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1.0 INTRODUCTION

During the first year, we have successfully applied the

Impulse Approach (IA) to describe the Ar-CsF scattering system

and have recently presented a comprehensive analysis of our

findings1 reproduced in Appendix A. A major portion of our work

has focused on the so-called ballistic effect, in which almost

all of the relative translational energy of the atom-diatom

system is converted into vibrational/rotational energy of the

diatom. Several major findings have been reported. One major

finding is that the ballistic effect found in the Ar-CsF system

arises from two distinct kinematic mechanisms. The first mech-

anism giving rise to the ballistic effect is dominant when the

laboratory scattering angle is very close to the laboratory an-

gle of the centroid velocity. This mechanism involves the

transfer of almost all of the relative translational energy

into internal energy of the diatom. The second mechanism pro-

ducing the ballistic effect is the rainbow singularity that

arises when the recoil velocity of the alkali halide in the cen-

ter of mass frame is perpendicular to its recoil velocity in the

laboratory frame. Both mechanisms result from the kinematics,

not the dynamics, of the collision process. We thus conclude

that the ballistic effect should be observable for any two

collision partners.

Further comparison of computed differential cross sections
using the present IA method with experimental measured data had

provided reasonable agreement in some cases and discrepancies in

others. The present method limits the atom-diatom phenomenon to

a sum of two atom-atom interactions. These atom-atom interac-

tions have been, in all of the calculations for vibrational-

rotational excitation of the diatoms approximated by hard core

potentials. To arrive at an understanding of the influence of

hard core potentials on the calculated differential cross sec-

tions, we carried out the IA calculations using exponential re-

pulsive atom-atom interactions as well. We found that for the

Li+-N 2 scattering system, the resulting distributions of
1



rotational probabilities are remarkably similar to those ob-

tained with the hard core potentials. While the sum of the two

atom-atom interactions appeared to be an adequate description of

the atom-diatom potential at small distances, this model failed

to describe its long range attractive part. To remedy this, we

proposed to add to the sum of pair-interactions a centrally sym-

metric attractive potential located at the center of mass (c.m.)

of the diatom, that "distorts" the incoming and outgoing waves

in the scattering process. This Distorted Wave Impulse Approach

(DWIA) is reported in a paper 2 reproduced in Appendix B. An

improved agreement between the DWIA calculated distributions of

rotational transition probabilities and the experimental data

suggest that the long range attractive part of the potential

must be included in a model for small angle, high energy, atom-

diatom collisions involving small amounts of energy transfer.

2.0 DOUBLE COLLISION T MATRIX

Research has continued into the further development of the

existing atom-diatom impulse scattering theory. One basic pre-

mise of the impulse theory is that, during the collision pro-

cess, the incident atom collides only with one end of the dia-

tom, the other remaining a spectator. The operator which de-

scribes the energy transfer process that occurs during the col-

lision of the incident atom with the diatom is known as the

three-body T matrix. The impulse theory reduces the three-body

T matrix to include only those terms representing collisions

with only one end of the diatom. The result, called the single

collision T matrix, has been used in all of our calculations to

date. The single collision T matrix ignores the possibility of

collisions in which the incident atom collides with one end of
the diatom, and then collides with the other end. We believe

that this reduction may be responsible for the theory's inabil-

ity to predict the ballistic effect for the Ar-Csl system, as
well as its inability to reproduce the correct final rotational

2



distributions of N2 after colliding with Li+ at a relative

translational energy of 4-7 eV. The two ends of CsI and of N2

are similar in mass, making the possibility of multiple

collisions seem greater.

We have begun calculations employing the double-collision

terms in the multiple-collision expansion of the three-body T

matrix. The inclusion of double-collision terms in a calcula-

tion using the IA applied to atom-diatom scattering is unpre-

cedented. All previous calculations using the impulse method

have neglected all but single-collision terms in the multiple-

collision expansion, or Watson expansion, of the three-body T

matrix. We have suggested 3 that some of the shortcomings of the

Impulse Approach may be linked to this deficiency. For in-

stance, the Impulse Approach has not been able to explain the

ballistic effect for the Ar-CsI system studied by Herschbach. 4

Additionally, impulse calculations for the Li+-N 2 system have

yielded cross sections favoring too high a rotational exci-

tation. 5 It is our belief that the inclusion of higher order

terms in the Watson expansion will ameliorate some of these

discrepancies.

We have developed several methods to evaluate the double-

collision terms, only one of which appears to be computationally

feasible. The viable method is presently being applied to the

Li+-N 2 system. These formulations use the "part-classical"

approximation to the impulse formalism, greatly reducing the

amount of computation required while sacrificing an acceptable

amount of accuracy.

3.0 DWIA

Applications of the IA model have produced results in rea-

sonable agreement with experimental data, notably in studies of

the relaxation of highly excited KBr by Ar, 6 and in investiga-

tions of the "ballistic" effects for the CsF-Ar system. 3 Mean-

while, IA calculations have not been able to reproduce the ob-

3



served distributions of rotational transition probabilities of

N2 in excitations caused by collisions with Li+. 5 The computed

distributions are too narrow and peak at values of the final ro-

tational level j' that are too large. Interestingly, distribu-

tions obtained from classical trajectory calculations are also

narrow but peak at values of j' that are too small.5

To improve the computed distribution of rotational transi-

tion probabilities, we seek to employ more realistic potentials.

We recall that in the IA, the total atom-diatom interaction

potential is described by a sum of two atom-atom interactions.

These atom-atom interactions are, in all of the IA calculations

on vibro-rotational transitions previously published, approxi-

mated by hard core potentials, i.e., V(r)=oo for r<d and V(r)=0

for r>d, d being the suitably chosen hard core radius. A more

realistic potential may be obtained by using atom-atom interac-

tions expressed by exponential repulsive functions, instead of

hard core functions. We have applied the IA model, using expo-

nential repulsive atom-atom interactions, to compute differen-

tial cross sections for the rotationally inelastic processes Li+

+ N2 (v=O, j=2) - Li+ + N2 (v'=Q,j'), as a function of j', at a

relative kinetic energy of 4.23 eV and c.m. scattering angles of

49.2' and 37.1'. The resulting distributions of rotational

transition probabilities are remarkably similar to the ones ob-

tained using hard core atom-atom interactions, being again nar-

row and peaking at values of j' that are too large when compared

to the observed distributions. 6 These results suggest that IA

results are insensitive to the shape (steepness) of the repul-

sive portion of the atom-atom potential.

While the simple sum of pair-interactions (either hard core

or exponential repulsive) appears to be an adequate description

of the total interaction potential at small distances between

atom and diatom, it yields a poor representation of the long

range attractive part. A much more realistic potential is ob-

tained by adding to the sum of atom-atom interactions a central-
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ly symmetic potential, located at the center of mass (c.m.) of

the diatom. In the newly derived Distorted Wave Impulse Ap-

proach (DWIA), 2 the added central potential "distorts" the incom-

ing and outgoing waves in the collision process. The DWIA thus

incorporates effects of the long range attractive part of the

interaction potential into the calculation of atom-diatom colli-

sion cross sections using the Impulse Approach. The expression

for the transition matrix T in the DWIA formalism describes an

overall collision process where the incoming particle is first

scattered by the distorting potential located at the c.m. of the

diatom, then scattered off one of its atoms, and, to maintain

microscopic reversibility, finally scattered again by the dis-

torting portential. The DWIA formalism was used to calculate

differential cross sections for the rotationally inelastic pro-

cesses Li+ + N2 (v=0,j=2) , Li+ + N2 (v'=o,j'), as a function of

j', at a relative kinetic energy of 4.23 eV and c.m.scattering

angles of 49.2 ° and 37.1 *. It was found that the resulting

distribution of rotational transition probabilities are in much

better agreement with the experimental observations. 6 The DWIA

distributions are broader and peak at values of j' that are

smaller, reflecting the smaller momentum transfer found in the

experiments. The more realistic potential, with its centrally

symmetric component representing the long range attractive part,

has produced a better agreement of the calculated differential

cross sections with the measured ones.

The results of the investigations just described will be

submitted shortly for publication in the Journal of Chemical

Physics.
2

The derivation of the DWIA collision amplitude required a

formulation of the IA collision amplitude in terms of the in-

coming and outgoing momenta P3 and P'3" This formulation is

also crucial in the derivation of expressions for amplitudes

corresponding to the higher collision terms in the multiple

collision series expansion of the T matrix, 5

5



T = T() + T( 2 ) + T( 1 )G 3 T( 2 ) + T( 2 )G 3 T(1) +. (1)

The Impulse Approach (IA) retains only the lowest order (i.e.,

single collision) terms. We have derived an expression for the

transition amplitude corresponding to the double collision term

T( 1 )G 3 T( 2 ). Computations are currently under way to evaluate

the contributions of these double collision terms to the differ-

ential cross sections for the Li+- N2 system. These efforts

represent the first attempts to go beyond the single collision

terms in IA calculations, and to investigate the convergence of

the multiple collision series.

4.0 FUTURE WORK

We intend to further the development of the three body T

matrix and DWIA methods and develop feasible techniques to eval-

uate the double-collision terms. Subsequent comparison of pre-

dicted results with experimental data should serve as a basis

upon which the success of the technique may be judged.

REFERENCES

1. R.D. Sharma and J.M. Sindoni, "Inelastic and Ballistic

Processes Resulting from ScF-Ar Collisions", J. Chem Phys

(to be published).

2. H.Dothe and R.D. Sharma, "A Distorted Wave Impulse Approach

for Atom-Diatom Collisions", J. Chem. Phys. (to be

published).

3. J.M. Sindoni and R.D. Sharma, "Mechanism of Ballistic

Collisions", Phys. Rev. A 45: R2659 (1992).

4. H.J. Leosch and D.R. Herschbach, "Ballistic Mechanisms for

Vibrational and Roatational Energy Transfer in Ar + CsI

Collisions", J. Chem. Phys. 57:2038.

6



5. R.D. Sharma, P.M. Bakshii and J.M. Sindoni, "Impulse

Formalism for Atom-Diatom Collisions", Phys Rev. A

43:189, (1991).

6. R.D. Sharma and J.M. Sindoni, Phys Rev. A, "Relaxation ot

Highly Vibrationally Excited KBr by Ar", 45:531 (1992).

7. R. Bittner, U. Ross and J. Peter Toennies, "Measurements of

rotational and vibrational quantum transition probablities

in the scattering of Li+ from N2 and CO at center of mass

energies of 4.23 and 7.07 eV", Chem. Phys., 65:733 (1976).

7



APPEDIX A

INELASTIC AND BALLISTIC PROCESSES RESULTING FROM CsF-Ar

COLLISIONS

Ramesh D. Sharma, Phillips Laboratory, Optical Environment Division (GPOS),

Hanscom Air Force Base, Massachusetts 01731 5000.

Joseph M. Sindoni, Yap Analytics Inc., Lexington, Massachusetts 02173

ABSTRACT

This paper continues tile study of inelastic and ballistic collisions for the CsF -

Ar system using the impulse approximation (IA). The IA expresses the atom-diatom

potential as the sum of the two atom-atom potentials. The atom-atom interaction is

approximated by a hard core potential and the laboratory differential cross sections are

calculated for an initial relative translational energy of 1.0 eV as a function of the

laboratory recoil velocity of CsF. The calculated differential cross sections are in

excellent agreement with the experimental measurements for all eight laboratory

scattering angles for which the data are available. While the calculated results show no

significant dependence on the initial relative velocity or on the initial vibrational

quantum number of CsF, they do show a systematic variation with the initial rotational

(jLlantumn number--the ballistic effect is more pronounced than that observed

experimentally for initial quantum rotational numbers less than 30 and is not pronounced

enough for rotational quantum numbers more than 100. Two mechanisms give rise to

the ballistic peak. The first one is dominant when the laboratory scattering angle is

equal, or nearly equal, to the laboratory angle of the centroid velocity. This mechanism

transfers almost all of the relative translational energy into the internal energy of the

diatom and magnifies the center-of-mass (c.m.) differential cross section almost a

million times. This is (!tic to a singularity in the Jacobian at %ery smnall c.ni. recoil

Journal Cnem. Ph-is. (to be pluhli-shedl)
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velocities, which physically means that a small solid angle in the laboratory frame can

collect the signal from all 41r steradians in the c.m. frame. The second mechanism

producing tile ballistic peak, also determining the smallest and the largest laboratory

scattering angles, is the rainbow-like singularity called edge effect. This nmechalnism

becomes operative when the recoil velocity of the alkali halide in the c.m. frame is

perpendicular to its recoil velocity in the laboratory frame'. While the dynamics ot the

collision leads to a conversion of the proper amount of relative translational energy into

internal energy of the diatom, the kinematic singularities mentioned above magnify the

relevant c.m. differential cross sections leading to the observed ballistic effect. The

ballistic effect, therefore, should be observable for any two collision partners under

appropriate circumstances. The simple atom-diatom potential reproduces the

experimental results very well, because: (i) for inelastic scattering, the experimental

observations correspond to large center of mass scattering angles for which the attractive

part of the potential makes little contribution to the scattering process, (ii) for ballistic

scattering, only the repulsive portion of the potential can cause a large amount of energy

exchange between the relative translational and the internal degrees of freedom and, (iii)

the calculated cross sections are insensitive to the details of the repulsive portion of the

potential. A number of consequences of the theory, including the conclusion that the

alkali halide beam in the experiments is rotationally unrelaxed, are discussed.

1. INTRODUCTION

In a series of experiments, Herschbach and co-workers [1-3] have measured the

differential cross sections for the scattering of CsX (X=F,I) by Ar as a function of the

laboratory recoil velocity of CsX by crossing the two beams, at a right angle to each

other, at a relative translational energy of about 1.0 eV. In addition to a peak observed

around the elastically scattered CsX (pseudoclastic peak, formerly called the elastic peak

[41), another peak, almost as strong as the pscudoelastic peak and named the ballistic

9



peak, was observed in the vicinity of the recoil velocity corresponding to the motion of

the center of mass. Obviously, those molecules that constitute the ballistic peak have a

substantial fraction of their relative translational energy converted into internal energy

during the collisions. A theory of the ballistic effect is thus a theory of collisions during

which a large fraction of the relative translational energy is converted into internal

energy. The pseudoelastic peak observed in the experiments [1-31 corresponds to large

angle scattering in the center of mass (c.rn.) frame. The theory of the collisions

comprising the pseudoelastic peak, also under consideration here, is therefore a theory

of large angle elastic and inelastic scattering.

