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ABSTRACT

A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical sim-

ulation of hyperbolic equations and systems was constructed. Since then, some extensions

have been made to multidimensional simulations of compressible flows, mainly in the context

of very regular structured meshes. In this paper, we first recall and improve the results of an

earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasising the

effective calculation of the reconstruction. Then we describe a class of numerical schemes

on unstructured meshes and give some applications for its third order version. This demon-

strates that a higher order of accuracy is indeed obtained, even on very irregular meshes.
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1 Introduction

During the past few years, a growing interest has emerged in building high order accurate

and robust schemes for compressible flow simulation. One of the difficulties is the appearance

of possibly strong discontinuities that may interact together, even for smooth initial data.

One way to avoid this difficulty is to use a Totally Variation Diminishing scheme. Such

a scheme has the property, at least for ID scalar equations, of not creating new extrema,

and hence provides a reasonable treatment of discontinuities. TVD schemes have since been

successfully and widely used with many types of meshes (see for example [1] for a review,

and among many others [2] for simulations on finite elements type meshes). Nevertheless,

one of their main weakness is that the order of accuracy falls to first order in regions of

discontinuity and at extrema, leading to excessive numerical dissipation.

Various methods have been proposed to overcome this difficulty (for example, mesh

adaptation [3, 4, 5]), but one promising approach may be the class of Essentially Non-

Oscillatory schemes (E.N.O., for short), introduced by Harten, Osher and others [6, 7, 8,

9, 10]. The basic idea of E.N.O. schemes is to use a Lagrange type interpolation with an

adapted stencil: when a discontinuity is detected, the procedure looks for the region around

this discontinuity where the function is the smoothest. This reconstruction technique may

be applied either to the node values [9] or to specially constructed averages over control

volumes [6, 7, 8]. In the latter case, the approximation is done in a conservative way. This

enables approximation of any piecewise smooth function to any desired order of accuracy.

Until now, very few attempts have been made to adapt these ideas to multidimensional

flows (see for example [9, 11]), to smoothly varying grids, or especially to unstructured grids.

For the latter topic, only preliminary work exists (see [12, 13, 14, 15]). In [14] general

ideas were presented with a review of the existing ENO methods, but no implementation

was given. In [15] several algorithms were presented and tested on simple problems (linear

advection, Burger's like equations), but their reconstruction algorithms appears to be very

complicated and costly. There was no study of the numerical stability of the reconstruc-

tion. Our experience has shown that this point is fundamental. In [12] we studied two

reconstruction methods based on two different polynomial approximations, and have also

estimated the behavior of their leading coefficients. This enabled us to design an algorithm

that has been shown to give third and fourth order approximation. We also discussed the

choice of candidate stencils: a few stencils suffice. In [13] this reconstruction method was

implemented for compressible flows problems and tested on a 2D shock tube problem on a

triangular mesh. In the finite volume scheme used, the control volumes were the triangles

of the mesh. If one wants this set to be as isotropic as possible, the minimum number of



possible stencils is much larger than in the version presented in [12]; its construction is also

less natural. This makes the scheme of [13] very costly.

This paper is organized as follows. In section 2 we recall and improve tile results ob-

tained in [12]. These results are valid whatever the type of the underlying mesh (structured

or not). In particular, we pay much attention to the study of the numerical stability of the

reconstruction algorithm. In section :3 we present our numerical scheme. In section 4 some

numerical results are presented. Finally, several general comments are made in the conclu-

sion. Throughout this paper, the values used are the average values in tile given control

volumies.

2 The reconstruction problem on unstructured meshes

Let us first recall basic facts about I D reconstruction. They show why a new method has

to be introduced for unstructured meshes. We first recall how to interpolate data in an

essentially non-oscillatory Lagrange fashion, and then how this is used to reconstruct 1D

data.

Essentially non-oscillatory interpolation. This relies on two well known properties of

divided differences. Let {yo _< Y1 _< ... _< yk} be a stencil, and let [yO,... yk] v be the k + I"t

divided difference of v, a piecewise smooth real valued function.

(i) If v is p > it times continuously differentiable in the interval [yO, yk], then

f(k)(•)

[Yo,.... Yk,] V k! + O(Iyk - yol,-k) for all k < n and some € [yO, Yk].

(ii) If v(P), p < i, admits a jump [v(P)] in [yO, Yk], then

[YO,-.. Yk]v= V =-0 ( [k-P) for all k, p+ _< k < t.

These relations show that the divided differences remain bounded whatever the mesh size,

for smooth functions, but go to infinity rather quickly for nonsmooth functions. With the

help of these two remarks, Ilarten et. al. have derived the following E.N.O. interpolation

algorithm: Assume a grid {yj}, yj < !j+,. For any j, first consider S()= {yj }.

