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ABSTRACT

The number of coordinates needed to completely describe the configuration of a

holonomic mechanical system is equal to the number of degrees of freedom possessed

by that system. In contrast, nonholonomic systems always require more coordinates

for their description than their are degrees of freedom due to the nonintegrable nature

of the governing velocity constraints. The task of nonholonornic motion planning

applied to a given system is to develop trajectories of the independent coordinate

variables such that the entire system is driven to some desired point in its config-

uration space. An algorithm for constructing these trajectories is presented. In

this algorithm, the independent variables are first converged to their desired values.

The dependent variables are subsequently converged using closed trajectories of the

independent variables. The requisite closed trajectories are planned using Stoke's

Theorem which converts the problem of finding a closed path in the space of the

independent variables to that of finding a surface area in that same space such that

the dependent variables converge to their desired values as the independent variables

traverse along the boundary of the surface area. The use of Stoke's Theorem simpli-

fies the motion planning process and also answers important questions pertaining to

the system. The salient features of the algorithm are apparent in the two examples

discussed: a planar space robot and a disk rolling without slipping on a fiat surface.
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I. INTRODUCTION

This thesis presents an algorithm for planning the motion of nonholonomic me-

chanical systems. The algorithm provides a means for calculating the coordinate

trajectories required to drive a nonholonomic system from one point in its configu-

ration space to some other desired point. The algorithm involves the use of Stoke's

Theorem and therefore takes a surface integral approach to the problem. To enhance

the reader's understanding of the algorithm, the discussion proceeds methodically.

The goal of this first chapter is to clarify the nonholonomnic motion planning problem

and provide a conceptual overview of the surface integral approach to its solution.

Chapter II. begins with a review of the mathematical details needed for a complete

understanding of the algorithm, follows with a detailed discussion of the algorithm

itself, and concludes with some notes on some of its more versatile features. In

Chapter Ill., the surface integral algorithm is applied to two simple nonholonomic

mechanical systems: a planar space robot and a disk rolling without slipping on a

flat surface. These examples serve to validate the algorithm and, hopefully, solidify

the reader's understanding of it. Finally, a summary is provided in Chapter IV. It is

hoped that this methodical approach will provide the reader with an appreciation for

the simplicity and utility of the surface integral algorithm for the motion planning of

nonholonomic mechanical systems.

A. HOLONOMIC VERSUS NONHOLONOMIC SYSTEMS

The description of mechanical systems begins with a suitable choice of coordinates

and an identification of the constraints of motion resulting from that choice. In

the case of holonomic mechanical systems, coordinates can be chosen such that no



motion constraints arise. When the coordinates are chosen such that constraints of

motion do arise, those constraints always entail a relationship between the coordinates

themselves and not their derivatives. In contrast, nonholonomic mechanical systems

always require constraints of motion to complete their description regardless of how

the coordinates are chosen. This is because at least one of the constraints will involve a

non-integrable relationship between the first derivatives of the coordinates. To further

illustrate the difference between holonomic and nonholonomic mechanical systems,

consider the two systems shown in Figs.1(a) and l(b).

Figure 1(a) shows two particles m, and m2 connected by a rigid, massless rod of

length (11 + 12) on a two dimensional x-y plane. The center of mass of the system is

shown. An infinite number of coordinate sets can be used to describe the configuration

of this system. One choice might involve the use of the coordinates (x,, Y,, 0) to specify

the position of the center of mass of the system in the x-y plane and the orientation

of the rod with respect to the vertical y axis. Such a choice completely describes the

state of the mass-rod system and does not require any equations of constraint. A

second choice of coordinate sets might involve the coordinates (xi, Yi, '2, y2) to specify

the positions of each mass in the z-y plane. Such a choice of coordinates requires the

following constraint equation in order to completely describe the state of the system:

(X2 -XI) 2 + (Y2 -_Y) 2 = (il +12) (1)

A third choice of coordinate sets might entail the coordinates (xi,yi,x 2,Y2,xc, Yc) to

specify the positions of each mass as well as the center of mass in the x-y plane. Such

a choice of coordinates requires three equations of constraint to completely describe

the system:

(Xe -X1)2 + (Yo -Y1) 2 = L1 (2a)

(x2 - x6 ) 2 + (y2 - Y.) 2 
= 12 (2b)
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(X2 - xI) 2 + (Y2 - YI) 2 = (11 + 12)2 (2c)

Obviously, the possible number of coordinate sets that might be chosen to describe

this system are endless. However, all possible coordinate sets share one common

feature: they result in either no constraints of motion or constraints of motion which

relate the coordinates of the system and not their derivatives. Hence, the rod-mass

system of Fig. 1(a) is a holonomic mechanical system.

Consider now the system shown in Fig.1(b). This system consists of a disk of

radius r rolling without slipping on the x-y plane. A set of coordinates which might

be chosen to describe the location of a point P on the disk is (x. y, 0, a) where X and y

describe the location of the disk's point of contact with the ground, 0 describes the

angle a radial line through point P makes with the vertical z axis. and a describes the

angle the disk's instantaneous direction of motion on the x-y plane makes with the

horizontal y axis. Such a choice of coordinates results in the following two equations

of constraint:

S= rosin a (3a)

= r cos a (3b)

Note that Eqs.(3a) and (3b) above relate the derivatives of the coordinates to each

other and not the coordinates themselves. Furthermore, since a is an independent

function of time, Eqs.(3a) and (3b) cannot be integrated to yield relationships be-

tween the coordinates (the conditions for nonintegrability of a differential expression

will be discussed in Chapter II.A.1). For this reason, Eqs.(3a) and (3b) are termed

nonholonomic constraints on the disk of Fig.l(b), and the disk itself is said to be a

nonholonomic mechanical system. All nonholonomic mechanical systems share this

feature: the constraints of motion relate the velocities of the system and cannot be

integrated to yield relationships between the coordinate positions.
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This feature of nonholonomic systems is unique and gives rise to the nonholonomic

motion planning problem.

B. THE NONHOLONOMIC MOTION PLANNING PROBLEM

In the previous section, it was shown that nonholonomic mechanical systems are

governed by constraints of motion which involve nonintegrable relationships between

the velocities of the system. In this section, it will be shown how this feature of

nonholonomic systems gives rise to the nonholonomic motion planning problem. To

understand this problem, a number of terms must first be discussed.

The configuration space of a mechanical system is the space defined by the mini-

mum number of coordinates needed to completely describe that system. The dimen-

sion of the configuration space is the number of those coordinates. The degrees of

freedom of a mechanical system is defined as the difference between the number of

coordinates used to describe the system and the number of independent equations of

constraint arising from that description. In more specific terms. given a mechanical

system described by n coordinates and m independent equations of constraint, the

number of degrees of freedom possessed by the system is equal to n - m. The number

of degrees of freedom possessed by a given system is a fixed number and is completely

independent of the coordinate system chosen. Finally, the number of independent co-

ordinates available to a given mechanical system is synonomous with the number of

degrees of freedom of the system. Additional coordinates over and above this number

are always dependent.