A model for the inelastic and ballistic transitions for the CsF-Ar system

constructed earlier [41 produces excellent agreement with the experimentally measured

differential cross section as a function of the laboratory recoil velocity of CsF at the

laboratory scattering angles of 300 and 60'. According to this model, the inelastic

(ballistic) collisions result when Ar strikes the Cs (F) end of CsF. The inelastic

collisions involve modest change in the rotational quantum number (Aj = 50); the

ballistic collisions, on the other hand, to conserve angular momentum and energy, must

involve large changes in the rotational quantum number (Aj up to about 200). Our model

for the ballistic and large angle inelastic collisions has been able to give a quantitative

explanation of the experimental observations of the CsF-Ar system, but it has not been

able to explain the ballistic effect observed in the Csl-Ar system. Our model, however,

has pointed out that the ballistic effect should not be observed in the 12- Ar system at

about I eV relative translational energy because the 12 beam is rotationally cold

(rotational temperature - 2500 for the 12 beam vs. - 10000 for the CsI beam), a prediction

in agreement with the experimental results. The present theory has, in addition, predicted

a ballistic peak for the 12 -Ar system at relative translational energy of about 0.12 eV [4].

This prediction of our model is in contrast to the prediction of an earlier model [5] of

atom-diatom collisions, which concludes that only about 25 % of the initial relatiec

10



translational energy should be converted into internal energy during an Ar-P2 encounter.

independent of the initial internal energy of the diatom or the atom-diatom relative

translational energy. The same model [5] predicts a transfer of about 96 % of the relati\ C

translational energy into internal degrees of freedom during an Ar-FCs encounter, aglain

independent of the initial internal energy of the diatom or the atom-diatom relative

translational energy. It was pointed out earlier [4J that when the laboratory scatterint-

angle is the same, or nearly the same, as the laboratory angle of the c.m. velocity, a

transfer of more than 96 % of the relative translational energy into internal degrees of

freedom is required to observe a ballistic effect. It will be shown later, in this article, that

when the laboratory scattering angle is much larger than, or much smaller than, the

laboratory angle of the c.m. velocity, a transfer of a mere 75 % of the relative

translational energy into internal degrees of freedom may lead to a ballistic effect. Again

this is in conflict with the earlier model [5] of impulsive collisions. Our model, since it

has not explained all the pertinent experimental observations, is only the first step in fully

understanding the mystery of ballistic collisions. Nevertheless, by virtue of the excellent

agreement between the calculated and the measured results for the CsF-Ar system, the

predictions it has made, and the experiments it has suggested, our model represents a

valuable first step. For this reason it is considered appropriate to present a more complete

theory for the CsF-Ar system, expanding on the previous results as well as presenting new

ones.

Before presenting the detailed theory of the ballistic effect, it is necessary to

discuss the transformation of the differential cross sections from the c.m. frame to the

laboratory coordinates. This transformation is an important link bridging the results

calculated in the c.m. frame to the experimental results measured, of course, in the

laboratory frame. Section 2 discusses this transformation, which is derived in the

Appendix. Section 3 gives a brief account of the impulse approach (IA) for the atom-

diatom collisions with a special emphasis on the part-classical ( previously called "semi-

11



classical") formalism. The calculation is still fully quantum, but by treating the two-body

dynamics classically it is possible to save a great deal of computing time without

appreciable loss of accuracy. Section 4 briefly describes the computational procedures

used. Section 5 discusses the two mechanisms leading to the ballistic peak. The results of

the calculation are compared with the experimental measurements in Section 6. Our

state-resolved three dimensional fully quantum calculation is examined in greater detail in

Section 7 and some of its more interesting consequences are pointed out. Concluding

remarks and lessons learned comprise the last section, Section 8.

2. TRANSFORMATION OF THE DIFFERENTIAL CROSS SECTION FROM

THE CENTER OF MASS TO "ItlE LAIBORATORY SYSTEM

The transformation between the c.m. and the laboratory coordinate systems has

been the subject of several studies [6-8]. We give a particularly simple derivation of the

Jacobian for inelastic scattering. We then use this derivation as the starting point for the

discussion of singularities and connect it with the previous work on the ballistic collisions.

The differential cross section in the laboratory coordinate system OL( 0 L,0L) is

related to the differential cross section in the center of mass coordinate system a(0,0) by

the relation

J a(O,4)dQ

tOL(OL,4t.) = lirM -I

AL ,0 AQ(

where 0, 0 are the polar and the azimuthal angles and Q is the solid angle in the c.m.

coordinate system; the subscript L indicates that the anglcs are measured in the laboratory

coordinate system. QM(m) denotes the maximum (minimum) c.m. solid angle

corresponding to laboratory solid angles ij ±_ Ai lM. D)efining

12



= ¥,(2)

and taking the limit as Af2L approaches zero, the expression for the Jacobian is v.ri, tcn

as

d•I(OIb" o00,0),a1"(O'°'dP) = df(,) 3

where 0, 0 and 0 L, OL are polar and azimuthal scattering angles in the c.m. frame and

the laboratory frame, respectively. Defining y as the ratio of the velocity of

the centroid in the laboratory frame to the recoil velocity of the observed particle in the

c.m. frame, we show, in the appendix,

dUL(OLIL) _ 2Iy

Md2(0,0) 11 + y2 - 1

- (V ) 
(4)

where Y,2.6 is the cosine of the angle between the recoil velocities of the species

detected in the laboratory and the c.m. frames. It is shown in the appendix that equation

(4) is identical to the one given by Schiff [9] when one of the particles is initially

stationary. This expression becomes infinite when ()'2 approaches zero, i.e., when the

c.m. recoil velocity becomes very small, and also when the c.m. and the laboratory recoil

velocities are perpendicular.

When U0'2 approaches zero, the direction of v'2, the laboratory recoil velocity.

coincides with that of the centroid velocity, vc.. It is pointed out in the appendix that iM

13



41r
this case the Jacobian becomes a constant and is simply equal to A----, ADL being the

laboratory solid angle seen by the detector. For a 0.25' wide detector, the Jacobian is

equal to 8.4x10 5. Herein lies part of the mystery of the ballistic effect! A million fold

enhancement of the cross sections for the processes that lead to the conversion of almost

all of the relative translational energy into internal energy causes very small cross sections

in the c.m. frame to stand out in the laboratory frame. This hypothesis is the basis of the

proposal for the production of the state-selected and velocity-selected molecular beams

[4].

When the laboratory and c.m. recoil velocities are perpendicular, the Jacobian

given above becomes infinite. It is shown in the appendix that for a given final

vibrational-rotational state, i.e., for constant magnitude of 0'2, the laboratory scattering

angle as a function of c.m. scattering angle goes through a maximum (minimum) when

the laboratory scattering angle is greater (smaller) than the centroid velocity angle 02. An

increase (decrease) in the c.m. scattering angle leads to a decrease (increase) in the

laboratory scattering angle. The situation encountered here is the same as that

encountered in the study of rainbows [10] where the extremum in the deflection function

as a function of impact parameter leads to infinite classically- calculated differential cross

section. These two rainbows-like singularities, called the edge effect [11], correspond to

a lower and an upper bound for the laboratory scattering angle for a given final

vibrational-rotational state. The rainbow-like singularities encountered here are due to

kinematic effects and are distinct from the rainbows due to the dynamical effects

discussed previously [ 121.

In the appendix the Jacobian for the edge effect is shown to be equal to

14



qu. sinOAO_,.d,.
di.l sin(O + 01 - O2 )AOd1l

8y2

AOIL

where the angle AOL is the width of the polar angle of the detector. The Jacobian given by

equation (5) for y, = 5 and AOL =0.250 degrees can have a value roughly between 100

and 1000 depending upon the laboratory scattering angle, i.e., it can have a value between

4 and 40 times that given by y' alone. This effect is not as dramatic as that due to

resonant transfer of energy from relative translational motion into rotational and

vibrational motion of the diatom. However, in this case the combined contributions from

different transitions can lead to an equally strong ballistic peak.

3. ATOM-DIATOM IMPULSE FORMALISM

The complete formulation of the impulse approach to atom-diatom collisions was

given earlier [13]. Here we give a brief outline for completeness with an emphasis on the

part-classical approximation to the exact equations. In this formulation the dynamics of

two-body collisions is treated classically while the remainder of the calculation is carried

out using quantum mechanics. It has been found that this procedure leads to substantially

reduced computing time while the error introduced has never been found to exceed 10%.

In the present calculation more than one hundred thousand differential cross sections had

to be computed; the use of this approximation has kept the computation time manageable.

The interaction potential of the atom-diatom system in the impulse formulation is

the sum of the spherically symmetric atom-atom potentials, i.e.,

V(yly 2 ) = Vl(Yl)+ V2 (y 2 )' (6)

where Vi and Yi are, respectively, the interaction potential and the distance between the

incident atom and atom j of the diatom. The distance between the incident atom 3 and

atoms I and 2 of the diatom is written as
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I

y.= [r + 2a.ry, cosy. + (Xy3 )2 -,, (7)

where s= 1,2 and r is the distance between the atom and the center of mass (c.m.) of the

diatom; Y3 is the internuclear distance of diatom 1-2,

a,= (-W)s ms/(ml +m2), (8)

ms is the mass of spectator atom, and Ya is the angle between the internuclear axis y3

and the line r joining the atom to the c.m. of the diatom. Eigenfunctions wv,j,m of the

Hamiltonian for the diatomic molecule

HDIATOM = q 3 + V,(y) (9)2,u I

are the wave functions for the vibrational and rotational motion of the diatom. The

momenta are written in the Jacobi notation; Pa is the momentum of particle a with

respect to the c.m. of bc and qa is the relative mornentum of particles bc. Similarly, ra

is the distance of atom a from the c.m. of be, Ya is the distance between b and c, and

V3 is the intramolecular potential of the diatom 1-2. Wij is the reduced mass of the

atoms i and j, while the reduced mass of a and bc is written as 4a .

The Watson expansion, a multiple-collision expansion of the three-body T

matrix, is written as [14]

T= T(O) + T(2 ) + T(I)G 3T(2 ) +T( 2 )G3T(1 ) + ... (10)

where T(i) is the three-body transition matrix describing the collision of the incident

atom with atom j of the diatom, i being the spectator atom. G3 is the propagator

corresponding to the unperturbed Hamiltonian H0, viz,

H= P23- 2 + H ( I1)

and.

G3(z) = (z- Ho + irl) 1 (12)
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The first two terms on the right hand side of equation (10) are the single-collision

terms. These terms are obtained by summing all the diagrams involving the collision of

the incident atom with atom 1 or atom 2. The graphs representing the collision of the

incident atom with atom 1 (2) followed by further collisions of the incident atom with

atom 1 (2) are contained in these terms [141. The next two terms are the double-

collision terms and are obtained by summing all the diagrams involving the collisions of

the incident atom first with atom 1 (2) followed by collision with atom 2 (1) [14]. In

the impulse calculation only the first two terms, i.e., only the single collision terms, are

retained.

We can write the differential cross section for scattering from initial state i to

final state f as

da' ;q = !3 (2 + (-1P227r)4 T,2 (3
dQivjp3 -*f--> vJ",p' 3 ;q)= (2j+llpu( -•-j, TiP3 (13)

where the scattering angle 0 and momentum transfer vector q are related by

q = (P3) + (P3 ) -2 p3 P'3 cosO, (14)

and,

ITir 1 = %I( ITI 3)12  (15)

03 and V93 being the eigenfunctions of H0 in the initial and final states, respectively,

and,

T,,(q) = , (q) 6
t.,=,2 ./(16)

The two terms on the right hand side of equation (16) arc the single collision terms.

When the incident atom collides with one of the atoms of the diatom the other atom, the

one not participating in the collision process, is termed the spectator. For this reason
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the impulse calculation is also called the quantum mechanical spectator model. We

recall that

(0 IT(S)(q)" 3 ) = fdy30- (y3 )exp(-iotq y3 )J(s)(Y 3 ), (17)

where,
3

V(S)(y3) (2it) 2 Jdq 3 exp(-iq3.Y 3 )(q • t(S).q•>•(q3) (18)

is the wave function of the diatom modified by the two-body scattering process. To

develop a feeling for the nature of V(v)(Y 3), it is useful to look at the two-body t-matrix

as an operator in the momentum space which modifies the diatom wave function O(q3).

Equation (18) transforms the modified wave function back to the coordinate space. If

one recalls that the center of mass acquires a momentum equal to Cxsq during the

collision when s is the spectator atom, equation (17) may be looked upon as the overlap

integral of the final-state wave function with the initial-state wave function that is

modified by the collision. This view also connects the impulse approach discussed here

with the theory of transitions due to sudden perturbations, e.g., atomic transitions

accompanying beta ray emission[ 15].

