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1.0 INTRODUCTION

Ergodicity is the condition which enables time-averaged statistics of
random processes to approximate those obtained by ensemble averages. Although
this condition is often assumed in estimation and other signal processing
applications, the dependence of the ergodic behavior of random processes upon
fundamental process characteristics (such as the temporal and cross-channel
correlation, and the process variance) and its implications on estimation
performance evaluation is not often considered. The ergodicity condition for
auto- and cross-channel correlation functions expressed in terms of these
fundamental process characteristics is derived in this paper. Specifically, analytic
expressions are developed for the variance of the biased, time-averaged
correlation functions for stationary discrete complex processes. If these
var‘ances approach zero in the limit of infinitely large sample sizes, the ergodic
condition holds. The expressions derived here pertain to the general case of
Gaussian processes with unconstrained quadrature components where the
bandpass processes are, in general, non-stationary [5]. In addition, the analytic
cxpressions are simplified for the special case of complex processes with
constrained correlation between the Gaussian quadrature components yielding
stationary narrowband bandpass processes.

The expressions developed here for the time-averaged correlation function
estimators provide a performance measure which can be used to specify the
window size of the observation interval required to achieve a specific value of
this variance. As an example, the increase in sample window size required to
achieve a specific value of the variance of the time-averaged correlation functions
is quantitatively related to the increase in temporal correlation as well as the
variance of the underlying process. Validity of the analytic expressions is
presented using a multichannel process synthesis method described in [1,2].

Next, Monte-Carlo simulations are used to measure the error variance of
several parameter estimators using zero-mean time series whose covariances are
functions of a parameter vector. Both Gaussian and non-Gaussian processes are
considered. In this analysis, the parameter vectors are varied to simulate
processes with various temporal and cross-channel correlation; ie., processes
ranging from narrowband to broadband. The dependence of the parameter
estimators upon process correlation is contrasted with that of the time averaged
correlation function estimators. It is noted that the performance of these two




classes of estimators have markedly different dependence on process temporal
correlation. Finally, the performance of the parameter estimators is compared to
the exact Cramer-Rao bound.




2.0 PROCESS DEFINITION

In this chapter, we define the multichannel autoregressive (AR) process,
the relation between the AR coefficients and the correlation matrix of the
processes known as the Yule-Walker equation, a wide class of non-Gaussian
processes known as Spherically Invariant Random Processes (SIRP's); and finally,
a brief description of the procedure used to synthesize these processes enabling
the control of the temporal and cross-channel correlation.

2.1 MULTICHANNEL AUTOREGRESSIVE (AR) PROCESSES

The multichannel forward autoregressive (AR) process x(n) is expressed as
M

x() = - 3, A"(K)x(n-k) + u(n) 2.1
k=1

where AH(k) is the kth JxJ matrix coefficient for the Jx1 vector AR process x(n)
of model order M and u(n) is the Jx1 forward white noise driving vector with
covariance matrix [Z¢],. We note that AH(k) is expressed in terms of the

Hermitian operation for notational convenience, but is not restricted to be a
Hermitian matrix. It will be shown later that this notation enables us to express
the Yule-Walker equation in terms of row vectors containing the Hermitian
transpose operation. For the single channel case, the terms in eq(2.1) are scalers.
Thus,

M
x(n) = - Y a*(k)x(n-k) + u(n) (2.2)
k=1

The vector u(n) from eq(2.1) can be expressed as

u(n) = Cyy(n) (2.3)

where y(n) is a Jx1 white noise vector with JxJ diagonal covariance matrix D,,.
Eq(2.3) enables us to obtain




[Z¢l, = ElumuH(n)] = E[C,ym)yH(n)Cy] (2.4a)

= C,E(v(myH(n)ICy (2.4b)
=C,D,Cy (2.4c)

For the special case
D, = E[y(n)vH(n)] = 2.5)

where I is the JxJ identity matrix, eq(2.4c) reduces to

(2], = C,Cy. (2.6)

Eq.(2.6) indicates that the JxJ matrix C, can be obtained by the Cholesky
decomposition of [Z¢],. The above relationships are utilized in the process

synthesis procedure described in section 2.4 and reference [2]. Alternatively,
€q(2.3) could have been expressed as

u(n) = L,z(n) (2.7)

where L, is a unit diagonal lower triangular matrix and the vector process z(n) is

a white noise vector uncorrelated in time, whose components are also
uncorrelated across channels. The covariance matrix of u(n) is expressed as

(£¢l, = Elumuf(m)] = E[Lyzm)zHn)Ly] (2.82)
= L,E(z(mz*m)]L;, (2.8b)
-L,D,L, (2.8¢)
where
D, = Elz(m)zH(n). 29)

Eq(2.8c) denotes the LDLH decomposition of [Z¢],, provided D, is a real,

diagonal matrix. Furthermore, the channel variances are contained along the
diagonal elements of D,.




2.2. THE YULE-WALKER EQUATIONS

In this subsection, we present the relationship between the matrix
coefficients AH(k) of eq(2.1), the covariance matrix [Z¢], of the forward AR

white noise driving vector defined in eqs(2.4), and the known correlation matrix
[R,,] of the vector x(n). The latter is defined as

[R""] = E[én-M,n(én-M,n)H]' (2.10)
where
2(__T = [xT(n-M) LT(n-M+1)...LT(n)] (2.11)
n-M,n

We first introduce the reversed order correlation matrix [R,,]y,, defined

[Ryx) = EI%,, . M&n,n-m)"] (2.12)

where

xT = [xT(n) xT(n-1)..xT(n-M)] (2.13)

n,n-
and ~ denotes time order reversal. We note that the matrix [R,,] is the
correlation matrix of X =x__  in contrast to [Rxx] which is the correlation
matrix of the vector x, \, defined in eq(2.11).

The relationship between AF(k), [Z¢], and [Ry,] is expressed by the
augmented Yule-Walker equations [9,10]; ie.,

AP (R, ] = {[Zly [0)..[01) (2.14)
where
AP =[1AM() AP2)..AP ()] (2.152)
(Z¢lh = Elumu”(n)] = (X4, (2.15b)
uT(n) = [u,(n) uy(n) ...uJ(n)] (2.15¢)




The corresponding equation for the wide-sense stationary, backward AR
process is expressed as

M
x(n) = - 3 BH(k)x(n+k) + uy(n) (2.16)
k=1

where we specifically denote the backward white noise driving vector u,(n) with
the subscript b. The covariance matrix of uy(n) is expressed as

[£p], = Eluy(m) up( - 1) (2.17)

The corresponding equation for the backward Yule-Walker equations are
expressed as

B[R] = {[0]..[0] [Z,]}) (2.18)

where
BH = (BHM)...BH(1) 1. (2.19)

2.3 NON-GAUSSIAN AUTOREGRESSIVE PROCESSES

In this section, we discuss the generalization of the single channel
autoregressive processes defined in eq(2.2) to a class of non-Gaussian random
processes known as spherically invariant random processes (SIRP) [7,16,17,18].
The non-Gaussian form of the random process x(n) is introduced through the
white noise driving term u(n). Following Rangaswami [16], we first define a
spherically invariant random vector (SIRV) as a random vector (real or complex)
whose PDF is uniquely determined by the specification of a mean vector, a
covariance matrix and a characteristic first order PDF. A spherically invariant
random process (SIRP) is a random process (real or complex) such that every
random vector obtained by sampling this process is an SIRV. An important
theorem in the theory of such processes is the representation theorem [Yao] stated
as follows.




Theorem 1 If a random vector is an SIRV, then there exists a non-negative
random variable S such that the PDF of the random vector conditioned on S is a
multivariate Gaussian PDF.

For the simulation of an SIRV, we consider the product

where u, y = [u; u, ... uy]T denotes the SIRV, z, \ = [z, 2, ... zy]T is a Gaussian

random vector with zero mean and covariance matrix M and S is a real, non-
negative random variable with characteristic PDF fg(s). Statistical independence

between z, y and S is assumed for convenience. In [7], several characterisic
PDF's for fg(s) are considered which provide various PDF's for f;(u). Among

others, they include the Chi, Weibull, Generalized Rayleigh, Rician, the K-
distribution, Laplace, Cauchy, Student-t and, as a special case, the Gaussian. In

section 5.3.2, we consider K-distributed processes using a form of the Gamma
distribution for fg(s).

2.4 PROCESS SYNTHESIS PROCEDURE

In this section, we briefly describe the method used to synthesize the
random processes used in this study. The procedure utilizes the multichannel
Yule-Walker equation expessed by eq.(2.14). Essentially, the desired temporal

and cross-channel correlation are specified in the covariance matrix [R,],

eq(2.14) is solved for the vector of matrix coefficients AH and the matrix [Zf]}:.

The AH(k) coefficients contained in AP are used in eq(2.1) directly for the
desired order M of the process. The matrix [Zf];{ is used in €q(2.6) to determine
the matrix C,. This matrix in turn is used in eq(2.3) to provide the white noise

driving term u(n) in eq(2.1). We note that u(n) provides the cross-channel
correlation through the Hermitian covariance matrix [Z¢],,.

In [2], we describe a method to incorporate the desired correlation
properties into [ﬁ&]. This is accomplished through the use of 'shaping functions'

which enable us to modify the shape of the correlation functions contained in the
correlation matrix. For the cross-correlation function, we consider




_ (pi))0;;0;if (Al - 1)

R;() = Cexp{j0;(1)-6;(0 2.21
5O R exp{j[6;()-6;(0)]) (2:21a)
Ip.16.6.fA::l - |,
R 1 ”)cxp{j[eij(l)n (2.21b)
fA;l - =0

where Pij is the complex cross-channel correlation parameter such that
pi=R;(0)/o;,0;;, Aj; is the one-lag temporal cross-correlation parameter, l;; is the
lag value at which the cross-correlation function peaks and Oij(l) is the phase of

the cross-correlation function. By definition,
pi= 1Pl expli6;;(0)] (2.22)

Expressions for Rji(l) are obtained from eq(2.21b) using the property
sk

These equations provide us with a useful description of the cross-
correlation function in terms of the complex cross-correlation coefficient pj;, the

standard deviations G;; and o;; of the channel i and j processes, respectively, and
the one-lag temporal cross-correlation parameter, A;;. For the autocorrelation
function (i=j), we have Ip;l=1 since any given channel process is totally
correlated with itself at zero lag. Also, 6,,(0) = 0 since 6;(l) is an odd function of

. Since the function f(e) for the autocorrelation function has a peak value of unity
at I=0 and noting that |;; = 0, eq(2.21b) for i=j reduces to

R.() = oA, Dexp{j6;(h) (2.24)

where A;; is the one-lag temporal autocorrelation parameter and is a measure of
the correlation magnitude between consecutive samples such that O<A;;<1. At lag

value 1=0, eq.(2.24) becomes R;(0) = oﬁ which is, as expected, the variance of the
zero mean, channel i process.




EXAMPLE Gaussian Shaped Correlation Functions

In [2], the special cases of Gaussian, exponential and sinc shaped correlation
functions are considered using the forms given in eqs(2.21b) and (2.24). For
cross-correlation functions with Gaussian shaped magnitudes, for example, we
use

2
f(h 1 - 1) = (- (2.25)
so that eq(2.21b) becomes

P00 () H)”

NGO (AU

_ plj i) 1% 1] cxp{jeij(')} (2.26)
AN

R;;())

For the autocorrelation function (i=j) with Gaussian shaped magnitudes, we
have (dropping the subscript i for notational convenience)

2
R() = 62 fLDexpliod)] = o2 W) explio()] (2.27)
where 5
AN = W = expl- 2r2u2T22) (2.28a)
and
A = exp[-2n2u2T?] (2.28b)

is a real constant such that 0 < A < 1 and T is the sample period. In ref [2], we
show that p2 is the variance (which determines the width) of the corresponding
Gaussian shaped spectra.

EXAMPLE Exponentially Shaped Correlation Functions

For the exponentially shaped cross-channel correlation function, we use the
expression




(7~ij)“ijI

R;() = CXP{ngU(I)} (2.29)

while the autocorrelation function becomes
_ 2 ikl .
R;i(k) = o (A expljdy(1)]. (2.30)

In the above discussion, we have proposed the use of functional forms to
characterize the magnitude and phase of the correlation functions. The motivation
for this approach is that it will allow for flexibility in modeling random processes
with various correlation and spectral shape. We note, however that at this point
we have not constrained these functions to meet all the criteria that are necessary
and sufficient to characterize correlation functions. In fact, determining all of
these conditions in a general formulation is a difficult task. In [2], we note several
constraints for the correlation functions including the important condition of
positive semi-definiteness of the correlation matrix.
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3.0 VARIANCE OF THE TIME-AVERAGED CORRELATION
FUNCTIONS

3.1 VARIANCE OF THE AUTOCORRELATION FUNCTION ESTIMATOR

The ensemble correlation function is defined as the expectation of lagged
products of a given stationary process when averaged over an ensemble of
realizations. If this function is equal to the time-averaged correlation function
obtained from a single realization, the process is called auto- or cross-correlation

ergodic. Consider the time-averaged estimate of the biasedt correlation function
using N, observation time samples

[ | N1
N ngoxi(n)xj(n'l) 0 <l <N.-1
ﬁiij(l,NT) _p ah
Nl
N, nEOXi(n)Xj(n-”I) “(N,-1) <1 £0.

The variance of the autocorrelation (j=i) estimator ﬁ b(I,NT) is expressed as

iiT
Vg, (LNy) =
-E{ [ﬁiin(l,NT) i E[ﬁiin(l,NT) 1][ﬁﬁ;'fb(|,NT) i E[ﬁi;b(l,NT)} (3.22)
= E[ﬁiin(I,NT)ﬁii:b(l,NT)] i E[ﬁiin(l,NT)]E[ﬁﬁ;'ib(l,NT)]. (3.2b)
We now consider each term within the expectation operations expressed in

eq(3.2b). Using eq(3.1) in the first term on the RHS of eq(3.2b), we have for

positive and negative |

* | NpbINgl
ﬁiin("NT)ﬁiin(lvNT)=_2 Y X xmxin-Dx;(p)xi(p-1)
Nt n=0 p=0

t In this papcr, we consider the biascd cstimator for the corrclation functions since it ensures positive semi-definiteness. In
(2], the unbiased estimator is presented as well as an estimator with unlimited data.

1




0<I<Np-1

| Nplll-INg-L .
== Y. x j(0)x;(n-lDx;(p)x; (p-I)
Nr n=0 p=0
(N-1) <10
so that
Nop-l-1 Nph-1
* 1 * *
E[ﬁﬁTb(l,NT)ﬁﬁTb(l,NT) == Y Y Elxn)xi@-Dx;(p)xi(p-D]
Nt n=0 p=0
0<I<N;-1
: Np-lll-INp-ll|-1 .
== X ¥ E[ximx;a-l)xp)x; (-]
Nr n=0 p=0
(N-1) <10

For the second term in eq(3.2b), egs.(3.1) enable us to obtain

Nop-l-1

1
E[Rjip, (Np] = N 2 Ril) 0<I<Ng-1
n=0
1 NT'“I'I -
= N Z R;() -(N-1)<1<0.
T n=0
so that
E[R;i, ANDIE[R;, (INp)] =
1 NT‘I‘I NT'l‘l
=22 X R M2  0<I<N;
T n= =
¢ Npll-INgH-
=— ¥ Y IROP -(Np-D<i<o0.
Nt n=0 p=0

Using egs(3.4) and (3.6) in the expression
Vi (:Np) = E[Rjir, ANDRi7 ANp ] - E[Rjir, (NDIE[R;7, AN

12

(3.3a)

(3.3b)

(3.4a)

(3.4b)

(3.5a)

(3.5b)

(3.6a)

(3.6b)

(3.7)




we obtain

| Npb1Nphd o
VB (Np= 5 ¥ ¥ {Bxmxim-hxi@xip-) - IR}
Nt n=0 p=0
for 0<I<Np-1 (3.8a)
1 Npll-INg T .
== ¥ ¥ {Eximxa-lhxpx;p-in) - RO}
Nt n=0 p=0
for -(N-1)<1<0. (3.8b)
We now define
o(n,1) = x;(n)x; (@ - ) (3.92)
and
Roo(k)) = E[0(m,)o*(n - k,))] (3.9b)

so that, assuming stationarity, the covariance of ¢(n,l) can be expressed as

Coo(k:h) = E[{o,)) - E[o(m,D]} {0*(n-k,]) - E[¢*(n-k,D1} ] (3.102)
= Ryp(k,]) - E[0(n,DIE[$*(n-k,D]. (3.10b)

Also, from eq(3.9a)

E[6(n,D] = R;(D) (3.11a)

and
E[¢*(n-k,))] = Ry(h) (3.11b)

so that (3.10b) becomes

Cpokl) = Ryg(k,)) - IRGDI2 (3.12a)
= E[x;(n)x; (n - Dx; (n - k)x;(n - | - k)] - IR(HI2. (3.12b)
Using eq(3.12b) in (3.8)

13




NT'I' 1 NT'l'l

1
Ve (Np=—"35 X X Cyon-pl 0<I<N;-1
Nt n=0 p=0
{ Nplll-INgpllj-1,
=5 Y 2Cum-pll)  -(Ni-1)<I<0.
Nt n=0 p=0

Using k = n - p where

‘(Np-1-1)SKk<Np-1-1 for 0<I<Ng-1

-(Np-M-1)<k<Np-llI-1 for -(N-1)<1<0.