Consider now the holonomic rod-mass system of Fig. 1(a). Note that it is a three

degree of freedom system since, regardless of how the coordinates are chosen, the

number of coordinates minus the number of independent constraints is always equal

to three. Likewise, the number of independent coordinates available to the system

is also equal to three although for any given set of coordinates, the choice of which
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are independent and which are dependent is both physically and mathematically

arbitrary. Now consider the nature of the holonomic constraints described by Eqs.(1),

(2a), (2b), and (2c). Note that because these equations all entail a direct relationship

between the coordinates themselves, specification of the values of any three of the

variables uniquely determines the values of any remaining variables. In other words,

regardless of which coordinate system is chosen, specification of the values of the

independent coordinates uniquely determines the value of the dependent coordinates.

As a result, only the values of the independent coordinates are needed in order to

completely specify the configuration of the system. This is true of all holonomic

mechanical systems and because the number of independent coordinates available to

a given system is equal to the number of degrees of freedom possessed by that system,

the dimension of the configuration space of a holonomic system is always equal to its

number of degrees of freedom.

Now consider the nonholonomic rolling disk of Fig.1(b) and its accompanying

constraint equations, Eqs.(3a) and (3b). Note that it is a two degree of freedom sys-

tem since the number of coordinates used to describe the system minus the number

of independent equations of constraint is equal to two. The coordinates z and y are

clearly the dependent variables since their values can only be changed by either rolling

or both rolling and turning the disk. Note however that the values of x and y are not

uniquely determined by the constraint equations given the values of the independent

variables 0 and a. This is due to the fact that the constraint equations represent non-

integrable relationships between the velocities of the system and not the coordinates

themselves. As a result, the values of all four coordinates must be specified sepa-

rately in order to completely describe the configuration of the rolling disk. Unlike the

holonomic constraint equations of the rod-mass system, the nonholonomic constraint

equations of the rolling disk do not restrict the dimension of the configuration space
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of the system. This is a unique feature of nonholonomic mechanical systems and

forms the heart of the nonholonomic motion planning problem: their ability to access

a configuration space of higher dimension than their number of degrees of freedom.

The nonholonomic motion planning problem can therefore be stated as follows: given

a system described by n coordinates and m nonholonomic constraints, how does one

drive all n of the coordinates from some initial set of values to some desired set of

values in spite of the system having only n - m degrees of .,eedom? The answer to

this question has been sought by numerous researchers and a variety of solutions have

been proposed. In the next section, a brief survey of some of these solution techniques

will be presented.

C. LITERATURE SURVEY

The nonholonomic motion planning problem has been the focus of attention of

various researchers in the recent past. Specifically, researchers have considered the

questions of how a falling cat manages to always land on its feet [Ref. 1, Ref. 2:

pp. 25-30] and how an astronaut might use those same principles to reorient himself

during a spacewalk [Ref. 31. Researchers have also considered the problems of mobile

wheeled robot navigation [Ref. 4, Ref. 51, parking a front wheel drive car [Ref. 2:

pp. 89-91, Ref. 6: pp. 8-11, Ref. 7: pp. 17-19], parking a cart with multiple trailers

[Ref. 6: pp. 11-13, Ref. 7: pp. 29-30, Ref. 8], controlling a unicycle or rolling disk

[Ref. 2: pp. 83-89, Ref. 6: pp. 6-8], controlling a satellite with rotors instead of

gas jets [Ref. 2: pp. 21-251, dextrous manipulation with robotic fingers [Ref. 9], and

reconfiguration of a space structure or space manipulator using only internal motion

[Ref. 10, Ref. 11]. Each of these researchers have explored various aspects of the

nonholonomic motion planning problem and have developed unique solutions to it.

Kane, Headrick, and Yatteau [Ref. 31 conducted experiments to determine the

feasibility of a spacewalking astronaut to reorient himself through arm motion only.
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The nonholonomy of an astronaut or any freefloating spacecraft derives from the prin-

ciple of angular momentum conservation. While these researchers did not approach

this problem in the broad context of nonholonomic motion planning, their research

pointed the way towards a number of possible solution techniques.

The problem of controlling a multi degree of freedom space manipulator was first

addressed bY Vafa and Dubowsky [Ref. Ill. The dynamic coupling between the

joints of a space manipulator and the vehicle to which it is attached often results in

an undesirable drift of the vehicle when the joints are actuated. Vafa and Dubowsky

proposed using small cyclic motions of the manipulator joints to control this drift.

The problem was also tackled by Nakamura and Mukherjee [Ref. 101 who showed

that the vehicle orientation as well as the joint angles could be brought to their

desired configurations by executing appropriate trajectories of the joint angles. The

trajectories were planned using a Lyupanov function and by adopting a bidirectional

approach.

The nonholonomic nature of a car or cart with multiple trailers evolves along the

same lines as that of the rolling disk discussed in the previous sections. Laumond [Ref.

81 studied the multibody car system and concluded its controllability by showing that

the rank of the control Lie Algebra is equal to the dimension of the state space at

every point in the state space. Murray and Sastry [Ref. 7: pp. 29-30] also studied the

problem. They showed that the dependent variables of the system could be brought

to their desired values by executing closed trajectories of the independent variables.

The closed trajectories were planned using a scheme involving sinusoids.

While the research discussed above sheds light on various aspects of the non-

holonomic motion planning problem, none of the methods, algorithms, or concepts

developed thus far completely solve the problem. A general scheme, applicable to a
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wide range of nonholonomic mechanical systems, has not yet been presented. Addi-

tionally, a global scheme for addressing important questions such as motion planning

in the presence of additional constraints, the reachability of a given system, and re-

peatability is conspicuously absent from the literature. The surface integral algorithm

represents a new approach. Not only is it applicable to a large class of nonholonomic

systems, but its implementation also leads to definitive answers to the questions posed

above. In the next section, a conceptual overview of the algorithm will be presented.

D. OVERVIEW OF THE SURFACE INTEGRAL ALGORITHM

To gain a basic understanding of the surface integral approach to the motion

planning of nonholonomic systems, consider again the rolling disk. this time shown

in Fig.2(a). Suppose it is desired that the disk change its coordinates from (x.y,o,a)

to (Xd, yd, 0, a). A very simple way of accomplishing this would be to first roll the

disk forward along path segment AO, and then roll the disk backwards along path

segment OB. As shown in the figure, the end result of such a maneuver would be

that the coordinates 0 and a remain constant while the coordinates x and y move to

their desired values 1 d and Yd. Such an operation involves the execution of a closed loop

trajectory in the 0-a plane , shown in Fig.2(b), to achieve the desired change in x and

y. In more general terms then, it appears as though it is possible for nonholonomic

mechanical systems to achieve a desired configuration of the dependent variables

simply by executing an appropriate closed loop path in the space of the independent

variables. It therefore follows then, that to converge all of the configuration variables

of a nonholonomic system from one set of values to another, one might first converge

the independent variables from their initial values to their desired values without

being concerned about the evolution of the dependent variables. One could then

execute an appropriate closed loop path in the space of the independent variables to

converge the dependent variables to their desired values.

