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1. INTRODUCTION

This final technical report presents a comprehensive summary of the research
accomplishments supported by Grant #AFOSR-89-0403 over the period July 1, 1989
to November 30, 1997.'?/The report reviews the objectives of the research in Section
1.1. The status of the research effort is reported in Section 1.2. Section 1.3 of Chapter
1 presents a comprehensive list of written publications resulting from this research
effort. Following this, Section 1.4 presents a recapitulation of the advanced degrees
awarded, a list of thesis titles, and a history of the professional personnel associated
with this grant. Seminars, presented papers, and advisory meetings with Air Force

and other DOD laboratories are reviewed in Section 1.5.

Chapter 2 presents some recent progress in the computational fluid dynamics
research associated with the study. Some additional work dealing with the modeling

of liquid-structure interaction is also described.

Appendix A describes the computer simulation of the test rig using a pendulum
analogy to model the sloshing liquid. Also included is a comparison of the results
with those obtained by another rigid body dynamic modeling package and from

experimental instrumentation of the test rig.

Appendix B discusses the study of the test rig stability which depends on such

physical parameters as the masses, inertias and linear dimensions. The work is based
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upon experimental results and computer simulations completed using the software

package SATELL developed at Iowa State University.

Appendices C, D, and E describe the finite element modeling of the test rig to
account for the elastic deformation of the spinning structure in addition to the rigid
body motion. A Lagrangian approach was used to develop the equations of motion
which include nonlinear relationships for the unknown rigid body motions and linear

terms for the relatively small elastic deformations of the members.

Appendix F outlines a sequential implicit-explicit numerical technique developed
to solve the system of nonlinear differential equations which describe the rigid body
and elastic motions of the structure. The technique employs a Newmark algorithm

which is often used in conjunction with finite element methods.

Appendix G describes the basic concepts of the primitive variable coupled strongly
implicit solution procedure that was eventually employed in a revised form in the
three-dimensional surface fitting sloshing code, SLOSH3D. The version described in
Appendix G is applicable to all flow regimes. For use in the simulation of sloshing
flows, the scheme of Appendix G was eventually extended to three dimensions and

specialized to incompressible flow.

Appendix H contains the first numerical solutions obtained for three-dimensional
liquid sloshing using the surface fitting scheme developed under the present grant.
The paper also describes the mathematical modeling required to correctly account
for the general rotating-nutating motion of the container. Results for five different

free surface calculations are presented.
Appendix I presents both experimental and computational results for the slosh-

ing inside a partially filled spherical container undergoing an orbital rotating motion.
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Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a
gradual spin-up from rest are compared with experimental data obtained using a ro-
tating test rig fitted with two partially filled spherical tanks. The numerical solutions

were found to compare favorably with the experimental data.

1.1 Research Objectives

This project has involved the study of the dynamics of spin-stabilized satellites
carrying sloshing liquid stores. It represents a continuation of work completed during
an initial three year funding period from the Air Force Office of Scientific Research.
During the previous three year period, a test rig capable of spinning an assembly
with two liquid-filled spherical tanks was designed, built and instrumented. Initial
experimental runs were completed for a limited number of physical parameter values.
In a parallel effort a computer simulation model was developed which treated the
sloshing liquid as a two degree-of-freedom pendulum. Numerical results showed good
agreement with the empirical data. However, in an attempt to produce an even better
mathematical model, an effort was initiated to replace the pendulum analogy by a
more exact characterization based upon computational fluid dynamics (CFD). The
research conducted during the current three year period has continued the spacecraft
dynamic studies started during the initial phase. The objectives of this continuation

grant have included:

e To define regions of stability for the existing test rig and to evaluate the effect
on stability of such design parameters as tank fill ratios, liquid viscosity, and

moments and products of inertia.




e To modify and expand the mathematical model of the satellite simulator to

include a finite element analysis of the precessing and deforming structure.

¢ To identify the fluid reaction on its container (tank) by the dynamic modeling
of the sloshing free surface liquid. To fully develop the computational fluid
dynamic model of this free surface liquid with its time-varying reaction on the

spherical tank.

Development of such a model was undertaken to provide a state-of-the-art repre-
sentation of the test rig to accurately predict the motion of the system and its various
elements and to provide insight into the interactive nature of the structural and lig-
uid components. Such a computational model should provide a valuable tool for the
study of parameters and physical phenomena governing the stability and motion of

complex space systems.

1.2 Status of Research

Work under the previous AFOSR grant has provided a solid foundation for the
current effort. During the previous phase of the research, a test rig was built and
instrumented, and a software package (SATELL) was developed to the simulate the
rigid body motion of the test assembly. A pendulum analogy was used to model the
sloshing liquid in that early program. Several numerical simulations were carried out
and results were compared with those from another rigid body dynamics package
called CAMS. Simulation output was also compared with experimental data for a
few select cases (see Appendix A).

Experimental work and numerical simulations using SATELL have continued
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during the current research effort. Attention has been focused on stability analysis
of the test rig’s dynamic motion. Various cases have been studied to determine
the influence of physical parameters such as masses, inertias and linear dimensions.
Results have verified the conclusion that stable motion for such a system with energy
dissipation due to flexible members and/or a sloshing viscous liquid requires spin
about the axis of maximum principal moment of inertia. However, certain instances
were discovered when that requirement was not sufficient to guarantee stable motion.

This was found to be true for both experimental and numerical procedures (see

Appendix B).

While the rigid body model provided results that were in general agreement
with the experimental data, a more exact model to account for the elastic and rigid
body motions was needed to better predict the motion of the assembly. A finite
element approach was utilized along with a Lagrangian formulation to develop the
equations of motion. Both the rigid body degrees of freedom and the elastic degrees
of freedom were considered as unknown generalized coordinates of the entire system
in order to accurately reflect the nature of mutually coupled rigid body and elastic
motions. Nonlinear coupling terms between the rigid body and elastic motions were

fully derived and explicitly expressed in matrix form (see Appendices C, D and E).

The equations developed for the overall rigid plus elastic motion described above
contain rigid body motion coordinates that appear in a highly nonlinear fashion along
with small elastic motion coordinates that can be handled adequately by linearized
relationships. Furthermore, the overall system of equations involves time-varying
coefficient matrices which greatly complicate the solution process. A sequential,

implicit-explicit integration method is utilized to handle these difficulties. In this
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technique, the equation system is first mapped to a subsystem in which the specified
generalized coordinates are eliminated. The subsystem is then partitioned into two
sets of coupled equations. The set describing elastic motion, which is linear with
respect to the elastic generalized coordinates is integrated implicitly. The set gov-
erning the rigid body motion, which contains the highly nonlinear coupling terms, is
integrated explicitly with back substitution of the elastic kinematic properties deter-
mined from the first set of equations. A Newmark algorithm is used to integrate the

second order systems of equations directly (see Appendix F).

Two numerical strategies for computing liquid sloshing flows have been pursued
under this grant. Both provide a numerical solution to the full three-dimensional
unsteady incompressible Navier-Stokes equations which govern the liquid motion.
Both schemes utilize primitive variables and an artificial compressibility approach.
The schemes differ primarily in the way in which the free surface and the grid are

treated.

The most widely tested and “advanced” scheme utilizes “surface fitting” whereby
the free surface becomes one of the boundaries of the computational domain. In this
approach the grid points are moved after each time step. The computer code based
on this approach, SLOSH3D, utilizes a coupled strongly implicit procedure (SIP) to
solve the resulting algebraic equations. The basic concept of the primitive variable
coupled SIP scheme is discussed in a paper by Chen and Pletcher (see Appendix G).
Results from the SLOSH3D code are described in Appendix H and Appendix I.

The second scheme utilizes “surface capturing.” The main motivation for pur-
suing this strategy is that surface capturing does not require a moving, surface con-

forming grid. Such surface conforming grids become difficult to generate as the free

6




surface topologies become more complex. In addition, the establishment of a new
grid at each time step does require computational resources. The surface capturing
permits the calculation of a more general class of flow than with surface fitting. The
surface fitting approach allows computation of only the liquid in a container whereas
with surface capturing, the flow in both phases, liquid and gas (or vapor) can be re-
solved. In some applications, information on both phases is desired. This formulation
and the results obtained to date are described in Section 2.2.

Calculations of fluid-structure interactions have been successfully carried out.
Two codes developed under this grant, STRUCTURE, which calculates the flexible
system dynamics, and SLOSH3D, which computes the sloshing motion of the fluid
contained in the tank, have been joined into a single unit that enables the transfer
of information between the two component modules at each time step of the simula-
tion. Such interactive calculations permit much more realistic predictions of system
behavior and are likely to become widely used in design procedures in the future.

More details of the formulation and the preliminary results are reported in Section

2.3.

1.3 Publications

Listed below are technical reports previously submitted to the Air Force Office of

Scientific Research:

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1990). “Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites,” Technical Report
No. ISU-ERI-Ames 90410, lowa State University, Ames, [A.

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1991). “Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites,” Technical Report
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No. ISU-ERI-Ames 92400, Iowa State University, Ames, IA.

Listed below are technical publications resulting from this work during the current

grant:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). “A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container,” AIAA-92-0829, presented at the 30th Aerospace -
Sciences Meeting, Reno, NV.

Chen, K.-H. and Pletcher, R.H. (1991). “A Primitive Variable, Strongly
Implicit Calculation Procedure for Viscous Flows at all Speeds,” ATAA
Journal, Vol. 29, No. 8: 1241-1249.

Chen, K.-H. and Pletcher, R.H. (1991). “A Primitive Variable, Strongly
Implicit Calculation Procedure,” Technical Report Grant No. AFOSR-
89-0403, Report No. ISU-ERI-Ames 91401.

Flugrad, D.R. and Obermaier, L.A. (1992). “Computer Simulation of a
Test-Rig to Model Liquid Sloshing in Spin-Stabilized Satellites,” ASMFE

Journal of Dynamic Systems, Measurements, and Control, Vol. 114, No.
4: 689-698.

Kassinos, A.C. and Prusa, J.M. (1990). “A Numerical Model for 3D Vis-
cous Sloshing in Moving Containers,” Proceedings of the ASME Winter

Annual Meeting, Symposium on Recent Advances and Applications in
CFD: pp. 75-86.

Listed below are the papers which have been accepted for publication:

Chen, K.-H. and Pletcher, R.H. (in press). “Simulation of Three-Dimensional

Liquid Sloshing Flows Using a Strongly Implicit Calculation Procedure,”
AIAA Journal

Hill, D.E. and Baumgarten, J.R. (in press). “Control of Spin-Stabilized
Spacecraft with Sloshing Fluid Stores,” ASME Journal of Dynamic Sys-
tems, Measurements, and Control.




Xu, J., and Baumgarten, J.R. (1991). “A Finite Element/Lagrangian For-
mulation of Dynamic Motion Prediction for a Flexible Satellite Simulator
with Both Rigid and Elastic Bodies,” Proceedings of the 2nd National Ap-
plied Mechanisms and Robotics Conference, Cincinnati, OH, November 3
- 6, 91AMR-VIIB-5: 1 - 8.

Xu, J., and Baumgarten, J.R. (1992). “Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part I: General
Theory,” ASME Flezible Mechanisms, Dynamics, and Analysis, DE-Vol.
47: 411 - 419.

Xu, J., and Baumgarten, J.R. (1992). “Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part II: Applica-
tion and Results,” ASME Flezible Mechanisms, Dynamics, and Analysts,
DE-Vol. 4T: 421 - 429.

Xu, J., and Baumgarten, J.R. (1992). “A Sequential Implicit-Explicit In-
tegration Method in Solving Nonlinear Differential Equations from Flexi-
ble System Modeling,” ASME Flexible Mechanisms, Dynamics, and Anal-
ysis, DE-Vol. 47: 561 - 566.

Listed below are the papers which are currently under review for publication in the

technical literature:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). “A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container,” under review by AIAA Journal Thermophysics and
Heat Transfer.

Schick, T.E. and Flugrad, D.R. (1992). “Motion Study of A Spin-Stabilized
Satellite Test Rig,” under review by ATAA Journal of Guidance, Control,
and Dynamics.




1.4 List of Research Personnel, Thesis Titles, and Degrees Awarded

The investigation of rigid body and flexural structure response of the satellite
simulator is directed by J.R. Baumgarten and D.R. Flugrad.

J. R. Baumgarten served as principal investigator for the project until his re-
tirement in June 1992. D. R. Flugrad and R. H. Pletcher have served as co-principal
investigators and have continued to share that responsibility following Baumgarten’s
retirement.

J. R. Baumgarten supervised the work of Jiechi Xu, a Ph.D. student who has
developed software to model the elastic and dynamic motions of the satellite test
rig. This is a particularly difficult problem because of the unspecified rigid body mo-
tions of the assembly which are best characterized by nonlinear differential equations
coupled with small elastic deformations of the structure which can adequately be
described by linear relationships. Flexible components of the structure were modeled
by finite element beam members and a sequential implicit-explicit integration tech-
nique was developed to solve the combined system of differential equations. He also
worked with others on the project in developing a numerical procedure for simulating
the interaction between the spinning, elastic structure and the sloshing liquid. Xu is

expected to graduate in May 1993. His dissertation is entitled:

Xu, J., (1993). “Dynamic Modeling of Multibody Flexible Structures,”
Ph.D. Thesis, lowa State University, Ames, IA.

Troy Schick studied the dynamic stability of the satellite test rig. Under the
direction of D. R. Flugrad he extended the work of Lisa Obermaier, a former M.S.

student who worked on the project during the previous three year grant. Obermaier
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developed a computer program named SATELL to simulate the rigid body motion of
the test rig using a pendulum analogy to model the sloshing liquid. Schick used that
program to run a number of cases to study motion stability of the system based on
physical parameters such as masses, inertias and linear dimensions. He was also able
to verify expected results experimentally: He graduated in May 1991 and is currently

employed by Olin Corporation in Indianapolis, IN. His thesis title is:

Schick, T. E. (1991). “Motion Study of a Spin-Stabilized Satellite Test
Rig,” M.S. Thesis, Iowa State University, Ames, IA.

Tom Thompson joined the project as a Ph.D. student in 1992. Under D. R.
Flugrad’s supervision, he has assisted in the experimental work associated with the
effort to combine the rigid body/elastic model and the CFD model to study the
liquid/structure interaction. He expects to graduate in 1994.

The computational fluid dynamics effort was directed by R. H. Pletcher. He was
assisted by Ph.D. students Kuo-Huey Chen, Franklyn Kelecy, and Babu Sethuraman,

Mr. Chen graduated with the Ph.D. in December, 1990. His dissertation was entitled

Chen, K-H. (1990). “A Primitive Variable, Strongly Implicit Calcula-
tion Procedure for Two and Three-Dimensional Unsteady Viscous Flows:
Applications to Compressible and Incompressible Flows Including Flows
with Free Surfaces,” Ph.D. Thesis, lowa State University, Ames, IA.

Mr. Kelecy expects to complete degree requirements in 1993, and Mr. Sethuraman,

in 1994.

1.5 Seminars, Presentations, and Laboratory Visits

J. R. Baumgarten visited Dr. Spencer Wu at AFOSR Bolling AFB in March

1990. The visit coordinated the work of various technical personnel with the mission
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of the grant. Baumgarten attended the 1990 Supercomputing Institute at AFSC Kirt-
land AFB, 21-25 May 1990. He conducted the seminar titled “Tumbling Satellites”
at Afdeling Werktuigkunde, K. U. Leuven, Leuven, Belgium on Jan. 15, 1990.

R. H. Pletcher held a seminar titled “Numerical Simulation of Unsteady Viscous
Flows” on Jan. 16, 1990 at NASA Lewis Research Center in which he covered the
early results of Mr. Chen’s calculations. His host was Dr. Meng Liou, Branch Chief,

Computational Fluid Mechanics.

Kuo-Huey Chen held a seminar titled “A Primitive Variable Strongly Implicit
Calculation Procedure for Two and Three Dimensional Flows ” on June 4, 1990 at

CFD Research Corporation, Huntsville Alabama.

R.H. Pletcher held the seminar entitled, “Numerical Simulation of Unsteady
Viscous Flows” at the University of Alabama, Huntsville, Feb. 15, 1991. Results of
liquid sloshing simulations were featured. The seminar was part of the 1991 Propul-
sion/CFD/Mechanical Engineering Series attended by faculty, students, industrial
representatives, and personnel from NASA Marshall Labs. Pletcher visited NASA
Lewis Research Center on three occasions to discuss future research in liquid sloshing.
He visited NASA Ames Research Center in March 1991 to collaborate on research in

turbulence modeling.

D.R. Flugrad and J.R. Baumgarten visited the Federal Microelectronics and
Instrumentation Laboratory, Limrick, Ireland in March while participating in the
seminar FAIM 91. Drs. Flugrad and Baumgarten both presented lectures on path
planning for open chain multiple body mechanisms.

All three principal investigators participated in the 1991 Air Force Office of

Scientific Research Contractors Meeting on Structural Dynamics held in Dayton,
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Ohio in October of 1991. A presentation of progress and plans was made as a part
of the scheduled program.

During July, 1991, R. H. Pletcher presented a seminar on “Recent Results in the
Numerical Simulation of Unsteady Viscous Flows” at the NASA Lewis Research Cen-
ter. In September, 1991, he presented an invited lecture on “Numerical Simulation
of Unsteady Viscous Flows” at the Fourth Nobeyama Workshop on Supercomput-
ing and Experiments in Fluid Dynamics, Nobeyama, Japan. In November, 1991,
Pletcher presented a seminar at Iowa State University “On the Numerical Solution
of the Compressible Navier-Stokes Equations at Very Low Mach Numbers.”

In January, 1992, Dr. K.-H. Chen, a former graduate student participant in the
present grant, presented a paper describing some of our most recent results, “A Nu-
merical and Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container” at the 1992 Aerospace Sciences meeting in Reno, Nevada.

In November of 1991, Mr. Xu presented a paper entitled “A Finite Element/Lagrangian
Formulation of Dynamic Motion Prediction for a Flexible Satellite Simulator with
Both Rigid and Elastic Bodies” at the 2nd National Applied Mechanisms and Robotics

Conference in Cincinnati, Ohio.
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2. RESEARCH IN PROGRESS

The following sections summarize some of the more recent results obtained in the
present research program. The first section discusses the progress made in the liquid
sloshing calculations using the surface fitting approach. The next section describes
recent advances in the surface capturing approach along with some results for two
test cases. The last section presents some experimental results obtained from the ISU
satellite test rig for the case of a simple orbital spin-up. The experimental data are

comp.red with numerical solutions obtained from a fluid-structure interaction code.

2.1 Recent Progress in the Surface Fitting Approach

Most of the effort in the surface fitting approach has been directed towards
eliminating some of the problems with the current code and enhancing its overall
capability. The two areas which received the most attention were the handling of
the free surface motion and speeding up the code execution particularly through

vectorization. Progress in these two areas will be discussed below.

2.1.1 Free-surface motion

A key feature of the free surface fitting approach is that the location and shape

of the free surface at each time step is not known beforehand and thus has to be
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evaluated as part of the solution. The free-surface location is obtained by solving the
equation that states the free-surface kinematic (FSK) condition which is based on
the principle that ‘particles on the free surface remain on the free surface’.