We also note that eq(3.14b) holds for all | so that

Np-l-1
Vg, (LNp) = —éfk (g | l[x)\zT - il Cppkl) O <I<Np-I

T k=-(N-I-

Np-llJ-1

Nt k=-(N-ll|-1)

However, for negative lag |, we have

Coo(klll = Coylk,)

and eqs(3.15) can be written as

| Nl

Vg..(LNp) =
Bii( T) NTk=—(NT-l”-1)

i+ Ikl
[1 ] —{?—] Cook.)

=y Y [Np- K] Cypll)  -(Npo1) 1 <0,
T

(3.13a)

(3.13b)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

(3.16)

(3.17)

for both positive and negative values of |. For processes with zero-mean, jointly
stationary Gaussian quadrature components, the imaginary terms in C¢,¢(k,l)

cancel when summed over positive and negative values of k (Appendix A) so that
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N-llj-1

i+
Vi, (LNq) = Nl;k:(NT-u[-l)[l - 'N':'J Re{Cyyk.h}. (3.18a)
Nl ”Jﬂk
=N, 3 [1 ] [IR;j01 + Re{F;(Lk))}]  (3.18b)
T k=-(N_-ll|-1)
where
R;;(%) = E[x;(n)x; (n - k)] (3.19)
and
F,;(1k) = E[x(n)x;(n - | - K)]E[x;(n - Dx;(n - k). (3.20)

Using eq(A.6b) in Appendix A, it can be shown that in the special case where the
quadrature components maintain the relations

Rii() = R (3.21a)
and

Ri20) = - RE) (3.21b)
then

Re{F;(Lk)} = 0 for all I,k. (3.22)

We note that egs.(21) hold for the special case of wide-sense stationarity of the
narrowband bandpass processes (2]. In this case, eq(3.18b) becomes

o N M+1k!
Vi, (LNp) = Y [1 - 'T\?} IR, (k)I%. (3.23)
T k=-(N_-ll[-1) T

3.2 VARIANCE OF THE CROSS-CORRELATION FUNCTION ESTIMATOR

Analogous to the derivation leading to eq(3.18b), the variance of the
biased, time-averaged cross-correlation function estimator for processes

described by the general Gaussian case noted in section 3.1 has been shown [2] to
be

15




NT‘"l'l

1 ll+IkI .
Vg..(LNp =33~ Y [1 - ]Re[R~-(k)R--(k)+ Fii(Lk)] (3.24)
BTN eyt N R !
where
Fyi(16) = Elx(xin - 1 - KIE[x; (@ - x; (n - KL, (3.25)

We note that the term Re[Fij(l,k)] will contribute a dependence of VBij(I,N) upon
cross-correlation terms such as the cross-correlation parameter Ip;;l defined in

section 2.4 and {1,2]. In [2], we show that for joint wide-sense stationarity of
narrowband multichannel bandpass processes,

R() = R§ () (3.262)
and
R = - Ry () (3.26b)

which leads to Fij(l,k)=0. Under these conditions, eq(3.24) reduces to

1 Np-1li-1
Nt k=-(N4-lll-1)

Thus, for joint wide-sense stationarity of the narrowband multichannel
bandpass processes, the variance of the cross-channel correlation function
estimator is independent of the cross-channel correlation. This result is verified
via simulated results in sections 5.2 and 5.4.

I+
Vi (LNp) = [1 :

Ny ]Re[Rii(k)Rjj(k)]~ (3.27)

3.3 SAMPLE VARIANCE OF THE CORRELATION FUNCTION

Consider Ny realizations of the random process x;(n). Let each realization
be indexed by the integer o; a=1,2,...,Np. Corresponding to the realization with

index o, let ﬁiij(l,NTla) be the biased, time-averaged cross-correlation function

estimate using N observation samples. The sample variance of the time-averaged

16




cross-correlation function estimate is computed from Ny, statistically independent
realizations using the expression

N
1 R —
Var[R;jr (L.Np):Ng] = N1 2 IR 7, (LNl - Ry, (L Nglool? (3.28)
a=1
where
— 1 MR
ﬁiij(LNRla): Ng 21 ﬁij'rb(l,NTIOL)- (3.29)
o=

The autocorrelation function is obtained for i=j. Eq.(3.28) is used to compute the
variance of the time-averaged auto- and cross-correlation function estimators in
chapter 5 for comparison with eqs(3.23) and (3.27), respectively.
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3.4 ERGODICITY CONSIDERATIONS

In section 2.4 and [1,2], we presented functional forms for the auto- and
cross-correlation functions to obtain desired temporal and cross-channel
correlation of the processes to be synthesized. Using eq(2.30) in eqs(3.23) and
(3.27), we obtain [2], respectively

o N ll+1k| Ikl
Vg (LNp) =~ [1- N ]on(xu) (3.30)
" T k=-(N-llI-1) T
and
N-lll-1
1 H+1kl Ikl 2 Ikl ,
VBN TN (NIl 1)[1 NT] o )0z (2o
=-(N-ll-

cos[6;(1) - 8(D)]. (3.31)

When invoking the ergodic assumption, one would like the variances of the
estimators expressed by eqs.(3.30) and (3.31) to be suitably small so that the
time-averaged correlation function is a satisfactory approximation to the
ensemble correlation function. For a given A;; and ou, these analytic expressions
provide a means for determining the required N+ to minimize the variance to a

specified level. A unique aspect of this development is the determination of these
expressions in terms of both the observation window size Ny, the process

parameters o2 and A, and, for Vg..(I.N.), the phase angles 6;:(l) and 0::(l). These
ii i BU T g 1 1
expressions indicate that for A.<1, their limit approaches zero as N approaches

infinity. Thus, for stationary processes, ergodicity holds in all cases except for

total temporal correlation (ie., A;=1). In this case, VB (I Np)= 0“, ie., the square

of the process variance. Furthermore, as 0“ and A;; change, eqs(3.30) and (3.31)
provide a quantitative measure expressing the requirements on the observation
window size to obtain time-averaged correlation function estimates which yield a
close approximation to the ensemble averaged correlation functions.
Figure 1 is a plot of the error variance Vg (I,N;) for the biased, time-
11

averaged autocorrelation function estimator versus the number of time samples
N used in the estimate. Each curve is plotted for a specific value of the temporal

18




. . 2 !
correlation parameter A, while ¢j; was fixed at a value of 4. As these curves
reveal, the error variance decreases with increasing N, however, the rate of the

decrease is highly dependent upon the temporal correlation of the processes; ie.,
for processes with low temporal correlation (A,; approaching zero), VB“(I,NT)

diminishes rapidly for increasing N;. However, for processes with high temporal
correlation (A;; approaching unity), VB“(I,NT) decreases slowly. At A;; =1, the

process is no longer ergodic, so that the error variance no longer decreases as a
function of N.

20
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Figure 1 Variance Vg (I,Ng) at =0 for the time-averaged autocorrelation
11
function estimator as a function of N, time samples with the one-lag

. 2
temporal correlation A;; as a parameter and 6;;=4.
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3.5 THE NORMALIZED CORRELATION FUNCTION

The normalized time-averaged auto- and cross-correlation function
estimators are briefly discribed in this section. They are defined, respectively, as

£:i(,N1) = R;;(LNp)/R;;(O,Np) (3.32)
and

£;(LNp) = R;(,Np)/R;;(ONp). (3.33)

Specific forms of the estimators such as the biased correlation function estimator
presented in eq(3.1) are used to evaluate the numerator and denominators of
€qs.(3.32) and (3.33). The normalized forms differ significantly from the
corresponding unnormalized form presented above in as much as the variance of
the estimates have a significantly different dependence upon process correlation.
We note that each estimator is expressed as a ratio of two random variables.
Each of these random variables, however, is highly correlated; ie., they are each
computed using the same observation data. As a result, the deviation of Rij(I,NT)

about its mean level will be ‘tracked’ similarly by ﬁij(O,NT); ie., if ﬁij(l,NT) lies
above (or below) its mean level, likewise, ﬁij(O,NT) will lie above (or below) its

mean level. As a result, the normalized correlation function estimator will be
closer to its respective mean and its associated variance is reduced. As noted
above, its dependence upon process correlation will be quite unlike that of the
ordinary correlation function estimators. In fact, it will be similar to that of the
parameter estimators described later (see section 4.5).

The variances associated with the estimators described by eqs(3.32) and
(3.33) are difficult to develop since they involve ratios of two correlated random
variables. In [17], a taylor series expansion is used to derive approximate
expressions for the variance of these estimators.
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4.0 AUTOREGRESSIVE PROCESS PARAMETER ESTIMATORS

In this chapter, we describe the three parameter estimators used in this
study; namely, the multichannel Strand-Nuttall estimator [11,12] and two versions
of the Yule-Walker estimator [9,10]. In addition, we present a recursive method
used to calculate the multichannel matrix coefficients known as the Levinson-
Wiggins-Robinson method. The Burg estimator [13] and the multichannel
Strand-Nuttall estimator are equivalent for the single channel case.

Expressions for the error variance of time-averaged parameter estimators
are difficult to determine. However, the Cramer-Rao bound (CRB) provides a
reference for the performance of the estimators. An analytic expression for the
exact Cramer-Rao bound (CRB) of unbiased AR parameter estimates has been
presented [6]. The expression was shown to converge to the asymptotic form of
the CRB for large measurement time sample sizes. In chapter 5.0, we show
simulated results for the error variances of the estimators and compare these
results to the exact CRB as a function of the correlation of the processes.

4.1 THE YULE-WALKER ESTIMATOR

The Yule-Walker estimator used in this study initially uses estimates in the
covariance matrix of eq.(2.14). The Yule-Walker equation is then solved to
obtain the estimates of the parameters and the white driving noise covariance
matrix. The two versions of the Yule-Walker estimators used in this study differ
in that the estimates of the covariance matrix are obtained using either the biased
or the unbiased covariance estimator. They are refered to here as the Yule-
Walker with biased covariance (YWBC) estimator and the Yule-Walker with
unbiased covariance (YWUBC) estimator, respectively. The biased covariance
estimator is expressed in eq.(3.1). The corresponding unbiased estimator is
obtained by replacing the denominator of eq.(3.1) by Ny-l. We point out,
however, that although the covariance estimator may be unbiased, the
corresponding Yule-Walker (YWUBC) estimator is not unbiased.

4.2 THE LEVINSON-WIGGINS-ROBINSON RECURSION

We now develop a recursive procedure to determine the multichannel
forward and backward matrix coefficients. The procedure was initially presented
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by Wiggins and Robinson [16] based on the scalar version of Levinson [14]. The
approach presented in this subsection, however, is similar to that used by Strand
[11]. Consider the pth order update of the multichannel forward PEF coefficient

expressed in the form

A0 ] [ AL 0) ] [0]
Ap(D) A, (1) By, (p-1)
AL(2) A (2 :
A= P - p-:l( ) . B, [T (4.1)
Ap(-D) | | Ap,y(p-1) By (1)
LA L oo J L Bp(0)

where [I'¢]; is a constant matrix called the forward reflection coefficient matrix
and AP(O)=AP_1(O)=BP_1(O) = I, the JxJ identity matrix. The update equation is

therefore expressed as

Ap(k) = Ap-l(k) + Bp-l(p'k)[rflp k=1,2,....p-1 (4.2a)
— [rf]p k=p (4.2b)
= [0] k>p (4.2¢)
= Ap(O) =] k=0. (4.2d)

Consider the order update of the backward PEF coefficient as

[ By® | [ 101 ] [ Apa® T
Bp(p-1) | | Bpa(p-D A, ()
Bp_ . (1) = o 2(1) + : [rb]p 4.3)
p p-1 Ap.i(p-1)
| By | LBu@ I L o

where [I'},], is the backward reflection coefficient matrix. The update equation is
blp P q

expressed as

By(k) = B, (k) + Ay, (p-K)ITpl,  k=1,2,...p-1 (4.42)
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= [rb]p k=p (4.4b)

= [0] k>p (4.4¢c)
= Bp(O) =1 k=0. (4.44d)

We now determine the conditions under which the above equations hold.
First, we take the Hermitian transpose of eq(4.1) and postmultiply both sides of

the equation by [l'i&(_]p +1- For the LHS, the normal equations provide

H ~ H
Ap [Ryxlpe = {[Z]p [0]...[0] } (4.5a)
where [Zf];{ is the JxJ forward error covariance matrix for a pth order filter.

Each side of eq(4.5a) is a vector of matrices containing p+1 matrix elements.
Taking the Hermitian transpose of _A_p in eq(4.1) and using it in (4.5a), we also

have

Ap Rxlper = { Apt 101} Ryylpe + (Telp { 101 Bpy } (Rl (4.5b)
so that

{(Zlp (01101 } = { Apt 101} (Ryylpur + (Telp { 101 Bpy }(Ryylorre  (4.50)
XX'p p

Let us now introduce a partitioned form of [Ryy],,,, such that

" R, (0) R, (1) R,(2)..R, (p) ]

R,(1) R,©) R(1) R (p-]) [[ﬁ I Sy }
. . . . . P P

[Ryxlper = : : SR = o (4.6)
R, (1-P)R, (2-P)R,,(3-p)... R (1) Sxx)p [Rxx(0)]
_ R, (-p) R, (1-p)R,,(2-p)... R,,(0) |
where (S,4)p is a vector containing p matrix elements and is defined as
Sxdp = R -PLRy(1-)s,R L (D, 4.7)

We now consider
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H ~ H
{Ap. (01} [Rxx)ps1 = {Ap. (0]} l:[ﬁ&&]P Sedp :l (4.8a)

Sxdp RyxO)]

H ~ H
= {ApiRyy ], ApiSxp }- (4.8b)
However, we can reduce the order of eq(4.5a) by one and obtain the Hermitian
transposed vector which will now contain p matrix elements, so that

ARyl = ([Zlpy (O] ... (01). 4.9)
Let us now define
(Al = Api(Sxdp = (1 Api(D) Api(D) .. Apa(p-D} [ RualP) (4.10a)
Rxx(p'l)
Ry(1)
-1
=R, (p) + :()E_,IA;‘_ (KR (p-K). (4.10b)

Substituting eqs(4.9) and (4.10a) in (4.8b), we have

H ~ H H
(Ap1 (0]} [Rygdosy = ([Zf)p-1 (0] ... [0] [Alp ). (4.11)
We will utilize this expression later. We now repartitioned [ﬁulpﬂ into

the form given by

[ RXX(O) RXX(I) RXX(Z) b Rxx(p) ]

i R, (-1) R,(0) R (1) ..R, (p-1) I:Rxx(o) @xx)fpi:l
[RM]p+1 = : : : : : = _ (4.12)
R, (-p)R,,(2-p)R,,(3-p)... R (1) Ryx)p Ryxlp
— Rxx('p) Rxx(l'p)Rxx(z'p)'" Rxx(O) —~
where

Ryp = [Rex(1) Rie(2) .. Ry (p)I. (4.13)
We now consider
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{101 ﬁgl} [ﬁﬂ]PH = {10 BII’{"} I:Rxx(o) (-Kxx)g}

(.Kxx)p [ﬁx_x_]p
= {.BI[;I-](RXX)I) Bg—l[ﬁ&]p}‘

However, from the backward multichannel normal equations, we have

B [Rylp = {10 ... [0] [ZyTp1 ).
Let us now define

~H H
[A ]p = Bp-l (.&xx)p
H H H

= {Bpa(p-1) Bp1(p-2) .. Bpy () I} [ RulD)
Rxx('z)
R,x(-p)

p-1 H
= Rxx(-p) + kz Bp-l(k)Rxx(k'p)-
=1
Substituting eqsi{4.15) and (4.16a) into (4.14b), yields
H

(0] Byt )} (Relpss = {14y 0] . (0] [Zylp ).
Using eqs(4.11) and (4.17) in (4.5¢c), we obtain

((Zdy [0] ... (01} = {(Zelp [0] .. (0] (Al }

+ [Tl {(ATp (0] ... (0] [Zplps ).