8



The technique described above leaves one critical question unanswered. How does

one calculate an appropriate closed loop path? The surface integral algorithm is the

answer. In this method, the problem of finding a closed loop path in the space of

the independent variables is transformed into the problem of determining a surface

area in that same space such that the dependent variables converge to their desired

values as the independent variables traverse around the boundary of the surface area.

The required transformation is accomplished by applying Stoke's Theorem to the

differential form of the nonholonomic constraint equations.

To summarize, the essential features of the surface integral algorithm for the

motion planning of nonholonomic systems can be stated as follows: all of the config-

uration variables of a nonholonomic mechanical system are brought to their desired

values by first converging the independent variables and then by executing a closed

loop path in the space of the independent variables to converge the dependent vari-

ables. The requisite closed loop path is calculated by applying Stoke's Theorem to

the differential form of the nonholonomic constraint equations.

In the next chapter, Stoke's Theorem and other mathematical details needed for

a full understanding of the surface integral algorithm will be reviewed. Following

that, a detailed mathematical description of the surface integral algorithm will be

presented. Finally, the algorithm's ability to answer important questions pertaining

to the system will be discussed.
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II. THE SURFACE INTEGRAL APPROACH TO THE

NONHOLONOMIC MOTION

PLANNING PROBLEM

A. MATHEMATICAL PRELIMINARIES

1. Nonintegrability of Nonholonomic Constraints

In Chapter I., nonholonomic constraints were described as constraints which

involved a nonintegrable relationship between the first derivatives of the coordinates.

An obvious question is how does one determine whether or not a given constraint is

nonintegrable? To answer, the constraint equation must first be recast into differential

form. Taking the constraint described by Eq.(1) for example, and differentiating with

respect to time yields

(x2 - xl)(x2 - i) + (Y2 - yd)(Y2 - Pi) = 0

Rewriting in differential form and designating X2 as the dependent variable yields

(X2 - xj)(dx2 - dx1 ) + (Y2 - y 1 )(dY 2 - dy1 ) = 0

dXY•= Y 2 )dY2 - (Y1 -Y2 )dy +d x (4)
2 -X1 X2 -- X1

Equation (4) represents the constraint described by Eq.(1) recast into differential

form.

Recasting the nonholonomic constraints of the rolling disk into differential

form is a simpler task.

S= rOsina - dx = (rsina)dO (5a)

S= r cosa --- dy = (rsinck)dO (5b)

10



The above discussion helps to illustrate the fact that any set of constraint

equations, be they holonomic or nonholonomic, can be written in the following general

form

aj dq + aje dt = 0, j=1,2,. .m (6)

where the q's represent the generalized coordinates, t represents time, and the a's are.

in general, functions of the q's and t. In Eqs.(4), (5a), and (5b) the time coordinate

does not appear explicitly. This is a property of what are termed scleronomic systems.

and only mechanical systems of this type will be considered in this discussion. As

before. n represents the number of generalized coordinates used to describe the system

and m represents the number of independent constraint equations.

With the constraint equations in differential form, a simple test can be ap-

plied to determine whether or not the equations are integrable. Strictly speaking, a

differential expression is integrable if and only if it is an exact differential or can be

converted into an exact differential by multiplying through with an integrating factor.

In, more specific terms, it can be shown that the necessary and sufficient condition

for the integrability of the differential expression

vldx + v2dy + v3 dz = 0 (7a)

where vi, v2, and V3 are continuous functions of x, y, and z in a domain D of space is

that

( 0v2 0 V3 + vt3 2 )9V + V3 (2!V _ t 0 (7b)
V1O Oy) - 5 V 5x azi Oy ax

In the more general case, the necessary and sufficient condition that the differential

constraint in n variables

v, dxl + v2 dx2 + + vndXn = 0 (8a)

11



is integrable is that the set of equations

a x v (ax , aI ax1  ax+ ;A~-s)+V

(A,jz,v =1,2,-.,n) (8b)

are satisfied simultaneously and identically. [Ref. 121

Applying this criterion to Eq.(4) shows that this constraint is in fact integrable

and therefore holonomic. Applying this criterion to Eqs.(5a) and (5b) shows that they

are not integrable and therefore nonholonomic.

2. Relevant Theorems

In this part of the chapter. two important mathematical theorems will be

reviewed. The first is Stoke's Theorem used for the transformation of line integrals

into surface integrals and vice versa. The second concerns the path independence

of line integrals. Stoke's Theorem will serve as the principal mathematical tool for

determining the required closed loop path needed to converge the dependent variables.

The theorem regarding the path independence of line integrals will be crucial to the

demonstration that the dependent variables can in fact be driven to any desired

configuration from any other.

a. Stoke's Theorem

Let S be a piecewise smooth oriented surface* in space and let the boundary

of S be a piecewise smooth closed curve C. Let v(x, y, z) be a continuous vector function

which has continuous first partial derivatives in a domain in space which contains S.

* If a surface S has a unique normal whose direction depends continuously

on the points of S, then S is called a smooth oriented surface. If S is not smooth but

can be subdivided into finitely many smooth portions, then it is called a piecewise

smooth oriented surface.

12



Then

ic vtds= JJsn(v xv)dA (9)

where n is the unit vector normal to the surface S on that side of S which is taken as

the positive side. The positive direction along C is then defined as the direction along

which an observer, travelling on the positive side of S. would proceed in keeping the

enclosed area to his left. Refer to Fig.3(a). v, is the component of v in the direction

of the tangent vector of C. [Ref. 13: p. 3641

If the direction cosines of the unit vector n normal to the surface S are cosa,

cos3. and cos-Y, and if v = v.,i + v 2j + 13 k, then Stoke's Theorem can be written as

c(vi dx + v2 dy + V3dz) =

SL 3 ) VCosa+ t _ cos 3 + ( )V os

If the space under consideration is restricted to the x-y plane, then Eq.(10) simplifies

to the form

(va dx + v2dy)=]Jy - ) dxdy ( 11()

which is essentially a statement of Green's Theorem IRef. 13: p. 336].