Knowing the flow solution (the velocity components u,v, and w in the three
directions and the density p) at all the grid points at a particular point in time, the
location of the free surface after one time step must be evaluated. This is done by
solving the free surface kinematic equation, which is of the form:

oF oF ar

-5—t-=015;‘;+u25;;+5 (2.1)

where F = F(x,,3,t) is the free-surface function that describes the location/shape
of the free-surface. In this equation, coeflicients C;, C3, and the source term S are
functions of the flow field and certain other grid related parameters. As we are trying
to estimate F' at time step ‘n + 1°, the flow solution as well as the grid are known
only at the current time level, n. Hence the coeflicients, C;, C; and the source term
S are also known only at the time level n. In trying to solve for F™*! (superscript
denotes time level), these coeflicients and the source term are ‘lagged’ to the previous

time level. In short, it can be said that the equation solved was equivalent to

QF|™4 J[oF™ JoFH
G| =erloE] " rer|E] 4 22)

In the past, this equation was solved just once to get F"*!. The approach has
been modified in the following way: The above procedure of lagging the unknown
coefficients is used once to get F™*!. Using the new free-surface information and
the subsequently converged flow solution, the coefficients and the source term are

evaluated at the new time level n + 1. Using the new information, the following
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equation was solved to refine Fn+!:

[BF] n+i Fn4l _ pn

at At
n 1n n n+1
_ el ] e 3]
2
n 1n n n+1
[C)) gf‘; +[Co*! 793",% + [S]" + [S]*+!
2 2

.(2.3)

The system of algebraic equations resulting from approximating the spatial
derivatives by appropriate (one-sided or central, depending on the situation) fi-
nite difference forms, was solved using a two-dimensional strongly implicit procedure
(2DSIP). Terms that did not fall within the 5 point 2DSIP molecule (including terms
from previous time level) were moved to the right hand side in the solution algorithm.

This method, which is more like the trapezoidal or Crank-Nicolson time differ-
encing, was expected to give better results as the scheme is closer to being second
order accurate in time as compared to the first order accuracy of the old scheme. It
should be noted that the above procedure can be repeated (using the latest values
of Cy, C3, and S for time level n + 1) until the changes in F are small at each time
step.

As the location of the free surface determines the amount of liquid in the con-
tainer, the more accurate scheme is likely to better conserve mass globally. Numerical
calculations to date tend to support this idea. For one spin-up calculation, the error
between the initial volume of liquid and the final volume was about 10 % when the

free surface calculations were done only once per time step. It was found that this
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error could be reduced to approximately 4 % when the free surface calculations were
done twice per time step, and to sightly below 2 % when the calculations were done

four times per time step.

2.1.2 Contact line boundary conditions

The boundary condition used along the line of contact between the free-surface
and the solid container wall has been changed to avoid some problems associated with
computing higher Reynolds number flows. The grid in the interior of the liquid is
generated algebraically so that the grid lines conform to the shape of the free-surface.
In other words, the free-surface shape is one of the main factors that determines the
placement of interior grid lines.

The free-surface kinematic equation is solved in the interior of the free surface
(i.e. the entire free-surface excluding the line of contact between the free-surface and
the container wall) and the position of the contact line is estimated through separate
procedures. The method that is currently being used is to estimate the contact line
such that the condition g—g = 0 is satisfied. In this condition, # denotes a direction
normal to the wall of the container. This method ensures that the free-surface is
locally normal to the solid wall along the contact line. This is an attempt to avoid

grid cells with very sharp corners near the container wall and associated numerical
instabilities.

The improved method of solving the free surface kinematic (FSK) equation along
with the revised boundary condition has shown much promise. In earlier attempts
at trying to solve some severe spin-up cases, the code displayed a tendency to slow

down in convergence as time marching continued, and eventually blow up. This
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problem was eliminated by using the new approach described above. One spin-up case
corresponding to a Reynolds number of 250 has been successfully computed. Further

numerical experiments are underway to study the usefulness of this procedure.

2.1.3 Code refinement efforts

Earlier attempts at using the SLOSH3D code to simulate spin-ups of spherical
tanks encountered some difficulties beyond a certain range of Reynolds numbers
(based on tank radius and linear velocity of tank center). For a particular case
(Re = 180), the calculations suddenly began to diverge, and eventually blew up.
Another problem associated with such calculations was a large difference (more than
10%) between the initial volume of the liquid in the tank and the calculated volume
after sufficiently large number of time steps.

It was felt that the use of a finer grid might eliminate such problems. A major
difficulty associated with grid refinement was that the time taken for the computa-
tions began to grow out of control. At that stage, it was realized that enhancing
the execution speed of the code was vital to the simulation of finer grid and high
Reynolds number cases.

Two different approaches were taken to make the code execution faster. The
first one is a direct consequence of the fact that the code was developed to suit
the capability of the workstations on which the code was primarily expected to run.
These machines had restrictions on the memory size that prohibited the use of finer
grids. So, it was decided to use larger memory vector machines like the Cray Y-MP

with a code that was different in the following ways:

1. Removing repetitive calculations:
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As pointed out earlier, the initial code development was tailored to suit the
capability of workstations available on campus which had very limited mem-
ory. Hence, as far as possible, the code was based on repetitive generation of
the same sets of numbers rather than generating them just once and storing
them in large arrays. The enhanced memory on large computers like the Y-MP,
permitted switching to larger storage and fewer calculations. This eventually
resulted in faster code execution. In fact, a significant speed-up, by a factor
of as many as ten times could be achieved by modifying the code along these

lines.

. Vectorization:

The SLOSH3D code uses a three-dimensional coupled strongly implicit pro-
cedure (CSIP3D) to solve the system of algebraic equations which results from
the finite difference discretization. This CSIP3D routine is a critical and time
consuming part of the overall calculations. It was realized that this part of the
calculations was responsible for a large fraction of the computer execution time
due to high data dependence of the implicit procedure and the consequent time

consuming scalar execution loops.

The algorithm was vectorized along surfaces of constant index sums (i +j+k =
constant). In other words, the three-dimensional calculations were converted
to two dimensions: surfaces containing points whose indices add to the same
number. Surfaces were identified by their index sums (ranging from i +j + k =

imin + jmin + kmin to i + j + k = imaz + jmax + kmaz) and each of these

20




surfaces contained all the points (one or more) that satisfied the property that
their indices add up to a certain constant. Vectorizing the calculations along
these lines was possible because of the fact that the calculations (in the CSIP3D
procedure) for points lying on any one surface was not dependent on any param-
eters related to any other point on the same surface. Hence, the calculations
for all such points lying on the same surface could be done simultaneously;
this results in more vector operations and consequent higher rate of execution.
The overall execution speed of the code was increased approximately to about

sixteen times the original speed.

2.2 Recent Progress in the Surface Capturing Approach

This section highlights progress made in the development of the surface cap-
turing approach for modeling sloshing flows in moving containers. As discussed in
previous reports [4] (5], the primary motivation for pursuing this strategy is that sur-
face capturing does not require a moving, surface-conforming grid, and hence is free
of the grid generation problems associated with the surface fitting approach. More-
over, multiple free surfaces and complex surface interactions can be handled without
any special treatment.

Initial work on the free surface capturing approach was begun as part of the
ongoing satellite propellant sloshing research at lowa State University. The evolution
of the present surface capturing methodology has been documented in the previous
annual reports [4] [5]. Many ideas have been tested during the course of the research,
with the goal of obtaining a reliable, robust, and accurate computer code. The most

significant developments will be discussed in the sections below, along with some
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results for two validation test cases

2.2.1 Formulation of the governing equations

Consider a container partially filled with a liquid, the remaining regions being
occupied by a gas. If it is assumed that both the liquid and gas behave as isothermal,
incompressible fluids, the equations which govern the fluid motion within a discrete

control volume (? intersected by the free surface (Fig. 2.1) can be written as follows:

-;—t/pdﬂ+fp‘7-d§=0 (2.4)
0 S
%/,;Vda + §pVV-d5 = [pBd+ §T-d5 }{aNdC (2.5)
Q ) Q S
$7V-d5=0 (2.6)
S

where p is the fluid density, V is the velocity vector, T is the stress tensor, B is the
body force acceleration vector, and o is the surface tension.

Equations 2.4, 2.5, and 2.6 represent, respectively, the conservation of mass, the
conservation of momentum, and an incompressibility constraint. Note that the con-
servation of mass and incompressibility constraint equations become identical away
from the interface since the density of each fluid is considered constant.

While the foregoing equations appear unusual at first glance (due to the presence
of an equation for density), they do in fact constitute a solvable set of equations given
appropriate initial and boundary conditions. Detailed discussions of the mathemat-

ical properties of solutions to differential analogs of these equations can be found in
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recent works by Simon [12] and Antontsev et. al [2].

It should be noted that the density is considered here to be a discontinuous
function of space (the discontinuity occurring at the free surface). This comment
also applies to other fluid properties such as the viscosity. As a result, the solution
of Eq. (2.4) provides a means of locating the free surface through knowledge of the
density field.

The inclusion of a surface tension force term into the conservation of momentum
equation is valid only for control volumes containing the free surface. Away from the
free surface (in the single phase regions) this term will vanish. Therefore, in order
for surface tension to be included in the numerical formulation described below, it is
necessary to identify the location of the free surface within the computational domain.
However, for most of the sloshing problems of interest in the present research, surface
tension effects should be small (thus allowing the surface tension force to be neglected

from the formulation).

2.2.2 Numerical methods

The numerical algorithms developed to date have employed the finite volume
method [1]. In the finite volume method, the computational domain is divided up into
a system of non-overlapping control volumes. The dependent variables are assigned
values at node points located at the centroids of these control volumes. Numerical
approximations of the fluid conservation laws (e.g. Eqs. 2.4 - 2.6) may then be
derived for each control volume.

In order to couple the incompressibility constraint with the conservation of mass

and momentum equations, the pseudo-compressibility method of Chorin is employed
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Figure 2.1: Control volume within a two-fluid system.
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[6]. The pseudo-compressibility approach adds a fictitious pressure derivative term

to Eq. (2.6), yielding

d L
Zﬂ/PdQ+ﬂ_jV-dS_0 (2.7)

where [ is a constant parameter, and 7 is the pseudo-time. It should be noted that
the pseudo-time, which has no physical meaning, is essentially an iteration parameter

for which

. of
rlLrg—T =0 (2.8)
}Lr{.lof(r) = f(t + At) (2.9)

where f is any flow field variable. Equations (2.8) and (2.9) suggest that the solution
at any given future time level ¢t + At corresponds to a steady state solution in pseudo
time. For consistency in the formulation, pseudo-time terms are also added to the
other equations. This practice does not affect the solution since all pseudo-time
derivatives are required to go to zero at steady state (in pseudo-time).

The discretized equations form a coupled system containing five (in three di-
mensions) unknowns at each point. The current formulation solves this system using
an LU-factored implicit algorithm similar to that of Yoon et. al. [14]. Transient
calculations are carried out using a constant physical time step in conjunction with
subiteration. The subiterations are needed in order to drive the pseudo-time deriva-

tives to zero, and hence converge the solution at the next physical time level.
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2.2.3 Test case results

Results for two test cases are presented in this section. The first test case is
the “broken dam” problem [13], which was chosen, primarily due to its use by other
authors as a validation case [7] [9] [11], the availability of experimental data [10], and
the complex behavior of the flow field and free surface. In the broken dam problem
(Fig. 2.2), a rectangular liquid column is initially held up by a thin partition (the
dam). At timet = 0%, the partition is removed, thereby allowing the liquid to collapse
under the influenc of gravity. Of interest for comparison with the experimental data
from the literat..e are the positions of the free surface at the bottom wall (the surge
front) and back wall as functions of time.

The case presented here employed a square initial liquid profile of length a placed
within a container 5a units long by 1.25a units high by a units wide. The liquid was
assumed to be water and the gas air, both at standard conditions.

In previous calculations of this test case, a three dimensional grid was used.
However, as the major flowfield features are principally two dimensional, the decision
was made to employ a two dimensional version of the original three dimensional code.
This permitted a faster turn around time in the individual calculations (which tended
to be quite lengthy due to the nature of the unsteady flowfield).

In order to examine the effect of grid refinement, numerical solutions were com-
puted using three grid sizes of 80 x 20, 120 x 30, 160 x 40 control volumes. A constant
time step was prescribed for each calculation as follows (time units are dimension-
less): 0.01 for the 80 x 20 grid, 0.0067 for the 120 x 30 grid, and 0.005 for the 160 x 40
grid.

Some selected results derived from the computed solutions are presented in Figs.
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2.3 - 2.6. Figure 2.3 shows the position of the density interface (free surface) at various
times during the transient for the 120 x 30 grid solution. The corresponding velocity
fields are shown in Fig. 2.4. Notice the formation of a large vortex in the vicinity of
the free surface due to the shear induced by the motion of the liquid relative to the
gas. The free surface profiles are quite similar to those shown in photographs from
experiments in Ref. [10].

A more quantitative comparison of the numerical solution with the experimental
data is given in Figs. 2.5 and 2.6. Here the position of the free surface along the
bottom and back walls of the container are plotted versus non-dimensional time. The
agreement between the numerical solution and the experimental data is good con-
sidering the uncertainties inherent in the experimental data and the approximations
used in the numerical solution.

The second test which was recently attempted is depicted in Fig. 2.7. Here, a
two-dimensional, rectangular tank half-filled with water is subjected to a prescribed

horizontal, oscillating acceleration. This acceleration is of the form

az(t) = Agsin(wt) (2.10)

where A = 0.01 is an amplitude parameter, g is the acceleration due to gravity, and
w = 2rf = 5.592 Hz is the oscillation frequency. The motion of the tank gives rise
to a periodic sloshing motion of the water. This case has been studied numerically
by Huerta and Lin [8].

The calculations were performed on a 48 x 64 control volume grid. The time
step was set to 0.025 (dimensionless time units), and the calculations carried out for

400 time steps.
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Selected plots of the density interface position are presented in Fig. 2.8. The
position of the free surface at the front and back walls of the tank is plotted as
a function of time in Fig. 2.9. The periodic motion of the water waves is clearly
indicated in this figure. Notice that the free surface motions at front and back walls

appear to be out of phase with one another.

2.2.4 Concluding remarks

The encouraging results obtained thus far have spurred additional efforts to refine
the methodology. Current work is focusing on enhancing the stability, accuracy, and
robustness of the method. Application of the method to other test cases and to the

satellite propellant sloshing problem will follow.

2.3 Progress in Fluid-Structure Intcraction

Experimental measurements of fluid and structural displacement for the case of
a simple orbital spin-up from rest were recently obtained on the satellite test rig at
Jowa State University. The purpose of these experiments was to provide data for ver-
ifying the accuracy of the fluid-structure interaction computer code (STRUCTURE-

SLOSH3D). A detailed summary of this work is presented in the sections below.

2.3.1 Equipment

The test rig is shown in Figure 2.10. Its upper body, which emulates an orbit-
ing satellite, is mounted on a universal joint driven by a 1/4-horsepower DC motor
through a gear train. In the spin-up tests, a collar was positioned so that the up-

per body could only rotate about a vertical axis. The two 6-inch-diameter spherical
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Figure 2.2: Schematic of the broken dam problem.
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Figure 2.3: Density interface for the broken dam problem:selected times.
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Figure 2.5: Surge front position versus dimensionless time for the broken dam prob-
lem.
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Figure 2.6: Back wall free surface position versus dimensionless time for the broken
dam problem.
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tanks (50% filled with glycerine) were mounted using segments of 5/16-inch threaded
rod extending downward from a horizontal crossbar attached to the upper body axis.
The position of the center of the tanks under stationary and weightless conditions

would be 10 inches from the vertical spin axis and 14 inches below the crossbar.

In order to allow a useful validation of the computer simulation code, the fol-
lowing quantities had to be measured for the spin-up test: angular velocity of the
upper body, displacement of the tank position due to bending of the threaded rods,
and fluid displacement in the tanks. Transducers mounted on the rig itself provided
signals (through slip rings when necessary) to the data acquisition personal computer

as described below. A list of specifications is given in Table 2.1.

A tachometer connected to the drive train of the rig provided a voltage nearly
proportional to the speed of the rig. See the Calibration section for details on the

calibration curve.

Strain gages were mounted on the inboard and outboard sides of both of the
threaded rods on which one of the tanks was mounted. These four strain gages
comprised a Wheatstone bridge which generated a signal proportional to the dis-
placement of the center of the tank from the axis of the upper body. A conditioning
circuit mounted on the upper body amplified the signal before it was sent through
the slip rings to the terminal block on the data acquisition computer. This circuit is

shown in Figure 2.3.1.

Three photopotentiometers were mounted on the tank in order to sense the fluid
displacement of the free surface along vertical sections of the tank. Photopoten-
tiometer 1, 2, and 3 measured fluid displacement along the “inboard,” “outboard,”

and “lag” axis, respectively. These sensors were positioned so that their single-valued
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Table 2.1:

Description of Equipment

Component Maker Description
Data Acquisiton Computer IBM PS/2 Model 50
Data Acquisition Board National Instruments MC-MIO15-9
Power Supply Raytheon QSA10-14
0-10VDC, 0.6A
Photopotentiometers
Light Bulbs SK46
Strain Gages SR4
Instrumentation Analog Devices ADS24BD 8913
Amplifier
DC Motor General Electric Model SBPBS6HAA100
90VDC, 1/4 hp
1725 RPM
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Figure 2.12: Photopotentiometer Circuit

range of measurement along these axes would include as much as possible of the fluid
motion during spin-up. They acted as voltage dividers, sending on a portion of the
10-volt input signal in accordance with the amount of light which the moving fluid
blocked. The resulting signal passed through the slip rings to the terminal block of
the data acquisition computer. The circuit diagram is shown in Figure 2.12.

Each of the two tanks was equipped with an SK46 light bulb whose filement was
positioned about 1-1/8 inch below the top of the tank. The two bulbs were wired in
series across the 10-volt power supply, which also supplied power to the strain gage
and photopotentiometer circuits.

Figure 2.13 shows the termination connections of the data acquisition computer

used in the experiment. An IBM PS/2 equipped with a National Instruments Data

41




Data Acquisition

Terminal Block GND
112 Tach Black
- - T i
Slip Ring Block e —3 14 }“" Chaonel 0 3-4
1 yellow 516 ] Chasnel1 5-6
2 718 ] Channel2 7-8
mp1 |3 Sreen 9 1o] 2“" Channel3 9-10
2 |4 red 1 12] Channel4 11-12
L
mpPt3 | S brown 13] 14 Channel 5 13-14
Strain Gage Out | 6 purpic. 15] 16 Channel 6 15-16
Strain Gage Ref | 7 black I— 17] 18
) 19} 20
A
9
10l
7] .
V]
GND |13
-tov |14

Figure 2.13: Data Acquisition Terminal Block Connections

Acquisition card was used. Specialized data acquisition software was written in Ba-
sic. The scan rate was 100/second, and for the spin-up runs, the strain gage and

tachometer channels were given a gain of 10 in order to improve resolution.

