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ABSTRACT

Four different classes of adaptive signal cancelers can be
used to eliminate narrow-band interference from a broadband
signal: (1) cascaded second-order notch filters, (2) high-order
in-line notch filters, (3) second-order bandpass noise cancelers,
and (4) high-order bandpass noise cancelers. Of the four, a
structure based on second-order bandpass filters used as signal
cancelers is found to perform better than the other structures.
The adaptive algorithm for these filters has been proposed by
Kwan and Martin and modified by Petraglia, Mitra and Szczupak.

The Kwan and Martin structure can be reduced in hardware
com1lex<ity without degrading performance using a new adaptive
algcrithm that out-performs any of the other known structures or
algcoithms. This new structure is particularly suited to the
elimination of narrow-band interference in broadband Bi-Phase
Shift-Key (BPSK) siqnals with and without background noise.

iThis work was supported in part by the United States Air Force.



0.0 Introduction

A Common signal processing probltam is the reception of a
relaiively weak broad-band signal such as a spread-spectrum Bi-
Phase Shift-Key (BPSK) modulated signal in the presence of
narrow-band interference. These narrow-band interferers may have
less energy than the broad-band signal, but because it is
concentrated over a narrow bandwidth they mask out the broad-band
signal. In the specific work that we are interested in, the goal
is to eliminate only the narrow-band interference. Later
processing will separate broad-band noise from the-desired
signAl. However, this later processing will not work properly
unless all narrow-band interference is eliminated before the
broad-band processing is begun.

The most common approach to eliminating the narrow-band
interference is to make use of a cascade of notch filters [1-8).
Based on extensive analysis and experimental work, Kwan and
Martin developed a particularly nice structure [5) which was
modified by Petraglia, Mitra, and others [7,83 and applied with
good success. However, the hardware required to achieve this
performance with more than two or three interfering signals
becomes too complex for easy implementation, particularly when
high sampling rate is required. One of the major contributions
of this report is to introduce a modified Kwan-Martin algorithm
that maintains the performance of the original algorithm but
requires substantially less hardware for elimination of narrow-
band interference when there are multiple interferers.

in this document we compare several approaches to elimination
of nErrow-band interference from broad-band signals. Sections 1
describes four different structures for adaptive interference
cancellation. Section 2 compares the four sections and gives the
basis for the selection of the second-order band-pass canceler as
the best design. Section 3 gives detailed information on the new
algorithm for the second-order band-pass canceler and extensive
experimental data to demonstrate its advantages over other
algorithms including the algorithm by Kwan and Martin. Section 4
give• detailed examples of the new algorithm's performance in
cancelling narrow-band BPSK signals in the presence of broad-band
BPSK signals and noise. Conclusions are given in Section 5
including a discussion of the hardware implementation of these
filters. Section 6 contains the references for the report.
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1.0 Adaptive Notch Filters

NotLW filters for removing multiple narrow-band interference can
be categorized into four broad categories illustrated in Figure
1-I. The first two categories, Figures la and Ib, are cascaded
seccond order notches with each second-order section removing one
frequency. The next two categories, Figures 1c and Id, are
higher-order notches that eliminate multiple frequencies. In all
of the categories, it is possible to use FIR filters (ie: all
zero filters) which are easily pipelined and can be made truly
linear phase. However, fIR filters out perform FIR filters.
Thus IIR pipelining may become an important issue.

1.1 Second-Order Cascaded Notch Filters

The second-order notch filter is used in cascade and in-line
with the signal as shown in Figure 1-1a. The transfer function
for the notch filter is given by:

2(2-1::2-ki2)1 - ___-____ + -2

2-k 2  2-k 2HN (z) = (1-11)2 1- (2-k 2 -: 1 2)z- + (1-k 2 )z--

For arbitrary values of k, and k2 , this is a symmetric notch
filter with unity gain at DC and the Nyquist frequency. If k2 is
kept constant, then the 3db notch width is also kept constant.
Thus k::, may be adapted to remove one narrow-band signal. A
cascade of such filters can be used to remove multiple narrow-
band signals.

1.2 Second-Order Cascaded Signal Canceler

The cascaded second-order signal canceler approach shown in
Figure I-lb has the advantage that the desired signal does not
pass through the adaptive filter. Instead, the band-pass filter
is used to detect the narrow-band signal which is then subtracted
from the desired signal. A constant 3db bandwidth notch can be
achieved by selecting a band-pass filter with the transfer
function:
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Figure 1-1. Four Categories of Notch Filters
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-2-21*2(1 - z- )(12

2D (z)

where: D(Z) is the same denominator as HN(z) in equation (1).

The signal-canceler structure is also nice for adaptation
because it is relatively easy to generate sensitivity functions
which are related to the gradient of HIP with respect to the
frequency parameter ki [5]. Figure 1-2 shows the block diagram
of an adaptive version of this filter. The sensitivity function

Hs(z)=HIP(z)*H$s(z) where:

H 55(z) = 
(1-3)

D(z)

The parameter ki may then be adapted by the formula:

k1 (n+1) = k(n) - Le(n)s(n) (3)

Considerable information is available in the literature on

additional second-order notch filters [1-8]. At this time,

however, the two discussed here seem to be best suited for our

application.

1.7 Higher-Order In-Line Notch Filter

The notch filter of Figure I-Ic has the advantage that it is

more easily pipelined. Such a filter could be constructed as a

line'.r-phase FIR filter which is easy to pipeline and has the

advantage of linear phase. However, an FIR filter will require

many weights to obtain good performance.

An IIR in-line filter will allow good performance with much

fewer weights. However, the hIR filter would be difficult to

make adaptive. Pipelining the IIR filter is more difficult than

-4-



pipElining the FIR filter, but less difficult than pipelining the
seccid-order hIR filter of the last section. This filter could
be adapted by having a discrete set of pre-selected notches which
could be switched in by a detection circuit that simply looks for
ma.imiums in the spectrum of the input signal. .Although this
approach could be used with any of the filters, it is
particularly attractive with this filter due to the ability to
generate geometric pole/zero patterns in higher-order filters.

1.4 Higher-Order Signal Canceler

The signal canceler of Figure I-Id has most of the same
benEfits and disadvantages of the higher-order in-line notch
discuissed above. However, since the canceler is not in-line with
the signal, the desired signal does not need to pass through the
filter. Also, it may be easier to design the adaptive portion of
this filter. An additional advantage comes from the ability to
adapt the filter off-line and then switch it in once the filter
is able to enhance the perfortnance of the overall system.

1.5 IIR vs FIR Realizations

In our case of narrow-band interference, the second order
notch of section 1.1 and the second-order band-pass canceler of
sect on 1.2 would by necessity have to be hIR realizations. A
second-order FIR filter cannot achieve a sufficiently narrow
band-width in order to adequately handle the interfering signals.
Theoretically, the higher-order realizations of sections 1.3 and
1.4 could be either IIR or FIR. However, the second-order IIR is
idea.ly suited for our situation since it provides a sharp
reson,,ance with only one parameter, the notch or band-pass
frequency, to be adapted. Higher order IIR filters would add
grea'_ complication without significantly improving performance. .

:n many applications, however, it may be advantageous to use
FIR rather than IIR filters. FIR filters must be higher order in
order to realize the narrow-band characteristics. The two
primriry advantages of the FIR realizations are that they can be
made to be linear phase and that they can be designed using the
Discrete Fourier Transform (DFT) such as a Fast Fourier Transform
(FFT) chip or a Recursive DFT using Residue Number Arithmetic

--5--



[9]. In the instance of section 1.3 an N-th order m-notch
adarjtive in-line notch filter would be designed using one of the
many FIR design techniques. This could simply be an adaptive
linz-ar combiner (ie: tapped-delay-line) type FIR filter or some
morE sophisticated adaptive design. In the case of section 1.4
we would use the DFT implemented with an FFT chip or a recursive
DFT to produce a series of band-pass filters and the adaptive
algorithm would simply adapt the weights of the output subtracter
that would cancel the various sine waves.

