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ABSTRACT

The number of coordinates needed to completely describe the configuration of a
holonomic mechanical system is equal to the number of degrees of freedom possessed
by that system. In contrast, nonholonomic systems always require more coordinates
for their description than their are degrees of freedom due to the nonintegrable nature
of the governing velocity constraints. The task of nonholonomic motion planning
applied to a given system is to develop trajectories of the independent coordinate
variables such that the entire system is driven to some desired point in its config-
uration space. An algorithm for constructing these trajectories is presented. In
this algorithm, the independent variables are first converged to their desired values.
The dependent variables are subsequently converged using closed trajectories of the
independent variables. The requisite closed trajectories are planned using Stoke's
Theorem which converts the problem of finding a closed path in the space of the
independent variables to that of finding a surface area in that same space such that
the dependent variables converge to their desired values as the independent variables
traverse along the boundary of the surface area. The use of Stoke’s Theorem simpli-
fies the motion planning process and also answers important questions pertaining to
the system. The salient features of the algorithm are apparent in the two examples

discussed: a planar space robot and a disk rolling without slipping on a flat surface.
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I. INTRODUCTION

This thesis presents an algorithm for planning the motion of nonholonomic me-
chanical systems. The algorithm provides a means for calculating the coordinate
trajectories required to drive a nonholonomic system from one point in its configu-
ration space to some other desired point. The algorithm involves the use of Stoke's
Theorem and therefore takes a surface integral approach to the problem. To enhance
the reader’s understanding of the algorithm, the discussion proceeds methodically.
The goal of this first chapter is to clarify the nonholonomic motion planning problem
and provide a conceptual overview of the surface integral approach to its solution.
Chapter II. begins with a review of the mathematical details needed for a complete
understanding of the algorithm, follows with a detailed discussion of the algorithm
itself, and concludes with some notes on some of its more versatile features. In
Chapter I11., the surface integral algorithm is applied to two simple nonholonomic
mechanical systems: a planar space robot and a disk rolling without slipping on a
flat surface. These examples serve to validate the algorithm and. hopefully, solidify
the reader’s understanding of it. Finally, a summary is provided in Chapter IV. It is
hoped that this methodical approach will provide the reader with an appreciation for
the simplicity and utility of the surface integral algorithm for the motion planning of

nonholonomic mechanical systems.
A. HOLONOMIC VERSUS NONHOLONOMIC SYSTEMS

The description of mechanical systems begins with a suitable choice of coordinates
and an identification of the constraints of motion resulting from that choice. In
the case of holonomic mechanical systems, coordinates can be chosen such that no
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motion constraints arise. When the coordinates are chosen such that constraints of
motion do arise, those constraints always entail a relationship between the coordinates
themselves and not their derivatives. In contrast, nonholonomic mechanical systems
always require constraints of motion to complete their description regardless of how
the coordinates are chosen. This is because at least one of the constraints will involve a
non-integrable relationship between the first derivatives of the coordinates. To further
illustrate the difference between holonomic and nonholonomic mechanical systems,
consider the two systems shown in Figs.1(a) and 1(b).

Figure 1(a) shows two particles m, and m; connected by a rigid, massless rod of
length (I; +2) on a two dimensional z-y plane. The center of mass of the system is
shown. An infinite number of coordinate sets can be used to describe the configuration
of this system. One choice might involve the use of the coordinates (z.. y., 8) to specify
the position of the center of mass of the system in the z-y plane and the orientation
of the rod with respect to the vertical y axis. Such a choice completely describes the
state of the mass-rod system and does not require any equations of constraint. A
second choice of coordinate sets might involve the coordinates (z1, y1, z2. y2) to specify
the positions of each mass in the z-y plane. Such a choice of coordinates requires the

following constraint equation in order to completely describe the state of the system:
(z2 = 21)? + (v2 —91)? = (I + 1p)? (N

A third choice of coordinate sets might entail the coordinates (z,y1.z2,y2,zc. yc) to
specify the positions of each mass as well as the center of mass in the z-y plane. Such
a choice of coordinates requires three equations of constraint to completely describe

the system:

(e —21)* + (ye —)? = 12 (2a)

(z2 =T+ (2 —v)* =1 (2b)

2




(a-z1)2 + (y2 —w1)? = (L + 1p)? (2¢)

Obviously, the possible number of coordinate sets that might be chosen to describe
this system are endless. However, all possible coordinate sets share one common
feature: they result in either no constraints of motion or constraints of motion which
relate the coordinates of the system and not their derivatives. Hence, the rod-mass
system of Fig.1(a) is a holonomic mechanical system.

Consider now the system shown in Fig.1(b). This system consists of a disk of
radius r rolling without slipping on the z-y plane. A set of coordinates which might
be chosen to describe the location of a point P on the disk is (z.y,8,a) where z and y
describe the location of the disk’s point of contact with the ground, ¢ describes the
angle a radial line through point P makes with the vertical z axis. and o describes the
angle the disk’s instantaneous direction of motion on the z-y plane makes with the
horizontal y axis. Such a choice of coordinates results in the following two equations

of constraint:
# =rfsina (3a)

y=rfcosa (3b)

Note that Eqgs.(3a) and (3b) above relate the derivatives of the coordinates to each
other and not the coordinates tflemselves. Furthermore, since a is an independent
function of time, Eqgs.(3a) and (3b) cannot be integrated to yield relationships be-
tween the coordinates (the conditions for nonintegrability of a differential expression
will be discussed in Chapter II.A.1). For this reason, Eqgs.(3a) and (3b) are termed
nonholonomic constraints on the disk of Fig.1(b), and the disk itself is said to be a
nonholonomic mechanical system. All nonholonomic mechanical systems share this
feature: the constraints of motion relate the velocities of the system and cannot be

integrated to yield relationships between the coordinate positions.

3




This feature of nonholonomic systems is unique and gives rise to the nonholonomic
motion planning problem.

B. THE NONHOLONOMIC MOTION PLANNING PROBLEM

In the previous section, it was shown that nonholonomic mechanical systems are
governed by constraints of motion which involve nonintegrable relationships between
the velocities of the system. In this section. it will be shown how this feature of
nonholonomic systems gives rise to the nonholonomic motion planning problem. To
understand this problem, a number of terms must first be discussed.

The configuration space of a mechanical system is the space defined by the mini-
mum number of coordinates needed to completely describe that system. The dimen-
sion of the configuration space is the number of those coordinates. The degrees of
freedom of a mechanical system is defined as the difference between the number of
coordinates used to describe the system and the number of independent equations of
constraint arising from that description. In more specific terms. given a mechanical
system described by n coordinates and m independent equations of constraint. the
number of degrees of freedom possessed by the system is equal to n —~ m. The number
of degrees of freedom possessed by a given system is a fixed number and is completely
independent of the coordinate system chosen. Finally, the number of independent co-
ordinates available to a given rx}echanical system is synonomous with the number of
degrees of freedom of the system. Additional coordinates over and above this number
are always dependent.

