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SUMMARY

The project objective was the development of fullwave analyses for the character-
ization of microstrip antennas and arrays on multi-layer anisotropic substrates.
Many other researchers have addressed the problem of strip antennas on isotropic
substrates. The material constants are very important to the performance of
printed antennas. In practice, many dielectric and magnetic media are anisotropic.
Neglecting the substrate anisotropy can introduce significant errors in the design
of microwave printed circuits(3]. Similar sensitivities to anisotropy are exhibited
by printed antenna structures. In some instances the anisotropy is a principal
feature of the design materials, as is the case with biased ferrite substrates. Thus,
accurate models, which include anisotropy, are needed for microstrip antennas and
arrays.

The analyses for microstrip dipole elements on general anisotropic substrates have
been developed. The solutions for infinite arrays of microstrip dipoles and probe-
fed patches on generalized anisotropic substrates have also been derived. Provision
has been made for both dielectric and magnetic anisotropy. In Chapter 1 the
printed dipole antenna on a two layer uniaxial substrate is addressed. Chapter 2
deals with dipoles on gyrotropic substrates (such as the biased ferrite). The use of
biased ferrite substrates provides very interesting capabilities, including element
pattern scanning, element pattern shaping, and element gain enhancement. All
these features can be actively controlled by way of the bias field strength. In
addition, in Chapter 3 the use of biased ferrite substrates for the reduction of RCS
is illustrated. The non-reciprocal nature of the microstrip antenna with biased
ferrite materials permits the reduction of RCS while transmit gain is preserved.

A substantial effort was devoted to the development of efficient algorithms for the
evaluation of the spectral integrals that arise in the solution method which was
adopted. It resulted in significant improvements in the numerical efficiency of the
solutions. This is discussed in Chapter 4.

In Chapter 5 the analyses for the infinite phased arrays of strip dipoles and probe-
fed patches on general anisotropic substrates are presented. The results include
the impedance as a function of scan.

The solutions which were developed are fullwave integral equation solutions using
the method of moments. The Green’s functions for the structures were found by a
matrix method which can be easily extended to any number of anisotropic layers.

The effects of substrate anisotropy on printed antenna characteristics have been

shown to be important. In addition, several potentially significant applications of
biased ferrite substrates have been identified.

i
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Chapter 1

Microstrip Dipole on a Two-layer
Uniaxial Dielectric Substrate

The fullwave solution for the considered structure involves: (i) the development
of the Green’s Function appropriate to the structure; (ii) the application of the
method of moments to an electric field integral equation involving the unknown
currents on the strip antenna element; and (iii) the derivation of the antenna
characteristics such as input impedance, gain, and efficiency from the knowledge
of those currents.

1.1 Green’s Function

The geometry of the structure under consideration is shown in Figure 1.1. The
bottom layer of thickness b (region I) is assumed to have a permeability u; and

permittivity &
e 0 O
6 = 0 ET 0 y (11)

0 0 €

while the top layer of thickness t (region II) is assumed to have a permeability u.

and permittivity &
e 0 O
=] 0 ¢ 0 |. (1.2)

0 0 ¢

The total material thickness is h = (b+t). For the problem considered here the
source (antenna) is located either at the material interface (z = b) or at the air-
dielectric interface (z = h). Therefore, Maxwell’s curl equations for each region




N>

ground plane

Figure 1.1: A Two-Layer Printed Antenna Structure with Uniaxial Anisotropy




are source free. The Maxwell’s curl equations are
V xE=—juuH (1.3)

and . .
Vx H=jwe E. (1.4)

The Fourier and inverse Fourier transform pairs are defined as:
o0 o0 .
L(z—zly—y2z)= yycs / / L(Xzs Ay, 2) ePaz=20eMlu-vlgy gy (1.5)
and
z\,, Ays 2) / / (z — zt,y — y1,z)e P E-2 =M -v) 4z 4y, (1.6)

The vector function L is either the electric or magnetic field. From Eqs 1.3- 1.6,
it can be shown that the transformed field components must satisfy the following
equations:

E—:%% + (kieep — A)E, = 0, (1.7)
a;g' + (k2e, ~ A¥)H, =0 (1.8)

(kines + ) E, oL, (1.9
(k2pe, + %)E aaE (1.10)
(k:pe, + %)Ii —we, M E, + J/\,aaz', (1.11)
(Kuee + o), = 2,22, (1.12)

From Eqs. 1.7- 1.12, the electromagnetxc fields in each region can be expressed
as:

In region,0< 2< b,

E, = Acosh(g?z), H, = Bsinh(g}z), (1.13)
= WM A JAzqie]

E, = ,\21 —==2"¥ Bsinh(g}z) + ,Alz —=L1 Asinh(g?2), (1.14)
E, = TWHb1dz g oh(ga) + 109 4 h(g?z), 1.15)
v= 22 sinh(q; 2 €22 sin (L.

- 7A.q WELETA
H, = 32 —=1Bcosh(¢'z) - 12 Y Acosh(qz), (1.16)




WEETA,

W
H, = sz 1291 B cosh(qtz) + —2-2 3 — 1% Acosh(gf2), (1.17)
where
ez
¢ = f_;(xz — esk2uy) (1.18)

q; = \/(/\2 — eXk2u;). (1.19)

In region I, b< z < h ,

E, = C cosh(g22) + Dsinh(g;2), H, = E cosh(g}z) + Fsinh(g}z), (1.20)

~ o Az .
E, = Whotrdy Y[E cosh(g}z) + Fsinh ¢2)) + JA:03 D cosh(g3z) + Csinh(g32)},
A’ zAz 2 2
(1.21)

-~ o z A
E, = _wﬂvﬂz 2 |E cosh(gyz) + Fsinh(gy2)] + :‘;22 2 [ D cosh(g52) + C'sinh(g32)],

(1.22)
- PR b 0
H, = ‘1—)‘7‘13[Fcosh(q2 z) + Esinh(g2)] ~ w—e—iz——"[C cosh(g;2) + Dsinh(g32)),
(1.23)
- P 0€3Az
i, = 238 F cosh(gh2) + Bsinh(ehe)] + 255 (C cosh(gjz) + Dsinh (g3
(1.24)
where
a (’ z
g = \ﬁ_‘;’(,\z — ek ;) (1.25)
¢ = /32 — ezk2p,). (1.26)
In region 0, h < 2, . .
E,=Ge M H, = He 9", (1.27)
-~ wqu JAzq ~-qiz—-
B, = (S55tH - 5 Gt (1.28)
= mWhoAz 1 JAG o g(z-h)
E, = ( 22 H - 22 7 Gle (129)
o —jAzq wfoA —q(z-
H.=(—3"H-—x% G (1.30)
~ —jA q Wfo —q(z~
= (—F"H+ 57 @™, (1.31)
where
g=1/A?— k2 (1.32)
and

A= AT (1.33)




For an % directed 6 source at z = z/, y = y/, with the source located at the material

interface, one has ; 3
H(z=b")-Hy(z=b")=-1. (1.34)

If the source is located at the air-dielectric interface, one has
H(z=h*)-H/(2=h") = ~1. (1.35)

Other tangential field components are continuous across each interface. By enforc-
ing these boundary conditions and after some algebraic manipulations, one can
obtain a system of linear equations in the form:

bitanh(g;b) —cosh(gsb) —sinh(gb) O B
= g; sinh(g3b) g3 cosh(g3b) Y E | _ (Vi) (1.36)
0 1 tanh(g3h) —1/u, F !
0 q; tanh(gzh) ' q H
—g¢3€i/el tanh(qib) sinh(ggb)qie;/€; cosh(qzb)gies/e; O A
€ —escosh(g3bd) —ezsinh(g3b) 0 c|_ Vi
0 tanh(gsh)eges/ €5 g5€s/€5 q D ?
0 € tanh(gsh)e; -1 G
(1.37)
For the case where the source is located at z = b, the excitation matrix is
0 0
Wil = | 700 | andlvy] = | Al (1.38)
0 0

While for the case where the source is located at z = h, the excitation matrix is

0 0
0 0
—JA, Az /we,

The coefficients of the Fourier transformed fields can be found by inverting the
matrix in Eq. 1.36 and 1.37. From these coefficients and Eqgs. 1.5, 1.13- 1.33,
the electromagnetic fields in the entire half space due to an infinitesimal electric
dipole (Green’s function) can be found.




1.2 The Method of Moments

Assuming that the current is flowing in the x direction on the dipole, the pertinent
integral equation is

w/2 (L
E,= / / / Gu(z -2, y—y)J.(<, y)dz'dy, (1.40)
-w/2J70

where G,, is the Green’s function and is in the form:
1 oo o . A (z—2’ . !
Cua(z -2 y-y) = /_m /_w Gez(Dz, Ay)e* (%) M=V da . (1.41)

The Fourier component G.. is exactly the expression of Eq. 1.21 with either
z = b (dipole at the material interface) or z = h (dipole at the air-dielectric
interface). In the method of moments procedure, the current on the dipole is
expanded in terms of a set of overlapped piecewise sinusoidal functions and a
Maxwellian function [1]. By assuming that the dipole length L is (N + 1)d and
employing the method of moments followed by a Galerkin’s procedure, the integral
equation is discretized into a system of linear equations which may be expressed
in matrix form as [Z][I] = [V], where the elements of [Z] can be written as

Zo = / 72(0) cos[ Az (m — n)d]dA, / Goa(Pay )2 (A w/2)dA,  (1.42)
0 0
with
cos A,d — cosk.d
k2 — A2
The impedance matrix elements are evaluated by a newly developed method which

is described in a later chapter [6]. This scheme computes the double infinite
integral in a rectangular-form.

Jz(A:) = 2k,

(1.43)

The elements in the excitation matrix [V] are
Vo =< fn, E. > (1.44)
wheren=1,2, 3, ... For a center-fed dipole, supposing that N is odd, one has
Vinsy2 =1 (1.45)
and V; = 0 elsewhere. The input impedance of the center-fed dipole is defined as

Zin = Vinsny2/Linsry2 (1.46)




1.3 Antenna Gain and Radiation Efficiency

Once the current in the dipole and the Green’s function are known, it is possible
to find the corresponding electromagnetic fields in the far zone.