Figure 1-2 shows an implementation of the higher-order FIR
filter of section 1.4 using the recursive DFT. The order of the
FIR filter is set by the initial delay z-N which produces N
equally spaced zeros around the unit circle. The m recursive
pole producing sections at the output of the delay z-N are used
to cancel m of these zeros resulting in m band-pass filters.
These band-pass filters in turn cancel the narrowband
interference from the input signal. The adaptive algorithm uses
a gradient search to find the correct zeros to cancel in order to
minimize the output power thus cancelling all of the narrow-band
interference.

-6-
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Figure 1-2. Adaptive Recursive DFT FIR Notch Filter
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Figure 1-3. Adaptive IIR Signal Canceler
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2.0 Superiority of the Second-Order Bandpass Canceler

The second-order implementations of section 1.1 and 1.2 offer
considerable advantage both in hardware complexity and in
adaptive' performance when compared to the higher-order
realizations of sections 1.3 and 1.4. A tapped-delay-line type
in-line notch filter such as that of section 1.3 would require
over 100 adaptive weights to perform as well as a 10-weight
second-order filter. Similarly, a higher-order band-pass
canceler such as that of section 1.4 would require over 100
weights to accomplish comparable performance.

The only higher-order section that appears to be competitive
with a second-order system is that of Figure 1-2. If this DFT
approach is used, a delay of N>100 would be required in Figure 1-
2, but the adaptive part of the filter can be made comparable to
that of a second-order system. In terms of performance, the DFT
approach of Figure 1-2 will create a small amount of passband
ripple in the resulting output signal y, but as long as N is kept
large, this ripple should not be a problem. Although we believe
that this approach deserves further attention, our experiments
indicate that the second-order band-pass canceler approach is the
best choice for our present applications. However, future
developments, in real-time DFT hardware or developments in such
area3 as multi-level Residue Number Arithmetic hardware for the
circuit of Figure 1-2 might make this approach attractive.

4..1 Cascaded Second-Order Adaptive Notch Filters

The 4ilter of section 1.1 was implemented and tested to see how
it performed in the elimination of sine waves in the presence of
GausEian noise. Initial tests indicated that the cascade
approach performed very well. However, when two sine waves are
close together, a problem arises. Figure 2-1a shows the input
used. This input consists of 3 sine waves at 0.1f., 0.125f., and
0.375f5 (360, 450, and 135') in Gaussian noise. Each sine wave
and the noise have the same energy in the signal (sine waves are
amplitude 1.414 and the noise is Gaussian with variance 1.0).
Figure 2-lb shows the output of the first stage of the notch
filtLr, Figure 2-Ic shows the output of the second stage, and
Figure 2-1d shows the output of the third stage of the filter.
Instead of eliminating completely one sine wave, the first

-8-



Input (3-Sines at 36, 45, and 13S degrees in Noise)

358

388

258

288

20150

I I' ' I I ! I I

8 .05 .1 ,15 .2 .25 .3 .35 .4 .45 .5
FREQUENCY

Figure 2-1a. Input to 2nd-Order Cascaded Adaptive Notch

-9-



Output of Stage Ove filter

356

3188

A 256
m
P 200
L
i
T 15I
U
D
E

SIB

8 .65 .1 .15 .2 .25 .3 .35 .4 .45 .5
FREQUENCY

Figure 2-lb. First Stage of 2nd-Order Cascaded Adaptive Notch

-10-



Output of Stage Two Filter

3SO

388

A 2S8

P 208
L
I
T 158
U
D
E 188

58

8 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
FREQUENCY

Figure 2-Ic. Second Stage of 2nd-Order Cascaded Adaptive Notch
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Outiput of Stage 3 Fi Iter

358

380

A 258

P 288
L
I
T 158
U
D
E 188

58

! ,l I . . . . I -' : ,

0 .85 .1 .15 .2 .25 .3 .35 .4 .45 .5
FREQUENCY

Figure 2-1d. Third Stage of 2nd-Order Cascaded Adaptive Notch
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section of the rotch filter (shown in Figure 2-1b) centers itself
half way between the two sine waves rather than eliminating one
of the-ines. Then the second and third section each remove one
of tne sines leaving the third sine wave untouched.

2.2 The Kwan and Martin Filter

In a recent paper by Kwan and Martin [53, the problem of
dete:ting and enhancing sinusoidal signals in the presence of
noisr2 is addressed with a cascade of IIR adaptive notch filters
which are used to eliminate the sinusoids. Each of the sinusoids
is eliminated by a bandpass filter whose output is an enhanced
version of one of the sinusoids. Hence this remarkable structure
can oerform both tasks with a single adaptive filter
configuration which is shown to be highly robust and performs
extremely well.

The major disadvantage of the Kwan and Martin structure is that
the number of biquad sections needed in the adaptive filter
configuration is given by N(N+3)/2, where N is the number of
sinusoids to be detected and removed. This becomes impractical
in real-time situations with more than 4 sinusoids due to the
geometric increase in the required hardware. In this section, we
propose a modification to the Kwan and Martin structure that
reduces the required hardware to 3N-1 biquads with no effect on
the performance of the system.

E i _• ( z+ E. " E I (z )

HitPi (2)= . -r -( -"v Yi (

2(1 - 2riki z 1 + r, 2 z 2 )

Figure 2-2. One Section of Kwan and Martin Notch Filter.
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2.3 Kwan and Martin Structure

The Kwan and Martin structure consists of a cascade of fIR
notch filters one stage of which is shown in Figure 2-2. Each
state consists of a bandpass filter with zeros at DC and the
NyqL'ist frequency and unity gain at its peak frequency wi. Such
a filter would have the following z-domain transfer function:

1-ri 2 1 - z" 2

Hxi(z) = -_1_2 (2-1)
2 1 - 2ricos9i z- + ri 2 z-2

where:

ri = pole radius of the i-th section
8i = 2nui/ws
wi = pea.:. frequency of the i-th section
WS = sampling frequency

Kwan and Martin identify two different methods for adapting
the filter. Most of their derivation is based on what they call
the "constant bandwidth" filter in which the pole radius ri is a
constant and only the frequency wi is adapted. An alternative
approach which keeps a constant 0 is also discussed in Kwan and
Martin. Either of these approaches may be used with the
structure we will proposing, although we too have chosen to
concentrate on the constant bandwidth case in our discussion. In
addition, Kwan and Martin select the adaptive quantity in such a
way That it is fairly easy to determine the notch frequency from
the adaptive parameter. For simplicity, we have not followed
this approach, but have chosen the adaptive parameter ki=cosai.
Substituting this into equation (2-1) yields the following:

1-ri 21 - z-1

i(z) - 1 2 2(2-2)

2 1 - 2riki z" + ri+ z

From Figure 2-2, we see that the notch filter for each section is
the difference between I and the bandpass filter, hence:

HNi(z) = I - Hpi(z) (2-3a)

-14-



1+r2  - k~~z /(1+r 12  + r

2 1 -2r1ik- z- + riz -2 C-

CALCULATION OF THE GRADIENT

The basic structure of the Kwan and Martin adaptive filter
shown in Figure 2-7' is a cascade of N sections of the form of
Figure 2-2.

X(:)fE T(z)

H3,(z I3 1 z H51((z)

a ki

HBaT~z)

Y3(z) cT W

+ E +HS(a k3

Y ~aT~z

+ a-15-



The overall transfer function is given by:

- N
1(:) = . HNi (z) (2-4a)

N
R I (1 - Hapi) (2-4b)
i=1

Kwan and Martin choose as their objective function J(z) the
square of the output of the final stage of the cascade:

J(z) = CE1 (z)] 2 = T(z) 2X(z)2 (2-5)

HencE, the gradient of the objective function J(z) is given by:

8J(z) 8T(z)
- 2E 1 (z) X (z) (2-6)

Thus in order to find the gradient with respect to the adaptive
parameters kIj, we must take the partial derivative of T(z) with
resps:t to each k1 :

aT(z) N 8IN j (z
=-i1 HNi (Z) (2-7)a k 8 k•

J i~j J

From equation (2-3a) we have:

awN(z b[- H3,j(z)] -8H 3 ,j(z)
- = (2-8)

a.