(i) If I[!/ Y!)+,liI < [yj- ] , Yj]I then S(') = {!j, .j+t }, else S(1) = {y i-, :A.



(ii) Assume that S(k) = IYJo", Y,' }, a stencil for k+ 1th order reconstruction, is given (yJo

and YJk are the extreme points of the stencil). If I[yj0-1, Yjo, ... Yk]vI < I[yj 0, • YJ, YJk+l]Vl

then S(k+l) = S(k) U{Yj 0 -1 }, else S(k+l) = S(k) U{yjk+l } •

Once the required number of points has been chosen, one can compute Lagrange interpolation

based on the last stencil of the algorithm: this is the E.N.O. interpolation of v.

The 1D conservative reconstruction. We consider a mesh on IR, {xj}ijz, that may or

may not be regular. Around each point, xi, we define a control volume [xi-1/ 2, xi+1 /2] where

as usual,
xi + xi+1

Xi+1/2 = 2

Let us consider u, a piecewise smooth real valued function. We let Ui denote the average of

u in [xi- 112, xi+1/ 2]:

U= 1 ul1  u(t) dt (1)
Xi+1/2 -Xi-1/2 Jxi-1/2

There are two classical ways of reconstructing u from its averages:

(i) Reconstruction via primitive functions. One considers W a primitive of u, sayX
w(x) = u(t) dt.

The values of W at the points XJ+i/2 are easily recovered from the data:

W(x,+u1 2) = Z(xi+u, 2 -

j=O

One computes an essentially non-oscillatory reconstruction R(W,n + 1) of W, up to

the order n + 1, as explained above. Here, one sets yj = xj+1 1 2. The reconstruction of

u, R(u, n) is defined as:

(u, n) = dR(W,n + 1)

dx

Clearly the average values of R(u, n) over any [xi- 1 1 2, xi+1/2] is u.-

(ii) Reconstruction via deconvolution. Here, the mesh must be regular, xi+112 -

xi-1/2 = Ax . One may see equation (1) as the convolution product v of u and the

characteristic function of [-Ax/2, Ax/2]. One has v(xi) = ff. Then v is reconstructed

in an essentially non-oscillatory fashion as explained above, where yj = x3 . Finally,

one applies a deconvolution operator to R(v, n), as in [6] for example, to get R(u, n).



Atkins & Casper [11] have used a tensor product of ID-reconstructions to derive their

numerical scheme. This is possible because they assume a regular transformation between a

Cartesian mesh of [0, 1] x [0, 1] and their computational grid. The same trick has been used

in Shu et. al. [9]. In the context of unstructured grid, these tricks cannot work for at least

two reasons:

(i) The reconstruction via deconvolution needs very regular meshes (each control volume

can be obtained from any other by translation),

(ii) The reconstruction via primitive function methods needs to know point values of a

primitive over any rectangle on the data. Hence, these rectangles nmust be exactly

covered by control volumes. As can be seen in Figure 1, this is in general impossible.

These two remarks show that a straightforward extension of one dimensional ideas is not

sufficient.

2.1 Preliminaries

In the sequel, the symbol IjX, Y] denotes the set of polynomials P in the variables X and

Y of total degree less than or equal to n:

P(X, Y) = aijX'Yj

The set IR,[X, Y] is a vector space of dimension N(n) (n+)(+2) a basis of which is the

set of monomials

{ (X - X0 )t(Y - Y~~~,

where (x0 , yo) is any point of IR2. The total degree of P does not depend on the choice

of (xo, yo). As we will show later, this kind of basis is not the best suited for practical

calculations.

Let AM be a mesh of the finite element type. Associated with this mesh, we have a

triangulation T. We may consider several kind of control volumes, for example the triangles

of T themselves or the dual mesh (see Figure 2). The dual mesh are constructed as follows:

for each vertex Mi, the control volume is obtained by connecting the midpoints of the edges

incident on it to the barycenters of the surrounding triangles to which it belongs. Let us

denote by {C,} the set of control volumes. We only require the following properties:

* For any i o J, ci nl (7i is of empty interior,

4I



"* Ci is connected,

"* There is an algebraic dependency of the Ci's on the points of M (This is true for the

two above examples).

"* The boundary of Ci is a locally regular curve (This is also true for the two above

examples).