It was mentioned earlier that we will evaluate the two-body t-matrix in equation

(18) using classical mechanics. In classical mechanics, a collision between two hard

spheres leads to the reversal of the component of the momentum normal to the surfaces

of the two spheres at the point of contact, while the other two components of the

momentum remain unchanged [16]. In other words, if a momentum change q occurs

during the collision, the initial momentum -q/2 becomes the final momentum +q/12,

while the components of momentum perpendicular to q remain unchanged. Further, the

transverse components of the momentum, which in classical mechanics do not enter the

equations of motion, may have any value. It was shown earlier [13] that this result also

holds for scattering using the impulse approach, provided the scattering angle is larger
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than about 150. This amounts to evaluating equation (19) by setting the componcnit of

q3 along q equal to

q 3 -q = -(otq / 2) + P 12 2A / (ot q) , (19)

where 4 is a unit vector along the direction of the transferred momentum and AE is the

difference in internal energy of the diatom between the final and the initial states. The

components of q3 perpendicular to q are set equal to zero. It was also pointed out Carlier

[13] that to evaluate the two-body t-matrix for a fixed value of q3, the momentum due to

the vibrational and rotational motion of the diatom, is to approximate it by its spherically

symmetric component, i.e.,

(q• ]t0jq9)-- to(q 3 ,P3 ,q)Y(q3) = (41E)2 too (q 3 ,P 3 ,q). (20)

Equation (20) has the same structure as the peaking approximation, which evaluates the

two-body t-matrix setting q 3=-asq/2, i.e., using only the first term on the right hand side

of equation (19). Use of equation (19), however, gives results which, unlike the results

obtained by using the peaking approximation [17], are time reversal invariant[13]. This

approach is called the part-classical approximation, previously called semi-classical

(new name is given to avoid confusion with other usage of the term semi-classical in

scattering theory [10]), because it has one foot in classical mechanics. Equation (20)

has been extensively used by us for calculating differential cross sections and has

provided answers always within 10% of those given by a spot-check of the exact

calculation [4,18].

Recalling that %(q3 ) is the wave function of the initial state in the momentum

representation, i.e.,

)= ( -2- iJIvJ(q 3 )Yjm (43) 21)

where vj,m are the initial vibrational, rotational, and magnetic quantum numbers.

respectively, and,
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I,,j(q 3 ) = [dy3 Y3X. 1.j (Y3 )j(q 3 Y3 ), (22)
0

where X,j is the vibration-rotation wave function in the coordinate space, we can

integrate equation (18) over q3. Using the Raleigh expansion of the plane wave, i.e.,

exp(-iq 3 • y3) = 4n I (-i)'YInm( 3 )Yn(I 3 )j I(q 3 Y3), (23)
I,m

we obtain,

I

"W"'(Y3 ,qP 3 ) = (4,t)2K )'(Y3 ,q,P 3 )Yjm (G3) (24)

where,

2 2 (25)
Kv j(Y 3 P3,q)=-- dqsq3 jj (q3y 3)to(q 3'pIp,q)1 .1(q)(

ir0

A comparison of equations (24) and (25) with equations (21) and (22) shows the

similarity of their structure and provides further basis for the statement that V(')is the

modified wave function for the internal motion of the diatom. Substituting equations (18)

through (25) into equation (17), we get

2( = - f dY30(y3)Yjm (3)exp(-ia sq.y3)K(,)(q , y3 ). (26)

Again using the Raleigh expansion of the plane wave and writing

0'3(y 3) = X.j(Y3)Yn.i(,S3 ), where primes denote the vibrational and rotational levels

v',j' of the final state, we get

3 q " ±' "- L NI- J ' .. .(q,pj)C(j .mni,m' - m)C(jfj';OO)Y,.._(q), (27)
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where C's are the Clebsch-Gordan coefficients, [j] =- (2j + 1) and,

NK(p 3 , (Pq,v,. (28)

0

Taking our space fixed z-axis along q, and using the relation

Yt.m (0,0) = (Eel) (29)

we get,

~ jT~s(q)jO) = (4n) I,.1(±i)' ]Jt[I N j,.; (q,p,)C(j j';m,0)C(jej'; 00). (30)

Using the relation [191

•C(j j ;m0)C(. j0 ;m0) = ( ,;,25 (31)

we can write, using equations (13) and (16),

--d(vj3• - ;q)= (2j +l)-l12(2n /4
i - f v',j',P)3

xI IC 2 + .2(-) N (32),-47t IJ' Jle ( j, )O IN iv'jt' + vjev j 1 " 32

Equation (32) is our final result and is obtained by adding the amplitudes for scattering

from the two scattering centers.
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4. COMPUTATIONS

In this section we briefly describe the computational procedures followed. These

procedures are the same as in the previous work on the collision of alkali halide

molecules with argon[4, 18]. Briefly, since the ground state of CsF is ionic, the Ar-CsF

potential is taken to be the sum of Ar-Cs+ and Ar-F- potentials. Only the repulsive

portion of the Ar-ion potential, which is approximated by a hard core potential, is used

in the present calculations. The hard core radii for the Ar-Cs+ and Ar-F- potentials are

assumed to be given by the corresponding parameters for the Ar-Xe and Ar-Ne

potentials [20]. The parameters for the diatom potential are taken from Huber and

Herzberg [21]. The potential function thus obtained is extrapolated to larger

internuclear distances using a Pad6 [2,2] approximant. Wave functions for the internal

motion of the diatom are obtained by solving the one dimensional Schr6dinger equation,

containing the centrifugal term for the rotational motion, using Numerov's method.

5. MECHANISMS GIVING RISE TO THE BALLISTIC PEAK

Before we compare the calculated differential cross sections with the

experimental values, it is desirable that we discuss the physical basis for the ballistic

peak. Figure 1, plotted using the points taken from the earlier work [2], gives a plot of

the laboratory differential cross section as a function of CsF recoil velocity and

illustrates the experimental data we are trying to model. The ballistic peak on the left,

near the centroid velocity, represents the signal from those molecules that have small

c.m. recoil velocities and which carry large amounts of internal excitation [11. The

ballistic peak was shown [4] to arise when Ar strikes the F end of CsF. The peak on

the right, called the pseudoelastic peak [4], centered at the recoil velocity corresponding

to elastic scattering, arises [41 when Ar strikes the Cs end of CsF and consists of inelastic
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transitions involving modest changes ( <-Y <-0.35) of collision energy. An earlier model

of impulsive atom-diatom collisions predicts [5] a transfer of only 14 '!%,0 of the initial

relative translational energy into internal energy, i.e., (EY o 0.14), when Ar hits the Cs

end of CsF. The results of our calculation and those of the earlier model are in

disagreement. Comparison of our calculation with the experimentally observed

pseudoelastic peak will decide if our theory is correct.

It was shown earlier [4] that when one is looking along or close to the direction of

the centroid velocity, most of the contribution to the ballistic peak comes from the

transitions which convert more than 97% of the relative translational energy into internal

energy. Further, the signal from a transition which converts more than 99% of the

relative translational energy into internal motion (resonant transition) may be larger than

the signal from any other transition by a factor of about 2-3. It was also pointed out that

the c.m. differential cross section for the resonant transitions is within a few percent of the

neighboring non-resonant transitions. What sets the resonant transitions apart from the

nearby transitions is the large Jacobian of transformation from the c.m. to the laboratory

coordinate system, which is very sensitive to the fraction of relative translational energy

converted into internal energy. The expression for the Jacobian is derived in the

appendix. Figure 2 is a plot of the Jacobian for the transformation from the c.m. to the

laboratory coordinates, for the laboratory scattering angle equal to the angle of the

centroid velocity, as a function of the fraction of the relative translational energy

converted into internal energy. It is readily seen from this figure why the differential

cross section for the resonant transitions in the laboratory frame is so much larger than the

neighboring nonresonant transitions.

When the recoil velocities of the alkali halide molecules in the c.m. frame and the

laboratory frame are perpendicular, the laboratory scattering angle for two values, a
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maximum and a minimum, displays an extrenmum as a function of the c.m. scattering

angle. The laboratory scattering cross section, for these two values of laboratory

scattering angles, exhibits a rainbow-like singularity. Figure 3 gives a plot of the

differential cross section, obtained by summing over the two branches in figure 4A, in the

laboratory (c.m.) frame as a of function laboratory (c.m.) scattering angle. The collision

parameters are given in figure 3A. The minimum (maximum) laboratory scattering angle

of 30' (750) correspond to c.m. scattering angles of 180 (1170). An order of magnitude

enhancement of the differential cross section due to the kinematic rainbow-like singularity

(edge effect) is seen. The values of the minimum and maximum laboratory angles are

dependent upon the transition under consideration. These kinematic rainbows, called the

edge effect [II], are the cause of the ballistic peak when the laboratory scattering angle is

much different from the direction of the centroid velocity.

6. COMPARISON OF THE CALCULATION WITH THE EXPERIMENTAL

RESULTS

The calculated results are compared with the experimental results after they are

scanned over by a normalized Gaussian function with the resolution ratio [1] R -

(Avi/vl) = (19.3 + 0.034v1), where R is expressed in %, Av1 is the full width at half

maximum of the Gaussian, and v, is in units of m/s. To understand the role of the

resolution ratio in the experimental results, we plot in figure 4 the output signal (dashed

line) in arbitrary units as a function of the velocity of Ar when the input (solid line) is

given by P(v1 ) = v, 3exp(-[(v1 -<vl>)/8vl] 2) with <v 1>=2380 rn/s and 8v 1=350 m/s. It is

seen that while the input velocity peaks at 2450 nis (1.0 eV translational energy) [20], the

output velocity peaks at about 2050 m/s. This shift due to the velocity dependent

resolution function leads to the actual energy being about 50% larger than the nominal

energy. Because the resolution function severely distorts the calculated results, we will,
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after comparing the calculated results with the experimental measurements and

establishing their credibility, present the undistorted calculated results. This will permit

us to examine the calculation more closely and to see if any other lessons can be learned

from it.

To determine the dependence of the calculated results on the initial translational

velocity of Ar, we plot in figure 5 the laboratory differential scattering cross section as a

function of the laboratory recoil velocity of CsF at the laboratory scattering angle of 60'.

The dotted line is our impulse calculation for the Ar velocity v I- 2450 m/s and the CsF

velocity v2=500 m/s with the initial state of CsF given by v=l and j=70. The dashed line

is the impulse calculation using the probability of the Ar velocity given by the formula

P(vl)=V1
3exp(-[(vl-<vi>)/6vl] 2), while keeping the CsF velocity at 500 m/s. The

experimental points are the same as in figure 1, taken from reference 3, and are

normalized to match the calculation at the largest cross section. It is seen that the

calculation is insensitive to averaging over the initial velocity distribution of Ar. Since

most of the initial translational energy is supplied by Ar, it appears reasonable to assume

that the calculation is also insensitive to averaging over the initial CsF velocity

distribution. In the rest of the paper we will present the calculations for fixed velocities of

the Ar and the CsF beams.

To investigate the variation of the calculated results with the initial vibrational

quantum number of CsF, we plot in figure 6 the laboratory differential scattering cross

section as a function of the laboratory recoil velocity of CsF at the laboratory scattering

angle of 600. The velocity of the Ar beam is fixed at vj= 2450 m/s while that of the CsF

beam is fixed at v2=500 m/s. The initial rotational level of CsF is fixed at j=60. Solid

curve, dotted and dashed curves are the results of our calculation for initial vibrational

levels v=l,2, and 3, respectively. The experimental points are the same as in figure 1,

taken from reference 3, and are normalized to match the calculation at the largest cross

section. It is seen that the calculation is insensitive to the initial vibrational level of CsF.
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In the remainder of the paper we will assume that initial vibrational level of CsF is v-3

because this is the average vibrational level at 1000 'K, the temperature of the CsF beam.

To investigate the dependence of the calculated differential cross sections on the

initial rotational quantum number of CsF and to compare the calculated results with the

experimentally measured ones, we plot in figure 7 the laboratory differential scattering

cross section as a function of the laboratory recoil velocity of CsF at eight laboratory

scattering angles: 250, 30*, ..., 600. The velocity of the Ar beam is fixed at v1= 2450 m/s

while that of the CsF beam is fixed at v2=500 m/s. The initial vibrational level of CsF is

fixed at v=3. Dotted, solid and dashed curves correspond to CsF initial rotational levels

j=30, 60, and 100, respectively. The experimental points are taken from reference 3, and

are normalized at each angle separately, to match the calculation for j-60 at the largest

cross section. It is seen that the calculation is sensitive to the initial rotational level of

CsF, and the best agreement for all eight laboratory scattering angles is given by the solid

line, i.e., j=60.

The calculated results are in excellent agreement with the measured ones at all of

the eight available laboratory scattering angles. The calculated results are not very

sensitive to the initial velocity distribution of the Ar beam or to the initial vibrational

quantum number of the CsF beam. They are, however, sensitive to the initial rotational

distribution of the CsF beam. The calculated results imply that the rotational distribution

of the CsF beam peaks around j=60, rather than j-30 or j=100. In other words, the

rotational temperature of the beam, if our calculation is to be believed, is close to 1000

'K, the temperature of the oven.

A word of caution here is, perhaps, in order. We are not saying that the magnitude

of the ballistic peak in CsF-Ar system is independent of the initial relative translational

energy, but that it is insensitive to whether one performs the calculation at the average

initial relative translational energy of 1.0 eV or averages the calculated differential cross

sections over the experimental [1] Maxwell distribution centered at 1.0 eV. The
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magnitude of the ballistic peak does depend upon the initial relative velocity as is shown

by the fact that our model predicts a ballistic peak for the 12-Ar (12 beam temperature 250

'K) at the initial relative translational energy of 0.12 eV but not at 1.0 eV. Similarly, it is

being stated that the magnitude of the ballistic peak is independent of the initial

vibrational lew.l of CsF only if that vibrational level is one of the first four levels.

7. DETAILED EXAMINATION OF THE CALCULATED RESULTS

Because the resolution of the instrument distorts the calculated signal so severely,

we present, in figure 8, the calculated discrete spectra for 550 and 250 laboratory

scattering angles. The initial rotational level of CsF for these calculations is j=60; the

remaining beam parameters are the same as in figure 7, and the angle of the centroid

velocity vector in the laboratory frame is 52.2'. The contribution to the ballistic peak at

the laboratory scattering angle of 550 is dominated by the resonant transfer of the relative

translational energy into the internal motion, while at the laboratory scattering angle of

250, it is determined by the kinematic rainbow, or the edge effect [11]. This is also the

conclusion arrived at from figure 8 where, for the 550 scattering the ballistic peak is

centered at the recoil velocity equal to the velocity of the c.m. while, for the 25'

scattering the center of the ballistic peak is at a lower value of recoil velocity. The

ballistic peak for the laboratory scattering of 550 is centered at the c.m. velocity of 646

m/s because, when all of the energy of relative translational motion has been resonantly

transferred into internal energy, the molecule is stationary in the c.m. frame and it moves

at the velocity of the c.m. in the laboratory frame. The molecules contributing to the

ballistic peak at the 250 scattering angle have a substantial c.m. recoil velocity, and here

the ballistic peak arises because of the kinematic rainbow, or edge effect [11]. For this

case the recoil velocity of the molecule in the c.m. frame is perpendicular to its recoil

velocity in the laboratory frame, leading to the relationship (v,)I = (v.. )2 - (w' )2. The
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laboratory recoil velocity, around which the ballistic peak is centered, is now smaller

(about 575 m/s) than the velocity of the c.m.