Consider now the holonomic rod-mass system of Fig.1(a). Note that it is a three
degree of freedom system since, regardless of how the coordinates are chosen, the
number of coordinates minus the number of independent constraints is always equal
to three. Likewise, the number of independent coordinates available to the system
is also equal to three although for any given set of coordinates. the choice of which
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are independent and which are dependent is both physically and mathematically
arbitrary. Now consider the nature of the holonomic constraints described by Eqgs.(1),
(2a), (2b), and (2c). Note that because these equations all entail a direct relationship
between the coordinates themselves, specification of the values of any three of the
variables uniquely determines the values of any remaining variables. In other words,
regardless of which coordinate system is chosen, specification of the values of the
independent coordinates uniquely determines the value of the dependent coordinates.
As a result, only the values of the independent coordinates are needed in order to
completely specify the configuration of the system. This is true of all holonomic
mechanical systems and because the number of independent coordinates available to
a given system is equal to the number of degrees of freedom possessed by that system,
the dimension of the configuration space of a holonomic system is always equal to its

number of degrees of freedom.

Now consider the nonholonomic rolling disk of Fig.1(b) and its accompanying
constraint equations, Eqs.(3a) and (3b). Note that it is a two degree of freedom sys-
tem since the number of coordinates used to describe the system minus the number
of independent equations of constraint is equal to two. The coordinates = and y are
clearly the dependent variables since their values can only be changed by either rolling
or both rolling and turning the disk. Note however that the values of z and y are not
uniquely determined by the constraint equations given the values of the independent
variables 8 and o. This is due to the fact that the constraint equations represent non-
integrable relationships between the velocities of the system and not the coordinates
themselves. As a result, the values of all four coordinates must be specified sepa-
rately in order to completely describe the configuration of the rolling disk. Unlike the
holonomic constraint equations of the rod-mass system, the nonholonomic constraint
equations of the rolling disk do not restrict the dimension of the configuration space

-
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of the system. This is a unique feature of nonholonomic mechanical systems and
forms the heart of the nonholonomic motion planning problem: their ability to access
a configuration space of higher dimension than their number of degrees of freedom.
The nonholonomic motion planning problem can therefore be stated as follows: given
a system described by n coordinates and m nonholonomic constraints, how does one
drive all n of the coordinates from some initial set of values to some desired set of
values in spite of the system having only n — m degrees of ..eedom? The answer to
this question has been sought by numerous researchers and a variety of solutions have
been proposed. In the next section, a brief survey of some of these solution techniques
will be presented.

C. LITERATURE SURVEY

The nonholonomic motion planning problem has been the focus of attention of
various researchers in the recent past. Specifically, researchers have considered the
questions of how a falling cat manages to always land on its feet [Ref. 1, Ref. 2:
pp. 25-30] and how an astronaut might use those same principles to reorient himself
during a spacewalk [Ref. 3|. Researchers have also considered the problems of mobile
wheeled robot navigation [Ref. 4, Ref. 3|, parking a front wheel drive car [Ref. 2:
pp. 89-91, Ref. 6: pp. 8-11, Ref. 7: pp. 17-19], parking a cart with multiple trailers
[Ref. 6: pp. 11-13, Ref. 7: pp. 29-30, Ref. 8], controlling a unicycle or rolling disk
[Ref. 2: pp. 83-89, Ref. 6: pp. 6-8], controlling a satellite with rotors instead of
gas jets [Ref. 2: pp. 21-25], dextrous manipulation with robotic fingers [Ref. 9]. and
reconfiguration of a space structure or space manipulator using only internal motion
(Ref. 10, Ref. 11]. Each of these researchers have explored various aspects of the
nonholonomic motion planning problem and have developed unique solutions to it.

Kane, Headrick, and Yatteau [Ref. 3| conducted experiments to determine the
feasibility of a spacewalking astronaut to reorient himself through arm motion only.
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The nonholonomy of an astronaut or any freefloating spacecraft derives from the prin-
ciple of angular momentum conservation. While these researchers did not approach
this problem in the broad context of nonholonomic motion planning. their research
pointed the way towards a number of possible solution techniques.

The problem of controlling a multi degree of freedom space manipulator was first
addressed by Vafa and Dubowsky [Ref. 11]. The dynamic coupling between the
joints of a space manipulator and the vehicle to which it is attached often results in
an undesirable drift of the vehicle when the joints are actuated. Vafa and Dubowsky
proposed using small cyclic motions of the manipulator joints to control this drift.
The problem was also tackled by Nakamura and Mukherjee [Ref. 10| who showed
that the vehicle orientation as well as the joint angles could be brought to their
desired configurations by executing appropriate trajectories of the joint angles. The
trajectories were planned using a Lyupanov function and by adopting a bidirectional
approach.

The nonholonomic nature of a car or cart with multiple trailers evolves along the
same lines as that of the rolling disk discussed in the previous sections. Laumond |Ref.
8| studied the multibody car system and concluded its controllability by showing that
the rank of the control Lie Algebra is equal to the dimension of the state space at
every point in the state space. Murray and Sastry [Ref. 7: pp. 29-30] also studied the
problem. They showed that the dependent variables of the system could be brought
to their desired values by executing closed trajectories of the independent variables.
The closed trajectories were planned using a scheme involving sinusoids.

While the research discussed above sheds light on various aspects of the non-
holonomic motion planning problem. none of the methods, algorithms, or concepts

developed thus far completely solve the problem. A general scheme. applicable to a




wide range of nonholonomic mechanical systems, has not yet been presented. Addi-
tionally, a global scheme for addressing important questions such as motion planning
in the presence of additional constraints, the reachability of a given system, and re-
peatability is conspicuously absent from the literature. The surface integral algorithm
represents a new approach. Not only is it applicable to a large class of nonholonomic
systems, but its implementation also leads to definitive answers to the questions posed
above. In the next section, a conceptual overview of the algorithm will be presented.

