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1.0 INTRODUCTION

During the first year, we have successfully applied the
Impulse Approach (IA) to describe the Ar-CsF scattering systen
and have recently presented a comprehensive analysis of our
findings! reproduced in Appendix A. A major portion of our work
has focused on the so-called ballistic effect, in which almost
all of the relative translational energy of the atom-diatom
system is converted into vibrational/rotational energy of the
diatom. Several major findings have been reported. One major
finding is that the ballistic effect found in the Ar-CsF system
arises from two distinct kinematic mechanisms. The first mech-
anism giving rise to the ballistic effect is dominant when the
laboratory scattering angle is very close to the laboratory an-
gle of the centroid velocity. This mechanism involves the
transfer of almost all of the relative translational energy
into internal energy of the diatom. The second mechanism pro-
ducing the ballistic effect is the rainbow singularity that
arises when the recoil velocity of the alkali halide in the cen-
ter of mass frame is perpendicular to its recoil velocity in the
laboratory frame. Both mechanisms result from the kinematics,
not the dynamics, of the collision process. We thus conclude
that the ballistic effect should be observable for any two
collision partners.

Further comparison of computed differential cross sections
using the present IA method with experimental measured data had
provided reasonable agreement in some cases and discrepancies in
others. The present method limits the atom-diatom phenomenon to
a sum of two atom-atom interactions. These atom-atom interac-
tions have been, in all of the calculations for vibrational-
rotational excitation of the diatoms approximated by hard core
potentials. To arrive at an understanding of the influence of
hard core potentials on the calculated differential cross sec-
tions, we carried out the IA calculations using exponential re-
pulsive atom-atom interactions as well. We found that for the

Li+-N2 scattering system, the resulting distributions of
1




rotational probabilities are remarkably similar to those ob-
tained with the hard core potentials. While the sum of the two
atom-atom interactions appeared to be an adequate description of
the atom-diatom potential at small distances, this model failed
to describe its long range attractive part. To remedy this, we
proposed to add to the sum of pair-interactions a centrally sym-
metric attractive potential located at the center of mass (c.m.)
of the diatom, that "distorts" the incoming and outgoing waves
in the scattering process. This Distorted Wave Impulse Approach
(DWIA) is reported in a paper? reproduced in Appendix B. An
improved agreement between the DWIA calculated distributions of
rotational transition probabilities and the experimental data
suggest that the long range attractive part of the potential
must be included in a model for small angle, high energy, atom-

diatom collisions involving small amounts of energy transfer.

2.0 DOUBLE COLLISION T MATRIX

Research has continued into the further development of the
existing atom-diatom impulse scattering theory. One basic pre-
mise of the impulse theory is that, during the collision pro-
cess, the incident atom collides only with one end of the dia-
tom, the other remaining a spectator. The operator which de-
scribes the energy transfer process that occurs during the col-
lision of the incident atom with the diatom is known as the
three-body T matrix. The impulse theory reduces the three-body
T matrix to include only those terms representing collisions
with only one end of the diatom. The result, called the single
collision T matrix, has been used in all of our calculations to
date. The single collision T matrix ignores the possibility of
collisions in which the incident atom collides with one end of
the diatom, and then collides with the other end. We believe
that this reduction may be responsible for the theory's inabil-
ity to predict the ballistic effect for the Ar-Csl system, as
well as its inability to reproduce the correct final rotational




distributions of N, after colliding with Lit at a relative
translational energy of 4-7 eV. The two ends of CsI and of N,
are similar in mass, making the possibility of multiple
collisions seem greater.

We have begun calculations employing the double-collision
terms in the multiple-collision expansion of the three-body T
matrix. The inclusion of double-collision terms in a calcula-
tion using the IA applied to atom-diatom scattering is unpre-
cedented. All previous calculations using the impulse method
have neglected all but single-collision terms in the multiple-
collision expansion, or Watson expansion, of the three-body T
matrix. We have suggested3 that some of the shortcomings of the
Impulse Approach may be linked to this deficiency. For in-
stance, the Impulse Approach has not been able to explain the
ballistic effect for the Ar-CsI system studied by Herschbach.?4
Additionally, impulse calculations for the Li+—N2 system have
yielded cross sections favoring too high a rotational exci-
tation.® It is our belief that the inclusion of higher order
terms in the Watson expansion will ameliorate some of these
discrepancies.

We have developed several methods to evaluate the double-
collision terms, only one of which appears to be computationally
feasible. The viable method is presently being applied to the
Li+—N2 system. These formulations use the "part-classical"
approximation to the impulse formalism, greatly reducing the
amount of computation required while sacrificing an acceptable
amount of accuracy.

3.0 DWIA

Applications of the IA model have produced results in rea-
sonable agreement with experimental data, notably in studies of
the relaxation of highly excited KBr by Ar,® and in investiga-
tions of the "ballistic" effects for the CsF-Ar system.3 Mean-

while, IA calculations have not been able to reproduce the ob-




served distributions of rotational transition probabilities of
N, in excitations caused by collisions with Li*t.5 The computed
distributions are too narrow and peak at values of the final ro-
tational level j' that are too large. Interestingly, distribu-
tions obtained from classical trajectory calculations are also
narrow but peak at values of j' that are too small.>

To improve the computed distribution of rotational transi-
tion probabilities, we seek to employ more realistic potentials.
We recall that in the IA, the total atom-diatom interaction
potential is described by a sum of two atom-atom interactions.
These atom~atom interactions are, in all of the IA calculations
on vibro-rotational transitions previously published, approxi-
mated by hard core potentials, i.e., V(r)=o for r<d and V(r)=0
for r>d, d being the suitably chosen hard core radius. A more
realistic potential may be obtained by using atom~atom interac-
tions expressed by exponential repulsive functions, instead of
hard core functions. We have applied the IA model, using expo-
nential repulsive atom-atom interactions, to compute differen-
tial cross sections for the rotationally inelastic processes Li*
+ Ny (v=0, j=2) — Li* + N5 (v'=0,j'), as a function of j', at a
relative kinetic energy of 4.23 eV and c.m. scattering angles of
49.2" and 37.1°. The resulting distributions of rotational
transition probabilities are remarkably similar to the ones ob-
tained using hard core atom-atom interactions, being again nar-
row and peaking at values of j' that are too large when compared
to the observed distributions.® These results suggest that IA
results are insensitive to the shape (steepness) of the repul-
sive portion of the atom-atom potential.

While the simple sum of pair-interactions (either hard core
or exponential repulsive) appears to be an adequate description
of the total interaction potential at small distances between
atom and diatom, it yields a poor representation of the long
range attractive part. A much more realistic potential is ob-

tained by adding to the sum of atom-atom interactions a central-
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ly symmetic potential, located at the center of mass (c.m.) of
the diatom. 1In the newly derived Distorted Wave Impulse Ap-
proach (DWIA),2 the added central potential "distorts" the inconm-
ing and outgoing waves in the collision process. The DWIA thus
incorporates effects of the long range attractive part of the
interaction potential into the calculation of atom-diatom colli-
sion cross sections using the Impulse Approach. The expression
for the transition matrix T in the DWIA formalism describes an
overall collision process where the incoming particle is first
scattered by the distorting potential located at the c.m. of the
diatom, then scattered off one of its atoms, and, to maintain
microscopic reversibility, finally scattered again by the dis-
torting portential. The DWIA formalism was used to calculate
differential cross sections for the rotationally inelastic pro-
cesses Lit + Ny (v=0,j=2) - Lit + Ny, (v'=0,3'), as a function of
j', at a relative kinetic energy of 4.23 eV and c.m.scattering
angles of 49.2 ° and 37.1 °. It was found that the resulting
distribution of rotational transition probabilities are in much
better agreement with the experimental observations.® The DWIA
distributions are broader and peak at values of j' that are
smaller, reflecting the smaller momentum transfer found in the
experiments. The more realistic potential, with its centrally
symmetric component representing the long range attractive part,
has produced a better agreement of the calculated differential
cross sections with the measured ones.

The results of the investigations just described will be
submitted shortly for publication in the Journal of Chemical
Physics.?

The derivation of the DWIA collision amplitude required a
formulation of the 1A collision amplitude in terms of the in-
coming and outgoing momenta p; and p's. This formulation is
also crucial in the derivation of expressions for amplitudes
corresponding to the higher collision terms in the multiple

collision series expansion of the 7T matrix, >




T = 7(1) + 7(2) + o(Vgy7(2) + 7(2)g7(V) +... (1)
The Impulse Approach (IA) retains only the lowest order (i.e.,
single collision) terms. We have derived an expression for the
transition amplitude corresponding to the double collision term
T(l)G3T(2). Computations are currently under way to evaluate
the contributions of these double collision terms to the differ-
ential cross sections for the Lit- N, system. These efforts
represent the first attempts to go beyond the single collision
terms in IA calculations, and to investigate the convergence of

the multiple collision series.

4.0 FUTURE WORK

We intend to further the decvelopment of the three body T
matrix and DWIA methods and develop feasible techniques to eval-
uate the double-collision terms. Subsequent comparison of pre-
dicted results with experimental data should serve as a basis

upon which the success of the technique may be judged.
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APPENDIX A

INELASTIC AND BALLISTIC PROCESSES RESULTING FROM CsF-Ar
COLLISIONS *

Ramesh D. Sharma, Phillips Laboratory, Optical Environment Division (GPOS),
Hanscom Air Force Base, Massachusetts 01731-5000.

Joseph M. Sindoni, Yap Analytics Inc., Lexington, Massachusetts 02173

ABSTRACT

This paper continues the study of inclastic and ballistic collisions for the CsF -
Ar system using the impulse approximation (IA). The IA expresses the atom-diatom
potential as the sum of the two atom-atom potentials. The atom-atom interaction is
approximated by a hard core potential and the laboratory differential cross sections are
calculated for an initial rclative translational cnergy of 1.0 eV as a function of the
laboratory recoil velocity of CsF. The calculated differential cross sections are in
excellent agreement with the experimental mcasurements for all eight laboratory
scattering angles for which the data are available. While the calculated results show no
significant dependence on the initial relative velocity or on the initial vibrational
quantum number of CsF, they do show a systematic variation with the initial rotational
quantum number--the  ballistic  effect is more  pronounced than that observed
experimentally for initial quantum rotational numbers less than 30 and is not pronounced
enough for rotational quantum numbers more than 100. Two mechanisms give rise to
the ballistic peak. The first one is dominant when the laboratory scattering angle is
equal, or ncarly equal, to the laboratory angle of the centroid velocity. This mechanism
transfers almost all of the relative translational energy into the internal energy of the
diatom and magnifies the center-of-mass (c.m.) differential cross scction almost a
million times. This is due to a singularity in the Jacobian at very small ¢.m. recoil

" Journal Chem. Phvs . (to be nublished)
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velocities, which physically means that a small solid angle in the laboratory frame can
collect the signal from all 4n steradians in the c.m. frame. The second mechanism
producing the ballistic peak, also determining the smallest and the fargest laboratory
scattering angles, is the rainbow-like singularity called cdge cftect. This mechanism
becomes operative when the recoil vejocity ot the aikali hafide in the c.m. frame is
perpendicular to its recoil velocity in the laboratory frame. While the dynamics of the
collision leads to a conversion of the proper amount of relative translational energy into
internal energy of the diatom, the kinematic singularities mentioned above magnify the
relevant c.m. differential cross sections leading to the observed ballistic effect. The
ballistic effect, therefore, should be observable for any two collision partners under
appropriate circumstances. The simple  atom-diatom  potential - reproduces  the
experimental results very well, because: (i) for inelastic scattering, the experimental
observations correspond to large center of mass scattering angles for which the attractive
part of the potential makes little contribution to the scattering process, (ii) for ballistic
scattering, only the repulsive portion of the potential can cause a large amount of energy
exchange between the relative translational and the internal degrees of freedom and, (iii)
the calculated cross sections are insensitive to the details of the repulsive portion of the
potential. A number of consequences of the theory, including the conclusion that the

alkali halide beam in the experiments is rotationally unrelaxed, are discussed.

1. INTRODUCTION
In a series of experiments, Herschbach and co-workers {1-3] have measured the
differential cross sections for the scattering of CsX (X=F,I) by Ar as a function of the
laboratory recoil velocity of CsX by crossing the two beams, at a right angle to each
other, at a relative translational energy of about 1.0 eV. In addition to a peak observed
around the elastically scattered CsX (pscudoclastic peak, formerly called the elastic peak

{4]), another peak, almost as strong as the pscudoelastic peak and named the ballistic




peak, was observed in the vicinity of the recoil velocity corresponding to the motion of
the center of mass. Obviously, those molecules that constitute the ballistic peak have a
substantial fraction of their relative translational encrgy converted into internal energy
during the collisions. A theory of the ballistic cffect is thus a theory of collisions during
which a large fraction of the relative translational energy is converted into internal
energy. The pseudoelastic peak observed in the experiments [1-3] corresponds to large
angle scattering in the center of mass (c.m.) frame. The thecory of the collisions
comprising the pseudoelastic peak, also under consideration here, is therefore a theory
of large angle elastic and inclastic scattering.