(4.14a)

(4.14b)

(4.15)

(4.16a)
(4.16b)

(4.16¢)

(4.17)

(4.18)

And so, in order for eq(4.1) to hold, we must satisfy eq(4.18). From eq(4.18),

we have

(Zelp = (Sflps + (Telp (A

and
[0 = [Aly + [Tely [Zphpr.
From eqs(4.20) and (4.2b), we have
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H H H H 4.
Tep = Ap®) = - [Alp {[Zplp} 7" 4.21)
We must now return to eq(4.3) and carry out a similar procedure that was

carried out for eq(4.1); ie., we post-multiply _Ii? by [I'iﬂ]p +1 SO that

By [Rglper = {10 .. [0 [ylp ). (4.22)
For the first term on the RHS of eq(4.3), we postmultiply by the
partitioned form of eq(4.12). In this case, we obtain the same results as
expressed in eqs(4.14a) through (4.17). For the second term on the RHS, we
postmultiply by the partitioned form of eq(4.6) so that we obtain the same results

as expressed in eqs(4.8) through (4.11). Substituting these results into eq(4.22),
we have

26




{101 .. [0 (Zplp } = {[A']p (0] ... [O] [Eplpe1)
+ [Tylp {(Zelpry (0] .. 101 [Alp }. (4.23)

Eq(4.23) must therefore be maintained in order for the recursion in eq(4.3) to
hold. From the above equation, we have

(Sl = Syl + [Tylp (Al (4.24)
01 = (AT + (Tplp [(Zelpr. (4.25)
From eqs(4.25) and (4.4b), we have

H H +H H .
Mplp =Bp® =- (A, { [Zelpa )" (4.26)
Before summarizing the pertinent recursion equations used to estimate the

forward and backward coefficient matrices, we can at this point develop several
important relationships. Using equations (4.21) and (4.25) in (4.19), we obtain

(Zp = [Sdp + [Telp (A (4.272)
= (SR - A Tyl [Eglpae (4.27b)

Using eq(4.26) in (4.27b), we have

(Zely = [Zdp: - Ap () By () [Zelpy (4.282)
so that

=y = {1- Ay By®} [Eelps. (4.28b)
Similarly,

Zply = {1- By @Ay @)} [Zylps. (4.29)

Let us also consider the matrix identity

H ~ H ~ H
(Apy 101) [Rﬁlpﬂ[ o }= [[[01 Bh 1) [Reylpns [Ap_lﬂ (4.30)

By (0]
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which follows since [Ryy];.1= [ﬁ&]f,*ﬂ. Using eqs(4.11) and (4.17) in (4.30), we

can write

{[Zf][:_ 1 [0 ... [0] [A]I:} - o]

Bp.1(-D) | _
L I -
~ canH H —H
{[A]p {0] ... [O] [zb]p-l}" I
= Ap1(2) 4.31)
Ap-l(p‘l)
L . 0] . .

so that after carrying out the matrix multiplications in eq(4.31), we have
H |
[Alp =[A,,. (4.32)

Eq(4.32) is useful since it reduces the computations involved in the

determination of the reflection coefficient matrices; ie., eqs(4.21) and (4.26) can
both be expressed in terms of [A]p, so that

H H H H ,.
[Telp = Ap (@) = - [Alp {[Z)p1 ) (4.33a)
H H H .
[Tplp = Bp @) =- (AL {[Zdp1 } 7. (4.33b)
In the single channel case, the scalar forward and backward prediction
error variances are equal. Since [A]p is a scalar, it follows from eqs(4.33) that
*
2p(p)=by(p).
We again note that the expressions developed here are in terms of the
Hermitian operator as opposed to those often shown in the literature. This stems

from the notation used to express the autoregressive equation in eq(2.1) and
provides a more consistent notation as stated previously. We now summarize the
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pertinent equations for the recursion to update the forward and backward PEF
coefficients. First, we have the definitions

H B! H

[Aly =R, (p) + }ZIAP_I(k)RXX(p-k) (4.34a)
H ! H

ATy =R (-p) + kE_:pr_l(k)Rxx(k-p). (4.34b)

However, as shown previously

[Aly = [AT,, 4.35)
Hence, we need use only one of the equations in eqs(4.34). Next, from eqs(4.33)
[Ty = Ap(p) = - (AL} {[Zplpny )} ! (4.362)
(Tplp = Bp(p) = - (Al {[Zdp, } ! (4.36b)
where o o o
Zdp = {1- Ap @) By ()} [Eelps. (4.37a)
H H H H
[Zplp = {I- By (A, (@)} [Zplpr- (4.37b)
Then,
; jA§.1<k>+[rf1;'B§.l<p-k) k=1,2, ..., p-1
Ap (k) = . (4.38a)
. [rf]p k=p
L [Bpa00 + Tylp Apapk) k=1,2, . p-1
Bp (k) = 3 , (4.38b)
\ (Tolp k=p.

We initiate the procedure using the initial conditions for eqs(4.37) as

[Zdg = (Zp]5 = R, (0) so that eqs(4.38) provide

AT = [T} = - [A1 {1200} (4.392)
= - Ry (DR 3x(0) (4.39b)

and
By (1) = [Ty} =- (Al {IZ }" (4.39¢)
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= - R (- DR x(0). (4.39d)

The procedure continues recursively until the desired order is reached.
4.3 THE STRAND-NUTTALL METHOD

The multichannel harmonic mean algorithm which is a generalization of
the Burg method was proposed independently by Strand [11] and Nuttall {12]. In
the single channel case, Burg [13] estimated the reflection coefficients directly
from the data subject to the constraint of minimizing a performance index
consisting of the mean-square values of the estimates of the forward and
backward prediction errors. In this case, the scalar forward coefficients of linear
prediction are the complex conjugates of the backward coefficients. In the
multichannel case, however, the forward and backward reflection coefficient
matrices are related by eqs(4.33a) and (4.33b), respectively. These equations
indicate that the multichannel forward and backward reflection coefficient
matrices have a more complicated relationship than in the scalar case.
Specifically, they are related through the forward and backward error covariance

matrices. Solving eqs(4.33) for -[A]p and noting that the error covariance
matrices are Hermitian, we have

H H H H
{Alp = Ap () [Zplp-1 = [Zelp-1 B(p)- (4.40)
From eq(4.38) at k=p, we have

H H H H
- [Alp = [Filp (Zplp-1 = [Elp-1 (Tl (4.41)
These equations show the relationship between the forward and backward
reflection coefficients and error covariance matrices as well as the matrix [A];{ .

In the Strand-Nuttall algorithm, it is this latter matrix that we solve for. In
eq(4.41), note that the error covariances can be obtained from stage p-1. Two
additional well known relationships between the forward and backward error
residuals can be expressed as [10,11]
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£,(n) = £,,(@) + Ap (p) By, (n-1) (4.42)
and o
By(n) = By, (@-1) + Bp () £, (). (4.43)

In this section, we will establish a performance function which depends
upon estimates of the forward and backward error covariance matrices. This
performance function will be minimized with respect to the matrix [A]p . In the

multichannel case, the reflection coefficients are chosen such that eqs(4.41)

through (4.43) are satisfied. These are the constraint equations under which
-[A]p will be selected to minimize the performance function. Using the notation

of Nuttall [12], we consider the unbiased error residual matrices over the
available data for a filter of order p as

N
E,= R%; Y £,(k)ep () = E’S (4.442)
k= p +1
F,= N D 2 ﬁp(k)ﬁ.p (k) = (4.44b)
k=p+1
Using eqs(4.42) and (4.43) in the above equations and expanding yields
1 N
Ep = N_p %+Il:§p 1(k)§p 1(k) + Ap (p)ﬁp 1(k- l)ﬁp-l(k) +
€p- l(k)ﬁp 1k-DA,(p) + A (p)ﬁp (k- l)ﬁp 1(k- 1)Ap(P)] (4.45a)
and N
1
Fo=Ngp §+£ﬁp-l(k-1 Bp(k-1) + By (P (0Bpa(k-1) +
By-1 (k- Dep 1(IB,(p) + By (Plep (K)ep-1(K)By(p)]  (4.45b)
so that

Ep = Rerlp., + Ap ) Ryl + Ryl Ap(®) + Ap PIRpplp 1 Ap(P)  (4.462)

H H H
Fp = (Rpplp-1 + Bp () Replp.1 + [Replp-1Bp(P) + By (D) Reelp By(®)  (4.46b)
where the estimated time-averaged error covariance matrices are expressed as
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1 N
Rerlp1 =N 2 Ep100Ep-100) (4.47a)
k=p+1

1 N
Reolpr =Np 2 Ep-1(0Bp1(k-D (4.47b)
k=p+1

H 1 X H
Replp1 =N 2 Bp1(k-Dep1(®) (4.47¢)
k=p+1

N
1 H
Roblp1 =N 2 Bp-i(k-DBp-1(k-1). (4.47d)
k=p+1
In the Strand-Nuttall algorithm, we minimize the sum of the traces of the
weighted error matrices

Lin((A)p) = tr(ApEp) + tr(Qp1Fp) (4.48a)

where Ap,y and Qp_l are Hermitian, positive definite matrices which weight the
matrices E, and Fp, respectively. These matrices provide arbitrary weights and

their selection will be determined later. Eq(4.48a) is the performance function

mentioned previously. In the single channel case, we can consider minimizing an
index of performance Ip(l"p) expressed here as the weighted sum of the mean-

squared values of the forward and backward prediction errors ep(n) and Bp(n),

respectively; ie.,
L,(Tp) = aE[le,(m)*] + (1-a)E[IB,(m)’]. (4.48b)

Burg considered the minimization of eq(4.48b) for the case where a=1/2.
We will show that the minimization of eq(4.48a) as developed here, leads to a
generalization of the results obtained by the minimization of eq(4.48b) with

a=1/2. Using eq(4.40), let us define G;I such that
H H H H H
Gp =- [Aly = Ap () [Zplp-1 = [Elp-1 B,(P)- (4.49)

Changing notation for the Hermitian error covariance matrices to a form similar
to Nuttall's [10], let
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Up-] = [Ef]p-l (4.50&)

Vpr = (Zplpy (4.50b)
so that
H H -
Ap (P) = Gp [Vp 11 (4.51a)
H -
Bp (p) = G,[Up.iJH. 4.51b)

Using the last two equations together with eqs(4.46), we can write

ApBp+ Qo Fp = Ay LRl + G?{ﬁ;,‘.l]H[ﬁfb];l_l + Replp[Vpa1G,
+ Gp [V TRy (V]G }
Q1 { Ruply.t + GplUp IR 1, + [ﬁfblﬁlf{l[ui,‘.ﬂG?
+ G Up HRel [UiIGy | (452)

Taking the trace of eq(4.52) and rearranging terms, we obtain

tr[Ap By + Q, Fpl =

= tr{ Ap-l[ﬁff]p-l + Qp-l[ﬁbb]p-l + Ap-ngI[vi)l-l]H[ﬁfb]gl-l
+ Qp-l[ﬁfb]gl[U;-lng }
s tr{ [Ap 1Rl [Vl + Ap1Gp Ve IR, (Vi1 G,
+ O GolUp MR 1, + QG U H(R el [Up11Gp |-

(4.53)
We now consider the matrix relation

tr(KL] = tr[LK] (4.54)

where K and L are conformable matrices. Noting that all the above matrices are

JxJ, the last two terms in the second trace of eq(4.53) can be reexpressed (ie.,
with K= Qp_le and L defined accordingly for each of these last two terms). Gp

can then be factored out in the second trace term so that
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tr(Ap By + Q)] =
= tr{ ApReglyr + Qi (Rploy + Ay Gy Ve TR oy
H .- H
+ Qp_llﬁfblp-llup;.{ncp }
e [Ap (Rl [Vpal + Ap Gy Vg IRy 1, (Vo)

+ [U;‘I]H[ﬁﬂ)]p-lgp—l + [U;-l]H[ﬁff]p-l[Ui)l.l]G;I)QP_I]GP } .

(4.55)

Nuttall now minimizes eq(4.55) by choice of G? (in the Hermitian notation
used here), subject to eqs(4.41) through (4.43). Eq(4.49) can then be used to
solve for the coefficients Ag(p) and Bg(p) which achieve this minimization,.

Nuttall [10] points out that the above equation is minimized by setting the
coefficient of Gy, [contained in the large square brackets of the second trace term

of eq(4.55)] equal to a null matrix [15]. Premultiplying this coefficient by [A'pl_l]

and post multiplying by [Q;_IJ, we obtain

. - H.. - -
Replp 1 [Vp- 111 + Gp [VpalH [Riplpt[Vp-1] Q-
- - - - . H
+ [ApllUp (R 1y + ApalUp IRl [Up1Gp = (0]
so that after rearranging terms

- Gp Vot H [Rplp (Vi1 @y - Aps[Upa IR gl (Up1Gp =

= [Replp [Vp-tl Q1) + [ApllUp- HR g L
However, from eq(4.49)

so that
Al AH + BH[A} = CH

(4.56a)

(4.56b)

(4.57)

(4.58)

A H. . . . .. . . . .
where [A]; is recognized as an estimate since limited data is being used in this

equation and

AH = [Vbl_llH [ﬁbb]p-llvi)l—l] Qi)l-l
BH = AU MRl (Up]
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CH = Ry 11 [Vt )[Qpe1] + [Ap (U IR g L (4.59)

In reference [12], Nuttall examined several forms of the weighting matrices
Ap.y and Qp , and showed that stable conditions are achieved if

Apa=Upy = [Zy, (4.60)
and

Q, = Vp=[Zplp - (4.61)
Thus, the constant matrices AH, BH and CH simplify to

. - H
AP = [V H Ryl = [V lH [Ryplp (4.62a)
- H -
BY = (Rl [Up-11 = (Ryglpet [Up I (4.62b)
CH=2(Rpyl, (4.62¢)

where [ﬁbb]p-l’ [ﬁff]p_l and [Ui,l_,] are Hermitian. We note that AH and BH each

. . . -1 -1
contain the product of two matrices. The matrices [Up_,] and [ Vp_I] are the

forward and backward error variances for a filter of order p-1, respectively.
They are obtained from the Levinson-Wiggins-Robinson recursion. The matrices

[ﬁff]p-l and [ﬁbb]p-l’ however, are time-averaged estimates of these variances
using limited data [see eqs(4.47)]. Using eqs(4.62), eq(4.58) is now written as

H . - H H -1 H
(R (Vo1 [Ryplpey + [Reglpet (Up-1MATp = 2(R g . (4.63)
In the single channel case, each element is a scalar where
_ 2

and Ap (p) = [Telp = - [Al5 [V} JH becomes

3*

axp) =5 =-—75. (4.65)
Op.1

From eqs(4.47), the terms [ﬁbb]p-l , [ﬁff]p-l and [ﬁfb]p-l for the scalar case can be

expressed as
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* 1 N
Reflp-, = Reglp.1 = Np & lep. 1 (k)12 (4.66a)

k=p+1
N
Repl,s = ﬁl_—ﬁ k Y Tp_l(k)ﬁp’fl(k-l) (4.66b)
=p+
1 N
Ryplp-y = [ﬁbb]:)-l-l =Nop 2 1By (k-1)I2. (4.66¢)
k=p+1

Using eqs(4.64) through (4.66), the scalar version of €q(4.63) can be written as

N N N
-a§(p)[ ZIBP-I(k-l)Iz}-{ Zlca,.l(k)lz]a;(p)= zep_l(k)Bp"fl(k-l)].

k=p+1 k=p+1 k=p+1
(4.67)
Solving eq(4.67) for a;(p), we have
N *
2 ¥ [ep1(k)Bpatk-1)]
ab(p) = % = . o . (4.68)
> [le, ()12 + 1B, (k-1)12]
k=p+1

The result expressed in eq(4.68) is the estimate of the single channel Burg
reflection coefficient. This result is equivalent to that obtained by minimizing
eq(4.48b) with respect to Fp [13]). Thus the results presented here are a

generalization of the single channel Burg algorithm.
4.4 SOME CONSIDERATIONS OF BIASED PARAMETER ESTIMATORS

In this section, we briefly develop a relationship that will be useful in
evaluating the computed estimation results in chapter 5.0. Specifically, we
develop a relationship between the crror variance, the sample variance and the
bias of the estimate.