2.3.2 Calibration

The tachometer, strain gages, and photopotentiometers were calibrated before
the spin-up runs were performed. Photopotentiometers 1 and 2 were calibrated
against pre-computed fluid displacements for steady-state spin velocities. In other
words, for each steady-state spin rate, there is a stationary free-surface position,
which was computed analytically. These values were compared to potentiometer
voltage output at several steady-state spin rates (tanks constrained against radial

displacement) in order to arrive at calibration curves for photopotentiometers 1 (in-
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board) and 2 (outboard). (About 200 data points were taken at cach spin rate.)

These curves were then fit with polynomials as shown in Figures 2.14 and 2.15.
All photopotentiometer calibrations and spin-ups were performed with room lights

off and tank-mounted light bulbs illuminated.

At the same time, the tachometer was also calibrated. Precise values of angular
speed were obtained by adjusting the motor rheostat and counting revolutions. After
the speed was adjusted to the desired value, the tachometer voltage readings along

with those of Photopotentiometers 1 and 2 were taken by the computer.

Figure 2.16 shows the tachometer’s voltage output, which is nearly linear with
speed. The above procedure did not provide a large enough range for Photopoten-
tiometer 3 (lag), since fluid displacement at this sensor is small for a steady-state
speed. Therefore, this sensor was calibrated manually. The tank assembly was dis-
connected at the cross-bar and was tilted enough to achieve fluid surface displacement
at 0.1 to 0.5-inch increments on a graduation strip along the photopotentiometer.

At each position, the data were recorded by hand. The resulting correlation of
voltage output to free-surface position was fit with a polynomial, and is shown in
Figure 2.17.

Finally, the strain gage circuit had to be calibrated. This was done by inserting
various gage rods between the tanks in order to separate them by a known distance
and sampling the resulting strain gage voltage output.

The gage rods were first fabricated to lengths of 11.50, 12.00, 12.50, and 13.00 %
0.01 inches. Next, the strain gage bridge circuit was balanced by adjusting its balance
potentiometer so that the voltage output was approximately zero when the 12.00-

inch gage rod was inserted (this causes the tank to be in the zero-gravity equilibrium
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position, centered 10 inches from the axis of rotation). Also, the gain potentiometer
on the bridge circuit amplifier was set so that the voltage output would increase
approximately one-tenth volt for each additional 0.5 inches of spread between the
two tanks.

Once the strain gage bridge circuit had been adjusted, calibration could begin.
Each gage rod was inserted between the bottom plates of the tank housings, one-half
inch in from the corners of the plates, on the side of the axis where the terminal
strip is located. For each rod, about 200 voltage samples were taken by the data
acquisition computer, and the process was repeated twice. Figure 2.18 shows the

resulting curve fit, which is quite linear.

2.3.3 Experiments

Three spin-ups were performed at each of the following target speeds: 30, 60,
and 90 rpm (revolutions per minute). Each spin-up procedure consisted of starting
the rig at a near-zero rotational speed and smoothly accelerating the rig to a set
target rotational speed by manually turning the rheostat control of the DC motor.
Since the duration of the acceleration was on the order of one second, significant
sloshing was induced.

Data acquisition began just before spin-up in each case. One hundred samples
per second were taken on each channel for a duration of 4 seconds. The resulting
sample times and voltages were saved to a computer data file.

A FORTRAN program was written to put the raw data into meaningful form.
After reading the raw data files, it used the polynomial curve fits from the calibration

to translate the voltages into speed, ration of free surface height to tank radius (h/r),
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and tank displacement. For photopotentiometers 2 and 3, a subroutine was used to
find the solution to the polynomial equations, since photopotentiometer voltage was

plotted in terms of h/r. It then wrote the reduced data to a file.

2.3.4 Results

The results of all three of the 0-30 rpm spin-ups were very similar; the same was
true for 0-45 rpm and 0-60 rpm. Therefore, the results of only the first run at each

speed are presented here.

Figures 2.19, 2.20, and 2.21 show the angular speed, free-surface position, and
tank deflection for these runs. Zerces are shown on the plots of photopotentiometer 3
for times when its output went beyond the range of calibration. This type of clipping
was also necessary for photopotentiometer 1 (inboard) in the time period just before
t = 1 second because the output voltage dropped below the -7.05-volt calibration

limit. In this range, the calibration was very sensitive.

The general behavior of the system was what one might expect: as the speed
increased from a near standstill, the fluid sloshed toward the outer part of the tank,
resulting in positive readings of h/r on the outboard side, and negative ones on the
inboard. At the same time, the flexibility of the structure allowed the tank to flair out
by about 3/4 inch in the 0-60 rpm case. It is interesting to note the approximately 2
to 3 hz oscillations superimposed on the fluid displacement and tank position curves

in each case. This seems to indicate coupling between fluid slosh and tank position.
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2.3.5 Numerical simulation

Two of the experimental runs described above were taken for comparison with
results from computer simulations. As part of the research on liquid sloshing in spin-
stabilized satellites, two codes have been developed: the first one, STRUCTURE,
calculates the flexible system dynamics and the second, SLOSH3D, computes the

sloshing motion of the fluid inside the tank.

These two codes have been integrated into one unit, where the two can exchange
information about the tank-fluid system. At each time step of the calculations, the
instantaneous positions, velocities, and accelerations (in the three coordinate direc-
tions) of the tank are passed on from STRUCTURE to SLOSH3D. Similarly, STRUC-
TURE gets the location of the mass center and the six components of moments of

inertia of the liquid, as input at the beginning of every time step.

One of the primary inputs to the numerical computations is the rotational speed
of the test rig as a function of time. The data obtained from the experiment were
smoothed to remove measurement noise before being input to the numerical com-
putations. This was done to minimize possible numerical instabilities due to the
oscillatory data. Figure 2.22 a shows the data that was experimentally measured and

the smoothed data that were inpnt to the computations.

The computations were performed on a Cray Y-MP and took approximately 200
minutes of CPU time for each spin-up calculation. The calculations involved marching
the solution in time for 3000 timesteps (each equal to 0.001 seconds) corresponding

to a total time of 3.0 seconds of the actual spin-up experiment.
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2.3.6 Discussion of results

Two computer runs were attempted: one for the final spin-up speed of 60 RPM
and the other for 30 RPM. As the trend of the computed results was similar in both
the cases, only one of them (corresponding to a final spin-up speed of 60 RPM) is
discussed here.

Figure 2.22 shows the comparison of the computed and experimentally measured
results for the 60 RPM case. Figure 2.22b shows the comparison of the free surface
positions (inboard and outboard) between the experimental and computed results
for the 60 RPM case. It can be seen that the transients compare reasonably well for
the inboard end. The outboard data do not compare as well (this aspect is discussed
later in more detail).

Figure 2.22¢c shows the comparison between the experimental and numerically
computed radial positions of the tank center. It can be seen that the comparison is
reasonably good.

The difference in the final outboard free-surface position between the experiment
and the numerical computation is due to several factors, the more important of
these being the experimental uncertainties in measuring the free-surface position, the
uncertainty in the amount of liquid in the tank (computations assumed a fill ratio
of 0.5), and computation of a tank angle that was too small due to the rigid cross-
arm assumption. The numerical results also seem to be smoother as compared to
the experimental data. This is attributed to the relatively coarse grid used in the
computations (41 x 11 x 11).

The final radial position of the tank appears to have been predicted well by the

code. The most significant source of discrepancy in the radial deflection values is
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probably due to the assumption made in the STRUCTURE code of a perfectly rigid
cross arm on the upper body of the test rig. In reality, a small deflection in this bar
most likely results in a relatively large deflection in the tank position.

The rigid cross-arm assumption could also be responsible for the higher frequency
of oscillation in the computed case, which can be seen in Fig. 2.22c. The transient
oscillations in the first one second of the computed results is due to the initial condi-
tion used and the absence of viscous damping. The numerical computations assume
that, at time = 0.0 seconds, the tank is at its vertical position without any static
load and is suddenly subjected to the load due to the fluid mass at time greater than
zero. This is thought to be the main cause of the oscillations seen in the computed

results.

2.3.7 Concluding remarks

Given sufficient time and resources, the experimental and computational results
for the spin-up case could be brought into even closer agreement. Improvements which
could be implemented include: (1) photovoltaic fluid level sensors, which could be
calibrated more reliably over a broader range, (2) inclusion of a flexible crossbar in
the STRUCTURE code, and (3) a finer grid size for computing high-frequency fluid
oscillations in the SLOSH3D code.
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APPENDIX A. Computer Simulation of a Test Rig to Model Sloshing
in Spin-Stabilized Satellites.
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Computer Simulation of a Test Rig
to Model Sloshing in Spin-
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Stabilized Satellites

Certain communications satellites carry liquid stores on board for station tending
and atritude adjustrment. Flowever, sloshing of the liquid can ceuse an undesirable

L. A. Obermaier
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nutational moton of the spin-stabilized vehicle. In previous work a test rig was
designed, built and instrumented to study the interaction berween the rotating struc-
ture and liquid. To augment that experimental project, a computer model of the

test rig has been developed to simulate the dynamic motion of the svstem for various
parameter values. The sloshing liquid was replaced by a two degree-of-freedom
pendulum in the mathematical model. Simulation results were compared with those
Sfrom a general multibody dvnamics program and with experimental measurements
of the test rig motion to demonstrate the mathematicai model’s validity. Good
agreement was achieved in both instances.

Introduction

Extensive research, both analytical and experimental, has
been conducted on the stability of spacecraft having liquid
propellant stores. A rigid body can be stabilized by spinning
about an axis of either maximum or minimum moment of
inertia. Common exampies of spin stabilization about an axis
of minimum moment of inertia include a spinning top or a
football. However, systems containing a significant amount
of liquid mass, such as the INTELSAT [V (Mar:in, 1971 and
Slabinski, 1978) and the STAR 48 (Hill, 1985) communications
satellites, as well as the XM761 artillery projectile (Miller,
1982), have experienced instability when spun about an axis
of minimum moment of inertia. Sloshing of liquid payloads
has been suspected of causing instability of the spin-stabilized
bodies.

Viscous dissipation resulting from relative movement be-
tween a liquid and its container tends to reduce the kinetic
energy of a system. The body, attempting to conserve angular
momentum, is then forced to seek a lower energy state. For
a given amount of angular momentum. spin about an axis of
maximum moment of inertia represents the minimum energy
state possible. If a body spun about its axis of minimum mo-
ment of inertia experiences energy dissipation, it will seek the
lower energy state and wiil end up spinning about its axis of
maximurn moment of inertia if unrestrained. This is known
as a flat spin.

Agrawal (1981) states that for a body with flexible elemeats,
the ratio of the moment of inertia of the spin axis to that of
the transverse axis must be greater than one for stability. Thus,
to be stable, a body conrtaining liquid must be spun about an
axis of maximum moment of inertia.

Several launchings of the STAR 48 communicadons satellites

Coatnbuted by the Dynamic Systems and Conurol Division for publicauon
in the JOUmNAL OF DYNAMIC SYSTEMS, MEASURZMENT . AND CONTROL. Manuscnot
received by the Dynamic Systems and Control Division Novembper 1989: revised
manuscript received Apeal 1992, Associate Techrucal Editor: N. S. Nathoo.

Journai of Dynamic Systems, Measurement, and Control

resulted in a coning motion of the spacecraft. Hill (1985) used
an equivalent mechanical pendulum model, along with a mass
representing the main body and rocket motor to approximate
the STAR 48 system. He developed control laws using line-
arized eguations of motion.

The INTELSAT [V communications satellite also experi-
enced instability once launched. Slabinski (1978) conducted
in-ocbit testing of the sarteilite. as weil as a theorerical analysis,
to study the sloshing phenomenon inside the tanks containing
liquid propeilant. He deveioped relationships between driving
frequencies and nutation frequencies. Marun (1971) exper-
mented with tanks of liquid propellant on earth. Marun.
through his experimental investigations. found that when a
spinning tank is subjected to angular oscillations about an axis
which is not parallel to an axis of symmetry of the tank.
turbulent fluid motion is excited. However, when the tank is
accelerated rectilinearly, the motion of its contents is relatively
caim. like that of a rigid body. Because a sphere is axisym-
metric, liquid in a sphere did not experience the turbuient
mouon that it did in differently shaped tanks. [n the sphencal
tanks, the liquid behaved like a pendulous rigid body.

Many analytical attempts to quantify the movement of lig-
uids in tanks have used a pendulum analogy. Such an anaiogy
assumes that the liquid inside the tank moves as a sphencal
penduium would under the same conditions. Sumner (1965)
deveioped relations to describe a pendulum representing the
liquid in spherical and oblate spheroidal nonrotating tanks as
a function of tank geometry and fill fraction. The mass of the
pendulum is not equal to the mass of the liquid in the tank.
A nonsioshing mass is fixed at approximately the center of the
tank. The sum of the nonslosh mass and the pendulum mass
is equal to the total liquid mass. Sayar and Baumgarten (1982)
included a rotauonal damper and a cubic spring in their pen-
dulum analogy to improve Sumner’s model in the nonlinear
range.

Zedd and Dodge (1985) examined the energy dissipated bv
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liquids in rotating spherical tanks using a pendulum analogy.
Their model included a pendulum, a rotor, and a viscous dash-
pot. Through this analogy, they developed equations for nat-
ural frequencies of the pendulum as functions of tank location,
tank fill fraction, and the spin rate of the tank.

Cowles (1987) built a test rig to model a satellite containing
liquid fuel stores. His model consisted of a motor driven shaft
which supported a semi-rigid assembly. The assembly was con-
nected to the vertical input shaft by a Hooke’s type universal
joint. The assembly held two tanks which were partially filled
with water. By altering the location of the tanks and the di-
mensions of the assembly, Cowles was able to achieve a variety
of test conditions, inciuding spin about axes of maximum,
intermediate, and minimum moments of inertia. When spun
abourt an axis of maximum moment of inertia, the assembly
was extremnely stable, even when perturbed. The assembly,
however, feil immediately into a flat spin when spun about an
axis of intermediate moment of inertia. Though a configu-
ration was designed and built for spin about an axis of min-
imum moment of inertia, tests were never completed because
it was felt the assembly might be damaged in a collision with
the supporting structure if it attempted to go into a flat spin.

Anderson (1988) redesigned the mechanical assembly built
by Cowles. Anderson’s assembly included a restricting collar
so that even an unstable test assembly could not damage 1tself
or the supporung structure. The redesign included instrumen-
tation in order to acquire guantitative measurements of the
motion of the assembly and the liquid contained in it. Just as
predicted, Anderson found the case of spin about an axis of
minimum moment of inertia to be unstable.

The work described in this study develops the equations of
motion for the test rig designed and constructed by Cowles
and Anderson. Equauons of motion were derived using La-
grange's equations. State variables were chosen to best match
the quantities measured by Anderson’s instrumentation.

The liquid in each of the tanks was modeled as a two degree-
of-freedom pendulum. This approach can only account for
free surface liquid oscillations which will have natural fre-
quencies greater than the coning frequency for the test rig. In
order to account for lower liquid oscillation frequencies of the
type associated with internal or inertial waves, a more complete
model would have to be used. This would be important, for
instance if one wanted to study oscillations strongly coupled
to the coning motion.

The equations of motion developed for the pendulum anal-
ogy were numericallv integrated. Resuits of the numerical sim-
ulation were compared with those from an existing rigid body
dynamic analysis program to verify the validity of the nu-
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menical simulation. Simulation resulits were aiso compared with
Anderson’s experimental resuits.

Development of Equations

A schematic drawing of the mechanical system modeled :s
shown in Fig. 1. The model contains four rigid bodies. A iower
shaft which rotates in pillow block bearings supports the struc-
ture. The upper assembly is connected to the lower shaft by
a Hooke’s type universal joint. Two pendula, each with two
degree-of-freedom motion representing the sloshing liquid, are
symmetrically attached to the centers of the tanks. The pendula
are assumed to be point masses suspended f{rom the upper
assembly by rigid, massless rods.

A note of clarification is perhaps necessarv (0 define ter-
minology of bodies in the system. The *‘test rig’’ is defined as
the structure that encloses the liquid and its associated sup-
ports, as well as the contained fiuid. This basicallv inciudes
everything supported by the universal joint on the mechanical
assembly. The ‘*upper assembly’’ is associated with the math-
ematical model and does not have a direct physical represen-
tation. The upper assembly is defined as the test rig minus the
enclosed liquid plus the nonsiosh masses.

To develop the equations of motion for the svsiem. a La-
grangian formulation was used. Through the use of coordinate
transformations, position vectors were determined for each of
the bodies. The position vectors were then differentiated with
respect to ume to determine velocities for the bodies. The
kinetic and potential energies of the bodies were then devei-
oped. Once the equations of motion were determined according
to Lagrange’s equations. they were numericaily integrated us-
ing a douple precision version of DIFFEQ, a numericai inte-
gration program.

Coordinate Transformations and Body Positions. The po-
sitions of the bodies were determined through simpie coor-
dinarte transformations consisting of rotations and transiations
of Cartesian coordinates. All coordinate svstems used were
defined to be right-handed.

The x,-%,-Z, coordinate system is stationary and is positioned
at the center of the universal joint. The I, axis is directed
vertically upward. Positioning of the X, and y, axes is arbitrary.

Transformation to the ¥.-¥.-{, coordinate svstem is achieved
by a nght hand rotation about the I, axis. The ¥.---7. co-
ordinate system 1is atiached to the lower shar: of the test nig
and its origin is at the center of the umversai joint. The x--v..
3. axes are fixed in such a way that wpnen the 7. and I. axes
are aligned. the v. components of the posiuon veciors of n
pendulum supports are zero. Generally, the matnx {4..] :
defined such that

I\ :?
' ( = [A l/]
1

) \ l)‘

The transformation matrix from the x.-¥.-Z; coordinate systern
to the X,-¥,-Z, coordinate system. [A4.], is given in the Ap-
pendix.

The rotation of the upper assembly relative to :he lower
shaft is defined by the two rotation angles, A. First. a rotation
by an amount A, about the J. axis defines the transformation
to the X;-¥;-7; coordinate system. Then the coordinate system
is rotated through an angie A; about the x, axis (1o arnive at
the X,-v,-2, system.

The X,-9.-Z coordinate system is fixed to the upper assembiv
in such a way that the ¥, components of the position vectors
from the universal joint to the pendulum supports is zero. The
origins of the X;-y;-Zy and X-y,-Z, svstems are located at the
center of the universal joint. The rotauons between the 2. 3.
and 4 coordinate systems are shown in Fig. ;.
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Fig. 2 Rotation coordinates for pendulums

Because the body is assumed to be axisymmetric, the position
vector of the upper assembly is given by

Tus = 0Zs (2)

where o is defined to be the height of the center of gravity of
the upper assembly above the universal joint when A, and A,
are equal to zero.

The pendula. which represent the water in the spherical
tanks, are dispiaced from the universal joint. The physical
constants 7 and (cg) are defined such that the ~osition vector
of the support of pendulum 1 is ré; = (¢2)Z.. Consequently,
the orig.n of the X:-ys-I; system is defined 0 be at r%, -
(c2)Z.. This is the location of the hinge point of pendulum 1,
and alsr the location of one of the nonslosh masses of the
upper assembly. Similarly, the origin of the {-7¢-3; system is
located a. -rxXs - (¢g)Z,, which is the location of the hinge
point of the second penduium, as well as the sezond nonsiosh
mass. There are no relative rotations for :he Xi-Vi-2,, SeVe-Ts,
and f£q-ye-3; coordinate systems.