The tangential electric fields at the air-material interface (z=h) can be written as
Bz, v, z=h) = 5 / / E(h, A,)e==+i0 dx_ d),, (1.47)
where

E(z ) = E.(0z N2 + Ey(As, A)§. (1.48)

E'(A,, Ay), a vector quantity, is the multiplication of the spectral dyadic Green’s
function and the Fourier transform of the current in the dipole. The far zone elec-
tric fields are related to the tangential spectral electric fields through the formulae
(5, p-67]

e )koR
Ey = jko— [E (kz, k,) cos ¢ — Ex(k., k,)sing), (1.49)
: ’*"R ~ -~ )
Ey = jho—r [E.(k:, k,) cosd + Ey (k., k,)sing], (1.50)
where
k, = kgsinfcos ¢ (1.51)
and
k. = kosinfsin¢ (1.52)

The power density in space is given as

P, = 240 ——[|E " + [ E4 ], (1.53)

while the total radiated power is

x/2 priIx
Prag = / / P,(8, &) R*sin 8dede. (1.54)
0 0

The transmit gain of the dipole is given by
P,(8, ¢)4m R?

gain(, ¢) = P , (1.55)
and in Db,
gainp, (8, ¢) = 10 log,, gain(f, 4). (1.56)
The radiation efficiency is defined as
Pmd
= red 1.57
Ptot ( )




where 1
Ptot = ER"nIIinlz (158)

For a lossless material the total input power is the sum of the radiated power and
the power due to surface waves.

1.4 Results

In this section, the effects of material anisotropy on printed circuit antenna charac-
teristics are presented through an accurate numerical computation. For pract..al
applications, printed antennas are usually covered with a protective layer. This
is the configuration studied in this research. Interesting phenomena for printed
antenna characteristics due to the presence of the cover layer are described in (2].
The results presented here focus on the effects of either substrate or superstrate
anisotropy. As was discussed in [3], many practical integrated circuit substrates
exhibit strong anisotropy due to either their nature or what is introduced in the
manufacturing process. Epsilam-10 (¢; = 10.2 and ¢, = 13), Sapphire (¢, = 9.4
and ¢, = 11.6) and PTFE(CuClad) (¢, = 2.43 and ¢, = 2.88) are examples of
these materials.

Typical printed antenna gain is about 6 Db. Figure 1.2 shows the broadside
(¢ = 0) gain as a function of frequency with Sapphire as a substrate. The solid
line is for the case of neglecting the substrate anisotropy, while the dash line is
for the case of including the substrate anisotropy. It is seen from Figure 1.2
that the substrate anisotropy has little effect on the antenna gain in almost the
entire frequency range. On the other hand, the superstrate anisotropy has strong
effects on the gain performance as illustrated in Figure 1.3, where the anisotropic
material (Sapphire) is used as the superstrate. The deep valleys occurring in both
Figures 1.2 and 1.3 are due to the resonance of the layered structure. This
resonance behavior can be explained in terms of a transmission line equivalence
model [2].

Microstrip structures support surface waves, of which the lowest order mode has
zero cutoff frequency. For printed circuit antenna applications, the surface wave
power is considered loss since all the power is intended for radiation into free space.
The radiation efficiency characteristics can be used to examine the percentage of
power loss due to the surface waves as compared to the total power emanating from
the antenna element. These surface waves propagating horizontally are usually
undesirable except for special prescribed applications. Figure 1.4 shows radiation
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efficiency as a function of material thickness with and without the substrate or
superstrate anisotropy. It is seen that material anisotropy does not affect the
efficiency much. This is due to the fact that both surface wave power and radiation
resistance increase or decrease together when the material constants change.

The effects of the substrate anisotropy on the input impedance of a center-fed
printed dipole are shown in Figures 1.5 and 1.6. In these figures, two cases
are considered. One is for the case where both the substrate and superstrate
are isotropic (€; = 2.43 and €2 = 2.2). The other is for the case of an isotropic
superstrate (e; = 2.2) and a substrate with anisotropy in the z (vertical) direction
(€22 = 2.43 and ¢;, = 2.88). In addition to the change in the resonant length, the
resonant resistance changes about 10% which is rather significant. This implies
that the neglect of the material anisotropy can lead to an unexpected and severe
input mismatch. It is also seen that away from the dipole resonance, the material
anisotropy has no significant effect. The resonant length of a center-fed dipole
is also an important parameter for the antenna designer. Figure 1.7 shows the
dipole resonant length as a function of the layer thickness (or frequency) with and
without substrate anisotropy. The materials used in this illustration are Epsilam
(€ = 10.2) substrate and Duroid (¢ = 2.2) superstrate. It is found that neglecting
the substrate anisotropy results in an error in the resonant length of more than
10%. The decrease for the resonant length due to the substrate anisotropy is
because the material anisotropy in the z direction increases the effective dielectric
constant of the substrate. It is also noted that the increase of the layer thickness
(or frequency) results in the decrease of the dipole resonant length.

From all the above observations, it is clear that the material anisotropy has sig-
nificant effects on the near fields and current distributions of printed antennas.

1.4.1 Conclusion

In this work, we have developed accurate computer codes for analyzing two-layer
printed antenna structures capable of including the effect of material anisotropy.
The computer codes include both near field and far field computations. It has been
found that the material anisotropy has strong effects on the printed antenna per-
formance especially when the near fields are considered. The parameters that are
affected significantly include input impedance and resonant length of the antennas.
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Chapter 2

Microstrip Dipoles on Gyrotropic
Substrates

The characteristics of a microstrip dipole on/in a gyrotropic substrate are inves-
tigated. As in the case of uniaxial permittivity, the boundary value problem is
formulated as an integral equation that is solved by the method of moments. The
Green’s function, which is central in the solution, is represented in the spectral
domain. A numerical technique for generating the Green’s function is described.
The new algorithm for the evaluation of the double infinite spectral integral is
used. The details of that algorithm are presented in Chapter 4. Radiation pat-
terns (transmit gain patterns) are presented for the case of a dipole on a biased
ferrite substrate. Although the development of the Green’s function is detailed
for the single general anisotropic layer substrate, the matrix method can be easily
applied to the problem of multiple anisotropic layers. Computed results for the
case of an isotropic substrate with a gyrotropic (biased ferrite) cover layer are
presented. Those results illustrate the use of the biased ferrite substrates or cover
layers for element pattern shaping, element pattern beam steering, and element
gain enhancement.

2.1 Introduction

The printed circuit antenna is an attractive antenna structure for its conformabil-
ity, low profile, light weight, and low cost [7,8]. It has been demonstrated in [1,2]
that the material constants and thickness are critical to the performance of the
printed circuit antenna. Also, the frequency range of operation is limited (nar-
row band); once the structure is built, it is not possible to change the antenna
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characteristics and frequency band of operation.

By using biased ferrite substrates in microstrip structures one can, by way of
the applied bias dc magnetic field, change the permeability tensor and thus the
electrical properties of the material. It is possible to change and control the
antenna characteristics dynamically without changing the physical structure.

2.2 Theory

2.2.1 Material Characteristics of Ferrites

Ferrite materials have been extensively used in microwave devices due to their non-
reciprocal electrical properties. The magnetic properties of ferrites arise mainly
from the magnetic dipole moment associated with the electron spin. The funda-
mental physics of ferrites have been well discussed in the literature, as for example
in [9,10]. In this section, we summarize the material properties of ferrites in terms
of a permeability tensor which is suitable for the study of the wave propagation
problems.

For a z directed dc bias, the permeability tensor of a ferrite material is

b 3k O
B=up| -y pu 0}, (2.1)
0 01
where o
oOWm
=1 4 —0Ym 2.2
p R p (2-2)
Wwm
= -, 2.3
" wi — w? (2.3)
wo = uoHo, (2.4)
Wm = ’WOM: ’ (25)
4 = 1.759 x 10" kg/coul (2.6)

w is the a.c. operating frequency, M, is material saturation magnetization, and Hy
is the dc bias magnetic field. For the geometry shown in Figure 2.1, the planar
ferrite slab is parallel to the x-y plane. The dc bias H field is, for practicality,
taken to be in the planar direction. For such cases, the permeability tensor is

1+ (o — 1) cos® @g Bo=£ sin 24 —jKsin ¢g
B = po B~k sin 2¢ p+ (po — 1) sin®¢y jKcosdo |, (2.7)
JKsin ¢o —JK COS ¢g m
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Figure 2.1: A Microstrip Dipole on a Ferrite Substrate

18




where ¢, is the angle of the direction of the dc bias H field measured from the x
axis.

It can be seen from Eqgs. 2.1 - 2.7 that the permeability tensor for a ferrite is deter-
mined by an inherent material property (saturation magnetization), the strength
and angle of the input bias H field, as well as the operating frequency.