A model for the inelastic and ballistic transitions for the CsF-Ar system
constructed carlier [4] produces excellent agreement with the experimentally measured
differential cross section as a function of the laboratory recoil velocity of CsF at the
laboratory scattering angles of 30° and 60°. According to this model, the inelastic
(ballistic) collisions result when Ar strikes the Cs (F) end of CsF. The inelastic
collisions involve modest change in the rotational quantum number (Aj=50); the
ballistic collisions, on the other hand, to conserve angular momentum and energy, must
involve large changes in the rotational quantum number (Aj up to about 200). Our model
for the ballistic and large angle inelastic collisions has been able to give a quantitative
explanation of the experimental observations of the CsF-Ar system, but it has not been
able to explain the ballistic effect obscrved in the Csl-Ar system. Qur model, however,
has pointed out that the ballistic effect should not be observed in the 15- Ar system at
about 1 eV relative translational energy because the Iy beam is rotationally cold
(rotational temperature ~ 250° for the Iy beam vs. ~ 1000° for the Csl beam), a prediction
in agreement with the experimental results. The present theory has, in addition, predicted
a ballistic peak for the I5-Ar system at relative translational energy of about 0.12 eV [4].
This prediction of our model is in contrast to the prediction of an earlier model [5] of

atom-diatom collisions, which concludes that only about 25 % of the initial relative
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translational energy should be converted into internal encrgy during an Ar-I9 encounter,
independent of the initial internal energy of the diatom or the atom-diatom relative
translational energy. The same model [5] predicts a transfer of about 96 % of the relative
translational energy into internal degrees of freedom during an Ar-FCs encounter, again
independent of the initial internal energy of the diatom or the atom-diatom relative
translational energy. It was pointed out earlier {4] that when the laboratory scattering
angle is the same, or nearly the same, as the laboratory angle of the c.m. velocity, a
transfer of more than 96 % of the relative translational energy into internal degrees of
freedom is required to observe a ballistic effect. It will be shown later, in this article, that
when the laboratory scattering angle is much larger than, or much smaller than, the
laboratory angle of the c.m. velocity, a transfer of a mere 75 % of the relative
translational energy into internal degrees of freedom may lead to a ballistic effect. Again
this is in conflict with the earlier model [5] of impulsive collisions. Qur model, since it
has not explained all the pertinent experimental observations, 1s only the first step in fully
understanding the mystery of ballistic collisions. Nevertheless, by virtue of the excellent
agreement between the calculated and the measured results for the CsF-Ar system, the
predictions it has made, and the experiments it has suggested, our model represents a
valuable first step. For this reason it is considered appropriate to present a more complete
theory for the CsF-Ar system, expanding on the previous results as well as presenting new
ones.

Before presenting the detailed theory of the ballistic effect, it is necessary to
discuss the transformation of the differcntial cross sections from the c¢.m. frame to the
laboratory coordinates. This transformation is an important link bridging the results
calculated in the c.m. frame to the experimental results measured, of course, in the
laboratory frame. Section 2 discusses this transformation, which is derived in the
Appendix. Section 3 gives a brief account of the impulse approach (IA) for the atom-

diatom collisions with a special emphasis on the part-classical ( previously called "semi-
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classical") formalism. The calculation 1s still fully quantum, but by treating the two-body
dynamics classically it is possible to save a great deal of computing time without
appreciable loss of accuracy. Section 4 briefly describes the computational procedures
used. Section 5 discusses the two mechanisms leading to the ballistic peak. The results of
the calculation are compared with the experimental measurements in Section 6. Our
state-resolved three dimensional fully quantum calculation is examined in greater detail in
Section 7 and some of its more interesting consequences are pointed out. Concluding

remarks and lessons learned comprise the last section, Section 8.

2. TRANSFORMATION OF THE DIFFERENTIAL CROSS SECTION FROM
THE CENTER OF MASS TO THIE: LABORATORY SYSTEM

The transformation between the ¢.m. and the laboratory coordinate systems has
been the subject of several studies [6-8]. We give a particularly simple derivation of the
Jacobian for inelastic scattering. We then use this derivation as the starting point for the
discussion of singularities and connect it with the previous work on the ballistic collisions.

The differential cross section in the laboratory coordinate system of (8 ¢1) is
related to the differential cross section in the center of mass coordinate system 6(8,9) by
the relation

L2

Jo(8,0)d02

GL(GL’q)L):A}xiLm.oii’Xﬁ—“_’ M
L

where 0, ¢ are the polar and the azimuthal angles and Q is the solid angle in the c.m.
coordinate system; the subscript L indicates that the angles are measured in the laboratory
coordinate system.  QMz(m) denotes the maximum (minimum) c.m. solid angle

corresponding to laboratory solid angles Q + AQp . Defining
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’ 2

v
[—’,) =7, (2)
(1)2

and taking the limit as AQp approaches zero, the expression for the Jacobian is written

as

d©, (8,,9,)

y

6,.(6,.%,) :l

where 6, ¢ and 0, ¢ are polar and azimuthal scattering angles in the c¢.m. frame and
the laboratory frame, respectively. Defining vy = [——'}J as the ratio of the velocity of
®,

the centroid in the laboratory frame to the recoil velocity of the observed particle in the

c.m. frame, we show, in the appendix ,

ldo.®, 00 2y’

dQ@,0) | [1+y2 -7
yY?
=, (4)
(@39,

where ¥,.Q0, is the cosine of the angle between the recoil velocities of the species
detected in the laboratory and the c.m. frames. It is shown in the appendix that equation
(4) is identical to the one given by Schiff [9] when one of the particles is initially
stationary. This expression becomes infinitc when 'y approaches zero, i.e., when the
c.m. recoil velocity becomes very small, and also when the ¢.m. and the laboratory recoil
velocities are perpendicular.

When ' approaches zero, the direction of v'5, the laboratory recoil velocity.

coincides with that of the centroid velocity, ve . It is pointed out in the appendix that in
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this case the Jacobian becomes a constant and is simply equal to , AQ L being the

L

laboratory solid angle seen by the detector. For a 0.25° wide detector, the Jacobian is
equal to 8.4x103. Herein lies part of the mystery of the ballistic effect! A million fold
enhancement of the cross sections for the processes that lead to the conversion of almost
all of the relative translational energy into internal encrgy causes very small cross sections
in the c.m. frame to stand out in the laboratory frame. This hypothesis is the basis of the
proposal for the production of the state-selected and velocity-selected molecular beams
[4].

When the laboratory and c.m. recoil velocities are perpendicular, the Jacobian
given above becomes infinite. It 1s shown in the appendix that for a given final
vibrational-rotational state, i.e., for constant magnitude of 'y, the laboratory scattering
angle as a function of c.m. scattering angle goes through a maximum (minimum) when
the laboratory scattering angle is greater (smaller) than the centroid velocity angle 6,. An
increase (decrease) in the c.m. scattering angle leads to a decrease (increase) in the
laboratory scattering angle. The situation encountered here is the same as that
encountered in the study of rainbows [10] where the extremum in the deflection function
as a function of impact parameter leads to infinite classically- calculated differential cross
section. These two rainbows-like singularities, called the edge effect [11], correspond to
a lower and an upper bound for the laboratory scattering angle for a given final
vibrational-rotational state. The rainbow-like singularities encountered here are due to
kinematic effects and are distinct from the rainbows due to the dynamical effects
discussed previously [12].

In the appendix the Jacobian for the edge cffect 1s shown to be equal to

14




dQ|  [sin(8+0, —6,)A0d0|
1
= _S_ﬁz (5)
“lae, |’

where the angle A@y is the width of the polar angle of the detector. The Jacobian given by
equation (5) for y, =5 and A@ =0.250 degrees can have a value roughly between 100
and 1000 depending upon the laboratory scattering angle, i.¢., it can have a value between
4 and 40 times that given by y; alone. This effect is not as dramatic as that due to
resonant transfer of energy from relative translational motion into rotational and
vibrational motion of the diatom. However, in this case the combined contributions from

different transitions can lcad to an equally strong ballistic peak.

3. ATOM-DIATOM IMPULSE FORMALISM

The complete formulation of the impulse approach to atom-diatom collisions was
given earlier [13]. Here we give a bricf outline for completeness with an emphasis on the
part-classical approximation to the exact cquations. In this formulation the dynamics of
two-body collisions is treated classically while the remainder of the calculation is carried
out using quantum mechanics. It has been found that this procedure leads to substantially
reduced computing time while the error introduced has never been found to exceed 10%.
In the present calculation more than one hundred thousand differential cross sections had
to be computed; the use of this approximation has kept the computation time manageable.

The interaction potential of the atom-diatom system in the impulse formulation is
the sum of the spherically symmetric atom-atom potentials, i.e.,

Vyy,) =V (y)) +V, (y,), (6)
where V; and y; are, respectively, the interaction potential and the distance between the
incident atom and atom j of the diatom. The distance between the incident atom 3 and

atoms 1 and 2 of the diatom is written as
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1
y, = [r2 +20,1y,C08Y, + (oc_y,)z}2 , )

where s=1,2 and r is the distance between the atom and the center of mass (c.m.) of the
diatom; yj is the internuclear distance of diatom 1-2,

os= (-1)S mg/(my+my), (8)
mg is the mass of spectator atom, and 7, is the angle between the internuclear axis yj3
and the line r joining the atom to the c.m. of the diatom. Eigenfunctions yy j m of the
Hamiltonian for the diatomic molecule

2
H -9

DIATOM — 2
12

+V;()’x) O

are the wave functions for the vibrational and rotational motion of the diatom. The
momenta are written in the Jacobi notation; p, is the momentum of particle a with
respect to the c.m. of bc and qg is the relative momentum of particles bc. Similarly, ry
is the distance of atom a from the c.m. of bc, y, is the distance between b and ¢, and
V3 is the intramolecular potential of the diatom 1-2. ;; is the reduced mass of the
atoms i and j, while the reduced mass of a and bc is written as i, .

The Watson expansion, a multiple-collision expansion of the three-body T
matrix, is written as [14]

T= T + T@ + T(NG3TR) +TDGyT() + ... (10)
where T() is the three-body transition matrix describing the collision of the incident
atom with atom j of the diatom, 1 being the spectator atom. Gy is the propagator

corresponding to the unperturbed Hamiltonian Hy, viz,

P 1)
H, = 2_“!37 +Hpiaoms (
and,
G,(z) =(z-H, +in) . (12)
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The first two terms on the right hand side of equation (10) are the single-collision
terms. These terms are obtained by summing all the diagrams involving the collision of
the incident atom with atom 1 or atom 2. The graphs representing the collision of the
incident atom with atom 1 (2) followed by further collisions of the incident atom with
atom 1 (2) are contained in these terms [14]. The next two terms are the double-
collision terms and are obtained by summing all the diagrams involving the collisions of
the incident atom first with atom 1 (2) followed by collision with atom 2 (1) {14]. In
the impulse calculation only the first two terms, i.e., only the single collision terms, are
retained.

We can write the differential cross section for scattering from initial state i to

final state f as

g%(i =vjpy ~> f=v',j’,p3 ;q) = %(ZJ w171 u% (%{5)4’2{}2 ‘ (13)
where the scattering angle 8 and momentum transfer vector q are related by
q2 =(p§)2 +(p3)2 —2p3p’3 cos@, (14)
and,
T’ = Tfosirios), (15)
g

¢3 and ¢'3 being the eigenfunctions of Hy in the initial and final states, respectively,

and,

T, (q) = (ZT;(;) (Q))

s=1,2 ( | 6)
The two terms on the right hand side of equation (16) arc the single collision terms.
When the incident atom collides with one of the atoms of the diatom the other atom, the

one not participating in the collision process, is termed the spectator. For this reason
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the impulse calculation is also called the quantum mechanical spectator model. We

recall that
(03T @)]¢3) = desq):'a'(h)exp("iab‘l ¥V (yy), (7

where,
3

v¥(y;) = (2m) 2]‘“13 exp(-iq3-¥3){a; 1t']qs)0(a3) (18)
is the wave function of the diatom modified by the two-body scattering process. To

develop a feeling for the nature of y™(y,), it is useful to look at the two-body t-matrix

as an operator in the momentum space which modifies the diatom wave function ¢(q,).

Equation (18) transforms the modified wave function back to the coordinate space. If
one recalls that the center of mass acquircs a momentum equal to ogq during the
collision when s is the spectator atom, equation (17) may be looked upon as the overlap
integral of the final-state wave function with the initial-state wave function that is
modified by the collision. This view also connects the impulse approach discussed here
with the theory of transitions due to sudden perturbations, e.g., atomic transitions
accompanying beta ray emission{15].

It was mentioned earlier that we will evaluate the two-body t-matrix in equation
(18) using classical mechanics. In classical mechanics, a collision between two hard
spheres leads to the reversal of the component of the momentum normal to the surfaces
of the two spheres at the point of contact, while the other two components of the
momentum remain unchanged [16]. In other words, if a momentum change q occurs
during the collision, the initial momentum -q/2 becomes the final momentum +gq/2,
while the components of momentum perpendicular to q remain unchanged. Further, the
transverse components of the momentum, which in classical mechanics do not enter the
equations of motion, may have any value. It was shown earlier [13] that this result also

holds for scattering using the impulse approach, provided the scattering angle is larger
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than about 15°. This amounts to evaluating cquation (18) by setting the component of
q3 along q equal to

q,.Q=—(0,q/2)+u,Ae / (,q) , (19)
where q is a unit vector along the direction of the transferred momentum and A€ is the
difference in internal energy of the diatom between the final and the initial states. The
components of q3 perpendicular to q are set equal to zero. It was also pointed out carlier
[13] that to evaluate the two-body t-matrix for a fixed value of q3, the momentum due to
the vibrational and rotational motion of the diatom, is to approximate it by its spherically

symmetric component, i.€.,
1

(X 1t719.) = 13 (05,05 ) Yoo (@) = (47) 21 (0;.0,.0). (20)
Equation (20) has the same structure as the peaking approximation, which evaluates the
two-body t-matrix setting g3=-0sq/2, i.€., using only the first term on the right hand side
of equation (19). Use of equation (19), however, gives results which, unlike the results
obtained by using the peaking approximation [17], are time reversal invariant[13]. This
approach is called the part-classical approximation, previously called semi-classical
(new name is given to avoid confusion with other usage of the term semi-classical in
scattering theory [10]), because it has one foot in classical mechanics. Equation (20)
has been extensively used by us for calculating differential cross sections and has
provided answers always within 10% of those given by a spot-check of the exact
calculation [4,18].