We consider the following problem (problem P or approximation in the mean for short):

Let u be a regular enough function (say in L1). Given N and n two integers, a
set of control volumes S = {Ci,}1<1<N, find an element P E KI[X, Y] such that

for 1 < I < N,
dU.f fc., u dx

< U >C,, - area(C,) =< P >c,, (2)

For this problem to have a unique solution, one must fulfill two conditions:

• N = (rn+1)(n+2) = N(n)2

• The following Vandermonde matrix must be non singular:

V [< XiY>cJ ijn
1<l<N

I < X >C,1 < Y >C•1 ... < Xn >C, < Xn-ly >C, .. < yn >C,,

1 <X >C, < Y>C< ... <X">C1N <Xt- 1 Y> 1N ... <yn >C.N

(3)

If As = det V $ 0, then we say that this stencil is admissible. In that case, there is a unique
solution to problem P that will be denoted by P,.

A similar problem was first considered by Barth et. al. [16] for smooth functions, then by
Harten et. al. [14], Vankeirsblick et. al. [15], and Abgrall [12]. In the three first references
[16, 14, 15], the authors consider overdetermined systems for two reasons. First, the problem
P does not always have a unique solution. Second they claim that the condition number
of the overdetermined system is better than that of problem R. In [12], the same approach
as here was adopted. To support that choice, one must notice, as explained in remark 1,
that (3) is generally not singular. Also, the condition number of the linear system depends
mainly on the basis used for the polynomial expansion, as shown in section 2.4. For these
two reasons, we have preferred this approach, which also has the advantage of simplifying

the coding of the global scheme.
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Remarks:

(i) We do not know if the admissibility condition admits a geometric interpretation (except

for n = 1). We do not even know whether there is a systematic way of constructing

admissible stencils, as is the case for the Lagrange interpolation [17]. Nevertheless,

one may say that, in general, any stencil is admissible: one may consider the equation

As = 0 as an algebraic surface in IR2xk for some integer k 2. This surface is then of

empty interior, from a topological point of view, so that if S is not admissible, one only

has to change slightly the elements of S for it to become admissible. Nevertheless, the

condition number of the linear system may be very bad. We will discuss that point in

section 2.4.

(ii) This admissibility condition is independent of the basis chosen for expanding the poly-

nomial P.

2.2 Some general results about approximation in the mean

In this section, we give two results on reconstruction in the mean for a function u, which

may or may not be smooth. These results generalize well known properties of the Lagrange

interpolation of ID real valued functions, that have been used as a corner stone by Harten

and his coauthors to design an essentially non-oscillatory reconstruction. We have to empha-

size that the reconstruction is the mean in not directly related to Lagrange reconstruction.

Throughout this section, if S(n) is an admissible stencil for degree n, the symbol K(S(n))

denotes the convex hull of the union of the elements of ,S(n).

2.2.1 The case of a smooth function

In [12] we have shown the following result. Its proof follows easily from Ciarlet & Raviart's

proof on Lagrange and Hermite interpolation.

Theorem 2.1 Let S be an admissible (for degree n) stencil of IR2, let h and p be respectively

the diameter of K(S) and the supremum of the diameters of the circles contained in K(S).

Let u be a function that admits everywhere in K(S) an n + 11h derivative D'+'u with

Mn+, = sup{InID+'u(x)I1; x E K(S)} < +0.

If P, is the solution of problem P, then for any integer 7, 0 < rm < n,

sup{IIDm u(x) - DmPu(x)ll; x E K(S)} < CMin+l

2 because we have assumed an algebraic dependency of the control volumes in terms of the points of M
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for some constant C = C(m,n,S). Moreover, if S' is obtained from S by an affine transfor-

mation, that is there exists xo E R2 and an invertible matrix A such that

C E S' iff there exists Ck E S such that C' = A Ck +x 0

then

C (n, m, S) = C (n,mr, S').

This result basically states that if the stencil S is not too flat, i.e. the ratio h/p is not too

large, then P, will be a good approximation of u. Let us turn now to the case of nonsmooth

functions.

2.3 The case of a nonsmooth function

We only discuss the case of piecewise smooth functions. This class is large enough for our

purpose. To do the analysis we have to introduce the following property which prevents

geometrical degeneration:

Property 2.2 Let us give f > 0. The admissible stencil S(n) belongs to P' if and only if:

for any vector U whose components are zeroes and ones and both values are represented, and

for P the nth order polynomial defined by

< P >C,, = Uj, for all Cil E S(n))

the following property holds: the sum of the absolute value of the n-th order coefficients of P

is greater or equal to e, that is

N(n) det(Ro.. Ri ... RN(n))

n- 
4)det(R ... RN(n-) ... Ri ... RN(n)

l=N(n-1)+l

where we have adopted the lexicographic )rdering for the monomials {X'YJ}i+j<,,, so that

Rk stands for the kth column of the determinant (3) and RI = U.