2.2.2 Green’s Function for a Grounded Ferrite

In dealing with the Green’s function for a grounded ferrite, no more difficulty
is introduced by considering both permittivity and permeability as anisotropic.
With this generalization, both the permittivity and permeability are tensor forms,
which in a rectangular Cartesian coordinate system are expressed as:

. Hzz Hzy Hzz - €zz €zy €Exp
B = po| Pyz Hyy HBy: | and € = € | €z €y € |- (2.8)
Haz Hzy H:: €zz €zy €z

Then Maxwell’s equations for the fields inside the ferrite slab (0 < 2 < d) with no

source are . . . .
VxE = —jwi-H and VxH = jwé-E. (2.9)

Introducing the following Fourier transformation

g _ :}7; / > i (ko ky) €735 =34V dk, dk,, (2.10)

and using Eq. 2.9, one obtains

- 3 - -
—-jkxH + a—z(é x H) = jwe-E (2.11)
and 3
—jkxE + 5, (8 % E) = —jwii-H, (2.12)

with k = k.2 + k,§ and E and H are the spectral electric and magnetic fields,
respectively, more over

E=FE,+E,

(2.13)

N>

+ £,

L3

and

3

N>

+ H,

<

H=H,+H, (2.14)




After some algebraic manipulations, Eqs. 2.11 - 2.12 can be written in the form
of a set of linear differential equations, as

9 - .
Z19(:)] = 4][9(2) (2.15)
where
] kzliz(z) + kv’iv(z) a1 613 a3 Gy
b kyH.(z) - k.Hy(2) a1 G2 Q33 Qg
= = ; = 16
(=)l k.E.(z) + k,E,(2) and [4] @31 as; asz Qasq (2.16)
kyE.(2) — k. E,(z) Q21 Q42 G4 Qg4
The solution of Eq. 2.15 is
[b(21)] = [T(21 — 22)] [¥(=)), (2.17)
where
lamm) g 0 0
- 0 Aa(z1-23) 0 0 .
TEa-=)] =B o ° 5  sm-m o @7 (218
0 0 0 e lai-22)

in which the A;,¢ = 1,2,3,4 are the eigenvalues and [¢'>] is a 4 X 4 eigenvector
matrix of [A]. According to the Calley-Hamilton theorem, the matrix [T'(z; — z;)]
can also be expressed as

3
[T(Zl — 22)] = Z Cn(Zl - Zz)[A]n, (219)
n=0
where the coefficients C, are given from the solution of the matrix equation
3
ilnmn) = N k(s - z), 5=1,2,3,4. (2.20)
k=0

The matrix [T relates the tangential electromagnetic fields at one surface (z = z)
to another (2 = 2;). The tangential electromagnetic fields at the air-material
interface can now be related to those at the ground plane as

[%(d7)) = [T(d)] [$(0)] (2.21)

The electromagnetic fields in the air (2 > d) can be derived in a straightforward
manner. With this result together with the boundary conditions that the tangen-
tial electric fields are zero at the ground plane, one obtains

jk? — k2 @ é
h(dt)] = weod | and (o) = | @ , 2.22
[¥(d")) ik [¥(0)] 0 (2.22)
—wuo& 0
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where a, 3, ¢ and d are unknown spectral quantities to be determined.

With the current source at the air-material interface, the electromagnetic fields
just above and below z=d are related as follows:

[$(d*)] ~ [¥(d7)] = (Ui, (2-23)
where [U}] is either [U,] or [U,] and

—k, k,
k, —k

)= | o |adul=] 5| (2.24)
0 0

[U,] is for the current source in the x direction, while [U,] is for the current source
in the y direction. Eq. 2.23 involves a 4 by 4 matrix equation, where the solution
determines the quantities @, b, ¢ and d. As a result, the spectral Green’s function
of the pertinent structure is determined.

2.2.3 The Moment Method Solution
The Impedance Matrix Elements

The integral equation for the problem is
E. = [ G.J.ds, (2.25)

where the microstrip dipole is oriented in the % direction, and is assumed to have
current flowing only in the % direction. The integral in Eq. 2.25 is a surface
integral over the strip dipole. G,. is the Green’s function component which is
the E, component due to a & current source in the x direction. The spectral
component of this Green’s function has been derived in the previous section.

In the moment method procedure, the current is expanded in terms of a set of
known basis functions. For the problem considered the current in the dipole of
length L = (N + 1)a and width w is conveniently assumed as

N
Jo(z, y) = Zl In jn(z, ) (2.26)
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and

(2 _ In(z)
In(z, ) Ty (2.27)
where .
ia) = { g TRl e el e (228

With a standard moment method followed by a Galerkin’s procedure, where the
same expansion and testing functions are used, the integral equation in Eq. 2.25
is converted into a matrix equation as

N
Y InZpp = Vm, m=1,2,3...N, (2.29)

n=1

where

w/2 pw/2 pLj2 pL)2
Zmn = f / G::(2, 21, y, Y1) Jn(2!, Y1) Jm(Z, y) dzdzidydy! (2.30)

w/2 J-wf2 J-L/2 J-L/2
and
2 / 2 z, z, d d 2.31
/ /2 /2 z( me( y) zay. ( )

On the strip, however, E; vanishes except at the delta-gap feed point. Thus, the
excitation vector terms are all zero except that element that corresponds to the
testing function taken over the delta-gap point:.

V., = { 1 , for m corresponding to the feed point (2.32)

0 , otherwise.

The Green’s function and its spectral component is related through the formula:

Gz(z, 2, y, y) = Z_2 / / Grelks, k) 77820 eIkl gk gk, (2.33)

After inserting Eq. 2.33 into Eq. 2.30 and changing the order of integration, the
impedance matrix element Z,,, in Eq. 2.30 may be written as

/ /oo u kz, kv) sm‘(ak /2) Jz(k /2) ~jkz(n-m)a dk, dky. (2.34)

The dipole input impedance is found from the computed current, I;,,, at the delta-
gap feed point:

n = Rin + J Xin = (235)

1
Iin
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Far Field Computation

Once the current in the dipole and the Green’s function are known, it is possible
to find the corresponding electromagnetic fields in the far zone.

The tangential electric fields at the air-material interface (z=d) can be written as
— 1 o fro0 . . ]
By z=d=5[ [ " Blke, ky)e i d, d, (2.36)
where

E(k., k) = E.(ks, k)% + E,(k., k,)§. (2.37)

E (kzy k), a vector quantity, is the multiplication of the spectral dyadic Green’s
function and the Fourier transform of the current in the dipole. The far zone elec-
tric fields are related to the tangential spectral electric fields through the formulae
[5, p 67]

., eIk = :
Ey = jkoy— [Ey(kz, k,) cos ¢ — E.(k., k,)sing], (2.38)
., e IhR - .
Ey = jkos— [E.(kz, ky) cos ¢ + Ey(k., k,)sing| (2.39)
where
k; = kosinfcos ¢ (2.40)
and
k, = kosinfsing (2.41)
The power density in space due to the current in the dipole is given as
_ 1 2 2
Po= o= [ Bl + | B Y], (2.42)

The antenna transmit gain Gy, (0, ¢) is

4 P, (0,9)
T2 (27 P, (0, ¢) dOd¢

G (0, ¢) = (2.43)

The receive gain (receiving cross section) must be computed from the results of
the scattering problem, since the system is not reciprocal. The scattering problem
is addressed in Chapter 3 in connection with the problem of RCS reduction using
biased ferrite substrates.

The radiation efficiency, n, for a lossless substrate is

»/2 p2x P, 8d P
0 o1 !r(0v¢2)d ¢ -1 - L™ (2.44)
;Rin |I|'n| Pw‘
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2.3 Numerical Results

Figures 2.2 and 2.3 are, respectively, E-plane and H-plane transmit gain patterns.
The substrate parameters are selected to represent a typical ferrite; the permittiv-
ity, €,, is 12.5, and the saturation magnetization, uoM,, is taken as 0.25 Tesla. The
dipole is oriented in the z direction which is parallel to the ¢ = 0° plane. In each
figure two cases are plotted, corresponding to two bias magnetic field directions.
The solid thin line curves represent the cases where the biasing magnetic field is
y-directed, that is ¢, = 90°; while the starred line curves represent the cases for
which the field is z-directed, ¢, = 0°.

2.3.1 Element Pattern Shaping, Scanning, and Gain En-
hancement

Both for single element antennas and antenna arrays the importance of the element
factor to the overall antenna system performance is obvious. In many applications
there would be a significant benefit from an element factor with higher gain and
shaped radiation patterns. In scanning arrays, an element factor with enhanced
off-broadside gain could help to offset the loss in gain that is associated with the
decrease in the projected aperture as the beam is scanned off-broadside. With
a sufficiently directive element factor a single element could replace an array of
elements. If that single highly directive element factor could also be scanned the
single element could replace a complete phased array.

As suggested by the results that follow, the microstrip antenna element on a
biased ferrite substrate may be used to realize the single element characteristics
just described.

Figure 2.4 is a plot of the E-plane directivity pattern of a strip dipole on a biased
ferrite substrate. The bias magnetic field is in the plane of the substrate and
along the direction of the dipole. The pattern shows the enhanced gain at the off-
broadside angles, with approximately the same directivity at 60° as at broadside.
The H-plane pattern is plotted in Figure 2.5. It shows a striking reshaping of the
element pattern. The pattern is highly directive and the element pattern “beam”
goes out at a grazing angle. Those patterns were computed at 30 GHz and for a
fixed bias magnetic field of 7150 Gauss. The substrate was 2.0 mm thick and with
a relative permittivity of 12.6. The saturation magnetization of the material was
3000 Gauss.
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Figure 2.2: E-plane Transmit Gain Pattern for a Center-fed Dipole on a Ferrite
Substrate.

The dipole is oriented in the ¢, = 0° direction. Substrate thickness = 0.04 X,,
dipole width = 0.02 ),, ¢, = 12.5, u = 0.766, and x = -0.567 .

Two cases are plotted:
(1) **** the bias field angle is ¢, = 0°, the dipole resonant length is I, = .366), ;
(2) — the bias angle is 90°, the dipole resonant length is I, = .256), .
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Figure 2.3: H-plane Transmit Gain Pattern for a Center-fed Dipole on a Ferrite
Substrate.

The dipole is oriented in the ¢, = 0° direction. Substrate thickness = 0.04 A,
dipole width = 0.02 )_, ¢, = 12.5, u = 0.766, and x = -0.567 .

Two cases are plotted:
(1) **** the bias field angle is ¢, = 0°, the dipole resonant length is I, = .366), ;
(2) — the bias angle is 90°, the dipole resonant length is I, = .256), .
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Figure 2.4: E-plane Directivity for a Center-fed Dipole on a Ferrite Substrate.

The frequency is 30 GHz. The bias field is parallel to the dipole.
The substrate thickness is 2.0 mm, and ¢, = 12.6.
Hi. = 7150 Gauss, and M, = 3000 Gauss.
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Figure 2.5: H-plane Directivity for a Center-fed Dipole on a Ferrite Substrate.
The frequency is 30 GHz. The bias field is parallel to the dipole.