Recalling that ¢(q3) is the wave function of the initial state in the momentum

representation, i.e.,
1

YAVIE N
6(qs3) =(;)2‘”v_i(q3)ij (q3) 1)

where v,j,m are the initial vibrational, rotational, and magnetic quantum numbers.

respectively, and,
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I,,;(q3) = jd)’a)’ngd(h)jj(%)ﬁ)' (22)
0

where Y, is the vibration-rotation wave function in the coordinate space, we can

integrate equation (18) over q3. Using the Ralcigh expansion of the plane wave, i.e.,

exp(—iqz - ys) = 4"2("i)lYlm (¥3) Y1 (@3)31(a3Y3), (23)
I.m

we obtain,

(s) L -

V(Y3,4,P3) = (41) 2K (¥3,9,P03) Yjm (¥3) (24)
where,
: 27
K3 (v5,p5,9) = ;quﬂij i(@3Y3)t0(ds5,P5. D1, (a5) (25
0

A comparison of equations (24) and (25) with equations (21) and (22) shows the

similarity of their structure and provides further basis for the statement that y®is the
modified wave function for the internal motion of the diatom. Substituting equations (18)

through (25) into equation (17), we get
1

(9517 (q)|05) = (Zli)z [ dy305" (¥3) Yjm (53 exp(=ict,q.¥3)K ) (@,P5,¥3). (26)

Again using the Raleigh expansion of the plane wave and writing

03(¥3) = X, ;(¥3) Y, (¥3), where primes denotc the vibrational and rotational levels

v',)' of the final state, we get

e TENT Y o) . , et . n
(0,17 (q)]#,) = X (i) ([—[H-]) N (@,p)CG G m m’ - m)C(j4°;00)Y, . . (q), Qmn
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where C's are the Clebsch-Gordan coefficients, [j]1=(2j+1) and,

(s)

v,tv, (p;,q) = jd)ﬁ)’sx\,, (y3)) (o

DK (p,.q.y,). (28)

Taking our space fixed z-axis along q, and using the relation

(1] 29
' (0,0)= (4) (29)

we get,
(04]T(@)]0,) = (4m) = 2(+:> (“]]) [£INGL, (@, p3)CC 65 m,0)C(jE5500). (30)

Using the relation [19]

' (55’ mO)C(j¢'{';m0) = (I[Jq]) (31)

we can write, using equations (13) and (16),

do e ot 3 -1 27!)
dQ( —V_‘p3—')f v )J »P3yQ) (2J+l) “3( ’

RRAE " 2
x(—~) ) ']lé’lCZ(ﬂ’J';OO)Ng)[” FOING L e

\47t [___le_J

Equation (32) is our final result and is obtained by adding the amplitudes for scattering

from the two scattering centers.
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4. COMPUTATIONS

In this section we bricfly describe the computational procedures followed. These
procedures are the same as in the previous work on the collision of alkali halide
molecules with argon[4,18]. Briefly, since the ground state of CsF is ionic, the Ar-CsF
potential is taken to be the sum of Ar-Cst and Ar-F~ potentials. Only the repulsive
portion of the Ar-ion potential, which is approximated by a hard core potential, is used
in the present calculations. The hard core radii for the Ar-Cs* and Ar-F- potentials are
assumed to be given by the corresponding parameters for the Ar-Xe and Ar-Ne
potentials [20]. The parameters for the diatom potential are taken from Huber and
Herzberg {21). The potential function thus obtained is extrapolated to larger
internuclear distances using a Padé [2,2] approximant. Wave functions for the internal
motion of the diatom are obtained by solving the one dimensional Schrodinger equation,

containing the centrifugal term for the rotational motion, using Numerov's method.

5. MECHANISMS GIVING RISE TO THE BALLISTIC PEAK

Before we compare the calculated differential cross sections with the
experimental values, it is desirable that we discuss the physical basis for the ballistic
peak. Figure 1, plotted using the points taken from the earlier work [2], gives a plot of
the laboratory differential cross section as a function of CsF recoil velocity and
illustrates the experimental data we are trying to model. The ballistic peak on the left,
near the centroid velocity, represents the signal from those molecules that have small
c.m. recoil velocities and which carry large amounts of internal excitation [1]. The
ballistic peak was shown [4] to arise when Ar strikes the F end of CsF. The peak on
the right, called the pscudoclastic peak [4], centered at the recoil velocity corresponding

to elastic scattering, arises [4) when Ar strikes the Cs end of CsF and consists of inelastic
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transitions involving modest changes (l- | < 0.35) of collision energy. An carlier model

of impulsive atom-diatom collisions predicts [5] a transfer of only 14 % of the nutal
relative translational energy into internal energy, i.c., E = (.14 |, when Ar hits the Cs

end of CsF. The results of our calculation and those of the earlier model are in
disagreement.  Comparison of our calculation with the experimentally observed
pseudoelastic peak will decide if our theory is correct.

It was shown earlier [4] that when one is looking along or close to the direction of
the centroid velocity, most of the contribution to the ballistic peak comes from the
transitions which convert more than 97% of the relative translational energy into internal
energy. Further, the signal from a transition which converts more than 99% of the
relative translational energy into internal motion (resonant transition) may be larger than
the signal from any other transition by a factor of about 2-3. It was also pointed out that
the c.m. differential cross section for the resonant transitions is within a few percent of the
neighboring non-resonant transitions. What sets the resonant transitions apart from the
nearby transitions is the large Jacobian of transformation from the c.m. to the laboratory
coordinate system, which is very sensitive to the fraction of relative translational energy
converted into internal energy. The expression for the Jacobian is derived in the
appendix. Figure 2 is a plot of the Jacobian for the transformation from the c.m. to the
laboratory coordinates, for the laboratory scattering angle equal to the angle of the
centroid velocity, as a function of the fraction of the relative translational energy
converted into internal energy. It is readily seen from this figure why the differential
cross section for the resonant transitions in the laboratory frame is so much larger than the
neighboring nonresonant transitions.

When the recoil velocities of the alkali halide molecules in the c.m. frame and the

laboratory frame are perpendicular, the laboratory scattering angle for two valucs, a
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maximum and a minimum, displays an extremum as a function of the c.m. scattering
angle. The laboratory scattering cross scction, for these two values of laboratory
scattering angles, exhibits a rainbow-like singularity. Figure 3 gives a plot of the
differential cross section, obtained by summing over the two branches in figure 4A, in the
laboratory (c.m.) frame as a of function laboratory (c.m.) scattering angle. The collision
parameters are given in figure 3A. The minimum (maximum) laboratory scattering angle
of 30° (75°) correspond to c.m. scattering angles of 18° (117°). An order of magnitude
enhancement of the differential cross section due to the kinematic rainbow-like singularity
(edge effect) is seen. The values of the minimum and maximum laboratory angles are
dependent upon the transition under consideration. These kinematic rainbows, called the
edge effect [11], are the cause of the ballistic pcak when the laboratory scattering angle is

much different from the direction of the centroid velocity.

6. COMPARISON OF THE CALCULATION WITH THE EXPERIMENTAL
RESULTS

The calculated results are compared with the experimental results after they are
scanned over by a normalized Gaussian function with the resolution ratio [1] R =
(Avy/vy) = (19.3 + 0.034v;), where R is expressed in %, Av) is the full width at half
maximum of the Gaussian, and v, is in units of m/s. To understand the role of the
resolution ratio in the experimental results, we plot in figure 4 the output signal (dashed
line) in arbitrary units as a function of the velocity of Ar when the input (solid line) is
given by P(vy) = vj3exp(-[(v}-<v1>)/dv,]?) with <v;>=2380 nvs and 8v,=350 mvs. It is
seen that while the input velocity peaks at 2450 mv/s (1.0 eV translational energy) [20], the
output velocity peaks at about 2050 mvs. This shift due to the velocity dependent
resolution function leads to the actual energy being about 50% larger than the nominal

energy. Because the resolution function severely distorts the calculated results, we will,
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after comparing the calculated results with the experimental measurements and
establishing their credibility, present the undistorted calculated results. This will permit
us to examine the calculation more closely and to see if any other lessons can be learned
from it.

To determine the dependence of the calculated results on the initial translational
velocity of Ar, we plot in figure S the laboratory differential scattering cross section as a
function of the laboratory recoil velocity of CsF at the laboratory scattering angle of 60°.
The dotted line is our impulse calculation for the Ar velocity v;= 2450 m/s and the CsF
velocity vo=500 m/s with the initial state of CsF given by v=1 and j=70. The dashed line
is the impulse calculation using the probability of the Ar velocity given by the formula
P(v])=vl3cxp(-[(v]-<v1>)/8v]]2), while keeping the CsF velocity at 500 m/s. The
experimental points are the same as in figure 1, taken from reference 3, and are
normalized to match the calculation at the largest cross section. It is seen tnat the
calculation is insensitive to averaging over the initial velocity distribution of Ar. Since
most of the initial translational energy is supplied by Ar, it appears reasonable to assume
that the calculation is also insensitive to averaging over the initial CsF velocity
distribution. In the rest of the paper we will present the calculations for fixed velocities of
the Ar and the CsF beams.

To investigate the variation of the calculated results with the initial vibrational
quantum number of CsF, we plot in figure 6 the laboratory differential scattering cross
section as a function of the laboratory recoil velocity of CsF at the laboratory scattering
angle of 60°. The velocity of the Ar beam is fixed at vi= 2450 m/s while that of the CsF
beam is fixed at vo=500 m/s. The initial rotational level of CsF is fixed at j=60. Solid
curve, dotted and dashed curves are the results of our calculation for initial vibrational
levels v=1,2, and 3, respectively. The experimental points are the same as in figure I,
taken from reference 3, and are normalized to match the calculation at the largest cross

section. It is seen that the calculation is insensitive to the initial vibrational leve] of CsF.
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In the remainder of the paper we will assume that initial vibrational level of CsF is v=3
because this is the average vibrational level at 1000 °K, the temperature of the CsF beam.

To investigate the dependence of the calculated differential cross sections on the
initial rotational quantum number of CsF and to compare the calculated results with the
experimentally measured ones, we plot in figure 7 the laboratory differential scattering
cross section as a function of the laboratory recoil velocity of CsF at eight laboratory
scattering angles: 25°, 30°, ..., 60°. The velocity of the Ar beam is fixed at v|= 2450 m/s
while that of the CsF beam is fixed at v,=500 m/s. The initial vibrational level of CsF is
fixed at v=3. Dotted, solid and dashed curves correspond to CsF initial rotational levels
j=30, 60, and 100, respectively. The experimental points are taken from reference 3, and
are normalized at each angle scparately, to match the calculation for j=60 at the largest
cross section. It is seen that the calculation is sensitive to the initial rotational level of
CsF, and the best agreement for all eight laboratory scattering angles is given by the solid
line, i.¢., j=60.

The calculated results are in excellent agrcement with the measured ones at all of
the eight available laboratory scattering angles. The calculated results are not very
sensitive to the initial velocity distribution of the Ar beam or to the initial vibrational
quantum number of the CsF beam. They are, however, sensitive to the initial rotational
distribution of the CsF beam. The calculated results imply that the rotational distribution
of the CsF beam peaks around j=60, rather than j=30 or j=100. In other words, the
rotational temperature of the beam, if our calculation is to be believed, is close to 1000
°K, the temperature of the oven.

A word of caution here is, perhaps, in order. We are not saying that the magnitude
of the ballistic peak in CsF-Ar system is independent of the initial relative translational
energy, but that it is insensitive to whether one performs the calculation at the average
initial relative translational energy of 1.0 eV or averages the calculated differential cross

sections over the experimental [1] Maxwell distnibution centered at 1.0 eV. The
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magnitude of the ballistic peak does depend upon the initial relative velocity as is shown
by the fact that our model predicts a ballistic peak for the I,-Ar (I; beam temperature 250
°K) at the initial relative translational energy of 0.12 eV but not at 1.0 eV. Similarly, it is
being stated that the magnitude of the ballistic peak is independent of the initial

vibrational levc! of CsF only if that vibrational level is one of the first four levels.

7. DETAILED EXAMINATION OF THE CALCULATED RESULTS

Because the resolution of the instrument distorts the calculated signal so severely,
we present, in figure 8, the calculated discrete spectra for 55° and 25° laboratory
scattering angles. The initial rotational level of CsF for these calculations is j=60; the
remaining beam parameters are the same as in figure 7, and the angle of the centroid
velocity vector in the laboratory frame is 52.2°. The contribution to the ballistic peak at
the laboratory scattering angle of 55° is dominated by the resonant transfer of the relative
translational energy into the internal motion, while at the laboratory scattering angle of
25°, it is determined by the kinematic rainbow, or the edge eftect [11]. This is also the
conclusion arrived at from figure 8 where, for the 55° scattering the ballistic peak is
centered at the recoil velocity equal to the velocity of the c.m. while, for the 25°
scattering the center of the ballistic peak is at a lower value of recoil velocity. The
ballistic peak for the laboratory scattering of 55° is centered at the c.m. velocity of 646
nv/s because, when all of the energy of relative translational motion has been resonantly
transferred into internal energy, the molecule is stationary in the c.m. frame and it moves
at the velocity of the c.m. in the laboratory frame. The molecules contributing to the
ballistic peak at the 25° scattering angle have a substantial c.m. recoil velocity, and here
the ballistic peak arises because of the kinematic rainbow, or edge effect {11]. For this

case the recoil velocity of the molecule in the c.m. frame is perpendicular to its recoil

’

velocity in the laboratory frame, leading to the relationship (v3)* =(v__ )’ — ()’ The
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laboratory recoil velocity, around which the ballistic peak is centered, is now smaller
(about 575 m/s) than the velocity of the c.m.

It is worth noting that the ballistic peak for the 55° laboratory scattering angle
displays a profile similar to a Lorentzian. This is because the c.m. differential cross
sections for the dominant transitions are, because of the density factor, proportional to the
c.m. recoil velocity. The Jacobian varies inversely as the square of the c.m. recoil
velocity. The laboratory differential cross sections are therefore inversely proportional to
the c.m. recoil velocity (the Lorentzian profile would be inversly proportional to the
square of the c.m. recoil velocity.)

