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1. INTRODUCTION

The response of gun propellant to mechanical stress plays a critical role in the evolution of
pressure during the ballistic cycle. Stress communicated through the bed can produce projectile
motion', which can critically affect the early ignition conditions. If stress levels exceed critical values
grain fracture can result which produces unprogrammed surface area and results in an accelerated
pressurization. The sound speed (the propagation of a mechanical disturbance) within the granular
bed is also determined by the bed response?’. Factors, such as the propellant impetus, flame
spreading, grain geometry, propellant burning rate, the ignition system, and many others interplay
toinfluence the pressurization rate during combustion. The more that is known about the nature of

the bed response, the more that will be understood about the interplay among the parameters.

Most of the testing done to determine the mechanical response of granular beds has been done

at low rates on conventional testers® 3513

. Some explosive loading techniques have been employed
to increase the rate of testing and to simulate the loading profile believed to be experienced by the
bed during ignition’. In all of these tests the problem of the bed interaction with the wall of the
chamber has always been difficult to address. In an earlier paper® a special measurement arrangement
was designed toisolate the wall frominfluencing the force mcasurementon the bed. These tests were
conducted at higher rates (about 50/s) to more closely approach operational conditions, but the
measurements were limited to very low strains and impulsive loading profiles because of the drop
weight arrangement used to deliver the load. Results from those tests, however, seemed to indicate

that stress measurements were isolated from wall effects.

In the current study, investiganons into the nature of the suress profile across the bed were
conducted. Thisrequired higher strains and more controlled strainrates than coulu be attained using
drop-weight loading, and necessitated the use of a device that could deliver a significantly higher
load. A conventional tester was used with a testing apparatus based on the design of the tester used
in Reference 8, but modified to include a measurement of the transmitted stress. This arrangement

permitted the investigation of the axial and radial stress profile across the bed.
2. EXPERIMENTAL PROCEDURE AND RESULTS

2.1 Description of the Tester. The bed tester is illustrated in Figure 1. It consists of a ram,
cylinder, and anvil which was used to compress the bed of granular propellant. The gage at the top
of the ram measured the force applied to the bed. The ram guide rested on the bed wall, kept the ram

shaft in the center of the bed, and helped to keep the applied strain uniform. The bed itself had a




Applied Force Table 1. Propellant Grain Dimensions
/ Gage
N Perforation

Ram Type Length  Dia. Dia.  Number

(mm) (mm) (mm)
, Ram Guide JA2 1491 9.89 0.84 7
NN
M30 17.60 7.15 0.69 7
N M43  13.75 8.28 0.33 19

Bed Wall - -
7

nominal length of 4 cm and adiameterof 8.29cm

Propellant Bed (surface area of 53.9 cm?). The dimensions of the

teste pra..sare foundin Table 1. The bottom of

d ‘QQI ~§Q:;¢ g ggx;;er Force  the L= - as supported by a second force gage at
; k\ ;j Force Gage the center of the bed and by an annular steel
g 5‘ Guard Ring guard ring which had its top surface flush with
f ///////>/ ﬂ Transmitted the top of the gage. The second gage permitted
/ 7 Force Gage measurement of the stress at the center of the bed

Figure 1. Schernatic Diagram of the Bed Tester over an area of 5.07 cm?, about 10 percent of the
total bed area, while the ring supported the bal-
ance of the bed area. The second gage and the ring rested on a steel plate that was supported by a

third force gage. This gage was supported by the cross-head, as was the bed wall. This arrangement
permitted measurement of the stress transmitted through the bed, and, thereby, provided a measure
of the axial bed stress transmitted to the wall through shear. The temperature conditioned bed
assembly was removed from the conditioning chamber and placed on the cross-head of an Model TT-
C Instron Tester and compressed by raising the crosshead. The displacement of the crosshead was
measured using a Linear Variable Differential Transformer.

The four channels of data (displacement, applied force, ransmitted center force, and total
transniitted force) were recorded at 5-ms intervals at a strain rate of about 0.02 s. Stress values were

calculated by dividing the measured forces by the corresponding areas.