Consider the estimate 4 of the parameter a. The error variance of 4 is
expressed as
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V. =E{[4-a][4-a]*} (4.69a)
= E[1412] - aE(4*) - a*E(Q) + lal? (4.69b)

For a biased estimator

E(4) = a + B(a) (4.70a)

E(4*) =a* + B*(a) (4.70b)
so that

V. = E[1412] - lal2 - aB*(a) - 2a*B(a). (4.71)

Using eqs(4.70), the variance of 4 is expressed as

o§ = E{ [ﬁ -EAQ)][4 - EQ)]*) (4.72a)
= E[1412] - EQ)E(4%) (4.72b)
= E[1412] - lal2 - aB*(a) - a*B(a) +/B(a)2 (4.72c)

Eqs(4.71) and (4.72c) yield

V, =03+ IB@)P? (4.73)

. 2 . . .
The quantity 64 can be estimated by the computation of the sample variance

of 4. In chapter 5.0, we compute the quantities in eq(4.73) for verification of the
results. In addition, we will note the dependence of each upon the correlation of
the processes for various estimators.

4.5 SOME ERROR VARIANCE CONSIDERATIONS OF PARAMETER
ESTIMATORS

As noted in the beginning of this chapter, expressions for the error
variance of time-averaged parameter estimators are difficult to determine. This
is due to the fact that the estimators generally involve ratios of correlated random
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estimates. For example, from the Yule-Walker equation, the estimate ﬁl(l) for
an AR(1) process is expressed as

4,(1) =- %(-61)) (4.74)

while for an AR(2) process, we have the estimators

_ ROR(-1) - R(HR(0)
ROR(0) - R(HR(-1)

4,(1) (4.75a)

and

_ RMR() - ROR©O)
~ ROR(0) - R(HR(-1)

8,(2) (4.75b)

The correlation among the estimates R() is due to the use of a single set of
observation data in the estimation procedure. The above equations reveal a
similar form to that noted in section 3.5 for the normalized correlation function
estimators; ie., the deviation of the numerator terms about some mean level will
be 'tracked' similarly by the denominator terms. If the numerator terms increase
(or decrease), the denominator terms will also increase (or decrease). As a
result, a type of 'normalization’ results so that the estimator will be closer to its
respective mean and its associated variance is reduced as compared to the
corresponding performance of the individual estimates R().
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5.0 RESULTS

5.1 COMPUTED VARIANCE OF THE AUTOCORRELATION FUNCTION
ESTIMATOR

In this section, we validate eq(3.30) which is a special case of eq(3.27)
using a real, exponentially shaped autocorrelation function. The real AR(1)
process also has an exponential autocorrelation function and we use it here in the
synthesis of the observation processes. Its autocorrelation function is expressed
as

Rr(k) = Ryg(0) [-a(D)1K (5.12)
= oag [a(D), (5.1b)
where
62
Rar©) = 773501 Oog (5.2)

2 . . .. .
and 6, , a(1) and G;Zm are the white noise driving variance, the AR(1) parameter,

and the variance of the AR(1) process, respectively. In the special case of the
AR(1) process used in this example, the constants in eq(2.30) were chosen such

that A;;=-a(1), C§=6,2\R and 0,,(1)=0 for all I. Table 1 contains the parameters used

in the process synthesis procedure described in section 2.4. The variance oﬁ was
held fixed at 4 while A,; was varied using 0.1, 0.7 and 0.99.

Fig. 0121 A N Ng
2 4.0 0.1 100 10,000
3 4.0 0.7 100 10,000
4 4.0 0.99 100 10,000

Table 1 Parameters used in the synthesis of the processes analyzed in Figs.2
through 4.

Figs. 2 through 4 show the biased time-averaged autocorrelation functions
computed with eq(3.1) and their associated variances for the processes described
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in the Table 1. For each figure, plot (a) shows six realizations of the biased,
time-averaged autocorrelation estimator ﬁTb(l) plotted over 64 lag values using

N1=100 time samples. The corresponding ensemble averaged estimator ﬁg(l) is
shown in plot b using N;=10,000. The sample variance Var[ﬁiin(l,NT):NR] of the

biased time-averaged autocorrelation function computed using eq(3.28) with
Ng=10,000 is displayed in c. The corresponding analytic calculation of VB“(I,NT)

using eq(3.30) is shown in plot d. The decrease in this quantity as a function of |
is a result of the weighting associated with the biased estimator. A similar
behavior is noted in [4] for continuous-time processes. The computed results
(plots c) are in excellent agreement with the analytic expressions shown in plots d
(note the scale change between plots ¢ and d in Fig. 2).

In Fig. 5, the maximum value of VB“(I,NT) which occurs at I=0 is plotted
(solid curve) as a function of A;; for Ny=100 and N;=1000 using the analytic

expression of e€q(3.30) for the AR(1) process. The corresponding sample
variances of the time-averaged autocorrelation function estimates computed at lag

zero using eq(3.28) with i=j for the synthesized data processes are also plotted (»)
on this curve. These values were computed using N realizations of the

functions. For N =100, Ng=10,000 was used while for N1 =1000, the number
of realizations was reduced to Np=1,000. Reducing Ny decreases the confidence

level associated with the computation of the sample variance Var[lﬁ,-ij(l,NT):NR].
However, the error bars representing one standard deviation from the mean are

less than the size of the printed (s).

The results shown in Fig.5 indicate the significant increase in the variance
VB_i(I,NT) as a function of A;;. In addition, it provides a measure of the required
i

observation window size necessary to achieve a specific level of the variance.
For example, the curve for N;=1000 has a very distinct knee for A;;=0.9. For

processes with a temporal correlation above this value, a larger observation data
window would be required to reduce Vg (I,N;) to values less than 0.15. We also
1

note that for N;=100, large variances can be obtained even for moderately low
values of A;;. In [2], similar plots are shown for higher values of Nr.
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Figure 2 Time-averaged autocorrelation function and its variance for an AR(1)
process; A=0.1, cf=4 a.) biased Riin(l) (6 trials) using N=100 b.) ensemble

averaged RE(I) using 10,000 realizations c.) computed sample variance of the
biased Riin(I) d.) analytical variance of the biased Riin(l).
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Figure 3 Time-averaged autocorrelation function and its variance for an AR(1)
process; A=0.7, 02:4 a.) biased Riin(l) (6 trials) using N:=100 b.) ensemble

averaged RE(I) using 10,000 realizations c.) computed sample variance of the

biased Rm.b(l) d.) analytical variance of the biased ﬁmb(l).
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Figure 4 Time-averaged autocorrelation function and its variance for an AR(1)
process; A=0.99, o§=4 a.) biased ﬁmb(l) (4 trials) using N=100 b.) ensemble

averaged RE(I) using 10,000 realizations c.) computed sample variance of the
biased Rm.b(!) d.) analytical variance of the biased Riin(I).

43




ANALYTIC N=100
] ®  COMPUTED N=100
----- ANALYTIC N=1000

VARIANCE OF AUTOCORRELATION
FUNCTION ESTIMATOR
o

0.8 -
0.6 ®  COMPUTED N=1000
0.4 -
] J
0.2 4 /
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5 Maximum variance of the time-averaged autocorrelation function
2 :
versus A;; for 6;,=4; analytical (-) and computed (¢).
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5.2 Computed Variance of the Cross-Correlation Function

Table 2 contains the parameters used in the process synthesis procedure
[1,2] for a two channel AR(1) process with real correlation functions. For the
cases considered here, the variances of the two processes, denoted as 0‘%1 and 0'%2,
were both held fixed at 4 while A, and A,, had values of 0.1, 0.5 and 0.99. The
cross-correlation coefficient Ip ! had values of 0.99, 0.5 and 0.0.

Fig. Gfl 0%2 M A2 A2 P, Nt Ng 2
6 4 4 0.1 0.1 0.1 0.99 | 100 | 1000 0
7 4 4 0.1 0.1 0.1 | 0.50 | 100 | 1000 0
8 4 4 0.1 0.1 0.1 0.00 | 100 | 1000 0
9 4 4 0.5 0.5 0.5 [ 0.50 | 100 | 1000 0
10 4 4 0.9 0.9 0.9 | 050 | 100 | 1000 0

Table 2 Parameters used in the synthesis of the processes analyzed in Figs.2
through 4.

Figs 6 through 10 show the variances of the time-averaged cross-
correlation function estimates based on the computed values of €q(3.28) and the
analytic expression of eq(3.31). The computed results are in excellent agreement

with the analytic expressions. In Figs.6c, 7c and 8c, we observe that the
computed sample variance is not affected by changes in lp,,I. This observation is

consistent with the point made in section 3.2 that, in the special case where
eqs.(3.26) hold, Fij(l,k)=0 and the variance of the cross-correlation function

estimator is independent of the cross-correlation parameter Ip ,|.
In Fig.11, the maximum value of Vg (I,Ny), which occurs at |=1,,=0, is
ij

plotted (solid curves) as a function of A=A,,;=A,, for N;=100 and N;=1000 using

the analytic expression of eq(3.31) and 0%1=0§2=4. The corresponding maximum
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ANALYTICAL N=100

2 1 . COMPUTED N=100
""" ANALYTICAL N=1000

-
~ .
-
T — ——— - G G wn - e wn = o o= o

VARIANCE OF CROSS-CORRELATION
FUNCTION ESTIMATOR

Figure 11 Variance of the time-averaged cross-correlation function at l=l,,=0

22 .
versus A=A,,=A,, for 67,= 63;=4; analytical(-) and computed (°).
values of the sample variances of the time-averaged cross-correlation function

estimates computed using the synthesized data processes are also plotted (¢) on
this curve. These values were computed using Ng= 1000 realizations of the

estimates. In several of the figures, we note the increase in the variance of VBij(l)

over the results presented in the previous section. This is simply due to the
decrease in Ny from 10,000 to 1,000 thus increasing the uncertainty of the

statistical calculations.
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5.3 COMPUTED ERROR VARIANCE OF SINGLE CHANNEL AUTO-
REGRESSIVE MODEL PARAMETERS

In this section, we consider complex autoregressive (AR) time series
models with known order and show computed simulation results for the error
variance, the bias and the variance of the parameter estimates using the three
estimators described in chapter 4.0. Both Gaussian and K-distributed processes
are considered.

5.3.1 Performance with Gaussian Processes

Complex Gaussian autoregressive (AR) time series models are considered
in this subsection. Tables 3a, b and ¢, show the estimated means, error variances
and sample variances, respectively, of the a(1) coefficient for Nt values ranging
from 10 to 500. These values were obtained for each estimator using a complex
single channel AR(1) process 'without noise’. The processes were synthesized
with the real exponential correlation function of eq(5.1b). In Tables 4a through
4f, we focus on N;=10 and 100 using more A values. The value of the bias B (the
difference between the estimates 4(1) and the true value) for each estimator is
also shown. The method described in section 2.4 was used to synthesize each
process. In the special case of the AR(1) process, the one-lag temporal
correlation parameter A is the negative of the AR coefficient. Although the true
parameters of the autoregressive process are real, the processes themselves are
complex. Thus, an imaginary component of the estimate will, in general, be
obtained. This component, however, becomes negligible in the limit as the
estimate approaches the true value. Only the means of the real part of the
estimated coefficients are shown here since the complex parts were small for

these cases. Computed values of the error variance of 4(1) and 63 are obtained

using Np=10,000 realizations where 4(1) and 63 are the estimates of a(1) and Glz,,
respectively. Fig.12a shows the error variances of (1) versus A using N;=10 for
the three estimators. Corresponding log scale plots for N;=10 and 100 are shown
in Figs.12b and 12c, respectively. Each of these plots are compared to the exact
unbiased Cramer-Rao bound [6]. We note that the error variances of the
estimators lie below that of the Cramer-Rao bound for most values of A. This
observation is not unexpected since these estimators are not unbiased.
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A true | Nt | mean Re &(1) | mean Re &(1) | mean Re (1)
a(l) YWUBC YWBC Burg Algorith.

0.1 - 0.1 10 | - 8.9437x10-2 | - 8.0494x10-2 | - 8.9294x10-2
- 0.1 50 |-9.9174x10-2 | -9.7190x10-2 | - 9.9191x10-2

-0.1 | 100 | -9.9981x10-2 | - 9.8981x102 | - 1.0031x10"!

-0.1 200 | - 1.0006x10-1 | - 9.9560x10-2 | - 1.0006x10-!

-0.1 500 | - 1.0029x10-! | - 1.0009x10-! | - 1.0029x10-1

0.5 - 0.5 10 | -4.5493x10°1 | - 4.0944x10-1 | - 4.5390x10-1
- 0.5 50 |-4.9035x10"1{ - 4.8055x10-1 | - 4.9029x10-!

- 0.5 100 | - 4.9533x10°! | - 4.9038x10°1 | - 4.9534x10-!

-0.5 200 | - 4.9724x10°1 | - 4.9475x10-1 { - 4.9722x10°!

- 0.5 500 | - 4.9872x10-1 | - 49773x10-1 | - 4.9873x10"!

0.9 - 0.9 10 |- 8.3169x10-1 | - 7.4852x10-1 | - 8.3815x10-1
-0.9 50 |-8.8284x10-1]-8.6518x10-! | - 8.8369x10-1

- 0.9 100 | - 8.9088x10-1 | - 8.8197x10-! | - 8.9110x10-1

-0.9 200 | - 8.9557x10°1 | - 8.9109x10°! | - 8.9562x10-1

- 0.9 500 | - 8.9802x10-1 | - 8.9622x10-1 | - 8.9802x10-!

0.99 - 0.99 10 | -9.6398x10°1 | - 8.6758x10°1 | - 9.6822x10-!
- 0.99 50 |-9.7772x10-1 | - 9.5817x10-1 | - 9.7979x10-1

- 0.99 100 | - 9.8209x10-1 | - 9.7226x10-! | - 9.8332x10-1

-0.99 | 200 ] -9.8573x10-1 ] - 9.8080x10-! | - 9.8623x10-1

-0.99 | 500 |-9.8801x10! | - 9.8603x10-! | - 9.8813x10-!