The ballistic peak at the 25° scattering angle has a more complicated structure than
that at 55°. There are more transitions comprising the 25° peak that have noticeably large
cross sections. In addition, the transitions are not symmetrically placed around the central
recoil velocity of 575 m/s. These observations can be understood by referring to figure 9,
which gives a plot of the absolute value of the Jacobian, for several laboratory scattering
angles, versus the laboratory recoil velocity of CsF for a 0.25° wide detector. When the
laboratory scattering angle is equal to the laboratory angle of the centroid velocity (52.2°),
the Jacobian is extremely large and very sharply peaked. As we move away from the
direction of the centroid velocity, i.e., increase or decrease the laboratory scattering angle,
the value of the Jacobian becomes smaller, the peak gets flatter, and the center of the peak
moves towards smaller recoil velocities. This is because the farther we look from the
direction of the c.m. velocity, the larger @'y must be, and therefore the smaller v') must be
so that the square of these two recoil velocities can be equal to the square of the centroid
velocity. Because the Jacobian is much flatter at the 25° scattering angle, the laboratory
differential cross sections resemble the c.m. differential cross sections. These points are
apparent in figure 10, which gives a plot of the c.m. differential cross section as a
function of the laboratory recoil velocity of CsF at the laboratory scattering angles of

25° and 50°. Since we are assuming an idcalized beam without lateral dimensions,
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each stick in the figure corresponds to a ¢.m. differential cross section at a definite ¢.m.
scattering angle. Thefore, the c.m. differential cross sections in figure 10, upon
multiplication with the appropriate Jacobian (figure 9) give the laboratory differential
cross sections, plotted in figure 8. The c.m. differential cross sections resemble the
laboratory differential cross sections for the 25° scattering angle; for the 55° scattering
angle, on the other hand, the transitions most prominent in laboratory frame (figure8)
are barely noticeable in the c.m. frame. It should also be noticed that the pseudoelastic
peak shifts to smaller recoil velocities as the laboratory scattering angle moves away
from the direction of the centroid velocity; the maximum intensity occurs at the recoil
velocity of 960 m/s for 25° and at 1100 m/s for 55°. This happens because, when the
laboratory scattering angle is farther from the direction of the centroid velocity the

angle between w'p and vgy, becomes closer to 90° , resulting in smaller value of

vi =[(@F + (v -205 v, ]

A closer look at the details of the scattering at 25° is provided by figure 11,
which is a plot, again for an idealized beam, of the c.m. differential cross section as a
function of the laboratory recoil velocity of CsF. The initial state of CsF is v=3, j=60;,
the Ar-CsF initial relative translational energy is 1.0 eV; the c.m. velocity is 646 m/s at a
laboratory angle of 52.2°. The three upper frames are the rotational transitions
comprising the ballistic peak (Ar-F encounter) for final vibrational levels v' = 2, 3 and 4,
the three lower frames are the rotational transitions comprising the pseudoelastic peak
(Ar-Cs encounter) for the same final vibrational levels. The rotational transitions
comprising the ballistic peak have almost the same structure and appear to be independent
of the final vibrational level. Between the recoil velocities of 200 and 400 m/s there are
supernumerary rainbows and a primary rainbow in each frame, and a secondary rainbow

in the v' = 4 frame, the rotational quantum number increasing with increasing recoil

velocity. On the right side of each frame, after a large gap in the center, the rotational
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quantum number decreases with increasing recoil velocity and the transitions appearing
first, i.e., closest to 575 m/s recoil velocity, are constrained by the kinematic rainbow-like
singularity or the edge effect. The rotational transitions j' = 194, 189, and 185 are the
first to appear for the final vibrational quantum numbers 2, 3, and 4, respectively. The
highest final rotational level attainable is greater for smaller vibrational quantum numbers
because more energy is available when the final vibrational quantum number is smaller.
One can regard these rotational transitions as dynamical rainbows and state that kinematic
rainbows lead to dynamic rainbows. As the recoil velocity increases and the final
rotational quantum number decreases, the supemumerary, primary, and secondary
rainbows are again seen. The differential cross sections comprising the ballistic peak
exhibits a rich and complicated structure.

For the case of pseudoelastic scattering (Ar-Cs encounter) depicted in the lower
three frames of figure 11, there are at least two rotational rainbows in each frame. The
frame corresponding to v'=2 exhibits a secondary rainbow on the left while that for v'=4
exhibits a secondary rainbow on the right. The smaller recoil velocities correspond to
larger final rotational quantum numbers, while the larger recoil velocities correspond to
smaller final rotational quantum numbers. The inelastic transitions move towards larger
recoil velocities as more energy becomes available, i.e., as the final vibrational quantum
number decreases. The limit of the change in the rotational quantum number is dictated
by the conservation of angular momentum.

Figure 12 is a plot of the c.m. differential cross section as a function of the c.m.
scattering angle. It is seen that when almost all of the initial relative translational energy
has been converted into the internal energy, the c.m. differential cross section is
independent of the c.m. scattering angle. This effect, which was predicted earlier (4],
arises because, for the resonant energy transfer from translation to vibration-rotation,’the

final orbital motion has very small relative velocity and is therefore an isotropic s-wave.
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This is one of the rare instances in aiom-diatoms collisions when one encounters partial

waves with very low quantum numbers.

8. CONCLUSIONS

The basic question is, why do the experimental results agree with the calculated
results, which are obtained by using a simplified atom-diatom potential? Not only has the
atom-diatom potential been approximated by the sum of two atom-atom potentials, the
atom-atom potentials have in addition to this approximation, been replaced by two hard
core potentials. A clue to the answer is provided by carlier work [18] which studied the
deactivation of highly vibrationally excited KBr by Ar using exactly the same calculation.
For the largest c.m. scattering angle (75°) for which the experimental measurements were
available, the calculated c.m. differential cross section plotted as a function of the KBr
c.m. recoil velocity agreed with the experimental measurements for all recoil velocities
(0-1000 m/s). For the smallest c.m. scattering angle (45°) for which the experimental
measurements were available, on the other hand, the calculated c.m. differential cross
section plotted as a function of the KBr c.m. recoil velocity agreed with the experimental
measurements only for recoil velocities larger than about 700 mv/s. The answer, then, lies
in noting that: (i) the pseudoelastic peak, involving transfers of small amounts of energy
between translation and rotation-vibration, corresponds to large c.m. scattering a.igles for
which the attractive portion of the potential, in analogy with the KBr-Ar results, makes no
contribution, (ii) the ballistic peak involves transfer of a large fraction of the initial
relative translational energy into internal energy, which can be caused, again in analogy
with the KBr-Ar results, only by the repulsive portion of the potential independent of the
c.m. scattering angle and, (iii) the calculation is insensitive to the steepness of the
repulsive portion of the potential. Preliminary work [23] with the exponential repulsive
potential supports this conclusion. We have a situation where the two ends of the diatom

scatter, independent of each other, from the repulsive part of the atom-atom interaction
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potential. Further, the scattering from the repulsive portion of the potential does not
appear to strongly depend upon the steepness of the repulsive potential. This, we believe,
1s why this calculation works so well.

It was pointed out earlier that the Jacobian for the transformation from the c.m.
to the laboratory frame may lead to the enhancement of the c.m. differential cross
section by a factor of a million. This result is derived assuming an idecalized beam of
infinitesimal extent. For a beam with finite width and a detector of finite dimensions,
the ballistic peak along the direction of the c.m. velocity will contain contributions from
transitions which are not exactly resonant T->(V,R) processes. This may lead to an
average value of the Jacobian which is considerably less than a million. The actual
value will depend not only upon the extent of the two beams and the spread of their
velocities, but also upon the molecule being studied. If the molecule has a large
rotational constant and the energy spread of the beams is smaller than the spacing
between the final rotational levels, the average Jacobian may still be close to a million.
The parameters of the beams, the molecule studied, and the dimensions of the detector
will all have to be carefully considered for a more detailed answer.

Our results require that the CsF beam in the experiments [1-3] must not be
rotationally relaxed. In fact, the observation of a ballistic peak for the CsI-Ar system
and the non-observation of one for the I,-Ar system at the same relative translational
energy (=1 eV) is explained by our model by postulating that transitions from higher
rotational levels populated in the Csl beam (oven temperature ~ 1000 °K ) lead to
conversion of a much larger fraction of relative translational energy into internal encrgy
than the low rotational levels available in the cooler (oven temperature ~ 250 °K ) I,
beam. This provides another test of our model.

Our calculations have been performed assuming idealized beams with

infinitesimal extent. Still they agree remarkably well the experimental measurements.
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Perhaps it is because the broadening of the calculated results by the resolution function,
discussed earlier, is much larger than that due to the finite extent of the colliding beams.

It is also useful to point out that, since our calculation agrees so well with the
experimental results for both the pseudoelastic peak and the ballistic peak, the carlier
model of impulsive collisions [5], which certainly gives a much different value for the
energy transferred during both the pscudoelastic and the ballistic collisions, may need to
be reexamined.

Perhaps the most important result of this study is that the ballistic effect should

be observable for all collision systems under appropriate circumstances.

This work was in part funded by AFOSR under task 2303EP and Phillips
Laboratory project 007. The authors are grateful to Dudley Herschbach for many
interesting discussions and making available to them the relevant portions of the Ph.D.

theses of Drs. Entemann, King, and Zare.
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FIGURE CAPTIONS
Figure 1. Laboratory differential cross section as a function of the laboratory
recoil velocity of CsF at the laboratory scattering angle of 60°. This figure is
reproduced from reference 3. The pseudoelastic peak, centered at the recoil
velocity of about 1100 m/s, is where clastic scattering at large c.m. scattering
angles (about 150°) should be observed. The peak at about 500 m/s is the ballistic
peak and is centered near the centroid velocity. The CsF molecules contributing to

this peak are moving slowly in the c.m. frame.

Figure 2. Jacobian for the transformation of the differential cross section from the
c.m. frame to the laboratory frame as a function of the final relative translational
energy of CsF (measured as a fraction of the initial relative translational energy)
when the scattering is viewed along the direction of the centroid velocity, i.e., 8,=

o,

Figure 3. Calculated laboratory (c.m.) differential cross section (cm?/sr) as a
function of laboratory (c.m.) scattering angle. Increased differential cross section
at the minimum and maximum laboratory scattering angles is due to the kinematic
rainbows, also called edge effect [11], and not due to any peculiarities in the ¢.m.

differential cross section. The collision parameters are the same as in figure 3A.

Figure 4. Flux of the Ar parent becam, in arbitrary units, as a function of the
velocity of Ar. The input function (solid line) represents the actual velocity
distribution and is given by P(vy)=v 3exp(-[(v{-<v|>)/8v{]?) with <v;>=2380 mVs
and 8v;=350 mvs. The output velocity distribution (dotted line), represents the

measured Ar parent beam flux and is obtained by modifying the input distribution by
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a normalized Gaussian function with full width at half height given by the resolution
function R. The actual velocity distribution peaks at 2450 m/s but the measured peak
is at about 2050 m/s. The energy associated with the output distribution peak is

about 71% of the energy corresponding to the maximum of the input distribution.

Figure 5. Laboratory differential cross section as a function of the laboratory recoil
velocity of CsF at the laboratory scattering angle of 60°. Dotted line is the result of
the impulse calculation for Ar velocity vi= 2450 /s and CsF velocity v»=500 m's
with the initial state of CsF given by v=1 and j=70. The dashed line is the result of
the impulse calculation obtained by averaging over the Ar velocity according to the
distribution given in reference 1; the velocity of the CsF beam is still 500 m/s. The
experimental points are the same as in figure 1, taken from reference 3, and are

normalized to match the calculation for discrete velocity at the largest cross section.

Figure 6. Laboratory differential cross section as a function of the laboratory recoil
velocity of CsF at the laboratory scattering angle of 60°. The velocity of the Ar and
the CsF beams are v;= 2450 m/s and v,=500 nm/s with the initial rotational state of
CsF fixed at j=60. The impulse calculations for initial vibrational levels v=1,2 and 3

are represented by solid, dotted and dashed lines, respectively.

Figure 7. Laboratory differential cross section as a function of the laboratory recoil
velocity of CsF at eight laboratory scattering angles 25°-60°. The velocity of the Ar
and the CsF beamns are v;= 2450 m/s and v,=500 m/s with the initial vibrational state
of CsF fixed at v=3. The impulse calculations for initial rotational levels j=60, 100

and 30 are represented by solid, broken and dotted lines, respectively.
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Figure 8. Calculated laboratory differential cross section as a function of the
laboratory recoil velocity of CsF for the laboratory scattering angles of 25° and 55°
for initial vibrational-rotational level (v=3, j=60) of CsF. The remainder of the beam

parameters are the same as in figure 7.

Figure 9. Absolute value of the Jacobian for the transformation of the differential
cross section from the c.m. coordinate system to the laboratory coordinate system as
a function of the laboratory recoil velocity of CsF for various laboratory scattering

angles.

Figure 10. Center-of-mass differential cross section (cm?/sr) as a function of the
laboratory recoil velocity (m/s) of CsF at the laboratory scattering angles of 25° (top

frame) and 55° (bottom frame). The beam parameters are the same as in figure 8.

Figure 11. Center-of-mass differential cross section (cm2 / sr) as a function of the
laboratory recoil velocity (m/s) of CsF at the laboratory scattering angle of 25°, for
the most prominent transitions making up the ballistic peak (top three frames), and
the most prominent transitions making up the pseudoelastic peak (bottom three

frames). The beam parameters are same as in figure 8.

Figure 12. Calculated c.m. differential cross section as a function of the c.m.
scattering angle. When almost all of the initial relative translational energy has been
converted into internal motion, the final relative translational energy carries no

angular momentum, leading to isotropic scattering.
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APPENDIX

To derive the expression for the Jacobian of transformation between the
laboratory and the center of mass coordinates as shown in figure 1A, we pick the
following notation:

(i) vi, the initial velocity of Ar atoms, is along the X-axis in the laboratory
coordinate system

(ii) vy, the initial velocity of the alkali halide, is along the Z-axis in the
laboratory coordinate system

(iii) The coordinate system fixed in the laboratory frame is denoted by XYZ
while that fixed in the c.m. frame is denoted by xyz.