For Eq.(11), the positive direction along the closed curve C is shown in

Fig.3(b). This directly follows from Eq.(10) where the values of a, 3, and -i were

taken to be 7r/2, 7r/2, and 0 respectively. The direction of the closed curve C in

Eq.(l1) may be changed by using (a3,•-y) = (ir/2,lr/2,7r) in Eq.(10). This will lead to

a change in sign of the surface integral in Eq.(11).

b. The Path Independence of Line Integrals

Let V = vI i + v2j + v 3 k, and let v1, v2, and v3 be continuous functions of x.

y, and z in a domain D of space. Then the line integral

J¢ (vj dx + V2 dy + V3 dz) (12)

13



is independent of path if and only if the differential form under the integral sign is

exact in D, or equivalently the integral is zero for every simple closed path in D, or

equivalently V x v = 0 everywhere in D [Ref. 13: pp. 369-3761.

From the above theorem, coupled with Eq.(10), it is clear that the necessary

and sufficient condition for the value of the line integral in expression (12) to be

independent of the path C is that

(9V2 _ 3  aV3  &I,• tr 1  -t'25 u--= T"'y T - ,z0 y ( 1 3 )

B. THE SURFACE INTEGRAL ALGORITHM

In Chapter I.D.. a conceptual overview of the surface integral appro' :'h to the

motion planning of nonholonomic systems was presented. With the mathematical

details necessary for a complete understanding of the algorithm now covered, a more

detailed treatment of the method is in order. It should be noted that the algorithm is

best illustrated through the use of appropriate examples. This will be the subject of

Chapter 111. At this point however, it is well worth the effort to discuss the theoretical

and mathematical basis of the algorithm.

Consider now a nonholonomic system where one of the dependent variables is p

and is constrained by the nonholonomic differential expression

dp = v1dX + v2 dy (14)

where x and y are taken to be the independent variables and vi and v2 are general

functions of x and y.

If an attempt is made to integrate Eq.(14) along some closed curve C in x-Y space

f dp = J (vldz + v2dy) (15)

it is clear that the attempt would be a failure since nonholonomic constraints are.

by definition, nonintegrable. However, since the expression on the right hand side of
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Eq.(14) is not integrable, it is therefore not exact. It follows then. from the discussion

on the path independence of line integrals, that if such a curve C could be found and

the integration performed, the resulting change in p would be dependent on the nature

of C. In other words, the evolution of the dependent variable p as the independent

variables x and y traverse a closed loop path in x-y space is entirely dependent on the

shape of that path. It seems then, that a desired change in the value of the dependent

variable p could be affected by choosing an appropriate path C in x-y space about

which the independent variables x and y traverse. The obvious question is how might

this path be chosen given the nonintegrable nature of Eq.(15).

At this point, Stoke's Theorem comes to the rescue. Suppose the desired change

in p is given by ŽAp. Then, using Stoke's Theorem (in the simplified form of Green's

Theorem), Eq.(15) can be recast into the following form:

dP = +-' - dxdy = Ap (16a)

If the double integral of Eq.(16a) can be evaluated, then the problem of determining

the appropriate closed curve C is reduced to finding a surface area S in which the

curve C is defined by the outline of this surface area. The integration problem can be

simplified by choosing this surface area to be rectangular in shape with sides parallel

to the x and y axis. Placing limits on the double integral of Eq.(16a) results in

Ap =f'f' - dxdy (16b)

where x, and x,, represent the lower and upper limits of the rectangle along the x

axis and yj and y,, represent the lower and upper limits of the rectangle along the

y axis. A simple way of solving this problem thus involves performing the double

integration dictated by Eq.(16b), choosing three of the four required limits based

on the physical considerations of the problem, and solving the resulting algebraic
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expression for the fourth and final limit. With this information in hand, the closed

curve C can be constructed and the independent variables x and y caused to traverse

around it to produce the desired change in p. As stated in Chapter I.D., the complete

surface integral algorithm involves first moving the independent variables to their

desired values noting the resulting final values of the dependent variables and then

calculating an appropriate closed loop path in the space of the independent variables,

using the method described above, such that the desired change in the values of the

dependent variables is brought about.

This is the surface integral algorithm for planning the motion of nonholonomic

systems. Its utility and ease of implementation is demonstrated via the examples to

be discussed in Chapter III. Before proceeding to those examples however, it is worth

noting some of the more salient features of the algorithm.

C. NOTES ON THE VERSATILITY OF THE SURFACE INTEGRAL

ALGORITHM

The surface integral algorithm provides a simple and effective means of deter-

mining the trajectories required to drive all of the configuration variables of a non-

holonomic mechanical system to their desired values. The following features of the

algorithm make it particularly attractive.

1. Location of the Closed Trajectory in the Space of the Independent

Variables

Once again, consider a nonholonomic system where one of the dependent vari-

ables is p and is constrained by the nonholonomic differential expression

dp = vtdx + v2dy + v3 dz (17)

where x, y, and z are taken to be the independent variables and vi, v2, and V3 are gen-

eral functions of x, y, and z. Assume now that there exists some closed trajectory C of
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the independent variables x, y, and z that produceý, a change in the dependent variable

p by some desired amount Ap. If (xo, y0, zo) is any point on this closed trajectory, and

if the initial configuration of the system is (xo,yo,zo,po), then after the system moves

along C once, its configuration will be (xo,yo,zo, po + Ap). Refer to Fig.4(a). If the

closed curve C was traversed in the opposite direction, then the final configuration of

the system would have been (zo, yo, zo,p 0 - Ap). Now consider the initial configuration

of the system to be (x', y', z', po) such that (x', y', z') does not lie on C. Let P be any path

segment connecting the point (z', y', z') and a point (x0, yo, zo) on the closed curve C.

Refer to Fig.4(b). Let bp denote the change in the dependent variable p as x, y. and z

move along the path segment P from (x', V' z') to (xo, yo, z0). Then, if the system moves

from the initial configuration (x',y',z',p0) to the closed curve C, traverses the closed

curve C once, and finally retraces the path segment P backwards, the configuration

of the system at the end of the path will be (x',y',z',p0 + Ap). This is true because

the surface integral of the area bounded by the closed curve beginning and ending at

the point (x',y',z') is equal to the surface integral of the area bounded by the closed

curve C. From this discussion, it follows that the closed curve C that can bring about

the desired change in the dependent variable can lie anywhere in the space defined

by the independent generalized coordinates - it does not have to pass through the

initial configuration of the system. This feature of the surface integral algorithm is

extremely useful and will prove its worth in the example systems to be dicussed in

Chapter III.