The substrate thickness is 2.0 mm, and ¢, = 12.6.
H,;. = 7150 Gauss, and M, = 3000 Gauss.
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By varying the applied bias magnetic field strength one can vary the patterns of a
printed antenna on a ferrite substrate. For the case where the bias field is in the
direction of the dipole, the H-plane element pattern “beam™ will scan as a function
of the applied bias field. This is illustrated in the plot of Figure 2.6, for which
the configuration consists of a two layer structure with an isotropic substrate and
a biased ferrite cover layer. The isotropic substrate is 1 mm thick with a relative
permittivity of 10.0, and a permeability of 1.0. The ferrite cover layer is 3 mm
thick with a permittivity of 12.6 and a saturation magnetization ( M, ) of 2500
Gauss. The bias magnetic field is directed parallel to the strip dipole. Figure 2.6
is for the fixed frequency of 9 GHz. It is a plot of the element beam pointing angle
as a function of the bias field strength. The H-plane patterns for two different bias
field strengths are shown in Figure 2.7. Each pattern corresponds to one point
in the curve of Figure 2.6. Figure 2.8 is a plot of the beam pointing angle as a
function of frequency for a fixed bias field strength Hs. = 1000 Gauss. From the
preliminary computations which have been made it appears that the nonreciprocal
properties of the biased ferrite are more apparent when the ferrite is used as a cover
layer.

2.3.2 Conclusion

Analyses for microstrip dipole elements on/in gyrotropic (biased ferrite) substrates
have been developed using a rigorous moment method solution. The applied bias
field can have a significant effect on the electrical performance. The applied bias
can be used to dynamically change the dipole characteristics. including resonant
frequency and pattern shape. A highly directive element pattern can be achieved.
Moreover, the bias magnetic field can be used as a control of the element fac-
tor beam direction (peak). This suggests that the structure can be used as an
electronically tunable (adaptable) multifunctional system.
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Figure 2.6: H-plane element beam pointing angle as a function of the bias magnetic
field strength.

The frequency is 9 GHz. The bias field is parallel to the dipole.

Substrate: thickness = 1.0 mm, ¢, = 10.0, and 4, = 1.0.
Ferrite Cover Layer: thickness = 3.0 mm, ¢, = 12.6, M, = 2,500G.
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Figure 2.7: H-plane patterns for Hyc = 600G and Hy.= 1000 G.
The frequency is 9 GHz. The bias field is parallel to the dipole.

Substrate: thickness = 1.0 mm, ¢, = 10.0, and 4, = 1.0.
Ferrite Cover Layer: thickness = 3.0 mm, ¢, = 12.6, M,= 2,500 G.
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Figure 2.8: H-plane element beam pointing angle as a function of frequency.
The bias field strength is Hg.= 1000 G. The bias field is parallel to the dipole.

Substrate: thickness = 1.0 mm, ¢, = 10.0, and g, = 1.0.
Ferrite Cover Layer: thickness = 3.0 mm, ¢, = 12.6, M,= 2500 G.
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Chapter 3

Scattering and RCS of Microstrip
Dipoles on/in Biased Ferrite
Substrates

In many applications the antenna scattering or radar cross section (RCS) is of
importance. In low observable applications it can become the most important
performance parameter. Designs with simultaneous low in-band RCS and high
gain and efficiency may be required. Conventional antenna designs are limited in
the extent to which the EM scattering can be reduced by their reciprocal charac-
teristics. Since because of the system reciprocity, a reduction in antenna in-band
RCS implies a reduction in antenna gain. However, the use of non-reciprocal ma-
terials, such as biased ferrites, may provide substantial RCS reduction while the
antenna gain is preserved.

The antenna scattering problem is of interest for a second reason: it provides the
means by which the receive function of the antenna (the receive cross section)
can be characterized. In non-reciprocal systems the transmit and receive patterns
are distinct, and must be analyzed separately. The characterization of the receive
antenna involves the solution of the problem of scattering from a loaded antenna.
Specifically, it requires one to find the induced currents on the loaded antenna when
a plane wave is incident on the structure, which is the essence of the scattering
problem.

In this chapter the analyses and methods described in the previous chapters are

applied to the scattering problem. The computation of RCS for the microstrip
antenna on a layered structure including gyrotropic layers is outlined.
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3.1 The Integral Equation for Scattering

The integral equation for the problem is
EI + / G:: J: ds = 0, at the strip dipole, (3.1)

where the microstrip dipole is oriented in the Z direction and is assumed only with
current flowing in the Z direction. The integral in Eq. 3.1 is a surface integral
over the strip dipole. G;. is the Green’s function component which is the E,
component due to a § current source in the x direction. The spectral component
of this Green’s function has been derived in the previous chapters. E!™ is the x
component of the total electric field which results when a plane wave is incident on
the layered structure without the strip dipole. This term thus includes reflected
or scattered plane waves.

3.2 The Moment Method Solution for the In-
duced Dipole Currents

In the moment method procedure, the current is expanded in terms of a set of
known basis functions. For the problem considered the current on the dipole of
length L = (N + 1)e and width w is assumed to have the form

N
Jo(z, y) = Z I, ja(2, ¥) (3.2)
whe;e fa()
In(z, ¥) = ﬂ\/(TU/Z)z _yza (3.3)
and
e = { § ATl el e (3.4

In Galerkin’s procedure the testing functions are chosen to be the same as the
expansion functions. The integral equation (Eq. 3.1) is converted into a matrix
equation:

N
Y I,Zmn = Vm, m=1,2,3..N, (3.5)

n=1

where

7z wf? rwf2 pLj2 pL/2 c te g
= 22(2, 20, y, Y1) s (21, Y1) im (2, 1dydyr (3.6
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and o2
/ /L/2 " (z, ¥)im(z, y) dz dy. (3.7)

v/2
The Green’s function and its spectral component is related through the formula:

1 0o © . . .
Gsz(z, zl, y, y') = 4? [ /_ Gzz(kz, ky) C-’k'(z—ﬂ) C_’k'(v-w) dk, dkv (3.8)

After inserting Eq. 3.8 into Eq. 3.6 and changing the order of integration, the
impedance matrix element Z,,, in Eq. 3.6 may be written as

Zpmn / / G ks, k) S 2K:/2) (“k’/z) J2(kyw/2) et gk dk.. (3.9)

3.3 Scattered Far Fields and Radar Cross Sec-
tion

Once the current on the dipole and the Green’s function are known, it is possible
to find the corresponding electromagnetic fields in the far zone.

The tangential electric fields at the air-material interface (z=d) can be written as

B,y z=d)= / / E(k,, k,)e~7b==ikv dk, dk,, (3.10)

where

E(k., k,) = E.(k., k)2 + E,(k., k,)§. (3.11)

E'(k,, k,), a vector quantity, is the multiplication of the spectral dyadic Green’s
function and the Fourier transform of the current in the dipole. The far zone elec-
tric fields are related to the tangential spectral electric fields through the formulae

5]

e-ikoR

E; = jko 57 R [E,(k,, k,)cos ¢ — E,(k,, k,) sin¢] , (3.12)
., e TkoR . - :
Ey = jko 5 R [E,(k,, k,)cos ¢ + E,(k., k) sin ¢] , (3.13)
where
k: = kosinfcos ¢ (3.14)
and
ky = kosinf@sin¢ (3.15)
The power density in space due to the current in the dipole is given as
2
P, = 240 [lE 1 + | Es 1], (3.16)
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while the power density of the incident plane wave is 1/(2407). Therefore, the
radar cross section (RCS) in square meters is

RCS(0, ¢) = 4n [| By | + | E4 Y], (3.17)

and in dBsm,
RCSg4p = 10 log,, RCS(4, ¢). (3.18)

3.4 Results

As was noted previously, the objective in RCS reduction schemes is to reduce the
RCS but at the same time preserve the antenna RF performance, in particular to
preserve transmit gain and/or receive cross section.

From the data that follows one can conclude that with biased ferrite cover layers
it may be possible to reduce RCS and at the very least preserve transmit gain.
(The interplay of RCS reduction, transmit gain, and receive cross section has yet
to be fully investigated.)

The developed solution is based on a fullwave method that takes complete account
of the surface wave phenomena due to the substrate construction. Consequently,
in the results that follow the computed antenna gains include the surface wave
efficiency factors.

Figure 3.1 consists of plots of the computed RCS, at broadside, for a microstrip
dipole on an isotropic substrate with and without a biased ferrite cover layer. For
each of the two cases the dipole was terminated with an appropriate matched load
at 15 GHz. The isotropic substrate was 0.72 mm thick, with a permittivity of 2.2.
The ferrite cover layer was 1.08 mm thick, with an assumed permittivity of 12.6,
and a saturation magnetization ( M, ) of 2780 Gauss. The bias field was 2500
Gauss and it was in a direction normal to the layer surface. The dashed curve,
which corresponds to the case with the biased ferrite cover, shows a reduction of
the peak RCS of about 7 dBsm relative to the uncovered isotropic case.

The reduction in RCS is significant only if it is possible to simultaneously maintain
the gain of the antenna. This is in fact the case. Figure 3.2 consists of plots of the
computed transmit gains for the structures with and without the biased ferrite
cover. It is seen that at 15 GHz the gain of the antenna with the biased ferrite
cover only dropped by 1.0 dB compared to the uncovered isotropic case. The
biased ferrite cover layer reduced the peak antenna RCS by 7 dBsm while only
reducing the transmit gain by less than 1.0 dB. In some applications that would
be an excellent trade-off.
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In Figure 3.3 the computed broadside RCS is plotted for the full range of incident
field polarizations. This is for the same parameters as those of Figure 3.1, at 15
GHz. From this it is clear that the reduction in RCS is not just due to a rotation
of the incident field relative to the polarization of the dipole. The worst-case
(largest) RCS for the antenna with a biased ferrite cover is lower by 6dBsm than
the worst-case RCS of the isotropic antenna.

Figures 3.4 and 3.5 are, respectively, plots of the current at the load and the
received power as a function of the incident field polarization. Those are, as in
the previous cases, for broaside incidence at 15 GHz.

The curves of Figures 3.6 and 3.7 are of antenna RCS over frequency and for
several different incident field polarizations. The corresponding induced dipole
currents are plotted in Figures 3.8 and 3.9.