The initial relative velocity and the velocity of the c.m. are, obviously, in the
XZ plane in the laboratory coordinate system. We also take this plane to be the xz

plane of the c.m. coordinate system. In addition, we assume that the detector is also
centered in this plane. 0, and 07 are the polar angles of the alkali halide recoil velocity

v's and of the centroid velocity v , respectively, in the laboratory coordinate system.
2 Y Ve.m. p y ry Y

0 is the angle between the initial velocity @y of the alkali halide in the c.m. frame and
the centroid velocity ve iy . 9 (the scattering angle) is the angle between the c¢.m. initial
(@) and c.m. final (recoil, @'y) velocities of the alkali halide and ¢ is the azimuthal angle
of ®'9, measured from the xz plane. It should be pointed out that while the differential
solid angle in the laboratory fixed axis is dQ2[ = sin81 dBy d¢[ , the element of solid angle

in the c.m. frame is dQ= sin(@ — 61 + 6)d6d¢. The vector equation

’

v2 =vc.m. +(D; (I‘A)

can be rewritten as
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Y,cos0, =YcosO, +cos(6-6,+6,)
Y,sinB cosd, =YsinB, +sin(0 -0, +6,)cosd
Y,sin0, sin¢, =sin(8 -6, +0,)sin¢, (2A)

Id

where v = V(:)"“' andy, = ;;2 From equations (2A) we get

’ 2

2 2
sin
tan¢g, = : ¢ )
__Ysin®, +cosd
sin(6 -6, +96,)
yielding
sing, = sine__ T
Y — sin’ 0, N 'sin92 cosd |
sin“(0-6,+6,) sin(6 -6, +6,)

Differentiating this equation, we get

do,
dé

“h+ Ysin6, cos¢ | (3A)
sin(0-06, + 92)|

We now recall that our dctector is centered in the XZ plane. This enables us to put ¢ =0 in

the above equation obtaining

do,|" |, sin6 |
do ¥ Sin©—-9,+8,)|

Y,sin@, l
sin(0 -6, +9,)|

(4A)
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To obtain the relation between d@ and d8| , we rewrite equations (2A) for¢=0,

Y,cos0, =vycosO, +cos(6-6,+6,)
Y,8in0, =vysin6, +sin(6 -6, +6,).
(5A)

Squaring the above equations and adding gives

Y =7 +1+2ycos(6-6,). (6A)

Dividing the second equation (5A) by the first one, we get

an®, = Ysin@, +sin(60-0, +06,) ,
Ycos8, +cos(8-6, +6,)

resulting in

_YcosO, +cos(6 -6, +86,)

1
[1 +v% +2ycos(® - 91)]2 (7A)

cosO

Differentiating,

3
2

-1
'gd%l =|sin®, |(1+y* +2ycos(0 - 6,))

xl{y’ cos(8 - 0,)sin®, +sin(0 — 0, +6,) +7ysinB, +ysin(6 -6, +6,)cos(6 - 6,)}] l

= Y'z = 27'2 = Y
L+vcos(®8-0,) |t+v:-v @]V,

b4

giving us
laa, 6,00  _ 27
| d2©,0) | I+ -y
.
l@;.93)’ (8A)
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where (@,.V%) is the cosine of the angle between the recoil velocities of particle 2 (CsX)
in the c.m. and the laboratory frames, and the relation Y’ =1+ 7Y} +2cos(®;.¥5) has
been used to obtain the last form. The Jacobian, as was pointed out earlier, becomes
infinite when either the recoil velocity of the alkali halide in the center-of mass frame 'y
becomes very small, or when the recoil velocities of the alkali halide in the c.m. and the
laboratory frames are perpendicular. Since the Jacobian, a transformation between two
finite differential cross sections, cannot physically become infinite, a separate expression
for it must be derived for the two cases cited above.

When one of the collision partners is initially stationary in the laboratory frame,

i.e., v1=0 and 81=0,=0, this expression reduces to the one given by Schiff [9].

3
09,8,,0)| ' _| 172 +2ycos8)’ | 2y;
dQ(s,0) | |1+ cos6| L+y] =77

Figure 2A shows that a maximum (top figure) and a minimum (bottom figure)
laboratory scattering angle exists when the recoil velocities of the alkali halide in the c.m.
and the laboratory frames are perpendicular. This is further clarified in figure 3A which
gives a plot of the c.m. scattering angle as a function of the laboratory scattering angle.
This figure clearly displays the extrema in the laboratory scattering angle as a function of
the c.m. scattering angle. At these extrema the expression 8A for the Jacobian becomes
infinite. Figure 4A gives a plot of the laboratory recoil velocity of CsF as a function of
the laboratory scattering angle. The laboratory rccoil velocity displays an extremum at
the minimum and maximum laboratory scattering angles. This is the reason that the
absolute value of the Jacobian stays constant for large changes in the laboratory recoil

velocity of CsF (figure 9). To derive an expression for the Jacobian when the recoil
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velocities of the alkali halide in the c.m. and the laboratory frames are perpendicular, onc

can write, using figure SA,

(AB) (m;—v;AGL]
cos| — |= | ——
2 4
=(1-1p88,) (9A)

or,

AB = 2arccos(1 - v,A8,). (10A)

Using the relations

arcsin(x) + arccos(x) = 1/2, and,

1
arcsin(l - x) = %- (2x)2, we get

!
8y, |
Aei’ _ (11A)

Together with

~1

=

a0,
A0

lﬂqu _y |  sing, |
do 'lsin(@ -8, +8,)] (12A)

and

dQ =sin(0 —91 +0,)dodo,

2)
and

dQ, =sin6, o, do, ,

we get,

!
2

8y,
AB,

(13A)

.

ldQL
dQ
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When the laboratory recoil velocity is along the centroid velocity, one can write,

using figure (1A), 0 = 8, and 8, = 8|, giving

-1

dQ
L = y2,

dQ

(14A)

This expression for the Jacobian is valid only when the laboratory recoil velocity is along

the centroid velocity provided YIAOL <land ylAtpL <l ABL and A¢L being the width

of the laboratory detector in the polar and azimuthal angles. When this condition does not

n ..
. This 1s because the
L

hold, the Jacobian becomes a constant and is simply equal to

signal from all 4n steradians in the c.m. frame is now collected by the detector; a wider
detector cannot collect any more signal.
To make the connection with the previous work [2,3], we start with equation (8A)

and note that

N2 A dm’
2 V== (15A)
dv;
This equation is easy to prove. Using figure (1A), we write
(05)* = (v)* +v2 —2vjv_ cos(8, —9,). (16A)
Differentiating equation (16A), we get
wdw; = vidv, —v_dv;cos(8, -6,). (17A)

Substituting for cos(8, ~8,) from equation (16A) we get equation (15A). Going back to

equation (8A), when there is a continuous distribution of energy levels, the Jacobian

44




becomes just Y3. In our case, since we are dealing with discrete quantized rotational-

vibrational levels, the Jacobian is given by equation (8A).
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FIGURE CAPTIONS (APPENDIX)

Figure 1A. Vector diagram for the CsF-Ar scattering. The initial laboratory velocity of
the Ar beam (v;) is measured along the X-axis and that of the CsF ( v,) beam along the Z-
axis. The laboratory angles are measured from the direction of the CsF beam; 8, and 61
are the laboratory angles of the centroid velocity v, and the recoil velocity v',
(laboratory scattering angle), respectively. The c.m. scattering angle is measured from
CB, the direction of initial c.m. velocity of CsF (@, ). The pseudoelastic peak discussed
in this article, centered at a laboratory recoil velocity of about 1000 m/s, arises from the
larger c.m. scattering angles. The other pseudoelastic peak, centered at a laboratory recoil
velocity of about 150 m/s, arising from smaller c.m. scattering angles, was not
experimentally detected and will not be further discussed. The circle in the figure
corresponds to one-half of the initial relative translational energy being converted into

internal energy.

Figure 2A. Vector diagrams to demonstrate the existence of maximum (top figure) and
minimum (bottom figure) laboratory scattering angles for a given value of the c.m. recoil
velocity (@'y ) of CsF. At the maximum and minimum laboratory scattering angles, the
¢.m. and laboratory recoil velocities are perpendicular. The extrema in the laboratory
scattering angle, as a function of the c.m. scattering angle, lead to rainbow like

singularities in the Jacobian for the c.m. to laboratory transformation at these points.

Figure 3A. Plot of the laboratory scattering angle 8] as a function of the center of mass
scattering angle 8 for the (v=3,j=80 --> v'=20,j'=118) transition of CsF (v;=2450 nvs,
v2=500 m/s, AE/E= 0.7778, ',=246 mv/s, v, =646 m/s). It is seen that the laboratory
scattering angle, for thesc collision parameters, cannot be less than about 30° and more

than about 75°. The laboratory recoil velocity v'; and the c.m. recoil velocity @'y are
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perpendicular for the maximum and minimum laboratory scattering angles and the
laboratory scattering angle as a function of c.m. scattering angle displays an extremum.
This leads to the display of rainbows in the curve of the laboratory differential cross
section as a function of the laboratory recoil velocity at the maximum and minimum
laboratory scattering angles. The discontinuities in the curve at c.m. scattering angles of
0° and 180° are not real and arise from the fact that the c.m. scattering angle is measured

modulo 1t and not modulo 2x.

Figure 4A. Laboratory recoil velocity of CsF as a function of the laboratory
scattering angle. The collision parameters are the same as in figure 3A. At the rainbow
angles, v2; m =(0'5)2+(v'2)? and the laboratory recoil velocity of CsF is 597 mvs, slightly
smaller than the velocity of the center of mass. When the laboratory scattering angle is not
equal to the rainbow angles, the signal from each transition is observed at two recoil
velocities, one lower and one higher than the velocity of the center of mass,
corresponding to the cases a and b center of mass scattering angles. Both cases contribute

to the ballistic peak.

Figure SA. Vector diagram illustrating the uncertainty in the c.m. scattering angle
due to a small uncertainty in the laboratory scattering angle at the rainbow angle. The

angular resolution of the detector, ABy, is cxaggerated for the purpose of clarity.
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APPENDIX B
A DISTORTED WAVE IMPULSE APPROACH FOR ATOM-DIATOM COLLISIONS ™

Hoang Dothe
Yap Analytics Inc., Lexington, Massachusetts 02173
Ramesh D, Sharma
Phillips Laboratory, Optical Environment Division (GPOS),

Hanscom Air Force Base, Massachuscetts 0173 1-3000

ABSTRACT

A formalism is derived to include the cffects of the long range attractive part ot the
interaction potential in the calculation of atom-diatom collision cross scctions using the
impulse approach (IA). These calculations have, until now, assumed the atom-diatom
potential given by a sum of two atom-atom interactions, consequently yielding a poor
representation of the long range attractive part. In the Distorted Wave Impulse Approach
(DWIA) the long range attractive part, located at the center of mass (c.m.) of the diatom,
is a spherically symmetric potential which "distorts" the incoming and outgoing waves.
The DWIA formalism is used to calculate differential cross sections for the rotationally
inelastic process Lit+Ny(v=0,j=2)—>Li"+Np(v'=0,"), as a function of the final rotational
level j', at a relative kinetic energy of 4.23 eV and center of mass scattering angles of
49.20 and 37.19, It is shown that differential cross sections calculated using the DWIA
formalism are in much better agreement with experimentally measured ones than IA
differential cross sections using atom-atom interactions expressed by either hard-core, or

exponential repulsive, functions.

* Journal Chem. Phys. (to be published)
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I. INTRODUCTION

Recently, an exact formulation of the impulse approach (IA), or quanium-
mechanical spectator model, has been developed for atom-diatom collisions [1-3].
Subsequent comparison of computed differential cross sections with experimentally
measured ones has given reasonable results for: (1) the relaxation of highly vibrationally
excited KBr by Ar [4], (i1) the elastic and 1nelastic processes at large ¢.m. scattering
angles, and the highly inclastic ballistic processes at all c.m. scattering angles, for the
CsF-Ar system [5]. TA calculations [1] have not been able to reproduce the observed
differential cross sections for rotational transittons of Ny caused by collisions with Li* in
a crossed molecular beam experiment at a relative translational energy of 4.23 ¢V and
c.m. scattering angle of about 45°. The calculated distributions of differential cross
sections are too narrow and peak at values of the final rotational quantum number j' that
are too large. Similar results, for an 1A calculation, were obtained earlier by Beard and
Micha [6] not only for the Li*- N, system but also for the Lit- CO system as well.
The observed rotational transitions convert only a small fraction of the initial relative
translational energy into rotational energy. The situation here is similar to the one
encountered earlier [4] in a study of the deactivation of highly excited KBr by Ar. For
nearly elastic scattcring at 45° c.m. scattering angle, the TA calculation was not able to
describe the experimental results; the calculation, however, agreed well with the
experiment when a substantial fraction of nearly 2 eV initial vibrational energy was
converted into translational energy. In this paper we seek to improve the calculated
distributions of rotationally inelastic differential cross sections.

In the impulse approach, the total atom-diatom interaction potential is described by a
sum of two atom-atom interactions. These atom-atom interactions are in all of the
calculations on vibrational-rotational excitation of the diatom published thus far,
approximated by hard core potentials, i.e., V(r) = w for r<d and V(r) = 0 forr > d, d

being the suitably chosen hard core radius. To arrive at an understanding of the
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influence of hard core potentials on the calculated differential cross sections, we shall
carry out the IA calculation using exponential repulsive atom-atom interactions as well.

While the sum of the two atom-atom interactions appears to be an adequate
description of the atom-diatom potential at small distances, this model fails 1o describe its
long range attractive part. To remedy this situation, we propose to add to the sum of
pair-interactions a centrally symmetric attractive potential located at the c¢.m. of the
diatom. We shall study the effects of this potential on the differential cross sections of
collision-induced rotational transitions involving the conversion of only a small fraction
of the initial relative translational energy into rotational energy. The expression for the T
matrix in the Distorted Wave Impulse Approach (DWIA) will be shown to describe an
overall collision process where the incoming particle 1s first scattered by the central
potential located at the c.m. of the diatom (the distorting potential), then scattered by one
of its atoms, and, to maintain microscopic reversibility, finally scattered again by the
distorting potential. It was pointed out earlier that the impulse calculations [2-5] give
reasonable results for large c.m. scattering angles. We will, therefore, also study the
difference between the IA and DWIA differential cross sections as a function of c.m.
scattering angles.