0.9999 |-0.9999| 10 |-9.9896x10-! | - 8.9906x10-! | - 9.9917x10-1
-0.9999] 50 |-9.9929x10-1 | -9.7931x10-! | - 9.9947x10-!
-0.9999| 100 | -9.9931x10-! | - 9.8932x10-! | - 9.9949x10-!
-0.9999 ] 200 | - 9.9945x10-1 | - 9.9446x10-! | - 9.9959x10-1
-0.9999 | 500 | -9.9955x10-1 | - 9.9755x10-! | - 9.9967x10-!

Table 3a Tabulated values of the mean for the real part of 4(1) with A and Np as
parameters and computed using Np=10,000 realizations.
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error variance | error variance | error variance | unbiased exact
A Ny of &(1) of 4(1) of &(1) Cramer-Rao
YWUBC YWBC Burg Algorith. bound
0.1 10 9.9742x10-2 | 8.1081x10-2 | 9.9524x10-2 | 1.1088x10-!
50 1.94440x10-2 | 1.8678x10-2 | 1.9449x10-2
100 | 9.9574x10-3 | 9.7603x10-3 | 9.8274x10-3 | 1.0099x10-2
200 [ 4.9522x10-3 | 4.9030x10-3 | 4.9518x10-3
500 1.9872x10-3 | 1.9791x10-3 | 1.9871x10-3
0.5 10 8.4426x10-2 | 7.4780x10-2 | 8.2327x10-2 | 1.04167x10!
50 1.5339x10-2 | 1.5021x10-2 | 1.5196x10-2
100 | 7.7212x10-3 | 7.6388x10-3 | 7.6932x10-3 | 1.0034x10-2
200 | 3.7136x103 | 3.6965x10-3 | 3.7058x10-3
500 1.5107x10-3 | 1.5082x10-3 | 1.5088x10-3
0.9 10 4,0044x10-2 | 5.1605x10-2 | 3.5420x10-2 | 5.9975x10-2
50 5.1584x10-3 | 5.8837x10-3 | 4.7416x10-3
100 | 2.2807x10-3 | 2.4789x10-3 | 2.1737x10-3 | 9.3074x10-3
200 1.0532x10-3 | 1.1026x10-3 | 1.0269x10-3
500 | 3.9503x10-4 | 4.0380x10-4 | 3.8968x104
0.99 10 8.2635x10-3 | 2.1132x10-2 | 6.6868x10-3 | 1.024x10-2
50 1.1963x10-3 | 2.0175x10-3 | 9.1984x10-4
100 | 4.8610x104 | 7.2965x10-4 | 3.8344x10-4 | 5.0089x10-3
200 1.8450x10-4 | 2.4927x104 | 1.5359x10-4
500 | 5.7238x10-5 | 6.8802x10-5 | 5.1501x10-5
0.9999 10 1.7938x10-4 | 1.0314x10-2 | 1.3863x104 | 1.11x104
50 2.4836x10-5 | 4.4756x104 | 1.7980x10-5
100 1.5377x10-5 | 1.2665x10-4 | 1.0509x10-5 1.0x10-4
200 | 5.3456x106 | 3.4784x10-5 | 3.8399x10-6
500 | 2.2383x10-6 | 7.6558x10-6 | 1.6141x10-6

Table 3b Tabulated values of the error variances of 4(1) with A and N as

parameters and computed using N=10,000 realizations.
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sample variance | sample variance | sample variance
A Nt of &(1) of &(1) of 4(1)
YWUBC YWBC Burg Algorith.

0.1 10 9.9627x10-2 8.0698x10-2 | 9.9406x10-2
50 1.9437x10-2 1.8667x10-2 1.9446x10-2

100 9.9569x10-3 9.7588x10-3 | 9.8249x10-3

200 4.9521x10-3 4.9027x10-3 4.9516x10-3

500 1.9871x10-3 1.9791x10-3 1.9870x10-3

0.5 10 8.2194x10-2 6.6577x10-2 8.0201x10-2
50 1.5246x10-2 1.4642x10-2 1.5102x10-2

100 7.6993x10-3 7.5461x10-3 7.6714x10-3

200 3.7043x10-3 3.6674x10-3 3.6965x10-3

500 1.5090x10-3 1.5029x10-3 1.5070x10-3

0.9 10 3.5373x10-2 2.8652x10-2 3.1590x10-2
50 4.8637x10-3 4.6711x10-3 4.4756x10-3

100 2.1974x10-3 2.1537x10-3 2.0945x10-3

200 1.0336x10-3 1.0233x10-3 1.0077x10-3

500 3.9107x10-4 3.8951x10-4 3.8572x10-4

0.99 10 7.5861x10-3 6.1448x10-3 6.2120x10-3
50 1.0455x10-3 1.0041x10-3 8.1546x10-4

100 4.2336x104 4.1493x10-4 3.3881x10-4

200 1.6623x10-4 1.6457x10-4 1.3940x10-4

500 5.3270x10-5 5.3057x10-5 | 4.7999x10-5

0.9999 10 1.7848x104 1.4457x10-4 1.3803x104
50 2.4469x10-5 2.3500x10-5 1.7759x10-5

100 1.5035x10-5 1.4735x10-5 1.0299x10-5

200 5.1416x10-6 5.0902x10-6 | 3.7203x10-6

500 2.1105x10-6 2.1021x10-6 1.5371x10-6

Table 3c Tabulated values of the sample variances of 4(1) with A and N as

parameters and computed using Np=10,000 realizations.
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mean error variance | sample variance bias

A | Nr | true Re (1) of 8(1) of 8(1) B(4(1)]
a(l) YWBC YWBC YWBC YWBC

0.1 10 -0.1 -8.0494x102 | 8.1081x102 | 8.0698x10-2 1.9506x102
100 | -0.1 -9.8981x102 | 9.7603x103 | 9.7588x10-3 1.0190x10°3
0.2 10 [ -02 | -1.6318x10! | 8.0896x102 | 7.9548x102 | 3.6820x102
100 | -0.2 | -1.9633x10! | 9.6344x10°3 | 9.6219x103 | 3.6700x1072
0.3 10 [ -0.3 | -2.4547x10! | 7.8376x10% | 7.5409x102 | 5.4530x1072
100 | -0.3 | -2.9440x101 | 9.0049x103 | 8.9737x103 | 5.6000x102
0.4 10 -0.4 | -3.2317x10°! | 7.7914x102 | 7.2017x102 | 7.6830x102
100 | -0.4 | -3.9142x10"! | 83293x103 | 8.2560x103 | 8.5800x103
0.5 10 | -05 | -4.0944x10! | 7.4780x102 | 6.6577x102 | 9.0560x102
100 | -0.5 | -49533x101 | 7.6388x103 | 7.5461x102 | 4.6700x103
0.6 | 10 | -0.6 | -4.8869x10! | 7.3030x102 | 6.0644x102 | 1.1131x10"!
100 | -0.6 | -5.8840x10! | 6.5236x103 | 6.3896x103 1.1600x102
0.7 10 | -0.7 | -5.7702x10°! | 6.6399x102 | 5.1278x102 1.2298x10°!
100 ] -0.7 | -6.8598x10!' | 53763x103 | 5.1804x10°3 1.4020x102
0.8 10 | -0.8 | -6.6043x10! | 6.1667x102 | 4.2189x102 | 1.3957x10°!
100 | -0.8 -7.8483x10°! | 3.9796x103 3.7496x10°3 1.5170x102
0.85 | 10 | -0.85 | -7.0213x10! | 5.6941x102 | 3.5080x102 | 1.4787x10"!
100 | -0.85 | -8.3350x10! | 3.2694x103 | 2.9930x10-3 1.6500x102
0.9 10 | -0.90 | -7.4852x10! | 5.1605x102 | 2.8652x102 1.5148x10°!
100 | -0.90 | -8.8197x10°! | 2.4789x103 | 2.1537x1073 1.8030x102
095 | 10 | -0.95 | -8.0363x10! | 4.0403x102 | 1.8980x102 | 1.4637x10°!
100 | -0.95 | -9.3093x10! | 1.6403x1073 1.2766x10°3 1.9070x102
099 | 10 | -099 | -8.6758x10! | 2.1132x102 | 6.1448x10"3 1.2242x10°!
100 | -0.99 | -9.7226x10! { 7.2965x10% | 4.1493x10* 1.7740x102
0.9999( 10 |-0.9999| -8.9906x10! | 1.0314x1072 1.4457x104 1.0084x10°!
100 | -0.9999 | -9.8932x10! | 1.2665x10* 1.4735x10° 1.0580x1072

Table 4a Tabulated values of the statistics of (1) for the YWBC with A and N as
parameters and computed using Ng=10,000 realizations.
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mean error variance | sample variance bias

A N true Re 6:‘1 of 63 of 6121 B[ﬁ'zu]
°2u YWBC YWBC YWBC YWBC

0.1 10 3.96 3.6359 1.5455 1.4405 3.2410x10°!
100 3.96 3.9215 1.6015x10°! 1.5867x10"1 3.8500x102

0.2 10 3.84 3.5614 1.4756 1.3981 2.7860x10°!
100 3.84 3.8092 1.4627x10°} 1.4534x10°! 3.0800x102

0.3 10 3.64 3.4152 1.3107 1.2603 2.2480x10°!
100 3.64 3.6099 1.3955x10! 1.3865x10°! 3.0100x10°!

0.4 10 3.36 3.1971 1.1324 1.1060 1.6290x10°!
100 3.36 3.3389 1.1306x10"! 1.1262x10°! 2.1100x10°2

0.5 10 3.00 2.9463 9.7856x10°! | 9.7567x10°! 5.3700x102
100 3.00 2.9920 8.8970x102 | 8.8906x102 | 8.0000x1073

0.6 10 2.56 2.6140 7.7840x10°! | 7.7556x10°1 | -5.4000x102
100 | 2.56 2.5659 6.7719x10%2 | 6.7691x102 | -5.9000x1073

0.7 10 2.04 2.2396 6.5311x10°! | 6.1332x10"! [ -1.9960x10"!
100 2.04 2.0578 4.4638x102 | 4.4324x102 | -1.7800x10-2

0.8 10 1.44 1.797 5.9205x10°! 4.6463x10°!1 | -3.5700x10°!
100 1.44 1.4776 2.4925x10%2 | 2.3512x102 | -3.7600x10°2

0.85 10 1.11 1.5772 6.3943x10°! | 4.2122x107! | -4.6720x10°!
100 1.11 1.1602 1.8008x102 | 1.5490x102 | -5.0200x102

0.9 10 0.76 1.3101 7.0149x10'1 | 3.9884x10°! | -5.5010x10"!
100 | 0.76 | 8.1552x107! 8.7135x1073 1.1796x102 | -5.5520x10°2

0.95 10 0.39 1.0394 8.3888x10°! 4.1722x10"1 | -6.4940x10°!
100 | 039 | 45763x10! | 9.2025x103 | 4.6284x103 | -6.7630x102

0.99 10 | 0.0796 | 8.2175x10°! 1.0869 5.3602x10°! | -7.4215x10°!
100 | 0.0796 | 1.5669x10! | 9.6108x103 | 3.6671x10°3 | -7.7090x102
0.9999] 10 ]so013x*] 7.5213x10’! 1.1240 5.5949x10! | -7.5133x10°!
100 |8.0013x4] 8.0369x102 | 1.2688x102 | 6.3565x103 | -7.9569x10°2

Table 4b Tabulated values of the statistics of 63 for the YWBC with A and N as
parameters and computed using Np=10,000 realizations.
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mean error variance | sample variance bias

A | Nr| true Re (1) of &(1) of &(1) B[4(1)]
a(l) YWUBC YWUBC YWUBC YWUBC

0.1 10 -0.1 -8.9437x10°2 | 9.9742x102% | 9.9627x102 1.0563x102
100 | -0.1 -9.9981x102 | 9.9574x103 | 9.9569x1073 1.9000x1073

0.2 10 | -02 | -1.8161x10! | 9.9547x102 | 9.9218x102 | 1.8390x102
100 { -0.2 | -1.9781x107! | 9.6865x103 | 9.6827x103 | 2.1900x1073

0.3 10 0.3 | -2.7341x10! | 9.5300x102 | 9.4582x102 | 2.6590x1072
100 | -0.3 -2.9687x107! | 9.0241x103 | 9.0143x1073 3.1300x1073

0.4 10 0.4 | -3.6434x10°1 | 9.0698x102 | 8.9435x102 | 3.5660x1072
100 | -0.4 | -3.9608x10"! | 8.6024x1073 8.5877x103 | 3.9200x1073

0.5 10 -0.5 -4.5493x10°! | 8.4426x102 | 82194x102 | 4.5070x102
100 | -0.5 -4.9533x10°! | 7.7212x103 | 7.6993x103 | 4.6700x10°3

0.6 10 -0.6 | -5.4432x10°! | 7.7740x10? | 7.4647x102 | 5.5680x1072
100 | -0.6 | -5.9340x10! | 6.5662x1073 6.5231x103 | 6.6000x1073

0.7 10 -0.7 -6.3791x10°! | 6.7425x102 6.3568x1072 6.2090x 1072
100 | -0.7 | -6.9267x10"! | 5.2886x103 | 5.2353x103 | 7.3300x1073

0.8 10 -0.8 | -7.3311x10°! | 5.5550x102 | 5.1078x102 | 6.6890x102
100 | -0.8 | -7.9232x10! | 3.9145x103 | 3.8551x1073 | 7.6800x10°3
0.85 | 10 | -0.85 | -7.8411x10"1 | 4.7431x102 | 4.3093x102 | 6.5890x102
100 | -0.85 | -8.4202x10! | 3.1096x103 | 3.0453x103 | 7.9800x10°3
0.90 | 10 0.9 | -83169x10°! | 4.0044x102 | 3.5373x102 | 6.8310x102
100 | -09 | -8.9088x1071 | 2.2807x103 | 2.1974x103 | 9.1200x1073
095 | 10 | -0.95 | -8.9609x10! | 2.5219x102 | 2.2315x102 5.391x102
100 | -0.95 | -9.4101x107! | 1.3332x1073 1.2522x10°3 | 8.9900x1073
099 | 10 | -099 | -9.6398x10"! | 8.2635x103 | 7.5861x103 | 2.6020x102
100 | -0.99 | -9.8209x10°! | 4.8610x10* | 4.2336x10% | 7.9100x1073
0.9999] 10 | -0.9999| -9.9896x10! 1.7938x10™4 1.7848x10% | 9.4000x10*
100 | -0.9999 | -9.9931x10°! | 1.5377x1073 1.5035x10 | 5.9000x10*

Table 4c Tabulated values of the statistics of 4(1) for the YWUBC with A and N,
as parameters and computed using Ng=10,000 realizations.




mean Re 62u error variance | sample variance bias

A | Nr true of 6‘3 of 63 B[@izu ]
"2u YWUBC YWUBC YWUBC YWUBC

0.1 | 10 3.96 3.5536 1.5976 1.4325 4.0640x10°!
100 3.96 3.9199 1.6020x10"! 1.5860x10°! 4.0100x102

0.2 |10 3.84 3.4482 1.4830 1.3297 3.9180x10°!
100 3.84 3.8051 1.4842x10! 1.4722x10°! 3.4900x 102

03 | 10 3.64 3.2627 1.3887 1.2465 3.7730x 10!
100 3.64 3.6099 1.2943x10°! 1.2853x10°! 3.0100x102

0.4 | 10 3.36 3.0185 1.1599 1.0433 3.4150x10°!
100 3.36 3.3219 1.1348x10°! 1.1205x10°! 3.8100x102

0.5 |10 3.00 2.6973 9.6695x10°1 8.7529x10! 3.0270x10°!
100 3.00 2.9714 8.8579x102 | 8.7761x102 | 2.8600x1072