The radial rotation of the pendula are defined by the angies,
4. The angle 8, is defined py right hand rotauon of the Xg-ve-
25 systen. about the ¥ axis. In a parallel rashion. the angle 4,
is defined by right-hand rotation of the {.-¥y-7: svstem about
the ¥4 ax's. Note that if both penduia are flarsd outward from
the universal joint by an amount §, then 3. = -3 while §, =
-4d.

Circumferenual (or tangential) rotations of :he pendula are
describea by the o angles. The ¢--y--I: axes are rotated through
the angl® o, about the ¥4 axis. The £-—-v--3- coordinate svstem
is fixed ic pendulum 1. Sirnularly, the ¥,4-V,o-3;p axes, which
are fixed (o pendutum 2, are rotated through an angie o- about
the g axis. Rotauons of the pendula reiative 10 the upper
assembiy are represented in Fig. 2.

The local position vectors of the pendula, r, and r,; are
easily defined as

rp‘ = -[27 (3)
and
Fr= =l (@)

where / is the length of the pendulum. This length is a function
of tank size, tank shape, and fill heignt.

By direct substitution, the position vectors of the bodies can
be expressed in terms of world coordinates. Thus,

X, Xo
T =laaaniiana|? (5)
: )

The overall transformartion matrix. (A 4], is simply the produc:
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given by (A 3] {A2] {A ). Since r,, = pZ,, it can be expressed
as

Fuo =p(cOS ¥ sin A €OS Az +sin ¢ sin N\y)X,
+p(sin 3 sin Ay cos Ay — oS ¥ sin Ay,
+p €COS Ay COS Nqd (6)
In similar fashion,

2, X<
21 =Aulldslidsidsia {7 ?
l 1
and
2, %ro
?, = (A4 llA nl{A WA alfA sllA s 0l ?:, ®)
1

The position vectors r, and r,,, expressed in terms of world
coordinates, are presented in the Appendix.

Body Velocities and Energies. The transiational velocities
of the center of mass of the upper assembly and the two pendula
can pe determined by differentiating their position vecrors with
respect to time. Using the chain rule of calculus,

dr ar dg,
v-dr:‘ aq; dt 2

-]
Thus, differentiation of Eq. (6) produces
v.e=0({5(cOs ¥ sin Aa—sin ¥ sin A\, cos A1)

-\, cos ¥ cos A, COS A»

- ,\:(-cos ¢ Sin A, sta As - $in ¢ cos A3)]X,

- pf¥(cos ¥ sin X, cOs A»=sin & sin A,)

— X, sin ¢ cos Ay CO§ Aa

- \;(-cos ¥ €os A =sin & sin A, sin Ay,

—a(X,_ Sin A €OS As = X: cos Ay sin A3)E; (10

Veiocity vectors of the pendula are determined in an idenucal
fashion. Due to their lengthiness, however, they are shown in
the Appendix rather than here.

Using the addition theorem for angular velocities, the an-
gular velocity of the upper assembly can be expressed as a sum
ol simpie components as

wee= Vi1 = N J1+ Aok an
or expressed in terms of body fixed axes:
Wue =(— ¥ Sin Ay = Ak,
= (¥ cos Ay sin Ay+ A, €OS Aq)Fs
(12)
Theinertia dyadic of the upper assembly, 1., can be expressed

+ (¢ cOs Ay cOs A2~ A, sin Aa)Z,

as
Lig=laXsiyr [y,};dyll I3

+lo(RaJa+ Jske) + [ (JeZs+ 10 (13)
where ¢, is defined to be the inertia scalar of the upper as-
sembly relative to its center of gravity for unit vectors ¢, and
7s. Note that the body is assumed to have zero products of

inertia about its center of gravity for the £, and I, axes.
The anguiar velocity of the lower shaft is simply

(14

ug,su'r:';
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Table 1 Test rig data for comparison between CAMS and
SATELL. For these runs the transverse priacipal moments of
inertia were both equal to /,.

run 1ol sphere % r (cg) spin 1, 1,
mass diam fill speed
shug f ft ft pm slug ft°  slug fr?
1S 2.0 1 50 1 0 100 2.2 1.39
1C 2.0 1 50 1 0 100 2.2 1.39
iS 2.0 1 S0 1 0 100 2.08 3.47
3C 2.0 1 50 1 0 100 2.08 3.47
010
oos .-l f‘ p l‘\ n ‘.
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Fig. 3 Comparison of upper assembly rotation given by A, for CAMS
Case 1C and SATELL Case 1S
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Fig. 4 Comparison of upper assembly rotation given by A, for CAMS
Case 1C and SATELL Case 1S
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Fig.5 Comparison of radial rotation of penduium 1 given by 4, for CAMS
Case 1C and SATELL Case 1S

The relevant term of the inertia dyadic for the lower shaft
is the moment of inertia of the shaft about the I, axis, /,.
Because the pendula are assumed to be point masses, their
inerua dyadics are zero.

The kinetic energy, T, of the system can now be calculated
by summing the rotational and transiational kinetic energies
of all the bodies:

1
T=£ M¥p Vs, ’z MsVpy*Vor ‘5 MygVua®Vue
1

-~ “’uc‘lua""ua’& "’!x’ll.r'“’!: (15

- -
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Fig.7 Comparison of half cone angle, 3, tor CAMS Case 1C and SATELL
Case 1S

where m, is the mass of a pendulum and m,, is the mass of
the upper assembly.
The kineuc energy is expressed in matrix form as

T=11q)7Mt4) (16)

where the matrix {M], shown in the Appendix, is symmerric.
The vector |gq] is defined as

fgi=1\6 (17)

The potential energy, V, of the system is determined from
the elevation of each of the bodies. Thus,

V=m,.go cos Ay cOS Ay + My[l sin A\q(sin 6, cos o,
+5in 8 cOs @1) =/ €OS Ny COs Aax(cos §; cos @ < cos §; cos ©32)

+1¢os Ay sin hy(sin &, +sin @) +2(cg)cos Ay cos Az (18)

Lagrangian Formulation. The Lagrangian, L, for the sys-
tem is defined simply as L = T ~ V. Equations of motion
can be determined from Lagrange’s equations of the second

kind as
dfaL) oL
2(2) _ZF, r=t... .0
dt(éq,) P /

The generalized force, F,,, due to viscous damping can be
expressed as

(19

Fo=cq, r=1,...,7 (200

where ¢, is the viscous damping coefficient expressed in di-
mensions of torque per unit anguiar velocity.
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Table 2 Test rig data for comparison between experimental
results and SATELL. For these runs the transverse principal
moments of inertia, /,, and /., were slightly different.

run total height spin 1, 1, I
mass of c.g. speed
slug ft rpm  slug ft®  slug ft°  slug fi°
1E 0.507 -0.080 -100 0.223 0.343 0.340
ISE 0.507 -0.080 - 100 0.223 0.343 0.340
2E 0.431 -0.121 -70 0.324 0.280 0.289
2SE 0.431 -0.121 -0 0.324 0.280 0.289

Substituting L = 7 - Vinto Eq. (19) and noting that V
does not depend on g we have

4(aT\ _oT v _.

dt\dq,) dq. dq ¥
Since T = 0.5 {1]}7 [M] {q} where [M] does not depend on
g, the first term on the left hand side of Eq. (21) is determined

by

r=1,...

" @

aT .
—= 22
3. Mliq] 22)
and by the chain rule of calculus,
d[aT . .
- =] = 2
dr<aq,) Mligq) +[Miiq) (23)
For the second term on the left-hand side of Eq. (21),
T | M, . .
—_— —lg, 24
. 2§aq,‘”’ (24)
=l
So that the equations of motion become
— . o M,
Z (M,,q,-v-M,,q,) - Z (_l q.9,
.- -] aqr
J=1
1% -
+a—q’=FC, r=1,..., 7 (25
These equations are assembled into a matrix form,
: . . av)
(g} ~[M){q} - [DELM] (g} - o) 1F,) (26)
Mi{g} ~M] q (39 P
where [DELM)] is defined by
DELM, = 3 M o (27)
&1 9

This system of equations was numerically integrated using
a double precision version of DIFFEQ, a numerical integration
program. The user of DIFFEQ must supply a subroutine which
computes the derivatives of the state variables with respect to
the independent variable, given the current vaiues of the in-
dependent variable and the state variabie.

Simulation Results

To ensure the accuracy of the equations of motion, simu-
lation results were compared with those from a multibody
dynamics program called CAMS. Results were also compared
with experimental data.

CAMS (Control Analysis for Mechanical Systems), a three-
dimensional multibody program, was used to verify the ac-
curacy of the previously denived equations of motion. To run
CAMS, a user creates a data file specifying the type of con-
nection exisung between bodies, as well as the inertial prop-
erties, initial positions, and initial orientations of all of the
bodies in the system.

Because CAMS is more generic than the program tailored
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specifically to solve the satellite problem, it was considerably
more ume consuming to generate an input data file tor CAMS
than for SATELL, the specific program written for this study.
Several runs were completed using CAMS. However, only two
representative runs are dispiayed here for brevity.

The physical values of the test rigs used for the analyses are
given in Table 1. /; is defined as the moment of inertia of the
test rig about its spin axis. /, is defined as the moment of inertia
of the test rig about a transverse axis through its center of
gravity. For all runs in this section, the center of gravity of
the test rig at its initial speed is located at the universal joint.

Figures 3-7 compare the output of CAMS and SATELL for
a case in which half filled, one ft diameter spheres spin about
an axis of maximum moment of inertia (specifically, /,/]. =
1.6). Results for angles associated with pendulum 2 were very
similar to those for pendulum |, and thus are not displayed.
Figure 7 shows the half cone angle versus time for each of the
programs, where the half cone angle, 3, is defined to be the
angle between the Z, and Z, axes. Mathematically,

B=cos™'(cos \, cos Ay) (28)

These two runs verify that the motion of the system is stable
for spin about the axis of maximum moment of inertia. This
can be seen, for example, in Figs. 3 and 4 where the magnitudes
of the oscillating upper assembly rotation angies are decreasing
with time. The effect of decreasing amplitude with time is even
more pronounced for the radial rotation angles for the pendula
as illustrated in Fig. 5. More important, however, is the ex-
ceptionally close agreement apparent between the CAMS and
SATELL simulations. The output motions for the two runs
displayed in Figs. 3-6 are so close, in fact, that thev are in-
distinguishable. There is slight disagreement in the half cone
angle curves depicted in Fig. 7, but even that difference is very
small, with a phase difference of less than 0.01 s appearing
early in the simulation.

Figures 8-11 compare the results of CAMS and SATELL
for the case of spin about an axis of minimum moment of
inertia. Both simulations indicate that the resuiung motion is
unstable as seen in Fig. 10 where the magnitude of the radial
rotation angle for pendulum 2 is increasing with time. Figure
11 shows thart the half cone angle also increases as the system
seeks to reorient itself to spin about the axis of maximum
moment of inertia. Once again, the two simulatons agree so
well that the pairs of curves piotted in Figs. 8-11 are identcal
except ror a very slight difference that can be detected in the
half cone angle of Fig. 11.

Comparison With Experimental Data. To determine the
validity of the mathematical model, output from SATELL was
compared with Anderson’s (1988) experimental results.

In his experiments, Anderson used six-inch plastuc spheres.
Physical properties of two of the test rigs used in expeniments
are given in Table 2. In both cases. the spheres were half full.
Two transverse moments of inertia are listed, with /,, the mo-
ment of inertia of the test rig about the %, axis and /,; the
moment of inertia of the test rig about the y, axis.

Figures 12-15 show a comparison of experimentai data and
SATELL output for spin about an axis of minimum moment
of inertia, runs lE and ISE. Only about ten seconds of ex-
perimental data could be acquired before the unstable upper
assembly came to rest on a supporting collar.

Figures 12-15 clearly show that the system is unstable for
spin about an axis of minimum moment of inertia with all the
displayed variables increasing with time. Furthermore, as might
be expected.the SATELL simulation results do not agree as
well with experimental results as they did with the CAMS
simulation.

However, the overall results are very similar in a number of
important respects. For instance, Figs. 12 and 13 show that
the oscillaung magnitudes for the upper assembly rotation
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Fig. 9 Comparison of upper assembly rotation given by A, for CAMS
Case 3C and SATELL Case 3S
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Fig. 11 Comparison of half cone angle, 3, for CAMS Case 3C and SA-
TELL Case 3S

angles are quite close as are the primary frequencies, even
though the initial conditions for the simulation did not exactiy
match those for the experimental run.

Figure 14 dispiays rotation angles for pendulum 2 which do
not agree as well as the upper assembly rotauon angies of Figs.
12 and 13. Once again, though, the curve does show significant
similarities. The overall oscillation magnitude and the fun-
damental frequency are roughly the same. The phase difference
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of Fig. 14 can again be attributed at least partly 10 a difference
in initial conditions.

The half cone angle depicted in Fig. 1S shows quite a bit of
difference between the experimental resuits and the SATELL
simuiation. The oscillaung magnitude for the experimentai run
appears to be about twice that of the SATELL simulation.
Furthermore, the simulation dispiays a single higher frequency
which is approximately twice that of the pnmary frequency
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found in the experimental curve, although there does appear
to be a secondary frequency of lower magnitude in the ex-
perimental results. The one significant similarity between the
two curves, though, is the general increasing trend in the half
cone angle associated with the overall unstable motion of the
system.

Even though the comparison results between the SATELL
simulation and the experimental runs are not as dramatic as
the comparison between the two simulation packages, there is
still a good deal of qualitative and a reasonable level of quan-
titative agreement. Since there were certainly small discrep-
ancies in parameter values for such things as the masses and
principal moments of inertia used in the SATELL simulations,
it is perhaps surprising that the results agreed as closely as they
did.

Conclusions

This work has developed the equations of motion for a test
rig designed to model a spin-stabilized satellite. The applica-
bility of the equations of motion to the motion of a satellite
is based on two assumptions. The first is that the mechanical
assembly is a valid model of a satellite, and the second is that
the mathematical model is a valid model of the mechanical
test rig.

The major accomplishments of the study have included:

e Development of the equations of motion of a spacecraft
simulator using a Lagrangian formulation.

¢ Numerical integration of the developed 2quations of mo-
tion in order o simulate the motion of the test rig.

¢ Comparison with a multibodv dynamics program to verify
accuracy of the equations.

¢ Comparison with experimental results (o determine the
validity of the mathematical model.

Basic theories were confirmed. That is5, that a body con-
taining a sloshing fluid 1s stable when spun aoout an axis of
maximum moment of inertia and unstaple when spun about
an axis of minimum moment of inertia.

Comparison of the results of SATELL with the results of
CAM S showed good agreement. The resuizs agraad very closely.
The relative ease in calcuiating the input values for SATELL
supports its use over that of CAMS for this particular appli-
cauon.

Agreement between experimental data and the output of
SATELIL was reasonable. The results showed similar frequen-
cies and magnitudes. Difficulty in modaiing the experimental
setup arose in determining values for mass moments of inertia
of the test rig. These values were calculated using formulas
for mass moments of inertia of basic geometric shapes. An-
other difficulty was encountered in determining damping coet-
ficients at the universal joint and pendulum supports.

Now that a computer program has been developed to sim-
ulate the dynamics of a spin-stabilized structure carrying liquid
stores, many additional factors can be studied. For example,
different size tanks and different inertias can be considered.
The absence of gravity in outer space can also be simulated
by simply serting the acceleration of gravity zqual to zero.
Furthermore, plans call for additionai development of the com-
puter program (o handle cases where the liquid tanks are not
pertectly symmetric and may not even hoid the same quantity
of liquid.
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APPENDIX
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1 0 0 0
0 cose: =—sinadn O
(As0l = 0 sino, coso¢y O
0 0 0 1

Iy, = [ —flcos ¥(cos A sin 8, cos &,

+5in A\, cos A, cos 6, cos ¢, —sin A, sin A; sin @))
+sin Y(cos A\ sin @, +sin A3 cos 8, cos 6,)]
+7COS ¥ €Os A

+ (cg)(cos ¢ sin Ay cos Aa+sin ¢ sin Xj) X,

{ —{{sin ¥(cos \, sin 6, cos ¢,

+sin A\ cos A, cos 8, cos &, —sin A, sin A, sin &)
— 08 Y(cos Ap sin @, +sin Ay c0s 8; cos o))
+7sin ¥ Cos

+ (¢g)(sin ¥ sin A\ cos Aa — cos ¢ sin N2} } ),
+~[-=/(-sin A\, sin 8, cos o,

+cos A\j €Os Az €Os 8 cos o, —cos A, sin A, sin o))
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- §in Y(cos A1 sin ©+ +sin Ay cos 81 cos o))
—rcos U cos Ay
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+{ sin \; cos A\, cos 6, cos &, =/ sin \; sin \; sin ¢,
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+ A lcos ¥(—1 cos Ay cos Az cos 8, cos o

+/¢cos A\ sin \; sin o,

+ (cg)cos A, cos A2+ sin A sin 6, cos o,

~rsin A sin Ap)] + Njfcos ¥ (I sin N, cos A, sin ¢,
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+ (cg) sin A\y) —cos ¥ (! cos \, sin 8. cOs @,
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+1sin Ay cos N\, cos 0; cos &, —/ sin A, sin A; sin ¢,
+rCos A, + (cg)sin Ay Cos A1)

+ N\, lsin ¥(—1/ cos N, cos N, cos 8, cos o3

+1{cos A, sin A\, sin ¢,

+ (cg)cos Ay cos Ay +/ sin A, sin 8, cos ¢,
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+1{¢os \; cos N\, cos 8- sin 0)}2,

Because [M)] is symmetric, only the upper elements of the
matrix are displayed here. The lower elements are determined
by M, = M,,.

M =m*{(cos® N, +sin° A, sin® As)(sin” o, - sin” 01)
+¢0s™ \(sin° 6, cos” &, = sin® 6: cOs® 02) — (sin® A,
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+ I sin? N+ 1, cos® A sin® Ay + [ cos® N, cos® A,
—1Iq cos Ny sin Ay sin Ay + 1, cOs™ Ay cos A sin A,

M,: = m1*[cos N y(cos® Ay —sin® \y)(cos 8, cos o, sin o,
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+sin® )\z(sini oy +sin° ¢2) + (sin’ 8, cos” o,
+5in° 6; cos® ¢1) = 2 cos Ay sin As(cos 8, cos ¢, sin o))
+2mgt+2m,(cg)? cos® Ny — 2m,lr(sin 8, cos o,
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+ Mygp® €082 Na+ I, cOs™ Ny + I sin® N,

—1I,. cos Nasin Ay
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APPENDIX B. Motion Study of a Spin-Stabilized Satellite Test Rig.
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Abstract

This paper demonstrates a stability analysis of a spin-stabilized satellite test
rig. Stability requirements are analytically derived by modeling the test rig
as a system of rigid bodies. The stability requirements are numerically and
experimentally verified. Experimental and numerical data is presented which
shows instability for spin about the axis of maximum principal moment of

inertia.




