH = U* xl/u* equals one million. Results are presented in terms of the

usual stability parameters, H = v/ (distance) and F = 106(w*/27r)it*/(1 "")2 (freq,,eny).

The x-z-periodic function II(x, z) describes the surface uindulations. We represeint I1 by

its Fourier series representation,

.(Ix, z) r 3 Wr i To CxZ*i (1)
r = -x ,'• .s =-

where the coefficients W, and W-r_-_ are complex conjugates. Additionally, we impose

symmetry in z, thus WV,s = l'Vr,-s. We use values of jWJ of the order of 0.002 (see Table I)

which translate into a height to wavelength ratio of order 1/1000. At STP and r7 = 10 ni/s

the l)eak-to-l)eak surface variation is in the range of :30 mnicromete's, while at IT*, = 100 rn/s

the variation is about 10 micrometers.

The free-stream acoustic field is of the form

i t Aic-"l , ., = =0. (2)

Associated with each discrete acoustic frequency A, is a velocity field having a Stokes layer

at the wall satisfyinig the no slip boun(lary condition, and matching the acoustic field in the

free-stream. The values of w in (2), and of a anil 3 in (1) represent the lowest common divisor

of the set of frequencies antd wave numbers 1)resent. In case the wall spectrum is dominated

by sharp) )eaks but the acoustic spectrum is not, we choose w such that for each wall mode

(no, ki3), the triplet (1w, na, k13) is as close to branch I of the TS wave neutral stability curve

as p)ossible. In this way we focus our attention on the temporal-spatial comblination that

will feed the greatest amount of energy into the eigenmodes. (C'onversely, if a flat spatial

sp(ectruiim is present anid isolated peaks exist in the acoustic spectrum, we select tHie values
of a and il that yield triplets close to branch I.

III. Receptivity mechanism

Acouustic (list ii rlances in the free-streamii generate Stokes iiIo(hes wiliM it( lhe Iouiila rv

laver. in tei iticoiiil)ressil)le limit these i(iodes have onrly temporal modulation.

v1 = •'ýJy), ilui' + c.c. ./ = ...., -2, - 1, 1, "2, ..... (3)

Meanwhile, thOe mean flow over a wavy surface I)roduces stea(Iv wall miiodes,

v,,k = ',,,.(.',q) i. ,+• + .(.



Figure 1: Rendition of surface undulations used in present study. The normal coordinate is
stretched. (a) Case "high" and "low", (b) Case "riblet'.

I) I A- = .. , -2, - 1, 1, 2 (41)

These modes are standing waves with wave numbers given directly iy the surface. Single-

handedly, neither the acoustic nor the wall velocity fields can direct'Y energize a travel-

ing eigenmode since these fields lack the necessary spatial or tel:)oral variation, respec-

tively. However, the simultaneous presence of both fields produces traveling waves due to

the quadratic nonlinearity of the Navier-Stokes equations,

VI,,.k -= V',,1 k( ,r. Yi)( -iL~t+ik,• .... x (5)

whose form is identical to that, of the natural eigen iode of the boundary layer, except the

value of the exponent. o may not match that of the" eigennmode of the houndary laver stabilit v

e(luations, which has the form.

V L ,n .k Y ) ,, ( . , ! ) ' - I ,I+ ,k , + ff I, . iS ) 4 .1

a,, = It + IO.. (6)

The receptivity mechanism i, illistrated in Figure' 2.



The key ingredient to the nonlocalized receptivity process is a resonance which results

when the wall wave number a approaches the eigenmode wave numnber a. = - + in,. lit're,

"-y is the growth rate. Near branch I the growth rate is small, and, for an appropriate value

of o, the difference la, - alf may be small. The resulting response of the boundary layer.

under the forcing provided by the traveling wave may be quite large. The detuning la, - nl

Acoustic Wall
e-l el,,x

Forced Eigenmode

Figure 2: Coomponents of the nonlocalized receptivity model (Spanwise wavenumber /Iz not
shown).

changes as the modes are convected downstream. During the large response near branch I,

energy is transferred into the eigenmode of the boundary layer. The nonlocalized receptivity

model [5,7] shows that the rate of energy transfer between the forced wave and the eigenmode

is proportional to the rate of variation of the forced wave response. Farther downstream,

the eigenmode undergoes the typical exponential growth characteristic of the linear regime.