Then we can prove [12] the following theorem that describes the asymptotic behavior of

the leading coefficients of the approximation in the mean of a piecewise smooth function:

Theorem 2.3 Let c be a positive real number and S an admissible stencil for degree n such

that there exists an affine transformation A as in theorem 2.1 for which A(S) E P,". Let

(xo, yo) be any point of the set K(S) and u be a real valued function defined on a open

subset Ql of IR2 containing K(S). We assume that u is in CP-', p < n, on Q and, except

7



on a locally C1 curve, admits a continuous and bounded pth derivative with a jump [DPu],

I[DPu] > Mv > 0. Then, the highest degree coefficients of the Taylor expansion of P" satisfy

E jaj I> C(n, p,c)h (5)

i+j=n h-

where C(n,p, () is a constant independent of S and invariant by affine transformation.

2.4 Study of the linear problem to solve for the reconstruction

In this section, we study the numerical system one solves to get P,, from the data. We

consider two kinds of expansions of Pu:

(i) The "natural" expansion: for any point (xo, Yo) E IR',

Pu = 1: aij(X - xo)Y(Y - yo)' (6)
i+j<n

(ii) An expansion using "barycentric" coordinates that we now describe: let S(n) = {C , C2, C3,. ., CA

be an admissible stencil. Hence, at least one subset of three elements of S(n) is an ad-

missible stencil for n = 1. We may assume that the set {CI, C2 , C3} is admissible. We

consider the three polynomials Ai of degree 1 defined by:

<Ail>= j, 1<i<3, 1<j<3. (7)

The symbol 5J is the Kronecker symbol. Clearly, we have

A1 + A2 + A3 = 1.

These polynomials are the barycentric coordinates of the triangle constructed on the

gravity centers of C1, C2, and 03. In order to get expansion 6, a strategy may be to

look first for the expansion of the polynomial P,, in terms of power of A2 and A3:

2 3ajA2A3 (8)
i+j<n

and then to get the Taylor expansion of P, around the barycenter of Ci from (8) (the

theorems 2.1 and 2.3 give the behavior of the leading coefficients of P, whatever the

point chosen in the convex hull of S).

In order to get the expansions (6) or (8), one has to solve linear N(n) x N(n) systems:

B(aoo ... aOn)T = (< u >c, "'" < u >c, Nn))T (9)

vhere the matrix 8 is obtained by taking the average of (X - xo)'(Y - yo)j for (6) and A'Aj

or (8). Let us now study the properties of these linear systems.

8



2.4.1 Case of expansion (6)

A very easy consequence of the inequality (5) is that:

Proposition 2.4 Let us assume that the conditions of theorem 2.3 holds, and let h be the

supremum of the diameters of the spheres containing K(S(")). Then the condition number

of system (9) is at least O(h-'") for h small enough.

Proof: For the sake of simplicity we consider the following norm on 1Rn[X, Y]: for P =

Ei+j<,, aij(X - xo)i(Y - yo)j, IIP1I = Fi+j<,• Ja2j3 • On JRN(l), we consider the Ll norm. Let

U be a set of data for the right hand side of (9), and consider the perturbation 61,

611 = (0-...-.)T

where c is at the I th position, l > N(n - 1) + 1. All the other entries of U are zero. If one

considers the function u defined on UCi by

xE C, u(x) =

one c ,n apply theorem 2.3. Hence, the perturbation 6P has a norm satisfying

116P~l I6aiji >Cj
i+j=nf

since 116U11 = e. This complete the proof. 0l

This fact is well known for 1D Lagrange interpolation and has motivated the search

for more efficient algorithms, such as the Newton algorithm. There exist algorithms that

generalizes it [18, 19]. They involve numerous solutions of linear systems, so that we have

preferred a more classical approach (see section 2.5), for which the coefficients of the linear

systems are obtained from the "barycentric" coordinate expansion (8) as it is explained now.

2.4.2 Case of expansion (8)

In the case of expansion (8), we have the following result:

Proposition 2.5 If property 2-.2 holds for some ( > 0, then the condition number of the

system (9) for the expansion (8) is bounded above and below by constants independent of h,

the supremum of the diameters of the circles containing K(S(n)).

Proof: The proof is also based on that of theorem 2.3. As in proposition 2.4, the only thing

that we have to do is to study the effect on the aij's of a perturbation 61U. We denote by P

the polynomial whose averages are defined by WU, The proof can be achieved in two stages:

9



(i) Let B any invertible matrix. Consider the stencil

§-(n) { B[C21] + XO1l<j•5N(n)

for any x0. It is clear from the definition of the Ai's that A1(x) = Ai(x) if 2

Bx + x0 . Hence, the sum S(P) of the absolute values of the coefficients of P in the

iH-•is A'(x)A'(x) is the same as that of the development of P in the basis A•(') (-3).