Computations were made for several discrete angles of incidence other than broad-
side. The data of Table 3.1 indicates that the RCS reduction noted in the previous
data is not specific to the broadside incidence condition, but rather that the phe-
nomenon is observed at all angles of incidence.

Transmit gain and receive gain patterns are provided in Figures 3.10 and 3.11,
respectively. The sum of the data suggests that the reduction in RCS is obtained
at the expense of the receive gain (receive-cross-section) of the antenna. This at
least is the case for the construction and parameters which were used here. It may
be possible to find a set of parameters for which the receive gain is preserved and

instead the transmit gain is sacrificed in order to achieve the reduction of antenna
RCS.

3.5 Conclusion

The scattering and RCS for microstrip antennas on gyrotropic substrates has been
investigated. A comparison of gain and RCS data for microstrip antennas with
biased ferrite cover layers indicates that it is possible to reduce broadside RCS
while preserving transmit gain. These are preliminary results and a variety of
parametric studies remain to be carried out. The interplay of RCS, transmit gain,
and receive cross section must be fully explored.
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Figure 3.1: RCS at Broadside as a Function of Frequency With and Without a
Biased Ferrite Cover Layer.

Substrate: thickness = 0.72 mm, and ¢, = 2.2.

Ferrite Cover Layer: thickness= 1.08 mm, ¢, = 12.6,

Saturation magnetization ( M, ) = 2780 G,

H, = 2500 Gauss, and the bias field is normal to the layers and dipole.
In each case the dipole is terminated with a matched load at 15 GHz.
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Figure 3.2: Transmit Gain at Broadside as a Function of Frequency for a Microstrip
Dipole With and Without a Biased Ferrite Cover Layer.

Substrate: thickness = 0.72 mm, and ¢, = 2.2.

Ferrite Cover Layer: thickness= 1.08 mm, ¢, = 12.6,
Saturation magnetization ( M, ) = 2780 G,

H,. = 2500 Gauss, and the bias field is normal to the layers.
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Figure 3.3: RCS at Broadside as a Function of Incident Field Polarization: With
and Without a Biased Ferrite Cover Layer.

Frequency= 15 GHz

Substrate: thickness = 0.72 mm, and ¢, = 2.2.
Ferrite Cover Layer: thickness= 1.08 mm, ¢, = 12.6,
Saturation magnetization ( M, ) = 2780 G,

H,;. = 2500 Gauss,

The bias field is vertical (normal to substrate),

The dipoles are terminated with matched loads:
Zl7 = 13.00, and Zj2° = 2.800.
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Figure 3.4: Current at the Load as a Function of the Incident Field Polarization,
for a Broadside Incident Field: With and Without a Biased Ferrite Cover Layer.

Frequency= 15 GHz

Substrate: thickness = 0.72 mm, and ¢, = 2.2.
Ferrite Cover Layer: thickness= 1.08 mm, ¢, = 12.6,
Saturation magnetization ( M, ) = 2780 G,

Hdc = 2500 Gauss,

The bias field is vertical (normal to substrate),

The dipoles are terminated with matched loads:
Z!" = 13.00, and Z!*° = 2.800.
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Figure 3.5: Received Power as a Function of the Incident Field Polarization, for a
Broadside Incident Field: With and Without a Biased Ferrite Cover Layer.

Frequency= 15 GHz

Substrate: thickness = 0.72 mm, and ¢, = 2.2.
Ferrite Cover Layer: thickness= 1.08 mm, ¢, = 12.6,
Saturation magnetization ( M, ) = 2780 G,

H,. = 2500 Gauss,

The bias field is vertical (normal to substrate),

The dipoles are terminated with matched loads:
ZJ¢ = 13.00, and Zi* = 2.800.
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Figure 3.6: Broadside RCS as a Function of Frequency for Different Incident Field
Polarizations. The angle ¢ identifies the electric field direction in the x-y plane.
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Incident Angle | Dielectric | Ferrite/Dielectric
9 = 30°, ¢ = 90° -33.6 -39.3
6 = 60° ¢ = 90° -43.1 -44.8
9=30°¢= 0| <-90 -43.8
0=60°¢= 0| <-90 -58.9

TE MODE INCIDENT

Incident Angle | Dielectric | Ferrite/Dielectric
0=30°¢=90° <-90 -40.4
6=60°¢=90° <-90 -43.1
9=30°¢= 0| -33.9 -40.1
=60 ¢= 0° -40.6 -54.6

TM MODE INCIDENT

Table 3.1: RCS for Off-broaside Angles of Incidence and TE and TM Incident
Field Polarizations.
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Figure 3.10: Transmit Gain Patterns: ¢ = 0° plane.

48

-30

-20 -10

0

10 dB




F=155Glz
F =145 GHz
S N S
e - \\\\
2 \
/ \

/ }\ F =15Gllz

\ \

\ \F”
10 0 -10 -20 -30 -40 -30 -20 -10 0 10 dB

Figure 3.11: ¢ = 0° plane Receive Patterns for the case of an Incident TM mode.

49




Chapter 4

Evaluation of Spectral Integrals
in the Moment Method

A numerical algorithm for the moment method solution of printed circuit antenna
problems is developed. The formulation employs a spectral domain approach;
however, the integration variables are in the cartesian instead of the polar co-
ordinate system. This numerical scheme separates the integration involving the
longitudinal and the transverse dependence of the basis functions. This aspect
may reduce the computation effort drastically. The new approach is found very
efficient and easy to use, and is suitable for a variety of basis functions including
mixed type basis function sets.

4.1 Introduction

Method of moments solutions of integral equations have been applied extensively
to printed circuit antenna problems in the past. In this approach, an exact Green’s
function for a grounded dielectric substrate is used. The method of moments trans-
forms the integral equation into linear simultaneous equations where the solution
(current on the microstrip) can be found by matrix inversion. The efficiency and
accuracy of the solution depends on the computation of each individual matrix
element as well as the matrix inversion. Depending on the method of formulation,
the computational methods thus lead to two different branches. If the formulation
is in a real space, the computation involves the evaluation of a Sommerfeld-type
integral [11,1,12,13]. Numerical techniques for efficient computation of this type
of integral are developed in [14,15,16]. These numerical methods have a common
feature in that, if a true Galerkin procedure is used, then the computations of a
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Sommerfeld type integral (Green’s function) and four finite integrals (two surface
integrals over the planar conductor) are required. An efficient approach as was
described in [14] is to tabulate the Green’s function as a function of the distance
between the source and field point such that the infinite integral needs to be com-
puted only once. The four finite integrals can usually be reduced two integral if
the expansion and testing functions are properly chosen. For irregular shaped or
entire domain basis functions, more analytic derivation may be required to reduced
the computation effort of the four integrals.

If the formulation of the problem is in a plane wave spectral domain, the compu-
tation always involves a double infinite integration which is usually transformed
into a finite and an infinite one by a transformation from a cartesian to a polar
coordinate system as described in [17]-[23]. The problem with this computation is
that the finite integration involves an oscillatory function, while the infinite one is
slowly convergent and may be highly oscillatory when the basis function spacing is
large. These aspects lead to a numerical computation which is very inefficient. An
improved technique using an equivalent image extraction method has been pro-
posed [24]. Although it enhances the computational efficiency, it is only developed
for piecewise sinusoidal basis functions with no transverse variation and still has
difficulties for the thin substrate cases.

In this communication, a new algorithm for the matrix element computation in the
method of moments formulation is presented. In the new approach, the integration
is carried out directly in a plane wave spectral domain, which involves a double
infinite integration. The advantages of computing the double infinite integration
directly rather than treating a finite and an infinite one will be discussed. The
comparison of the new and the previous methods, in terms of computational effi-
ciency, is also made through the examples of a center-fed dipole and a microstrip
open-end discontinuity on an isotropic substrate.

4.2 The New Algorithm

If developed in a spectral domain [17)-[24], the impedance matrix elements, from
the method of moments formulation of the printed circuit structure shown in
Figure 4.1, are in the form of

z=[" [T GOLALADAO )P dr d,, (4.1)
—00 J—00
where (zm,yn) is the center-to center displacement between the expansion and

testing functions. The Green’s function G()., },) includes the information of the
geometry and material constants. If a single layer microstrip structure is used as
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an example, the Green’s function may be any of the following three components,
depending on which current and electric field components are considered [25].

e —A2  Agq(l-¢)

G0 M) =150) * D)D) “
oAy ANAa(l-¢)
Gy = [D,(»\) D.0) D) I, (4.3)
&—A  Ma(l-¢)
=I5 * D.VDaD)” )
where
D.(A) =q+ t_a—nm (4.5)
Dm(/\) =q + Wg;q‘l—h—), (4.6)
g=vAi-1, (4.7)
@ =2 —¢ (4.8)
and
A=/t Az (4.9)

In this work, we use an approach, in which the integral in Eq. 4.1 is evaluated
directly instead of transforming it into a polar coordinate system. With rearrange-
ment, Eq. 4.1 can be written as

z= Z L(A)er S (A,)dA, (4.10)

where "

S(A,) = / " G M)A ), (4.11)

Both the A, and ), integration ranges can usually be reduced to the semi-infinite
ranges from 0 to co depending on the even or odd symmetry of the integrand.
The Green’s functions contain singularities in the range 1 < A < /¢, which
correspond to either TM surface wave modes (D,,(A) = 0) or TE surface wave
modes (D.(\) = 0) [11]. A pole extraction method was used [11,1,19,20,21] in
the past, which in addition to the numerical integration, requires the calculation
of residues and Cauchy principal values at the singularity points. For a multi-
layer or anisotropic structure, the location of the singularities and the derivative
of D,(A) and D,,(A) usually introduces more complexity if not more difficulty
into the problems. A nice way to avoid this singularity problem is to deform the
integration in the range from 0 to /¢, [22]. For the present approach, a careful
study shows that both the A, and ), integration contour needs to be deformed
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Figure 4.2: Integration Contour in either the A, or A, complex plane.
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to avoid the singularities. The deformed integration path is shown in Figure 4.2.
Although the deformed integration path can be arbitrary mathematically, care
must be taken in choosing the proper path for numerical integration. When the
path is off the real axis, the integrand increases exponentially; therefore if the
contour is too far from the real axis, numerical instability occurs. Also if the
path is too close to the real axis (the singularities), the integrand is not a smooth
function. A numerical study for the integration path in Figure 4.2 shows that
choosing the maximum of Im(A;) and Im(},) to be about 1/(50h) (h is substrate
thickness) is adequate.