-16-



From equation (2-2) we have:

aRNj (z' -2r iz '1

S- H~(z) , = H3 Pj(z)Hs,(z) (2-9)
D(z)

where:

D(z) = 1 - 2rjkjz 1 + r, 2  [denominator o4 Hspf(z)]

2rjz- 1  2rz-1

-'.(z) = - _
I - 2r|k.z + ri -2 D(z)

Substituting equation (2-9) into equation (2-7) we obtain:

4)T(z) N

" I 11pi z H e (z )H s j (z ) (2 - 10 )

J igj

Figure 2-3: shows the Kwan and Martin realization of the complete
adaptive system. The difficulty is in generating the product of
notch filters without the notch filter "j", which is required in
equation (2-10). To generate this product for each section,
would require N-I biquads per section resulting in a total of
N(N-l) biquads just to generate the product. Kwan and Martin are
able to reduce this by using the output of the bandpass filter as
the input to their cascade. Since this output already has (j-I)
of the required Hmi(z) factors in it, only (N-j) additional
biquads are needed for a total of:

N N N N2 +N N2 -N

\ (N -j) = N N, j =N 2  - - (2-11)J-- 4-1• 2 2

-17-



Addir.Q this to the N biquads required to realize the cascade of
r-otcl, filters and the N biquads required to realize the HCj(z)
factvrs yields a total number of biquads given by:

N-N N(N+3)

0 of biquads (Kwan/Martin) =--+ 2N (2-12)
2 2

2.4 Improved Structure

Figure 2-4 shows the improved adaptive notch filter structure
proposed in this paper. The key to the improvement is the
recognition that the output E1 (z)=T(z)X(z) for the cascade of the
notch filters can be written both as a product of the individual
notch filter section transfer functions HNi(z) time the input and
in terms of the input X(z) minus the outputs Yj(z) of the
bandpass filters:

XH(Z) 0z) E E TH(z)

aT(z)

HBNHPP () HDP () HBp2(z) Hs(z

+, (()

H 3 )T (z)

aT(z)HB P3(z) Hsa (z) a~k3

+, YN(Z) 
,

,,,Hp N(z) HSN (z)
i akN

Figure 2-4. New Notch Filter for Tracking N sinusoids
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N=.Q T~)~)-IHN i(z) X (z) (2-13a)

N

= X(z) - • Yi(z) (2-13b)

i=1

To get the product of HNi(z) without the term i=j, we may use
equation (2-13b) to simply add back the term Yj(z):

N
.i Hsi(:) X(Z) = T(z)X(z) - Yj(z) (2-14)"iz1

Figur-e 2-4 makes use of this fact to generate the gradient needed
for the adaptive process. From the Figure, we can see that the
tota: number of biquads required is N for the cascade of notch
filters plus 2N for the Hvpi(z)Hsi(z) required for adaptation,
minus 1 at the last stage, since the last stage does not need the
extra Hlpi(z). Thus we have:

# of biquads (new structure) = 3N-1 (2-15)

Table 2-I shows a comparison of the number of biquads
required for the Kwan and Martin structure vs the number riquired
for the new structure for various values of N. As can be seen
from the table, the two structures are very competitive for N up
to 4, but beyond N=4 the new structure offers a considerable
hardw:are savings.
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Table 2-1

Kwan and Martin Filter Proposed Filter
N N(N+3)/2 3N-I

1 2 2

2 5 5

3 9 6

4 14 11

5 20 14

6 27 17

7 35 20

8 44 23

9 54 26

10 65 29

2.5 Experimental Results Using the New Structure

The algorithm was compared to the Kwan and Martin algorithm
and found to perform as well or better than Kwan and Martin in
all of the experiments. Figure 2-5 shows an example of the new
algorithm with 5 notches applied to a signal with 5 sine waves
imbed-ed in noise. Figure 2-5a shows the input signal frequency
response, Figure 2-5b shows the output after filtering and Figure
2-5c shows the frequency response of the output after filtering.
Figure 2-5d shows the adaptation of the five parameters. Due to
computational complexity, we were unable to do 5 notches using
the Iwan and Martin algorithm, thus just being able to implement
the new algorithm represents an improvement over Kwan and Martin.

-20-



Fioure 2-6 shows what happens when the 5-notch adaptive
filter is used when there are only 3 sines imbedded in noise.
Figure 2-6a shows the input spectrum, Figure 2-6b shows the
outvut, Figure 2-6c shows the output spectrum, and Figure 2-6d
shows the adaptation of the 5 notches. Three of the notches
cancel the three sines, while the remaining notches wander
around.

Figure 2-7 shows what happens when the 5-notch adaptive
filter is used when there are 7 sines imbedded in noise. Figure
2-7a shows the input spectrum, Figure 2-7b shows the output,
Figure 2-7c shows the output spectrum, and Figure 2-7d shows the
adaptation of the 5 notches. What happens in Figure 2-7d is very
interesting and shows just how robust the algorithm is. The
first 4 notches lock solidly on the first 4 frequencies (300,
450, 600, and 900). The final notch is left jumping between the
remaining three frequencies (1200, 1350, and 1500). Since it is
unable to cancel all three, it spends a little bit of time on
each one, thus attenuating each of them. Occasionally, it will
scan across the entire range in hope of finding a better
solution. But it quickly settles back to the pattern of
attenuating each of the remaining sines.

The final experiment we tried with the sine waves is shown in
Figure 2-8. Here we used 10 notches and 10 sines in order to
demonstrate the ability of the algorithm to process 10 sine
waves. Figure 2-8 shows the adaptation of the 10 parameters.

2.6 Conclusionr

We have demonstrated that the new adaptive notch filter
stru:ture uses considerable less hardware than the structure
proposed by Iwan and Martin, yet performs the same (or better) in
typical applications. In addition to the results demonstrated
here, chapters 3 and 4 of this report and an M.S. Thesis E103
provide other experiments to verify the performance of the new
structure. This work has also been reported at two conferences
[10,'.1. In all of these cases, the new structure performs as
well or better than the Kwan and Martin structure.
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Figure 2-5a Input of 5 Sines (300, 450, 360, 600, and 1350) in Noise

step = 0.100000. sjlimit = 0.000000, pmin =0.000001, pmax = 1000000.00

Number of sinusoidal inputs is 5: AMP = (1.414, 1.414, 1.414, 1.414, 1.414)

FRED = {.08Z, .125, .167, .250, .375) ANG = (0.0, 0.0, 0.0, 0.0, 0.0)

DC = 0.000, NOISE = 1.000, k_limit = 1.000, slow = 1, n-sec = 5

Initial values of 1;.1 = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)

Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)
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Output S-Hotch Adaptive Filter (5 sines in noise)
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Figure 2-5b Filtered Output of 5-Notch Adaptive Filter
Input 3 Sines (300, 450, 360, 60' and 1350) in Noise

step = 0.100000, s limit = 0.000000, pmin =0.000001, pmax = 1000000.00
Number of sinusoidal inputs is 5: AMP = (1.414, 1.414, 1.414, 1.414, 1.414)
FREQ = (.083, .125, .167, .250, .375) ANG = (0.0, 0.0, 0.0, 0.0, 0.0)

DC = 0.OOC, NOISE = 1.000, kjlimit = 1.000, slow = 1, n-sec = 5
Initial values of kI = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)
Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)



Otiput S-Notch Adaptive Filter (S sines in noise)
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Figure 2-5c Frequency Response of Filtered Output of 5-Notch Filter
Input 3 Sines (300, 450, 360, 600 and 1350) in Noise

step = 0.103000, s limit = 0.000000, pmin =0.000001, pmax = 1000000.00

Number of sinusoidal inputs is 5: AMP (1.414, 1.414, 1.414, 1.414, 1.414)

FREO = (.083, .125, .167, .250, .375) ANG = (0.0, 0.0, 0.0, 0.0, 0.0)

DC = 0.003, NOISE = 1.000, klimit - 1.000, slow = 1, n-sec = 5

Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)

Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)

Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)
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Overlay of Parameters for 5-Notch Filter (5 sines In noise)
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FiaLtre 2-5d Parameter Adaptation of 5-Notch Filter
Input 3 Sines (300, 450, 360, 600 and 1350) in Noise

steo = 0.100000, s limit = 0.000000, pmin =0.000001, pmax = 1000000.00
Number of sinusoidal inputs is 5: AMP = (1.414, 1.414, 1.414, 1.414, 1.4141
FRED = (.083, .125, .167, .250, .375) ANG = (0.0, 0.0, 0.0, 0.0, 0.0)

DC = 0.000, NOISE = 1.000, klimit = 1.000, slow = 1, n sec = 5
Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)
Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)
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Input (3 sines in noise)
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Figure 2-6a Input of 3 Sines (300, 360, and 1350) in Noise

step = 0.100000, sjlimit = 0.000000, pmin =0.000001. pmax = 1000000.00

Number of sinusoidal inputs is 3: AMP = (1.414, 1.414, 1.414)

FRED = (0.083, 0.125, 0.375) ANG = (0.000, 0.000, 0.000)
DC = 0.000, NOISE = 1.000, k_limit = 1.000, slow = 1, n-sec = 5

Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)
Second order forgetting. Factor = (0.9009 0.900, 0.900, 0.900. 0.900)
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Outiptit of 5-Notch Adaptive Filter (3 sines in noise)
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Fiaure 2-6b Filtered Output of 5-Notch Filter
InDut 3 Sines (30'., 36% and 1350) in Noise

step = 0.1•0000, s limit = 0.000000, pmin =0.000001, pmax = 1000000.00

Number of sinusoidal inputs is 3: AMP = (1.414, 1.414, 1.414)
FREO = (0.083, 0.125, 0.Z751 ANG = (0.000, 0.000, 0.000)

DC = 0.00e, NOISE = 1.000, k limit = 1.000, slow = 1, n-sec = 5

Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.9001

Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.9001
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Output of 5-lotch Adaptive Filter (3 sines in noise)
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Figure 2-6c Frequency Response of Filtered Output of 5-Notch Filter
Input 3 Sines (300, 360, and 1350) in Noise

step = 0.100000, s_limit = 0.000000, pmin =0.000001, pmax = 1000000.00
Number of sinusoidal inputs is 3: AMP = (1.414, 1.414, 1.414)

FRED = (0.083, 0.125, 0.375" ANG = (0.000, 0.000, 0.000)
DC = 0.000, NOISE = 1.000, K1limit = 1.000, slow = 1, n-sec = 5
Initial values of k1 (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900. 0.900. 0.900, 0.900, 0.900)
Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)
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Overlay ot Parameters 5-Notch Filter (3 sines in noise)
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Ficure 2-6d Parameter- Adaptation for 5-Notch Filter
Input 3 Sines (300 360, and 1350) in Noise

step =0.103000, s limit = 0.000000, pmin =0.000001, pmax 1000000.00
Number of s.-nusoidal inputs is 3: AMP = (1.414, 1.414, 1.414)

FRED = (0.087-, 0.125, 0.375) ANG = (0.000, 0.000, 0.000)
DC = 0.000i NOISE = 1.000, k limit = 1.000, slow = 1, n..sec =5

Initial values of kl = (0-000. 0.000, 0.000, 0.000. 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)
Second order forgetting. Factor =(0.900, 0.900, 0.900,090,090

-29-



Input 7 sines (30, 45, 618, 90, 128, 135, Q 158 deg) in noise
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Fiaure 2-7a Input of 7 Sines

(30o, 450, 60o, 900, 1200, '7..0, and 1500) in Noise

step = 0.100000, s-limit = 0.000000, pmin =0.000001, pmax = 1000000.00
Number of sinusoidal inputs is 7.

AMP = f1.414, 1.414, 1.414, 1.414, 1.414, 1.414, 1.414)
FREQ = (0.083, 0.125, 0.167, 0.250, 0.333, 0.375, 0.417)

ANG = f0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
DC = 0.000, NOISE = 1.000, k limit = 1.000, slow = 1, n sec = 5

Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)
Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)
Second orcer forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.9001
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Output 5-notch Adaptive Filter (7 sine input in noise)
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FigLure 2-7b Filtered Output of 5-Notch Filter

Input 7 Sines (00, 450, 600, 900, 1200, 1350, and 1500) in Noise

step = 0.100000, s limit = 0.000000, pmin =0.000001, omax = 1000000.00

Number of sinusoidal inputs is 7.

AMP (1.414, 1.414, 1.414, 1.414, 1.414, 1.414, 1.414)

FRED ( -.083 0.125, 0.167, 0.250, 0.333, 0.3.75, 0.417)

ANG = (0.000, 0.000, 0.000, 0.000, @.000, 0.000, 0.000)

DC = 0.000, NOISE = 1.000, klimit = 1.000, slow = 1, n-sec = 5

Initial values of 1:1 = (0.000, 0.000, 0.000, 0.000, 0.000)

Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.9001

Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)
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Otitput S-notch Adaptive Filter (7 sine input in noise)
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Fiaure 2-7c Freauencv Response of Filtered Output of 5-Notch Filter

Input 7 Sines (300 4500, 600, 900. 1200, 1350, and 1500) in Noise

step = 0.100000. slimit = 0.000000, pmin =0.000001, pma;< = 1000000.00

Number of sinusoidal inputs is 7.

AMP = '1.414, 1.414, 1.414, 1.414, 1.4149 1.414, 1.414)

FREO = {0.08Z, 0.125, 0.167, 0.250, 0.3339 0.375, 0.4171

ANG = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
DC = 0.000, NOISE = 1.000, k_limit = 1.000, slow = 1, n-sec = 5

Initial values of k1 = (0.000, 0.000, 0.000, 0.000, 0.000)

Notch pole radii = M0.900, 0.900, 0.900, 0.900, 0.9001

Second order forgetting. Factor = (0.900, 0.9009 0.900, 0.900, 0.900)
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Overlay of Parameters (5-not)t filter, 7-sivw- input in noise)
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FiQUre 2-7d Parameter Adaptation of 5-Notch Filter
Input 7 Sines (300, 450, 60', 900, 1200, 1350, and 1500) in Noise

step = 0.100000, sjlimit = 0.000000, pmin =0.000001, pmax = 1000000.00

Number of sinusoidal inputs is 7.
AMP = ý.1.414, 1.414, 1.414, 1.414, 1.414, 1.414, 1.4143

FREO = f0.083, 0.125, 0.167, 0.250, 0.333, 0.375, 0.4171

ANG = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)

DC = 0.000, NOISE = 1.000, ._limit = 1.000, slow = 1, n.sec 5

Initial values of 1:l1 = (0.000. 0.000, 0.000, 0.000, 0.000)

Notch pole radii = (0.900, 0.900, 0.900, 0.900, 0.900)

Second order forgetting. Factor = (0.900, 0.900, 0.900, 0.900, 0.900)



Overlay of Parameters (18-notch filter with I sines)
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Figure 2-B Input of 10 Sines in Noise

(300, 360, 450, 600, 720, 1080, 1200, 1350, 1440, 1500

step = 0.100000, slimit = 0.000000, pmin =0.000001, pmax = 1000000.00

Number of s:nusoidal inputs is 10.
AMP = ,1.4:.4, 1.414. 1.414, 1.414, 1.414, 1.414, 1.414, 1.414, 1.414, 1.414)

FREQ = (0.0E3, 0.100, 0.125, 0.167, 0.200, 0.300, 0.333, 0.375, 0.400, 0.417)

ANG = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)

DC = 0.000, NOISE = 0.000, k-limit = 1.000, slow 1, n sec = 10

Initial values of k1 =
(0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)

Notch pole radii =
(0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900)

Second order forgetting. Factor =

(0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900)
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3. Detailed Description of the Now Algorithm

In this chapter of the report we will discuss in detail the
new algorithm and demonstrate its performance on simulated data.
The derivation of the structure and the gradient calculation were
discissed in sections 2.3 and 2.4. Here we shall give the
details for implementing the adaptation, information on how to
"choose the various adaptive parameters, and demonstration of the
effe:ts of different choices on the performance of the filters.