It is worth noting that the ballistic peak for the 550 laboratory scattering angle

displays a profile similar to a Lorentzian. This is because the c.m. differential cross

sections for the dominant transitions are, because of the density factor, proportional to the

c.m. recoil velocity. The Jacobian varies inversely as the square of the c.m. recoil

velocity. The laboratory differential cross sections are therefore inversely proportional to

the c.m. recoil velocity (the Lorentzian profile would be inversly proportional to the

square of the c.m. recoil velocity.)

The ballistic peak at the 250 scattering angle has a more complicated structure than

that at 55*. There are more transitions comprising the 25' peak that have noticeably large

cross sections. In addition, the transitions are not symmetrically placed around the central

recoil velocity of 575 m/s. These observations can be understood by referring to figure 9,

which gives a plot of the absolute value of the Jacobian, for several laboratory scattering

angles, versus the laboratory recoil velocity of CsF for a 0.25' wide detector. When the

laboratory scattering angle is equal to the laboratory angle of the centroid velocity (52.2'),

the Jacobian is extremely large and very sharply peaked. As we move away from the

direction of the centroid velocity, i.e., increase or decrease the laboratory scattering angle,

the value of the Jacobian becomes smaller, the peak gets flatter, and the center of the peak

moves towards smaller recoil velocities. This is because the farther we look from the

direction of the c.m. velocity, the larger (0'2 must be, and therefore the smaller v' 2 must be

so that the square of these two recoil velocities can be equal to the square of the centroid

velocity. Because the Jacobian is much flatter at the 25' scattering angle, the laboratory

differential cross sections resemble the c.m. differential cross sections. These points are

apparent in figure 10, which gives a plot of the c.m. differential cross section as a

function of the laboratory recoil velocity of CsF at the laboratory scattering angles of

250 and 50°. Since we are assuming an idealized beam without lateral dimensions,
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each stick in the figure corresponds to a c.m. differential cross section at a definite c.m.

scattering angle. Thefore, the c.m. differential cross sections in figure 10, upon

multiplication with the appropriate Jacobian (figure 9) give the laboratory differential

cross sections, plotted in figure 8. The c.m. differential cross sections resemble the

laboratory differential cross sections for the 250 scattering angle; for the 55' scattering

angle, on the other hand, the transitions most prominent in laboratory frame (figre8)

are barely noticeable in the c.m. frame. It should also be noticed that the pseudoelastic

peak shifts to smaller recoil velocities as the laboratory scattering angle moves away

from the direction of the centroid velocity; the maximum intensity occurs at the recoil

velocity of 960 m/s for 250 and at 1100 m/s for 55'. This happens because, when the

laboratory scattering angle is farther from the direction of the centroid velocity the

angle between w'2 and Vcm becomes closer to 90° , resulting in smaller value of

v= + (v.) - 2,; VI12

A closer look at the details of the scattering at 250 is provided by figure 11,

which is a plot, again for an idealized beam, of the c.m. differential cross section as a

function of the laboratory recoil velocity of CsF. The initial state of CsF is v=3, j=60;

the Ar-CsF initial relative translational energy is 1.0 eV; the c.m. velocity is 646 m/s at a

laboratory angle of 52.20. The three upper frames are the rotational transitions

comprising the ballistic peak (Ar-F encounter) for final vibrational levels v' = 2, 3 and 4;

the three lower frames are the rotational transitions comprising the pseudoelastic peak

(Ar-Cs encounter) for the same final vibrational levels. The rotational transitions

comprising the ballistic peak have almost the same structure and appear to be independent

of the final vibrational level. Between the recoil velocities of 200 and 400 m/s there are

supernumerary rainbows and a primary rainbow in each frame, and a secondary rainbow

in the v = 4 frame, the rotational quantum number increasing with increasing recoil

velocity. On the right side of each frame, after a large gap in the center, the rotational
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quantum number decreases with increasing recoil velocity and the transitions appearing

first, i.e., closest to 575 m/s recoil velocity, are constrained by the kinematic rainbow-like

singularity or the edge effect. The rotational transitions j' = 194, 189, and 185 are the

first to appear for the final vibrational quantum numbers 2, 3, and 4, respectively. The

highest final rotational level attainable is greater for smaller vibrational quantum numbers

because more energy is available when the final vibrational quantum number is smaller.

One can regard these rotational transitions as dynamical rainbows and state that kinematic

rainbows lead to dynamic rainbows. As the recoil velocity increases and the final

rotational quantum number decreases, the supernumerary, primary, and secondary

rainbows are again seen. The differential cross sections comprising the ballistic peak

exhibits a rich and complicated structure.

For the case of pseudoelastic scattering (Ar-Cs encounter) depicted in the lower

three frames of figure 11, there are at least two rotational rainbows in each frame. The

frame corresponding to v'=2 exhibits a secondary rainbow on the left while that for v'=4

exhibits a secondary rainbow on the right. The smaller recoil velocities correspond to

larger final rotational quantum numbers, while the larger recoil velocities correspond to

smaller final rotational quantum numbers. The inelastic transitions move towards larger

recoil velocities as more energy becomes available, i.e., as the final vibrational quantum

number decreases. The limit of the change in the rotational quantum number is dictated

by the conservation of angular momentum.

Figure 12 is a plot of the c.m. differential cross section as a function of the c.m.

scattering angle. It is seen that when almost all of the initial relative translational energy

has been converted into the internal energy, the c.m. differential cross section is

independent of the c.m. scattering angle. This effect, which was predicted earlier [41,

arises because, for the resonant energy transfer from translation to vibration-rotation "the

final orbital motion has very small relative velocity and is therefore an isotropic s-wave.
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This is one of the rare instances in atom-diatoms collisions when one encounters partial

waves with very low quantum numbers.

8. CONCLUSIONS

The basic question is, why do the experimental results agree with the calculated

results, which are obtained by using a simplified atom-diatom potential'? Not only has the

atom-diatom potential been approximated by the sum of two atom-atom potentials, the

atom-atom potentials have in addition to this approximation, been replaced by two hard

core potentials. A clue to the answer is provided by earlier work [181 which studied the

deactivation of highly vibrationally excited KBr by Ar using exactly the same calculation.

For the largest c.m. scattering angle (750) for which the experimental measurements were

available, the calculated c.m. differential cross section plotted as a function of the KBr

c.m. recoil velocity agreed with the experimental measurements for all recoil velocities

(0-1000 m/s). For the smallest c.m. scattering angle (450) for which the experimental

measurements were available, on the other hand, the calculated c.m. differential cross

section plotted as a function of the KBr c.m. recoil velocity agreed with the experimental

measurements only for recoil velocities larger than about 700 m/s. The answer, then, lies

in noting that: (i) the pseudoelastic peak, involving transfers of small amounts of energy

between translation and rotation-vibration, corresponds to large c.m. scattering aigles for

which the attractive portion of the potential, in analogy with the KBr-Ar results, makes no

contribution, (ii) the ballistic peak involves transfer of a large fraction of the initial

relative translational energy into internal energy, which can be caused, again in analogy

with the KBr-Ar results, only by the repulsive portion of the potential independent of the

c.m. scattering angle and, (iii) the calculation is insensitive to the steepness of the

repulsive portion of the potential. Preliminary work [231 with the exponential repulsive

potential supports this conclusion. We have a situation where the two ends of the diatom

scatter, independent of each other, from the repulsive part of the atom-atom interaction
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potential. Further, the scattering from the repulsive portion of the potential does not

appear to strongly depend upon the steepness of the repulsive potential. This, we believe,

is why this calculation works so well.

It was pointed out earlier that the Jacobian for the transformation from the c.m.

to the laboratory frame may lead to the enhancement of the c.m. differential cross

section by a factor of a million. This resutIt is derived assuming an idealized beam of

infinitesimal extent. For a beam with finite width and a detector of finite dimensions,

the ballistic peak along the direction of the c.m. velocity will contain contributions from

transitions which are not exactly resonant T-->(V,R) processes. This may lead to an

average value of the Jacobian which is considerably less than a million. The actual

value will depend not only upon the extent of the two beams and the spread of their

velocities, but also upon the molecule being studied. If the molecule has a large

rotational constant and the energy spread of the beams is smaller than the spacing

between the final rotational levels, the average Jacobian may still be close to a million.

The parameters of the beams, the molecule studied, and the dimensions 6f the detector

will all have to be carefully considered for a more detailed answer.

Our results require that the CsF beam in the experiments [1-3] must not be

rotationally relaxed. In fact, the observation of a ballistic peak for the CsI-Ar system

and the non-observation of one for the 12-Ar system at the same relative translational

energy (-t1 eV) is explained by our model by postulating that transitions from higher

rotational levels populated in the Csl beam (oven temperature ;- 1000 'K ) lead to

conversion of a much larger fraction of relative translational energy into internal energy

than the low rotational levels available in the cooler (oven temperature t 250 'K ) 12

beam. This provides another test of our model.

Our calculations have been performed assuming idealized beams with

infinitesimal extent. Still they agree remarkably well the experimental measurements.
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Perhaps it is because the broadening of the calculated results by the resolution function,

discussed earlier, is much larger than that due to the finite extent of the colliding beams.

It is also useful to point out that, since our calculation agrees so well with the

experimental results for both the pseudoelastic peak and the ballistic peak, the earlier

model of impulsive collisions [51, which certainly gives a much different value for the

energy transferred during both the pseudoelastic and the ballistic collisions, may need to

be reexamined.

Perhaps the most important result of this study is that the ballistic effect should

be observable for all collision systems under appropriate circumstances.

This work was in part funded by AFOSR under task 2303EP and Phillips

Laboratory project 007. The authors are grateful to Dudley Herschbach for many

interesting discussions and making available to them the relevant portions of the Ph.D.

theses of Drs. Entemann, King, and Zare.
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FIGURE CAPTIONS

Figure 1. Laboratory differential cross section as a function of the laboratory

recoil velocity of CsF at the laboratory scattering angle of 600. This figure is

reproduced from reference 3. The pseudoelastic peak, centered at the recoil

velocity of about 1100 n1/s, is where elastic scattering at large c.m. scattering

angles (about 1500) should be observed. The peak at about 500 m/s is the ballistic

peak and is centered near the centroid velocity. The CsF molecules contributing to

this peak are moving slowly in the c.m. frame.

Figure 2. Jacobian for the transformation of the differential cross section from the

c.m. frame to the laboratory frame as a function of the final relative translational

energy of CsF (measured as a fraction of the initial relative translational energy)

when the scattering is viewed along the direction of the centroid velocity, i.e., 02=

Figure 3. Calculated laboratory (c.m.) differential cross section (cm 2/sr) as a

function of laboratory (c.m.) scattering angle. Increased differential cross section

at the minimum and maximum laboratory scattering angles is due to the kinematic

rainbows, also called edge effect [11], and not due to any peculiarities in the c.m.

differential cross section. The collision parameters are the same as in figure 3A.

Figure 4. Flux of the Ar parent beam, in arbitrary units, as a function of the

velocity of Ar. The input function (solid line) represents the actual velocity

distribution and is given by P(vj)=v' 3exp(-[(v 1-<V1 >)/8v1j 2) with <v1>=2380 rn/s

and 8v 1=350 ms. The output velocity distribution (dotted line), represents the

measured Ar parent beam flux and is obtained by modifying the input distribution by
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a normalized Gaussian function with full width at half height given by the resolution

function R. The actual velocity distribution peaks at 2450 m/s but the measured peak

is at about 2050 m/s. The energy associated with the output distribution peak is

about 71% of the energy corresponding to the maximum of the input distribution.

Figure 5. Laboratory differential cross section as a function of the laboratory recoil

velocity of CsF at the laboratory scattering angle of 600. Dotted line is the result of

the impulse calculation for Ar velocity vl= 2450 m/s and CsF velocity v%=500 m's

with the initial state of CsF given by v= I and j=70. The dashed line is the result of

the impulse calculation obtained by averaging over the Ar velocity according to the

distribution given in reference 1; the velocity of the CsF beam is still 500 mrs. The

experimental points are the same as in figure 1, taken from reference 3, and are

normalized to match the calculation for discrete velocity at the largest cross section.

Figure 6. Laboratory differential cross section as a function of the laboratory recoil

velocity of CsF at the laboratory scattering angle of 60'. The velocity of the Ar and

the CsF beams are v1= 2450 m/s and v2=500 m/s with the initial rotational state of

CsF fixed at j=60. The impulse calculations for initial vibrational levels v=l,2 and 3

are represented by solid, dotted and dashed lines, respectively.

Figure 7. Laboratory differential cross section as a function of the laboratory recoil

velocity of CsF at eight laboratory scattering angles 25'-60'. The velocity of the Ar

and the CsF beams are vl= 2450 m/s and v2=500 m/s with the initial vibrational state

of CsF fixed at v=3. The impulse calculations for initial rotational levels j=60, 100

and 30 are represented by solid, broken and dotted lines, respectively.
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Figure 8. Calculated laboratory differential cross section as a function of the

laboratory recoil velocity of CsF for the laboratory scattering angles of 25' and 550

for initial vibrational-rotational level (v=3, j=60) of CsF. The remainder of the beam

parameters are the same as in figure 7.