For A, > /¢, the function S();) is an integral where the integrand is a smooth
function unless y, is large. Also, the integral is uniformly convergent. For a sin-
gle layer microstrip structure with a roof-top basis function, when A > ,—2,., the
Green’s function approaches its asymptotic formm which contains only algebraic
functions and then integral can be evaluated either in a closed form or can be
deformed to an integral with the integrand decaying exponentially. An example
of this derivation is given in Appendix 4-A. If the basis functions are not simple
trigonometric functions (for example, Maxwellian function, irregular shape ba-
sis functions) or the structure is multi-layered or anisotropic, there is no simple
asymptotic form for the integrand in S(A;). In these cases, a Filon’s integration
scheme [26] may be applied, where the integration path is divided into many inter-
val and the non-sinusoidal term in the integrand is approximated parabolically in
each interval. Once the parabolic function approximation is used, the integration
in each divided interval can be evaluated in a closed form.

One distinct feature of the new algorithm is that the function S(A;) is a smooth
and monotonic function when A; > ,/¢,. From Egs. 4.2- 4.9, it is seen that
the Green’s function is asymptotically linear with respect to A;. This implies
that one can use only a few sampling points to tabulated the function S(A;)
and that interpolation can provide the value with excellent accuracy. A typical
example of the functional behavior of S(A;) is shown in Figure 4.3, where it
is seen that, asymptotically, S().) is almost a straight line. Once the function
S(A:) is tabulated, one can proceed to compute the impedance matrix elements
shown in Eq. 4.10, which contain a smooth function multiplying either cos(,z,,)
or sin(A.Zn,). This sinusoidal function may oscillate rapidly when z,, is large.
To alleviate this difficulty, one can again approximate the smooth function with
piecewise parabolic functions.

The approach proposed here has a feature that for fixed y, the term S();) needs
to be computed and tabulated only once and is stored in an array. For example,
for a rectangular patch with one dimensional current, which is divided into M x N
subsections, using the new algorithm to gene:ate the impedance matrix elements,
it is required to compute a one dimensional infinite integration only M+NP times
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where P is the number of sampling points for S().). In contrast, if the integration
is performed in the polar coordinate, it is required to compute a double integration
M x N times. This feature enhances drastically the computational efficiency. It is
also noted that the approach proposed in this communication may not require the
use of the asymptotic form of the Green’s function unless for some special cases.
In other words, the efficiency of the numerical integration does not depend on how
far the integration path goes for the integrand to approach its asymptotic form.
Therefore, the algorithm is efficient over almost the entire frequency range.

4.3 Numerical Examples

4.3.1 A Center-fed Dipole

For a slender dipole with assumed transverse Maxwellian distribution, if 100 cells
are used to represent the current longitudinal dependence and 50 points are used
to tabulate the function S(A;), then in order to fill in the impedance matrix
the proposed algorithm (algorithm A) requires the computation of an infinite
integral 150 times. In contrast, the algorithm with the integral in polar coordinate
(algorithm B), typically requires the computation of the infinite integral more than
3000 times. If a combination of the piecewise sinusoidal and Maxwellian basis
functions are used in a Galerkin procedure of the moment method, with algorithm
A it takes only about 6 minutes on an IBM AT computer and about 35 seconds
on a Compaq-386 computer to generate all the impedance matrix elements. With
algorithm B it takes about one hour on an IBM AT and about 6 minutes and 30
seconds on a Compaq-386. The computer codes using algorithm B for testing are
based on the one discussed in [23], which is about 2 times more efficient than that
discussed in [20].

4.3.2 Microstrip Open-end and Gap Discontinuities

For the microstrip open-end problem, modeling of semi-infinite lines is required.
A combination of semi-infinite traveling wave modes and local subdomain modes
ic fruitful and can be modified easily to apply to different geometries [21,23].
The efficiency of the present algorithm is clearly shown in these open-end and
gap computations, where the mixed type of basis functions are used. This is
because if only one transverse basis function is used for the longitudinal current,
the function S(X;) is the same for all the impedance matrix elements. Therefore,
it needs to be computed only once. The computer time required to compute
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the equivalent circuit of this semi-infinite microstrip line is tested for both the
algorithm with a polar coordinate integration (algorithm B) and the one with a
rectangular coordinate (algorithm A) integration. For a Compaq-386 computer,
with 20 subdomain basis functions, algorithm A requires about 30 seconds, while
algorithm B requires about 200 seconds, to compute one data point.

4.4 Conclusions

In this work, a new algorithm was developed for the method of moments solution
of microstrip antenna and circuit problems. The algorithm is found very efficient
and can be applied over almost the entire frequency range. The efficiency and ver-
satility of the new algorithm are illustrated through the examples of a microstrip
dipole and a microstrip open-end and gap. The new algorithm can also handle a
variety of different types of basis functions, which will find many applications for
the analysis of irregular shape microstrip antennas and circuit discontinuities.

58




Appendix 4-A

An example is presented that illustrates the integration contour deformation that
is used to obtain a fast convergent integral. Considering two % roof-top current
basis functions reaction with the pulse functions of size w, with separation y, in
a microstrip structure with substrate thickness h and dielectric constant e,, for
A> 2 and A> k;, S(),) defined in Eq. 4.11 is asymptotically in the form of

S(Az) = P(Az)Q(At)

where (/\
2sin w,)
)= Ny <o) 2,
and 5
P() = 3o — 220,

1+e
Q()z) can be written as

Q) = @uhar 1) = 3(@1(A8) + @u(Asr83)

where (A,6)
cos
>, 6) = /
A=) A /\2\/,\2 + ,\2
61 = Yn,
62 = Yn — 2w,
and
63 = yn + 2we.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

When 6 = 0, Q1(A:,6) has an exact form. When 6 # 0, the integration contour
can be deformed in the complex domain along the contour of Re(A, = A) and

Im(A, > 0). The final form of Q,().,8) to be evaluated numerically is

(3@ — 1)) , 6=0
2 foo[ JJAI(x) _ e-iJAf(-—x)]e_zdI, é 76 0

Ql(Az,é) = {

where
1

(A6 + jz)2\/(A.6)? + (A6 + jz)?

f(z) =
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Chapter 5

Infinite Arrays of Microstrip
Antennas on Generalized
Anisotropic Substrates

In this chapter the problem of infinite arrays of printed antennas on generalized
anisotropic substrates is addressed. The antenna elements studied include mi-
crostrip dipoles and probe-fed patches. In the analysis, the substrate anisotropy is
general in form, with nine components in both the permittivity and permeability
tensors. This allows for the study of antennas on uniaxial substrates with tilted
optical axis or on gyrotropic substrates. A rigorous full-wave moment method solu-
tion is adopted. Numerical results indicate that by neglecting substrate anisotropy,
the performance of printed antennas may be greatly affected. Results include cases
of biased ferrite substrates, in which the antenna characteristics may be changed
(or controlled) by varying the bias magnetic fields.

5.1 Introduction

The material properties of the substrate significantly affect printed antenna perfor-
mance [1,2,27]. Many practical microwave substrates exhibit anisotropy. There are
two types of material anisotropy, electric and magnetic anisotropy. For materials
with electric anisotropy, the permittivity may be different in different directions.
Along each of the three principal axes the permittivity may be characterized by
a different constant. Useful microwave substrates with electric anisotropy include
single-crystal sapphire (¢, = ¢, = 9.4, ¢,, = 11.6), boron nitride (€,, = ¢,, =
5.12, ¢,, = 3.4), and Epsilam-10 (¢,, = ¢,, = 13, ¢,, = 10.2). Magnetized ferrites
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exhibit magnetic anisotropy, where the permeability is in the form of a third-rank
tensor. The elements of the permeability tensor are related to the external applied
dc magnetic field, the microwave frequency, as well as the inherent physical prop-
erties of the ferrite material. These ferrite materials, which are usually gyrotropic,
are useful in both active and passive circuits due to the fact that the permeability
tensor and thus the electrical properties of the material are changed externally by
way of the applied dc magnetic field. This aspect may lead to many applications
in printed circuit antennas [28,29).

Infinite array analysis is a useful tool for the design of large antenna arrays. It
provides a means of characterizing some of the important features of the large
finite array, including the variation of element input impedance as a function of
scan angle. The use of dielectric cover layers to improve the input impedance
match has been described {32,33,34]. Infinite array analysis has been applied to
microstrip phased arrays on isotropic dielectric substrates by several investigators
[30]-[34]. Pozar and Schaubert discussed the phenomenon of scan blindness in
infinite phased arrays of printed dipoles [30]. They also studied the infinite array
of patches [31]. The work reported here represents a significant extension of those
analyses to the case of generalized anisotropic substrates.

The cited work employed full-wave method of moments solutions [30]-[34]. That
formulation has been shown to be accurate and efficient. A fullwave Green’s func-
tion and method of moments integral equation solution for the anisotropic is pre-
sented here. Unlike in the case of the isotropic substrate, the Green’s function for
a generalized anisotropic substrate is not a simple closed form. The exponential-
matrix method [35] provides a useful technique for the generation of the spectral
dyadic Green’s function.

The most difficult aspect of the analysis of microstrip antenna problems is the
modelling of the feeds. For printed dipoles, a delta-gap generator is usually as-
sumed to simulate the two-wire transmission line feed. For probe-fed patches the
probes can be modelled as ideal current generators. This has been found to be a
very reasonable model for thin substrate cases {31].

In this chapter the effects of substrate anisotropy on the scan characteristics of
infinite phased arrays of printed dipoles and patches are investigated. This first
centers on the study of the uniaxial substrate with arbitrarily oriented optical axis,
in which case all nine components of the permittivity tensor are nonzero. Then
the focus is shifted to the study of the scan characteristics of antennas on a ferrite
substrate. The effects of the applied dc magnetic field and its direction on the
array performance are illustrated through numerical examples.