3.1 The Adaptation Algorithm

Figure 2-4 gives the structure for the new algorithm. The

structure contains two types of second-order filters:

Band-pass filters (see equation 2-2):

H :.() - __ (3-1)

2 1 - 2riki z-1 + ri 2 z- 2

and ESensitivity filters (see equation 2-9):

2rjz- 2rZ-

Hs j (z) = (3-2)
1 2rjkjz + r. 2  D(z)

where:

D(z) = I - 2rkiz 1 + r 2  (denominator ofH
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The partial derivative is ciiven by (see equation 2-10):

TT(H) N (3-3)
R. HNi) HpJ(z)HsJ(z)

i~j

The only parameter that is modified in the adaptation process
is the pole cosine ke for each bandpass filter section j. This
parameter also effects the denominator of the sensitivity filter
H (z). The only other parameter, r is fixed. Selection of ri
wSNi be covered in section 3.3. The-standard LMS algorithm would
give us the following update procedure for adapting k.:

aT(z)
k = kj - ,ej (z) (3-4)

where: A is a fixed step size (typically A=0.1)

As derived in chapter 2, the correct choice for the error
function e(z) is:

= T(z) (for all j) (3-5)

However, an alternative choice which can be derived by forming
the gradient of the section outputs Yj(z) is:

ej(z) = Yj(z) (3-6)

Both of these choices for e,(z) were tested and found to work
well.

A word of explanation is in order here. Equation (3-4) seems
to imply that we are mixing z-domain and time domain terms. In ai

sens., we are. The derivative are taken on the frequency domain
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terc.s, but the outputs labeled bT(z)/akJ in Figure 2-4 are
actually time series. It is these time series that are used in
e~uation (3-4). Also, the output ej(z) is really the time series
yý(i). This, of course, implies that we are using instantaneous
values to represent the actual values, thus these are
approximations to the actual values.

3.2 Forgetting Factor

Use of the instantaneous values as discussed in section 3.1
does not result in a very robust adaptation algorithm. One
solution to this problem is to dynamically adjust the step size
A. The justification for this and the mathematical derivation of
the "forgetting-factor" concept is well known (eg: see [5]). In
orde!- to test various forgetting factors, we employed the
following update equation:

k j[]::) =k jt[ k ]-step*gradient*(I.O+p[ k,0]/pmax)/(pmin+pE[ , 0])

where:

step = A (fixed for a particular structure) (3-7a)

8T(z)

gradient = e.(Z) (3-7b)

J

P11%,03 = output of forgetting filter (3-7c)

pma. = limits the effect of large p~k,0] (3-7d)

pmin = limits the effect of small p~k,0] (3-7e)

NOTE:

We found that pmax and pmin were not required so in reality
the update algorithm could be replaced by:
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frjCt]: 3:=Lij[II-step*gradient/p[k ,0] (3-8)

Howe,'er, all of the data in this chapter was run with equation 7
sett:ng pmax=1000000 and pmin=0.000001.

Three different forgetting filters were tested. The first,
called zero-order forgetting, uses the sum of the squares of the
instantaneous outputs aT(z)/8k. as plk,O]. The next, called
first order forgetting, is a simple single-pole first order low-
pass 4ilter applied to the section output EaT(z)/lkj3 , The
third type, called second-order forgetting, is a second-order

2low-pass filter applied to [aT(z)/ak j]3

Zero Order Forgetting

-- 8[T(.) '2

p 1,O] = [ f (3-9a)

First Order Forgetting

pEk,O] = (1-r ) + rfplk,0] (3-9b)

Second Order Forgetting

p[k,0) = output of one of the following second-order filters
]2with input [aT(z)/ak~J :
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Simple 2nd-Order Low-Pass

h i(l - 2z-i + Z -2)
H(z) =-- -2

1 - 2r. kz + z

Complex 2nd-Order Low-Pass

h 2 (1 - 2 cos(59j)z -i + z-2
H2 (:) -=-2(3-9d)

1 - 2 rfkz- + z-2

where: 8. = ArcCos(O.-j)

The filter of equation (3-9d) was used by Kwan and Martin [53.
3.3 Selection of Notch Bandwidth

Each bandpass filter has a fixed bandwidth set by the
parameter rj. If we let x be the lower 3db frequency of the
notch and y be the upper 3db frequency of the notch, then the
bandi:idth is d = x - y. We shall first calculate d at the
freqUency z=j (900, k.=0). Then we shall calculate x and y for
other values of t..- based on the fixed d.

When V =0 we can solve for the two 3db frequencies x. and y.
from the following equation:

1 +r (1+cos2wt) 2 + sin 2wt

-= IH,(z)12 = - 4 j (3-10a)
2 2 (1+r 2 cos2wt)2 + r sin 2wt

I + 2r2 + r 4 4cos2t 3-10b
4 (1 + 2r 2 cos2wt + r(
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cro-s-multiplying yields:

1+2r 2 cos2wt+r4 = 1+2r 2+r4 + cos2ut(1+2r 2 +r 4) (3-11)

Using the fact that cos2wt = 2cos20t-1, we solve equation (3-11)
for cosut:

-2r
2

cos2wt = 2cos 2wt - 1 - (3-12a)
l+r 4

I -r
2

coswt = (3-12b)

Since xe is the lower 3db frequency and y. is the upper 3db
frequency, we have:

-(1-r )

'e = ArcCos (3-13a)

2(1+r4)

r !-r 2  1
YO = ArcCos ] (3-13b)

Also, since sin 2 + cos 2G = 1, we have:

1l-r2

cos(xv) = - (3-14a)

S2-1+r
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1-r 2

cos(ye) = + (3-14b)

1+r
2

sin(x,) = + (3-14c)

I+r
2

sin(ye) = + (3-14d)

S2(1+r)

We may how calculate the bandwidth d from d = x- Ye:

cos(d) = cos(x,-y.)

= cos(:.-:)cos(y.) + sin(x,)sin(ys) (3-15)

Substitution from equations (3-14) into equation (3-15) yields:

-(1-2r 2+r ) + (1+2r 2+r ) 2r2
cos(d) = - (3-16)

2(1+r') l+r4

Although we have calculated d for the specific case of a notch at
Z=j (900), d is constant at all frequencies. In general the
notch frequency z=e j=cos(/7)+jsin(j7) for any section can be
calc-lated as follows:
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1+r 2 1r1+r 2 1
I J-2rk .z +j- -2=(-7a

L L 2

Hr I Z -1 + Z-2 (3-17b)
[2 ][ 1+r 2 ]

Substituting 4or z=ejf=cos(Ir)+jsin(jI•) in equation (3-17b) and
setting the real and the imaginary part to zero yields:

4r k.
1 - - cos(Ir) + cos(217) = 0 (3-l~a)

l+r 2

4rk•
sin(17) + sin(217) = 0 (3-1 -

1+r2

Usingi trigonometric identities:

4rk•I -- cos(I7) + 2cos 2 (IT) - 1 = 0 (3-190.
l+r

2

4r k
Ssin(17) + 2sin(Ir)cos(/r) = 0 (3-19b)

l+r 2

both equations yield the same result:

cos(IT) = 2rk (3-20)
1+r 2
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Note that the notch frequency is only slightly different from the

°pole frequency determined by kI=cos(8). If r=1, the two
freqtencies would be identical. Of course, for stability, r must

be lss than one. Table 3-I lists the relationship of d to the
value of r. From the table we see that values of r around .9 are
well suited to the type of notches needed to eliminate narrow-

band interference. The table also lists the measured values for
the actual notch frequency I, the lower 3db frequency x, and the
upper 3db frequency y for each of the notches. These compare
closely to the calculated values in equation (3-16), equation (3-
20), and as follows:

Table 3-I Effect of r on Notch Width

r 8 x I y d

0.300 0.083 0.093 0.171 0.314 0.221
0.300 0.167 0.123 0.206 0.344 0.221
0.300 0.250 0.163 0.250 0.384 0.221