Compliance measurements were performed and the tester-machine assernbly was found to have
a linear stiffness of 45.7 kN/mm. The strain was calculated by correcting the displacement readings

for this compliance and dividing the corrected displacement by the initial bed height.




Table 2. Nominal Percent Composition and Densities of Propellants

JA2 M30 M43
C ..
Nitrocellulose (NC) 59 28 4
NC Nitration Level 13.1 12.6 12.6
Nitroglycerin (NG) 15 22
Nitroguanidine (NQ) 48
Ethyl Centralite (EC) 2
Diethylene Glycol Dinitrate 25
Akardit II 1
RDX (Ground) 76.0
Cellulose Acetate Butyrate 12.0
Plasticizer 8
Densities
P, (g/cm?) 1.58 1.66 1.66
P, (g/cm?) 0.920 0.900 0.953

Tests were performed at bed temperatures of -32°C, 23°C, and 52°C using JA2, M30, and M43
propellants, whose formulations arc listcd in Table 2. The period of temperature conditioning was
selected based on cooling and heating experiments performed on propellant beds. It was found that
the center of the propellant bed reached the conditioning temperature in 120 minutes, when the
assembly shown in Figure 1 was placed in the conditioning chamber which was set to the desired
temperature. After conditioning, it was also found that the bed remains at the desired temperature
for 4.0 minutes before the ambient conditions begin to change the temperature around the bed. Where
ever possible three repetitions were performed for each test condition. The bed height of 4 cm
(nominal) was chosen based on the results of bed testing performed in Reference 8. In those tests
it wasdetermined that beds of at least this height were required for grains of this size before the scatter
in the measurements was reduced to an acceptable level.

2.2 TestResults, Figure 2 shows the average results of the JA2 propellant bed tests. The applied,
center, and transmitted stress are presented as a function of strain at each of the three temperartures.
Figures 3 and 4 show the same information for M30 and M43, respectively. Inevery case, the applied
stress is somewhat larger than the transmitted ctress, as expected, since the force transmitted to the
wall by the bed is not measured by the transmit :d force gage. The stress at the center of the bed
follows the same trends as the applied and transmitted stresses, but the magnitude of the stress has

some variability from propellant to propellant. For JA2 the center stress was significantly below the
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other two stresses at the high temperature and matched the transmitted stress at 23°C. For M30 the
center stress closely followed the applied stress in all cases, and for M43 the center st again
matched the applied stress for high and ambient temperatures, with the center exceeding the applied
at23°C. At -32°Csever fracture was recorded for M43 and the center stress followed the transmitted
stress closely in both magnitude and form. Figure § compares the applied stress at each temperature

for each of the propellants to show the effect of temperature on the bed response.

3. ANALYSIS

In all buta few casesthe response of the propellant beds was measured until maximum loads were
experienced onthetest frame. JA2, whichis significantly softerthan the other propellants, was tested
first and was not taken to maximum load until the low temperature response was measured. This is
the reascu that the levels of stress are lcwer for JA2. Of particular interest in this study is the change
in bed response with increasing strain and decreasing porosity. This response determines the
stiffness of the bed (the bed modulus) and the sound speed (the propagation of a mechanical
disturbance} within the bed. The onset and the degree of fracture damage that the bed suffers also
affect theinterior ballisticcycle. Each of these considerations is addressed for each propellant below.

The modulus values were calculated by dividing the change in applied stress, Ao, , by the cor-
responding change in strain, Ag, over the interval between the succeeding points, i.e.

Ao
E=-—%Y, (D
Ae

When calculating modulus values care should be taken to realize what affect calculations have on
the resulting values. This modulus, for example, represents the stiffness of the bed when compact-
ing the entire bed and includes the effects of wall friction. If the transmitted stress were used, the
effects of wall friction would be removed, but the effective surface area of the bed is not clearly
defined because of reduced stress levels acting on the regions of the bed near the wall . One might
be tempted to average the two values. It is difficult to say what this would represent since the
distribution of force transmitted to the wall is not known. The stress values presented here were not

averaged. Thc choice of what modulus is used depends on the application.
The sound speed was calculated using the following propagation rate formula?
—
1 do,

p, d&
6

; (2)




where 0, is the applied intergranular stress, & is the bed porosity, and p, is the theoretical maximum
density (TMD) of the propellant. The porosity is calculated fromthe strain, using the propellant TMD
and initial bulk density, p, and p, respectively, using the following relationship,

P;

§E®=1-— . 3)
p, (1-€)

These densities are provided in Table 2.