In Section 5.2 the infinite array analysis including both permittivity and perme-
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ability anisotropy is described. The Green'’s function for a generalized anisotropic
substrate is formulated, where both horizontal and vertical current sources are
included.

In Section 5.3 the importance of substrate anisotropy is highlighted through a
number of numerical examples. Some features of infinite arrays of printed antennas
on a ferrite substrates are also discussed.

5.2 Analysis

The geometries of infinite phased arrays of printed dipoles and patches are shown
in Figures 5.1 and 5.2, respectively. The substrate thickness is d. All the dipoles
are identical with length ! and width w. All the patches are identical with length
L, and width L,. The structure is periodic and the Floquet cell dimensions are
a and b in the x- and y- directions, respectively. The antenna elements lie in the
x-y plane. The material constants of the grounded substrate are assumed to have
the generalized form:

. Moz Moy Mo } € €z €
B=tpo| myz Byy My | 2nd € = €0 | €4z €y € |- (5.1)
#lz #zv #z‘ ezz elv ez‘

In progressively phased arrays, the current on each antenna must be phased in
accordance with the scan angle (6, ¢) as

eiko(m¥,atn¥,b) (5.2)

where
¥, =sinf cos ¢, ¥, =sinb sing, (5.3)

and m and n are the indices for each antenna in the infinite array.

The Green’s function for an infinite array of printed antennas [30] has the form:

[o o} [ o]
G(z, y) = ﬁ Z Z G(k., k,) eiks(z=21) Giky(y-w) (5.4)
m=—00 N=-—-00
where 9 \
n ™m
b= 7 ks, k= S kY (5.5)

and C:'(k,, k,) is the spectral Green’s function. In the case of the generalized
anisotropic substrate, this spectral Green’s function may be obtained by using a
exponential matrix method.
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Figure 5.1: Infinite Array of Printed Dipoles on a Generalized Anisotropic Sub-
strate.
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Figure 5.2: Infinite Array of Probe-fed Patches on a Generalized Anisotropic Sub-
strate.
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Using the 2-D Fourier transformation

f? = ﬁ ”_f;w ::jw f{ (k) k,) 7%= ¢77%¥ dk, dk,, (5.6)
in Maxwell’s curl equations, one obtains
—jkx H + %(exif) = jwé-E + Jé(z-2) (5.7)
and i 3 ) o
-Jkx E + E(EXE) = —jwp - H, (5.8)
withk = k,z+k,§. E and H are the spectral electric and magnetic fields; moreover
E=E,2+E§+E.: (5.9)
and 3 _ _ 3
H=H,z+ Hy+ H,2. (5.10)

After some algebraic manipulations, Eqs. 5.7 - 5.8 can be written in the form of
a set of linear differential equations:

2 5] = (A1) + [7s(e -~ #) (5.11)
where
kinz(z) + kyffy(z') a;; a3 a3 ayy
['/;(Z)] - kyH,(z) — k.H,(2) and [A] = @2 G2 43 Gy | (5.12)

k,E:,(z) + k,E:,(z) as; Gs2 Gs3 asy
kyE:(z) — k.E,(2) az1 G4 G43 Gy

In Eq. 5.11, [¢] is a 4 x 1 vector containing the Fourier transforms of the tangential
E and H fields. [A] is a 4 x 4 complex matrix whose elements are completely
described by the material parameters é and , and the Fourier transform variables
k; and k,. [f] is a 4 X 1 vector containing the Fourier transforms of any sources
that might be in the layer. For horizontal current sources one has

—k, k,
A=l =] % [ofl=wi=| | (5.13)
0 0

[U,] is for the current source in the x direction, while [U,] is for the current source
in the y direction. For vertical current sources (probes) one writes

kyezs—kscys

- — kz‘::‘i*.‘::
(f] = [U:] = 7 : (5.14)
Weo€ss

0
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The solution of Eq. 5.11 can be found by using the Cayley-Hamilton theorem [35]
or using eigenvector analysis. The results from either method are equivalent and
yield terms each of which has a z-dependence of the form e*/*, where ), are the
eigenvalues of the [A] matrix.

5.2.1 Integral Equation and Green’s Function for Infinite
Probe-fed Patch Arrays

The integral equation for infinite probe-fed patch arrays has the form

G:. Gzy J: G.. _
/ [G,, Gvu] [Jv ]dsl + / [sz] J.ds; = 0, (5.15)

where G,,, G,,..... are in the spectral form of Eq. 5.6.

To find the dyadic Green’s function for patch antennas, we describe the fields
by a vector (] given by Eq. 5.12. The unknown constants can then be found by
applying the appropriate boundary conditions at each layer interface. The solution

of Eq. 5.11 is _ 3
[¥(21)] = [T(21 — 23)] [¥(22)], (5.16)

where

e 0 0 0
| 0 €+ 0 0
[T(Z)] - [¢] 0 0 eAgz 0

O 0 o0 ¢

417, (5.17)

z

»

in which the A;,+ = 1,2,3,4 are the eigenvalues and [d;] is a 4 x 4 eigenvector
matrix of [A]. (For the isotropic case there would be repeated eigenvalues, and
the terms of the exponential matrix could be greatly simplified and would exhibit
sinh and cosh behavior.) According to the Calley-Hamilton theorem, the matrix
[T(2)] can also be expressed as

3
[T(2)] = 3 Ca(2)[4]", (5.18)
n=0
where the coefficients C,, are taken from the solution of the matrix equation
3
) = S akCy(z), j=1,2,3,4. (5.19)
k=0

It is quite clear that the physical meaning of the matrix [T] is to relate the tan-
gential electromagnetic fields at one surface (z = z;) to another (z = 2;). For
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the geometry shown in Figure 5.2, the tangential electromagnetic fields at the
air-ferrite interface can now be related to those at the ground plane:

[%(d)} = [T(d)] [$(0)]. (5.20)

The electromagnetic fields in the air (z > d) can be derived in a straightforward
manner. With this result together with the boundary conditions that the tangen-
tial electric fields are zero at the ground plane, one obtains

IVk? —~k§&
@l = | wWeob | and [§(0)] =

k? — k2 b

—Ww o a

(5.21)

O O AL ™

where a, 5, ¢ and d are unknown spectral quantities to be determined.

With the current source at the air-ferrite interface, the electromagnetic fields just
above and below z=d are related as

[¥(d)] ~ [T@)]I$(0)] = (1), (5.22)

where U] is either [U,] or [U,]. Eq. 5.22 involves a 4 by 4 matrix equation, where
the solution determines the quantities a, b ¢ and d. As a result, the spectral
Green’s functions for patches are determined from the expressions

. . Fko/k2 + k2 — k2b — wpok,d
G.a(ks, k) or Guylks, ky) = v 70 il (5.23)

k? + k2

and

. . 7k,\/k2 + k2 — k2b + wpok,d
Gyz(kz, ky) or Gyy(k., k,) = — . (5.24)
k2 + k?

When [U;] = [U,], the above two equations are for ézf(k,, k,) and C%,,(k,, ky);
while when [U;] = [U,], the above two equations are for G, (k;, k,) and G, (k;, k).

The Green’s function for the probes can be found by solving the following matrix

equation. _ ;
[T(z' - d)][¥(d)] - [T()][¥(0)] = [U:l, (6-25)
[¥(d)] ~ [T(@)][$(0)] = (T(d~ )L, (5.26)
where [U ] is defined in Eq. 5.14. With [#(d)] and [¢(0)] defined in Eq. 5.21, the

expression for G., and G,,, can be found from Egs. 5.23 and 5.24 by replacing Gz
by G,, and sz by G,,
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5.2.2 Method of Moments for Infinite Patch Arrays

In the moment method procedure, the unknown current distribution on the patches
is expanded in terms of a set of entire domain basis functions:

J. = ¥ Iz, ) (5.27)
and
Jy = Z I} J!(z, v), (5.28)
where 1 f ;
- 7r n
= — sin— — .29
J; I, sin Lz(:r+L,/2)cos L,(y+L"/2) (5.29)
and 1 " l
J¥ = — cos-—= in — 0
J; I cos I (z + L./2)sin L (y+ L,/2). (5.30)

The current on the probes is assumed to be constant along the vertical direction
(z axis), and to have a delta-function form in the x-y plane: §(z — z,)6(y — yp).

With the same expansion and testing functions in the integral equation, one ob-
tains the matrix equation

3" Z;1; = V; forally, (5.31)
J
where Z;; is in the form of
1 e
Z,’j = —Z Z ,‘GJJ' . (532)
ab 57 4

G being any of the four dyadic components G,., G.,, Gyz, G,y, and J;, the Fourier
transform of the expansion or testing function. The components of the excitation
or voltage matrix which is due to the probe current take the form of

1 .z~ } .
Vi = =3 Y3 G eihenr et (5.33)
m n
or 1
V; = =3 Y56, et et (5.34)
ab < 5

The method of moments provides the currents on the patches. The input impedance
from the probe is calculated as

-1 4
L= — P 5.35
Z. 7 /0 Efdz, (5.35)
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where I, is the current on the probe and E?(z) is the electric field due to the
currents on the patch. If reciprocity applied, the input impedance could be written

as
n = — 2LV, (5.36)
j

where V; is but the matrix element of the excitation matrix in Eq. 5.33. Howeve:,
for the generalized anisotropic substrate reciprocity no longer holds. Alternative
procedures for the computation of the electric fields due to the patch currents are
required. One can, from Eq. 5.22, find [tb(O)] and obtain the lateral electromag-
netic fields at any position z from the expression

[$(2)] = [T(2)] [$(0)]. (5.37)
Further, the spectral electric field E, can be related to the lateral electromagnetic

fields through 3 3 3 ; ;
€0€ec By = kyH, — k. Hy — €06, E; — €o€y E,. (5.38)

Replacing G, and C:‘,y in Eq. 5.33 by this spectral field E., one obtains a voltage
matrix Vj" . As a result, the input impedance of the probe is calculated as