Figure 9. Absolute value of the Jacobian for the transformation of the differential

cross section from the c.m. coordinate system to the laboratory coordinate system as

a function of the laboratory recoil velocity of CsF for various laboratory scattering

angles.

Figure 10. Center-of-mass differential cross section (cm 2/sr) as a function of the

laboratory recoil velocity (m/s) of CsF at the laboratory scattering angles of 25' (top

frame) and 550 (bottom frame). The beam parameters are the same as in figure 8.

Figure 11. Center-of-mass differential cross section (cm 2 / sr) as a function of the

laboratory recoil velocity (m/s) of CsF at the laboratory scattering angle of 250, for

the most prominent transitions making up the ballistic peak (top three frames), and

the most prominent transitions making up the pseudoelastic peak (bottom three

frames). The beam parameters are same as in figure 8.

Figure 12. Calculated c.m. differential cross section as a function of the c.m.

scattering angle. When almost all of the initial relative translational energy has been

converted into internal motion, the final relative translational energy carries no

angular momentum, leading to isotropic scattering.

38



APPENDIX

To derive the expression for the Jacobian of transformation between the

laboratory and the center of mass coordinates as shown in figure lA, we pick the

following notation:

(i) vj, the initial velocity of Ar atoms, is along the X-axis in the laboratory

coordinate system

(ii) v2 , the initial velocity of the alkali halide, is along the Z-axis in the

laboratory coordinate system

(iii) The coordinate system fixed in the laboratory frame is denoted by XYZ

while that fixed in the c.m. frame is denoted by xyz.

The initial relative velocity and the velocity of the c.m. are, obviously, in the

XZ plane in the laboratory coordinate system. We also take this plane to be the xz

plane of the c.m. coordinate system. In addition, we assume that the detector is also

centered in this plane. 0 L and 02 are the polar angles of the alkali halide recoil velocity

v'2 and of the centroid velocity Vc.m., respectively, in the laboratory coordinate system.

01 is the angle between the initial velocity M2 of the alkali halide in the c.m. frame and

the centroid velocity Vc.m.. 0 (the scattering angle) is the angle between the c.m. initial

(co2) and c.m. final (recoil, d' 2 ) velocities of the alkali halide and 4 is the azimuthal angle

of CO'2, measured from the xz plane. It should be pointed out that while the differential

solid angle in the laboratory fixed axis is d.QL= sin0LdOLdOL, the element of solid angle

in the c.m. frame is df= sin(0 - 01 + 02 )d0do. The vector equation

v2 = vC.,m. +02 (IA)

can be rewritten as
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7t COS0t = ycos0 2 + cos(0 - 01 + 02)

Y, sin OL CO L Y sin 02 +sin(0-0, +02 )cos4o

y, sin 0L sinfl. = sin(0 - 0, + 02)sin4, (2A)

where y -- v -• and y, -YvL. From equations (2A) we get
2 •2

sin0
tan OL ysin02 +cos4J

yielding

sin = sinosi ___ __ __ __ in 2  •s

l+y 2  sin 2 2 + sin(02c COS 2

Differentiating this equation, we get

d4Lý=I, Ysin0 2 COSO (3A)
sin( - + 01+02)

We now recall that our detector is centered in the XZ plane. This enables us to put • =0 in

the above equation obtaining

-' sin0 2

= 1 sin(0-0-+ 02)

S y, sin 0,.
sin(O- 0 +02) (4A)
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To obtain the relation between dO and d01, we rewrite equations (2A) foro= 0,

'y COSOL = ycosO2 + cos(0 - 01 + 02)

Y, sinfL = YSin0 2 + sin(0 -0 1 + 02).

(5A)

Squaring the above equations and adding gives

y y2 +1+2ycos(0-0 1 ). (6A)

Dividing the second equation (5A) by the first one, we get

tanOL = ysin0 2 +sin(0-0 1 +02)
ycos0 2 + cos(O - 01 + 0 2)'

resulting in

COSOL = ycos0 2 +cos(O - 01 + 02),
[1 + y2 + 2ycos(O- 01)]2 (7A)

Differentiating,

dOI -
' = Isin0,ji(l +y 2 + 2ycos(O- 01))2

xj{y2 cos(0 - 0)sin0, + sin(0-0, + 02)+ ysin0, + ysin(0 -01 + 0,)cos(0 - 0•)}!

I1 + Ycos(O-0,)l 11 + y 2- I•;j 1, '

giving us

an~,•) 11 + -y 21

I(8A
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where (ti.') is the cosine of the angle between the recoil velocities of particle 2 (CsX)

in the c.m. and the laboratory frames, and the relation y 2 = I + y' + 2cos(o3'.v2) has

been used to obtain the last form. The Jacobian, as was pointed out earlier, becomes

infinite when either the recoil velocity of the alkali halide in the center-of mass frame o' 2

becomes very small, or when the recoil velocities of the alkali halide in the c.m. and the

laboratory frames are perpendicular. Since the Jacobian, a transformation between two

finite differential cross sections, cannot physically become infinite, a separate expression

for it must be derived for the two cases cited above.

When one of the collision partners is initially stationary in the laboratory frame,

i.e., vl=O and 0 1=0 2=0, this expression reduccs to the one given Ioy Sc!iff [9].

dD'L(eL,•L) + +y 2 + 2ycos0)2' 2yi1- 1-0 = + os 1 - l -I

Figure 2A shows that a maximum (top figure) and a minimum (bottom figure)

laboratory scattering angle exists when the recoil velocities of the alkali halide in the c.m.

and the laboratory frames are perpendicular. This is further clarified in figure 3A which

gives a plot of the c.m. scattering angle as a function of the laboratory scattering angle.

This figure clearly displays the extrema in the laboratory scattering angle as a function of

the c.m. scattering angle. At these extrema the expression 8A for the Jacobian becomes

infinite. Figure 4A gives a plot of the laboratory recoil velocity of CsF as a function of

the laboratory scattering angle. The laboratory recoil velocity displays an extremum at

the minimum and maximum laboratory scattering angles. This is the reason that the

absolute value of the Jacobian stays constant for large changes in the laboratory recoil

velocity of CsF (figure 9). To derive an expression for the Jacobian when the recoil
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velocities of the alkali halide in the c.m. and the laboratory frames are perpendicular, one

can write, using figure 5A,

Cos Lco J

(I YIAOL) (9A)

or,

AO 2arccos(l - YIAOL). (10A)

Using the relations

arcsin(x) + arccos(x) = r/2, and,

At I
arcsin (I - x) - - (2x)2, we get

2

A(I 
IA)

Together with

IdL 1-sin

clý sin(0 -Of +0 2 ), (1 2A)

and

dfQ = sin(0-0 1 +0 2 )dedO,

and

dilL = sin LdOLd#L,

we get,

dQLj 18y 12 (1 3A)
dD2 AOL
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When the laboratory recoil velocity is along the centroid velocity, one can write,

using figure (IA), 0 = 01, and 02 = 0 L, giving

ýdIrL -2

1 Yi. (14A)

This expression for the Jacobian is valid only when the laboratory recoil velocity is along

the centroid velocity provided Y1AOL < 1 and y1A4L < 1, AOL and AOL being the width

of the laboratory detector in the polar and azimuthal angles. When this condition does not

47r
hold, the Jacobian becomes a constant and is simply equal to AML- " This is because the

signal from all 47r steradians in the c.m. frame is now collected by the detector; a wider

detector cannot collect any more signal.

To make the connection with the previous work [2,3], we start with equation (8A)

and note that

6. _ dwo'
v2 ,- dv2 - (15A)

This equation is easy to prove. Using figure (IA), we write

((,,))2 = (v' ) 2 + v2 M-2v'v,.cos(0L.-02). (16A)

Differentiating equation (16A), we get

(odwt = v'dv'2 - V cmdV Cos(0 - 02). (17A)

Substituting for cos(OL -02) from equation (16A) we get equation (15A). Going back to

equation (8A), when there is a continuous distribution of energy levels, the Jacobian
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becomes just y2. In our case, since we are dealing with discrete quantized rotational-

vibrational levels, the Jacobian is given by equation (8A).
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FIGURE CAPTIONS (APPENDIX)

Figure IA. Vector diagram for the CsF-Ar scattering. The initial laboratory velocity of

the Ar beam (vl) is measured along the X-axis and that of the CsF ( v2) beam along the Z-

axis. The laboratory angles are measured from the direction of the CsF beam; 02 and 0L

are the laboratory angles of the centroid velocity vc.m. and the recoil velocity V.2

(laboratory scattering angle), respectively. The c.m. scattering angle is measured from

CB, the direction of initial c.m. velocity of CsF (0o2 ). The pseudoelastic peak discussed

in this article, centered at a laboratory recoil velocity of about 1000 m/s, arises from the

larger c.m. scattering angles. The other pseudoelastic peak, centered at a laboratory recoil

velocity of about 150 m/s, arising from smaller c.m. scattering angles, was not

experimentally detected and will not be further discussed. The circle in the figure

corresponds to one-half of the initial relative translational energy being converted into

internal energy.

Figure 2A. Vector diagrams to demonstrate the existence of maximum (top figure) and

minimum (bottom figure) laboratory scattering angles for a given value of the c.m. recoil

velocity (6' 2 ) of CsF. At the maximum and minimum laboratory scattering angles, the

c.m. and laboratory recoil velocities are perpendicular. The extrema in the laboratory

scattering angle, as a function of the c.m. scattering angle, lead to rainbow like

singularities in the Jacobian for the c.m. to laboratory transformation at these points.

Figure 3A. Plot of the laboratory scattering angle 0L as a function of the center of mass

scattering angle 0 for the (v=3,j=80 --> v'ý20,j'= 118) transition of CsF (v!=2450 m/s,

v2=500 m/s, AE/E= 0.7778, (0'2=246 m/s, Vc.m.= 64 6 m/s). It is seen that the laboratory

scattering angle, for these collision parameters, cannot be less than about 300 and more

than about 750. The laboratory recoil velocity v' 2 and the c.m. recoil velocity 0)'2 are
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perpendicular for the maximum and minimum laboratory scattering angles and the

laboratory scattering angle as a function of c.m. scattering angle displays an extremum.

This leads to the display of rainbows in the curve of the laboratory differential cross

section as a function of the laboratory recoil velocity at the maximum and minimum

laboratory scattering angles. The discontinuities in the curve at c.m. scattering angles of

00 and 1800 are not real and arise from the fact that the c.m. scattering angle is measured

modulo n and not modulo 2nt.

Figure 4A. Laboratory recoil velocity of CsF as a function of the laboratory

scattering angle. The collision parameters are the same as in figure 3A. At the rainbow

angles, v2c.m.=(w0'2) 2+(v'2) 2 and the laboratory recoil velocity of CsF is 597 rn's, slightly

smaller than the velocity of the center of mass. When the laboratory scattering angle is not

equal to the rainbow angles, the signal from each transition is observed at two recoil

velocities, one lower and one higher than the velocity of the center of mass,

corresponding to the cases a and b center of mass scattering angles. Both cases contribute

to the ballistic peak.

Figure 5A. Vector diagram illustrating the uncertainty in the c.m. scattering angle

due to a small uncertainty in the laboratory scattering angle at the rainbow angle. The

angular resolution of the detector, AOL, is exaggerated for the purpose of clarity.
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APPE-NIX B

A DISTORTED WAVE IMPULSE APPROACH FOR ATOM-DIATOM COLLISIONS"

Iloang D)othc

Yap Analytics Inc., Lexington, Massachusetts 02173

Ramesh 1). S-harna

Phillips Laboratory, Optical l-vironnicat Division (G POS),

Hanscom Air Force Base, MNassachuLItts 01731-5000

ABSTRACT

A formalism is derived to include the effects of the long range attractive part of the

interaction potential in the calculation of atom-diatom collision cross sections using the

impulse approach (IA). These calculations have, until now, assumed the atom-diatom

potential given by a sum of two atom-atom interactions, consequently yielding a poor

representation of the long range attractive part. In the D)istorted Wave Impulse Approach

(DWIA) the long range attractive part, located at the center of mass (c.m.) of the diatom,

is a spherically symmetric potential which "distorts" the incoming and outgoing waves.

The DWIA formalism is used to calculate differential cross sections for the rotationally

inelastic process Li++N2 (v=Oj=2)---Li++N2 (v'=Oj'), as a function of the final rotational

level j', at a relative kinetic energy of 4.23 eV and center of mass scattering angles of

49.20 and 37.10. It is shown that differential cross sections calculated using the DWIA

formalism are in much better agreement with experimentally measured ones than IA

differential cross sections using atom-atom interactions expressed by either hard-core, or

exponential repulsive, functions.
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I. INTRODUCTION

Recently, an exact formulation of the impulse appioach (IA), or qunImulo-

mechanical spectator model, has been developed for atom-diatom collisions [1-3].

Subsequent comparison of computed differential cross sections with experimentally

measured ones has given reasonable results for: (i) the relaxation of highly vibrationally

excited KBr by Ar [4], (ii) the elastic and inelastic processes at large c.m. scattering

angles, and the highly inelastic ballistic processes at all c.m. scattering angles, for the

CsF-Ar system [5]. IA calculations [II have not been able to rclpodtiucC the observed

differential cross sections for rotational transitions of N2 caLusCd by c0ollisions with Li 1 in1

a crossed molecular beam experiment at a relative translational energy of 4.23 eV and

c.m. scattering angle of about 45'. The calculated distributions of differential cross

sections are too narrow and peak at values of the final rotational quantum number j' that

are too large. Similar results, for an IA calculation, were obtained earlier by Beard and

Micha [6] not only for the Li+- N2 system but also for the Li+- CO system as well.

The observed rotational transitions convert only a small fraction of the initial relative

translational energy into rotational energy. The situation here is similar to the one

encountered earlier [4] in a study of the deactivation of highly excited KBr by Ar. For

nearly elastic scattering at 45' c.m. scattering angle, the IA calculation was not able to

describe the experimental results; the calculation, however, agreed well with the

experiment when a substantial fraction of nearly 2 eV initial vibrational energy was

converted into translational energy. In this paper we seek to improve the calculated

distributions of rotationally inelastic differential cross sections.