1 Introduction

In the late 1970s the Air Force launched several Star 48 communication satel-
lites. Once in their geosynchronous earth orbit, these simple spin-stabilized
satellites began to nutate and tumble. Hill {1} identified sloshing fluid stores
as the likely source of the attitude control problems on these satellites. Slosh-
ing fluid has also caused stability problems in other satellites, such as the
Intelsat IV, a dual spin-stabilized satellite, which was investigated by Slabin-
ski [2] and Martin (3].

To enable investigation of the sloshing fluid problem, Cowles 4! de-
signed and constructed a test rig with two spherical fluid tanks symmetrically
mounted in a rigid framework. The upper assembly was attached to a lower
drive shaft with a Hooke’s type universal joint. Figure 1 shows a schematic
of the test rig that Cowles constructed. The test rig is driven by a 1/4 hp
variable speed electric motor. A collar is used to restrain the universal joint
while bringing the test rig up to speed. Once the test rig has reached the
desired speed, the collar is lowered to allow f~=e motion about the universal
joint.

Anderson [5] instrumented Cowles’ test rig. A tachometer was used to




enable measurement of the input spin rate. The pitch and yaw axis rotation
angles of the upper assembly were measured with two rotating potentiometers
that were mounted on the drive shaft below the universal joint. Finally, three
photo potentiometers were mounted on each tank to track the location of
the liquid free surface. The signals from these transducers were transmitted
through a slip ring assembly mounted on the lower drive shaft. Anderson
recorded data from the test rig which produced radial slosh frequencies and
precession rates that agreed with actual in-orbit data for the Intelsat -IV
satellite reported by Slabinski.

Obermaier [6] wrote a simulation program, SATELL, which numerically
integrates the equations of motion for the test rig described above. Obermaier
modeled the sloshing fluid in the test rig's spherical tanks by pendulums
as described by Sumner [7] and Sayer and Baumgarten {8]. The equations
of motion for the test rig were derived using the Lagrangian formulation.
Obermaier found excellent agreement between the results of her simulation
program and the experimentally measured tesponse of the test rig. This
agreement makes SATELL very useful for testing different configurations of
the test rig to identify the test setups which warrant experimental evaluation.
Obermaier also identified frequencies from the simulation output that agreed
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well with the predictions of Slabinski and the work of Zedd and Dodge 9.

In the first part of this study, swability requirements for the test rig mod-
eled as a single rigid body and as a system of rigid bodies are presented.
Agrawal [10] suggests that for stability a spin-stabilized satellite test rig must
be spun about a principal axis with a moment of inertia that is greater than
the transverse principal axes by a calculated margin. This margin was found
by modeling the test rig as a system of rigid bodies and using the approach
of McIntyre and Miyagi [11]. This approach considers the effects of products
of inertia that result from certain sloshing modes of the fluid in the test rig
tanks.

In the final part of this study, experimental and simulation runs are pre-
sented to verify the stability rules. The effects of gravity are also discussed

for each case.

2 Stability Analysis of the Test Rig

According to well-established criteria developed in past experimental research
by Cowles [4] and Anderson [5], a spin-stabilized satellite test rig must be

spun about its axis of maximum principal moment of inertia to be stable.




Greenwood [12]| analytically derived this rule is by assuming that a satellite
behaves as a single torque-free rigid body, and by noting that kinetic energy
is dissipated by the sloshing viscous fluid in the satellite fuel tanks while the
total angular momentum remains coustant. Since each axis of the test rig
has a different moment of inertia. the kinetic energy level for spin about each
axis is different for a given angular momentum. To conserve momentum the
test rig will seek to spin about an axis associated with a minimum energy
state as energy is dissipated by the sloshing liquid. For example. if the test
rig is spinning about a given principal axis at a given kinetic energy level
and a lower energy level exists for spin about a different principal axis. the
test rig will try to rotate its spin axis to align with the axis of lower kinetic
energy. The minimum kinetic energy is achieved for spin about the axis of
maximum principal moment of inertia.

As stated earlier, the above stability rule assumes that the test rig behaves
as a single torque-free rigid body. However, in work by Obermaier [6! the
test rig was modeled successfully as a system of rigid bodies consisting of a
center body with two attached pendulums as shown in Figure 2. The two
pendulums model the fluid in the two test rig tanks as described by the
work of Sumner [7]. Agrawal [10] has shown that for stability, spin-stabilized
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satellites must be spun about a principal axis with a moment of inertia greater
than the other principal axes by a calculated margin. Stability rules for the
system of rigid bodies of Figure 2 are found using the approach of McIntyre
and Miyagi [11]. This approach again assumes a torque-free condition and
involves considering the test rig balance with respect to the oscillation modes
of the pendulums. The stability rules for this system of rigid bodies verify
Agrawal’s conclusions that spinning the test rig or a satellite about its axis
of maximum principal moment of inertia is not enough to insure stability.

Mclntyre and Miyagi’s approach begins with studying the four fundamen-
tal pendulum oscillation modes shown in Figure 3. These oscillation modes
must be evaluated for nonzero products of inertia. Nonzero products of in-
ertia can cause misalignment between the reference z-axis of the test rig and
the axis of maximum principal moment of inertia or spin axis since the spin
axis will be coincident with the principal axis. The test rig is considered to
be out of balance when misalignment between the spin axis and the z-axis
exists.

Pendulum oscillation Mode 1 from Figure 3 generates one nonzero prod-

uct of inertia, I,,. Agrawal [10] shows that the misalignment between the




spin axis and the z-axis resulting from this product of inertia is expressed as

- (1)

where 8, is a rotation of the spin axis about the test rig's x-axis. It is also
important to note that I,. is the product of inertia of the test rig about its
center of mass, and I, and /. are composite moments of inertia of the test
rig (including pendulums) also about the center of mass.

Pendulum oscillation Mode 2 from Figure 3 also generates one nonzero
product of inertia, [,,. However, this product of inertia does not affect the
test rig’s balance.

Since the pendulum oscillation Mode 3 from Figure 3 yields no products
of inertia, it also has no effect on the test rig’s balance.

Pendulum oscillation Mode 4 from Figure 3 generates one nonzero prod-
uct of inertia, I;.. The misalignment between the spin axis and the z-axis

caused by this product of inertia is expressed as
y P

(2)

where ¢, is a rotation of the spin axis about the test rig’s y-axis. As before,

I.. is the product of inertia of the test rig about its center of mass, and I, and




I. are composite moments of inertia of the test rig (including pendulums)
also about the center of mass.

Equations (1) and (2) show that Modes 1 and 4 are the only modes that
offset the balance of the test rig. Continuing with McIntyre and Miyagi's
approach, we must take precautions to prevent these modes from occurring.

First, the products of inertia for Equations (1) and (2) must be defined
in terms of test rig dimensions. Then, stability rules must be developed
with respect to the products and moments of inertia to prevent pendulum
oscillations.

Figure 4 shows the rotation of the spin axis about the test rig's x-axis
that results from pendulum oscillation Mode 1. Equation (1) defines the
angle of rotation §.. The product of inertia, I,., for Equation (1) is defined

in terms of test rig dimensions as
I, =2M/(CG)Lsing (3)
where M, is the pendulum mass. Then, for small 3
I,, =2M,(CG)L3 (4)

Figure 4 also illustrates that the center of mass of the test rig is moved along
the y-axis as a result of pendulum Mode 1 by the distance E,. The center of
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mass is located by

E, M= 2M,Lsin 3 (5)

where M, is the total mass of the test rig. Simplification for small 3,

produces

2M,L3
E, = 2
Y “I tot

(6)

Figure 5 shows a view of the test rig’s xy-plane containing the pendulums.

The spin axis intercepts the y-axis on this plane at Y1 where

Yl =E, - (CG)tan®, (7)

Simplification for small angles and substitution for 8, and E, from Equations

(1) and (6) yields

(8)

’ 2
Y1=-2M,LB( ! (e )

Mo I.—-1,
Also shown in Figure 5 is the intercept of the extended pendulums with the
y-axis which is given by

Y2=Rtan3 = R3 (9)

Now if Y1 is larger than Y2, 3 will increase in the xy plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus, for stability
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Y2 must be larger than Y1. With the help of Equations (8) and (9) this

results in the following expression

1 G
R3 > -2M,L3( - ;CC

)2
Moy - Iy) (10)

If 3 is cancelled and terms are rearranged, the stability rule becomes

I:—Iy>—’§(‘CGL'

1

‘ (11)
MLL T M

Figure 6 shows the rotation about the test rig's y-axis that results from
pendulum oscillation Mode 4. This rotation angle is defined by Equation
(2). The product of inertia I.. in Equation (2) is written in terms of test rig

dimensions as

I.. = MR+ Lcosa)((CG)+ Lsina) - (12)

M, R+ Lcosa)((C'G) — Lsina)
Simplifying for small a and combining terms, one finds
I..=2M,L(R + L)a (13)

How, if 6, is larger than a, a will increase in the xz plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus for stability,




6, must be less than a. Equations (2) and (13) may be used to develop the

following expression,

2M,L(R + L)a
I. - 1.

<a (14)

After cancellation of o and rearrangement of terms, the stability rule becomes

I.—1I.,>2M,L(R+L) (15)

3 Verification of Stability Rules

The computer simulation program SATELL, and the experimental test rig
were used to verify that Equations (11) and (15) govern the global stability
of the test rig. As stated earlier, these stability rules were developed for a
torque-free system of rigid bodies, but the test rig is of course subject to
torques produced by gravity. For this reason, SATELL was also used to
study the influence of gravity on the response of the test rig. A zero gravity
environment was created by setting the acceleration due to gravity equal to
zero when running SATELL. Since SATELL results and experimental data
were used extensively, it is necessary to discuss the operational characteristics
of both.

Obermaier [6] modeled the test rig with four bodies consisting of a rigid
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upper assembly attached to a lower support shaft by a Hooke's type universal
joint and two spherical pendulums which are symmetrically attached to the
upper assembly. She compiled the equations of motion for this system of
rigid bodies and developed a computer program named SATELL which is
run with a double precision integration program named DDIFFEQ. Before
SATELL can be run, initial conditions must be specified for the angles that
define the positions of the rigid bodies, and all constants must be defined.
There are four sets of Cartesian coordinates which are used to describe the
orientations of the upper assembly.

The z; — y; -- %; coordinate system is stationary and is positioned at
the center of the universal joint. The %; axis is directed vertically upward.
Positioning of the Z, and y; axes is arbitrary.

Transformation to the Z; — §, — 2, system is achieved by a right hand
rotation by an amount ¥ about the 2; axis. The z, — y5 — %, coordinate
system is attached to the lower shaft of the test rig and its origin is at the
center of the universal joint. The &; — §, — 5, axes are fixed in such a way that
when the Z; and Z, are aligned, the j, components of the position vectors of
the pendulum supports are zero.

The rotation of the upper assembly relative to the lower shaft is defined

I1




by the two rotation angles, A. First, a rotation by an amount A, about the g,
axis defines the transformation to the &3 — J3 — 23 coordinate system. Then,
the coordinate system is rotated through an angle A, about the 3 axis to
arrive at the &4 — §4 — 34 system. The &, — g4 — 3, system is attached to
the upper assembly as shown on Figure 1. Figure 7 shows the rotations for
the upper assembly on the universal joint about the lower support shaft. It
should be noted that when running SATELL, A, and A, cannot be initially
set to zero since this will cause singularities when integrating.

I3

The remaining inputs for SATELL are L, R, CG, M,. M., I.. fy, I..
p, and spin rate. The inertia inputs to SATELL are for the rigid assembly
including the nonslosh masses, not the steady state composite moments of
inertia as defined previously. The constant p is defined to be the height of
the center of gravity of the upper assembly above the universal joint when
A; and A, are equal to zero. The constant M, is defined as the mass of the
upper assembly of the test rig including the pendulum nonslosh masses. All
other variables are as previously defined.

The test rig is equipped with nine transducers for making measurements.
There are two rotating potentiometers, one on the £, axis and the other on

the y, axis, that enable the measurement of variables that can be used to solve
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for A; and A;. There are three photo potentiometers on each tank to measure
the fluid free surface location. The final transducer is a tachometer that
enables measurement of the spin rate. The signals from these transducers are
transmitted through a slip ring assembly mounted on the lower drive shaft.
An IBM model PS/2 equipped with a National Instruments data acquisition
card was used to collect experimental data from the test rig. Eight channels
of input were utilized to record data from the rotating potentiometers and
the photo potentiometers. A voltmeter attached to the tachometer was used
to set the spin rate.

The first step in the experimental procedure was to perform the trans-
ducer calibrations as described by Anderson [5] with the rigb in the desired
configuration. Next, the rig was brought up to speed with the collar up. The
data acquisition program was then started and the collar was released. The
experimental data recorded with the IBM was then down loaded onto a VAX
11/785 mainframe for plotting.

A limitation of the test rig that appears in the experimental data is that
it can only rotate *.2 radians (11.4 deg) about the £, and y, axes. Also, for

radians

safety, the test rig spin rates were kept below 14725922 (133.7 rpm).

second

The global stability of the test rig is governed by Equations (11) and
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(15). Equation (11) must be satisfied to ensure stability about the x-axis or
to restrain the horizontal pendulum oscillation Mode 1 of Figure 3. Equation
(15) must be satisfied to ensure stability about the y-axis or to restrain the
vertical pendulum oscillation Mode 4 of Figure 3.

This section deals with test rig configurations where the steady state
composite center of mass is located at the universal joint. This requirement
insures that gravity produces no net moments on the test rig. Also. this
configuration is nearest to simulating an actual satellite in orbit. Using the
dimensions for the two test rig configurations given in Table 1 in Equation

(15), results in

I, — I, > 0.011slug ~ ft* (16)

Since both of the configurations in Table 1 satisfy Equation (11), Equa-
tion (16) governs the stability of these configurations. Run 1 of Table 1 does
not satisfy Equation (16) and should result in an unstable response of )\,
about the 3, axis caused by the vertical pendulum oscillation Mode 4 of Fig-
ure 3. Furthermore, inspection of the steady state inertias in Table 1 for Run

1 shows that the rig is spinning about the maximum principal axis. Figure
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8 shows the experimental response of A; and A, for Run 1. As predicted.
the response of )\, increases with time in an unstable manner. This experi-
mentally verifies Agrawal’s conclusion that spinning a satellite or a test rig
about its axis of maximum principal moment of inertia is not enough to in-
sure stability. Figure 8 shows the numerical response of A\, and A, of Run
1 from SATELL. Root mean square difference calculations were performed
on the numerical and experimental responses over the first second with .05
second increments. The results of these calculations were .048 radians rms
difference for A, and .024 radians rms difference for A;. These small differ-
ences are explained by the difference in the initial conditions for A; and A,
which were both set at .050 radians in SATELL and a nominal zero radians
on the test rig. The nonzero initial conditions for the SATELL run were
required to avoid singularities when integrating. Figure 8 also shows a sim-
ulated response for Run 1 from SATELL with zero gravity and the same
initial conditions as above. This response also closely matches the experi-
mental with .037 radians rms difference for A, and .028 radians rms difference
for A\,. When these differences are compared to those for the simulation with
gravity, one finds that gravity does not affect the response of the test rig
provided the center of mass is located at the universal joint.
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Run 2 of Table 1 satisfies Equation (16) and should, therefore, be stable.
Figure 9 shows the experimental and numerical responses for Run 2 which
are stable for both A\, and A,. The difference between the experimental and

the numerical responses are .013 radians rms for )\, and .008 radians rms for

Aa.

Figure 9 also shows the numerical simulation response for Run 2 with
zero gravity. This response is stable and differs from the experimental by
.015 radians rms on A; and .008 radians rms on \,.

Using the dimensions given for the two test rig configurations shown in

Table 2, Equation (11) becomes

I. — I, > .003slug — ft? (17)

Since both of the configurations in Table 3.2 satisfy Equation (15). Equa-
tion (17) governs the stability of these configurations. The two tanks on the
test rig are located on the x-axis which makes duplicating the four config-
urations in Table 2 with the test rig impossible. For this reason only data
from SATELL is presented.

Run 3 of Table 2 does not satisfy Equation (17) and should be unstable

about the #, axis as a result of the horizontal pendulum Mode 1 of Figure 3.
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This statement is verified in Figure 10 which shows the simulated response
of Run 3 for the test rig where A is steady and )\, is decreasing with time in
an unstable fashion. Since the test rig is spinning about its axis of maximum
principal moment of inertia for Run 3, as shown in Table 2, the unstable
response agrees with Agrawal’s stability criteria as previously mentioned.
Figure 10 shows the zero gravity simulated response of A\; and A, for Run
3 which matches the response with gravity. The similarity between these
two responses implies that the test rig responds similar to an actual satellite
when the composite center of mass is located at the universal joint.

Run 4 of Table 2 satisfies Equation (17) and should be stable. Figure 11
illustrates the stable simulated response of Run 4. Figure 11 also illustrates
the simulated response of A; and A, for Run 4 with no gravity. Again,. the

zero gravity response is nearly identical to the response with gravity.

4 Conclusions

During this study, a great deal of emphasis was placed on understanding the
motion of the test rig with respect to the sloshing modes of the fluid. As

these relationships became clear, the stability requirements for the test rig

17



were developed. Simulation runs with SATELL and experimental runs with
the test rig were made to verify theestability requirements and to confirm the
understanding of the sloshing fluid oscillation modes.

The major accomplishments of this study include:

e Stability rules for the test rig were analytically developed and verified

with SATELL and the experimental test rig.

e Numerical and experimental data were recorded for the test rig that
demonstrated instability while spinning about the axis of maximum

principal moment of inertia. This agrees with Agrawal’s work.

e When the composite center of mass was located at the universal joint,
the test rig responded as an actual satellite in orbit. This was verified

by comparing experimental runs with simulation runs for zero gravity.

o When the moment of inertia for one of the transverse axes was too large
for stability and the composite center of mass was at the universal joint,
experimental and simulation data showed that the test rig attempted to
reorient itself to spin about that transverse axis as predicted by single

rigid body theory.