0.6 | 10 2.56 2.2974 7.2121x10°! 6.5231x10°! 2.6260x10°!
100 2.56 2.5329 6.5913x102 | 6.5186x102% | 2.7100x102

0.7 | 10 2.04 1.8303 5.2519x10°! | 4.8125x10°! 2.0970x10°!
100 2.04 2.0199 4.2119x102 | 4.1721x102 | 2.0100x102

0.8 |10 1.44 1.2782 3.4662x10°! 3.2047x10°! 1.6180x10°1
100 1.44 1.4227 2.1857x10°! 2.1560x1072 1.7300x1072
0.85 | 10 1.11 0.98478 2.6197x10°! 2.4632x10°! 1.2522x10°!
100 1.11 1.0950 1.3562x102 1.3349x1072 1.5000x1072

0.9 | 10 0.76 6.8370x10°! 1.8335x10°! 1.7752x10"! | 7.6300x102
100 0.76 7.5113x10°! 7.8289x103 | 7.7503x103 | 8.8700x1073

0.95 | 10 0.39 3.5411x10°" | 9.9623x102 | 9.8345x102 | 3.5890x102
100 0.39 3.8545x10°] 3.9760x103 | 3.9557x10°3 | 4.5500x10°3
099 | 10| 0.0796 7.3049x10°2 1.8724x102 1.8681x102 | 6.5510x1073
100 0.0796 7.8683x102 1.7837x1073 1.7828x103 | 9.1700x10*
0.9999] 10 | go013x104 | 6.6967x104 1.8188x10 1.8186x10 1.3046x10*
100 | 8.0013x104 | 7.8370x10 2.1419x10° | 2.1419x107 1.6430x107

Table 4d Tabulated values of the statistics of 63 for the YWUBC with A and Ny as
parameters and computed using Np=10,000 realizations.




mean error variance | sample variance bias

A [Nl true Re 4(1) of &(1) of &(1) B[&(1)]
a(l) BURG BURG BURG BURG

0.1 {10] -0.1 -8.9294x102 | 9.9524x102 | 9.9406x102 1.0706x10-2
100 -0.1 | -1.0031x101 | 9.8274x103 | 9.8249x103 | -3.1000x10%
02 [10] -02 | -1.8327x101 | 9.9120x102 | 9.8850x10%2 | 1.6730x1072
100 -0.2 | -1.9729x10! | 9.6306x103 | 9.6242x103 | 2.7100x1073

03 [10] -03 | -27314x101 | 9.3171x102 | 9.2458x102% | 2.6860x10°2
100] -03 | -29661x10°1 | 9.2899x103 | 9.2793x103 | 3.3900x103

0.4 | 10| -04 | -3.6327x10°! | 8.8534x102 | 8.7192x102 | 3.6730x10-2
100| -0.4 | -39625x10°! | 8.4301x103 | 8.4168x103 | 3.7500x103

05 [ 10] -05 | -45390x10°! | 8.2327x102 | 8.0201x102 | 4.6100x102
100 -0.5 | -49534x10! | 7.6932x103 | 7.6714x103 | 4.6600x1073
06 [ 10] -06 | -54378x10°! | 7.5013x102 | 7.1847x10% | 5.6220x102
100 -0.6 | -59440x10! | 6.4842x103 | 6.4531x103 | 5.6000x103

07 {10] -07 | -63707x10°! | 6.4977x102 | 6.1022x102 | 6.2930x102
100 -0.7 | -6.9288x10! | 52134x103 | 5.1632x103 | 7.1200x1073

08 | 10| -08 | -7.3561x10"! | 5.1247x102 | 4.7091x102 | 6.4390x102
100] -0.8 | -7.9190x10! | 3.8491x103 | 3.7838x103 | 8.1000x1073
085 | 10| -0.85 | -7.8489x10! | 4.3703x102 | 3.9469x102 | 6.5110x102
100| -0.85 | -8.4187x10! | 3.0015x103 | 2.9356x103 8.1300x103

09 [10] -09 | -8.3815x10! | 3.5420x102 | 3.1590x10%2 | 6.1850x102
100] -09 | -89110x10! | 2.1737x103 | 2.0945x103 | 8.9000x10-3

095 | 10 | -0.95 | -89749x10! | 2.3537x10% | 2.0781x102 | 5.2510x102
100] -095 | -9.4120x10°! [ 1.2599x103 1.1822x10°3 | 8.8000x10°3
099 | 10| -099 | -9.6822x10! | 6.6868x10°3 | 6.2120x103 | 2.1780x102
100| -0.99 | -9.8332x10°! | 3.8344x10* | 3.3881x10* { 6.6800x10°3
0.9999| 10 |-0.9999| -9.9917x10'! | 1.3863x10* 1.3803x104 | 7.3000x104
100 | -0.9999 | -9.9949x10"! | 1.0509x10°3 1.0299x10°5 | 4.1000x10™*

Table 4e Tabulated values of the statistics of 4(1) for the Burg estimator with A

and N, as parameters and computed using Ng=10,000 realizations.
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mean Re 62u error variance | sample variance bias
A N true of 63 of 63 B[%ZU]
qu BURG BURG BURG BURG

0.1 10 3.96 3.5694 1.6092 1.4566 3.9060x101
100 3.96 3.9199 1.6018x10°! 1.5858x10! 4.0100x102

0.2 10 3.84 3.4634 1.4662 1.3245 3.7660x10!
100 3.84 3.7938 1.4626x10°! 1.4414x10°! | 4.6200x102

0.3 10 3.64 3.2607 1.3007 1.1569 3.7930x10°!
100 3.64 3.6014 1.3610x10°! 1.3463x10°! 3.8600x 1072

0.4 10 3.36 3.0320 1.1482 1.0407 3.2800x10!
100 3.36 3.3264 1.1364x10°! 1.1252x10°! 3.3600x102

0.5 10 3.00 2.7151 9.1918x10°! 8.3800x10"! 2.8490x101
100 3.00 2.9715 8.8333x102 | 8.7523x102 | 2.8500x1072

0.6 10 2.56 2.3152 6.5754x10°! 5.9765x107} 2.4480x107!
100 2.56 2.5322 6.4634x102 | 6.3870x102 | 2.7800x10?

0.7 10 2.04 1.8583 4.1647x10°! | 3.8349x10°! 1.8170x10°!
100 2.04 2.0216 5.2134x103 | 4.0778x102 1.8400x10-2

0.8 10 1.44 1.3143 2.1044x10°1 | 1.9466x10! 1.2570x10°!
100 1.44 1.4238 2.0554x102 | 2.0294x10%2 1.6200x1072

0.85 10 1.11 1.0187 1.2332x10°! 1.1500x10"! | 9.1300x1072
100 1.11 1.0992 1.2353x102 | 1.2238x10"2 | 8.0000x10°2

0.9 10 0.76 6.9803x10°! 5.9288x102 | 5.5448x102 6.1970x102
100 | 076 | 7.5200x10! | 5.7107x103 | 5.6467x103 | 8.0000x1073

0.95 10 0.39 3.6265x10°1 1.5734x10°2 1.4988x10-2 2.735x10-2
100 0.39 3.8643x10°! 1.5107x10°3 1.4981x10°3 3.5700x10°3

0.99 10 | 00796 | 7.4523x102 | 6.5985x10% | 6.3407x10* | 5.0770x1073
100 | 0.0796 | 7.9082x102 | 6.4060x10° | 6.3791x10°5 | 5.1800x10%

099991 10 |so0013x4| 7.5184x104 6.9146x10°8 6.6810x108 | 4.8290x107
100 |8.0013x4]| 7.9691x104 6.3769x10° | 6.3663x10° 3.2200x 1077

Table 4f Tabulated values of the statistics of 63 for the Burg estimator with A and
N as parameters and computed using Np=10,000 realizations.
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Figure 12a Error variance of 4(1) for the time averaged parameter estimators of

an AR(1) process versus the one-lag temporal correlation parameter
A using N.=10.
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Figure 12b Error variance of 4(1) for the time averaged parameter estimators of

an AR(1) process versus the one-lag temporal correlation parameter
A using N;=10 plotted on a log scale.
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Figure 12c Error variance of 4(1) for the time averaged parameter estimators of

an AR(1) process versus the one-lag temporal correlation parameter
A using N;=100.
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Unlike the correlation function estimators, the error variance of the AR
parameter estimators decreases with increasing temporal correlation. Between
A=0.9 and 0.9999, the decrease in error variance for these estimators is nearly

three orders of magnitude as shown by the log scale plots of Figs.12b and 12¢. In
Fig.12a, it is also interesting to note that for the small N; size used here (ie.,

N.;=10), the error variance for (YWBC) is the lowest of the three for processes

with low temporal correlation (ie., A = 0.1). However, in Fig.13, we also
observe that the bias B[4(1)] of the (YWBC) estimate 4(1) computed over the
10,000 realizations is larger compared to the other two estimators for all values
of A and N. The explanation for this apparently contradictory behavior is found
in Fig.14 where we observe that the variance of &(1) using (YWBC) is much
smaller than the other estimators. From eq(4.73) in section 4.4, we note that a

. 2 . . .
very small variance o4 can compensate for a large bias thus resulting in a low

error variance. At a value of A = 0.65, however, a cross-over occurs in the
curves shown in Fig.12a so that the error variances of the Burg and (YWUBC)
algorithms are lower than the (YWBC) at higher temporal correlation values.
This results from the lower biases of the former algorithms as well as the fact

that the cﬁ values for the three estimators converge at high A (see Fig.14).

In Figs.15a, b and ¢, we show the convergence of the mean estimate 4(1) to
the true parameter value as N increases for values of A=0.1, 0.9, and 0.9999,

respectively. For small time window sizes (ie., small Ny ), the bias of the

YWUBC is barely, but slightly, smaller than that of the Burg estimator (see
Fig.15a). As the temporal correlation increases, however, the performance of the
Burg estimator is superior as shown in Figs.15b and c. Finally, although the bias
of the YWBC estimator appears to be increasing dramatically for increasing
temporal correlation (see Fig.15c) as compared to the other estimators, the
percentage error is actually decreasing thus showing performance improvement
with increasing temporal correlation. In Figs.16, 17 and 18, we show plots for
the error variance, the bias and the estimator variance for 63.

Tables Sa, b and c list the means, error variances and estimator variances

GZ , respectively, of 4(1), &(2) and 63 for single channel AR(2) processes with

various one-lag temporal correlation parameters A using the order 2 Burg
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Figure 14a Sample variance of 4(1) for the time averaged parameter estimators

of an AR(1) process versus the one-lag temporal correlation
parameter A using N=10.
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Figure 14b Sample variance of 4(1) for the time averaged parameter estimators

of an AR(1) process yersus the one-1ag temporal correlation
parameter A\ using N.=10 plotted on 2 log scale.
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Figure 16 Error variance of 8 for the time-averaged parameter estimators o. an

AR(1) process versus the one-lag temporal correlation parameter A
using N=10.
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A | Nr| true |meanRe4(1) | true | meanRe#(2) | true | meanRe®:
a(1) |Burg Algorith. | a(2) |Burg Algorith. | o2 | Burg Algorith
0.1 | 10]-0101| -0089682 | 0.01 | 0012920 | 3.959 3.1581
100 | -0.101 | -0.099617 | 0.01 | 0.0098845 | 3.9596 3.8812
05 |10]-0625| -056279 | 025 | 020679 | 2.8125 2.249
100 | -0.625 | -0.61665 | 0.25 | 0.24397 2.8125 2.7597
06 | 10]-0816] 073757 | 036 | 029377 2.2282 1.7904
100 | -0.816 | -0.80760 | 036 | 0.35263 2.2282 2.1835
07 | 10 ]-1.043] 094039 | 0.49 | 0.40322 1.5502 1.2639
10| -1.043] -1.0317 | 049 | 0.47984 1.5502 1.519
08 | 10|-1312] -1.1861 064 | 052919 | 0.8502 0.70077
100]-1.312] -12994 | 064 | 062764 | 08502 0.83313
085 | 10 | -1464 | -1.3202 [0.7225] 06045 | 053057 | 0.44617
100 | -1.464 | -1.4494 |0.7225] 070769 | 053057 | 0.52050
09 | 10]-1.629| -1.4964 | 081 06955 | 0.26136 | 0.22303
100|-1.629 | -1.6133 | 081 07948 | 026136 | 0.25648
099 | 10 |-1.9603| -1.8633 | 098 | 0.89688 |3.1361e-3| 4.4644x103
100 |-1.9603| -1.9470 | 098 | 096703 |3.1361e-3| 3.0977x103
09999| 10 |-1.9995| -1.9809 [0.9997| 098197 |4.7677e-7| 1.9573x106
100 ]-1.9995| -1.9974 09997 0.99774 |4.7677e-7| 6.3050x10°7

Table 5a Mean of estimated parameters for a Gaussian AR(2) process using the

Burg algorithm with A and Ny as parameters and Np=10,000.

75




A N error var 4(1) error var 2(2) error var 63
Burg Algorith. Burg Algorith. Burg Algorith
0.1 10 1.1012x10! 1.1393x10°! 1.9373

100 1.0019x10-2 1.0303x102 1.6370x10°!

0.5 10 1.1239x10-2 1.1166x10°! 9.398x10°!
100 9.6568x1073 9.5378x10°3 8.0525x1072

0.6 10 1.1145x107! 1.0946x107! 5.9132x10°!
100 9.1010x10"3 9.0057x1073 5.0494x102

0.7 10 1.0683x10"1 1.0539x10°! 2.8203x10°!
100 7.9729x10-3 8.040x10-3 2.4269x102

0.8 10 9.9714x102 9.6516x102 8.5696x102
100 6.4081x10-3 6.2261x1073 7.3920x10°3

0.85 10 9.39520x102 8.9116x102 3.3739x10°2
100 5.2861x1073 5.2873x1073 2.8461x1073

0.9 10 7.992x1072 7.3954x102 8.181x1073
100 4.0572x10-3 4.006x1073 7.026x104

0.99 10 3.2103x10-2 3.0368x102 1.2169x10°3
100 8.405x104 8.3077x10% 9.938x108
0.9999 10 5.6797x10-3 4.6069x10-3 1.7209x10-10
100 5.0524xx10°3 5.0442x10°5 1.1187x10°13

Table Sb Error variances of the estimated parameters for a Gaussian AR(2)
process using the Burg algorithm with A and N as parameters and

Ng=10,000.
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A Nt sample var 8(1) | sample var&(2) | sample var 63
Burg Algorith. Burg Algorith. Burg Algorith

0.1 10 1.1000x10°! 1.1394x10! 1.2950
100 1.0018x10-2 1.0304x1072 1.5756x10°!
0.5 10 1.0851x10°! 1.0978x10°! 6.2231x10°}
100 9.5875x10°3 9.5023x1073 7.7746x102
0.6 10 1.0530x10°! 1.0508x10°! 3.9965x101
100 9.0303x1073 8.9521x1073 4.8494x1072
0.7 10 9.6310x102 9.7858x102 2.0006x10°!
100 7.8448x1073 7.9375x1073 2.3301x102
0.8 10 8.3871x102 8.4242x102 6.3381x102
100 6.2500x1073 6.0740x1073 7.1021x10°3
0.85 10 7.5749x102 7.5200x102 2.6618x1072
100 5.0711x103 5.0684x103 2.7448x1073
0.9 10 6.2334x1072 6.0849x102 6.7118x103
100 3.8104x10"3 3.7745x10°3 6.7881x10™
0.99 10 2.2685x102 2.3444x1072 1.0406x1073
100 6.6275x10* 6.5986x10™ 9.7917x10°8
0.9999 10 4.3379x103 4.2963x103 1.7008x10°10
100 4.6262x10 4.6589x107 8.8243x10° 14

Table 5S¢ Sample variances of the estimated parameters for a Gaussian AR(2)

process using the Burg algorithm with A and N as parameters and

NR=10,000.
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estimator. The estimates were obtained using batch sizes of N;=10 and 100.
Again, the number of repeated realizations was Ng=10,000. Figs.19, 20 and 21
show the error variances of 4(1), 4(2) and &, respectively. Again, a significant
decrease in the error variance is noted at high values of temporal correlation.
For 6‘3, the reduction in error variance using N;=100 is approximately 12 orders
of magnitude between A=0.1 and 0.9999.