In the impulse approach, the total atom-diatom interaction potential is described by a

sum of two atom-atom interactions. These atom-atom interactions are in all of the

calculations on vibrational-rotational excitation of the diatom published thus far,

approximated by hard core potentials, i.e., V(r) = cc for r_<d and V(r) = 0 for r > d, d

being the suitably chosen hard core radius. To arrive at an understanding of the
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influence of hard core potentials on the calculated difflereCltial cross sections, we shall

carry out the IA calculation using exponential repulsive aton-m-atomn interactions as well.

While the sum of the two atom-atom interactions appears to be an adequate

description of the atom-diatom potential at small distances, this model fails to describe its

long range attractive part. To remedy this situation, \ve propose to add to the sum of

pair-interactions a centrally symmetric attractive potential located at the c.m. of the

diatom. We shall study the effects of this potential on the differential cross sections of

collision-induced rotational transitions involving the convCrsitun of only a sin. 1r1ac ton

of the initial relative translational energy into rotational cencrgy. The expr.•sion for the T

matrix in the Distorted Wave Impulse Approach (DWIA) will be shown to describe an

overall collision process where the incoming particle is first scattered by the central

potential located at the c.m. of the diatom (tie distorting potential), then scattered by one

of its atoms, and, to maintain microscopic reversibility, finally scattered again by the

distorting potential. It was pointed out earlier that the impulse calculations [2-5] give

reasonable results for large c.m. scattering angles. We will, therefore, also study the

difference between the IA and DWIA differential cross sections as a function of c.m.

scattering angles.

The paper is organized as follows: in section II , we derive the formal equations

of the distorted wave approach; in section III, we derive the necessary mathematical

formulae for computing the DWIA scattering amplitude for atom-diatom collisions; in

section IV, we present an application of the model to the Li++N 2 scattering process;

finally, in section V, we surrunarize the results of the calculations. In the Appendix, an

expression for the atom-diatom collision amplitude in the impulse approach (IA) is

derived in terms of the incoming and outgoing momenta P3 and p'; this expression is

crucial in the formulation of the DWIA scattering amplitude presented in section III.
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I1. THE DISTORTED WAVE FORMALISM

We follow the notation of ref. 1, which we refer to throughout this paper as St3S. The

scattering process involves the collision of atom 3 with a molecule consisting of atoms I

and 2. We make use of the set of Jacobi nmomeinta, where in a system of' 3 particles

(a,b,c), p. and r. denote the momentum and position vectors, respectively, of paiticle a

with respect to the center of mass (c.m.) of particles bc; q. and y., respectively, are the

vectors denoting the relative momentum and relative position of particles b and c; V., lPb

are the reduced masses of the systems (a,bc) and (b,c), respectively; V' is the potential

between particles b and c, and the spherically symmetric aton-diatoni distortion

potential located at the c.m. of the molecule is denoted by V0(r1).

The total Hamiltonian of the three particles in the c.m. coordinates of the system is,

H = Ho + V, =H 0 + V3 (y 3 ) + V, (a)

where

H = -3 + q (2)
24 3  213. 12

is the kinetic energy operator, V3(y3) is the intramolecular potential, and V, the atom-

diatom interaction potential, is the sum of the distortion potential V,,(r,) and impulse

potentials V,(y,)and V2(y2 ), i.e.,

V = Vo(rD)+V, = V )(r,)+V,1(yl)+V,(yj) (2a)

It was mentioned that V0(0), the distorting potential, is a spherically symmetric

potential located at the c.m. of the diatom and V1, the impulse potential is the sum of

two atom-atom interactions. These restrictions will not be used in the derivation of the

formal equations. We will however, for convenience, continue to refer to V0 and V1 as
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the distortion and the impulse potential, respectively. Tlh T operator associ~acd wIth

the total Hamiltonian is

T(z) = V + V(z- H, - V)I V. (3)

where

2

H3 = pDm +2 3  (4) (4)

is the Hamiltonian at large distances when V---O and,

HD6,o = q2 + V(y), (5)

is the Hamiltonian of the diatom. In eq. (3) , z = E + iV , E being the total ncrgy of the

atom-diatom system. The eigenfunctions of 1-l, are given by:

I(X) =IU,)0I D ,) = Ivjm P3 .), (6a) (6a)

and

I1 ) 0 Iwo) = Iv'J'm' p), (6 b)
2

where u, = u(P3a), u u(p 3 ) are plane waves, eigenfunctions of 2' normalized to

delta function, and W. >-=-lvjm >, N' >-Iv''m'> are vibrational-rotational wave

functions, eigenfunctions of HD,.,., in the initial and final states, respectively. Define

the Green's function, or the propagator:

(1) For the unperturbed motion

G;(z) = (z- H3)-', (7a)

(2) For the total Hamiltonian H

G÷(z) = (z -H 3 -Vo - V)', (7b)

(3) For the unperturbed motion and distortion potential

Go (z) = (z - H3 - VoY', (7c)
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(4) For the tunpertuLrbcd motion and impulse potential

G*(z)=(z-H 3 -V,) ' (7d)

The T-operator corresponding to the distortion potential is given by

To = VoQO, (7e)

and that corresponding to the impulse potential is

T", = v10 ,1 (7f)

where f2 is a Moller wave operator defined, for the distorting potential, by

!O = I + GoV (7g)

and for the impulse potential, by

n, = 1+ G* V1 . (7h)

An exact expression for the scattering amplitude in the distorted wave formalism

is given by [7]

(P ITI a) = (P IT0Ia) + 0 v (8)

where la> and 1J3> are unperturbed wavefunctions for the initial state and the final

state, respectively, defined by equations (6a) and (6b). Xý is the solution of the

Lippmann-Schwinger equation,

IX') = (I + G'V,)IX*,), (9a)

where X. is the outgoing solution of the Lippmann-Schwinger equation with only the

distorting potential

IX..) , 1=a) = (1 + GVo)1of.) (9b)
= a)+ G+V.IXo+)

=(1 + GTo)Icc),
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and XT- is the ingoing solution of the Lippmnann-Schwingcr equation, again with ,th,'

the distorting potential,

(X'r ( l o = ( PlI(-I1 + VoG') (9c)
- ( XT- + x JVOG;

-(I + TOG;).

It is seen that X, is the solution of the Schroedinger equation with the full Ham1iltonian

H. An approximate solution to equation (8) is provided by treating VW, the splhcrically

symmetric potential located at the c.m. of the diatom, as a small perturbation. Writing

the expression for the Green's function corresponding to the full I lamiltonian II as

G* =GI + G'V 0 G, (10)

and keeping only the first term on the right hand side of the equation, i.e., G' G we

have from equations (9a) and (7h),

Ix+)-- (1 + G+V.)Ix+.) = Q, jx+o). (11

Equation (11) has the effect of disentangling the effects of V,, and V, and keeping the

terms in the lowest order in V0. This is the reason that primarily the weak attractive

long range portion of the atom-diatom potential will be included in Vo. From equations

(8), (11), and (70, the scattering amplitude can be written as,

(I'al(x) -(1IT 0,I() + (Xo1 IT ,,). (12)

Substituting equations (9c) and (9b) for (x, and into equation (12), we get

(P3jrlca) - (P IT1 (x) + (0 1(t + ToG; )T,(I + GT0 )Icx) (13)

- (P IT, + T, + T0 G;T, + T,G; To + ToG ;G;ToGT).
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We can see here that the operator on the right side of equation (13) is just the first few

terms in the expansion of the three-body T-matrix in a multiple collision series [8,9].

The complete formal equivalence between the distorted wave formalism and the multiple

collision series approach can be established by using the exact expression for G' (eq.

10). It is worth mentioning again that all of the above relations are completely general.

They were obtained without any assumption about the forms of the interaction potentials.

Equations (12) and (13) give the scattering amplitude in the Distorted Wave formalism,

subject to the approximation G' = G* in eq.(10), i.e., in the lowest order in V,.

The equations derived thus far do not make use of the fact that V0 is spherically

symmetric. For rotationally inelastic transitions, we can ignore the effect of T, alone,

since Vo contributes only to rotationally elastic processes. We shall therefore concentrate

only on the second term in eq. (12).

1I1. MATHEMATICAL FORMULAE

We first write the potential V1 as a sum of two atom-atom interactions,

V1(r),y3 ,() = Vl(y) + V2(y 2) (14)

where r3 is the distance between the incident atom 3 and the c.m. of the diatom 1-2, a is

the angle between r3 and Y3, and I

y1(y 2) ={r• + [c,(c,)y,] 2 T 2r3y3C1(c 2)cos•c}l, (15)

where

c(c 2) m 2(m.) / (m. + m2 ), (16)

is the appropriate mass ratio. The total Hamiltonian can then be written as,

H= H) +V1 + V(r,) = H3 + V(y.) + V 2(y,) + V0(r,), (17)

and the three-body T, matrix expanded in a multiple-collision series,
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T=" +T(2) + Tt )G#T(2) + TL2)G;T -)
+T('G T(2)G T'l + T T 2 G3 T' 2 +-.. (18)

where the three-body operators TV) denote the collision of the incident atom with atom

s' of the diatom, s being the spectator atom. T` is defined by,

T()= V,,Q., (19)

L= I + (z- H3 - V.)-'V,, (20)

s=1,2. Substituting equation (18) into the second term on the right hand side of

equation (12) and keeping only the first two terms, i.e., keeping only the single collision

terms in the multiple collision expansion of the three-body T-matrix, we obtain the

matrix elements

j(0 + TOG* JQ tJIn)(11 + G+Tojl), (21)

where a) =lvjmp,.) and 1p)P vy'1,,'p,,), s=1,2. We have used the completcn-ess

relations 1I1t)(ilI = 1 and = 1, the summation denoting sum over the discrete

indices and integration over the continuous ones. In eq. (17), we assumed that V0 is a

spherically symmetric potential. Now we further restrict Vo by requiring it to be

independent of the vibrational coordinate. Since the dependence of the atom-diatom

potential on the vibrational coordinate is usually not known, this is not the limiting factor

in determining the accuracy of the calculation. To can thus give rise to only rotationally

and vibrationally elastic transitions. The sums in equation (21) are then non vanishing

only for [il) = jvjmp,) and J) = jv'j'in'p'). The integration is therefore only

over P3 and p'.
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The first and third matrix elements in the irtegrand can then be written as,

(u(pj)li + T0G;Iu(p'))

Ig3(U(T-*,) IV. (P3) (22) (22)(p2-Pp;2)+i

and

(U(P3)11 + G;ToIu(P3 1)

2p TU(;V- _-5---- , (23)
5 P 2  (pI. - p2) + ie

where we have used eqs. (7g) , (9b) and (9c), and the limit c - 0' is implied. The wave

functions for the relative translational motion are defined as follows; u(k) is the plane

wave for free translational motion

(r3 ju(k)) = (27t)-½exp(ik- r3 )

=( ' , 3, (kr;)E Y,, (ý) Y.(,), (24)

-r

uT'(k') is the solution for the translational motion which asymptotically goes into a

plane wave and an ingoing spherical wave

(U (k')1r 3)= Y(-i) t*(k'i,•) R Y* ' i),)

and u+(k') is the solution for the translational motion which asymptotically goes into a

plane wave and an outgoing spherical wave

(r, lu (k'))= 2 (i)Ko(k'rj;C) Y.,(k)Y.(r,). (25b)

The radial wavefunctions wo,(k'r 3 ;0) are solutions of the Schr6edinger equation
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+ - K 2(0 3r V ( 0, o (k rq;?. V 0, (25c)

where

E -i ,k2  (25d)
29.3

and wo,(kr 3 •;C) satisfy the outgoing and incoming asymptotic boundary conditions

_F exp(±i~0 1 ) IT

(DI (k r3 ;) = k xp(+i8 sin(k'r, - f- + 60t,), (2 5e) (25eek'q 2

Sot being the real phase shift. Substituting equations (24) and (25a) into equation (22),

the right hand side of equation (22) becomes,

+ 2p.3 torp, P3 )12, 2, 2' p, -E, ,¢ .".'T ; ';Cp)Yt':"' (f:)=

11 P30P - P"2 + iE Ilm\Pn),~ njt

, s, (p;, I 3 )1',', (O3m)Ytm,' (Eg)1, (26) (26)
t', ,,et

where,

to, (k, k') m--- co;(k'3;E- )Vo (r,)j,(kr;)ýdr,

= 2 ! j,(krj)V.(0 )(O,(k'r ;E' )rdr. (27)

In a similar way, we can rewrite the right hand side of eq. (23) as,

8P3-P4)+ 2g13 toj,(P 3 ;P3.)iXYm(ic)i,(I),, _ ,- h2 pl' -P3, + iC
S1, (PI, P,)Y Y1^ (03.)Y.., (0,). (28)
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The second matrix element in the integrand of eq. (2 1) has been evaluated in S13S using

the IA. The expression given in that paper was in terms of the momentum transferred

q =p - p3 , which is uniquely defined in the single collision case. The present situation

defines the momentum transferred vector as (I P31- P3,,. This momentum transfer

however occurs in three steps and the DWIA model calls for an integration over

P3 and p, , as indicated in eq. (21) , making the momentum transferred in the middle

step no longer unique. To carry out this integration the impulse transition amplitude in

the equation must be expressed in terms of p3 and p' rather than the momentum

transferred. The needed results are derived in the Appendix, providing

(vj m p3IW"'I vjmp,) =

S[[J[JJ11C(jJj'; mMm'), A"' (v'j'p,;vjp3 )C(XX'J;ggt'M, )Y*(f,)Yo (f)'), (29)
iYN, MI [j] JP

where [j]E(2j+-1), C' are the Clebsch-Gordan coefficients, and the quantities

Am .(vGjp);vjp3 ) are defined by either eq. (A22) or eq. (A27). Equation (29) is the

equivalent of equation (49) in SBS, which gives the T matrix in terms of the momentum

transferred q = p3 - P3. Of course, both formulations give the same numerical results.