Receptivity results from the net energy transfer into the eigenmode. The superposition of

the forced wave and the eigenmode, with their appropriate wave numbers, provides the total

(physical) traveling-wave disturbance.

IV. The PSE formulation

As a, conse(quence of the basic flow being independent of the spanwise coordinate z, we

Call reduce the numinilr of unknowns from velocity components u, v, w (along .r, y, and z,

respectively) and l)ressure' p to only it and v. We eliminate pressure by taking the curl of

the mnoimentuin equation, and w iusing the continuity equation. The boundary conditions are

'Il



zero velocity at the wall, and (except for the acoustic modes and tile mean-flow distortion)

vanishing velocity far from the plate.

The parabolized stability equations, commonly abbreviated to PSE, were developed by

Herbert & Bertolotti [9] to incorporate nonlinearity and the slow growth of the boundary

layer into the boundary-layer stability computations. The results were found to agree with

those of full DNS simulations up to "spike stage", where the comp)lexity of the flow ral)idly

spreads beyond the resolution of the PSE code [10,11,12].

Herein we extend the PSE formulation to incorporate the nonlocalized receptivity model.

We express the velocity field in a series in time (index 1), in x (index n) and in z (index k),

v(x, Y,, =, ) vB(X, Y) + > Vp(x, Y, Z, t) (7)
1--oo n=-Y-, k=--o

where, p is the wave-vector (1, n, k). The velocity field of each mode is partitioned into

Vp(X, y, z, t) = Ap(x) ýp(x, y) xp(x, z, t). (8)

The function

Ap(x) exp [ "yp(s)ds] (9)

incorporates (in a sense made specific below) the amplitude of each mode and the function

X incorporates the wavelike part of the mode's velocity field

xp(x,z,t)--exp [inax -± ik/3z - ilwt]. (10)

This formulation differs from the regular PSE formulation [12] in that the wavenumber ct

in (10) is not a function of ;r, but, rather, is held constant in order to accommodate the

wall Fourier modes. As a consequence, the maximum allowable step-size yielding acceptable

accuracy is significantly smaller than that permitted using the regular formulation. The

reason for this reduction is that differences between the modes' p)hysical waveminibers (based

on U',,a, say) and the Fourier wavenumbers nrv must be resolved by the profile functions

•,p which are subject to the "parabolization" approximation (12). We expand omi this topic

later on.

The acoustic and wall modes have a wave vector of the form, respectively.

p (w,0,0) , (2w,0,0), ... , (Lw,0,0)

p (0, a,0) , (0,0,) ..... (0, No, KI).

Both the forced traveling wave, (5), and corresponding eigennod(l, (6), have the samie fre-

quency and spanwise wave number, and appro.ri-mltcly the same streaniwis(, wave ilmmbller.
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Accordingly, both the forced and tile eigenmode can be resolved by the Fourier mode having

the wave vector

p = (n.w, no ,k13)

for some n and k. In particular, the eigenmode wave number nta.(x) varies with x and, hence

will not equal the wall wavenumber ?n( except possibly at one point. The difference,

A = frP = c f, )-c)d' (11)

is resolved by the profile function -'p. Thus, the dependence of 9p on x in eq (4) is the key

factor that allows the PSE to capture the nonlocalized receptivity mechanism.

The partial differential equation governing the velocity profiles 9p is obtained by substi-

tilting the expansion (3) into the Navier-Stokes equations. For the streamwise derivatives

we make use of the slow change with x of the profiles and growth rates with the rule

4v = Ap map"p + map" ., + -- (m - 1)ap -2• d Pp] p' (12)

where ap(X) = -p(X) + inm. For m. > 1 tile streamwise derivatives of the mean-flow VB

are zero, in accordance with the boundary-layer approximation. Similarly, in (7) we drop

second- and higher-order derivatives with respect to x of Vp and ap. Performing harmonic

balance yields an infinite set of coupled partial differential equations of parabolic type in x

of the form

LC'p + + -•Nv-p = Q[vr, Vpr], (13)
r

where the operators L, M, N and Q contain derivatives with respect to y only. The sum-

mation on the r.h.s. of (3) is is truncated to some number (L, N, K) in the numerical

computations. Due to the symmetry in z we only need to solve for modes with non-negative

wave numbers in I, x, and z. Upstream traveling modes are not allowed.