3.1 JA2 Response, Figures 2 and 6 show the relationships among the stress, strain, modulus,
sound speed, and porosity, as indicated in *he captions. The applied and transmitted stress at each
temperature closely followed each other in form and magnitude at each temperature, with the
transmitted stress always being lower than the applied. The stress measured at the center followed
the form of the other stresses, but the magnitude varied considerably, as shown in Figure 2. This may
be due to few numbers of grains in contact with the gage at the center. The JA2 grains are the largest
of the three propellants tested here and in other studies were shown produce much more variation than
smaller grains tested under similar conditions. At lower temperatures the value of the maximum
strain was reduced due to the increased stiffness of the bed. Modulus values were very low at high
temperature and much higher and mors scattered at low temperature. Note that for the high tempera-
ture curve at high compression, where the porosity was below 0.1, the modulus began to increase
more rapidly than the linear extension of the curve would have predicted. This was the only case in
which this more rapid upswing was observed, and also the only one where the porosity had such low
values. These low porosity values may be artificially low due to propellant extrusion around the
edges of the ram (observed at high temperature for JA2), and errors in measurement of the initial
volume of the bed, both of which critically influence the magnitude of the porosity as it approaches
zero. The sound speed tracks the modulus values, as is expected from the equations. The scatter in
the modulus and velocity curves at low temperature indicated that rapid relaxation of the stress

occurred due to fracture or some other mechanism causing sudden fluctuation of stress.

Figure 7 shows photographs of typical damaged JA2 grains which provide evidence of the
deformation mode. The grains at 52°C and 23°C deformed plastically. There was no indication of
fracture or tearing, The extreme softness of the high temperature grains allowed compaction to near
theoretical maximum density, and caused gross deformation as grains twisted around each other as
shown in Figure 7a. Aftercompaction the grains were pressed into a*‘puck’”” which maintained shape
without .pport and was difficult to break aparnt. Plastic deformation of a much smaller degree

occurred at 23°C. No gross fracture was indicated in the stress-strain curve at low temperature.
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However, as mentioned above the modulus curve
indicated fracture. This fracture is shown in
Figure 7c where the grains appear to have chipped
at stress concentration points within the bed. No
plastic deformation was noted. JA2 is known to
undergo a glass transition near -20°C (depending
on deformation rate), which explains the change
inresponse. The photographs show that JA2 pro-
pellant did not suffer much fracture damage in

the-e experiments.
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3.2 M3QResponse, Figures 3 and 8 show the same relationships for M30 that were shown above
for JA2. The applied and transmitted stresses followed each other in the same relationship as
indicated for JA2. However, the center stress almost matched the applied stress in each case, which
may be the result of the smaller grains allowing a better statistical representation on the center poruon
of the bed. At52°Cand 23°C the modulus and sound speed values for M30 were significantly higher
than for JA2. At -32°C these values are much closer for the two propellants but the scatter was
different. JA2 began compaction with little scatter which grew as the porosity decreased. The scauer

in M30 began immediately upon compression, indicating an earlier onset of fracture damage.

Figure 9 shows the type of damage observed in the M30 beds. At the high temperature most
deformation was plastic, although some tearing also occurred. Since the strain level was significantly
less than for the JA2 propellant, less deformation was observed. At 23°C plastic deformation was
observed along with chipping and crushing of grains at the stress concentration sites near the ends
of the grain. Significant fracture occurred atlow temperature. Most of the damaged grains were split,
as shown, but chipping and crushing were also observed with little or no plastic deformation
observed. This more gradual transition to fracture as the temperature was reduced, as compared to
JA2, is also reflected in results of single grain deformation experiments'?. It should be noted that,
by far, most grains within the bed suffered very little or no apparent damage. The photographs show
the most damaged grains. Closed bomb testing will be done to provide overall evaluation of the
fracture damage of the propellant bed.