0 -8 -

0.500 0.083 0.068 0.128 0.240 0.172
0.500 0.167 0.118 0.185 0.290 0.172

0.500 0.250 0.178 0.250 0.350 0.172

0.700 0.083 0.059 0.099 0.164 0.105

0.700 0.167 0.127 0.172 0.232 0.105

0.700 0.250 0.203 0.250 0.308 0.105

IL 3 I 0.062 0.090 0.131 0.069

0.800 0.167 0.138 0.169 0.207 0.069

0.800 0.250 0.218 0.250 0.287 0.069

0.900 0.083 0.070 0.085 0.103 0.033

0.900 0.167 0.151 0.167 0.185 0.033

0.900 0.250 0.234 0.250 0.267 0.033

0.950 0.083 0.076 0.084 0.092 0.016

0.950 0.167 0.159 0.167 0.175 0.016

0.950 0.250 0.242 0.250 0.258 0.016
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Y-x d (3-21a)

Y= 12 (3-21b)

hence:

y2 xy -dy y 2 _ 2 -dy 0 (3-22a)

y = d/2 + 4 (d/2) 2 + f2 x = d/2 - 4 Wd/2)2 + (3-22b)

3.4 Minimum and Maximum Frequency of Notch

Equation (3-20) implies that the notch frequency is slightly
different from the pole frequency 8. In particular:

2 rk, 2r
cos (17) = - - - cos (8) (3-20)

l+r 2  l+r 2

This difference becomes smaller as r approaches one. However, if
the pole frequency 8 is at its minimum of 0*, then k =l and:

[2r1
A = IT = ArcCos (3-21a)

18=0 11+r 2 j
If 8 is at its maximum of w (1800), then kj=-I and:

w- =• Ar~cCos (3-21b)

G~yr L+r2]
From equation (3-20) we see that the difference between the notch
frequency I7 and the pole frequency 8 is at most A. As 8
approaches w/2 (900), the difference between the notch and pole
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-frequencies goes to zero. Table 3-11 gives , and 180°-A for

various values of r.

Table 3-11 Effect of r on A

Minimum Notch Maximum Notch
r frequency frequency

& 1800-A

0.3 56.601510 123.398490

0.5 36.869900 143.130100

0.7 20.015960 159.984040

0.8 12.680380 167.319620

0.9 6.025580 173.974420

0.95 2.937600 177.062400

The maximum and minimum notch frequencies given in Table 3-11
are important because if there is a sinusoid at a frequency lower
than the minimum notch frequency or if there is a DC value, the
notch will be forced to this minimum frequency. Similarly, if
there is a sinusoid above the maximum frequency or at the Nyquist
frequency, the notch will be forced to this maximum frequency.
Figure 3-1 shows the result of a DC signal on the adaptation
process. The notch is forced to 6.025580 in this case because
the radius of the notch filter is chosen as r=0.9. Similarly,
Figure 3-2 shows a signal at the Nyquist frequency forcing the
notch to the maximum frequency of 173.994420.

3.5 Algorithm Performance

Critical to the performance of the algorithm is the choice of
th,÷ various parameters:
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1. Number of notch filters,
2. Notch width r,
3.. Zero, first, or second-order forgetting (or none),
4. Step size it,
S. Limit on the parameter k, and
.6. Limit on the parameter p.

The first three choices are somewhat independent of each other.
But the choice of the step size A is highly dependent on the
first three choices. We found that limiting k such that -1kS1
was very important in all cases. However, we found that limits
on p were not very useful.

The choice of the number of notch filters has a profound
effect on the algorithm performance, but is assumed to be out of
our control. We assume that the number of notches is fixed at
some number by the application. Thus in evaluating the
algorithm, we look at three cases:

Case 1: Performance with only one notch,

Case 2: Performance with five notches,

Case 3: Performance with ten notches.

Table 3-111 summarizes experiments with the new algorithm.
For these experiments, the following 10 frequencies were used:

1. fin = 0.08333 fs (300)
2. fin = 0.1 fs (360)
3. fin = 0.125 fs (450)
4. fin = 0.1667 f (600)
.fin = 0.2f 5  (720)
6. fin = 0.25 fi (900)
7. fin = 0-3 fs (1080)
8. fin = 0.3333 f5  (1200)
9. fin =0.375 fs (1350)

10. fin = 0.4 fs (1440)

:n cases where only one frequency was selected, the results
are based on the results with each of the 5 frequencies (1, 3, 6,
8, 13) taken separately. In cases where three frequencies were
used, the following five combinations were used ((1,2,6),
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(,•,10, (1,6,10), (1,9,10), (6,9,10)}. When 5 frequencies are
selected, we used the 6 combinations of the following 6
frequencies (1, 3, 4, 6, 8, and 9) taken 5 at a time.

3.5 Conclusions

Table 3-IV shows the results of these experiments. From
these results, we conclude that a forgetting factor is needed for
multi-notch filters and that a second-order forgetting factor
does not seem to inprove the performance over a first-order
factor which seems to work quite satisfactorilly. The first-
order forgetting-factor is the only one that does not exhibit
"jump" convergence. Here we refer to "jump" convergence as the
situation when there are more interferers than notches and the
last notch in the cascade "jumps" between the remaining
frequencies to be eliminated. This "jump" convergence, might
actually be desireable in some instances, in which case one would
want to avoid the first-order forgetting factor.

A word should be given about the zero-order forgetting. For
this case alone, the parameters Pi, and Poax were not set to the
default values of pmin=0.000001 and p..x=1000000. For zero-order
forgetting, it is necessary to have specific values for Pmin and
Pm.x in order to obtain convergence. The "Limit on p value"
colImn in the table gives the required limits to obtain
convergence for the zero-order forgetting factor. It should be
kept in mind that this column applies ONLY to the zero-order
foroettina factor data. All other data was obtained with the
defFult values for Pmin and p.... It also should be noted that
limits on Pmin and pmax for the other forgetting factors can
improve performance, but at the cost of a more comples update
algocrithm.

-47-



Table 3-IV Summary of Tests on New Algorithm

# of* Limit on No Zero-Order Ist-Order 2nd-Order
2-nd p value Forgetting Forgetting Forgetting Forgetting

Case Order Sines Noise
se:s Painpm6 x a iter A iter a iter A iter

- -n -x - -I
la 1 1 0.05 20 NO .02 50 .05 67 .05 20 .05 20

Ian 1 1 0.05 20 YES .02 50 .05 Jump .05 20 .05 144

lb 1 3 0.05 20 NO .02 700 .05 Jump .05 30 .05 25

lbn 1 3 0.05 20 YES .02 750 .05 Jump .05 50 .05 100

2a 5 3 0.10 10 NO 1.46 2500 .017 340 .063 200 .07 400

2an 5 3 0.10 10 YES 1.46 150 .017 1200 .063 400 .07 450

2b 5 5 0.10 10 NO 1.46 325 .017 1410 .063 150 .07 500

2bn 5 5 0.10 10 YES 1.46 3120 .017 3500 .063 175 .07 250

2c 5 7 0.10 10 NO 1.46 Jump .017 1667 .063 450 .07 Jump

2cn 5 7 0.10 10 YES 1.46 Jump .017 700 .063 167 .07 Jump
a - - 02 50 -O - - - -

3a 10 7 0.02 50 NO 1.46 2000 .02 1667 .075 500 .07 1500

3an 10 7 0.02 50 YES 1.46 9500 .02 5000 .075 750 .07 ... 1000

3b 10 10 0.02 50 NO 1.46 7500 .02 7500 .075 2000 .07 5250

Ibn 10 10 0.021 50 YES 11.46 11000 .02 1000 .075 2000 .07 2500

1. In all cases without noise, parameters converge to exact value when number
of notches is greater or equal to number of sines. Iterations listed intable represent convergence to three decimal places of correct value.

2. In all cases with noise, parameters oscillate around exact value. The
number of iterations listed in the table is the number of iterations
required to establish this oscillatory pattern.

-48-



3. In some cases with more interfering sine waves than notches, the notches
will jump at random between sine waves. This pattern is indicated in the
table by the word "Jump".