A second, and closing, set of equations for tile PSE is needed to define the values of ýp

as a function of r. These equations remove the ambiguity existing in (4) wherein both -p

and Ap depend on .r. In the .present work we use an integral norm (although other choices

are possible)

-)j U Vf Pdy} =0 (14)

where 1? denotes the real part, and t denotes the complex conjugate. See references [10,11,12]

for more details.

We transfer the zero-slilp wall boundary condition to y = 0 via a Taylor series expansion

about y = 0, and stop the expansion at terms linear in ]HI since this quantity is assumed

6



small, although including higher orders in Ifl call be done in a straight forward fashion.

Performing harmonic balance yields the boundary conditions satisfied by -ýI) for each p.

-1 [ av 8(x,0) ______,0

S(.r,o0) = (1 [W a 0 + ZVp-, or (.Vr< )Ar(,.r) (15)

The initial conditions for the PSE are obtained by means of a local procedure that is

composed of a system of ordinary differential equations and, hence, is free from upstream

influence, as described in [10,11,12]. Briefly, the local procedure is derived by expanding

_,p(x, y) in a two-term Taylor series about the x location of interest, and collecting terms

of order 0(1) and O(z_.x). To be consistent with the ordering of terms, the wavenumber a

and frequency w is assumed greater than order O(R-1 ). Consequently, modes having zero

wavenumber and frequency, such as vortices and the mean-flow distortion, are initialized

differently, as described below.

The xPSE transition analysis tool-kit has been employed for the computations. The

partial differential equations, (13), are transformed into algebraic form by use of a multi-

domain spectral collocation technique in y, and a finite difference discretization in x. Five

domains are used in y, with limits at [0,4], [4, 12], [12,24], [24, 50], [50, 100] and u and

v are approximated by 17 and 19 Chebychev polynomials, respectively, in each domain.

Asymptotic boundary conditions are imposed at y = 100. In particular, in the far-field the

velocity fields decay exponentially in y with rate ( is imposed, using ( I or (2, which ever

has a smaller real part,

= (k/3)'2 - a

(2 - V2 V4 + R,(ap - ilw) + (I.

During every streamwise step, the nonlinear algebraic system is solved iteratively by

modifying the values of -'p until the normalization conditions (9) are satisfied to a pre-

determine level of accuracy.

A further element affecting accuracy is the presence of ( 11) in -,p. For small amounts of

separation la, - a•I, the difference in wavenumber is well captured by the streamwise change

of -p. For larger amounts, however, the PSE results loose accuracy. A more detail study

of this issue, as well as the effect of step-size on accuracy, can be found in reference [14]. It

suffices here to say that a difference in la, - al/a < 0.1, along with steps sizes A.r < 5, lead

to acceptably small errors. Increasing the differences above 10% leads to an underestimate

of the growth rates.

7



V. Results

The presentation of the results is divided into three sections. In the first one we look at the

effect of roughness height on transition using the surface shown in Figure la. Then, to this

surface we add a spanwise periodic array of "riblets" aligned with the streamwise direction, as

shown in fig Ib, and show how their presence triggers transition. The initial conditions for the

steady modes in the riblet case need special treatment, and a discussion is presented prior to

the results. Afterwards, we investigate the effect of raising the acoustic level on the transition

location. Even though we only carry a few modes and frequencies in our calculations, our

results lie close to the experimental correlations between transition location and free-stream

turbulence levels. All quantities presented herein have been nondimensionalized with 6* and

I .

To specify the problem, we need to select the number of acoustic modes present, and

their frequency. Arbitrarily, we choose the frequency F = 56 and its subharmonic, F = 28.

The presence of the subharmonic is needed to generate the traveling wave which will undergo

parametric resonance with the fundamental mode at some point downstream. Given these

frequencies, we select the wavelength of the wall modes to maximize receptivity. We choose

the fundamental wavenumber a for the Fourier decomposition of the wall undulations to

be a = 0.0871, so that the wall mode with wavenumber 2a will closely match wavenumber

n, = 0.1723 at branch I for a TS wave of frequency F = 56. The fundamental spanwise

wavenumber 3 is set to the value of 0.15, so that /3 - 2ca and the associated K and H type

secondary instabilities are nearly maximally amplified [131.