D. OVERVIEW OF THE SURFACE INTEGRAL ALGORITHM

To gain a basic understanding of the surface integral approach to the motion
planning of nonholonomic systems, consider again the rolling disk. this time shown
in Fig.2(a). Suppose it is desired that the disk change its coordinates from (z.y,6.a)
to (z4,v4,9,2). A very simple way of accomplishing this would be to first roll the
disk forward along path segment AO, and then roll the disk backwards along path
segment OB. As shown in the figure, the end result of such a maneuver would be
that the coordinates 4 and o remain constant while the coordinates z and y move to
their desired values z; and y4. Such an operation involves the execution of a closed loop
trajectory in the 8- plane , shown in Fig.2(b), to achieve the desired change in z and
y. In more general terms then, it appears as though it is possible for nonholonomic
mechanical systems to achieve a desired configuration of the dependent variables
simply by executing an appropriate closed loop path in the space of the independent
variables. It therefore follows then, that to converge all of the configuration variables
of a nonholonomic system from one set of values to another, one might first converge
the independent variables from their initial values to their desired values without
being concerned about the evolution of the dependent variables. One could then
execute an appropriate closed loop path in the space of the independent variables to
converge the dependent variables to their desired values.
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The technique described above leaves one critical question unanswered. How does
one calculate an appropriate closed loop path? The surface integral algorithm is the
answer. In this method, the problem of finding a closed loop path in the space of
the independent variables is transformed into the problem of determining a surface
area in that same space such that the dependent variables converge to their desired
values as the independent variables traverse around the boundary of the surface area.
The required transformation is accomplished by applying Stoke’s Theorem to the
differential form of the nonholonomic constraint equations.

To summarize, the essential features of the surface integral algorithm for the
motion planning of nonholonomic systems can be stated as follows: all of the config-
uration variables of a nonholonomic mechanical system are brought to their desired
values by first converging the independent variables and then by executing a closed
loop path in the space of the independent variables to converge the dependent vari-
ables. The requisite closed loop path is calculated by applying Stoke's Theorem to
the differential form of the nonholonomic constraint equations.

In the next chapter, Stoke’s Theorem and other mathematical details needed for
a full understanding of the surface integral algorithm will be reviewed. Following
that, a detailed mathematical description of the surface integral algorithm will be
presented. Finally, the algorithm’s ability to answer important questions pertaining

to the system will be discussed.




II. THE SURFACE INTEGRAL APPROACH TO THE
NONHOLONOMIC MOTION
PLANNING PROBLEM

A. MATHEMATICAL PRELIMINARIES
1. Nonintegrability of Nonholonomic Constraints
In Chapter I., nonholonomic constraints were described as constraints which
involved a nonintegrable relationship between the first derivatives of the coordinates.
An obvious question is how does one determine whether or not a given constraint is
nonintegrable? To answer, the constraint equation must first be recast into differential
form. Taking the constraint described by Eq.(1) for example, and differentiating with

respect to time yields
(Z2 -z )(Z2 - Z1) + (2~ yi)(y2 — %) =0
Rewriting in differential form and designating z, as the dependent variable yields
(z2 — z1)(dz2 —dxy) + (y2 — y1)(dy2 —dy1) = 0
dzy = (=B )y, — (X284, 4 amy (4)
I — I Iy —I
Equation (4) represents the constraint described by Eq.(1) recast into differential
form.

Recasting the nonholonomic constraints of the rolling disk into differential

form is a simpler task.
£ =rfsina _— dr = (rsina)df (5a)

y =rfcosa — dy = (rsina)df (5b)
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The above discussion helps to illustrate the fact that any set of constraint
equations, be they holonomic or nonholonomic. can be written in the following general

form

n
D ajdg +aydt =0, j=12-m (6)
1=

where the ¢'s represent the generalized coordinates, ¢ represents time, and the a's are.
in general, functions of the ¢'s and ¢. In Eqs.(4), (5a), and (5b) the time coordinate
does not appear explicitly. This is a property of what are termed scleronomic systems.
and only mechanical systems of this type will be considered in this discussion. As
before. n represents the number of generalized coordinates used to describe the system
and m represents the number of independent constraint equations.

With the constraint equations in differential form. a simple test can be ap-
plied to determine whether or not the equations are integrable. Strictly speaking, a
differential expression is integrable if and only if it is an exact differential or can be
converted into an exact differential by multiplying through with an integrating factor.
In, rore specific terms, it can be shown that the necessary and sufficient condition

for the integrability of the differential expression
vidz + vody + v3dz =0 (Ta)
where vy, v9, and v3 are continuous functions of z, y, and z in a domain D of space is

aUQ 603 avg 8‘01 3v1 8112)_ -
”*(az‘a)”ﬁ(a“x)”a(ay*zz =0 (i)

In the more general case, the necessary and sufficient condition that the differential

that

constraint in n variables

vidzy +vadrg+ -+ vpdzn =0 (8a)

1




is integrable is that the set of equations

dv, Ovy dv, v, Ov, dv,\ _
v (5;-517) T (3_%_5?) o (3—%-3%) =9

(Apv=12.n) (8b)

are satisfied simultaneously and identically. [Ref. 12]

Applying this criterion to Eq.(4) shows that this constraint is in fact integrable
and therefore holonomic. Applying this criterion to Eqs.(5a) and (5b) shows that they
are not integrable and therefore nonholonomic.

2. Relevant Theorems

In this part of the chapter. two important mathematical theorems will be
reviewed. The first is Stoke’s Theorem used for the transformation of line integrals
into surface integrals and vice versa. The second concerns the path independence
of line integrals. Stoke's Theorem will serve as the principal mathematical tool for
determining the required closed loop path needed to converge the dependent variables.
The theorem regarding the path independence of line integrals will be crucial to the
demonstration that the dependent variables can in fact be driven to any desired

configuration from any other.
a. Stoke’s Theorem

Let S be a piecewise smooth oriented surface* in space and let the boundary
of S be a piecewise smooth closed curve C. Let v(z,y, z) be a continuous vector function

which has continuous first partial derivatives in a domain in space which contains S.

* If a surface S has a unique normal whose direction depends continuously
on the points of S, then S is called a smooth oriented surface. If S is not smooth but
can be subdivided into finitely many smooth portions, then it is called a piecewise
smooth oriented surface.

12




Then

f L',ds://nT(va)dA (9)
c s

where n is the unit vector normal to the surface S on that side of S which is taken as
the positive side. The positive direction along C is then defined as the direction along
which an observer, travelling on the positive side of S. would proceed in keeping the
enclosed area to his left. Refer to Fig.3(a). v, is the component of v in the direction
of the tangent vector of C. [Ref. 13: p. 364]

If the direction cosines of the unit vector n normal to the surface S are cosa.

cos 3. and cos~v, and if v = v;i + v,5 + v3k. then Stoke’s Theorem can be written as

f (vidzr +vody +v3dz) =
c

// [(81}3 av?)cosa«i' (%-%) cos 3 + (83—1: -f;—yl) cosw] dA (10)

If the space under consideration is restricted to the z-y plane, then Eq.(10) simplifies

f(v,dx+v2dy // (5’2—%) dz dy (1)

which is essentially a statement of Green’s Theorem [Ref. 13: p. 336).

to the form

For Eq.(11), the positive direction along the closed curve C is shown in
Fig.3(b). This directly follows from Eq.(10) where the values of a, 3, and v were
taken to be 7/2, =/2, and 0 respectively. The direction of the closed curve C in
Eq.(11) may be changed by using (e, 3,v) = (7/2,7/2,#) in Eq.(10). This will lead to
a change in sign of the surface integral in Eq.(11).
b. The Path Independence of Line Integrals
Let v =v,1i+vj +v3k, and let v, vo, and v3 be continuous functions of z.

y. and z in a domain D of space. Then the line integral

/ (v, dz + vy dy + v3 d2) (12)
C

13




is independent of path if and only if the differential form under the integral sign 1s
exact in D. or equivalently the integral is zero for every simple closed path in D. or
equivalently V x v = 0 everywhere in D [Ref. 13: pp. 369-376].