Ti,,i' is a homogeneity property.

(ii) Since the set of stencils defined by property (2.2) is compact, S(P) is bounded below

and above, independently of B, hence independently of h:

C1 > F > C2(c,n) >0.

The constant C2 (E, n) is larger than zero because bU $ 0

This achieves the proof El

2.5 The explicit calculation of the reconstruction

From the previous results, the evaluation of the coefficients aij in (6) is done through those

of (8) and hierarchally. For the sake of simplicity, we assume that for any p < n, the set S(P)

of the N(p) first elements of S(') is an admissible set for order p. This can be achieved with

a suitable numbering of the elements of $(n). The idea is that instead of looking directly

for the coefficients of p(n), to get first those of all of the p(k)'s, the reconstruction over S(ký'

for 1 < k < n. Then to construct those of p(n). In the ENO algorithm described in section

2.6, this involves no extra cost and simplifies the evaluation of the aij's. This also has the

advantage of reducing the size of the linear systems and also of improving their condition

numbers.

Assume that p('),..., p(P) are known. We first compute the coefficients of p(P+l) - p(P),

p(P+l) - p(p) a _t AAAj
i+j<_p+l

by solving the linear system

BP+ a ( E, a-) = ( '-pu (10)a-2 C p p+1 Dp p+1 a2 U2

In equation (10), a, (respectively a2) stands for the coefficients {aij }i+j-< (resp. {aj }+j=p+i ).

The block matrices A., Bp p+1, Cp p+1 and Dp p+1 are defined according to this decomposi-

tion. In particular, we notice from the hypothesis that Ap is invertible.

10



From the conservation property, we get u_ = 0, so that the system (10) can be split:

E_ = -A- 1 Bp p+la 2

[-Cp p+1A-'Bp p+1 + Dp p+11 a2 = U2

Since S(P+l) is admissible, Ep = [-CP P+1A 1 Bp p+1 + Dp p+1] is also invertible, so that one

can get a2, then a_, and finally the coefficients of p(p+1).

Simple manipulations show that

A` =( A; 1BpI p+1 E;'E;1 C p+,1A 1 + AP 1  -A; 1 Bp p+1jE 1 E

so that one can quite easily go to the next step. In our case, since the total degree of the

reconstruction is less or equal to 4, at most two stages of this method are needed.

Finally, one must notice that the condition number of this method is always better that

that of the original one because it depends only on part of the original system.

2.6 The E.N.O. reconstruction

In [12], we have found that only a few stencils were indeed necessary to achieve an essentially

non-oscillatory reconstruction of a piecewise smooth function. This set has to be as isotropic

as possible. Moreover, the ENO reconstruction was found to achieve the expected order of

accuracy for smooth functions, even on very irregular meshes. In what follows aij always

stands for any of the coefficients of the reconstruction P in the natural basis, {(X - xo)'(Y -

yo)j}. Let us describe our procedure up to fourth order:

(i) Let us start from a given cell, Co assigned to a point of M, say (x0 , yo).

(ii) Consider all the triangles having (xo, yo) as a vertex, and choose the one, say Trmin,

that minimize Y, laiji.
i+j=l

Here, SO) is the set of control volumes corresponding to the vertices of T,,,, (see

Figure 3-a). For a regular unstructured mesh, there are about six possible triangles.

(iii) Consider Tmin. For any of its three edges, consider the three triangles, T1, T2, T3 as in

Figure 3-a. There are three possible configurations. We choose the one that minimizes

the sum

i+j=2



(iv) Consider, as in Figure 3-b, the configuration for third order. It is obtained as fol-

lows: for a stencil S(2) made of the control volumes associated with the vertices of

{T,,,, T1J, T, T3}, one may consider its "edges" made of the external sides of {T 2, T3},

{ Ti, T, , T,,T 3}. Consider one of them, say {T2, T3 }, and the vertices a,/3 and '-I

Since the triangulation is conformal, there exist a triangle T4 =A T2 on the other side of

[a,/3]. Similarly, T5 for [/3, -y]. Then one can construct T6 , T7 , T8 and T9 , analogously.

The stencils for fourth order reconstruction are the union of S(2) and the control vol-

umes associated with the additional vertices of either {T 4 , T5, T6, T7} or {T4 , T5, T9, TO}

or {T 4,T 5, T7, T8}. For a stencil S(2), there are at most 12 stencils for fourth order

reconstruction.