While our selection of wavelengths for the wall modes is arbitrary, we note tIlat within

the range of variations we are dealing with (i.e. 10 to 30 micrometers) most wing surfaces

will contain a large selection of undulations with different wavelengths, amongst which our

particular choices are likely to be present.

The spectrum in the numerical calculation is truncated to L = 2, N = 2, K = 2 in t, x,

and z, except for the riblet case, where K r= 3 is used. The integration is started at R :300,

which is sufficiently upstream to include any significant resonance prior to branch I (H= 589

at F = 56), and marched downstream with a constant step size of Ax = 3.5. While the

triple Fourier sum allows for 27 distinct modes, many of these modes (1o not play an active

role in the transition process and can be excluded from the calculation. For example, the

modes having phase speeds of either 2c = 2w/a or c/2 = w/2av remain at roughly constant

amplitude levels throughout the computation, and their presence (toes not alter the results

shown herein. Apparently, the l)hase speed difference l)revents strong participation with the

interactions prop)agating at the speed c. Also, our results show that the interactions between

Modes of equal hlhase speed, but different from c, (1o not result in raplid amiplitude growth.

8



In our study we employ three different plate geometries, which we label "high", "low"

and "riblet". The coefficients in (1) are real and have the following values,

Table I

high low riblet
W(2,0 ) 2.0 x10-1 1.0 x10' 1.0 X×10-

W(l1) 2.0 X10- 3  1.0 x10- 3  1.0 X10- 3

W(2,1) 2.0 xl0-3 1.0 x10- 3  1.0 x 10- 3

W(O01) 0.0 0.0 5.0 X10-3

W(0,2) 0.0 0.0 1.25 x 10-3

The geometry between "high" and "low" differs only in the peak-to-peak variation of the

undulations. The "riblet" geometry contains two additional modes which describe stream-

wise aligned undulations, similar to the streamwise "riblets" used in turbulence drag reduc-

tion, only that our "riblets" are not sharp peaked, and have a very small height.

V.1. Effect of roughness height

To study the effect of surface roughness height on transition we consider the "high" and

"low" geometries. The acoustic modes have a u peak-to peak variation of 0.0010 [TO, (i.e.

Al = A 2 = 0.0005 in equation 2) while the peak-to-peak variation of the wall modes (Table 1)

differ amongst each other by at most a factor of 2, hence no bias exists towards one particular

mode. This scenario contrasts that of ribbon-induced transition where a two-dimensional

mode dominates in amplitude prior to the onset of secondary instability.

Figure 3 displays the amplitude evolution of modes in the "high" roughness case. The

transition process follows the well known subharmonic route. We focus our attention on two

modes; the two-dimensional mode (2,2,0), which develops into a TS wave, and thle (1,1,1)

mode, which develops into the subharmonic mode. Initially each mode is composed solely

of a forced traveling wave. As the modes propagate downstream the nonlocalized receptivity

process pumps energy into the eigenmodes. Consequently, the (2,2,0) and (1,1,1) modes are

of nearly the same amplitude and exhibit similar growth rates during their early evolution.

At R = 589, the (2,2,0) mode passes through branch I. The eigensolution component of tile

mode undergoes exponential growth, while the forced traveling wave diminishes downstream.

The development of the subharinonic mode, (1,1,1), can be analyzed in two parts, the first

one at locations below, say R = 1050 (including the sharp dip in amplitude), and the second

one for locations above R = 1050. The first part is dominated by the process of receptivity,

while the second part is dominated by the parametric resonance with the (2,2,0) mode. The

9
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Figure 3: Root. mean square of maximum •z velocity versus H for the "high" roughness case.

dip in amplitude near R = 1000 is caused by a change in phase of 180 degrees in the complex

velocity field 9(1.1,1). This change is due to x dependent changes in the coeflqcients of the

equations which govern the interaclioa between the forced mode and the eigenmode. At
higher levels of acoustic forcing the receptivity and parametric regions overlap, eliminating

this sharp dip in amplitude.

The (2,2,1) mode does not lead to flmdamental (i.e. K-type) dynamics. The "porpoising"

in amplitude seen in Figure 3 persists ew'n with a four-fold increase in tile acoustic amplitude,

which increases by all equal amount the amplitude of the traveling modes, but only slightly

tilt' amplitude of lhe steady modes. The reason for this lack of l{-t.ype resonance, thus,

cannot I)e explained simply in terms of a threshold aml>litude of the (2,2,0) mode. Since K-

type resonance involw's the triad interaction tetween tile (2,2,0), (2,2,1) and (0,0,1) modes,

one may SUSl)('ct an ,mfaw)ral)le phase relation in tile triad to I)e quenching of tile resonance.