4. Values of pain and pa., in the table refer only to zero-order forgetting
which generally will not converge without limits on p. All other types of
forgetting were run without limits on p (ise pmin=lj0" and pacxu*1S).
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4.0 Algorithm Performance and Simulation

The adaptive digital filter algorithm as described in the
ear;:ier chapters is simulated and tested using synthetic data.
SimLlation was carried out on VAX 11/785 computer using Fortran
77. The synthetic data generated for testing this algorithm is
of Lour categories:

1. Sinusoidal signals with white gaussian noise
2. Narrow Band Noise with white gaussian noise
3. Bi-Phase Shift Keying (BPSK) sequence
4. Frequency Shift Keying (FSK) sequence

4.1 Sinusoidal signals

For generating sinusoidal signals placed at different
normalized frequencies 6, a second order AR process given as:

"x k = 2cos(6i), 1 .. k-I x k-2 (4-1)

was used with poles on the unit circle. This approach was chosen
in order to reduce the computational burden. Using equation 4-1,
we find that initial conditions are very important and they are
chosen such that xv 1=0 and -,,. 2 =-sin(Oi) giving a unit amplitude
sinusoidal siqnal. The 8i value is between 0 to 180 and n is the
number of frequencies desired. The required signal Yk needed to
input into the adaptive algorithm is given as:

Yk =ki + l k(4-2)

where Yk is a white gaussian noise N(0,2 ).
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4.2 Narrow Band Noise

The narrow band signal is generated using the difference
eqL1-t ion:

k 2rcos(8j)z k-I - r2x k- 2 + u 'k (4-3)

where Oi decides the placement of the noise in the spectrum and r
controls the band-width of the noise. The uik is simply a
uniformly distributed noise taken at different instants. The
desired signal Yk is obtained via:

i=n

Yk Z "• ik + y•f (4-4)

i=i

4.3 Bi-Phase Shift Keying Sequence

The generation of BPSK signal has distinctly three parts which
are generated as shown in Figure 4-1. The three parts are as
follows:

Generation of the Random Binary Sequence(RBS) is achieved
by passing a uniformly distributed noise through a hard
limiter. (An important note is that the interval between
the two consecutive bits of RBS is 1/lb.)

2. Generation of another sequence of binary numbers which
are in practice a spreading code or spreading sequence.
The specific sequence used in a given communications
system is normally not available to anyone but the
intended receiver. (In this particular simulation we
have generated the spreading sequence by passing a
uniformly distributed noise through a hard limiter. The
bit interval is 1/ 1 c.)

7. Generation of the phase encoding, ie: the mapping of the
given binary signal which is the exclusive or of (1) and
(2) above into either 0 or w at appropriate sample times.
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DSSS BPSK Generator

Uniform RBS XiRandom X(i)
Number

0.5

(I a kf)

Lo Ei,0 - Key2fk

Fig. 4.1

Figure 4-1. Generation of the BPSK Signal.
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The output of the first hard limiter is stored in an array x
(see Figure 4-1). Output of the second hard limiter is stored in
the array y. This information is retrieved by a subtle use of
the array index given as i=k/b where i is the index, k is the
discrete sample number and 1b is the bit rate of the
intelligence. Similarly another index j is generated using J=k/i
where I is the chip frequency Generation of the indices is the
key trick in this simulation. The desired signal now is given by
the equations:

w = Acos(2rTik (4-5)

=x(i) e y(j)]yr (4-6)

P=n

- P (4-7)kk

P=I

where i and j are indices of the arrays as defined earlier. It
is an important point to note that the signal wpk is completely
defined by the parameter p = U., i, 1b).

This signal is not really a simple BPSK signal but it has an
additional feature of spreading the spectrum by controlling the
chip-frequency and carrier frequency and baud-rate. The block
diagram of the scheme is given in Figure 4-1. The desired signal

Yk is given by:

Yk = ak + A k (4-8)

Where,: Wk is the narrow band BPSK signal placed at different
parts of the frequency spectrum and Ak is the broad band BPSK
signal generated for a specific p value.



4.4 Frequency Shift Keying Sequence

Generating this sequence needs a random binary intelligence
signal. This was once again achieved by passing a uniformly
distributed noise through a hard limiter. The output of the same
stored in an array x. An index i is chosen such that i=klfb where
1 b is the baud-rate of the information and k is discrete sample
numLer. Now the desired signal is generated via:

sk = 2 cos(Ok)sk-1 - Sk-2 (4-9)

ek = 8 + sx(i) (4-li)

yk = Sk + k(4-11)

where 8 is the carrier frequency and d is the depth of the
frequency modulation. Initial conditions are very important and
they are chosen such that s-,=O and s_2=-sin(9) giving an unit
amplitude sinusoidal signal.

4.5 Simulation

The adaptive filter algorithm as described in the previous
chapters will now be simulated and tested using synthetic data
generated as described in the last sections. These simulations
were carried out on a VAX 11/785 computer and were written in
Fortran 77. Further details on these simulations can be found in
reference [12]. The adaptive filters used-are the Kwan and
Martin filter and the modified Kwan and Martin filter (new
algorithm) as described in chapters 2 and 3. The key parameters
of these filters are:

(a) Sharpness of the notch filter defined by pole
position (r2 = 1-k 2 )

(b) Step size in the incrementation procedure (A)
(c) Time constant of the fading filter (X)
(d) Model order (n)
(e) Order of incoming signal or number of interferers (i)
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4.5.1 Fading Filter

In order to track the time-varying parameters it is essential
to compute (1/N)ie 2k over some period of time and this can beessentially achieved by a simple averaging filter:

Vk = XvkI + (1 - X)e 2  (4-12)

with a time constant X and this is mostly referred to as the
forogtting factor or fading factor. (NOTE: This is equivalent
to the first-order forgetting of equation 3-9b.)

The algorithm was fine tuned for the factors (b) and (c) by
usinq pure sinusoidal signal. This was achieved by manually
optimizinq A and X. The value of A was chosen as 0.01 and X=0.9.

After fixing the values of A and X the algorithm was tested
using Narrow Band Noise signal Yk for its performance. This
signal was used only to tune the value of r (i.e. sharpness of
the notch filter). It was observed that if the value of r is
close unity variance of the parameter k01 estimate increases.
Based on simulation the value of r was chosen as 0.9.

4.5.2 Check VAX version against IBM-PC version

Under these parameter conditions BPSK signal Yk was applied
to the adaptive algorithm. Figure 4-2 shows the block diagram of
the new filter that will be tested in this chapter. Other than
notational changes, this is the same as Figure 2-4. Figure 4-3
shows. the results of a sine-wave test like was described in
chapter 3. The purpose of this test was to verify that the VAX
version of the program gave the same results as the IBM-PC
version used in the previous sections. Figure 4-3a was the input
consisting of three sine waves in the presence of noise, but no
BPSK signals. Figure 4-3b is the filtered output, demonstrating
that the filter did remove the sine waves. Figure 4-3c shows the
paraaeter adaptation. By making a detailed comparison of this
example on both the VAX and the IBM-PC, we were able to verify
that the VAX program was working the same as the IBM-PC program.
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New Structure
X•(z) ez

H (Z) H' (z) M 3(Z) H (z)
bpbp bp bp

3 2

Y3(z) Y (z)

i .- s (z)

Y (z

=(z) ""=(Z)

N

HbN (zi $a(z

Figure 4-2. Block Diagram of New Algorithm.
(NOTE: Same as Figure 2-4, except for notation)
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Figure 4-3. Three Pure Sinusoids in Gausian Noise
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4.5.3 Elimination of narrow-band BPSK interference

Our next experiment was designed to see how the new
algo'-ithm performed on narrow-band BPSK signals rather than sine
wave interferers. Figure 4-4a shows the input consisting of
three narrow-band BPSK signals at the same frequencies as the
sine waves in Figure 4-3a. Figure 4-4b shows the filtered output
verifying that the new filter is able to eliminate narrow-band
signals as well as sine waves. Figure 4-4c shows the parameter
adaptation for this case and should be compared to Figure 4-3c.

4.5.4 Transient behavior (tracking a moving interferer)

The transient behavior of the adaptive filter was tested by
generating an FSK signal using the hardware of Figure 4-1. The
FSK signal is similar to the BPSK signal, but the spectrum is
constantly changing. In our example, the spectrum switched back
and forth between two frequencies. Figure 4-5a shows the FFT of
the input signal. From Figure 4-5a we can see the two distinct
frequencies that the input is changing between. Figure 4-5b
shows the output spectrum which has been essentially cleaned of
the interfering signal. Figure 4-5c shows the parameter
adaptation moving between two values. When compared to the input
time sequence, we were able to verify that the algorithm was
tracking the FSK signal and eliminating it extremely well (10).