The important point to be made regarding the above observations is that

the error variance, the estimator variance and the bias of the estimators are not
only dependent upon N, but also on process correlation. Furthermore, the

superiority of a given estimator may change significantly depending upon process
correlation especially for low valuses of N.
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Figure 19 Error variance of 4(1) for an AR(2) process using the Burg algorithm
with N;=10 and 100.
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Figure 20 Error variance of 4(2) for an AR(2) process using the Burg algorithm
with N;=10 and 100.
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Figure 21 Error variance of 6?, for an AR(2) process using the Burg algorithm
with N=10 and 100.
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5.3.2 Performance with Non-Gaussian SIRP Processes

In this subsection, computed simulation results of the error variances are
presented using the Burg estimator for autoregressive (AR) time series models
where the white noise driving process is non-Gaussian. Again, the order of the
process is assumed known. The non-Gaussian processes are modeled from the
general class known as spherically invariant random processes (SIRP). In [7], the
synthesis of such processes is developed. The special case of a K-distributed SIRP
process is considered here. Detection analyses involving K-distributed clutter
processes are presented in [8]. For processes consisting of in-phase (real) and
quadrature (imaginary) components, the K-distributed envelope PDF is expressed
as

fr() = %(\%&5[@]0&

> | Kga(Vor) (0<r < o)

where T'(a) is the Eulerian Gamma function, K (*) is the modified Bessel

function of the second kind with order a. Here, o is refered to as the shape
parameter.

AR(4) processes with various degrees of temporal correlation are
synthesized using various shape parameters, o. The sample mean, sample
variance and error variances of the estimated AR parameters and white noise

driving variances are listed in Tables 6a through 6d for several values of o and
A. In all cases, Np=1000 time samples were used to obtain each estimate and

N=1000 realizations were used to obtain the statistics.
Examination of the tables reveals that using N;=1000 time samples, good

estimates with low error variances are obtained for the a(k) coefficients, k=1 to
4, for nearly all values of o and A. Furthermore, the error variances for the
estimates of a(k) are insensitive to a. The same point cannot be made for the

: . . . : 2

estimate of the white noise driving variance, 8, however. Although, the
: 2 : . :

estimates of the mean values of 8 are quite good (using N;=1000), the associated

error variances are quite revealing. In Figs. 18 and 19, we plot the error
: 2 : :

variances of 8} as a function of o with A as a parametcr. Each curve reveals a

significant decrease in the error variance with increasing o (approximately two

orders of magnitude between a=0.1 and 10). This result is explained by first
noting that in the limit as o0 — oo, K-distributed processes approach that of the
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a true sample sample error bias
value mean variance variance
a(l) | -0.32965 | -0.32885 |9.6365x10%|9.6442x10%|+8.000x10
a2)| 0.09963 | 0.099624 |1.0361x10-3|1.0361x1073| -6.000x10
0.1 {a(3)| -0.02967 | -0.030629 | 1.0648x103| 1.0665x103| -9.590x104
a(4) | 0.0081 0.009436 | 1.0500x103] 1.0518x103 | +1.336x10-3
o. | 3.6076 3.7466 169.19 169.21 0.139
a(l) | -0.32965 | -0.32946 |1.0004x10°3]1.0004x103|+1.900x10+
a(2) | 0.09963 | 0.099045 |1.0895x10-3|1.0899x1073| -5.850x10+
0.5 |a3)| -0.02967 -0.02976 | 1.0977x1073{ 1.0978x1073 | -9.000x10-5
a(4) | 0.0081 0.008522 |9.9183x10*{9.9223x10* | +4.220x10-4
o 3.6076 3.6551 26.818 26.820 [+4.750x10-2
a(1) | -0.32965 -0.3302 | 9.4419x10%*] 9.4479x10*| -5.500x104
a(2) | 0.09963 0.09920 | 1.0639x1073 | 1.0644x1073 [ -4.300x104
1.0 [a(3)| -0.02967 | -0.028524 |1.1300x1073| 1.1320x1073[+1.146x10-3
a(4) | 0.0081 0.007151 |[9.7787x10*|9.7973x10**| -9.490x 104
o 3.6076 3.6619 13.606 13.609 [+5.430x102
a(1) | -0.32965 | -0.33011 |9.5535x10*]9.5572x10%] -4.600x104
a2) | 0.09963 0.10060 | 1.0742x103| 1.0752x103 | +9.700x 10
10 |a(3) | -0.02967 | -0.029265 | 1.0702x103] 1.0752x103 | +4.050x10-
a(4) | 0.0081 | 0.0078392 |1.0327x10-3{1.0328x103| -2.610x104
ol | 3.6076 3.6188 1.237 12378 |+1.120x102
a(1) | -0.32965 | -0.32947 |1.0314x10-3| 1.0310x10-3|+1.800x10
a(2)| 0.09963 | 0.098557 |1.0885x10-3|1.0886x10-3] -1.073x10-3
s |a@B3)| -0.02967 | -0.028013 |1.1002x10-3{1.1034x10-3|+1.657x10-3
a(4) | 0.0081 | 0.0066742 | 1.0106x10-3[ 1.0124x10-3| -1.426x10-3
o 3.6076 3.5965 |1.3756x10-2|1.3866x102| -1.110x10-2

Table 6a. Performance of the Burg estimator for an AR(4) process with o as a
parameter and A=0.3, N;=1000 and Np=1000.
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a true sample sample error bias
value mean variance variance
a(l) | -1.2934 | -1.2914 [9.4170x10*] 9.456x10* | +2.000x10
a2)| 10513 1.0486 [ 2.0586x10-3| 2.066x10-3 | -2.700x10-3
0.1 [a(3)| -0.63378 | -0.6312 |2.0904x10-3| 2.099x103 |+2.580x1073
a(4) | 0.2401 0.2388 | 9.0343x10* -1.300x1073
oo | 1.2891 1.2810 | 3.137x102 | 3.144x10?2 | -8.100x1073
a(l) | -1.293¢ | -1.2911 [9.3737x10*]9.4255x10|+2.300x10-
a(2)| 10513 1.0492 | 2.1866x10-32.1910x103| -2.100x10
0.5 |a(3) | -0.63378 | -0.63199 |2.2355x1032.2390x10-3|+1.790x1073
a4) | 0.2401 0.23968 |9.0611x10#]9.0646x10| -4.200x10*
o. | 1.2890 1.2807 | 8.1152x10-3 | 8.1839x1073| -8.300x103
a() | -1.2934 | -1.2925 [9.0805x10+]9.0888x10]+9.000x10-
a@2)| 1.0513 1.0485 _ |2.0950x10-3 | 2.1027x10-3 | -2.800x103
1.0 [a3)| -0.63378 | -0.6299 |2.1903x10-32.2059x1073|+3.880x1073
a(4) | 0.2401 0.2377 _ [9.3840x10| 9.4483x104] -2.400x10°3
o. | 1.2890 1.2841 | 4.9590x10-3 | 4.9826x1073 | -4.900x103
a(l) | -1.2934 | -1.2917 [9.3806x10*|9.4155x10*]+1.700x10-3
a2) | 1.0513 1.0484 | 2.2654x10-3| 2.2762x10-3 | -2.900x10
10 |a(3)] -0.63378 | -0.63092 |2.3454x10-32.3551x10-3|+2.860x10°3
a(4) | 0.2401 0.2383 | 9.8906x10]9.9259x104| -1.800x10°3
o | 1.2890 1.2830 | 2.0194x10-3|2.0554x1073| -6.000x10
a(l) | -1.2934 | -1.2923 {9.0910x10*|9.0947x10*)+1.100x10-3
a2)| 1.0513 1.0497 [2.0942x10-3{2.0951x10-3| -1.600x103
o |a3)| -0.63378 | -0.63156 |2.1302x10-3]2.1340x103]+2.220x10
a(4) | 0.2401 0.23923 |9.2802x10*| 9.2785x10| -8.700x 10
ol | 12890 1.2834 | 1.6744x1073 1.7038x103 | -5.600x 10

Table 6b. Performance of the Burg estimator for an AR(4) process with « as a

parameter and A=0.7, N=1000 and N_=1000.




o true sample sample error bias
value mean variance variance
a(l) | -2.6978 -2.6949 | 5.9992x10+ | 6.0853x10-4 | +2.900x10-3
a(2) 3.3081 3.3013 3.2060x10-3] 3.2524x10-3| -6.800x103
0.1 |a(3)| -2.1852 -2.1788 | 3.1615x10-3| 3.2027x10-3| +6.400x10-3
a(4) 0.6561 0.65389 | 5.8826x104}5.9325x104! -2.210x103
(53 0.069747 | 0.067509 |5.8782x10-2|5.8787x10-2| -2.238x103
a(l) | -2.6978 -2.6939 | 5.6190x10*] 5.7698x10 [ +3.900x103
a(2) 3.3081 3.2985 3.1312x10-3| 3.2225x10-3| -9.600x10-3
0.5 [a(3)| -2.1852 -2.1753 | 3.1650x10-3{ 3.2641x103 | +9.90x103
a(4) 0.6561 0.6519 |5.9119x10+ 6.0818x10-4{ -4.200x10-3
cﬁ 0.069747 | 0.070988 |9.9154x10319.9169x10-3|+1.241x103
a(l) | -2.6978 -2.6945 ]5.5612x104] 5.6765x10 | +3.300x10-3
a(2) 3.3081 3.3006 | 3.0109x10-33.0704x103| -7.500x10-3
1.0 ja(3) | -2.1852 -2.1778 ] 3.0589x10-3| 3.1154x10-3 | +7.400x10-3
a(4) 0.6561 0.65298 | 5.6884x104]5.7859x10] -3.120x10-3
cﬁ 0.069747 0.07194 {5.1243x10-3]5.1291x103| +2.193x103
a(l) | -2.6978 -2.6953 [5.7912x10+] 5.8551x10#| +2.500x10-3
a(2) 3.3081 3.3014 | 3.0688x103]3.1151x103 -6.700x10-3
10 |a@3) | -2.1852 -2.1781 [ 2.9719x103 | 3.0236x10-3 | +7.100x10-3
a(4) 0.6561 0.65319 ]5.3793x10-4| 5.4664x104| -2.910x10-3
o‘ﬁ 0.069747 | 0.069316 |[4.9057x10-|4.9076x10-4| -4.310x10*
a(l) ] -2.6978 -2.695 5.5435x104] 5.6151x10+ | +2.800x10-3
a(2) 3.3081 3.3008 |2.9622x10-33.0152x103| -7.300x10-3
oo la(3)] -2.1852 -2.1773 ] 2.9584x10-3] 3.0199x10-3] +7.900x10-3
a(4) 0.6561 0.6526 |5.6196x104}5.7378x104| -3.500x103
cﬁ 0.069747 | 0.069499 |4.9018x10°|4.9591x10-6| -2.480x10*

Table 6¢. Performance of the Burg estimator for an AR(4) process with o as a

parameter and A=0.9, N;=1000 and N=1000.
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a true sample sample error bias
value mean variance variance
a(l) | -3.8729 -3.8696 2.7532x105 | 3.8603x10 | +3.30x103
a(2) 5.7379 5.7280 2.3402x10% | 3.3179x10 | -9.900x10-3
0.1 |aB3)| -3.8542 -3.8442 2.3299x104 | 3.3238x104 | +1.100x102
a(4) | 0.99033 0.98695 | 2.7189x105 | 3.8638x105 | -3.380x10-3
03 3.4907x106( 2.8519x106| 7.5142x10°11 | 7.555x10-!! | -6.388x107
a(l) | -3.8729 -3.8698 2.6899x10-5 | 3.6670x105 | +3.100x10°3
a(2) 5.7379 5.7286 2.2970x104 | 3.1683x10* | -9.300x10-3
0.5 [a(3)] -3.8542 -3.8448 2.2980x104 | 3.1921x10+# | +9.400x103
a(4) | 0.99033 0.98711 2.6922x10-5 | 3.7300x10-5 | -3.220x10-3
cﬁ 3.4907x10¢| 3.5639x106 | 2.6984x10°1! | 2.6990x10-1! | +7.320x10®
a(l) | -3.8729 -3.8698 2.6217x10-5 | 3.5597x10-5 | +3.100x10-3
a(2) 5.7379 5.7287 2.2341x104 | 3.0717x10* | -9.200x10-3
1.0 fa(3) | -3.8542 -3.8449 2.2297x104 | 3.0913x10* [ +9.300x10°3
a(4) | 0.99033 0.98717 | 2.6076x105 | 3.6103x10 | -3.160x10-3
cﬁ 3.4907x106 3.1827x106| 9.7524x10-12 | 9.8023x10-12 | -3.080x107
a(l) | -3.8729 -3.8697 2.6989x10-5 | 3.7185x10 | +3.200x1073
a(2) 5.7379 5.7284 2.2932x104 | 3.2023x10* | -9.500x10-3
10 [a(3) ] -3.8542 -3.8445 2.2859x104 | 3.2206x10* | +9.700x10°3
a(4) | 0.99033 0.98703 | 2.6732x105 | 3.7627x103 | -3.300x10-3
(53 3.4907x106| 3.5003x106 | 1.2889x10°12 | 1.2890x10'12 | +9.600x109
a(l)| -3.8729 -3.8698 2.5457x10-5 | 3.4981x10- | +3.100x10°3
a(2) 5.7379 5.7288 2.1643x104 | 2.9991x10* } -9.100x10-3
o la(3)| -3.8542 -3.8449 2.1575x10% | 3.0044x10* | +9.300x103
a(4)| 0.99033 0.98717 | 2.5218x105 | 3.5166x10 | -3.160x10-3
oﬁ 3.4907x106| 3.4796xi0°6| 1.1347x10-14 | 1.1458x10°14 | -1.110x108

Table 6d. Performance of the Burg estimator for an AR(4) process with  as a
parameter and A=0.99, N;=1000 and Ng=1000.
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Gaussian. Thus, for small values of a, we have processes which depart most
significantly from Gaussianity. For these processes, the tails of the PDF
distribution are highest. Thus, for a fixed sample size N, the uncertainty in the
estimate of the variance is expected to increase as o decreases. In Fig.19, we
show an expanded view of the upper three curves from Fig.18. In this figure, we
note a two order of magnitude decrease in the error variance over the range of a
values from a=0.1 to 10. From the tables, we observe that these curves continue
to decrease by nearly two additional orders of magnitude as o — oco. We also
note the drastic reduction in the error variance with increasing temporal
correlation expressed by the one-lag temporal correlation parameter A.
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Fig.22 The error variance of the estimate 8 versus the shape parameter o with
the one-lag temporal correlation parameter A fixed.
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Fig.23 The error variance of the estimate 8 versus the shape parameter o with

the one-lag temporal correlation parameter A fixed using an expanded
scale from Fig. 22.
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5.4 Computed Error Variance of Multichannel AR Model Parameters

In this section, we present the computed results for the means and error

variances associated with the multichannel estimates of the JxJ matrix coefficients
A(k) and [Zf]u defined by eqgs.(2.1) and (2.6), respectively. The Strand-Nuttall

algorithm is used in all the cases presented here. Specific consideration is given
to the performance of the estimator not only as a function of the temporal
correlation on each channel, but also the cross-channel correlation. We consider

multichannel AR(2) processes with J=2 channels and various values of the one-lag
temporal correlation parameter kjj on channel j and the cross-channel correlation

arameter, |p..l. In this case, we have parameters
ij p

ACK) = [a,,(k) a;,(k) 19 .
() = | a5)(k) 255(k) k=1, (>-4)
and
RATR2Y)
Zd, =5, Zzz] (5.5)

Table 7 contains the computed results for the estimates &,,(1), &,,(1), ﬁu

and £,,. The number of time samples used to obtain each estimate was Ny=100
while the statistics were computed with Ng=1000 realizations. In Figs. 22 and

23, we plot the error variances of the matrix element estimates &,,(1) and S

Similar results were obtained for the estimates of the other elements.