3.3 M43 Response, The same set of information provided above for JA2 and M30 propeilants
is presented for M43 in Figures 4 and 10. Again the center siress closely followed the applied stress
at the higher temperatures, with the form of the ransmitted stress curve the same as the applied, but
of lesser magnitude. Atlow temperature stress was reiicved by fracture as can be seen by the sudden
drop in stress at fairly regular intervals. Note that there were corresponding drops in the center and
transmitted stresses, indicating that single events were responsible for the stress reduction. The
modulus and velocity curves show large scarter indicating that fracture was a major contributor to
the failure process at 23°C and 52°C, as well. No modulus (or sound speed) calculations were made
at -32°C. The stress vs strain curve indicated that fracture began almost immediately upon

compaction giving such calculations little value.

The photographs of damaged grains are presented in Figure 11. They show what was indicated

in the response curves. Atthe higher temperatures the grains were crushed, fractured and deformed.

Atlow temperature splitting, chipping and the production of small chards indicated that fracture had




become the main mode of failure. Note that little
plastic deformation was observed. Video tapes
were made of all bed tests and the low tempera-
ture M43 test produced popping sounds (like
popcorn popping) that corresponded well to the
sudden reductions in magnitude found on the
stress curve.

3.4 Bed and Grain Mechanical Properties,

The uniaxial compressive mechanical response
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of these individual propellant grains i1s well
known. Figure 12 shows the modulus vs tem-
perature for single grains undergoing uniaxial
compression!®!'at the same temperatures used in
this study. For comparison, Figure 13 shows the
modulus of the propellant beds at the higher
temperawres. In previous work?, it was shown
that the grain response was reflected in the bed
response, i.e. stiffer grains produced stiffer beds.
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That same result is shown here as well. To better
understand the nature of this relationship, the bed
moduli were averaged over the common porosity
values of the bed compaction tests (shaded area
in Figure 13) and plotted against the modulus val-
ues of the individual grains. Figure 14 shows this

Modulus (GPa)

plot and demonstrates the strong correlation of
o the grain and bed modulus over this porosity

40 20 0 20 40 60 range, irrespective of propellant type and tem-
Temperature (°C)

perature. This result may be useful in predicting

Figure 12. Modulus vs Temperature for bed modulus values from individual grain re-

Individual Propellant Grains at 100 s sponse measurements.
3.5 Stress Transmitted to the Bed Wall, The measurement of the stresses transmitted to the bed

wallis presented in Figure 15 for each of the propellants. A general observation is thatas the applied
stress increased, the stress transmitted to the »all increased in proportion. Except for JA2 at low
temperature, the plots of this difference are near linear in each case indicating that the same
percentage of applied stress was being supported by the wall for each curve. For M30 and M43 here
is little variation of the slopes of these curves, indicating that the stress being supported by the wall
was a strong function propellant surface conditions, and was not sensitive to the properties of the
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grains or the propellant bed. The only curve to F o 1 ,:: 1h
deviate significantly from this linear relationship s ]
was the low temperature JA2 beds. These beds § 06 .II
experienced sticking, as indicated in Figure 2c by é Y r':’
the nonzero applied stress with the centerand & & 8 . s
transmitted stresses strating at zero. This would g 02 & b a2C
occur if the ram was somehow stuck to the wail y’p
at the start of the compaction. In Figure 15a noie 0 IR 6 8
that atapplied stress levels of greater than 2 MPa Apglied Stress (MPa)
the curve becomes a near straight line. This could b. M30
indicate the response of the bed without the early 10 L
sticking. It seems that as JA2 changes dramati- o
cally from a soft, plastic response at high tem- § > _{‘..'
perature to a hard, more brittle response at low, E 06 ‘.o'
less of the applied force is communicated to the é oa '."
bed wall. At52°C,30percentof the appliedforce & Y .« s3oc
was supported by the wall, at 23°C the support § 021 ‘...2' T
was reduced to 17 percent, and at -32°C, using oo o . _
the linear portion of the curve, the level was 0 2 4 6 8
further reduced to about 6 percent The less Applied Stress (MPa)
c. M43

dramatic change in response shown by M30 and

Figure 15. Difference between the Applied and

M43 curves which were much closer together. Transmitted Stress vs Applied Stress
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The slopes of these curves range from 0.14 to about 0.18, indicating the portion of the applied stress
supported by the bed wall,