4.5.5 Elimination of narrow-band BPSK from broad-band BPSK

Our next experiment was aimed at eliminating narrow-band
BPSI:: interference from a broad-band BPSK signal. Figure 4-6a
show: the input consisting of three narrow-band BPSK signals
interfering with a broad-band BPSK signal in the presence of
white Gaussian noise. All of the signals have the same energy
content. Figure 4-6b shows the output spectrum. Comparing this
with the desired BPSK signal, we were able to verify that the new
algorithm eliminated the noise without adversely effecting the
signal (10). Furthermore, we processed this signal using the
Cyclic Spectral Analysis Software Package [13) and obtained the
outpLut shown in Figure 4-7. This output was as expected and
confirmed that the new adaptive notch filters were performing
well [12).
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a. Broad-Band DPSK without Interference or Noise

b. Broad-Band BPSK Corrupted with Interference and Noise

3.U1I~

c. Corrupted Output After Processing by New Notch Filters

Figutre 4-7. Processing with Cyclic Spectral Analysis Software
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4.5.6 Performance with too many notches

One situation of great concern was what would happen if
there were too many notches for the number of interfering,
signals. Would the remaining notches attempt to eliminate the
broad-band BPSK signal, and if so would this effect the Cyclic
Spectral Analysis Software Package. Figures 4-8 and 4-9 address
this important issue. In Figure 4-8 there are two interferers
and three notches and in Figure 4-9 there is only one interferer
and three notches. As before, Figure 4-8a shows the input
spectrum, Figure 4-8b shows the output spectrum, and Figure 4-Bc
shows the parameter adaptation. As can be seen in Figure 4-Bc,
the remaining notch wanders around the frequencies of the main
lobe of the broad-band BPSK signal attempting to cancel it.
However, since the notch is very narrow compared to the main lobe
of the broad-band BPSK signal, the notch is unable to eliminate
any significant amount of signal energy. Thus when we applied
the Cyclic Spectral Analysis Software Package, we got the same
results as Figure 4-7 [10). A similar result was found in Figure
4-9. The two remaining notches in Figure 4-9c wander around the
main lobe of the broad-band BPSK signal, but are unable to
eliminate any significant amount of signal energy. Thus when the
Cyclic Spectral Analysis Software Package was applied, we once
again got the results of Figure 4-7 [10].

4.6 Conclusions

The BPSK signal Yk was given as input to the new algorithm
and the results showed that the new adaptive notch filters were
able to perform well under various situations expected in the
real world. The new algorithm consistently fared well in its
mission and was able to prepare the incoming data for processing
by the Cyclic Spectral Analysis Software Package.
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5.0 Conclusions

A-n this report we have taken a careful look at the possible
solutions to the problem of eliminating narrow-band interference
in troad-band communications systems in the presence of white
Gaussian noise. We have come to the following important
conclusions:

1. Of the many possible algorithms available for solving
this problem, only two seem to meet the requirements
and also be feasible in terms of hardware complexity
and hardware speed. These two approaches are:

a. adaptive second-order notch filters based on a
modified Kwan-Martin approach or

b. an approach based on the DFT.

2. This report has studied carefully the adaptive notch
filter approach based on a modification of Kwan and
Martin and found it to be extremely well suited to the
problem.

a. Single interferers are eliminated within at most a
few hundred iterations,

b. With multiple interferers, the first notch will
eliminate one of the interferers within a few
hundred iterations and other notches kick in
quickly such that as many as ten interferers can
be eliminated in as few as 500 iterations,

c. When there are fewer notches than interferers,
notches can be designed using proper forgetting
filters to either eliminate the maximum number of
interferers or to attempt to reduce all
interferers while eliminating some of them,

d. When there are more notches than interferers, the
extra notches do not adversely effect the broad-
band signal,
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e. Notches track well changing interferers and are
able to handle frequency jumps that are less than
one order of magnitude lower in frequency than the
interferer signal frequency,

f. Single notches can eliminate two or more
interferers, if those interferers are close
together, and

g. The new algorithm is easily implemented on and
IBM-PC or a VAX computer and seemF well suited for
hardware implementation.

5.1 Brief Look at Hardware Feasibility

Although hardware design is beyond the scope of this report,
we shall look briefly at possible hardware configurations in
order to satisfy ourselves that the algorithm is feasible for the
desired application. Ideally, we would like to design a 5 to 10
notch filter that would operate at sampling frequencies up to 100
MHZ. With currently available technology, about the best
available commercially today would be 10 to 20 MHz. In what
follows, we shall attempt to justify this 10-20 MHz figure and
discuss how through the use of pipelining we could increase this
sampling rate to as much as eight times the basic sampling rate
(ie: 80-160MHz).

5.1.1 Commercially Available Hardware

In our investigation of the hardware feasibility of a 10-20
MHz sampling rate modified Kwan-Martin filter with 5 to 10 notch
filters, we shall look at five commercially available DSP chips:

1. MIPS R3010, 4Qns cycle, 2 cycle add, 5 cycle multiply,
and 19 cycle divide [14),

2. Weitek 3364, 50ns cycle, 2 cycle add, 2 cycle multiply,
and 17 cycle divide (30 cycle square root) [143,
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3. Texas Instruments TI 8847, 30ns cycle, 2 cycle add, 3

cycle multiply, and 11 cycle divide (14 cycle square
root) [14],

4. AT&T DSP32c, 20ns cycle, 2 cycle add, 2 cycle multiply,
and 3 cycle divide [15), and

5. Honeywell HDSP 66110, 6Ons cycle, performs vector dot
product of 8 elements for an effective 1Ons multiply
and accumulate time (16].

The first four chips are of similar architecture and thus
could be implemented using the same block diagram. The Honeywell
chip is really an array processor, and would require us to
vectorize the algorithm to take advantage of its speed. Although
we believe that this vectorization could be done, it is beyond
the scope of this report, so we shall concentrate our attention
for the time being on the other four chips.

Figure 5-1 shows the block diagram for implementing a
second-order filter using one of the first four DSP chips. The
block diagram makes use of a coefficient memory which can be set
by and e..ternal device. Multiplication A is done in parallel
with Multiplication B and additions are done in sequence. The
second-order building block of Figure 5-1 is used in Figure 5-2
to obtain one section of the modified Kwan-Martin Filter. This
can then be repeated for all sections and results in a very
regular structure as indicated in Figure 5-3. In the process of
designing this, it was realized that an additional advantage of
the m~odified algorithm over the original Kwan-Martin algorithm is
that the original algorithm could not be broken down into
identical blocks because of the need for the cascade chain in
calculating the filter derivative [10).

5.1.2 Time Budget

The details of the time budget have been worked out in the
M.S. Thesis [10). The result is that the best floating point
processing for the first four chips is achieved with the AT&T
DSP-32c which yields a sampling rate of 5 MHz. This is not
sufficient to meet our 10-20 MHz design requirement. However,
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this was done without pipelining the IIR section. Using the
pipelining techniques of Soderstrand and Loomis [17-21], we would
multiply this sampling rate by at least two and probably four
resulting in the desired 10-20 MHz desicn. Furthermore, if we
were to vectorize the algorithm, the Honeywell chip could
potentially yield 100 MHz sampling with both vectorization and
pipelining. Based on this hardware analysis, we feel confident-
that sampling rates of 25 MHz or more can be achieved in practice
with commercially available DSP chips or most certainly with a
custom VLSI design.

5.2 Future Work

There are two avenues of future work that should be pursued
before makina a hardware commitment for the narrow-band filter
project:

1. DFT based approaches to the problem should be studied,
especially in view of the availability of high-speed
FFT processors and such exotic approaches at recursive
DFT's using ORNS arithmetic [93, and

2. a detailed investigation of hardware implementations of
the modified Kwan-Martin algorithm should be made
including simulation and layout of a custom VLSI
approach. Because of the regularity of the structure
in Figures 5-1 though 5-3, the custom VLSI may well
yield some very excellent filters.
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