Consistent with the results noted for single channel processes, the error
variances associated with the estimates of these coefficients decrease with
increasing temporal correlation. However, we now observe in Figs 22 and 23
that the error variance associated with the estimates ﬁ“(l) and 312(1) increases

with increasing cross-channel correlation. In Figs.24 and 25, however, we
observe that the error variance associated with the estimates of the white driving
noise covariance matrix elements 2“ and 212 are independent of the cross-
channel correlation. This result is consistent with the presentation made in section
3.2 that error variances of cross-correlation function estimates are independent of
the cross-channel correlation for the special case of wide-sense jointly stationary
narrowband bandpass processes as considered here.

88




AMp | A2 | Az | ey TRUE | MEANOF | SAMPLE | ERROR
VALUE | ESTIMATE | VARIANCE | VARIANCE

0.1Jo01f001| 0 | ay -0.101 -0.099721 | 1.0272x10-2 | 1.0263x102
a5 0 -2.1981x10-3| 1.0529x1072 | 1.0525x102

I, 3.9596 3.8077 | 1.4491x10°! | 1.6783x10!

i 0 1.9938x102 | 1.4529x10°1 | 1.4556x10°!

0.5] 05]001] 0 | ay -0.625 -0.61265 | 9.7337x103 | 9.8814x10-3
a2 0 4.3440x10% | 9.3721x1073 | 9.3647x10°3

Iy 2.8125 2.7058 | 7.4709x102 | 8.6021x102

I 0 1.4185x10°3 | 7.7050x102 | 7.7009x102

0.7 ] 07]001] 0 | ay, -1.043 -1.0209 | 8.6619x10°3 | 9.1400x10-3
?) 0 -2.3376x103| 8.3557x1073 | 8.3803x10°3

I, 1.5502 1.4824 | 2.3082x102 | 2.7649x102

I 0 2.5259x1073 | 2.4681x102 | 2.4676x102

09 ] 09001} 0 | 3, -1.6290 -1.5929 | 4.7884x1073 | 6.0843x10-3
A 0 -6.4223x10*| 4.8277x103 | 4.8239x103

Z;;1 | 0.26136 0.25166 | 6.5474x10 | 7.4833x10%

2 0 1.9544x10% | 6.5406x10™ | 6.5357x10™

0.99]099{001)] 0 | a3 | -1.9603 -1.9180 | 1.8241x10°3 | 3.6105x10-3
ap 0 1.8338x10°3 | 2.2002x10-3 | 2.1980x10°3

Z11 | 3.1361x10°3 | 3.0368x1073 | 9.3876x10°8 | 1.0365x10°7

L), 0 -6.4657x10°9| 9.8708x10°8 | 9.8692x108

Table 7a Tabulated values of the mean and variances for the multichannel
coefficient estimates &,,(1), &,,(1), £,,(1) and £,,(1) for AR(2)

processes with specified temporal and cross-channel correlation
using the Strand-Nuttall estimator.
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AMi | Aa | Aa | ey TRUE MEANOF | SAMPLE ERROR
VALUE | ESTIMATE | VARIANCE | VARIANCE

0.1 ]01]01]07] an -0.101 -0.10209 | 1.9722x10°2 | 1.9706x102
a1 0 5.6071x10°3 | 2.0244x102 | 2.0256x102

In 3.9596 3.8016 | 1.4683x10°' | 1.7166x10°!

I 27717 2.6534 | 1.4752x10°! | 1.6142x10"!

05]105]05] 07| an -0.625 -0.61097 | 1.9408x102 | 1.9587x102
ap 0 2.0894x10°3 | 1.9262x102 | 1.9249x102

I, 2.8125 2.7092 | 7.8848x102 | 8.9437x102

Zis 1.9687 1.9026 | 7.3984x102 | 7.8289x102

07 ] 07] 07| 071} ay -1.043 -1.0235 | 1.6809x102 | 1.7196x102
a1 | 2.557x107 | 1.5809x103 | 1.7263x102 | 2.6020x102

Iy 1.5502 1.4800 | 2.3195x102 ] 2.6915x102

Zip 1.0851 1.0405 | 2.4046x102 | 2.6020x102

09]09)]09] 07| an -1.6290 -1.5993 | 8.7113x10-3 | 9.9725x103
a1y [-2.1458x10°7(-7.7136x10%| 8.9255x10°3 | 8.9177x1073

| 0.26136 0.25214 | 6.1706x10% | 7.0158x10*

Z12 | 0.18295 0.17707 | 6.4987x10% | 6.8409x10

0.991099]099] 0.7 | an -1.9603 -1.9168 | 4.1238x1073 | 6.0096x10-3
417 | 5.9009x10°7 | -7.0187x10| 4.3465x1073 | 4.3438x10°3

Zy1 | 3.1361x10°3 | 3.0342x10°3 | 1.0060x10°7 | 1.1090x10°7

Iy | 2.195x10°3 | 2.1211x10°3 | 9.8467x108 | 1.0388x107

Table 7b Tabulated values of the mean and variances for the multichannel
coefficient estimates 4,,(1), &,,(1), ﬁu(l) and 212(1) for AR(2) processes with

specified temporal and cross-channel correlation using the Strand-Nuttall
estimator.




AMi | Mz | M2 | erd TRUE | MEANOF | SAMPLE | ERROR
VALUE | ESTIMATE | VARIANCE | VARIANCE

0.1 ] 0.11] 0.1]0.99]| aj; -0.101 -0.1027 | 4.9512x10°! | 4.9503x10"!
a7 | 4.8161x10°7 | 3.1909x1073 | 4.9880x10°! | 4.9871x10°!

Iy 3.9596 3.8008 | 1.5615x10°! | 1.8122x10!

L1y 3.92 3.7651 1.5696x10°! | 1.8080x10"!

051051 05 ]099] ay -0.625 0.6230 | 5.1454x10°! | 5.1421x10’!
ap 0 1.0188x102 | 5.1596x10°! | 5.1579x10!

I 2.8125 2.6910 | 7.7955x102 | 9.2635x102

I, 2.7844 2.6650 | 7.7097x102 | 9.1265x102

071071 07]09]| a, -1.043 -1.0390 | 4.2740x10°! | 4.2803x10"!
a5 | -1.503x10°5 | 1.6488x102 | 4.2911x10°! | 4.3012x10°!

I 1.5502 1.4899 | 2.3652x10°2 | 2.7263x102

I 1.5347 1.4759 | 2.3821x102 | 2.7255x102

09]09] 09 [099] 3, -1.6290 -1.5976 | 2.3052x10°! | 2.3128x10°!
)7 | 1.0300x10°5 | 2.5663x10°3 | 2.3220x10°! | 2.3197x10"!

2| 0.26136 0.25186 | 6.6874x10* | 7.5798x10

X2 | 0.25873 0.24928 | 6.6927x10* | 7.5788x10

099]1099]0.99]0.99]| an -1.9603 -1.9143 | 1.1510x10°! | 1.1712x10"!
a1 |-7.1755x103| -3.7304x10"3| 1.1472x10°! | 1.1462x10°!

Z11 | 3.1361x103 | 2.9814x10°3 | 1.0885x10°7 | 1.2240x10°7

Z15 | 3.067x10-3 | 2.9483x103 | 1.1691x10°7 | 1.3090x10”7

Table 7¢ Tabulated values of the mean and variances for the multichannel
coefficient estimates ﬁ, (D), 812( D, 2“(1) and f.lz(l) for AR(2) processes with

specified temporal and cross-channel correlation using the Strand-Nuttall
estimator.
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Figure 24 Error variance for the estimate ﬁ“(l) coefficient versus the one-lag
temporal correlation parameter A=A,,=A,, using the Strand-Nuttall
algorithm with order 2, N;=100 time samples, and Ip,!| as a

parameter.
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Figure 25 Error variance for the estimate £,,(1) coefficient versus the one-lag
temporal correlation parameter A=A,,=A,, using the Strand-Nuttall
algorithm with order 2, N,=100 time samples, and Ip,,| as a

parameter.
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6.0 SUMMARY

In this study, the performance of time-averaged estimators is considered
not only as a function of the observation window size of the data, but also in
terms of the pertinent correlation parameters of the underlying observation
processes. Specifically, the error variances and sample variances of both
correlation function and parameter estimators are considered for Gaussian as well
as non-Gaussian processes. In addition, multichannel processes are analyzed.
Analytic expressions are derived for the variance of the time-averaged complex
auto- and cross-correlation functions. The unique aspect of this development is
the determination of the functional dependence of these expressions in terms of
process correlation parameters. Specifically, the variance of the time-averaged
cross-correlation function is shown to depend upon the temporal correlation and
variance of each process, as well as (in the more general case of processes with
unconstrained Gaussian quadrature components [5]) the cross-correlation
coefficient. These expressions provide a performance measure which can be used
to specify the window size of the observation interval required to achieve a
specific value of this variance.
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APPENDIX A

In this Appendix, we derive the result expressed in eq.(29b) of the text.
From eqs(11)

E[¢(n,)] = Ry(D (A.la)
and .

E[6"(n-k,)] = Ryi(}) (A.1b)
so that from eq(2d)

CpolkD) = Rygp(k) - IRy (HI%. (A.2)
And so, eq(3c) becomes

o Nyl ]+Ikl
Vp.Np=g 3 [1 - } [Ry,(k.D) - IR (DI, (A3)
i T N’I‘ k—-(N AJ-1) N oo

We now consider,

Reo(k.h) = E[0(mDo (n - k)] (A.4a)

= Elx,n)x; (0 - hx; @ - K)xi(n - | - K)). (A.4b)

For processes with zero-mean, jointly stationary Gaussian quadrature
components x;;(n) and xiQ(n), eq(A.4b) can be expressed as [see Appendix B]

Rpo(k.) = IR + IR ()1 + Fji(1.k) (A.5)
where
F.(1Lk) = E[x(mx(n - | - K)JE[x; (1 - Dx; (0 - K)] (A.6a)
{R"a +K) - Rna+kn{R(lk)R.<l k)
{Rud+ky+R a+kn{R d K)+ R - k)
{R<r+m R a+kH{R 00+ R0 - 1)
i [RY 10 - R -0} (RP 1+ 0+ R+ 1)), (A6b)
Using eq(A.S) in (A.3), we have
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N_AlJ-1

1- "Ji'—k'] [IR,)I* +F,(Lk)]. (A7)

T k=-(NT-II|-1)[

By examination of eq(A.6b), we note that the imaginary terms in eq(A.7)
sum to zero. This can be seen by first noting that F;;(lk) is real for k=0. We also
note that imaginary terms evaluated with negative values of k serve to cancel the

corresponding imaginary terms for positive values of k. And so, only the real
part of the function F;;(l,k) contributes to the VBii(l,NT) function. Therefore,

N_-ll|-1
1 T +1k!
VB;;(I,N7) =N, . (NZ " 1)[1 - ;T ] [lRii(k)|2 +Re(Fik}] (A8
=-(N_-ll|-

which is eq(4) in the text.

98




APPENDIX B
In this appendix, we derive eq(A.5) of Appendix A. Consider eq(A.4b)
expressed as

Reo(i) = Elxm)x; (n - x; (0 - K)xi(n - | - kL. (B.1)
In the special case where the process xj(n) is Gaussian, then [6]
R¢¢(k,l) = E[xi(n)x;‘(n - I)]E[x:(n -k)x;(n - I - k)]
+ E[x;(n)x; (n - kK)JE[x; (n - Dx;(n - | - k)]. (B.2)

However, we do not wish to constrain this discussion to this restrictive case.
Rather, we wish to consider the more general case of a process x;(n) with jointly

Gaussian quadrature components. We therefore consider
xi(n) = in(n) +j xiQ(n) (B3)

where the processes x;j(n) and xiQ(n) are jointly Gaussian. Using eq(B.3) in
(B.1), we obtain

Ryo(k) = B{[x;(n) + j x;o@]xjyn-1) - j x;q(n-N]
o [xjj(n-K) - j xjq@-K)][xj(n-1-k) + j XiQ(n-l-k)]} (B.4a)
= E{ [x;(n)x;y(n-D+xi0@)xiq@-NHix;qm)x;(n-D-jxi(m)x;qn-D]
o [xjr(n-k)x;(n-I-k)+x;0(n-k)x;o(n-1-k)+jx;(n-k)x;(n-1-k)
-jxiQ(n-k)in(n-l-k)]} (B.4b)

= E[x;j(n)x;;(n-Dx;1(n-k)x;1(n-1-k)] + E[xiQ(n)xiQ(n-l)in(n-k)in(n-I-k)]
+ E[xil(n)xil(n-I)xiQ(n-k)xiQ(n-I-k)] + E[xiQ(n)xiQ(n-I)XiQ(n-k)xiQ(n-l-k)]
- E[xiQ(n)in(n-l)xil(n-k)xiQ(n-l-k)] + E[xil(n)xiQ(n-|)xil(n-k)xiQ(n-I-k)]
+ E[xiQ(n)in(n-I)xiQ(n-k)in(n-l-k)] - E[xﬂ(n)xiQ(n-I)xiQ(n-k)in(n-l-k)]
+jE[in(n)in(n-l)xil(n-k)xiQ(n-l-k)] - jE[in(n)in(n-|)xiQ(n-k)xi1(n-I-k)]
HE[XoMxio@m-Dxj(1K)xion--K)] - ElxigMmxign-Nxign-Kxn-1-k))
+jE[xiQ(n)in(n-l)xiI(n-k)xil(n-l-k)] + jE[xiQ(n)in(n-I)xiQ(n-k)xiQ(n-l-k)]
SExj(n)xiq(n-Nx;(n-k)x;(n-1-k)] - j E[x;(n)x;q(n-Dx;qn-k)x;qn-1-k)]
(B.4c)
For Gaussian, zero-mean quadrature components, eq(B.4c) can be
expressed as
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Ryo®) = [Rif 1% + [Rii (1% + Rij 1 + R (k - )

+ REUORID + RT G012 + RY (1 + ORE (k - 1)

+ REORTAUD + RE012 + RE + Rk - 1

+ REM1Z + R0 + RY%0 + 0RF (K - 1
R ORI - RE MR - R+ ORii k - )

+ RI2012 + R ORTAM) + R+ RS (k - 1

+ REDP + RPwRY ) + RT( + R -
RIZORT) - RIZORT®) - R+ ORT Kk - )

+j {REORE) + REGREK) + R + ©Rii (k - D)

5 {REORT ) + REGRE ®) + Rif( + Rk - )

+ (RPCORI) + RF R0 + RF W +1ORT &k - )
5 [RZURT ) + RPwRT k) + RF 1+ ORG (K - )}
+ (RFORTM + RY R 00 + R+ ORi k- )}

+ {RFORZA) + RIZ0RIK) + RF2 + Rk - )}
3 {RIAORE®D + REGRT®) + R{( +RRY (k - 1))
3 [RI2ORZA) + RI20RTAK) + R +ORF Ak - )
(B.5)

where we note that the first two terms in each parenthesis for the imaginary
terms cancel. Since

R() = RE () + R3] +j RT() - R ()] (B.6)

RO = RO + 2REORT0 + RFD)1?
+RE012 - REORZN + RE2ODZ @)

and similarly for IR(k)I? so that

Roo(k) = [RiOI + IR0 + Fyi(1k) (B.8)
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where

ll(lk)_{R (I+k) R (I+k)}{R (-k)- R (| k)}

+{R (I+k)+R (I+k)}{R (I k) + R (I-k)}
-j{R (|+k) R (I+k)}{R (I k) + R (| k)}
+_]{R (| k) - R (I k)}{R (l+k)+R (|+k)}

as noted in eq(A.6b) of Appendix A.
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