We can now take the product of the right sides of eqs. (26), (28) and (29), and

integrate over P3 and p', as indicated in eq. (21). Defining the quantity

,,,,;!, (J'p3;vjP,,)-= JfS,,(P3,,P3 )A,, (v'Jp~ P,,vj p3 )S(pI, p3 )p2 dp3dp', (30)

the rotationally inelastic DWIA scattering amplitude, from eq. (13), is then given by

j(11! + T0G;I )(MTjIjT)(11I1 + G;T01cX) =
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Xuj1]C(jJj';mM,m') (1 C(efJ;mm,,Y ,) . ) 4" ('i... v, ")

The differential cross section for scattering at an angle 0, in the center of mass

frame, for a vibro-rotational transition is given by [9]:

d(vJp3a -4 v'j'p*,;) (t 4 g (2 ) (32)

We can then sum the absolute square of the collision amplitude given by eq. (31) over m

and in', or m and M, = in' - in. Using the identity

lC(jJj';mM,)C(j~j';mM,) -=[ (33)

where the second factor on the left hand side comes from the complex conjugate of eq.

(31) , and taking the z axis of the coordinate system along the direction of the incident

momentum P3., we finally obtain

d o 2 n 4 2P3• " "'12
do p~ . 4 VT ;0) 93-i , JI (34)

dQ h P~ui-li JI M,

where

G i, I -I C g J;0M) Y•M, ( ý bJ;)I' ,;, (v~'~ ;vT p ,1 i "']2).0 (35)
i,*• L " j ' =3

In the next section we shall apply the DWIA model to study the rotationally inelastic

scattering of a N2 molecule by a Li+ ion, a system that has been extensively studied both

experimentally [10, 11] and theoretically [1, 6, 9, 12]
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IV. APPLICATION TO THIE Li+ + N2 SYSTEM

1. CHOICE OF POTENTIALS:

SCF calculations of the Li+-N2 potential hypersurface have been performed by

Staenimler [13]. The calculated energies as a function of the distance between the ion

and the center of mass of the molecule are shown in fig. I for the collinear (a = 00) and

the C2v (a = 900) configurations. The molecular internuclear separation was kept fixed

at the equilibrium distance. Fig. I also shows that the repulsive part of the potential

above I eV can be approximated using simple exponentials [9j:

Vulk.,e = VI (yI)-+ V2(y2). (36)

where,

V,(y) = B exp(-13yi), i= 1,2 (37)

0

with B=1.55X10 3 eVand 0 =4.65 A

For large relative kinetic energies of the ion and molecule, it is also possible to

replace the above exponential forms by simpler hard core potentials,

V,(yj)=,-o yi_5R,

= 0 y > R,. (38)

The hard core potential with radius R, equal to 1.4 A is also shown in figure 1.

Similar hard core radii have been used in the previous studies [1,9] of Li+-N 2 collisions.

R,=1.4 A corresponds to about 4 eV potential energy using the exponential form of the

potential function given in equation (37).

It was pointed out earlier that the impulse potential, sum of either the two hard

core or the two exponential repulsive functions, cannot, of course, provide a

representation of the long range attractive portion of the atom-diatom pctential. The
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DWIA model seeks to remedy this situation by adding to the impulse potcntiztl a

spherically symmetric potential located at the c.m. of the diatom V (r, ), i.e.,

V =V,(y1 )+VC(yj)+Vo(r), (39)

and allow V,(r3) to "distort" the incoming and outgoing waves. It should be emphasized

that in this model, Vo(r 3 ) merely denotes a long range potential chosen in conjunctionl

with the impulse potential to improve the fit to the total atom-diatom potential V, which

may be determined experimentally or by ab initio calculations. Vo(r 3) is not related to

U,(r3) from the standard expansion V(r,a) = "U,(rj)P,(coso). We also realize
0 I

that in choosing a spherically symmetric function to represent the attractive potential, we

have assumed that long range anisotropic potentials, e.g., the ion-dipole and ion-

quadrupole interactions, can be neglected at the higher relative kinetic energies that we

are dealing with in this paper. It is however useful to point out that the long range

anisotropic potentials can be represented by adding a long range spherically symmetric

portion to the impulse potentials. For example, the long range dipole potential is

obtained by letting the impulse potentials approach the coulomb interaction at large

distances.

The spherically symmetric potential U,(r 3 ) for Li+-N2, has been determined

from the measured total cross section by Gislason, Polak-Dingels and Rajan (GPR) [14].

V,(r 3 ) is determined from GPR potential as follows: With the hard core radius for the

atom-atom potential equal to 1.4 A and the internuclear distance of the N2, molecule

equal to its equilibrium value of 1.1 A, the Li+ ion encounters a wall of infinite potential

at a distance r3 = 1.95 A in the collinear geometry. We therefore chose as V (r3 ) the

GPR potential for the domain 1.95 A_• r3 !z 5.38 A, the strongly repulsive part of the

GPR potential in the inside region r3j 1.95A being already accounted for by the hard
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core atom -atom potentials. The value of the GPR potential at 1.95 A, approximately 0.4

eV, is therefore extended to 0<r 3• 1.95A, resulting in the central potential V0 (r3 ) shown

in fig. (2a).

Figs. (2b) and (2c) show the total potential, given by eq.(39), for the collinear and

C2v geometries, respectively. It can be seen by comparing to fig. I that the addition of

the central potential Vo(r 3 ) has improved the fit to the points obtained by the ab initio

calculation in the lower energy region. The small (absolute) energy values of V(rD),

compared to the values of other potential energies justifies treating V0 (r3) as a

perturbation.

2. CALCULATIONS

We have calculated c.m. differential cross sections for the rotationally inelastic

process Li++N2 (v=O, j=2) -- Li++N2(v=0, j'), using:

(i) the IA model and hard core atom-atom impulse potentials of equations (36)

and (38).

(ii) the IA model and exponential repulsive atom-atom impulse potentials of

equations (36) and (37).

(iii) the DWIA model and hard core atom-atom impulse potentials of equations

(36) and (38) plus the distorting potential Vo(r 3) of figure (2a).

The calculations were performed at a relative kinetic energy of 4.23 eV and c.m.

scattering angles of 49.20 and 37.10. The two-body t-matrix elements for the

exponential repulsive potential were computed using a propagating algorithm due to

Brumer and Shapiro [15].

The following approximation was introduced in order to simplify the DWIA

computations. We note that the quantities St, (P 3 ,P3,,) appearing in the integral on the

right side of eq. (30) are defined by,
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S,,(p 3,p3,) 8 (p, - P3.) .231in tO, (p3,p)) (40)
P3 •3, •-.0' p, +i"

and

lim(p. _-p2 + ie)- Ri=(pl. _ P2), (41)

where 8 is the Dirac delta function and iP denotes the principal value integral. We now

approximate the limit by taking only the delta function term, and ignoring the principal

value term, on the right side of the above equation. Recalling the equivalence of th1:

distorted wave formalism and the multiple collision series expan:;ion (eqs. (12) and (13)),

this approximation corresponds to keeping only the on-shell, energy-conserving, terms in

the transition matrix To due to scattering from the spherically symmetric potential

V0 (r3). This approximation conserves energy at the first and the third of the three step

collision process. For this reason it can also be regarded as "classical" approximation.

Of course, a completely classical calculation would conserve energy at every step of the

collision process. The quantities S,, (p3,p 3,, ) can then be approximated by,

S,(PU3 ,,) (PP3. 2, Ci.2. tol,(p 3,p3 ,)[6(p, +P1.) + (p p3 j,)]" (42)

A similar expression is obtained for S;(p•,p 3 •) . The DWIA inelastic cm.I
, (P31P3) -The WIA nelsticc~m differential

cross section is then given by eqs. (34) and (35) with the quantities h; tiV

on the right side of eq. (35) approximated by,

,,ir, !, T P0 ; VjP3,)

( 4-3ip,1 h2'to,(p,,,p 3,))A,)e;(v' jp•,;vjp3,)(1 - (tip3 /.43)
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where the on-shell two-body t-matrices t0,(k, k) = sin 8o, exp(i80 t) are calculated from

eq. (27) using the method of Brumer and Shapiro [15]. Eq. (A27) in the appendix was

used to generate A('), p ; )jp3 .) The quantities F!') (vJ p;vJp3.) required on

the right hand side of eq. (A27) are computed, from eq. (A24), using the exact IA

calculation, or from eq. (A32), using the part-classical IA calculation [1].

3. RESULTS

The IA differential cross sections calculated at a relative kinetic energy of 4.23 eV

and a c.m. scattering angle of 49.20 are plotted as a function of final rotational quantum

numberj' in figures (3a) and (3b) for the hard core and the exponential repulsive atom-

atom interactions, respectively; the DWIA differential cross sections are plotted in figure

(3c). The experimental differential cross sections [101 were normalized so that the value

for the most probable final rotational level j' in figure (3c) agreed with the largest

calculated DWIA differential cross section. Thereafter the comparisons of the

differential cross sections are absolute. The very same calculations are repeated for the

c.m. scattering angle of 37.10 and the results plotted in figures (4a), (4b), and (4c). For

both angles, the calculated IA distributions are narrower and peak at a larger final

rotational level j' than the experimentally observed distribution [10], also shown in the

figures. The calculated differential cross sections using either of the IA atom-atom

potential functions, the exponential functions, eq. (37), or the hard core functions, eq.

(38), are remarkably similar. From these results it would appear that the IA results are

insensitive to the shape of the repulsive portion of the atom-atom potential. This

realization, coupled with the computational ease, is the reason for choosing hard core

functions, equation (38), together with the distorting potential, figure (2a), as the total
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atom-diatom potential V for our DWIA calculation. The DWIA results repre.'ýnt 'In

improvement over the IA results. The DWIA distributions are broader and also pe:ak at a

lower final rotational level j', in much better agreement with the expcrimentally observCd

distributions.

These results may be interpreted as follows: The long range centrally symmetric

potential Vo(r 3) perturbs the incoming and outgoing waves by giving them a partial wave

dependent phase shift. The transition amplitudes from different partial waves no longer

add coherently, leading to a broadening of the calculated distribution of differential cro"s

sections. This broadening also leads to smaller momentum transfer shifting the

maximum of the calculated distribution closer to the maximum of the measuredi

distribution. The more realistic DWIA potential leads to a better agreement of the

calculated differential cross sections with the measured ones.

The part-classical IA calculation has been used in our recent work [4,5] to reduce

the computation time. It was estimated that this approximation introduces an error of

about 10% in the calculation. The present work, because it involves low rotational

quantum numbers, may be considered a stringent test of the part-classical calculation.

Table I gives the ratio of the part-classical and the exact DWIA differential cross

sections. It is seen that for final rotational quantum numbers greater than 10, the

accuracy of the approximate part-classical method is indeed about 10%.

Figure (5) compares the IA and DWIA calculations for larger scattering angles;

the collision parameters are the same as in figures (3) and (4). Although there are

differences in the magnitude of the cross sections, the IA and DWIA rotational

distributions for large c.m. scattering angles are nearly the same. We have now a

quantitative estimate of the influence of the long range attractive potential on the

inelastic cross sections when only a small amount (less than 25 % for the most probable

rotational transition) of the initial relative translational energy is converted into rotational
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energy. Of course, this influence is expected to be a function of the initial and final

relative translational energies as well as the initial state of the diatom.

V. SUMMARY

The improved agreement between the DWIA calculated distributions of rotational

transition probabilities and the experimentally derived ones suggest that the long range

attractive part of the potential must be included in a model for small angle, high energy,

atom-diatom collisions involving small amounts of energy transfer. These results, which

appear reasonable, warrant further investigation (additional calculations at different

relative kinetic energies, scattering angles, and on different systems) to test the

consistency of the model. The significance of neglecting the multiple collision terms and

the principal part on the right side of eq. (41) has yet to be investigated. The present

calculation, however raises the hope that an accurate calculation of the differential cross

sections of inelastic processes at high energies may be possible using a suitable

modification of the impulse approach. As expected, the IA and DWIA calculations give

nearly the same rotational distributions for large scattering angles.
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FIGURE CAPTIONS

Figure 1. Li+ - N2 interaction potential as a function of r3 for the collinear (a = 0') and

C2 v (a = 900) configurations. The points shown are ab initio SCF energies (Staemmlcr

[13]). Also shown are lines resulting from approximations by a sum of exponential pair

potentials (eq. 37) and hard core pair potentials (eq. 38) with radius R, = 1.4 A. The

molecule equilibrium distance, 1.1 A, is taken as the internuclear separation.

Figure 2. (a) Central symmetric potential Vu(r 3 ) used in DWIA calculations.

(b) Total interaction potential used in DWIA calculations, resulting from a sum

of hard core pair potentials V,(yl)+ V2(y 2) (R, = 1.4 A) and V,(r,) (eq. 39), shown

for the collinear configuration (a = 0'). The points shown are ab initio SCF energies

(Staemnmler [13]).

(c) Same as in fig. 2b, fbr the C2v configuration.

Figure 3. Distributions of rotational transition probabilities, shown as c.m. rotationally

inelastic differential cross sections vs final rotational quantum number j', for

Li++N 2(0,2)--Li++N2(0j') at a relative kinetic energy of 4.23 eV and a c.m.

scattering angle of 0=49.2*. The calculated differential cross sections are represented by

discrete sticks. The solid line is the experimentally derived distribution [10]. Top frame,

figure (3a) is the exact IA calculation, using hard core pair interactions (eq. 38) with

radius R. = 1.4 A. Middle frame, figure (3b), is the exact IA calculation, using

exponential pair interactions (eq. 37). Bottom fiame, figure (3c), is the DWIA

calculation, using the potential shown in figures (2b) and (2c). The measured differential

cross sections are relative and are normalized by setting the largest measured cross

section equal to the largest DWIA differential cross section. The experimental cross
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sections are measured for a fixed laboratory scattnetig angle. The cited c.m. scalirling

angle is only for elastic scattering. The c.ni. scattering angle is diffcrent for each

rotational transition; for j'= 30 the c.m. scattering angle is about 49.50 - 0.3' degree

larger than the value cited for elastic scattering. These small differences are neglected in

the present work.