2. Motion Planning in the Presence of Additional Constraints

Often times, mechanical systems are subjected to constraints of motion over

and above those arising from the choice of coordinates. Obstacles in the workspace

provide the most salient example. The rolling disk of Figs.l(b) and 2(a) for instance,

might have its allowed motion restricted by a wall or similar obstacle. The motions
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of a robot on an automobile assembly line must be planned so as to avoid inadvertent

contact with the cars it is operating on. In order to be effective, a motion planning

algorithm must allow for the generation of admissible trajectories in the presence of

additional constraints. With regard to nonholonomic systems, the surface integral

algorithm provides just such a capability. This capability will be demonstrated in the

examples of Chapter III.

3. Algorithmic Singularity

Virtually all motion planning algorithms, when applied to any given mechan-

ical system, entail the possibility of mathematical singularity. An effective algorithm

must provide a means for coping with this problem when it arises. In Chapter III..

the ability of the surface integral algorithm to deal with mathematical singularity will

be readily apparent.

4. Reachability

The reachability of a given mechanical system can best be defined as its ability

to arrive at any desired configuration from any other. Obviously, the reachability of

a system is an important consideration. Implementation of the surface integral al-

gorithm provides a means of ascertaining the reachability of a nonholonomic system.

In Chapter III., the general method of determining the reachability of a nonholo-

nomic system will be discused and the method demonstrated via the examples of

that chapter.

5. Repeatability

The basis of the surface integral algorithm derives from the fact that closed

trajectories of the independent variables result in a change in the values of the de-

pendent variables. In particular situations however, it may be desirable to find closed

trajectories of the independent variables that result in no net change of the dependent

variables. Motion of this type is termed repeatable motion due to the fact that all of
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the coordinate variables return to their original values upon completion of the mo-

tion. Robots programmed to perform repetitive tasks (such as automobile welding)

for example, must be capable of repeatable motion in order to perform the same task

over and over again. While the issue of repeatability is theoretically trivial in the case

of holonomic systems, such is not the case for nonholonomic systems. In Chapter II.,

it will be demonstrated that the trajectories needed to produce repeatable motion in

a nonholonomic mechanical system can be generated easily through application of

the surface integral algorithm.

Thus far, this paper has presented a description of nonholonomic mechanical

systems and the nonholonomic motion planning problem, the mathematical basis of

the surface integral algorithm for solving the nonholonomic motion planning prob-

lem, and a discussion of the surface integral algorithm itself. Additionally, the various

attractive features of the algorithm have been briefly described. In the next chapter,

the algorithm will be applied to two simple nonholonomic systems: a two dimensional

free flying space robot and the rolling disk of Figs.1(b) and 2(a). These two exam-

ples will demonstrate the exceptional utility, simplicity, and versatility of the surface

integral algorithm.
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III. APPLIED EXAMPLES OF THE SURFACE

INTEGRAL ALGORITHM

A. THE PLANAR SPACE ROBOT

In this part of Chapter III., the surface iategral algorithm for the motion planning

of nonholonomic systems will be illustrated through the example of a free flying, two

dimensional space robot. The robot consists of two links mounted on a space vehicle

as shown in Fig.5. Such a system can be described by five coordinates: x0, y0 . and O0

representing the position of the center of mass and the orientation of the space vehicle,

and 08 and 02 representing the joint angles of the manipulator. The requirement that

the linear momentum of the system be conserved leads to two holonomic constraints of

motion while angular momentum conservation leads to one nonholonomic constraint.

Because the system is described by five coordinates and three equations of constraint,

the planar space robot possesses two degrees of freedom.

The holonomic constraints that arise due to the conservation of linear momen-

tum allow for the elimination of the variables x0 and yo from the kinematic equations

describing the system. The nonholonomic constraint however, does not allow for the

elimination of any of the variables due to the fact that it consists of a nonintegrable

relationship between the derivatives of the remaining coordinates, namely oo, dl, and

d2. The entire system is therefore completely described by three generalized coordi-

nates (00, 01, 02) and one nonholonomic constraint ecuation due to the conservation of

angular momentum. With some effort, this nonholonomic constraint equation can be

derived and is found to be given by the relation

( ý + be2) (18)
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where,

Al 1 2 2 )1 .- (2 1 21 1
2 M -i 1 + +n) m 2 2  2 (in +m 1 )M 2 11 12 COS0 2 - Itl (I + (-m + m) 1 + - 21~

a = A - At Io

b M (12 + ' + M m 2 1112cos02 - 2'2 - m 2(mI + m 2 )1112 cos0 2  (19)

and where mj. m, and m2 are the masses of the space vehicle and the two links: I., I,

and 12 are the moments of inertia of the space vehicle and the two links about their

center of masses; L1 and 12 are the length of the two links; and M = (iOn + MI + M2 ) and

J = ( Io+,I + 12).

The physical effect of the nonholonomic constraint described by Eq.(18) is that the

orientation of the space vehicle, Go, drifts when the joints are activated. Because the

amount of drift is directly dependent on the motion of the joints, 80 is the dependent

variable in the system. The nonholonomic motion planning task is therefore to develop

trajectories of the independent vaiiables 01 and 02 which drive the entire system to

some desired configuration. In accordance with the procedure described in Chapter

II.B., this will be accomplished by first converging the joint angles to their desired

values. The orientation of the vehicle will then be converged by executing closed

trajectories of the joints. These closed trajectories will be planned using Stoke's

TIheorem.

Let the arbitrary initial and desired configurations of the robot be denoted by

(0., 01., 02,) and (00I,0 1f, 021) respectively. Upon initial convergence of the independent

variables O. and 02, to their desired values 0lf and 02f, let the orientation of the

space vehicle drift from 00i to some intermediate value 0 0d. The task then is to use

Stoke's Theorem to plan a cyclic motion for the joints of the manipulator such that

the orientation of the space vehicle changes from 001 to 0of while the joint angles come
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back to their desired configuration. Rewriting Eq.(18) in differential form yields
1

dOo - (adO1 + bd82 ) (20)

Integrating Eq.(20) about a closed curve C in the 01-02 plane and applying Stoke's

Theorem in the form given by Eq.(11) yields

00f-O00 = dOo = a d~l + bd92a b a -(-a)] dO9d9 2  (21)

where S is the surface in the 01-02 plane confined within the closed curve C. Substi-

tution of the expressions for a, b, and A from Eq.(19) and specification of the surface

S as a rectangle with sides parallel to the 01 and 02 axis leads to

(0o - 0d) = MIo f j (, d9d (22)JO2. J ý -2 A+ BCOS 0

where

A1 1 1 212 ( 1 12 2

= (-In 1 + M + M2 - M M + I m + M n2) 1 + Mn21 2M
2 1)L 4 n 2 2  4 14 4 2

B -(iOn + -MI)m 21112  (23)
2

and where oil and Ow, denote the lower and upper extremities of 01 in the rectangular

path while 021 and 02U denote the same for 02. Finally, performing the combined

differentiation and integration dictated by Eq.(22) yields

n =MLo(01. -Oi) A+Bcos02,, A+BICos02l (24)

where
o -- 00f - o0d

and n equals the desired number of cyclic motions about the closed loop trajectory.