A foln'-fold increase in wall mode amplitudes, on the other hand, increases the amplitude

of all modes, incl,|ding the (0,0,1) mode, and the flow displays a mixed It-type and l,{-type

transition.

Additioual iusig;ht iuto the energy transfer het, ween t, raveling modes and eigemnodes, as

well as phase cancellation giving rive to the "lJOrpOiSinp4'' amplitudes, can be obtained from

the perturbation theory [5] wherein the forced traw'ling waw" and the eigensolution are kept

distinct. In the PSE formulation one (:il.llllOt easily separate the solulion into the sum of the

tWO COlll pon(qltS.

Lowering the amplitude of the wall i|nl,,lalions to the "'hw" level (see table 1) r,'s,|lts

in the dynamics shown in l"iglre 4. 1'•etwe('l, /• = 980 and /{ = 1200 the sul•llarmonic

l(I
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Figure ,: Root mean square of maximum u velocity versus R for the "low" roughness case.

undergoes rapid growth as in fig 3, however the amplitudes of the (2,2,0) and (1,1,1) modes

remain below the threshold for self-sustained growth, causing these modes to decay after

their respective branch 11 location a.t R = 1116 and R = 1340. The (0,0,2) mode undergoes

rapid growth past R = 1200 due to the direct forcing from the (1,1,1)-(1.1,1) interaction.

Further downstream, this mode persists, albeit slowly decaying, being a remnance of the

earlier parametric resonance. Similarly, the (0,0,1) mode grows under the forcing from the

(2,2,0)-(2,2,1) interaction. Both the mean-flow-distortion (0,0,0) and this mode undergo

weak algebraic growth past R = 1400 (see section V.2.1), but, eventually, the flow returns

to its undisturbed state.

The results of the "high" and "low" roughness cases clearly display the sensitivity of

the transition process on small changes of wall roughness height or, equivalently, on small

variations of acoustic amplitude levels. This sensitivity highlights the difficulty of predicting

transition with a simple criteria such as c".

V.2. Effect of streamwise undulations

In the "high" roughness case, displayed in Figure 3, one can observe the birth of the

mode (1,1,0) at about H = 1170. This mode is of interest since as an eigeninode it has

an unstal)le region that spans from H = 864 to B _ 2000. This mode is forced via the

(0,0,1)-(1,1,1) mode interaction, and since the wall Fourier mode W(n,,) directly forces the

mode (0,0,1) through the wall boundary conditions, we looked into what effect a periodic

array of streamwise "riblets" would have on transition. We represent these "rihIels'" with

two Fourier modes with wavelength /t and 2/i. (onsequently, our "riblvts" are more blni ii

II



and smaller than those used in turbulent drag reduction.

V.2.1. The initial condition

The generation of the initial conditions for the (0,0,1) and (0,0,2) modes at our starting

location, R = 300 posed a problem. Several runs with the PSE showed that the evolution

of this steady mode depends strongly on the initial conditions chosen. For some conditions,

algebraic growth ensued. The dependence of the solution on the initial conditions persists

far downstream, hence investigations are biased by the choice of initial conditions for the

steady modes, or, equivalently, on the birth mechanism of these modes. Thus, we developed

a particular, and reproducible, way of generating the initial conditions. Since large algebraic

growth can obscure the dynamics of receptivity, and since the numerical initial conditions

leading to such large growth may not be realizable in a real flow, we gauged the "correctness"

of our initial conditions by the amount of algebraic growth present.