18




Future experimental research will be focused on the the effect that fuid
viscosity has on the stability of the test rig. Also, elastic body effects will be

included in a stability analysis of the test rig by a Lyapunov approach.
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Figure 1: Schematic of mechanical system

L}

Figure 2: Model of test rig

Figure 3: Fundamental pendulum oscillation modes

Figure 4: Spin axis rotation caused by Mode 1

Figure 5: Pendulum oscillation plane for Mode 1

Figure 6: Spin axis rotation caused by Mode 4

Figure 7: Upper assembly rotations

Figure 8: A, and ), versus time for Run 1

Figure 9: A, and ), versus time for Run 2

Figure 10: A; and A, versus time for Run 3

Figure 11: A; and A, versus time for Run 4
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Table 1: Test rig dimensions for Runs 1 and 2

Run1l { Run 2
spin rate Si:—f 10.5 10.5
M, slug 0.0354 | 0.0354
L feet 0.1625 | 0.1625
R feet 0.833 | 0.833
CG feet -0.7705 | -0.6973
M,. (dry) slug 0.7254 | 0.6924 |
I. (upper assy.) slugft? | 0.464 | 0.444 |
I, (upper assy.) slugft® | 0.253 | 0.233 |
I. (upper assy.) slugft? | 0.448 | 0.448
I, (steady state) slugft® | 0.516 | 0.487
I, (steady state) slugft® | 0.374 0.345
I. (steady state) slugft? | 0.518 | 0.517

Table 2: Test rig dimensions for Runs 3 and 4

Run 3 | Run 4 |

spin rate 2% 10.5 10.5

M, slug 0.0354 | 0.0354
L feet 0.1625 | 0.1625
R feet 0.833 | 0.833
CG feet -0.4484 | -0.4484
M,, (dry) slug 0.5701 | 0.5701
I. (upper assy.) slugft? | 0.200 | 0.200
I, (upper assy.) slugft> | 0.300 | 0.290
I. (upper assy.) slugft? | 0.320 | 0.320
I, (steady state) slugft? | 0.219 | 0.219
I, (steady state) slugft* | 0.388 | 0.378
I. (steady state) slugft? | 0.389 0.389
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APPENDIX C. A Finite Element/Lagrangian Formulation Dynamic
Motion Prediction for a Flexible Satellite Simulator with Both Rigid and
Elastic Bodies
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\BSTRACT

| the present paper a systematic procedure has been conducted
1 derive dynarmic squations by using Lagrange's formula for a
ulti- body system involving bath rigid bodies and etastic mem-
irs. Finite element analysis with a direct stiffness mecthod has
ren employed to model the flexible subsystems. Nonlinear cou-
ing terms between rigid body gross motion and elastic deflec.
ons are completely taken into account. Boch the parameters
om rigid body motion and the components of elastic displace-
ents are considered as unknown degrees of {reedom of the entire
'stem. L he assumption o specified gross motion is no loager
»cessary in the derivation and the resuitant differencial equa-
ons are highly nonlinear. Equations of motion for each indi-
dual subsystem are formulaced associated with a moving frame
stead of a traditional inertial coordinate system and are assem-
ed by means oi a compatibility matrix. The method is primarily
rveloped for forward dynamuics and it is also applicable in inverse
rnamics.

NTRODUCTION

lexibie modeling has been an attractive but difficult topic for a
ng time. Severely restricted by the lag of computer speed (n the
wly years and the complexity of mathematical formulacion, tra-
tional designs in robots. mechanisms. etc. have been limited in
1e realm of rigid body system. However, the increasing demands
¢ higher operating speeds result in a situation thac lightweight
ructures have to be used. An undesired by-product. the effect
" flexibility. is now recognized as a critical issue. [t becomes
apossible to implement time-consuming aumerical integration
1ithout solid support of sophisticated modern computers with
igh processing speed.

The past decade has seen significant advances in dynamic anal-
iis for non-rigid body systems with elastic links. Extensive work
s been conducted in dealing with flexible modeling. Most inves-
gators employ a common approach that allows elastic deflections
) be superimposed on gross(nomiaal) rigid body motioa due to
te nature of a specific prdblem. A drawback of that method

that the rigid body motion must be specified. [t is, however,
ot aiways true that rigid body motion can be predefined. espe-
ally in some environments requiring that the motion of a system
e predicted. Additionally there are those areas where the fu-
1ce between gross motion and elastic deflections are sensitive in
nalysing syscem scability.

The purpose of this paper. therefors. is to develop a general
1odeling technique to conduct a systematic procedure for estab-

lishing dynamic equations of a Aexible system by roasidering all
the degrees of {reedom of the system. rigid or elastic. as general-
ized coocdinaces. [n addition. the procedure in formulation must
be optimized and simplified so as to accommodate the needs in
aurerical analysis and computer programming.

PREVIOUS WORK '

Flexible structure modeling, inciuding the effects of eiastic de-
flections and roctations, has been given considerable effort by en-
gineers and researchers in the fields of robotics and mechanisms.
A Rnicte element method has been chosen over a modal expan-
sion analysis to discretize the continuous systems due. in a iarge
measure, to the fact that eigeavalues are not required to solve tor
the response of the system. An analytical {ormulation. based vn
energy methods. is usuaily applied associated with the finuce 2le-
ment analysis{FEA) to develop dynamic equations of the system.

The first to exploic the advantagesof the FEA with Lagrangian
mechanics were Sunada and Dubowsky (1] {2]. Their modgei in-
corporated a Denavit-Hartenburg represencationot the kinematic
rigid body transiormacion excluding kinematic coupung. The de-
grees of freedom of the discretized system were reduced by means
of Component Mode Synchesis{(CV(S). The equations of all links
were assembled using a Compatibility Matrix routine. (n cheir
ilustrative examples. a set of first order equacions was soived
numerically for a special case in which the mechanism’s nominai
speeds and acceleracions are much smailer than the component
elastic coordinace velocities and accelerations. [n their lacer ax-
tended work. the assembliy of dynamicequations was performed in
symbolic form due to the special form of matrix terms. The final
system equations were soived using a Newmark-Beta incegration
algorichm. Their approach is applicable for these problems where
nominal rigid body motion is specified by kinematic constraints.

Early works by Naganathan and Soni(3}{4]{5}{6](7] developed a
fully nonlinear madel employing a kinematic representation with
rigid link based reference. The three-dimensional modei was con~
scructed by accounting for axial. torsional, and lateral deforma~
tions. Galerkin method was used with linear shape functions
to represent the elasticity of the links. Link level mactrices were
transformed by time-varying compatibility matrices and cascaded
into global macrices. Once again. the rigid body gross motion was
specified at the revolute joints due to the nature of these prob-
lems. The element matrices then became conscanc at every time
step in the numerical solutions.

(n the work accomplished by Sadler and Yang (3] [9) {10]. a
total mechanism displacement was defined as a combinacion of
the large rigid body gross mocion and small elastic deformations.
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Their method was applied both to planar multi-link mechanisms
and to spatial robot manipulators. The effects of Ravleigh damp-
ing was introduced. [n the mechanism applications. the authors
claimed that their methud can be employed both in the forward
and inverse dynamics unrier conditions of either specified input
foceing functions or motion of the crank in a four-bar linkage.
A sperial treacment must be made to relacte the link orientation
angle to the total unknuwn displacement. This can be done for
some mechanisms with one rigid body degree of [reedom({DQF).

More recently. Nagarajan and Turcic {11] (12] developed a new
approach to derive squations of motign for elastic mechanism
systermms. Both the rigid body and the elastic degrees of freedom
were cnasidered as generalized coocrdinates in their derivation.
The equations were first formulated based on eiment level coor-
dinate system in which elastic nodal displacements are measured.
These equations were then transformed to a reference coordinate
system to ensure compatibility of the displacemenc. velocity. and
acceleraction of the degrees of {reedom that are common to two
or more links during the assembly of the equations of motion.
Due to generality in their work. the equations. both on elemenc
and system levels. are complicated and the transformation {rom
=lement level to sysiem level takes a Zreat amount of effort which
i3 necessary for their approach.

A literature survey of flexible models was completed by
Cleghorn {13]. [t was observed that the most effective model
is one which incorporates Lagrange’s equacion with the finite »i-
ement method. This produces a generalized element for easy
appiication to flexible systems.

METHODOLOGY

[n this section. a systematic procedure will be devoloped. Since
the systerns under consideration in this paper involve both rigid
and elastic structures. derivations of motion equations will be all
carried out. Lagrangian approach is selected to coaduct system
dynamics: finite element analysis with a direct stiffness method
is to be empioyed to discretize elastic members and to determine
their DOF and structural stifiness matrix in the pocential en-
ergy term. For each individual body, Lagrangian equation can be
expressed as

4 (9!\'5, ) _ 3KE.__ 3PE,
4t J(qn‘lr '3{QI}r 5(’%)‘—

where A'E, and PE, are the:*? elastic member kinetic energy and
potential energy respectively, {Q,} are those generalized forces
aoc¢ derivable from a potential function. and {q;} is a local vector
of the generalized coordinaces.

For a rigid substructure. the corresponding kinetic and poten-
tial eriergies are of the following formas,

= {Q.} (n

. 1 1 7
f\E\ = ‘z‘mivm . v:\ + 3'36 - rl Dy
PE, = gravitational potential energy (2)

where m, is the body mass. Vc. is a velocity vector at the mass

center. J, is an angular velocity vector. and [; is an inertial dyadic
about the mass center. The potential energy term is due to con-
servative force fields and only gravity is involved usually.

For an elastic substructure. both the kinetic and potential en-
ergy terms are different from those of a rigid substructure. They
can be written as

A

. 1

KE: '—':Z-Z/DM'V-;"?&G“’
gmi 9

PE; = %{q.-}r[k,,]{q.'} + gravitational potential energy  (3)

where g scands for grids or nodes , .V, is the total number of the
elemencs. [, is the length of each element, o; and A, are the mass

density and cross section area of each element respectivelv. and
‘7.9 is a generic velocity vector in eiement 7. As shown above.
potential energy consists of two terms. The first one is due to the
structure elastic deflection and is named the elastic straia energy.
The second nane is due to the structure eievation in the Reld of
gravity both in a macro rigid body motion and in a mucro elasuc
vibration. After differentiating both the kinetic and potential
energy terms and substituting them into Eq. 1. one can ohtain
the following matrix dynamic equations in the form of sernnd
order nonlinear ordinary differential equations with time-vacying
coefficient matrices for each separate substructure.
(maal{a} + e (20d0)] + [ndd) {40} = (ke (2] {au}

= {flq )} (i =0---. N) P4
where. .V is the total number of the subsystems. {m,] is a mass
matnix. (c.,} is a damping matrix due to the Coriofis and ~2ntrifu-
yal accelerations. {c.,] is a viscous damping matrix which is not
derivable analytically. (,] is a stiffness macrix including the coa-
ventional structure stifiness. and {/,} is a force vector involving
the external active nonconservative forces.

With a set of dynamic equations for each substructure 1n the
form of Eq. 4. one must assemble them tngether to form a sec of
equations at a global level for the entire system. One must also
define a global vector of the generalized coordinates 17} which
is chosen from each local vector of the generalized coordinates
{7} such that every coordinate in {q} must be independent of
each other{though some coordinates in the different vectors (7,
may be overlapped). A relationship between the globai vector
and each local vector of the generalized coordinates can then be
determined from :

{a:.} = [@.}{q} i5)

where [®,] is a compatibility matrix in which each elemenc is. in
general. a function of time. By means of virtual work principie.
the system equations at global level can finaily be sec¢ up as

(MI{q} + ((Cc] + (e} {4} = (A]{q} = {F} (R
FINITE ELEMENT ANALYSIS (FEA)

Each elastic substructure will be modelled by using a predefinea
beam element. [n order to reduce the eletnent degrees of fresdom
without major loss in beam fexibility. two transverse detections
and two rotations are allowed for each node which has in generai
six elastic degrees of freedom. [n addition. the {odlowing condi-
tions are assumed.
¢ Elementary beam theory applies and
elastic flexure obeys Hook's Law.
o Each beam undergoes two different bendings in two
planes and is considered rigid longitudinally.
e Two orthogonal deflections are not related to
each other and are therefore uncoupled.
Following a coaventional direct stiffness method {14]. a displace-
ment function with the form of a polynomual functica 1s pre-
assumed first with knowledge of the external loadings. The
boundary conditions are then apptied followed by the direct appii-
cation of the strain/stress relationships with the sign conventions
of the bending moments and shear forces.

Displacement Function

From the classic elasticity theory [15], a function of static trans-
verse deflection for a cantilever beam can be determined depend-
ing on external loading acting on the beam. With no distributed
loading, the highest order of the polynomuial function is o order
three. Then.

y = ag +ayz +a3z’ + a3z’ ("
where a;(i = 0.1.2.3) are the constant coefficients. r and y are
the corresponding elastic substructure axial and lateral coordi-
nates. The above equation will be empioyed as a displacement
function for each beam element.
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Boundary Conditions

Four boundary conciitions {of mach element are proposed as fol-
lows: :

s =0 .etlection=1{, and slope=o,

s =1 leHection={y and slope=o,
where s is an »lement coardinate alligned with center line of an
undeformed beam. :{, anel 2,{: = L. 2) are the transverse displace-
ments and rotacions at the cocresponding nodes, respectively, and
{is the length of the »isment. Applying above {our boundary con-
ditions to Eq. T. it van be (demonstrated that the final displace-
ment functions in matrix torm are of the fotlowing expressions.

A= (OTY](s)
= I
wis) = (4}7(2Z){s}
= (}T12]7 (4}
and
{s} = {l s 82 s’}r
{4} = {4y, o0 41: 01y {2y 92 42 °2y}r {3)

where {d} are the generalized coordinates for each beam element.
{3} is a generalized function vector. [¥'] and (2] are constant ma-
trices(see Appendix A). and {s}T[Y]T and {3} 7(2]T are conven-
tional shape functions for each planar bending.

St Stiffness Matri

For small elastic deflection. the bending moments and shear
forces. in the case of plane £-y for instance. are found to be
3%y
E I:;F
3y
El, a—,_)- (9)
where £ is Young's modulus and /; is the principal moment of
inertia about the : axis. According to Eq. 3, an element nodal
force vector is correspondingly defined as

m(s)

Viis)

(f} = ‘ily mi: fie Myy f)y ma: fa. m?y}r (10)

Applying four force boundary conditions for each node in Eq. 9
followed by comparing the following form

{1} = [k, }{d}. (11)

a final expression of the structure stiffness matrix can be obtained
and formulated as

(k,] = _J’.(c,(p,]"[kl][ﬁd+Cy(ﬂ2]T[‘=zl(ﬂ'z]) (12)

where [k,] is a symmetric matrix. ! is the length of an element,
[ is an average value of [y and [;, Cy and C, are two constant
ratios of [, and [, to [ respectively, [01] and (07](see Appendix
A) are two constant matrices with either unity elements or zero
elements. and [k, ] and (k3] are the bending stiffness matrices for
the corresponding planes.

DERIVATION OF DYNAMIC EQUATIONS AT LO-
CAL LEVEL

As illustrated in Fig. 1. the coordinate system (ig, jo, ko) is &
floating(moving) frame attached to the moving system, and set
(;..}..l;.) is a reference frame for an arbitrary beam 1. ﬁ. is a
rigid body position vector. which describes the rigid body mo-
tion of the system. 75,y is a local position vector measured in
the reference frame for an arbitrary point P’ in element g after
deflection. which is considered as a position vector due to elastic
deformation. F,, is an absolute position vector of the point P’

“agm

Figure 1: Elastic Deflection of A Generic Flexible Beam

relative to the moving frame (5. jo. fco ). which combines the rigid
body motion and elastic vibration.

Position and Velocity Vectors

A position vector describing point P’ can be found as

Fig = &, + 0
{éo}T({R} + (Taul{org}) (13

where {eo} = { 19 Jo ko }T. a unit direction vector. {R,}
and {p,g} are the rigid and elascic position vectors. and (To. is a
transformation matrix between two frames mentioned above. A
corresponding matrix equation formulated in the moving irame
takes the following form.

{rl9}= {RI}“'[TOlHch} {14

Differentiating the above equation gives a velocity equation which
can be written as

{Fig} = IR} +[Tod{oig}) + {R:}
+ [Tod{2g} + [Ta}{peg} (13)

where {7,4} denotes 4{r.,g}/dt. {R.}. (19}. and iTa\| are the
time rates of the corresponding vectors and the transformation
matrix. and (Q?](see Appendix B) is a skew matrix derived from
a rigid body system angular velocity {f2} which can be expressed

u .

{Q} = (V] (N} (16}
where {A} are the time rates of the rigid body generalized coor-
dinates. and [V] is a time-varying coefficient matrix which can
be partitioned! as [ ¥, N, N, T

For a case with no relative motion between the moving and ref-
erence frames. Eq. 15 can be written in the following form in detail
after substituting Eqs. 16 and 8 into Eq. 15 followed by rearrange-
ment and a new definition for the i*® beam generalized coordi-
nates {q,} composed of both rigid body generalized coordinates
{\} and elastic generalized coordinates {d;}.{d2}..... {dm}{see
Eq. 8).

(R'J + TJIP«Q:)&'
(Ra +Tllp|yn)&‘
{Riz + Ta10ugs )Y, -

(R|2 + Tnﬂuga)LYJ
(Ra + TJIP-,:)L![
(Rn + THP-")LY..:

TYTT+ ZTTa)
rqun*'z‘rTn) (©gal{d:} +

éTn + Z‘FTJJ)

' A matrix is also denoted by a letter with underline. i.e.. M.

{’;ig} =

[eu\]{q.l} +
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11O, a(Tll + Ty Z,)Y, -
1P ut (Tl + s 2 )3y, -

T8 l(Tull = TnZ)e, -

{0}, =T 218N,

‘r'lL "T'L)&.} (OU\I{”;} (t¥)
(TeY, = TeZ)sN, )

where R.,(J = L. 2) are the rompunentsof the cigid body pesition
vector { R, }. vigy = 1y = 1) +19. T\, are che elements in the 3 x 3
transformation matrix {T9,]. and

(n}T = (AT 4 Tal e 4D )
®al = (4, ol
(Oa = (0 4L 0]
(= [Bailad
{4y = (Oyal{n} (18)

where {@,,] and [©,,4] are types of compacibility macrices. (7.}
are the generaiized coordinates. [[\] and [/4] are the 3 x 3 and
3 x 3 urut matcrices respectively, and Q's are the zero macrices.

Elastic Beam Kinetic Energy

{t can be demonstraced chat premuitipling the velocity vector(see
Eq. L7) by its transpose vactor will cesule in a velocity square term
as shown below.

-~

R! = A2
e = (T ((e.m(.vv[ -RiR RI+RA]
-Ri Ry ~RaRs
Symmetry

) } (Vi{@.] +
R? + R2

[G-NIT(E.. + .au *‘ﬂ;;)[e-qal +
l.rgrq,;_(-a_n * i)a)g-qai.
=17 2948122044,
‘l.r Q.I;aﬁ.u.@_-qai.

| -aTOf B8, |
:.‘q%_(-a-}x +853)0,044, |
1) Dgafa3Dgad, !

roa
‘Z,‘.Q.qaﬁ.n@-ni.

770008322048, Wienl +

22068 + 2421048,

@AITVIT [ L :ﬁ” ]te i+
L <Vl *7F 194
x:‘.D-u

(0" (05 - 05, 05, - 21, 05 - 25

Z(D.u + Qu 14944,
“(.Qu + .Qn)@.qdj_.
(L3 +L251)Q. 008,
| ]
I2ADy, +Q}J)Qﬂgdg§ '
| ~tLas + L5320 4a8, |

Symmetry

204y + D22)Qu044,

aTQ%, (B, - B3;)
OalTVIT | oF ol (8, - g,:a
Lrgnz;c(ﬁél -8432)

(Vlf@ial + (@alT (VT

] Vi@:.] +

(i +

[9-94]r [(.Bin - .azs)fiyal, (Eu - 8,8, jal,
(8, ‘;\z)@..q.;i‘ I AYI{(Z AN ) (i} (191

where (@1, [@uga). {B))(i.) = 1.2.3).and [Dy](1.7 = 1. 2.3) are
all constant matrices(see Appendix A). Substicuting the above
equation into Eq. 3 followed by rearrangement yvields a compact
equation of the kinetic energy for an elastic beam.