Clearly, for a desired change in 0o (given by 3o), an appropriate closed loop tra-

jectory of the joint variables 01 and 02 can be constructed simply by specifying the
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trajectory to be rectangular in shape and choosing values of oil, 0lu, 121, and 02, such

that Eq.(24) is satisfied.

To illustrate, consider a robot with the following kinematic and dynamic param-

eters: mo = 27.44 kg, mi = 5.38 kg, m 2 = 2.64 kg, Io = 1.520 kgm 2 , I, = 0.115 kgm 2,

12 = 0.028 kgm2 , ii 0.50 m, and 12 = 0.35 m. Let the initial configuration of the

system be (0oiO,,0.2,) = (0.0,15.0,15.0) degrees and the final desired configuration be

(0Go lf,02f) = (-20.0,45.0,0.0) degrees. Furthermore, specify that the desired change

in the dependent variable Go occur only after three complete cycles of the closed loop

trajectory. Using computer simulation, the independent variables 0, and 02 are first

converged from their current values to their desired values by following the straight

line trajectory OA shown in Fig.6(a). During this process, the orientation of the

space vehicle drifts from 0o, = 0.0 degrees to 00d = -12.87 degrees as shown in Fig.6(b).

Thus, Go = 9o0 - 0od = -7.13 degrees. If a cyclic motion of the joints is to be planned

such that after three complete cycles the orientation of the space vehicle changes by

the desired amount, then for each cycle the required change of orientation would be

Go/n = -7.13/3.0 = -2.38 degrees. Choosing 0G1 = 45.0 degrees and 02, = 0.0 degrees to

correspond with point A of Fig.6(a) and arbitrarily choosing 01,, = 125.0 degrees results

in 02, = 53.4 degrees, calculated using Eq.(24). Note that all angles must be converted

from degrees to radians prior to using Eq. (24).

The values (01G, 0,, 021,02u) = (45.0,125.0,0.0,53.4) degrees define a rectangular path

ABCDA in the 01-02 plane, shown in Fig.6(a), which, when traversed three times by

the robot joints, will cause the dependent variable 9o to converge to its desired value.

The evolution of all the configuration variables for the path OABCDA when the closed

trajectory ABCDA is traversed three times is shown in Fig.6(b). Note that all of the

configuration variables do in fact converge to their desired values.
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The above example confirms the validity of the surface integral algorithm. It is

now worth the effort to illustrate some of the more versatile features of the algorithm

in the context of this example.

In Chapter IL.C.2., it was noted that motion planning must often occur in the

presence of additional constraints. Suppose now that a situation exists such that

the following joint limit is imposed on the space robot: loll < 90 degrees. Clearly,

the closed trajectory ABCDA is no longer feasible since it requires 01 to come to a

maximum value of 0k,, = 125.0 degrees. Since this value was chosen arbitrarily to begin

with, there is complete liberty to respecify it as, say, 01, = 75.0 degrees. Taking 01, and

02L to have the same values as before, maintaining the requirement that three complete

cycles of the closed loop trajectory be executed, and recalculating the value of 02.

using Eq.(24) yields 02,, = 89.2 degrees. The values (o11 01., G 21, 02,,) = (45.0,75.0,0.0,89.2)

degrees define a revised rectangular path AEFGA shown in Fig.7(a) which, when

traversed three times by the robot joints, will cause the dependent variable 0, to

converge to its desired value subject to the constraint 1011 < 90 degrees. The evolution

of all the configuration variables for the path OAEFGA when the closed trajectory

AEFGA is traversed three times is shown in Fig.7(b).

Now suppose yet another constraint is imposed, namely 1021 < so degrees. This

constraint now renders both the paths ABCDA and AEFGA infeasible. To obtain

a feasible path, one might choose to respecify 0l. once again in order to obtain a

suitable value for 02.. However, there is another way. If the requirement to execute

three cycles of the closed trajectory is lifted, one would have the freedom to choose

any number of cycles. Choosing the number of cycles to be n = 6 and maintaining

(011,01., 021) = (45.0, 75.0,0.0) degrees yields 02,. = 61.86 degrees. These values now define

the path AHIJA shown in Fig.8(a) which, when traversed six times, will converge

24



the dependent variable 0o subject to the constraints 1011 < 90 degrees and 1021 < 80

degrees. The evolution of the configuration variables for the path OAHIJA is shown

in Fig.8(b).

The above examples illustrate that using the surface integral algorithm to plan

the closed trajectory of the independent variables needed to converge the dependent

variable in the presence of additional constraints is a relatively trivial problem. One

need only choose an appropriate value of 01,, or an appropriate number of cyclic

motions of the joints. This feature of the surface integral algorithm is extremely

powerful and gives it a distinct advantage over other nonholonomic motion planning

algorithms.

Another attractive feature of the surface integral algorithm that can be demon-

strated using the two dimensional space robot is its ability to prove the reachability

of specific nonholonomic systems. The reachability of the space robot can be proven

by showing that there exists a rectangular surface in the 01-02 plane defined by the

points (rOi, 01., 021,02,) such that the equality in Eq.(22) can be satisfied for any arbi-

trary value of ýO = 00f - 0 0d. Note that the initial values of 0ý and 02 do not necessarily

have to lie on the boundary of the rectangular surface. This follows from the dis-

cussion of Chapter II.C.1. Also note that if the identity in Eq.(22) can be satisfied

for some value of L.o by travelling along the boundary of the rectangle in the positive

direction, then the same identity can be satisfied for -. o simply by travelling along

the boundary in the negative direction. Finally, if the identity can be satisfied for

some value of ýo by travelling once along the boundary of the rectangle, then the

identity can be satisfied for the value A, n = 1,2,-., by travelling n times along the

boundary in the same direction. Clearly, the reachability problem thus reduces to

showing that the identity in Eq.(22) can be satisfied for any value of 3o E [0,E) where

Sis some small positive number. Consider the following quantity from Eq.(24):
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A BC0_ A+_ B 1 (25)S= A BcoO•,AtBccsO2 i)

If 0
2,, and 021 are chosen in such a manner so as to ensure that a does not equal zero,

Eq.(24) can be rewritten as follows:

= Otu -Ott(26)
MI ona

With this formulation, it is quite obvious that (ou -G01) can be chosen such that

Eq.(26) is satisfied thus proving that Eq.(22) can be satisfied for any value of o E (0. f).