The situations seem to be become more and more complicated as the degree increases.

Nevertheless, there is a very easy way to simplify it, so that at each level only three new

stencils for the n + 1" order have to be considered over those of a nth order one, just as

from second order to third order. Assuming a mesh M, we want to derive a k + 1th order

reconstruction method. The idea is to work with the control volumes defined for a mesh M',

the points and the triangulation of which are constructed from those of M by adding, for each

triangle of M, the points and the triangles associated with the Pk. Lagrange interpolation

[20].

3 A class of high order numerical scheme for com-
pressible flow simulations

3.1 The Euler equations

Let us quickly recall elementary things about the Euler equation of a calorically perfect gas:

OW OF(W) OG(W)-- + -- + =W)0  (12)
at Ox ay

As usual, in equation (12), W stands for the vector of conserved quantities and F (respec-

tively G) is the flux in the x direction (resp. y direction):

w = it' F(W) = p G(W) = puv (13)
p v p uv p v 2 + p
E u(E + p) ,( E + p)

with initial an(l boundary conditions. In equation (13), p is the density, u, zY are the coin-

ponents of the velocity, E is the total energy, and p the pressure, related to the conserved

12



quantities by the equation of state:

p ( -1) (E- p(u2+ v2)) (14)

The ratio of specific heats, -y, is kept constant.

It is well known that the system defined by equations (12), (13) and (14) is hyperbolic:

for any vector it = (nt, ny), the matrix

Aj=n. OF OG (15)

is diagonalizable and has real eigenvalues and eigenvectors. Let us describe now the con-

struction of a kt" order scheme.

3.2 Finite volume formulation

We consider a mesh M and the control volumes as in figure 2. The semi discrete finite

volume formulation of (12) is:

a_ 1
W(t) area(Ci) J, rw(xt)]dl = £i(t) (16)

Here W(t) is the (spatial) mean value of W(x, t) at time t over Ci, i! = (nt, ny) is the outward

unit normal to WC2 , and XF, = nxF + nYG. We first describe the spatial approximation of

(16), then the temporal discretization of the resulting set of ordinary differential equations.

Finally, we detail the boundary conditions.

3.2.1 Spatial discretization

For the sake of simplicity we define the integer number p such that either k = 2p or k = 2p+ 1.

The first step is to discretize Li(t) up to kth order. First, we can rewrite area(C2)£A(t) as

Ft[W(x, t)]dl = y j F 2j[W(x, t)ldl (17)

where, as in figure 2, the set F1's is that of the linear edges of Ci. On each F1, i! is constant.

We consider on any Fr the p Gaussian points {G1 }1 <•<p associated to the Gaussian formula

of order 2p + 1. The integral fro Fj[W(x, t)]dl is approximated by

P

/=1

where term !a,j(t) is defined now. Set Cj is the other control volume of which F, is a part

of the boundary. In Ci and Cj , one computes the ENO reconstructions at time t of W,
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R-[W( . ,t),k] and R,[W( . ,t),k], up to order k. The ENO reconstruction of section 2 is
applied to the physical variables, then one deduce the conserved ones. From that, we set, in

equation (18):

g•,1 (t) = Y'gienai.nn { Ri[W( . , t), k](Ga), Rj[W( . , t), k](G 1 )} . (19)

In equation (19), y--•iema•n may be any of the available Riemann solvers. In all the example
below, we have chosen Roe's Riemann solver with the Harten-Hyman entropy correction.

3.2.2 Temporal discretization

The equations (16), (17), (18) and (19) define a finite set of ordinary differential equations

that we write as:

-Wi(t) = i(t) (20)

In (20), Ci(t) is the discrete version of £i(t). This equation is discretized by the kt/h order

version of the Runge-Kutta scheme of Shu [9]:
=WY) =0tmvi + Z(m-i I, l= 1, 2,' ", p, ) W )

(21)( = wn, W- +,

The order of accuracy, as well as its TVD properties, is achieved by adequate sets of coeffi-

cients arm, /01m, and p (see [9] for details).

3.2.3 Boundary conditions

Let F be the boundary of the computational domain and il be the outward normal unit on

F. We assume that F is divided into two parts, F = ro nfl F., on which different boundary
conditions will be used. Here, F0 represents a solid wall, while r,, represents the far-field

(inflow or outflow).

We do not treat a boundary conditions by forcing the value of a variable to a prescribed
boundary value, but consider instead the integral formulation (16) and apply boundary
condition by modifying the flux integrals on aci for those cells with ['nfOCi $ O.