KE, = {1} (m] {4} o
where {m,] is a symmetric m;u matnx having the following form.
(md = [m]+(@n] TvT
(Gul+ (3] Bua1] + [2uay]) (VO] =

1Tel

@alTVIT | (Gal+ | 17E] +
TE!

((Gal” + [E3, Eag, E51]) VIGni  (20)

where [m,.] and [G.|] are the constant symmetric square macci-
ces{see Appendix A). (B3] and (Eaj{a.d = 1.2,3) ace the con-
stant nonsymnmetric square matrices, { D3,} (a.d = 1.2.3) are
the constant vectors. and (G,3] is a conscant rectangular macrix.

Elastic Beam Potential Energy

The tocal potential enecgy is a summation of the body force po-
tential energy and the elasuc strain energy. The former s the
negative work done by gravity. The latter can be wricten as

Ny
Un =33 @ (@l tesil@upal) (1 (22)
931

where {k,,o] is a structural stiffness matnx. developed in the pre-
vious section. for 7°® element of beam . According to Egs. 12
and 14. it can be shown that the total potential energy takes the
following form as

PE. = z(a) lhul{a} = Vo = ()0} 3

where the term V; and vector {A,} are the functions of the gen-
eralized coordinates {q,}. The first term represents the elasuc
strain energy. The last two terms. on the other hand. combine
the body force potential energy in which the term V' is due to the
rigid body mocion while the term {A,}7 (4.} is due to the elasuc
deflections.

Local Level Dyoamic Equations

Substituting Eqs. 20 and 22 into Lagrangian formuia. Eq. 1. will
yield a set of dynamic equations in matrix form for the t*N elastic
bearn.

(mil{@i} +(eil{di} + l{ai} = (£} (24)
where {m,] is a mass matrix. [ci] is a damping matrix which re-
sultes from Coriolis and centrifugal acceterations, (k;] is a stiffness
matrix accounting for bath the scructural stiffness due to elasuc
deflections and the coupling term between rigid body motion and
elastic deformation. and {/,} is a generalized force vector. In
general. the mass and stiffness matrices and. the force vector are
the functions of generalized coordinaces {¢;} while the damping
macerix is a function of both {¢} and {gi}. Furthermoce. these:
coefficient matrices and force vectors can be written as

19( (madT{¢} )

] = (il - PR TPy
[k') = [knl‘f‘(-"l
(!.) = {Icl}"'{/ﬂ}"{f‘l)‘{!li} {29)
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where [m,] is the time rate of the mass matrix [m,]. {f.,} is a
force vector due to the external loadings. {f..} is a connecting
force vector{ which would-vamsh automatically in the matrix as-
sembly from the local level to the global level with the condition of
the selection of the independent global generalized conordinatesi.
and the matnix [J,] and the vectors {f,1} and (f.2] are all de-
vived from the potential energy term as shown in Appendix A.
The damping matrix 7.} consists of a Coriolis term and a cen-
trifugal term. [he former 1s a symmetric matrix. The latteris a
nonsymmetric matrix and is derived in Appendix C.

Derivation of motion »quations for rigid members in a system
can also he done by following the procedlrres demonstrated in
the previous sections. First. one should identify a position vec-
tor. like the nue shown 1n Eq. 14. which will account for elastic
displacements of the Hexible substructures preceding the rigid
hody. Serond. a velocity sqaure term resulted from differentiat-
ing the position vector could be found. Third. it is necessary to
nbtain an inertial dvadic of the rigid body about its mass center
and an angular velocity vector including the rigid body angular
velocity and the elastic rotation rates influenced by deflections.
The final step is to find rigid body kinetic and potential ener-
gies as shown in Eq. 2 followed by substituting the results into
Lagrange's ecquation.

GLOBAL LEVEL DYNAMIC EQUATIONS

[n the previous sections. it has been demonstrated that each of
the subsystem has a different set of dynamic equations expressed
at the local level. Assembling these subsystem equations at the
Zlobal levet will constitute the system dynamuc equations. An as-
sembly routine must be found so as that the coefficient matrices
and the generalized force vectors for each substructure are com-
patible. Geometric constrains between the subsystems must be
applied. One must also define a set of global generalized coordi-
nates which are independent of each other.

Compatibility Matrix

A matrix which linearly relates the local coordinates with the
global coordinates is called the compatibility matrix. For a sys-
tem with an independent set of global generalized coordinates {q}
with n components. these local coordinates {g,} with m elemencs
for the *® subsystem can be expressed as

{7-} = [Qll{q} (26)
where the compatibility matrix (9,] is an m x n matrix and is

in general a time-varying functon of the rigid body generalized
coordinates.

Assembly of Subsystem Equations

Differentiating Eq. 26 with respect to time and applying the re-
sults into subsystem equation, Eq. 24, will result in the following
system dynamic equations.

(MI{4§} + [CH{d} + [KI{q} = (F} (27)

where the global mass. damping, and stiffiness matrices and the
global generalized force vector are formulated as follows:

N
(M= (@l (@)
=l

hi

(€= (@7l + 2(e:| T [m.J(&41])

v

(K1= Y ((0TIRI(@] + (@17 [ell(a] + (8,17 [m,](84))

{F}:Z{‘b.]r{f.‘[ raXy

=1
where V is the total numberof the subsystems. Structural and/..c
Huid viscous damping matrices can be added in each i-,; matrix.
and the coanecting force terms in each {f,} vector will vanish
automatically during the process of matrix assembly.

CONCLUSIONS

A systematic mathematical model predicting the dynamic mo-
tion for a muiti-body system including both rigid and elasti:
substructures has been fully developed in this paper. A con-
ventional finite element analysis with a direct stiffness methn«l
is used to discretize the elastic continuous subsystems. A third
order polynomial function is adopted in the shape function in ur-
der to exclude the effects of longitudinal displacement and beam
twisting which are usually of higher order magnitudes compared
with other deformations in the most flexibie systems. The La-
grangian equation is empiloyed. with both the rigid body Aegrees
of freedom and the elastic degrees of freedom treated as generai-
ized coordinates of the entire system. The elastic deformations of
sach element are measured at a substructure level. which i1s based
on a corresponding undeformed body. so that they are compacibie
at the local level. Kinetic energy and potential energy are formu-
lated for both the elastic and rigid members. Nonlinear coupiling
terms due to Coriolis motion are completely derived and are =x-
plicitly expressed in a matrix form.

The final set of system dynamic equations of motion is =x-
pressed in a closed form showing high nonlinearity with tume.
varying coefficient matrices and generalized force terms. Numer-
ical technique which can solve the equations with muxed rnigid
and elastic variables is under investigation. The procedure devei-
oped in this paper is applicable to the flexible system with planar
motion. as well as spatial motion.
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where o; is the mase density, A; is the cross section area of beam
i. m; is the total beam mass, L, is the tocal length of the beam.
G is gravity, (Tco| is a rotational transformacion matrix from che
inertial frame (é1.47,é7) to the moving [rame (iq. Jo. ko). and
{kyep] is & structure stiffness matrix of the g** element in beam :.
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B: Skew Matrix and Matrix Properties

For a given vector. (1. a corresponding skew matrix {(] is defined

L)
|- 9 =41, 0,
(@R s, ) I
‘_ -1 i) 0

where Q,{1 = 1. 2.3) ace the components nf the vector (1.
If {1} is a vectoe with a-dimeasion. and a scalar 2 and a vector
{z} with m-dimension ace the functons of ). the following

matrnx derivatives are then definerd. as -
.'lc
E S Vi
)(.} Ja,
afg}t "[ PN ]“‘""“"-J—l----.m)

where {19/.37,} i3 an n-dimensional vector. and {?2,/)7,] is an
n X m matrix where ¢ determinesa row and ; determunes a column
for cthe matrix. The following properties of the macrix partial
derivatives are derived.
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where[B]=[ {61} - {a} ]T

where {2}. {5}. 01, 2. and [B] are all the functions of {3}. (C}
is a constant macrix. and {5, }{i = L. --.n) are the submatrices

in (B].

C: Derivation of +3{{m,[T (4,})/3{2,}T

Rinetic energy for the i*® beam is

KE. = <{a}Timl{a)
= KE.+KEy +2KEn (29)
where
KEe = 3{0)Ttmed) (30)
KEw = {4)7(@ulTVITUG] + sl +(TD
(Vi@ial{4i} , {3t
KEa = (@ @ulfVIT(Gal + (D&} 32)
where

(f = {2783 |

Partial differentiating Eq. 29 with respect to vector {q;} gives
I{aq,}! 2 )T !
aqug 3K°E.| +2 '?'\.EQQ

TP TR TPy S

where the first term vanishes because [m,.| i3 a uonstant macrix.
The second term in the above squation :an he written as
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where
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(1l = (L L L]
Substitucing Eq. 35 and Eq. 36 into £q. 34 gives
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where (1) and (2) are used for identification. The second term in
the above equation can be rewricten in a pattern as shown below.

3({sa} + (T2} ; |
?:? =Wl HNs el (38)
where
{:g}+{rﬁ)=
Bmy + Ry, G
{ T Bnd + Dond }={ Ca }=(C}
o Basd, + R, <
Thus.

3({ss} + (T3] [ac. 3C; 3G, ] (391
3Hq}T e )T ekt e}’

VIIB.5-7




sSubstituting £q. 39 into Eq 33 gives
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Substituting Eq. 41 and Eq. 10 into Eq. 37 gives
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The last term in Eq. 33 is
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Substituting £q. 42 and Eq. 45 into Eq. 33 yieids the final result.
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ABSTRACT

[a the present paper a genecai systematic modeling procedure has
been coaducted in deriviag dvnamic equations of motion using La-
gtange's approach for a spatiai multibody structural system involv-
ing ngd bodies and efastic members. Both the nqid body degrees
of freedom and the elastic degrees of {reedom are consideced as un-
known generalized coordinates of the entire syscem in order to re-
fect che nature of mucuaily coupled agid body anc ~lastic otionas.
The assumption of specified ngid body gross ridton 13 1o longer
necessaty in the equation derivation and the cesuiing dierential
equacions ate highly nonlinear. Finite element analyuist FEA) with
direct stiffness method has been emploved to mod>! the Aexidle sub-
structures. Nonlinear coupling terms betweea the ayid dody and
elastic motions are fully derived and are explicitly expressed in ma-
tnix form. The equations of motion of each individuadi sudsvstem are
formulated based on a moving (rame tnstead of 2 tradisicral inet-
tial frame. These local level squations of motion are aasembled to
obtain the system equations with the implementation of geometnc
Soundaty conditions by means of a compaubility metnx.

INTRODUCTION

Flexable dynamic modeling has been an attractive but difficuss topec
fo a long time. Severely resincted by the lag of compuser processing
speed in the early years and the complexity of macthematuica: {ormula-
uon, traditional dengns in- cobots, mechanisms, and other reiatvely
flexable structures have beea limited to the reaim of rigid body dy-
namics. However, increasing demaads foc higher operating speeds
and better performance result in a situation that the ligot waght
structuces ace objectively desired. A by-product of the dexibility ef-
fect 13 now recognised as a cntical issue. [t becomes imposmble to
implement ime-consuming aumencai integration without solid sup-
port of sophisticated modern computers with high processiag speed
capability.

The past decade has seen significant sdvances in dynamic apalysis
for Rexible muitibody systems. Extensive work. analytically and ex-
perimencally, has beea coaducted in dealing with fexible modeling.
Most investigators however employ a common approach in which the
elastic defocmations are superimposed on the rigid body gross mo-
tion dae to the nature of their specific problems. The application
of that method is severely limited due to the (act of requirement of
predefined rigid body motion. [t is thecefore very desizable to nves-

igate a aew approach ia which ail the degrees of freedom(DOF) of
a system, elastic as well as rigid, ace treated as unkoown general-

a1

\zed coordinates. This enables analvsis of sicuations whece the rigud
body motion needs to be predicted and the relationship between two
motions effects the system stabilicy.

The pucpose of this paper is to develoo a general modeiing tech-
aique to coaduct such a svstematic procedure for estadlisning dy-
aamic motion equations of a Jesble svstem with mutuailv depen-
dent tigid body and elastic motions. [n addiuon. the formuiation
procedurse is to be opumized and sumplified s0 a3 to accommodate
the needs of numencal analysis and computer programmung.

PREVIOUS WORK REVIEW

The first 2o exploit the advantages of the FEA wich Lagrangian
mechanics were Sunada and Dubowskv 12\, Their modei incoc-
porated a Denavic-Hartenburg tepresentation of the kinemauc ngd
body transformation excluding kinematic coupling. The degrees of
freedom of :he discretized svstem wete reduced by means of Com-
ponent Mode Svnthesis(CMS). The squations of mouon of ail linxs
were assemoied using a Compatibility Matnx rouuge. In their tilus-
trative examples. a set of first order equations was solved numencally
for & special case n which the mechaaism's nomunal speeds and ac-
ceierations are much smaller than the component eiastic coordinate
veiocities and accelerations. [ thewe later extended work. the as-
semoly of dynamic equations was petformed in symboiic form due to
the special form of matrix terms. The final system equations were
soived using a Newmack-Beta integration algonthm. Thewr approaci
is applicable for these problems where aomunal ngid body motion s
specified by kinemacic conscraincs.

Early works by Naganathan and Somi3![4]{$i{61i7] developed a fully
aonlinear model emploving a kinematic repceseatation with ngd liak
based reference. The three-dimensional model was conssructed by
accounting for axal, torsional, and lateral deformations. Galerkin
method was used with linear shape functions to tepresent the elastic-
ity of the linke. Link level matrrces were transformed by time-vacying
compatibility matrices and cascaded into global matrices. The agid
body gross motion was specified at the revolute joiats, and, subse
quently, the element matrices became constant at each time step in
the numerical integration. .

Presented by Simo and Vu-Quoci8ii9l, a different peoblem stose in
simulating dynamic response of a flexible plane beam subject to lacge
overall motioas. Two orthogoasl coordinates, measured inan inertial
frame, were defined to account foc the large overall rigid body mo-
ticn and small elasuc deformatioa, Haoulton's dynamics associated
with Galerkin spaual discrenzation were empioved in the focmula-




tien. in which the use of finite strain rod theueies capable uf treating
finite rotations was esseatial. The inhetent nonlinear character of
the problem was traasferred to the stifiness part of the equations of
motion, which resulted in the possibie numerical implementation by
means of any commercial finite element codes being able 10 analyse
noalinear structural dynamics.

In the work accomplished by Sadler and Yang{10!i11] (12}, a to-
tal mechanism displacement was defined to reflect the large rigid
body gross motion and small elastic deformations in the dynamic
modeling. Example problems were demonstrated in two different
categories: planar multi-link mechanisms and spatial robot manip-
ulators. The effects of Ravleigh damping was intcoduced. [n the
mechanism applications. the authors claimed that the method could
be emploved in the forward. as well as the inverse dynamic analyses
if either the input forcing functions or the crank motion are specified.
The link orientation angie must be related to the total unknown dis-
placement in the formulation. which is possible for the mechanisms
with one rigid body degree of freedom.

More recently. Nagarajan and Turcic,13}114; developed a new ap-
proach to derive equations of motion ior elastic mechanism systems.
Both the rigid body and the elastic degrees of freedom were consid-
ered as generalized coordinates in the derivation. The equations were
first forrulated based on element level coordinate svstem 1n which
elastic nodal displacements are measured. The equations were then
transformed to a reference coordinate system to ensure compatibil-
ity of the displacement. velocity, and acceleration of the degrees of
{reedom tnac are common to two or more links dunng the assembly
of the equations of motion. Atternpted to be general in their work.
the equations. at element and system levels, are complicated and
the transformation from element level to system level takes a great
amount of effort while it is essential for the approach.

A literature survey of flexible modeis was completed by Cleghorn
13:. It was observed that the most effective model is one whica
incarporates Lagrange's equation with the finite eiement method.
This produces a generalized eiement for easy application 1o dexible
systems.

CURRENT APPROACH

In the current pape:. a method combiming Lagrangian dvnamics with
finite element analysis is developed i1n the modeling oi dvnamic re-
sponse of multivodv flexible structures. Lagrange's approach is se-
lected to conduct svsiem dynamic equalions: finite element analy-
sis with direct stfiness method 1s emploved 1o discretize the elasuc
members in the system and to determine elastic degrees of {reedom
and the structural stiffness matrix which is required in finding elas-
tic stcain enecrgy. Each flexible beam is assumed as a slender beam
which 15 therefore 10 be modeled by beam element. The generalized
coordinates of an entire system reflect both the parameters from
the rigid body gross motion and the components of elastic displace-
ments. The nonlinear coupling terms in all the coefficient matrices
and the generalized force vectors are completely defined and formu-
lated mathematically in detail. For an individual body, Lagrangian
equation in matrix form can be expressed as

d (axz.) _OKE _0PE _ |
#\3q ) "3 " - % (n

where K'E, and PE, are the kinetic and potential energies of the
body, Q, are the nonconservative forces, and q, ate the local gener-
alited coordinates which reflect the degrees of {reedom of the body.
A general expression of kinetic energy of an elastic beam modeled
by finite elernent can be written as

R B L
KE = Ez/o P|A1V|"V|'d" (2)

=l

412

where .V, is the total aumber of Lhe finite elements. {, is the length of
the ¢** element which is usually the same for all the beam elements.
p and 4, are the mass density and cross sectional area of the beam,
and V., is a generic velocity vector in element 9. The above equation
clearly shows that the velocity squared term plays a major role in
kinetic energy. On the other hand, potential energy, consisting of
body force potential energy as well as the structural straio energy,
can be written as

PE = 347K a0~ %(G) 3)
where the first 1erm is the elasuic strain energy and the second term
is a potential function which accounts for the beam elevation in the
gravity field in the scopes of both the maczo rigid body motion and
the micro elastic vibration. After differentiating the kinetic and po-
tential energy terms and substituting the results into Eq. 1, one can
obtain the equations of motion in matrix form in the following.

(4

where the mass matrix m, is in general a function of the generalized
coordinates q,. the damping matrix ¢,, resulting from the Corioiis
and centr:fugal accelerations, is a function of the generalized coot-
dinates and velocities. the stiffness matnx k,, inciuding the conven-
tional structural stiffness. is a function of q, only. and the generalized
force vector f,. invoiving the external nonconservative forces acting
on the beam. is also a function of q, only.

A set of global generalized coordinates q is defined first. These
cootdinates aze chosen from the local generalized coordinates q, such
that everr coordinate in q must be independent of each other. The
relationship between the giobal and the local generaiized coordinates
is thea determined by the following equation.

m‘(QI)&| - c.(q.. )4, ~- k.(q.)q. = f‘(QI)

(3)

whete @, is a compatibility matrix which is 1n general a function of
time. Differentiating the above equation with respect to time fol-
lowed by the substitutions and the pre-multiplication of ¢, 1n Eq. 4,
one can finally obtain the system equations in the {ollowing form. as

qu=%aq

Mq~-Cq-Kq=F (6)

In the following sections. more detailed procedures and formuiations
ate developed step by step. A demonstrative exampie 1s illustrated
in Part I1 in which the simulation results are venfied by the expen-
mental data.