A final feature of the surface integral algorithm that can best be illustrated with

the space robot concerns the problem of repeatability. In Chapter II.C.5.. it was

stated that the surface integral algorithm allowed for the calculation of trajectories

needed to produce repeatable motion. In particular situations, a space robot may

be expected to perform a repetitive task. In such a situation, the end effector of

the robot as well as its configuration variables will all have to move along closed

trajectories. If the joints of the robot shown in Fig.5 move along closed trajectories,

the dependent variables xo and yo will always move along closed trajectories because of

the holonomic nature of the linear momentum constraints. The dependent variable 0o

will however not move along a closed trajectory in the general case. If the net change

in 0o were also to be zero as the joints moved along a closed rectangular path, then

from Eq.(24) the necessary conditions that would have to be satisfied are 01, = 0 1 or

cos602 = Co6021. The first condition leads to the trivial case where the first joint of the

robot will have to be kept fixed. The second condition states that repeatability is

assured as long as 82u + 021 = 2 n 7r, n = 0, ±1, ±2,-.. The examples considered thus far

demonstrate that a significant amount of flexibility exists with regard to choosing the

closed trajectories. Although the condition 02u +02, = 2nir, n = 0, ±1, ±2,- will greatly
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restrict the available trajectories, it will still be possible to choose from a variety of

paths that will produce repeatable motion.

To illustrate this point, consider the initial configuration of the robot to again

be (00,O1,,02,) = (0.0, 15.0,15.0) degrees. This time however, the task is to move the

joints from their initial configuration to some desired configuration and back to their

initial configuration without effecting any change in the value of 00. Again choosing

a rectangular trajectory for the joint variables and substituting the condition that

02u + 02t = 27r (letting n = 1), recasts Eq.(24) into the following form:

0 = M 0(01 - 11)] (27)0 = I0(01, -0u[A + BeosO2,, A + Bcos(21r - 02,J]

If the desired configuration of the joints is given by (Olt, 02f) = (60.0,30.0) degrees, and

(01,,02,) are chosen to be (60.0,30.0) degrees, then 02, is calculated to be 27r- 30.0 =

330.0 = -30.0 degrees. Choosing 01, to be 15.0 degrees so that the initial configuration

of the system lies on the planned closed loop path results in the trajectory OAKLMO

shown in Fig.9(a). Assume now that the joints must perform the required task five

times, each time moving from point 0 to point L and back again to 0. The evolution of

all the configuration variables as this is accomplished over the path OAKLMO is shown

in Fig.9(b). Note that the motion is completely repeatable. All of the configuration

variables, including the vehicle orientation 00, return to their initial values following

each execution of the closed trajectory OAKLMO.

In this first part of Chapter III., the surface integral algorithm was applied to

the motion planning of a planar space robot. The example illustrated the validity

of the algorithm as well as its ability to handle additional motion constraints. The

example also demonstrated how the algorithm can be used to ascertain a particular

system's reachability. Finally, the algorithm was used to plan trajectories which result

in repeatable motion of all the coordinates. In Chapter III.B., the algorithm will be
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applied to yet another nonholonomic system, the rolling disk. This example will

demonstrate the algorithm's ability to avoid cases of singularity and will prove that

the closed trajectory needed to converge the dependent variables can lie anywhere in

the space of the independent variables.

B. THE ROLLING DISK

In this part of Chapter III., the surface integral algorithm will be applied to the

motion planning of the rolling disk first mentioned in Chapter I.A.. This example

will serve to further illustrate the algorithm itself as well as the algorithm's ability to

handle cases of algorithmic singularity.

As discussed previously, the configuration of the rolling disk of Figs. l(b) and (2)

can be described by the coordinates (x, y, 8, a) and the differential motion constraints

dr = rsina dO (28a)

dy = r cos a dO (28b)

where z and y represent the dependent variables while 0 and a are taken as the

independent variables. To plan a path from some initial configuration (x,, y,, 0,, a,) to

some desired configuration (xf, yp,0o, af), the surface integral algorithm requires that

the independent variables first be converged to their desired values as the dependent

variables evolve to some intermediate configuration (Xd, yd). A closed path in the

space of the independent variables is then planned using Stoke's Theorem such that

the dependent variables converge from (Xd,Yd) to (xf, yf) as the independent variables

travel along this closed path. Let C be such a closed path in the 0-a plane. Then the

change of the variables x and y as 0 and a traverse this path is given by

,-=Xd =c rsina dO-= Js-rcosa dO da (29)

yf - Yd fc rcosa dO = Jfrsina dO da (30)
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where Stoke's Theorem, in the simplified form of Eq.(11), was applied to convert the

line integrals into surface integrals. S is therefore the surface in the 9 -u plane enclosed

by the closed curve C. Specification of this surface as a rectangle with sides parallel

to the 0 and a axis leads to

/ ,e
Xf -Xd = faL rco a dO da = -r(#,, - 90)(sin a, - sin a,) (31)

Yf -Yd rsin a dO da = -r(O,, - 01)(cosa, - cosal) (32)
. L

where 91 and Ott denote the lower and upper extremities of 0 in the rectangular path.

and a, and a,, denote the same for a. Eqs.(31) and (32) can be simplified by letting

b = a,, - a, and a = 0,, - 01. With these substitutions, Eqs.(31) and (32) become

x! - xd = -ra jsin(b + at) - sin all (33)

Y! -1/a = -ra lcos(b + a,) - cos a,] (34)

Simplification through the use of trigonometric identities yields

b b
X xd = -2racos(al + b)sin b (35)

b b .a

Y ! - Yd = 2rasin(aj + b)sin (b.)
2 2

To construct a closed loop path in the 9-a plane that will serve to converge the

dependent variables from (xd,Yd) to (xf,y!), one merely needs to choose at and solve

Eqs.(35) and (36) simultaneously for a and b to obtain

b=2[-aI+arctan2(y! -yd,xd-Xf)], 0 < b < 47r (37)

a {((X - Xd) 2 + (yf - yd)2}/2 (38)
2r sin(b/2)

Since the solutions to the arctan2 function differ by an angle of 2fr. b in Eq.(37)

can always be chosen to be a positive number subject to b < 41r. Furthermore, Eq.(37)
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was derived from Eqs.(35) and (36) with the assumption that asin(b/2) is a positive

number. Thus, in Eq.(38), the positive square root of the numerator on the right hand

side is always chosen rather than the negative. This may sometimes lead to negative

values of a. In such situations, the path is constructed as though a were positive and

then is traversed in the direction opposite to normal convention. A generic closed

rectangular path PQRSP with sides of length a and b as well as the required initial

path OP needed to converge the independent variables is shown in Fig. 10(a). In this

figure, at has been chosen to be equal to af.

At this point, it is worth noting that as the disk moves along the sides QR and

SP of the rectangular path PQRSP in Fig.10(a), the value of a must change in the

absence of rolling. Since this might be difficult to achieve in practice, such as in

the case of a unicyclist, the rectangular path PQRSP can be modified to the path

PQMNP shown in Fig.10(b). It is a simple matter to show that the surface integrals

in Eqs.(29) and (30) will have the same value for each of these paths. As a result,

the path PQMNP produces the same change in the values of the dependent variables

x and y as the original path PQRSP. The path PQMNP requires a to change only

when the disk is rolling and is therefore a more physically feasible path.