= -y LV (5.39)
i

5.2.3 Integral Equation and Green’s Function for Infinite
dipole Arrays

For narrow microstrip dipoles, the transverse current is usually negligible. There-
fore, the corresponding integral equation is simplified to the form

/ G J: ds = —6(z — z,), (5.40)

where z, is the location of the delta gap source. The spectral form of G, is the
same as the one discussed previously for patches. If roof-top basis functions are
used in the method of moments, the impedance matrix elements can be expressed
as

1
Zik—;'l;

I'I [\/] 8

Z 3 ks, ky) 32 (kz, ky) e7IR0R8, (5.41)

where
sin(k,w/2) 1 — cos(k:.A)

kyw k2A ’
and A is half the length of the basis function. For a center-fed dipole, it is
convenient to use an odd number of basis functions such that all the elements
in the voltage vector are zero except the center term which is unity. The input
impedance, which is the reciprocal of the current at the center of the dipole, can
be obtained from the matrix equation [Z][I] = [V].

jlks, k) = 4 (5.42)
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5.3 Results

The results shown first illustrate the effects of substrate anisotropy on the scan
characteristics of infinite phased arrays of printed dipoles. For a uniaxial substrate
with an optical axis tilted in the x-z plane, where the optical axis angle measured
from the z axis is 6, the permittivity tensor is

€; cos? 0y + e, sin? 6, 0O (€2 — €.) sin 8y cos 8
§ = ¢ 0 € 0 . (5.43)
(ez — €;)sinfpcosby O ¢, sin® 6y + €, cos? 8

Figures 5.3 and 5.4 show, respectively, E-plane and H-plane scan characteristics,
comparing cases with and without material anisotropy. The substrate is PTFE
cloth, which exhibits uniaxial anisotropy [36]. It is seen that the effects of substrate
anisotropy are quite noticeable for the E-plane but not for the H-plane. Also, the
anisotropy in the planar direction (x-y plane) is more important than that in the
vertical direction. Figures 5.5 and 5.6 show the scan characteristics for the E and
H-planes, respectively, for a sapphire substrate. The characteristic impedance of
the feed is assumed matched with the input impedance of the dipole at a broadside
scan, and when the substrate is isotropic with ¢, = 9.4. In addition to the results
for the isotropic case, the results for four different directions of the optical axis
are also shown in Figures 5.5 and 5.6 (6, = 0°, 30°, 60°, 90°). It is seen that the
substrate anisotropy introduces a severe input mismatch, although the angle of
scan blindness does not change much. The results also show that when 6, = 0°
the mismatch is most severe. In other words, the anisotropy in the z direction is
more important than that in the x direction.

Examples of scan characteristics for an infinite array of probe-fed patches on
Epsilam-10 substrate are shown in Figures 5.7 and 5.8 for the E and H-planes,
respectively. The results for the optical axis in 6, = 0°, 30°, 60°, 90° are shown.
It is seen again that the material anisotropy introduces large changes in the patch
array element input impedance. Ignoring the material anisotropy in such a case
would result in a severely mismatched design.

The permeability tensor of a ferrite substrate is

p+ (1 —p) cos’do (1~ p)singocosgy jrsingg
B = po| (1-u)singocosdo p+ (1 —pu)sin¢y —jrcosdo | , (5.44)
—jKsin ¢g JK cos ¢g u

where ¢ is the angle of the direction of the dc bias H field measured from the x axis
in the x-y plane. The parameters u and « are characterized by the dc magnetic
field, the saturation magnetization, and the frequency of operation [9]. The effect
of the applied magnetic field on infinite printed dipole arrays is shown in Figure
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Figure 5.3: Comparison of E-plane Scan Characteristics of Infinite Printed Dipole
Array on Uniaxial and Isotropic Dielectric Substrates.

Reflection coefficient magnitude for the E-plane

d =0.19),, a = 0.5155),, b = 0.5),, L = 0.39),, w = 0.002),.
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Figure 5.4: Comparison of H-plane Scan Characteristics of Infinite Printed Dipole
Array on Uniaxial and Isotropic Dielectric Substrates.

Reflection coefficient magnitude for the H-plane scan.

d = 0.19),, a = 0.5155),, b = 0.5),, L = 0.39),, w = 0.002},.

72




1.00
0.90
0.80
0.70
0.60
g 0.50
0.40
0.30
0.20
0.10

0.00

-r-—‘—'

3

>

=

*~1

o

-1

] _% _#_*_00=300
N il—;-l..la—ﬁoo
- / -%- -Ug =

— //

] % -0-0-00-0-f5 = 90°
- /’
TIfTT(IIY]IYTTIIYIYTIIII]TII]TTTIIIIIII]IIIII

0 10 20 30 40 50 60 70 80 90
Scan Angle in Degree

Figure 5.5: E-plane Scan of a Dipole Array on a Uniaxial Substrate with Tilted
Optical Axis

Reflection coefficient magnitude for the E-plane scan.

The optical axis tilt angle is 6,.
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Reflection coefficient magnitude for the H-plane scan.
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Figure 5.7: E-plane Scan Characteristics of an Infinite Probe-fed Patch Array on
a Uniaxial Substrate with Tilted Optical Axis.

Reflection coefficient magnitude for the E-plane scan.
The optical axis tilt angle is §,. f = 4.085GHz.
L:=1.1cm, L, = 1.1cm, z, = 0.165¢m, y, = 0.0cm,
€ = ¢ = 13.0,¢, = 10.2.

d = 0.127cm, a = 2.125¢m, b = 2.378cm, Z. = 47 Q.
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Figure 5.8: H-plane Scan Characteristics of an Infinite Probe-fed Patch Array on
a Uniaxial Substrate with Tilted Optical Axis.

Reflection coefficient magnitude for the H-plane scan.
The optical axis tilt angle is §,. f = 4.085GHz.

L, =1.1cm, L, = 1.1cm, z, = 0.165cm, y, = 0.0cm,
€ = ¢ = 13.0,¢, = 10.2.

d =0.127cm, @ = 2.125cm, b = 2.378cm, Z. = 47 1.
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Figure 5.9: Comparison of the Scan Characteristics of Dipole Arrays on Isotropic
and Biased Ferrite (gyrotropic) Substrates.

d =0.06),, a =0.5),, b =0.5),, ¢, = 12.6, w = 0.002),.
For the isotropic substrate L = 0.156), and Z. = 9.3 + 70.30.
For the ferrite substrate L = 0.205), and Z, = 0.7 + 0.03.
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Figure 5.10: E-plane Scan Characteristics of an Infinite Array of Printed Dipoles
on a Ferrite Substrate.

d =0.06),, a =0.5),, b =0.5),, ¢, = 12.6, w = 0.002),.
The dc magnetic field direction is (8,,¢,), u# = 0.7665, x = —~0.5665.
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Figure 5.11: H-plane Scan Characteristics of an Infinite Array of Printed Dipoles
on a Ferrite Substrate.

d =006\, a=0.5),b=05), ¢ = 12.6, w = 0.002),.
The dc magnetic field direction is (6,,4,), 4 = 0.7665, x = —0.5665.
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Figure 5.12: Scan Characteristics of an Infinite Probe-fed Patch Array on a Ferrite
Substrate.

f =0.66GHz, d = 0.3175cm,

L. =298cm, L, = 2cm, z, = 0.88cm, y, = 0.0cm,

€& = 12.6, u,H, = 0.05T, u,M, = 0.275T, 6, = 90°, ¢, = 0°,
a=5cm,b =4 cm, and Z. = 501.
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Figure 5.13: Input Reflection Coefficient for the Patch Array on a Biased Ferrite
Substrate as a Function of the Bias Field Angle.

f =0.66GHz, d = 0.3175cm,
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5.9. The results for an isotropic substrate with no bias are also shown. The results
for a ferrite substrate are for the case in which the applied magnetic field is in the x
direction (same as the current). It is seen that the input impedance level reduces
drastically with a ferrite substrate. The results also show that the scan angle
where the scan blindness occurs can be much larger (> 80°) with a biased ferrite
substrate (achieved without a reduction of the Floquet cell size). The effects of the
direction of the bias magnetic field on the scan characteristics are shown in Figures
5.10 and 5.11 for the E and H-planes, respectively. It is seen that when the dc
magnetic field direction is transverse to the direction of the current in the dipole,
the scan characteristics are closer to the isotropic case (no applied dc magnetic
field). When the direction of the dc magnetic field decreases from ¢, = 90°, the E-
plane performance improves, while the H-plane scan characteristics are degraded.

The scan characteristics for an infinite probe-fed patch array on a biased ferrite
substrate are shown in Figure 5.12. It is seen, as for the dipole case, that the
E-plane and H-plane scan characteristics are very much the same. However, it is
found, for the patch array, that a scan blindness condition arises in the H-plane
but not in E-plane. Also it is seen that the scan performance is much better in
the diagonal plane (¢ = 45°), where even at the extreme scan angle of 80 degrees
the mismatch not too large (|R| < 0.40).

It is known that the bias magnetic field changes the permeability and thus the
electrical properties of ferrites. It is therefore possible to adjust the bias H field
level and thereby effect changes in the scan performance of an array. It is also
seen from Eq. 5.44 that the permeability tensor of ferrites is a strong function of
the angle of the bias H field. An example of the effect of the bias angle on the
broadside scan input impedance is shown in Figure 5.13. As ¢, varies from 0 to
90 degrees, the input impedance changes from that of a perfect match to one of
almost total reflection.

5.3.1 Conclusion

An analysis of infinite phased arrays of printed antennas on generalized anisotropic
substrates was developed. It has been applied to uniaxial dielectric substrates, and
to gyrotropic (biased ferrite) substrates. From the computed results, it was found
that the substrate dielectric anisotropy in commonly used substrates can introduce
significant changes in active impedance of the array element. If those anisotropic
effects are neglected in the design process the performance of the array can be
severely degraded. In the case of a ferrite substrate it was also found that the
strength and the direction of the applied magnetic field may affect significantly
the scan characteristics of the infinite array. It was observed, in the principal
planes, that the angle at which scan blindness occurs may be very large when a
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biased ferrite substrate is used, and that this condition can be achieved without
reducing the size of the periodic cell.
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