The paper is organized as follows: in section 11, we derive the formal equations
of the distorted wave approach; in section III, we derive the necessary mathematical
formulae for computing the DWIA scattering amplitude for atom-diatom collisions; in
section IV, we present an application of the model to the Lit+Ny scattering process;
finally, in section V, we sumunarize the results of the calculations. In the Appendix, an
expression for the atom-diatom collision amplitude in the impulse approach (1A) is

derived in terms of the incoming and outgoing momenta p, and p;; this expression is

crucial in the formulation of the DWIA scattering amplitude presented in section I11.
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II. THE DISTORTED WAV FORMALISM

We follow the notation of ref. 1, which we refer to throughout this paper as SBS. The
scattering process involves the collision of atom 3 with a molecule consisting of atoms |
and 2. We make use of the set of Jacobi momenta, where in a system of 3 particles
(a,b,c), p, andr, denote the momentum and position vectors, respectively, of particle a
with respect to the center of mass (c.m.) of particles bc; q, and y_, respectively, are the
vectors denoting the relative momentum and relative position of particlesband ¢c; 4, H,,
are the reduced masses of the systems (a,bc) and (b,c), respectively; V, is the potential

between particles b and ¢, and the spherically symmetric atom-diatom  distortion

potential located at the c.m. of the molecule is denoted by V(r,).

The total Hamiltonian of the three particles in the c.m. coordinates of the system is,

H=H0+me=Ho+v3(Y3)+v’ (1a)
where
2 2
H, =P, 9 )
2u, 2y,

is the kinetic energy operator, V,(y,) is the intramolecular potential, and V, the atom-
diatom interaction potential, is the sum of the distortion potential V,(r,) and impulse
potentials V,(y,) and V,(y, )’ i.e.,
V=V,(r)+V, =V,()+V(y,)+V,(y,) 2a)
It was mentioned that Vy(5), the distorting potential, is a spherically symmetric
potential located at the ¢.m. of the diatom and V|, the impulse potential is the sum of
two atom-atom interactions. These restrictions will not be used in the derivation of the

formal equations. We will however, for convenience, continue to refer to Vg and Vyas
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the distortion and the impulse potential, respectively. The T operator associated with

the total Hamiltonian is

Tz)=V+V(z-H,-V)'V, (3)
where
H, =y + B2, @) (4)
2y,
is the Hamiltonian at large distances when V—0 and,
2 P =5(—’§—+V,(y,), (3

12
is the Hamiltonian of the diatom. Ineq. (3), z = E +ig , E being the total enerpy of the

atom-diatom system. The eigenfunctions of H, are given by:

o) =[u,) ® v, ) = |vimp,.), (62) (62)
and
1B = | ) ®|w, ) =|virm’p,,), (6b)

2
3

where u, = u(p,u), U = u(pw) are plane waves, eigenfunctions of , normalized to

3

delta function, and |y, >=lvjm >, fy, >=|vj’'m’> are vibrational-rotational wave

functions, eigenfunctions of H in the initial and final states, respectively. Define

Distom ?

the Green's function, or the propagator:

(1) For the unperturbed motion

Gi(@=(z-H,)", (Ta)
(2) For the total Hamiltonian H
G'(z)=(z-H,-V,-V,)", (7b)
(3) For the unperturbed motion and distortion potential
Go(z)=(z-H,-V,)", (7c)
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(4) For the unperturbed motion and impulse potential
G, (z)=(z-H,-V)"' (7d)

The T-operator corresponding to the distortion potential is given by

T, = V,Q,. (7e)
and that corresponding to the impulse potential is

T =VaQ, %)
where Q is a Moller wave operator defined, for the distorting potential, by

Q, =1+G,V,, (72)
and for the impulse potential, by

Q, =1+G]V,. (7h)

An exact expression for the scattering amplitude in the distorted wave formalism

is given by [7]

(BITlox) = (BTl o0) + (3 [Vilx.), ®
where o> and |B> are unperturbed wavefunctions for the initial state and the final

state, respectively, defined by equations (6a) and (6b). 7. is the solution of the

Lippmann-Schwinger equation,

x;) =(1+G"V,)

Yoo ) (9a)

where ¥, is the outgoing solution of the Lippmann-Schwinger equation with only the

distorting potential

1%0s) = Qyla) = (14 G; V, )jor) (9b)
=|ot)+ G;V,|x5a )
=(1+G,;T,) o),
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and x&,' is the ingoing solution of the Lippmann-Schwinger equation, again with only

the distorting potential,

(x| = (Bl = (Bl + v,G3) %)
=(B|+ <XI|; |VoG;
= (Bl(1+T,G;).
It is seen that y_ is the solution of the Schroedinger equation with the full Hamiltonian
H. An approximate solution to equation (8) is provided by treating 'V, the spherically
symmetric potential located at the c.m. of the diatom, as a small perturbation. Writing
the expression for the Green's function corresponding to the full Hamiltonian I as
G' =G, +G,V,G", (10)
and keeping only the first term on the right hand side of the equation, i.e., G’ = G, , we

have from equations (9a) and (7h),

XZ) = (1 + G;vl)

Xoa) = Q| Xew)- (11)

Equation (11) has the effect of disentangling the effects of V, and V, and keeping the
terms in the lowest order in V,. This is the reason that primarily the weak attractive

long range portion of the atom-diatom potential will be included in V,. From equations

(8), (11), and (7f), the scattering amplitude can be written as,

(B[Tler) = (BIT,ler) + (x7; T xs..)- (12)

Substituting equations (9c) and (9b) for <qu’| and |:, ) into equation (12), we get

(BiTla) = (BT, la) + (BI(1 + T,G; )T, (1 + G, T, ) (3)
= B|T, + T, + T,G;T, + T,G,T, + T,GT,G,T,|ox).
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We can see here that the operator on the right side of equation (13) is just the first few
terms in the expansion of the three-body T-matrix in a multiple collision series [8,9).
The complete formal equivalence between the distorted wave formalism and the multiple
collision series approach can be established by using the exact expression for G™ (eq.
10). It is worth mentioning again that all of the above relations are completely general.
They were obtained without any assumption about the forms of the interaction potentials.

Equations (12) and (13) give the scattering amplitude in the Distorted Wave formalism,

subject to the approximation G* = G; in ¢q.(10), i.e., in the lowest order in V.
The equations derived thus far do not make use of the fact that V is spherically
symmetric. For rotationally inelastic transitions, we can ignore the effect of T, alone,

since V, contributes only to rotationally elastic processes. We shall therefore concentrate

only on the second term in eq. (12).

1III. MATHEMATICAL FORMULAE
We first write the potential V as a sum of two atom-atom interactions,
Vi(15,y5,0) = Vi (y,) + Vi (y2) (14)
where ry is the distance between the incident atom 3 and the c.m. of the diatom 1-2, a is

the angle between ry and y,, and
1

2 _ 5
yi(y2) = { +[e, ()] F2ny,6,(c;)cosal, (15)
where
Cl(cl)Em2(ml)/(n]l+m2)’ (16)
is the appropriate mass ratio. The total Hamiltonian can then be written as,
H=H,+V + Vo(ra) =H, + Vx()'n)"' vz()’z)+ Vo(rs)r amn

and the three-body T matrix expanded in a multiple-collision series,
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rrl = T(l) +T(2)+T(I)G;T(2)+T(2)G;T(li
(D g+ (2) s (D) (2) =t () 4 p(2) )
+TVG, TG, T +T* G, TG, T+ - (18)
where the three-body operators T denote the collision of the incident atom with atom

s' of the diatom, s being the spectator atom. T™ is defined by,

T(-) = V.Q., (19)
Q =1+(z-H,-V,)'V,, (20)

s=1,2. Substituting equation (18) into the second term on the night hand side of
equation (12) and keeping only the first two terms, i.e., keeping only the single collision
terms in the multiple collision expansion of the three-body T-matrix, we obtain the

matrix elements

> (Bll+T,G;

g

E)EITn)n|l + G; T, o), 21)

where |a) = |vjmp,u) and Iﬁ) = Iv'j""'plu>' s=1,2. We have used the completeness
relations Y [n)(n|=1and Y [EXE| =1, the summation dcnoting sum over the discrete
n §

indices and integration over the continuous ones. In eq. (17), we assumed that Vj is a
spherically symmetric potential. Now we further restrict V by requiring it to be
independent of the vibrational coordinate. Since the dependence of the atom-diatom
potential on the vibrational coordinate is usually not known, this is not the limiting factor
in determining the accuracy of the calculation. Ty can thus give rise to only rotationally
and vibrationally elastic transitions. The sums in equation (21) are then non vanishing
only for |1‘|)=|vjmp,) and |E)=|v’j’m’p}). The integration is therefore only

over p,and p;.
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The first and third matrix elements in the intecgrand can then be written as,

<“(psa)

1+ T,G,

u(p;))

2, <“T-(pw)

V,|u(p;))

=3(p} ~py )+ o= ) rie (22) (22)
and
(u(p, )1 + G; Ty |u(p,.))

- 6(P3 _ P;u)’* 2},1, <u(p;)|volu (plu )> (23)

o (pl, —pi)+ie
where we have used eqgs. (7g) , (9b) and (9c¢), and the limit ¢ —» 0" is implied. The wave

functions for the relative translational motion are defined as follows; u(k) is the plane

wave for free translational motion
(ruk)) = (2r)” exp(ik - 1,)
2 % o . > LIS
=(;) zl Jx(kg)zyw(k)yw(rj)’ (24)
x v

uT-(k') is the solution for the translational motion which asymptotically goes into a

plane wave and an ingoing spherical wave

% , X -
(™ (k')|r,) =(%) Y. ) eL(kg;e) Y:,.(k')‘{x,,,(i-,), (25a)
I Y=-x

and u«*(k') is the solution for the translational motion which asymptotically goes into a

plane wave and an outgoing spherical wave

(r,u (k) =(%) Z(i)" w.(k;e") 2 Y,.. (k)Y (R). (25b)

The radial wavefunctions w,(k’r,;€*) are solutions of the Schroedinger equation
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o 29 e+ ”
E: _ —— —— — — ‘v, l( 4 . é?l - (}
[ * 2y, {ar;z ¥ r, dr, rl } °(r’)Jml( n;e)

) 3 3
where

rl2 kl?

£= R
2,

(25d)

and ©,(k’r,;¢") satisfy the outgoing and incoming asymptotic boundary conditions

o, (k'r;8) = -c—ﬂg_i,lfl‘-”—)sin(k'r, - l’g +9,,),

3

(25e)

8,, being the real phase shift. Substituting cquations (24) and (25a) into equation (22},

the right hand side of equation (22) becomes,

2 B(P;"ng)_{_zug t““(p;’pm) z .

Yo \Psg ) Yoo (D)) =
£l e B opp-pltie |y B Yoo (61

s, (P5Psp )2 Yoo (Bsp ) Yo (B3), 26

lll‘

where,

to (kK'Y == _[(o,(k’n,, “WVa(,)i (ke ) dr,

=-—IJ, Vo(n o (K¢ )rdr,.

In a similar way, we can rewrite the right hand side of ¢q. (23) as,

2[8( p p’“) 2“’ 01'(p3,p3a) ]ZYl,ml(f)3o)Yl..m.(i)3)E

4 h'l p)a p) m,
ZS p]’psa)ZYlm, ch)Ylm.(pJ)

my
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The second matrix element in the integrand of eq. (21) has been evaluated in SBS using
the IA. The expression given in that paper was in terms of the momentum transferred

q = P, — P, , which is uniquely defined in the single collision case. The present situation

defines the momentum transferred vector as 4 = Py, — Py, This momentum transfer

however occurs in three steps and the DWIA model calls for an integration over

p, and p; , as indicated in eq. (21) , muking the momentum transferred in the middle

step no longer unique. To carry out this integration the impulse transition amplitude in

the equation must be expressed in terms of p, and p; rather than the momentum

transferred. The needed results are derived in the Appendix, providing

(v/j;mlp; IT(o)

vjmp, ) =

-
J S 4 ’ ) rer_ 7 . ’ ’ . [~ . ~y
2[——[3[,]]} C(j1j’;mM,m )3: AV P vips )OO T M, )Y (BL) Y2 (), (29)
IM, 'y

where [j]=(2j+1), C' are the Clebsch-Gordan coefficients, and the quantities

’

A (V'i'DPi;vip,) are defined by either eq. (A22) or eq. (A27). Equation (29) is the

equivalent of equation (49) in SBS, which gives the T matrix in terms of the momentum

transferred q = p; — p,. Of course, both formulations give the same numerical results.
We can now take the product of the right sides of eqs. (26), (28) and (29), and
integrate over p, and p;, as indicated in eq. (21). Defining the quantity

B (Vi PagViPsa ) = [0 (P21 Pre )AL (VP ¥iD, S, (P52 Py JP2P P00, (30)

the rotationally inelastic DWIA scattering amplitude, from eq. (13), is then given by

2 (BIL+ TG ENEIT m)nl + G o) =
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Y, .
2[“"”] C(j)j";mM,m’) Y, C(’.fil:m.m.'M.)YZ..._(E»...)YZ.‘._(3\“)}:’,,,("lp‘.nvu* o 63D

Lw, im; -l

The differential cross section for scattering at an angle 8, in the center of muss

frame, for a vibro-rotational transition is given by [9]:

do (. '-'._Zﬁz Py
dQ(VJP:a—)VJPm,e)-( h) Vo2 EI BITIo)[". (32)

We can then sum the absolute square of the collision amplitude given by eq. (31) over m

and m', ormand M, = m’— m. Using the identity

3. C(j3j’;mM, )C(jJj";mM, ) = ['[J”' ]5,, . (33)

where the second factor on the left hand side comes from the complex conjugate of eq.