From the above theorem, coupled with Eq.(10), it is clear that the necessary
and sufficient condition for the value of the line integral in expression (12) to be
independent of the path C is that

a‘vz a‘vg 6v3 - Bvl 81,'1 _ 6’!,'2

9z 8y’ bz 9z’ dy Oz
B. THE SURFACE INTEGRAL ALGORITHM
In Chapter I.D.. a conceptual overview of the surface integral appro~:h to the
motion planning of nonholonomic systems was presented. With the mathematical
details necessary for a complete understanding of the algorithm now covered, a more
detailed treatment of the method is in order. It should be noted that the algorithm is
best illustrated through the use of appropriate examples. This will be the subject of
Chapter III. At this point however, it is well worth the effort to discuss the theoretical
and mathematical basis of the algorithm.
Consider now a nonholonomic system where one of the dependent variables is p

and is constrained by the nonholonomic differential expression

dp = vidz + vody (14)

LY

where z and y are taken to be the independent variables and v; and v, are general
functions of z and y.

If an attempt is made to integrate Eq.(14) along some closed curve C in z-y space

fdp:f(vldx+v2dy) (15)
C C

it is clear that the attempt would be a failure since nonholonomic constraints are.
by definition, nonintegrable. However, since the expression on the right hand side of

14




Eq.(14) is not integrable, it is therefore not exact. It follows then. from the discussion
on the path independence of line integrals, that if such a curve C could be found and
the integration performed, the resulting change in p would be dependent on the nature
of C. In other words. the evolution of the dependent variable p as the independent
variables z and y traverse a closed loop path in z-y space is entirely dependent on the
shape of that path. It seems then, that a desired change in the value of the dependent
variable p could be affected by choosing an appropriate path C in z-y space about
which the independent variables x and y traverse. The obvious question is how might
this path be chosen given the nonintegrable nature of Eq.(15).

At this point, Stoke's Theorem comes to the rescue. Suppose the desired change
in p is given by Ap. Then, using Stoke’s Theorem (in the simplified form of Green’s

Theorem), Eq.(15) can be recast into the following form:

6‘02 avl
dp = dz + vod =//(—-———>d.rd =A 16a
}{: p f;;(vx z + vady) \%z "5 y = Ap (16a)

If the double integral of Eq.(16a) can be evaluated, then the problem of determining
the appropriate closed curve C is reduced to finding a surface area S in which the
curve C is defined by the outline of this surface area. The integration problem can be
simplified by choosing this surface area to be rectangular in shape with sides parallel

to the z and y axis. Placing limits on the double integral of Eq.(16a) results in

s (B
Ap = / / (— - —) dxrdy (16b)
w Ja dz Ody

where z; and z, represent the lower and upper limits of the rectangle along the =z
axis and y and y, represent the lower and upper limits of the rectangle along the
y axis. A simple way of solving this problem thus involves performing the double
integration dictated by Eq.(16b), choosing three of the four required limits based
on the physical considerations of the problem, and solving the resulting algebraic
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expression for the fourth and final limit. With this information in hand, the closed
curve C can be constructed and the independent variables r and y caused to traverse
around it to produce the desired change in p. As stated in Chapter I.D., the complete
surface integral algorithm involves first moving the independent variables to their
desired values noting the resulting final values of the dependent variables and then
calculating an appropriate closed loop path in the space of the independent variables,
using the method described above, such that the desired change in the values of the
dependent variables is brought about.

This is the surface integral algorithm for planning the motion of nonholonomic
systems. Its utility and ease of implementation is demonstrated via the examples to
be discussed in Chapter III. Before proceeding to those examples however, it is worth
noting some of the more salient features of the algorithm.

C. NOTES ON THE VERSATILITY OF THE SURFACE INTEGRAL

ALGORITHM

The surface integral algorithm provides a simple and effective means of deter-
mining the trajectories required to drive all of the configuration variables of a non-
holonomic mechanical system to their desired values. The following features of the
algorithm make it particularly attractive.

1. Location of the Closed Trajectory in the Space of the Independent

Variables
Once again, consider a nonholonomic system where one of the dependent vari-

ables is p and is constrained by the nonholonomic differential expression

dp = vidx + vady + v3dz (17)

where z, y, and z are taken to be the independent variables and v;, v2, and v, are gen-
eral functions of z, y, and z. Assume now that there exists some closed trajectory C of
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the independent variables z, y, and = that produce: a change in the dependent variable
p by some desired amount Ap. If (zo,y0,20) is any point on this closed trajectory, and
if the initial configuration of the system is (zo.yo, z0. po), then after the system moves
along C once, its configuration will be (z¢,y0, z0.p0 + Ap). Refer to Fig.4(a). If the
closed curve C was traversed in the opposite direction, then the final configuration of
the system would have been (zo,yo, 20, po — Ap). Now consider the initial configuration
of the system to be (z’. ¢/, 2/, po) such that (z’,y’, z') does not lie on C. Let P be any path
segment connecting the point (z’.y',2') and a point (zg,y0.20) on the closed curve C.
Refer to Fig.4(b). Let ép denote the change in the dependent variable p as z. y. and :
move along the path segment P from (z',y’, 2’) to (zo,v0, 20). Then, if the system moves
from the initial configuration (z',y’,2’,po) to the closed curve C, traverses the closed
curve C once, and finally retraces the path segment P backwards, the configuration
of the system at the end of the path will be (z',v',2/.po + Ap). This is true because
the surface integral of the area bounded by the closed curve beginning and ending at
the point (z’,y’,2') is equal to the surface integral of the area bounded by the closed
curve C. From this discussion, it follows that the closed curve C that can bring about
the desired change in the dependent variable can lie anywhere in the space defined
by the independent generalized coordinates - it does not have to pass through the
initial configuration of the system. This feature of the surface integral algorithm is
extremely useful and will prove its worth in the example systems to be dicussed in