We generate the initial conditions by extending the riblets to the leading edge in such

a way that a separation of variables approach is applicable with small error. The riblet is

extended linearly from its full height at the PSE starting location, x = x0, back to zero

height at the leading edge, x = 0,

2 £H (x, z) = [W(0,,)] • 0 _< x < x0
S=--2

The wall forcing (15) involves the product of H with the derivative of the Blasius U compo-

nent of velocity, which decreases as x-1/2, therefore the forcing (15) increases as the V\/ over

0 < x < X0. Accordingly, in this x interval we introduce the following form for tile (0,0,1)

velocity field,

u(x, Y, z) = (Y(y) I C-c'

v(x,Y,Z) = w(Y)-oV ,ei3£ 0 £0-X

W(X, y,Z) Zbt(y)- I-e0',

with a similar form for the (0,0,2) field. The boundary conditions reduce to an x independent

form,

il(o) = -Wo,if"(o), fl(0) = 0 , ?b (0) = 0

where f is the self-similar stream function of Blasius. The continuity and momentum equa-
tions contain coefficients that depend on x, so the separation of variables technique is not

12



strictly valid. However, the variation with x is slow enough to he negligible. For examl)le.

expanding x = x0 + Ax, the continuity equation reduces to,
dv /I Ax

'ýt + 2- + 2 i/'& = ft

dy x0 X0 + Ax

The right-hand-side depends on x but is O(Ro0 F) near x .ro. We set the right-hand-side

to zero and solve the equations at x = : 300. The (downstream evolution of the (0,0,1)

i0-3

10-4 -

10-5 i i

400 800 1200 1600 2000
R

Figure 5: Amplitude evolution of the (0,0,1) mode, (a), and of the (0,0,0) mode, (b). Dashed

lines show cases of algebraic growth.

mode is shown as the solid line associated with label "(a)" in Figure 5. The amplitude

remains nearly constant over the domain of integration, showing only a weak transient near

R0 = 300. Negligible algebraic growth is present, and, in this respect, our initial conditions

successfully generate a quasi-uniform downstream solution. In contrast, the dashed line

associated with label "(a)" corresponds to a (0,0,1) mode generated via the local procedure,

and displays the linear growth (when plotted in x vs. A) characteristic of algebraic growth

[15,161.

The mean-flow-distortion, i.e. mode (0,0,0), is started from zero, and also displays al-

gebraic growth. The solid line associated with label "(b)" shows the development of the

mean-flow-distortion in the presence of the (0,0,1) mode. The growth exhibited is, however,

due mostly to algebraic growth. This fact can be deduced by overlaying on the Figure the

evolution of the mean-flow-distortion that has had the (0,0,1) forcing removed after a few

marching steps (shown as the dashed line).
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V.2.2. Effect of riblets on transition

The addition of riblets to the "low" roughness case causes the flow to reach the later

stages of transition. The amplitude evolution of selected modes is shown in Figure 6. In

comparison with Figure 5, the (0,0,1) mode has a much higher amplitude, and the (1,1,1)-

(0,0,1) forcing generates the (1,1,0) mode at about R = 1100. While initially driven mainly

by the forcing, the eigenmode component of (1,1,0) undergoes exponential growth (Branch I

is at R = 864) and becomes the dominant component past R = 1450. Since at this frequency

the eigenmode's total amplification All/A 1 is 7208, the (1,1,0) mode grows sufficiently to

produce a significant back-forcing on the (1,1,1) mode via the (1,1,0)-(0,0,1 ) interaction.

Past R = 1650 the (1,1,0), (0,0,1) and (1,1,1) modes behave like in the vortex-wave

interaction study presented in [10], wherein these modes eventually lock into a K-type para-

metric resonance. A similar triad resonance develops between the (1,1,0), (0,0,2), and (1,1,2)

modes. The flow at R = 1970 reaches a strongly nonlinear stage which precedes the onset

of turbulence.

We like to refer to the evolution shown in Figure 6 as the "lateral", since the first strong

interaction of H-type sets the stage for the following K-type. This progression from higher

to lower frequencies follows the slope of the branch I of the neutral stability curve as the

Reynolds number increases, and thus, maintains the dominant modes near, or inside, the

eigenmode's region of instability.

1- --- -1,1 -- ---- 1,1,0 . .... 0,0,2

1023 .-2 -. - • ;....... .. : - -.. _ ........ . ... ... ......... - - -. '-. --= -.

E*10 - 4 . " ..... : ...... ..... ..... :)./

1 - ...... : ....... x .. ..... ..--. - -,..N ..... r-, ... , / - .....

400 800 1200 1600 2000
R

Figure 6: Root mean square of maximum u velocity versus R for the "Riblet" roughness
case.