For example, for a vertex i located on F0 , we do not impose the slip condition U • ii = 0
but take this condition into account in the evaluation of the convective flux

0
Jr0  Fn. + Gny fro n ac, pn...

ffrl oac, Pny
0
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The pressure integrals are computed as:

fron ac Ifrofnac, Ifro nfac, fro flL'

For a vertex located on roo, we again use an approximate Riemann solver. We define a

far field state W,,, ifi = fr.n ac, it and set, in agreement with what has been done in the

interior of the computational domain,

Jr. n Fn± + Gny = ¢(Wi, W., ifi). (22)

In equation (22), 4 is a numerical flux function. For simplicity, we have chosen a modified

Steger-Warming flux instead of the Roe flux,

= At Wi + A- Wo.

The matrices At and A- are the positive and negative parts of the matrix Ai defined in

(15) and evaluated for W = W1 .

In all the examples we have treated below, the boundaries were either fully subsonic
or fully supersonic, so that the procedure was really simple, contrary to what would have

appeared in a mixed type boundary condition.

Finally, we have reduced the order of accuracy of the reconstruction for cells that are too

near to the boundary. For them, a proper calculation of the ENO stencil may be impossible

because the set of possible stencils is biased in one direction due to the boundary. For the

third order scheme, these cells are those related to a mesh point that belongs to a triangle

having at least one point on the boundary. For the fourth order scheme, they are those
belonging to a triangle which shares a vertex with a cell for which a reduction of order must

be done for third order.

3.3 Positivity of the density and the pressure

As pointed out by Harten et. al. [22], in some situation and for a very few cells, the ENO

reconstruction of the density and pressure may lead to negative values. For these cells, and
these cells only, following [22], we reduce the order of accuracy with the following inductive

method (w is either the density or the pressure, wi is its average on Ce). Consider, in C,, tile

reconstruction n

R[w, n](X, Y) = E E a q(X - Xg),((Y _-)g,

1=0 p+q=l

If Fn 2  lapqII(x- x,)P(y - yg)ql >elwwI at a Gaussian point (x, y), then the recon-

struction, for that point, is set to R[w,n - l](x,y). Then, we repeat the test if necessary.

Usually, the parameter o is set to 0.95.
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In all the simulations we have done, the tests were positive for a very small set of cells

and a zeroth order reconstruction was never used. They were never positive for the second

order scheme. The number of points causing difficulty is problem dependent. For example,

only three points caused occasional problems for the facing step problem with a 5000 node

mesh. These points were all located in the front shock.

4 Numerical tests

All the example we propose now have been computed with the second and third ENO

schemes. The ratio of specific heats, - is always set to 1.4.

4.1 A linear advection problem

In order to test the precision of these scheme, we have computed the advection of sine wave

on a sequence of totally unstructured meshes with an increasing number of points. The con-

vection velocity was parallel to the x axis but since the meshes was totally unstructured, this

is not a privileged direction. Figure 4 shows, in the abscissa, the logarithm of the maximum

radius of the circumscribed circles of the triangles of the meshes, and in the ordinate, the

logarithm of the maximum absolute value of the difference between the computed values.

The exact solution is also indicated. The slopes -2 and -3 are indicated, so that one can

see that the expected order of accuracy is indeed achieved. Figure 5 shows, for the medium

mesh, a cross section of the computed solution for the second and third order scheme. The

exact cross section is also indicated. One can see that the main differences lies at the extrema

of the sine, as expected.

4.2 A Shock tube problem

We have set up a two dimensional shock tube problem in the square [0, 1] x [0, 1]. Its

boundary are solid. The initial conditions are:

Sp= 1.0

forx < 0.5 and ly - 0.51 < 0.25, u = V = 0.0
p = 1.0

Sp = 0.125

else U = v = 0.0
p =0.1

The mesh is completely unstructured with 2127 nodes and 4088 triangles. The velocity field

obtained by the third order scheme at time t = 0.9 is displayed in Figure 6. The differences
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between both results are more clearly visible in the near stagnation zone. In order to better

represent that area, we have removed from the velocity field all the points for which the sum

of the absolute values of the two components is larger than 0.15. The result is shown in

Figures 7 (second order) and 8 (third order). One can clearly observe that the number of

small structures of the flow is much more important in Fig. 8 than in Fig. 7. The shocks in

the upper and lower part of the pictures are also resolved differently. Their location is also

different, though this can be seen only by superimposing the pictures.

One should also mention that this test is not particularly easy for our method. After a

short time, the shock reflects from the wall. The reflected shock interacts with the others

structures of the flow, leading to interactions between the various kind of discontinuities

and with the smooth parts of the flow. The multiple regions, as shown on our figures, with

different kind of discontinuities (contact and shock) are resolved by our method without any

special tricks.