Chapter III.
2. Motion Planning in the Presence of Additional Constraints

Often times, mechanical systems are subjected to constraints of motion over
and above those arising from the choice of coordinates. Obstacles in the workspace
provide the most salient example. The rolling disk of Figs.1(b) and 2(a) for instance,
might have its allowed motion restricted by a wall or similar obstacle. The motions
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of a robot on an automobile assembly line must be planned so as to avoid inadvertent
contact with the cars it is operating on. In order to be effective, a motion planning
algorithm must allow for the generation of admissible trajectories in the presence of
additional constraints. With regard to nonholonomic systems, the surface integral
algorithm provides just such a capability. This capability will be demonstrated in the
examples of Chapter III.
3. Algorithmic Singularity
Virtually all motion planning algorithms. when applied to any given mechan-
ical system, entail the possibility of mathematical singularity. An effective algorithm
must provide a means for coping with this problem when it arises. In Chapter IIl..
the ability of the surface integral algorithm to deal with mathematical singularity will
be readily apparent.
4. Reachability
The reachability of a given mechanical system can best be defined as its ability
to arrive at any desired configuration from any other. Obviously, the reachability of
a system is an important consideration. Implementation of the surface integral al-
gorithm provides a means of ascertaining the reachability of a nonholonomic system.
In Chapter III., the general method of determining the reachability of a nonholo-
nomic system will be discused and the method demonstrated via the examples of
that chapter.
5. Repeatability
The basis of the surface integral algorithm derives from the fact that closed
trajectories of the independent variables result in a change in the values of the de-
pendent variables. In particular situations however, it may be desirable to find closed
trajectories of the independent variables that result in no net change of the dependent
variables. Motion of this type is termed repeatable motion due to the fact that all of
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the coordinate variables return to their original values upon completion of the mo-
tion. Robots programmed to perform repetitive tasks (such as automobile welding)
for example, must be capable of repeatable motion in order to perform the same task
over and over again. While the issue of repeatability is theoretically trivial in the case
of holonomic systems, such is not the case for nonholonomic systems. In Chapter III.,
it will be demonstrated that the trajectories needed to produce repeatable motion in
a nonholonomic mechanical system can be generated easily through application of
the surface integral algorithm.

Thus far, this paper has presented a description of nonholonomic mechanical
systems and the nonholonomic motion planning problem, the mathematical basis of
the surface integral algorithm for solving the nonholonomic motion planning prob-
lem, and a discussion of the surface integral algorithm itself. Additionally, the various
attractive features of the algorithm have been briefly described. In the next chapter,
the algorithm will be applied to two simple nonholonomic systems: a two dimensional
free flying space robot and the rolling disk of Figs.1(b) and 2(a). These two exam-
ples will demonstrate the exceptional utility, simplicity, and versatility of the surface

integral algorithm.
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III. APPLIED EXAMPLES OF THE SURFACE
INTEGRAL ALGORITHM

A. THE PLANAR SPACE ROBOT

In this part of Chapter III., the surface iategral algorithm for the motion planning
of nonholonomic systems will be illustrated through the example of a free flying, two
dimensional space robot. The robot consists of two links mounted on a space vehicle
as shown in Fig.5. Such a system can be described by five coordinates: z;, ys. and 6,
representing the position of the center of mass and the orientation of the space vehicle,
and 6, and 6, representing the joint angles of the manipulator. The requirement that
the linear momentum of the system be conserved leads to two holonomic constraints of
motion while angular momentum conservation leads to one nonholonomic constraint.
Because the system is described by five coordinates and three equations of constraint.
the planar space robot possesses two degrees of freedom.

The holonomic constraints that arise due to the conservation of linear momen-
tum allow for the elimination of the variables z, and y, from the kinematic equations
describing the system. The nonholonomic constraint however, does not allow for the
elimination of any of the variables due to the fact that it consists of a nonintegrable
relationship between the derivatives of the remaining coordinates. namely 6. 8,. and
82. The entire system is therefore completely described by three generalized coordi-
nates (6o, 8;, ;) and one nonholonomic constraint equation due to the conservation of
angular momentum. With some effort, this nonholonomic constraint equation can be

derived and is found to be given by the relation

(aé, +b02) (18)




where,
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and where my. m; and m, are the masses of the space vehicle and the two links; I, I,
and I, are the moments of inertia of the space vehicle and the two links about their
center of masses; {, and [, are the length of the two links; and M = (mg + m; + m;) and
=+ 1, +1).

The physical effect of the nonholonomic constraint described by Eq.(18) is that the
orientation of the space vehicle, 6,. drifts when the joints are activated. Because the
amount of drift is directly dependent on the motion of the joints, 8, is the dependent
variable in the system. The nonholonomic motion planning task is therefore to develop
trajectories of the independent vaiiables 8, and 8, which drive the entire system to
some desired configuration. In accordance with the procedure described in Chapter
I1.B.. this will be accomplished by first converging the joint angles to their desired
values. The orientation of the vehicle will then be converged by executing closed
trajectories of the joints. These closed trajectories will be planned using Stoke’s

Theorem.

Let the arbitrary initial and desired configurations of the robot be denoted by
(8n, 014, 82,) and (8oy,8:7,847) respectively. Upon initial convergence of the independent
variables 8;, and 8;, to their desired values 8,, and 8,,, let the orientation of the
space vehicle drift from 6, to some intermediate value 6o4. The task then is to use
Stoke’s Theorem to plan a cyclic motion for the joints of the manipulator such that
the orientation of the space vehicle changes from 6,4 to 8o, while the joint angles come
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back to their desired configuration. Rewriting Eq.(18) in differential form yields

1

Integrating Eq.(20) about a closed curve C in the 6,-6; plane and applying Stoke’s

Theorem in the form given by Eq.(11) yields

a b d ,b Jd a
—bns = & dby = 24 2 - g 2_ 28
boy — 004 f o ,{;(A 01 + Ad02> //s [Bal(A) 602(A) dbdé, (21)

where S is the surface in the 6;-6, plane confined within the closed curve C. Substi-
tution of the expressions for a, b, and A from Eq.(19) and specification of the surface

S as a rectangle with sides parallel to the 4, and 6, axis leads to

01‘, olu a l
(8og — 60a) = M 1o (

— | — 0,d 2
92 6 302 A+BCOSOQ) d 1 02 (2 )

where

A S (%ml + MQ)QI% + %mgl% -M (I + (417711 + mg)l% + %mgl%)

1
B=-(mg+ -2-"11)"1211‘2 (23)

and where 6,; and 8,, denote the lower and upper extremities of 6, in the rectangular
path while 8, and 6,, denote the same for 6,. Finally, performing the combined

differentiation and integration dictated by Eq.(22) yields

g 1 1
;0 =My (61u —0u) [

A+ B cos b, - A + B cos 8y

(24)

where

8o = 0oy — 8oa

and n equals the desired number of cyclic motions about the closed loop trajectory.
Clearly, for a desired change in 8, (given by 8;), an appropriate closed loop tra-
jectory of the joint variables 6, and 6, can be constructed simply by specifying the
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trajectory to be rectangular in shape and choosing values of 6y, ,,, 6, and 6,, such
that Eq.(24) is satisfied.