4. CONCLUSIONS

Bedcompaction tests were performed at 52°C, 23°C, and -32°C using three gun propellants, JA2,
M30 and M43. These tests provided measurements of the stress applied to the bed, the stress at the
center of the bed, the stress ransmitted through the bed, and the strain. The mechanical response of
the propellants showed significant differences. JA2 showed a soft, plastic response at higher tem-
peratures and a stiffer low temperature response with little deformaton and little fracture. M30
fractured at all temperatures with the high temperature response being softer with more tearing than
brittle fracture, while at lower temperatures the stiffness and brittle response increased with a
cleaving-like fracture becoming the major failure mode. M43 suffered the most di.mage at all
temperatures. At 52°C crushing and fracture occurred, and at lower temperatures brittleness
increased with increased fracture damage and smaller shards. As expected, the bed modulus
increased as temperature and porosity decreased, with significant nonlinear increases observes for

the modulus values at low porosity for JA2.

The velocity of mechanical disturbances was calculated fromresponse measurements and ranged
betwcen about 50mys for JA2 at low porosity and high temperature to over 300 m/s for M30 at low
temperature. Values for propellant that underwent fracture failure, such as M43, were scattered.
Meaningful velocity calculations could not be made for M43 atlow temperature due to the excessive
stress fluctuation recorded during compression. These values are considerably lower than historical
values (440 m/s) that have been reported for other propellants'?,

The communication of applied stress to the bed wall was shown 1o be a linear function of the
applied stress, regardless of temperature, for both M30 and M43 propellan:s. The level of stress
supported by the wall ranged between 14 and 18 percent for these prop:llants . For JA2 the
relationship also was linear for the higher temperatures, but the level of wall support had considerably
more variation with temperature than for the other propellants, possibly due to the much greater
change of the propellant response with temperature, which resulted in a greater change in the level
of surface interaction between the grains and between the grains and the bed wall.

The stress values at the center of the bed followed the same form as the applied and transmitted
stresses, and in most cases (except for JA2 at 52°C) the center stress also matched in magniwde. This
indicates that the stress across the bed is uniform to a high degree. The earlierreports® of large stresses
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at the center were not observed here and are now believed to have resulted from a data acquisition
error.

A strong correlation was demonstrated between the bed and the single grain modulus. Other
factors such as grain and bed dimensions may play a significant role. The range of grain size was
small, so its role may not have been observed. This correlation offers the hope that bed properties
may be able to be predicted from grain properties.

5. FUTURE STUDIES

Although thesc studies have shown interesting bed responses and very useful relationships
between grain and bed response properties, predictions of bed stresses from ballistic codes indicate
that stress levels much higher than recorded here rnay occur within beds during the ballistic cycle.

To achieve these higher stresses a larger machine is required. Itis also desired that full scale testing
be done to eliminate potential problems with scaling these tests to the full sized bed. To achieve a
stress of 150 MPa on a 120-mm bed a force of 1.70 MN (373,000 1b) is required. Steps are being
taken to perform tests on full scale gun propellant beds using a 300 ton press at the Naval Surface
Warfare Center at White Qak®.
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This Laboratory undertakes a continuing effort to improve the quality of the rcports it publishes. Your
comments/answers to the items/questions below will aid us in our effonts.

1. ARL Report Number ARL-TR-78 DaleofRepon February 1993
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3. Does this report satisfy a nced? (Comment on purpose, related project, or other arca of interest for
which the report will be used.)
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