4.3 A Mach 3 wind tunnel with a step

We have run this test case, documented in [23], for the second order and third order ENO

schemes on a 5140 node, 9958 triangle mesh. This discretization corresponds to the medium

mesh used in [23). A portion of it is displayed in Figure 9. It is totally unstructured. The

conditions of the problem are the following: a uniform Mach 3 flow is set in a channel. At

the initial time, a step of relative height 0.2 is installed in the channel. The channel length

is 3 and the step is located at 0.6. This situation creates a shock that reflects on the upper

part of the channel then evolves to a lambda shock as time increases. It interacts with the

upper part of the step. A weak shock is also created by the expansion wave at the corner.

This shock interacts with the reflected one creating a slip line. The location of this slip line

is highly dependent on the boundary conditions set at the corner.

Here, no special treatment is (lone, contrary to what was advocated in [23], so that

the quality of the second reflected shock is poor. We only want to verify the effect of the

increasing order of accuracy on the solution, so that we will only look at the first reflected

shock. The solutions of Figure 10 (second order ENO) and Figure I I (third order ENO) are

shown. A clear improvement on the thickness of that reflected shock can be seen from the

horizontal cross section of the density at y = 0.5, Figure 12. The slip line coming from the

lambda shock is also more visible in Figure 11 than in Figure 10 as well as the weak shock

near the corner.
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4.4 Reflection of a shock on a wedge

This problem is also well documented in the literature. In order to achieve a correct solution,

one has either to use very fine meshes or adapted meshes (see [5] for example). We have

chosen a case where the planar shock enters from the left in a quiescent fluid. Its Machl

number is Ms = 5.5 and is defined for the flow values in the quiescent fluid where the

density is set to 1.4 and the pressure to 1. One expects a double Mach reflection.

The mesh has only 8569 points and 16806 triangles. A part of it is shown in Figure 13.

The density contours of the two calculations are displayed in Figures 14 (second order) and

Figure 15 (third order). A very clear improvement of the slip line coming from the Mach

stein can be observed. The second triple point can also been observed in Figure 15, though

it is of poor quality because of the insufficient resolution of the present mesh. It is, however,

totally obscured in Figure 14. Generally speaking, all the discontinuities are better resolved

by the third order scheme.

5 Conclusions

A third order ENO scheme has been derived for triangular unstructured meshes; this demon-

strates the possibility of deriving ENO schemes for unstructured meshes. We indicate how

to build higher order ENO schemes and give some comments on the numerical stability of

the reconstruction step.

Our new scheme has been tested on a set of well known test cases and compared to

a second order scheme. In all cases, the results are clearly improved. Our results also

demonstrate the scheme's robustness. The cost of the scheme is four times that of the second

order scheme (on a Cray YMP) even though the new code is far from being optimized. In

particular, no optimization has been done in the ENO reconstruction procedure, the most

expensive routine, so that the factor of four is clearly a poor upper bound on the cost ratio.

In the near future, we will derive the fourth order version of this class of schemes. The

two schemes will then be coupled with a dynamic adaptation procedure [3] to improve their

efficiency.
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Figure 1: Covering of the rectangle [xo, xi] x [yo, yi1 by triangular control volumes
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-~Edge of the control volume

Figure 2: Element of the dual mesh
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Figure 3: Stencils for third and fourth order reconstruction
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Figure 4: ReDresentation of the logarithm of the Loo error in term of the logarithm of the
maximum radius of the circumcircles.
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Figure 5: Advection of a sine wave, 0 : second order, + third order, plain line: exact
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Figure 6: Shock tube: velocity field at time t = 0.9
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Figure 8: Zoom of the velocity field in [0.5, 11 x (0.25, 0.75]. Third order solution

29



Figure 9: Portion of the mesh used for the step case
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Figure 10: Density contours for the second order ENO solution, t=4, min=0.329, max=4.64.
Density contours from 0.287 to 4.584, Ap = 0.14

.. ... ... ... . ... . . . . . . . . . . .. . .. .. ... • ... .... . ... .......... ...

Figure 11: Density contours for the third order ENO solution, t=4, min=0.287, max=4.584,
Ap = 0.14
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Figure 12: Cross-section of the density, y = 0.5 0 : second order, + : third order
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Figure 13: Portion of the mesh used for the Mach reflection problem
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Figure 14: Refection of a planar shock by a wedge: density contours, second order solution.
Min=1.4, Max=17.3. Contour from 1.4 to 19.088, Ap = 0.36
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Figure 15: Refection of a planar shock by a wedge: density contours, third order solution.
Min=1.4, Max=19.088, Ap = 0.36
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