To illustrate, consider a robot with the following kinematic and dynamic param-
eters: mo = 27.44 kg, m; = 5.38 kg, m, = 2.64 kg, Io = 1.520 kgm?, I, = 0.115 kgm?,
I, = 0.028 kgm?, I, = 0.50 m, and !, = 0.35 m. Let the initial configuration of the
system be (8¢;,8:,82) = (0.0,15.0,15.0) degrees and the final desired configuration be
(60f.61s,027) = (—20.0,45.0,0.0) degrees. Furthermore, specify that the desired change
in the dependent variable 8, occur only after three complete cycles of the closed loop
trajectory. Using computer simulation, the independent variables 6, and 6, are first
converged from their current values to their desired values by following the straight
line trajectory OA shown in Fig.6(a). During this process, the orientation of the
space vehicle drifts from 6 = 0.0 degrees to o4 = —12.87 degrees as shown in Fig.6(b).
Thus, 8o = 8oy - 604 = —7.13 degrees. If a cyclic motion of the joints is to be planned
such that after three complete cycles the orientation of the space vehicle changes by
the desired amount, then for each cycle the required change of orientation would be
8p/n = —7.13/3.0 = —2.38 degrees. Choosing 6y = 45.0 degrees and 6; = 0.0 degrees to
correspond with point A of Fig.6(a) and arbitrarily choosing 6,, = 125.0 degrees results
in 62, = 53.4 degrees, calculated using Eq.(24). Note that all angles must be converted
from degrees to radians prior to using Eq.(24).

The values (8y;, 8,4, 021, 02.) = (:15.0, 125.0,0.0,53.4) degrees define a rectangular path
ABCDA in the 6,-6; plane, shown in Fig.6(a), which, when traversed three times by
the robot joints, will cause the dependent variable 8, to converge to its desired value.
The evolution of all the configuration variables for the path 0ABCDA when the closed
trajectory ABCDA is traversed three times is shown in Fig.6(b). Note that all of the

configuration variables do in fact converge to their desired values.
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The above example confirms the validity of the surface integral algorithm. It is
now worth the effort to illustrate some of the more versatile features of the algorithm
in the context of this example.

In Chapter I1.C.2., it was noted that motion planning must often occur in the
presence of additional constraints. Suppose now that a situation exists such that
the following joint limit is imposed on the space robot: |,| < 90 degrees. Clearly,
the closed trajectory ABCDA is no longer feasible since it requires 6, to come to a
maximum value of 8;, = 125.0 degrees. Since this value was chosen arbitrarily to begin
with, there is complete liberty to respecify it as, say, 6;, = 75.0 degrees. Taking 8,; and
82 to have the same values as before, maintaining the requirement that three complete
cycles of the closed loop trajectory be executed, and recalculating the value of 6,,
using Eq.(24) yields 6,, = 89.2 degrees. The values (8, 14, 021,624) = (45.0,75.0,0.0,89.2)
degrees define a revised rectangular path AEFGA shown in Fig.7(a) which, when
traversed three times by the robot joints, will cause the dependent variable 8, to
converge to its desired value subject to the constraint 16| < 90 degrees. The evolution
of all the configuration variables for the path OAEFGA when the closed trajectory
AEFGA is traversed three times is shown in Fig.7(b).

Now suppose yet another constraint is imposed, namely |6;] < 80 degrees. This
constraint now renders both the paths ABCDA and AEFGA infeasible. To obtain
a feasible path, one might choose to respecify 6,, once again in order to obtain a
suitable value for 6;,. However, there is another way. If the requirement to execute
three cycles of the closed trajectory is lifted, one would have the freedom to choose
any number of cycles. Choosing the number of cycles to be n = 6 and maintaining
(811,014, 621) = (45.0,75.0,0.0) degrees yields 8,, = 61.86 degrees. These values now define
the path AHIJA shown in Fig.8(a) which, when traversed six times, will converge
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the dependent variable 6, subject to the constraints |9,| < 90 degrees and |8;] < 80
degrees. The evolution of the configuration variables for the path OAHIJA is shown
in Fig.8(b).

The above examples illustrate that using the surface integral algorithm to plan
the closed trajectory of the independent variables needed to converge the dependent
variable in the presence of additional constraints is a relatively trivial problem. One
need only choose an appropriate value of 8,, or an appropriate number of cyclic
motions of the joints. This feature of the surface integral algorithm is extremely
powerful and gives it a distinct advantage over other nonholonomic motion planning

algorithms.

Another attractive feature of the surface integral algorithm that can be demon-
strated using the two dimensional space robot is its ability to prove the reachability
of specific nonholonomic systems. The reachability of the space robot can be proven
by showing that there exists a rectangular surface in the 6,-6, plane defined by the
points (81, 614, 81, 62.) such that the equality in Eq.(22) can be satisfied for any arbi-
trary value of 8y = 8oy — 604. Note that the initial values of 6, and 8, do not necessarily
have to lie on the boundary of the rectangular surface. This follows from the dis-
cussion of Chapter II1.C.1. Also note that if the identity in Eq.(22) can be satisfied
for some value of 8, by travelling along the boundary of the rectangle in the positive
direction, then the same identity can be satisfied for -8, simply by travelling along
the boundary in the negative direction. Finally, if the identity can be satisfied for
some value of 8, by travelling once along the boundary of the rectangle, then the
identity can be satisfied for the value nfy, n = 1,2, -, by travelling n times along the
boundary in the same direction. Clearly, the reachability problem thus reduces to
showing that the identity in Eq.(22) can be satisfied for any value of 8, € [0,¢) where
¢ is some small positive number. Consider the following quantity from Eq.(24):
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If 8;, and 6,; are chosen in such a manner so as to ensure that o does not equal zero,

Eq.(24) can be rewritten as follows:

8
MIona O1u = Ou (26)

With this formulation, it is quite obvious that (8,, - 8,;) can be chosen such that
Eq.(26) is satisfied thus proving that Eq.(22) can be satisfied for any value of 8, € [0.¢).