Consider now a disk of radius r = 0.25 meters at an initial configuration of

(x,, y,, aj, c,) = (0.0,0.0,0.0,0.0) meters, degrees. Suppose that the desired configura-

tion of the disk is (xj, ofGj, af) = (1.0, 1.0, 180.0,30.0) meters, degrees. The independent

variables 0 and a are first converged to their desired values using the straight line

path OP shown in Fig.11(a). The values of the dependent variables x and y at the

end of this path, obtained via computer simulation, are Zd = 0.20 meters and Yd = 0.75

meters as shown in Fig.l1(b). Choosing a rectangular path with ak = a1 = 30.o de-

grees and solving for the values of a and b using Eqs.(37) and (38) results in a = 130.4

degrees and b = 265.3 degrees. A slight modification to this path using a value of
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.3 = 45.0 degrees in order to allow the value of a to change only while the disk is

rolling results in the closed path PQRSP, also shown in Fig.11(a). Execution of this

path results in the dependent variables evolving from (Xd, Yd) = (0.20,0.75) meters to

(x/, yf) = (1.0, 1.0) meters while the independent variables change but finally return to

values of (Of, af) = (180.0,30.0) degrees. Fig. 11(b) shows the actual path of the disk in

the x-y plane.

The above example illustrates the validity of the surface integral algorithm when

applied to the rolling disk. However, consider Eq.(38) once again. Note that an

algorithmic singularity will occur if b = 2nr, n = 0, 1, 2,-... Substituting this value of b

into Eq.(37) reveals that the surface integral algorithm, as discussed thus far, breaks

down if a,, the lower value of a on the requisite closed trajectory, has value

i= arctan2(y1 - Yd, Xd -x)-- nr, n= 0,1,2,.... (39)

As stated in Chapter II.C.3., the surface integral algorithm is equipped to handle

such a case. In Chapter II.C. 1, it was noted that the closed trajectory of the indepen-

dent variables needed to converge the dependent variables could lie anywhere in the

space of the independent variables. It does not have to pass through any particular

configuration of the system. As a result, al can be chosen arbitrarily and if by chance

that choice results in the equality of Eq.(39) being satisfied, one merely needs to make

another choice.

Once again, consider a disk with radius r = 0.25 meters and an initial configuration

(xi, y,, Oi, a,) = (0.0, 0.0, 0.0,0.0) meters, degrees. This time, let the desired configuration

of the disk be (xf,yi,af,,,c) = (-0.4,1.0,180.0,22.5) meters, degrees. As before, the in-

dependent variables are first converged to their desired values, this time along the

path OT of Fig. 12(a). The values of the dependent variables (again obtained via com-

puter simulation) evolve from (x,, y,) = (0.0, 0.0) meters to (Xd, yd) = (0.15,0.77) meters
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as 0 and a traverse this path. If at were chosen to be equal to a1 as before, Eq.

(39) would be very nearly satisfied and the required value of a needed to converge

the dependent variables would be inordinately large as evident from Eq.(38). As a

result, ac is not chosen to be equal to a, but is instead chosen (arbitrarily) as a0 = 10.0

degrees. Such a choice results in the current configuration of the system not lying

on the closed trajectory needed to converge the dependent variables. The disk must

therefore traverse the path segment TU of Fig. 12(a) in order to arrive at the start of

the requisite closed trajectory. This motion results in the dependent variables evolv-

ing from (xd, yd) = (0.15,0.77) meters to (xd,yd) = (0.32,1.33) meters. A check of Eq.(39)

reveals that with ac = 10.0 degrees, the disk is no longer near a singular configuration.

As a result, Eqs.(37) and (38) can now be solved for a and b yielding values of a = 305.2

degrees and b = 26.0 degrees. Note that the values of x' and y, were not considered

when solving for a and b since the change in the values of the dependent variables

[(Xd' - Xd) and (yd - yd)] in traversing the path segment TU will be negated when that

same path segment is executed in reverse. The complete closed path TUVWXUT.

shown in Fig.12(a) and modified as before with a value of •3 = 45.0 degrees, results in

the convergence of the dependent variables from their intermediate configuration of

(Xd, Yd) = (0.15,0.77) meters to their final desired values of (xf, y) = (-0.4, 1.0) meters.

Because the path is closed in the 9-a plane, the independent variables return to their

desired values of (of, a,) = (180.0,22.5) degrees. Fig. 12(b) shows the actual path of the

disk in the x-y plane.

The two rolling disk motion planning problems described above once again demon-

strate the validity of the surface integral algorithm. Additionally, in the process of

showing that algorithmic singularities can be easily overcome, it was demonstrated

that the closed path needed to converge the dependent variables can lie anywhere in

the space of the independent variables.
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IV. SUMMARY AND RECOMMENDATIONS

In this thesis, an algorithm for calculating the coordinate trajectories required to

drive a nonholonomic mechanical system from one point in its configuration space

to another has been presented. The algorithm entails first driving the independent

variables to their desired values. Closed trajectories of the independent variables

are then executed in order to drive the dependent variables to their desired values.

Stoke's Theorem is employed to convert the problem of finding an appropriate closed

path in the space of the independent variables to one of finding a surface area in

that same space such that the dependent variables converge to their desired values

as the independent variables traverse along the boundary of this surface area. The

algorithm is conceptually simple and applicable to a large class of nonholonomic me-

chanical systems. The requisite closed trajectories are not restricted to any particular

location in the space of the independent variables, the algorithm allows for motion

planning in the presence of additional constraints, algorithmic singularities are easily

overcome, and questions pertaining to the reachability and repeatability of the sys-

tem are readily answered. Application of the algorithm to two simple nonholonomic

mechanical systems, a planar space robot and a disk rolling without slipping on a flat

surface, demonstrate the validity and utility of the algorithm.

The application of this algorithm to other, more practical nonholonomic motion

planning problems is a logical next step. An actual three dimensional space structure

might be considered. Cyclic motions of the joints of a manipulator attached to the

structure could be used to control the attitude of the structure itself. These cyclic

motions could be planned using the surface integral approach. This method of con-

trolling the structure would result in significant reductions in cost and weight since
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the requirement for fuel consuming thrusters would be minimized. The algorithm

might also be applied to the motion planning of a wheeled mobile robot or robotic

hand with dextrous fingers. Additionally, it may even prove useful in controlling the

orientation of certain underwater vehicles. In summary, the surface integral algo-

rithm provides a new and useful approach to the motion planning of nonholonomic

mechanical systems and offers a wide range of possibilities for its implementation.
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