(31), and taking the z axis of the coordinate system along the direction of the incident

momentum P, , we finally obtain

__G_ . 127 . - _2£ 2 p][s U
dg(‘”pw = Vi'Py8) ‘[ h ] ’ Pae x%tng." | Gy
where
RN , ) )
GJM, = ;[-[Z;tl] C([lelJ;OMJ)Yl;M,( )Z bfll)l (VJ PalanPau) (35)

In the next section we shall apply the DWIA model to study the rotationally inelastic
scattering of a Np molecule by a Li* ion, a system that has been extensively studied both

experimentally [10, 11] and theoretically [1, 6, 9, 12] .
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1V. APPLICATION TO THE Lit + N7 SYSTEM
1. CHOICE OF POTENTIALS:
SCF calculations of the Li*-Ny potential hypersurface have been performed by

Staemmler [13]. The calculated energies as a function of the distance between the ion

and the center of mass of the molecule are shown in fig. 1 for the collinear (& = 0°) and

the Cay (@ =90°) configurations. The molecular internuclear separation was kept fixed

at the equilibrium distance. Fig. 1 also shows that the repulsive part of the potential

above 1 eV can be approximated using simple exponentials [9]:

Vrtpuhivc = vl(yl) + V’l(yZ)’ (36)
where,
V.(y,) = B exp(~By,), i=12 @37

0 -1
with B=1.55x10’ eVand f=4.65 A .
For large relative kinetic energies of the ion and molecule, it is also possible to

replace the above exponential forms by simpler hard core potentials,

v(yi)=°° YiSRc
=0 y, >R (38)

The hard core potential with radius R, equal to 1.4 A is also shown in figure 1.

Similar hard core radii have been used in the previous studies [1,9] of Li*-N, collisions.

R_=1.4 A corresponds to about 4 eV potential energy using the exponential form of the
potential function given in equation (37).

It was pointed out earlier that the impulse potential, sum of either the two hard
corc or the two exponential repulsive functions, cannot, of course, provide a

representation of the long range attractive portion of the atom-diatom pctential. The
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DWIA model sccks to remedy this situation by adding to the impulse potential a

spherically symmetric potential located at the c.m. of the dintom V(r,), i.c.,

V= Viy,) + Va(ya) + Vo(n), (39)

and allow V,(r,) to "distort" the incoming and outgoing waves. It should be emphasized
that in this model, V,(r,) mercly denotes a long range potential chosen in conjunction

with the impulse potential to improve the fit to the total atom-diatom potential V, which

may be determined experimentally or by ab initio calculations. V,(r;) is not related to

Uo(r,) from the standard expansion V(r,,a) = iU,(rj)P,(cosa). We also realize

«u
that in choosing a spherically symmetric function to represent the attractive potential, we
have assumed that long range anisotropic potentials, e.g., the ion-dipole and ion-
quadrupole interactions, can be neglected at the higher relative kinetic energies that we
are dealing with in this paper. It is however useful to point out that the long range
anisotropic potentials can be represented by adding a long range spherically symmetric
portion to the impulse potentials. For example, the long range dipole potential is
obtained by letting the impulse potentials approach the coulomb interaction at large
distances.

The spherically symmetric potential Uo(r,) for Lit-N has been determined

from the measured total cross section by Gislason, Polak-Dingels and Rajan (GPR) [14].

V,(r,) is determined from GPR potential as follows: With the hard core radius for the

atom-atom potential equal to 1.4 A and the internuclear distance of the No molecule

equal to its equilibrium value of 1.1 A, the Lit ion encounters a wall of infinite potential

at a distance ry ~ 1.95 A in the collincar geometry. We therefore chose as V,(1;) the
GPR potential for the domain 1.95 A< ry < 5.38 A, the strongly repulsive part of the

GPR potential in the inside region 1< 1.95A being already accounted for by the hard
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core atom -atom potentials. The value of the GPR potential at 1.95 A, approximately 0.4

eV, is therefore extended to 0<r3< 1.95A, resulting in the central potential V,(r,) shown
in fig. (2a).
Figs. (2b) and (2¢) show the total potential, given by eq.(39), for the collinear and

C,, geometries, respectively. It can be seen by comparing to fig. 1 that the addition of

the central potential V,(r,) has improved the fit to the points obtained by the ab initio
calculation in the lower energy region. The small (absolute) energy values of V,(r,),

compared to the values of other potential energies justifies treating Vi (r,) as a

perturbation.

2. CALCULATIONS
We have calculated c.m. differential cross sections for the rotationally inelastic
process LiT+Np(v=0, j=2) > Lit+N5(v=0, j"), using:
(i) the IA model and hard core atom-atom impulse potentials of equations (36)
and (38).
(i1) the IA model and exponential repulsive atom-atom impulse potentials of
equations (36) and (37).

(i11) the DWIA model and hard core atom-atom impulsc potentials of equations
(36) and (38) plus the distorting potential V,(r,) of figure (2a).

The calculations were performed at a relative kinetic energy of 4.23 eV and c.m.
scattering angles of 49.20 and 37.10. The two-body t-matrix elements for the
exponential repulsive potential were computed using a propagating algorithm due to
Brumer and Shapiro [15].

The following approximation was introduccd in order to simplify the DWIA

computations. We note that the quantities S 4 (p3 ,pm) appearing in the integral on the

right side of eq. (30) are defined by,

80




8(Ps = Pa) | 20, . tor (Py.P)

S »Pra) = , (40)
o(Psrpic) Pia L T ‘
and
. 2 2 | 0) . 2 9
Jlm(pju -pyt IE) = _ pz _nla(p]u - p))» (41
3a k]

where 0 is the Dirac delta function and # denotes the principal value integral. We now
approximate the limit by taking only the delta function term, and ignoring the principal
value term, on the right side of the above equation. Recalling the equivalence of the
distorted wave formalism and the multiple collision series expansion (eqs. (12) and (13)),
this approximation corresponds to keeping only the on-shell, energy-conserving, terms in
the transition matrix Ty due to scattering from the spherically symmetric potential
V,(r,). This approximation conserves energy at the first and the third of the three step
collision process. For this reason it can also be regarded as “classical” approximation.

Of course, a completely classical calculation would conserve encrgy at every step of the

collision process. The quantities S, (p,,p,,) can then be approximated by,

b -
Sl. (pltpla) = (p3 p30) - mi ul

p:u th]u

o (Ps.P5a)[8(Py + Py ) + 8(p, - psu)]. (42)

A similar expression is obtained for S,;(p;,pw) . The DWIA inclastic c.m. differential
cross section is then given by eqs. (34) and (35) with the quantities b;;",; (v'j'pBu ;vjp,u)

on the right side of eq. (35) approximated by,

bx(:,):; (V'j'P:a ;Vjpaa) =

. H s rir . . \
(l - nlp)a;'ilto:, (p]a)pla))Agl,)l;(v 3 PyiVIPia )(l = TPy, %21 Log (Pm ' Pag )); (43)
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where the on-shell two-body t-matrices t,,(k,k) = sind , exp(id,,) are calculated from

eq. (27) using the method of Brumer and Shapiro {15]. Eq. (A27) in the appendix was

ﬁ',:,l (v’j'pm;vjpm). The quantities Ff,:i)‘(v'j'pm;vjp,u) required on

used to generate A
the right hand side of eq. (A27) are computed, from eq. (A24), using the exact 1A

calculation, or from eq. (A32), using the part-classical IA calculation {1].

3. RESULTS

The IA differential cross sections calculated at a relative kinetic energy of 4.23 eV
and a c.m. scattering angle of 49.2° are plotted as a function of final rotational quantum
number j' in figures (3a) and (3b) for the hard core and the exponential repulsive atom-
atom interactions, respectively; the DWIA differential cross sections are plotted in figure
(3c). The experimental differential cross sections [10] were normalized so that the value
for the most probable final rotational level j' in figure (3c) agreed with the largest
calculated DWIA differential cross section. Thereafter the comparisons of the
differential cross sections are absolute. The very same calculations are repeated for the
c.m. scattering angle of 37.1° and the results plotted in figures (4a), (4b), and (4c). For
both angles, the calculated IA distributions are narrower and peak at a larger final
rotational level j' than the experimentally observed distribution {10], also shown in the
figures. The calculated differential cross sections using either of the [A atom-atom
potential functions, the exponential functions, eq. (37), or the hard core functions, eq.
(38), are remarkably similar. From these results it would appear that the [A results are
insensitive tc the shape of the repulsive portion of the atom-atom potential. This
realization, coupled with the computational easc, is the reason for choosing hard core

functions, equation (38), together with the distorting potential, figure (2a), as the total
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atom-diatom potential V for our DWIA calculation. The DWIA results represent an
improvement over the IA results. The DWIA distributions are broader and also peuk at a
lower final rotational level j', in much better agreement with the experimentally observed
distributions.

These results may be interpreted as follows: The long range centrally symmetric
potential V,(r,) perturbs the incoming and outgoing waves by giving them a partial wave
dependent phase shift. The transition amplitudes from different partial waves no longer
add coherently, leading to a broadening of the calculated distribution of difterential cross
sections. This broadening also leads to smaller momentum transfer shifting the
maximum of the calculated distribution closer to the maximum of the measured
distribution. The more realistic DWIA potential leads to a better agreement ol the
calculated differential cross sections with the measured ones.

The part-classical IA calculation has been used in our recent work [4,5] to reduce
the computation time. It was estimated that this approximation introduces an error of
about 10% in the calculation. The present work, because it involves low rotational
quantum numbers, may be considered a stringent test of the part-classical calculation.
Table 1 gives the ratio of the part-classical and the exact DWIA differential cross
sections. It is seen that for final rotational quantum numbers greater than 10, the
accuracy of the approximate part-classical method is indeed about 10%.

Figure (5) compares the IA and DWIA calculations for larger scattering angles;
the collision parameters are the same as in figures (3) and (4). Although there are
differences in the magnitude of the cross scctions, the IA and DWIA rotational
distributions for large c.m. scattering angles are nearly the same. We have now a
quantitative estimate of the influence of the long range attractive potential on the
inelastic cross sections when only a small amount (less than 25 % for the most probable

rotational transition) of the initial relative translational encrgy is converted into rotational
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energy. Of course, this influence is expected 10 be a function of the initial and final

relative translational energies as well as the initial state of the diatom.

V. SUMMARY

The improved agreement between the DWIA calculated distributions of rotational
transition probabilities and the experimentally derived ones suggest that the long range
attractive part of the potential must be included in a model for small angle, high energy,
atom-diatom collisions involving small amounts of energy transfer. These results, which
appear reasonable, warrant further investigation (additional calculations at different
relative kinetic energies, scattering angles, and on different systems) to test the
consistency of the model. The significance of neglecting the multiple collision terms and
the principal part on the right side of eq. (41) has yet to be investigated. The present
calculation, however raises the hope that an accurate calculation of the differential cross
sections of inelastic processes at high energies may be possible using a suitable
modification of the impulse approach. As expected, the IA and DWIA calculations give

nearly the same rotational distributions for large scattering angles.
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The authors gratefully acknowledge the help of Mr. J. Sindoni with the computations.
This research was also in part supported by AFOSR under task 2303 EP, project 007.
The authors are grateful to Dr. J. Peter Toennies for taking the time from his busy

schedule to check that the results of his group were being correctly cited and make useful

comments on the manuscript.




FIGURE CAPTIONS

Figure 1. Li* - N> interaction potential as a function of ry for the collinear (& = 0°) and
Coy (@ =90°) configurations. The points shown are ab initio SCF energies (Staemmler
{13]). Also shown are lines resulting from approximations by a sum of exponential pair
potentials (eq. 37) and hard core pair potentials (eq. 38) with radius R, =1.4 A. The

molecule equilibrium distance, 1.1 A, is taken as the intemuclear separation .

Figure 2. (a) Central symmetric potential Vu(r,) used in DWIA calculations.

(b) Total interaction potential used in DWIA calculations, resulting from a sum
of hard core pair potentials V,(y,)+ V,(y,) (R, =1.4 A) and V, (1) (cq. 39), shown
for the collinear configuration (& = 0°). The points shown arc ab initio SCF energies
(Staemmler [13]).

(c) Same as in fig. 2b, for the Ca,, configuration.

Figure 3. Distributions of rotational transition probabilities, shown as c.m. rotationally
inelastic differential cross sections vs final rotational quantum number j', for
Li++N2(O,2)-—)Li++N2(OJ") at a relative kinetic energy of 4.23 eV and a cm.
scattering angle of 0=49.2°. The calculated differential cross sections are represented by
discrete sticks. The solid line is the experimentally derived distribution [10]. Top frame,
figure (3a) is the exact IA calculation, using hard core pair interactions (eq. 38) with

radius R_ =1.4 /‘;\ Middle frame, figure (3b), is the exact IA calculation, using

exponential pair interactions (eq. 37). Bottom frame, figure (3¢}, is the DWIA
calculation, using the potential shown in figures (2b) and (2¢). The measured differential
cross sections are relative and are normalized by sctting the largest measured cross

section equal to the largest DWIA differential cross scction. The experimental cross
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sections are measured for a fixed laboratory scattering angle. The cited c.m. scattering
angle is only for elastic scattering.  The c.m. scattering angle s diftereat for cach
rotational transition; for j'= 30 the c.m. scattering angle is about 49.5° - 0.3° degree
larger than the value cited for elastic scattering. These small differences are neglected in

the present work.

Figure 4. Same as fig.3, for a c.m. scattering angle of 8 =37.1°.