A final feature of the surface integral algorithm that can best be illustrated with
the space robot concerns the problem of repeatability. In Chapter I1.C.5.. it was
stated that the surface integral algorithm allowed for the calculation of trajectories
needed to produce repeatable motion. In particular situations, a space robot may
be expected to perform a repetitive task. In such a situation, the end eflector of
the robot as well as its configuration variables will all have to move along closed
trajectories. If the joints of the robot shown in Fig.5 move along closed trajectories.
the dependent variables z, and yo will always move along closed trajectories because of
the holonomic nature of the linear momentum constraints. The dependent variable 6,
will however not move along a closed trajectory in the general case. If the net change
in 8, were also to be zero as the joints moved along a closed rectangular path. then
from Eq.(24) the necessary conditions that would have to be satisfied are 8,, = 6;; or
cos bz, = cosy. The first condition leads to the trivial case where the first joint of the
robot will have to be kept fixed. The second condition states that repeatability is
assured as long as 6y, + 0y = 2n7, n=0,£1,%2,---. The examples considered thus far
demonstrate that a significant amount of flexibility exists with regard to choosing the
closed trajectories. Although the condition 8, + 8y = 2n7, n =0,£1,£2, - will greatly
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restrict the available trajectories, it will still be possible to choose from a variety of
paths that will produce repeatable motion.

To illustrate this point, consider the initial configuration of the robot to again
be (60,,01,.62) = (0.0,15.0,15.0) degrees. This time however, the task is to move the
joints from their initial configuration to some desired configuration and back to their
initial configuration without effecting any change in the value of 6,. Again choosing
a rectangular trajectory for the joint variables and substituting the condition that

82, + 02 = 2rr (letting n = 1), recasts Eq.(24) into the following form:

1 1

=) . — -
0 1 4o (61u - 6u) A+ Bceost,, A+ Bcos(2m —0,,)

(27)

If the desired configuration of the joints is given by (6,,,8,,) = (60.0,30.0) degrees, and
(614,82.) are chosen to be (60.0,30.0) degrees, then 6y is calculated to be 2= — 300 =
330.0 = —-30.0 degrees. Choosing 6y; to be 15.0 degrees so that the initial configuration
of the system lies on the planned closed loop path results in the trajectory OAKLMO
shown in Fig.9(a). Assume now that the joints must perform the required task five
times, each time moving from point O to point L and back again to 0. The evolution of
all the configuration variables as this is accomplished over the path OAKLMO is shown
in Fig.9(b). Note that the motion is completely repeatable. All of the configuration
variables, including the vehicle orientation 6y, return to their initial values following
each execution of the closed trajectory OAKLMO.

In this first part of Chapter III., the surface integral algorithm was applied to
the motion planning of a planar space robot. The example illustrated the validity
of the algorithm as well as its ability to handle additional motion constraints. The
example also demonstrated how the algorithm can be used to ascertain a particular
system’s reachability. Finally, the algorithm was used to plan trajectories which result
in repeatable motion of all the coordinates. In Chapter [IL.B., the algorithm will be
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applied to yet another nonholonomic system, the rolling disk. This example will
demonstrate the algorithm’s ability to avoid cases of singularity and will prove that
the closed trajectory needed to converge the dependent variables can lie anywhere in
the space of the independent variables.
B. THE ROLLING DISK

In this part of Chapter III., the surface integral algorithm will be applied to the
motion planning of the rolling disk first mentioned in Chapter [.A.. This example
will serve to further illustrate the algorithm itself as well as the algorithm'’s ability to
handle cases of algorithmic singularity.

As discussed previously, the configuration of the rolling disk of Figs.1(b) and (2)

can be described by the coordinates (z,y,6,a) and the differential motion constraints
dxr = rsina df (28a)

dy =rcosa df (28b)

where r and y represent the dependent variables while § and a are taken as the
independent variables. To plan a path from some initial configuration (z,,y,6:,,) to
some desired configuration (z;,yy,8;, a;), the surface integral algorithm requires that
the independent variables first be converged to their desired values as the dependent
variables evolve to some intermediate configuration (z4,v4). A closed path in the
space of the independent variables is then planned using Stoke’s Theorem such that
the dependent variables converge from (z4,y4) to (z;,ys) as the independent variables
travel along this closed path. Let C be such a closed path in the 6-o plane. Then the

change of the variables z and y as ¢ and « traverse this path is given by

z/—:rd:frsina d0=//—rcosad0da (29)
c s
y;—yd=frcosad0=//rsina dé da (30)
c s
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where Stoke's Theorem, in the simplified form of Eq.(11), was applied to convert the
line integrals into surface integrals. S is therefore the surface in the 6-u plane enclosed
by the closed curve C. Specification of this surface as a rectangle with sides parallel

to the @ and a axis leads to

a, 0.
r,—rdz—/ / rcosa df da = -r(8, - 8;)(sina, —sinay) (31)
ay 91

a, .
Yr—Yyd = / / rsina df da = -r(8, — 8;)(cosa, — cosay) (32)
ay a,

where 6, and 6, denote the lower and upper extremities of ¢ in the rectangular path,
and a; and a, denote the same for a. Egs.(31) and (32) can be simplified by letting

b=a, —a and a =6, — 8. With these substitutions, Eqs.(31) and (32) become
Ty~ xa = —ra [sin(b+ ay) — sinay] (33)

Yr —ya = —ra [cos(b+ o) — cos o] (34)

Simplification through the use of trigonometric identities yields

Zy— zq = -2racos(ay + g)sin g {35)
. b, . b
Yy — yg = 2rasin(ay + E)sm 3 (3€)

To construct a closed loop path in the 6-a plane that will serve to converge the
dependent variables from (z4,y4) to (z;,y;), one merely needs to choose o; and solve

Egs.(35) and (36) simultaneously for a and b to obtain

b=2[-aq + arctan2(yy — yq, 74 — zy)], 0<b<dn (37)

_{(zy —za) + (g - a7}
¢= 27 sin(b/2) (38)

Since the solutions to the arctan2 function differ by an angle of 2. b in Eq.(37)
can always be chosen to be a positive number subject to b < 4r. Furthermore, Eq.(37)
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was derived from Eqgs.(35) and (36) with the assumption that asin(b/2) is a positive
number. Thus, in Eq.(38), the positive square root of the numerator on the right hand
side is always chosen rather than the negative. This may sometimes lead to negative
values of a. In such situations, the path is constructed as though a were positive and
then is traversed in the direction opposite to normal convention. A generic closed
rectangular path PQRSP with sides of length a and b as well as the required initial
path OP needed to converge the independent variables is shown in Fig.10(a). In this
figure, a; has been chosen to be equal to a;.

At this point, it is worth noting that as the disk moves along the sides QR and
SP of the rectangular path PQRSP in Fig.10(a), the value of a must change in the
absence of rolling. Since this might be difficult to achieve in practice, such as in
the case of a unicyclist, the rectangular path PQRSP can be modified to the path
PQMNP shown in Fig.10(b). It is a simple matter to show that the surface integrals
in Eqgs.(29) and (30) will have the same value for each of these paths. As a result,
the path PQM NP produces the same change in the values of the dependent variables
z and y as the original path PQRSP. The path PQMNP requires a to change only

when the disk is rolling and is therefore a more physically feasible path.