Figure 4. Same as fig.3, for a c.m. scattering angle of 0 = 37. 1'

Figure 5. The IA (solid line) and DWIA ( discrete sticks) calculations for the collision

parameters in figure (3) are plotted for 600, 90, 120', and 150' c.m. scattering angles.

The two distributions are nearly the same for larger scattering angles. The shift of the

rotational distribution with increasing value of the c.m. scattering angle to larger values

of the final rotational quantum numbers accompnied by decreasing differential scattering

cross section is to be noted.
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APPENDIX

In this appendix, we shall derive the expression for the IA transition amplitude

(v'j'm'p; /IT"'jvjmp 3) in terms of the momenta p' arid p, . The scattering process

involves the collision of atom 3 with a molecule consisting of atoms 1 and 2. We again

make use of the set of Jacobi momenta, where in a system of three particles, c incident on

diatom ab, p, denotes the momentum of c with respect to the center of mass (c.m.) of ab;

and qc is the relative momentum of a and b. We also use unprinied and primed notations

to denote momentum vectors before and after the collision, respectively. Following SBS,

the IA transition amplitude with momentum transfer q can be written as,

(43IT"'(q)[03 ) fdq,3" (q 3)(q It"' (q) q.)O(q), s = 1,2 (Ala)

where q---P' 3 -P3 , t4',) -- ]lIj,,P3) , j}-) = I jm,,,p), s is the spectator atom, and O(q,)

is the initial-state wave function of the molecule in the momentum representation:

*(q,) ) (2/)ijIvj(q3)YJ.(43,), (A2a)

where,

Ij(q 3 ) = JY3dy3Xj(yY,)j(q 3y,). (A2b)
0

Eq. (Ala) was obtained by applying the IA, i.e., reducing the three-body Moller

operator to the two-body Moller operator by approximating the intramolecular potential

energy operator by a number, and by assuming that one of the two atoms of the molecule

acts as a spectator during the collision. Additional details of the derivation of eq. (Ala)

are given in SBS.
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We first note that the final-state wave function in the momentum and coordinate

representations are related by the Fourier transform

" ( q3) = (2n)-J dy3 exp(-iq3 .y 3)exp(-ia,.(p; - P,).Y 3 )W')(YJ, (A3)

where we have used the relation, q = q3+ = + a5 (p - pj) and aC is a mass

ratio defined by o = (-1)' ma Eq. (Ala) may then be rewritten as:
m +m2

(v'j'm'p; ITt 'Ivjmp 3 ) = Jdy3 W"*(y 3 )exp(-ia.(p' - p3 ).y3I)IP((y 3 ). (Aib)

In equation (Alb), W'(y 3) -Wj',n'(Y 3) is the vibrational-rotational wave function for

the final-state of the diatom,

XX/'(Yv) X (Y1)YJ..(Y3 ), (A 4)

where X,,-2(y3) is the wavefunction for the vibrational motion and the Y1".m(Y3) is the

spherical harmonic representing the wavefunction for the rotational motion. The

function '•P'(y3 ) is defined as the Fourier transform of the initial-state wavefunction, in

the momentum representation, modified by the effect of the collision,

T(S) (y3) = (2n)-/2f dq, ex1,(-iq3 , y3 )(q ft"j) q, )p(q3 ) (A5)

The dependence of the two-body t() matrix element on the orientation of I, ,IP3 and jI,

is factored out by writing,
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(q.t) Iq.) = I.,T,)(q3,,P3P')Y[ (4q3 )
LM

= E t~tr,(q 3,p3 ,pi)C(e 3 e'L m3 M, (A6)

It is possible to write equation (A6) because the t-matrix element, a scalar, depends

upon three vectors P3, p', and q3 which must couple only in ways that the reCultumt

expression is also a scalar. Substituting the expansion on the second line of eq. (AO)

into eq. (AS) and using the plane wave expansion,

exp(-iq 3 Y3 ) 4nZ(-,i)Xj(q 3y3)j YX(q 3A)YM (M), (A7)
A p

we obtain

= Y3, 0i, )) [][L-- i 1t;X,(Y 3 ,P IP)C(e3f3L;mm 3M)
L%04djmjl;m; L4 n ] u,
xC(JLX; 000)C(JLX; mkl~i)Vw (MY,)*,,,,, (p)V;,,;- (f,3), (Ag)

where,

jy(p) 2- 2j- (A9)
tW;,V, (Y I, P3,. P3')t -_ dq,3 q~j (q3y3 Xt,;'/; (q3, p, p, )- " (q3) JA9

and [j] (2j+I). Now using eqs. (A4) , (AM) and the plane-wave expansions,

exp(-ica,p'.y,) = 4r'(±i)r' j,; (Ka Ip'y,)X y; (p),,. (y,). (A 10)

and
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exp(ia~p,.y,) = 47,tX(±iY1 2, i, (Ia. Ip~y,)~Y, Y"11 (f3)Y,>, 01'), (Al 1)

where ± means that the plus and minus signs are taken for s =I and s = 2, respectively.

The angular integral in equation (A Ib) is

f d53YJ*'.(M3 YXýj,(M5' 3 Ym, (5'3 Ytinj (M I
X EC(e~ 2eL';OO)C(XL'j';O0)C(e~ 2eL';-m1 2n11M')C(XL'j';p.M'nV). (Al 2)

The transition amplitude of eq. (A Ib) can now be written as

(v'j'm'p'3 IT"')IViM P3 ) =

LMLM).J±WeýI-mr2 [ j- C(JLX;00)C(XL'J'; 00)C(e, 2 ; 00)

xC(jLX;nikL)C(XL'j';p.M'nV')C(e 2 L'U;iwi~mnM')C( (3 'L; M3ni'M)

3 (A 13)

where,

':'11L(P',P 3) = JdY 3y j, (Iazjp3Y1)j, (I(XgjP'Y 3)-:&t~;j,(Y39 3 5P'3 )~x~*(y 3), A

In obtaining eq (A 13), we have used the relation

=1, (-lm'1yD ,,,,(0 3  (A15)

Eq. (A13) gives an expression for the transition amplitude in termis of the momienta

P3 and p' . A simpler expression can be obtained by using the relations,
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y;~ ~3)Y*(~3 = [i!~ii•-ilc(e1e1e,;OO)C(q'1;e M 111 ;mI 3 n1 j (ýJ),(.I i

Y,, (3Y.'~ = 3I~~- I~(i (A 17)

X[[)][JI]]yW(jLj'L'; ýJ)C(jJj'; mM, ni')C(LL'J; MM'M,), (A IS)
JMj

and substituting into (A]13). We then obtain

(v'j'M 'pj T~s~IviMP3 )

X~i'~"~(iA)[[e2  2L 4[*J ~ I'm ( Y.; (jý )C(jL%;OO)C(O.L'j';OO)

xc(e2e;L';oo)C(e 2e 3e1 ;OO)C(eetef ;OO)C( iJi'; mM, in') W (jLj'L';XJ)

MM C(LL'J;M M'MI )C(Ie21L'; m2min'M,)Ct 3eL; n~mM

xc(e2e1e ;M2m3M2 )C(fet~e,;m~m~m,) x7"",P ') 1; ,rp P,p (A 19)

Noting that the sums f 2 +ef3 + f, and £' + e +4'~ must be even for a nonvanishing

contribution, the sum over the product of five Clebsch-Gordan coefficients on the right

side of the above equation is equal to

where X is a 9-j symbol. We finally obtain the expression for the transition amplitude
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(v j m IpP IT(*)Ivj mp3)

where,

A~,.v'Op;vp ) /2

Equations (A21) and (A22) give the expressioni for the 1A collision amplitude in termis of

the momenta p, and p' The equivalent expression in terms of the momentum

transferred q = p'- p3 was given in SBS:

(v'j'm'p' jT'jMP3) = O][[ J]] C(jJj';nmM~n')F") (v'*'p'3 ;vjp,), (A23)

where,

~ (vj'p vjp3 - X±i) i(J)[[L[p]II] y Y1 .Mi1N'(q1P3)C(jlX;OO0)
fry I..MX

XC(XIpj'; OO)C(LI3J; MyM, ) W (JjITP; J), (A24)

with,

N ~(qJA P f3 =dy~y~j 0s(Icx.lqy 3 )K~e)ý(y 3 ,q,pr3)X~,.,(y 1 ), (A24a) (A24a)
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Kt (Y, q,p 3)= J : dq qjJ(q~y)T,.M (qPPJ) q,) (A24b)(no

and T.(q,,p3 ,p') defined by the expansion on the first line of eq. (A6). Both

expressions give the exact same numerical results. A comparison of eqs (A2 1) and (A23)

leads to the relation:
Y," Av )p.;v~l.) (A25)

u~,(v J P';vjp,)C( i~ ^Jn1`lM,)Y,,,.,(P)•,.

Eq. (A25) provides an alternative way to obtain the quantities A'*,,', (v'j*p• ;vjl)3 ) . Since

these quantities are not dependent on the magnetic quantum numbers, they may be

evaluated in any coordinate system. Taking the z-axis along the direction of p1 , we have

SL- J(A26)

and the quantities A r(v'j'p; ;vjp3 ) can now be obtained by the relation,

-- ,. , .,E C(Jf'ej;-MMO0)

A,",,(v'j'P';vjp3)= (-1)r[L

S(vj'p; ;vp 3; = (A27)

where the more specific notation F"' (v'j'p; )vjp 3; = ) indicates that these quantities

have been calculated in a coordinate system with the z-axis of the coordinate system

taken along the direction of p3 . That can be accomplished in a straightforward manner

using the method outlined in SBS, i.e., eq. (A24). Eq. (A27) provides a much more

efficient algorithm to obtain A(') (v'j'p ;vjp,) than eq. (A22), where summations over
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very large quantum numbers are called for. Once available, these quantities can be used

to compute the collision amplitude as given by eq. (A2 1).

A part-classical (PC) approximation was introduced in SBS for a computationally

efficient evaluation of the IA collision amplitude when the z-axis of the coordinate

system is taken along the direction of the momentum transfer vector q = p3- p3 .

Without going into all the details already given in SBS, this approximation involves

evaluating the two-body t(') matrix in eqs. (Ala) and (Alb) using classical mechanics.

The function I(')(y 3 ) defined in eq. (AS) is then replaced by t,, ,(y3 ) where W(Yj)

is the initial-state molecular vibrational-rotational wave function in coordinate

representation and t( is the two-body t"' matrix evaluated at a value of internal

momentum, denoted q , chosen so that (I q. , i.e., an on-the-energy-bhell two-

body t(') matrix is obtained:

t (a = [(q'l()q (A28)

As specified in SBS, the x and y components of qp are set equal to zero and its z-

component (along q ) is given by:

q3C = _ + ,2A, (A29)
2 ax.q

where p2, is the reduced mass of the molecule and AE is the difference in internal

energy between its initial and final states. The PC approximation was shown in SBS to

correspond to a situation in which the z-component of the incident momentum q.

changes sign while the x and y components are unaffected. This is the situation which

arises during a collision between two hard spheres in classical mechanics when the z axis

is taken along the direction normal to the surface of the two spheres at the point of

contact. Since the hard sphere two-body t0" matrix is still evaluated using quantum
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mechanics, this approximation was called "part classical". The PC approximation has

been extensively used [1-5] and, for scattering angles largcr than 150, has yielded IA

differential cross sections in excellent agreement with those calculated in anl exact

manner, i.e, from the exact expression for the IA collision amplitude, eq. (A24), while

consuming a significantly smaller amount of computing time. The PC appro.xiiioLiQII

can thus be used for a more efficient calculation of the quantities FJ', (v'j'p3 ; vjp ).

The expression for F(o)Vc(v'j'p;;vjp,;i = 4) was given in SBS. We note that

S= • is specified here because this choice of axis is essential in the formulation of the

PC approximation; this choice also leads to only the quantities with 'ivj=O havin-g

nonzero values. From SBS, we have

F(o);c (v'j'p;vjp,; =) = (+i)i[[J]] "C(jJj';O0)i2?,j ,, ( A30)

where,

"f dY, Y2,Y,,•j"(Y3)J, (jccolqY,)Xji Y,)• (A31)

0

In order to apply eq. (A27), it is necessary to obtain the quantities

J. (vj'p;vjp,; ,), where the z-axis of the coordinate system is taken along the

direction of P3 . Taking the vectors p3 and p' in the x-z plane, these quantities can be

obtained from the FJO (v'j'p';vjp 3 ;' = j) by the simple transformation:

F6,(v'j'p;;vjp,;i= b) = F)I('C(v'Jp';vjp 3;: I)O'(,t,0), (A32)

where T is the angle between P3 and q , and DU, (0,r,0) is defined by [16]:
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DM (O,¶,O) = Y.- (r,0). (A33) (A33)D0M) (0 (0) M)-J] Y '

From eqs. (A30) , (A32) and (A27), the quantities A(,). (v'J'p';vjp,) can be computed

in the part-classical approximation. Inserting these in eq. (A21), the IA collision

amplitude (part-classical) is obtained.
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Table 1.

Ratio of part-classical and exact DWIA differential cross sections
for the inelastic process Li++N2(v=0,j=2) -* Li++N,(v'=0,j')

at a relative kinetic energy of 4.23 eV

JT Oc.n.=37. I0 ocm.=49.1o

4 14.24 2.39
6 9,08 1.38
8 4,02 1.36
10 1,53 1.09
12 1.03 1.08
14 1.02 0.98
16 0.99 1.00
18 1.00 1.00
20 1.00 1.00
22 1.00 1.00
24 1.00 1.00
26 1.00 1.00
28 1.00 1.00
30 1.00 1.00
32 1.00 1.00
34 1.00 1.00
36 1.00 1.00
38 1.00 1.00
40 1.00 1.00
42 1.00 1.00
44 1.12
46 1.14
48 1.00
50 1.00
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