Figure 5. The IA (solid line) and DWIA ( discrete sticks) calculations for the collision
parameters in figure (3) are plotted for 60°, 90v, 120°, and 150° c.m. scattering angles.
The two distributions are ncarly the same for larger scattering angles. The shift of the
rotational distribution with increasing value of the c.m. scattering angle to larger values
of the final rotational quantum numbers accompnied by decreasing differential scattering

cross section is to be noted.
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APPENDIX

In this appendix, we shall derive the expression for the 1A transition amplitude

(vljlm Ip; IT(o)

vjmp,) in terms of the momenta p] and p, . The scattering process
involves the collision of atom 3 with a molccule consisting of atoms 1 and 2. We again
make use of the set of Jacobi momenta, where in a system of three particles, ¢ incident on
diatom ab, p_ denotes the momentum of ¢ with respect to the center of mass (c.m.) of ab;
and q_ is the relative momentum of a and b. We also use unprimed and primed notations
to denote momentum vectors before and after the collision, respectively. Following SBS,

the IA transition amplitude with momentum transfer q can be written as,

(05T (@)|05) = [da,¢"" (a3 )(a’ ]t (@)]a.)$(a,), s=1,2  (Ala)

where q=p'3-p;, |¢3) = l‘ij.nps) s |¢;) = |\Vv,j.m.p;>, s is the spectator atom, and ¢(qs)

is the initial-state wave function of the molecule in the momentum representation:

% )
6(as) = (%) 1,(as) Yiu (a,), (A2a)
where,
1,(a,) = [ y,dy,%(y,)i;(2:ys)- (A2b)

Eq. (Ala) was obtained by applying the 1A, i.e., reducing the three-body Moller
operator to the two-body Maller operator by approximating the intramolecular potential
energy operator by a number, and by assuming that one of the two atoms of the molecule
acts as a spectator during the collision. Additional details of the derivation of eq. (Ala)

are given in SBS.
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We first note that the final-state wave function in the momentum and coordinate

representations are related by the Fourier transform
6" (q;) = 2m) * [dy, exp(~iq, .y, Jexp(icc, (p; = p,).y, )W (3, ), (A3)

where we have used the relation, q; =q, +o,q=q, + a.(p; - p,) and «, is a mass

ratio defined by o, = (-1)’ M, . Eq. (Ala) may then be rewritten as:
m, + m,
(v'i'm'p[T|vjmp,) = [ dy, ¥ (y,)exp(~ict,(p; - p,).¥, ) ¥ (y,)- (Alb)

In equation (A1b), \V'(y,) = \{lv,j,m.(y,) 1s the vibrational-rotational wave function for

the final-state of the diatom,
V(%) = Xy (%) Yy (3), (A4)

where X,..(y;) is the wavefunction for the vibrational motion and the Y. (¥;) is the

spherical harmonic representing the wavefunction for the rotational motion. The

function ‘P(')(y,) is defined as the Fourier transform of the initial-state wavefunction, in

the momentum representation, modified by the effcct of the collision,

¥(y,) = (2r) % [ dq, exi(-ig,.y, {q;|t*

q,)¢(a;) (AS)

The dependence of the two-body t™ matrix clement on the orientation of 4,,P, and p)

is factored out by writing,
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(q)t]q,) = Z'F.‘;i(q,,p,,pQ)Ym(ﬁ;)

= Z ([.}),l;(q3’p3’p3)c(£ [ L m m M)YI 1n, (p )Yl",m',(f);)Yl_\{ ((’13)'

LM #ym, tm;

(A6)

It is possible to write equation (A6) because the t-matrix clement, a scalar, depends

upon three vectors p,, p;, and q, which must couple only in ways that the resultant

expression is also a scalar. Substituting the expansion on the sccond line of ¢y. (A0)

into eq. (AS) and using the plane wave expansion,

exp(—iq, -Y:q) = 4“2 (—i)xjx (q]YJ )2 Yx:. ({lz )qu (5'3 )’
A "
we obtain

. «(j- j L s ’ ’
P (y,) = WZ ,, '1(’ M[%] XL’),l(y,,p,,p,)C((’s(,L;m}m}M)

XCULA;000)CLAMMR)Y,, (3,)Y, (3,) Y., (52),

where,

%:;irz(YJ’psyps jquqJJx qa)’:) Ly (q:rps ’Ps) v,((b)’

and [j] = (2j+1). Now using eqs. (A4) , (A8) and the plane-wave cxpansions,

exp(—io,p;.y,) 4n2(+1) o (o }p3ys) 2 Y, (89 Y,0s (55,

LN

and
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explic,p,.y,) = 413 (1) 7, (lo|p,ys) Y. Yo, () Ye, (35), (ALD)

where + means that the plus and minus signs are taken for s =1 and s =2, respectively.

The angular integral in equation (A1b) is

. e e
Jd)’J ,m()'3) w(ys) ,..|,()'1)Yz;.n;(YJ): *4n“|:["—]h,']'l—[-]}

x Y C(€,¢5L";00)C(AL'j";00)C(¢£,¢;L";—m,m M’ )C(AL'}’;uM'm’). (A12)

L'M

The transition amplitude of eq. (A1b) can now be written as

(v’j’m'p; |T“)|vjmp,) =

> (_ti)';"”i“’”[‘m[ﬂ[l‘][[’][[;]J C(jLA;00)C(AL'j";00)C(¢, 22 L":00)

o
LML M ity mfymytym, ()]

xC(LA;mMR)C(AL ;uM’m*)C(£,£,L ;m,m;M")C(,¢;L;m,m;M)

Xigtt o0 (P32D3) Yorm, (3) Yem; (95) Yom, (D) Yo, (D), (A13)
where,
T, o (P5py) = fdygyj,,(!a 193 )i, (10952 )0t e (Y20 P3P )Xe (¥4 (Al4)

In obtaining eq (A13), we have used the relation

Y, .. (B)=(=-D"Y,. (). (A15)

Eq. (A13) gives an expression for the transition amplitude in terms of the momenta

P, and p; . A simpler expression can be obtained by using the relations,
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1e.10]*
=2 [ A | C(£,4,,,00)C(4,6,¢, ;m mm, )Y, (p,), (Alu)
4w, | 41‘[[1] J

%

St 4 l"'][(;]- 2 87 pr ’ 92 5o ’ ’, ’ ~r
Yl‘zn; (p:)Yt;-;(p:) = l): [41t[['] C(t’zl’,[l;OO)C([zf,?l ;m‘.'m]ml)Yl:m: (ps)' (A17)
wi L 1l

Y. CjLA; mMp)C(AL’} ;uM'm’) =
n

2[[1][1]]’4 W(Ly'L;A0)C(3Jj’;mM,;m")C(LL'J;MM'M ), (Al3)

M,

and substituting into (A13). We then obtain

(v§'m'p; [T vjmp,) =
h
Yem, (B3)Y.0; (B1)C(LA;00)C(AL'};00)

e (TR ]][[juute,uz, HMIJ]]

IM @ EmLL AL G, an(j’le, )1¢]
xC(¢,£;L";00)C(£,¢,¢,;00)C(¢;¢52;;00)C(j3j";mM, m*)W(jLj’L";AJ)
X ¥ C(LL'LMM'M, )C(£,4,L";m,m;M")C(2,£,L;m,m’M)

MM'm,m;m,m;

XC(l,Z,Zl;mzm,m,)C((;t’;Z{;m;m;m{) x L (P;,P;). (Al9)

4,608,610

Noting that the sums ¢, +¢;+ ¢, and £, +{;+ ¢, must be even for a nonvanishing

contribution, the sum over the product of five Clebsch-Gordan coefficients on the right

side of the above equation is equal to

[[e e ALALE C(e,£0;mmM, )X (£,€7;0,6,L;£,2,L°), (A20)

where X is a 9-j symbol. We finally obtain the expression for the transition amplitude

93




T(l)

(v'j' m’p;|T|vjmp,) =

. %
z[——““”] COIysmM, ) 3, AL (VI B3ivip O i mmIM, )Y, (B)YSL, (B, (a2

ml 1§) bty

where,

’

AL (Vi'pssvip,) =

> (ti)“"’i”'“[[t}][l’;][L]][—_—[g’]m]T[::]ﬂt’_],]nc(ju;OO)C(XL'j';OO)C(t’zt’;L';OO)

IRANAL RN 4
X C(£,,€,;00)C(€;¢,¢;00)W(GLi'L";\)X (¢, 0:3; 6,518, 64L7)

xn'™

1,:;:,1;u(p;ap3)~ (A22)

Equations (A21) and (A22) give the expression for the A collision amplitude in terms of

the momenta p, and p; . The equivalent expression in terms of the momentum

transferred q = p; —p, was given in SBS:

(vi'm'p; |T*|vjmp, ) = g[%ﬂyzcwj';m,m')a‘;;, (Vi'p3svip,), (A23)

where,

B (virpsivips) = 3G [ILUBIM] Yy, (@N:a (0,9, )C(LA;00)
xC(ABj’;00)C(LBI;MYM, )W (jLi’B; M), (A24)

with,

N (2.1,) = [dy,y i (Joclay, )Ka (.02, 00, (1), (A242)  (A24a)
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i 2%, . , ,
K (y:,0.p,) = — [da,azi, (a,y;)Ti(a,.py.05)1,(q,), (A24b)
0

and T&i(q,,p,,pg) defined by the expansion on the first line of eq. (A6). Both

expressions give the exact same numerical results. A comparison of eqs (A21) and (A23)

leads to the relation:

2 AR (Vi'psvips )C( LT mmiM )Y (B,)Y (D7) = B (ViPivie). (A29)

', & m
£ymydim]

Eq. (A25) provides an alternative way to obtain the quantities A7, (v''py;vip;) . Since

these quantities are not dependent on the magnetic quantum numbers, they may be

evaluated in any coordinate system. Taking the z-axis along the direction of p,, we have

. (e A&
Ye,q(ps)z['%jl 8...,,0’ (A26)

(s) rer_ s

and the quantities A ;. (v 1Ps ,VJp,) can now be obtained by the relation,

AL (Vi'Dhivip,) = ( [”l] “Tcltt-MM,0)

X[ Fn (V' Py vipyi2 = b)Y,y (D5)dP (A27)

where the more specific notation Fyy, (v'i’p};vjp,;Z = P, ) indicates that these quantities

have been calculated in a coordinate system with the z-axis of the coordinate system

taken along the direction of p, . That can be accomplished in a straightforward manner

using the method outlined in SBS, i.e., eq. (A24). Eq. (A27) provides a much more

efficient algorithm to obtain A}, (v'i’p;;vjp,) than eq. (A22), where summations over
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very large quantum numbers are called for. Once available, these quantities can be used
to compute the collision amplitude as given by eq. (A21).

A part-classical (PC) approximation was introduced in SBS for a computationally
efficient evaluation of the IA collision amplitude when the z-axis of the coordinate
system is taken along the direction of the momentum transfer vector q = p; ~p,.
Without going into all the details already given in SBS, this approximauoun involves
evaluating the two-body t™ matrix in egs. (Ala) and (Alb) using classical mechanics.

The function ‘P"’(y,) defined in eq. (AS) is then replaced by tﬁif.\y(y,) where W(y,)

is the initial-state molecular vibrational-rotational wave funcuon in coordinate

representation and t(,,'c’ is the two-body "’ muatrix evaluated at a value of internal

momentum, denoted q,° , chosen so that ¢ =q, , i.e., an on-the-energy-shell two-

body t*' matrix is obtained:

(0 = [(q: t(')lq-)]q.=q;'~" (A28)

As specified in SBS, the x and y components of q;° are sct equal to zero and its z-

component (along q) is given by:

2 ag

where U,, is the reduced mass of the molecule and Ag£ is the difference in internal

energy between its initial and final states. The PC approximation was shown in SBS to
correspond to a situation in which the z-component of the incident momentum q,
changes sign while the x and y components arc unaffected. This is the situation which
arises during a collision between two hard spheres in classical mechanics when the z axis
is taken along the direction normal to the surface of the two spheres at the point of

(s)

contact. Since the hard sphere two-body t'*' matrix is still evaluated using quantum
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mechanics, this approximation was called "part classical”. The PC approximation has
been extensively used [1-5] and, for scattering angles larger than 159, has yielded IA
differential cross sections in excellent agreement with those calculated in an exact
manner, i.¢, from the exact expression for the IA collision amplitude, eq. (A24), while
consuming a significantly smaller amount of computing tume. The PC approximation

can thus be used for a more efficient calculation of the quantitics F,M (v'J’p; vip, ).
The expression for  F¢™(v/j'p;;vip,;Z2=q) was given in SBS. We note that
Z =q is specified here because this choice of axis is esscntial in the formulation of the

PC approximation; this choice also leads to only the quantities with M;=0 having

nonzero values. From SBS, we have

(v} svipys2 = @) = () [0 C(385;00)7 00, (A30)

where,

‘Zﬁ;’);vj;l = IdYSY§XV’j’(y3)jJ (la.IQY3)ij(YJ)- (A3])
0

In order to apply eq. (A27), it is necessary to obtain the quantities

E(;,’,Pc(v'_]'p;,v_]p, ;Z=P,), where the z-axis of the coordinate system is taken along the

direction of p, . Taking the vectors p, and p; in the x-z plane, these quantities can be
obtained from the F'*°(v’j'p};vjp,;Z=q) by the simple transformation:

Fur < (Vi'5;vip,s2 = B,) = B (Vi ps;vip,:2 = 4)D),, (0,1,0), (A32)

where T is the angle between p, and q , and D’M (0,7,0) is defined by [16]:
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1

Diy, (0,7,0) = Gﬁ) Y, -y, (1,0). (A33) (A33)

’

From eqs. (A30) , (A32) and (A27), the quantities Ai',l’,; (v'i'p3;vip,) can be computed

in the part-classical approximation. Inserting these in eq. (A21), the 1A collision

amplitude (part-classical) is obtained.
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Table 1.

Ratio of part-classical and exact DWIA differential cross sections
for the inelastic process Li*+Na(v=0,j=2) — Li*+N;(v'=0,j)
at a relative kinetic energy of 4.23 ¢V

] 0c.m.=37.10 Oc.m.=49.10
4 14.24 2.39
6 9.08 1.38
8 4.02 1.36
10 1.53 1.09
12 1.03 1.08
14 1.02 0.98
16 0.99 1.00
18 1.00 1.00
20 1.00 1.00
22 1.00 1.00
24 1.00 1.00
26 1.00 1.00
28 1.00 1.00
30 1.00 1.00
32 1.00 1.00
34 1.00 1.00
36 1.00 1.00
38 1.00 1.00
40 1.00 1.00
42 1.00 1.00
44 1.12
46 1.14
48 1.00
50 1.00
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