Figure 7 gives a visual synopsis of the "riblet" results. Shown as a. solid line and a dashed

line, resp)ectively, are the neutral stability curves of two-dimensional and three-dimensional

14



disturbances given by the linearizedl stability equations. Suiperi mposed are four constant

frequency bands that represent, four particular imodes p)resenit in o1fr calculat ion. The bands

dlisplay, roughly, thle locatioin and~ extent, of the recelptivityv ( light gray), linear stage (white)

and nonili near stage ((lark gray) ini ou r comipu tational dlomai n. Tbe uipper of the two banlds

at F = 6 corresponids to the (2,2,() m fodle, and~ the one j ust below it corresp~onds to the

(2,2,1) mode. Simuilarly, the two bands at F = 28 correspond to thle (1,1 .0) mode (above)

and the (1 ,1, 1) mode (below). The band at F" =: 0 represents thle (0,0,2) mode. For this

mode tie recep~tiv~ity' region deniotes the dIirect forci ig b)Y t lie V/V(0 2) wall modle.

F=250()
~JReceptivity

Linear

Non Linear

150

100

0- (0.0.2) :.

0 5W( IM() 1500 R=2000

Figure 7: Visual synopsis of the dynamics shown in figure 6. Integer triplets denote the
miode represented by each strip.

V.3 Effect of acoustic levels on

We. close this section with the results of our investigation into the effect, of the acoustic

forcing level onl the transition Reynolds number. While keeping the wall geometry fixed

("high" case), we increased the acoustic amplitude levels of both frequency comnponients

F =56 and F =28 from A = 0.0005 used in our stud~ies ab~ove. to A1 = 0.002. 0.01, and

0.02. The corresp)onding r.m .s. amplitude levels are v* times larger. Since our- situtilatilolls

do not reach inrto the tuiirbuilent. flow regime, we arbitrarily dlefi ned t he traiisitlion Reynolds
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numiiber as Ihe location where the subliariin)Iiic m~odle reachecs 6(/( ampl)ituide. At t his point

t he flow is enigagedl In thle strong nlonliniear interact ion characteristic of sp~ike stage, atiid th e

turbuilent regime usually follows wit hiin a coillple of streamwise wavelenigthis. 271/o.

/> &

Aoz Kc'~yaj & 41"

00

x ~ D rydcc'

AA I
A

0.0 1.0 2.0 3.0
TLJ X 100

[iguire 8: Transition R., versus free-stream turbulence level, Tit. Dark hands represent
Comp)utedl resullts.

com11pare ouir results with the summary of experimental data presented by Arnal in [1]. The

experimentally measuiredl (free-stream) turbulence level was b~ased on the r.m.s. fluctuation

of all three velocity components, and even though this quantity consisted of a mixture of both

soulnd and vorticity, our (data matches qualitatively with the experimental ones, as shown in

Figure 8 (note that H' =J?,). The higher numbers of iLxtr experimentally measured at the

quiet limit suggest that. a wall smoother than1 the one modeled here was used In the windl-

tunnel tests, while the lower I?.rtr measured at higher free-st ream turbulence levels suggest

that other mechanisms in add~ition to those conside~redl herein are at work. C onsidering thle

simpflicity of ouir model, the "hball-park" agreement of results is suirprising.
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VI. Conclusion

Given the (lescriptioti of the acoustic field spectrum auld of the wavy wall geometry,

we have followed the boundary layer responise through the regions of receptivity, linear

growthI, aii l nonlinear modle interaction. The "bareniess" of the hiput dlata ueeded for the

num11erical corn j)Iitat ion, namely thle W'(7,,) anul A1 coefficeiens Iii e(Iiat ions (1) an(I (2).

along with the efficiency iniherent to the marclhing procedure, facilitates tlbe explorationl

into the effects of recep~tivity p)aramneters on transition. Here we have varied (slightly) the

amlplitud~e of the surface undulations to show two (lifferent downstream evolutions, one of

whichi reaches spike stage, the other one returning to the Blasius profile. Adding streamwise

riblets to the later case brings ab~out spike stage through a "lateral" i~iecliamism inivolvin~g

the tranisfer of resonance from higher t'reqiiencies to lower ones. Our results on the effect of

acoustic amp~litudle level Onl the transition location compare qualitatively with wind tunnel

measuremenits involvinig free-stream turbulence, dlesp~ite the simp~licity of our model. Both

the acoustic level used (0.007% (,,r.m.s) an-d amplitudes of the surface waviniess (30/tim.

or less) make our investigation relevanit to flight conditions.
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