Consider now a disk of radius r = 0.25 meters at an initial configuration of
(z:, %, 0;, ) = (0.0,0.0,0.0,0.0) meters, degrees. Suppose that the desired configura-
tion of the disk is (z,,yy,8;,a7) = (1.0,1.0,180.0,30.0) meters, degrees. The independent
variables ¢ and a are first converged to their desired values using the straight line
path OP shown in Fig.11(a). The values of the dependent variables z and y at the
end of this path, obtained via computer simulation, are z, = 0.20 meters and ya = 0.75
meters as shown in Fig.11(b). Choosing a rectangular path with a; = o, = 30.0 de-
grees and solving for the values of a and 6 using Eqgs.(37) and (38) results in a = 1304
degrees and b = 265.3 degrees. A slight modification to this path using a value of
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3 = 45.0 degrees in order to allow the value of o to change only while the disk is
rolling results in the closed path PQRSP, also shown in Fig.11(a). Execution of this
path results in the dependent variables evolving from (z4,y4) = (0.20,0.75) meters to
(xs.yr) = (1.0,1.0) meters while the independent variables change but finally return to
values of (8y,ay) = (180.0,30.0) degrees. Fig.11(b) shows the actual path of the disk in
the z-y plane.

The above example illustrates the validity of the surface integral algorithm when
applied to the rolling disk. However, consider Eq.(38) once again. Note that an
algorithmic singularity will occur if b = 2n7, n =0,1,2,---. Substituting this value of b
into Eq.(37) reveals that the surface integral algorithm, as discussed thus far, breaks

down if a;, the lower value of a on the requisite closed trajectory, has value

o = arctan2 (yy — Y4, T4 — Ty) — n 7, n=0,12-.., (39)

As stated in Chapter I1.C.3., the surface integral algorithm is equipped to handle
such a case. In Chapter I1.C.1, it was noted that the closed trajectory of the indepen-
dent variables needed to converge the dependent variables could lie anywhere in the
space of the independent variables. It does not have to pass through any particular
configuration of the system. As a result, o; can be chosen arbitrarily and if by chance
that choice results in the equality of Eq.(39) being satisfied, one merely needs to make
another choice.

Once again, consider a disk with radius » = 0.25 meters and an initial configuration
(z4, i, i, i) = (0.0,0.0,0.0,0.0) meters, degrees. This time, let the desired configuration
of the disk be (z;,yy,8;,07) = (~0.4,1.0,180.0,22.5) meters, degrees. As before, the in-
dependent variables are first converged to their desired values, this time along the
path OT of Fig.12(a). The values of the dependent variables (again obtained via com-
puter simulation) evolve from (z;, %) = (0.0,0.0) meters to (z4,y4) = (0.15,0.77) meters
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as ¢ and a traverse this path. If o; were chosen to be equal to o, as before, Eq.
(39) would be very nearly satisfied and the required value of « needed to converge
the dependent variables would be inordinately large as evident from Eq.(38). As a
result, a; is not chosen to be equal to a; but is instead chosen (arbitrarily) as a; = 10.0
degrees. Such a choice results in the current configuration of the system not lying
on the closed trajectory needed to converge the dependent variables. The disk must
therefore traverse the path segment TU of Fig.12(a) in order to arrive at the start of
the requisite closed trajectory. This motion results in the dependent variables evolv-
ing from (z4,y4) = (0.15,0.77) meters to (z4,y,) = (0.32,1.33) meters. A check of Eq.(39)
reveals that with o; = 10.0 degrees, the disk is no longer near a singular configuration.
As a result, Egs.(37) and (38) can now be solved for a and b yielding values of ¢ = 305.2
degrees and b = 26.0 degrees. Note that the values of z, and y, were not considered
when solving for a and b since the change in the values of the dependent variables
[(z; - z4) and (y} — ya)] in traversing the path segment TU will be negated when that
same path segment is executed in reverse. The complete closed path TUVW XUT.
shown in Fig.12(a) and modified as before with a value of 3 = 45.0 degrees, results in
the convergence of the dependent variables from their intermediate configuration of
(z4,ya) = (0.15,0.77) meters to their final desired values of (z;,y;) = (-0.4,1.0) meters.
Because the path is closed in the 6-a plane, the independent variables return to their
desired values of (8, a,) = (180.0,22.5) degrees. Fig.12(b) shows the actual path of the
disk in the z-y plane.

The two rolling disk motion planning problems described above once again demon-
strate the validity of the surface integral algorithm. Additionally, in the process of
showing that algorithmic singularities can be easily overcome, it was demonstrated
that the closed path needed to converge the dependent variables can lie anywhere in

the space of the independent variables.
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IV. SUMMARY AND RECOMMENDATIONS

In this thesis, an algorithm for calculating the coordinate trajectories required to
drive a nonholonomic mechanical system from one point in its configuration space
to another has been presented. The algorithm entails first driving the independent
variables to their desired values. Closed trajectories of the independent variables
are then executed in order to drive the dependent variables to their desired values.
Stoke's Theorem is employed to convert the problem of finding an appropriate closed
path in the space of the independent variables to one of finding a surface area in
that same space such that the dependent variables converge to their desired values
as the independent variables traverse along the boundary of this surface area. The
algorithm is conceptually simple and applicable to a large class of nonholonomic me-
chanical systems. The requisite closed trajectories are not restricted to any particular
location in the space of the independent variables, the algorithm allows for motion
planning in the presence of additional constraints, algorithmic singularities are easily
overcome, and questions pertaining to the reachability and repeatability of the sys-
tem are readily answered. Application of the algorithm to two simple nonholonomic
mechanical systems, a planar space robot and a disk rolling without slipping on a flat
surface, demonstrate the validity and utility of the algorithm.

The application of this algorithm to other, more practical nonholonomic motion
planning problems is a logical next step. An actual three dimensional space structure
might be considered. Cyclic motions of the joints of a manipulator attached to the
structure could be used to control the attitude of the structure itself. These cyclic
motions could be planned using the surface integral approach. This method of con-
trolling the structure would result in significant reductions in cost and weight since
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the requirement for fuel consuming thrusters would be minimized. The algorithm
might also be applied to the motion planning of a wheeled mobile robot or robotic
hand with dextrous fingers. Additionally, it may even prove useful in controlling the
orientation of certain underwater vchicles. In summary, the surface integral algo-
rithm provides a new and useful approach to the motion planning of nonholonomic

mechanical systems and offers a wide range of possibilities for its implementation.
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Figure 5. A two-link manipulator mounted on a space vehicle is described
by three generalized coordinates: 8,, 8, 8,. The center of mass of the
space vehicle has the coordinates X, v .
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