FINITE ELEMENT ANALYSIS

Each elastic beam is 1o be modeled by using several conventional
predefined beam elements. The maximum degrees of freedom for
each node in an eiement are six. Thev include two orthogonal trans-
verse defiections and two corresponding rotations. one longitudinal
displacement. and one twisting about the element axis. In order to
achieve relatively simple modeling, only the transverse deflections
and rotations are allowed at each node. The contributions of the
other two dispiacements are neglected in most cases(it is referred
1o [16]{17! for a complete modeling). The following conditions are
therefore assumed for each element.

o Elementary beam theory applies and elasiic flexure obeys

Hooke's law.
¢ Each beam undergoes two uncoupied orthogonal deflections and

rotations.
» Longitudinal displacement and axial twisting are neglected.

Following a conventional direct stiffness method(18}, a polynomial
displacement function is preassurned with knowledge of the external
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Figure 1: Sign conventions of nodal dispiacements

loadings. The boundary conditions are applied followed by direct
application of the stzain/ stress relationships with sign conventions of
the beading moments and shear focces. A structural stiffness matrix
is obtained by comparing the relationship between the nodal forces
and the nodal displacements.

Displacement Function

[t is indicated from the classic elasticity theory'19' that a polynomial
function of the static transverse deflection for a cantilever beam can
be determined. depending on the type of external loadings acting
on the beam. With ao distributed loading, the highest order of the
polvnomial functioa is of ocder three, that is

Y= a5 =12 —az} —asz? (N
whete z denotes axial coordinate of the beam, y is the cocrespond-
ing teansverse deflection, and a:{i = 0,1.2.3) are the constaat co-
efficients. The above formula is then emploved as a displacement
function for each beam element.

Geometric Boundary Conditions

As illustraced in Fig. 1. fouc geometric boundary conditions are pro-
posed for each element as follows:

and
and

3 =0 deflection =d;
s =1 deflection = dy;

slope = o,
slope = ¢4

where s is the local axial coordinate in an undeformed element seg-
ment, d, and o,(: = 1,2) ate the transverse deflections and siopes
at the correspoading nodes, tespectively, and { is the leagth of the
element. By applying above four geomettic boundaty coanditioas to
Eq. 7. it can be demoastrated that the final displacement functioas,
in matrix (otm, in each orthogonal plane ace of the following forms.

{8
(9)

where Y and Z are the constant matrices(see Appendix ), v(s) and
w(s) are the displacement functions in the X ~ Y and X ~ Z planes,
respectively, and d and s aze the generalized nodal coordinates of
the edement under consideration and a generalized fuaction vector,
tespectively, which are defined as

v(s) =dTY s=4TYTd
w(s) = 472 s =s"2%d

d
s

{d1yd1sdrsdrydayd2.d2,009 }T
{1992 %)

(10)

413

lly ‘:’ ‘li ri‘
i ) I '
i
S U S S
e o~ G o)
~—— ~— | S N
By Mz My may
x x

Figure 2: Sign conventions of nodal forces

where d,, and 0,.(i = 1.2) ate the deflections and slopes in the X =Y
plane while d.. and 0,,(: = 1.2) are the deflections and siopes in the
X - Z plane. It is noted that s7Y7 and sTZ7 in Eqs. 4. 9. are the
conventional shape functions of each orthogonal bending.

Structural Stiffness Macrix
For small elastic deflection. the {ormulas of the bending moments
and shear forces ate found to be

G%uls) Y
= V() = 1,

where £ is Youag's modulus. [, is the principle moment of inertia.
and u(s) is a transverse deflection function(either vis) or w(s)). Ac-
carding to £q. 10, a corresponding vector of generalized nodal forces
is defined as

3uls)

M(s) = €I, (1)

£= (f('mltfl:mlvf:ymi:fhmh}r {12)
whete f,(1 = 1.2) ace the nodal forces and moments as shown
in Fig. 2. Refernng to geometric boundary conditions. four {orce
boundary conditions ate accordingly determined as

s =1
s=1

sheae force = f,
shear fotce = f;

bending moment = my;
bending moment = mjy;

Applying these four force boundary conditions foc each orthogonal
bending to £q. 7 and arranging the results in the following standacd
form as

f=k,d (13)

one can find that the structural stiffness matrix takes the {ollowing
expression. as
£r r T

k, = NEN (Cu3i ki = Cy 33 kads) (14)
whete k, is a symmetric stiffness matrix, ! is the leagth of the ele-
ment, [ is the anthmetic average of [, and [;, C, and C. are the
coastaat ratios of [, and [, to [, tespectively, 3, and Jz ace the
constant matrices. and ky and k3 are two stiffness matrices see Ap-
pendix ). The structural stiffness matrix is to be used in formulating
the stractural strain energy which is pact of the potential energy of
& moving elastic beam.

LOCAL LEVEL MOTION EQUATIONS

Ia the present paper emphasis is placed oa studying dynamic re-




Figure 3: Deflection of a generic flexible beam

sponse of sphencal unconstrained structural systems. Fig. 3 showsa
generic finite element in an arbitrary elastic beam in such a structural
system. Two sets of Cartesian coordinates are set up in assisting the
representations of the rigid body motion and elastic deformation.
Set (io. J,. k,} constitutes a floatingtmoving) frame of which the ori-
gin O is located at a spherical umversal joint with three rotations.
Set (1,.),. k). which accommodaces the atbitraty elastic beam, 13 a
reference irame which is relative to the moving frame. Vector &, is a
position vector which indicates the position of the origin of the ref-
erence frame under consideration relative 1o the moving frame. This
vector is considered as a rigid body position vector which describes
the rigid body motion of the elastic beam. Vector 5,y is 2 local poni-
tion vector measured in the reference frame {or an arbitrary point P’
in element ¢ after its deformation. This 5,, vector features both the
rigid body motuion of point P’ relative to the moving frame and the
elastic motion relative to the reference {rame. Vector 7y, measured
in the moving frame. is an absolute position vector which combines
the rigid body and elastic motions of point P’.

Position and Velocity Vectors

Referring to Fig. 3 again, the absolute position vector of point P’
can be found as

Fig =R - by = & (R, = Tan ,y) (13)

where é, = {:,}.E.}r, a unit direction vector of the moving frame,
R, and p,, are the reference and local position vectors in matrix
form, and T, is a 3 x 3 transformation matrix from the moving
frame to the reference {rame, i.e., &, = T,é& where & is a unit
direction vector of the reference frame. A cotresponding position
equation in matrix from formulated in the moving frame {E.},fz.}
takes the following form as

Ty = R, + Tu Py (16)

All the vectors in the {ollowing sections will also be expressed relative
to the same moving frame except where mentioned. Differentiating
Eq. 16 with respect to time gives a velocity formula which can be
written as

g = By + T ug) + Be + Ton pug = Tn 21y (m

where ¢,, denotes dr,,/dt, R., Prgy and T, are the time rates of
the corresponding vectors and the transformation matrix, and £1 is
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a skew-svmmetric matrixisee Appendix ) derived [rom a rigid bodv
system angular veloaity ) which can be expressed as

a7 = A'NT = iTIN, N, N (18)

where disa generalized angular velocity vector containing the time
rates of three rotating angles about the spherical universal joint, and
N is a 3 x 3 time-varying coefficient matrix which can be partitioned
as [N{N;N;:7. The rigid body system angulat velocity I governs
the angular motion of the moving frame &, which is relative to an
inertial frame &,. Positioa vectors R, and p,, can be further written
as

RT = {R, R1 R}’ (19)

Pirgs (9 - 1)‘| -3
Prg = Teg = Tug -(20)
w,g Uiy

where R,,(j = 1.2.3) are three rigid body components of vector R,,
Prgs is a rigid body component of vecior p,,. and v,y and w,y are two
elastic components reflecting two orthogonal defiections as shown
in £qs. §.5. Therefore the time rates of the corresponding position
vectors are found to be

R.=0 (21
,a;‘, = {0 &, wyy} (22)

For the cases with no revolute joint between elastic beams. the last
term in Eq. 17 can be dropped out. A set of generalized coordinates
for the i** elastic beam can be defined in terms of three rotation
angles and generalized nodal displacements in caca element. Thus,

q; = {‘\?dvlyo‘l:dﬂzo!lyddyo:).-dd:‘?dy
o 'duyol’ld!’:ol'y M
A m iy @ n, ~01: 4N, =110 ¥, = 1)y }
= {(Adid;--d]o-dly) (23)
where each d.g(g = 1.2.---.\|) contains eight components as de-

fined in Eq. 10. and X, is the total number of eiements in the **
elastic beam. The relationships between vectors A. d,; and q, are
then established. as

A=0.uq, (24)
dt, = 01" Q. (25)

where O, and @,;4 are types of linear compatibility matrices. A
more compatible expression of the velocity vector can be written
as a function of the time rate of the generalized coordinates q by
substituting Eqs. 8-10 and 18-25 into Eq. 17. Followed by necessary
rearrangement, there results

(R = Ta1pugs N2 = (Raz = Ta1oy, )N
(Ra = T11000)N1 = (Ris = Ts1inge )N
(Ri = Torprge )Nt = (R = Ti1019s )N3

Py = Siq.

sT(YI Ty 2T
- | sT(YT T ~27Tus)
YT + 2Ty

QTO%L (T Y. = T5:Z, 3Ny~

Q.:euq((TuY- -+ T13Z,)sN, -

9 0, (TuY, + T332, )sN, -

“(TnY, -~ T13Z,)sN,)

(T2, ~ T53Z.8Ny) | @01 Qi (28)

-(Tua Y, = TisZ.)sN,)
where Toa(a,.d = 1.2.3) ate the elements of the transformation ma-
trix T,

Qe Q-

— —




Velucity Square Term

The purpose of focmulatng the velocity squace term is to find the
beam kiaetic energy which is defined as

=2Z/ V,, wd"‘w

FE1}

(27)

where .V, is the total number of elements. [, is the length of the g**
element in the ** beam, ¥,  is a velocity vector of an uoizrarv poink
m the elemens. :uumuung pid.ds for dmiy and £ 2 &2 OF &l foc

V.g the above kinetic energy equacion becomes

KE, = -p.A Y‘[

T b ds

sl (28)

where p, aad 4, are the mass deasity and cross sectional area of the
beam, respectively. £3. 23 indicates that fading e velocity squace
term is peioc to Anding the kinetic energy. As shown in Zgs. 10 and
29, the velocity vectoc in £q. 28 is aiso a f{unction of the local axial
coordinace 5. This indicaces that ic is a challeaging task to (ormulate
the velocity squarte term prooerty such that the integration in £q. 28
can be cacried out anaiytically. for sumplicity, £q. 15 is reformuiated
in a symbolic fashion by the following form. as

By = 10,4 - 20 4 - 30 4 (29)
where macrices (1}, 2!, and 3! represent the corr-soonmng matrices
in £q. 26 in the 1ame ocder. Premultipiing the veiocity vectat dy its
transpose vectoc nil result in the veiocity squace t2sm as

i,r,i-,-, =

Q) xo.u u PR L TEi T . (RN SRR YO IR
PRk 1 TR INT T (L X - T

-0l - 3004 (30

3v defining the foliowing terms

TuY. - 132,
Ty Y, - T332,

|
ANE:

SHE

it can be demonstraced that the symbolic matnces (i =
£q. 29 become

1Y, - T12Z. T|
!
!

Ay - rl! Pigs
Ra~-Tn Pigs
R =T pugs I

1.2.3)in

AU=RTN; 2i=d 3=-4d12 (O a)V
where [dl is & skew-symmetric mactix associaced with the @macdix
d(see Appendix ), and [ and @ ace mattix operators defined in

Appendix . Thus,

AT = NTRATN: (2720 =d’d
3a NT0qT Ol @117 d) @ [(@ipe qi) ¥
(T3} = NTRT(A] @ [(Oige qi)i¥

(Tr2) = NTR4: (21703 =

By substituting above expressions into Eq. 10, :2e velocity squace
tarm becomes

d7(d]| @ [(Oige ai)Y

P
B tie ®
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'q."a(-).‘.\N“-l'lq.'-(‘).",‘n wed ‘.,t'i 1% D18 0
~RRT —(RTQA - dR7)319,,i LUNO,,
L@ NT(RA-1710.,¢ i} 2.4 7Td19,,q
-0Lud*RT +d7dl@ (1O .1 YO,
~@7,d7d 9,44, 130
Kinetic Energy

Substitucing Eq. 31 into Eq. 28 vields a moce comopac: farm of the
kinetic energy as

. Lo .
KE = ;q: msq, (32)
where m; is a symmetric mass macrix which is formulated as
m; = m;-0iNT(G, -~ Hy - H3INO,,
~OLNT(G. = Hiy1Oiye
~07,G] - H3INOu (31
where
M = 2 -vG‘,.ﬁ/ 47 ddn®,,
Fi 1%
G, = a.«l.,v’/' RAT &
FE 2N
G: = ad ,V' " Rdds
sm 79
KA “
He = 24 \_. rrfei.q q.')S/ &’rdldl
1wt "
zfl@.,. )
H,; = a.i.v/ (R7di = ouR s R TIO. ¢ qu)
gwt *?
Hy = o4 Z L-rfe-‘u LK / dlrd as 134)
FL 1Y ?
where m,, and G, ace the coastaat svmmetric tatnices. G,; is

a coastaac rectaagulac macnx. H, and H,; ace tae ume-varyving
symmetnc matrices. and H,3 15 2 time-varving cecrangulac macnx.

Potencial Enersz

The tocal poceatial eaeegy of an elastic Seam is the summaction of

the body force potential energy and the <lastic scrain energy. The
focmes is defined as the negative work done by grawity. te.
th = V liyg = Y‘/ -im,G - A, (35)

9:!. Jm\

where dmy = p; 4. ds. G = -Gay in which é3 i3 the vertical cooedi-
nate of the inertial frame (&, &2, #3), and iy is a positioa vector as
defined in the previous sections. Substicuting Eqs. 7.9.13.20. and 2§
igto Eq. 33 wiil result in & compact {ocm of the body force potennd
energy in macnix form as

N =

w=Vi+ilq

(36)
where V; is & potential functioa which repcesents the rigid body po-

teatial energy and fT is a force vector due to the slastic dedection.
These two terms can be further formalated as

L.
Vi 2mGbT T,o(Ri = - T a)




0
=2l T, T, SYT (4T 0.,
L, o | §T2l port
where m, is the mass of the beam, L, is the length of the beam, T,,
is a time-varving transformation matrix between the inertial frame
and the moving frame, a7 = {1 0 0}, and b7 = {0 0 1}. The elastic
stratn energy is defined as

At WV,
~ .. I ¢ -
Ca=Y Cng= 53 (@ kugOupala, (37)
=1 g=1

element in the
elastic beam. as shown in Eq. 14. Therefore, the total potential
energy can be found as

whete k,,, 18 & structural stiffness matrix of the ¢**
JtA
t

PE:'q.kHQI_"‘f (38>

or k9@ g¢. & symmetric constant matrnix.

where k,, = 3.2, O],

Motion Equations

By substituting the formulas of kinetic and potential energies in
Eqs. 32 and 38 into the Lagrange’s equation. Eq. 1. the equations
of motion of an arbitrary free elastic beam at the local level can be
written as

16(m.4.)..
m.q. —lm. - ST)q' -
o, v,
k- ==l =Q -f - ==
{ i ). = Q P (39)

The above equations cleatly show the nonlinearity involved in the
ume-varving coefficient matnces. Referring to Appendix . some of
the matnx partial differentiations can be derived immediately in the
follows:

. > w0 o
dii = —_"ZG a——‘:'ib]'r,/ [ $SYT ] ds
7 1 . 9 Tl
q; q s*Z; ]
N,
Yo (40)
g=1
i r L
AT AL 1IN D S (41)
oq; dq; 2

The partial differentiations on the right hand sides of the above
equations can de carried out analytically by substituting the spe-
cific transiormation matrix for T,o.

Derivation of ;a(m.é.)/aq;’

Referring to Eq. 32. the formula of kinetic energy of the :** beam is
rearranged in the {ollowing, as

KE. = 347miq = KE = KE. = 2K Ea (42)
where
KE.= -q. ra, Q. (43)
KE, = -Q.‘ OLNTIG, - H, - H,IN@.q.
KEs = ,q. TOILINT(Gu + His1O.ed:
Partial differentiating Eq. 42 with respect 10 q gives
19im.q,).

9KE. _1 dKE. OKE., ,3KEa
dq; 2 aql ITH sar " ear

(44)

where the first term vamishes because m,,

in Eq. 43 is a constant

matnix. Referring to Eq. 34. matrices H, |, H,;. and H,j are redefined

in the following forms, as

Bu By By
H, = Ff(q.)e Ba Bia: Ba | ®Tiq.)
Bu Bj By
= [Hiu.HaaHas)
D Di: Dy
Ha = Da D2 Das | 8Tiq)
Dy Dy Dy
= Hua,HoaoHas
q ET
H, = :H.).lH-l.!H-JJ;T= q.fE,T
Q7 ET
Thus. the second term in Eq. 44 can be written as
REs | ANOua) G, —H, « HaiNOLG -
TeaT aq;
1 [ aH, -H"")N@.xd.
2 aq;

dH,3:~H,a:)

= N@.,q.
da; e
3(H.u, - Hus) NG
__L;_ﬁN@dq‘ ‘JEN@.,.Q.
= 1 -7
where '1° cortesponds the first term and 2! represents the
term. Then.
.- .dN, . 9N; . 9N,
= \ . | — ®| 1 —."®| s
1 Y —0u4 FrE Qs EPY aq

G, - H,i -~ B iN®,,q,

3 - H
1 dHus = Risivg | aNTow &

w
i

P 7

i aq;

= é\," 2INO, a.NJO. 4,
L

3=l
where ‘3! represents the partial diferentiation in 2" which
written as

3 =

R q[Bis q ] Disq. )
— Q. Bisq ;- Disgq,
o Q7 Bss q I Dis q. /

= | (Bis~Baia -Dj,
{Bia = By )q. = Diy
iByg ~ Basiq. - Dy

where B;._, = Bso(a =1.2,3) and Doy = Dagia =
tuting the expressions of ‘31 into {2} gives

Si

a7 o}, N.N, Ou 4

12,3

{ (Bea — Baa)q, ~ DZ,}

!0‘.—-

»l"J~

Substituting the expressions of [1] and ;2] into Eq. 48 neids

3K E., LNy . 3N, aN
— = iade B4, | —F9u4q,
FPY: .a—q‘fe S aqQ. i 7 @qu

(Gu + Hiy = Hi3)NO,, q, -
] 3
1
3 Z z{(asl +Baela, - D15}

&m) am)

qTeiN.Njeu 4
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(45)

(46)

(47)
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second

1s then

Substi-

(49)




‘The last teem 1n Eq. 44 can be written as

LIKE. ANO..q,
T dq aqf

(G - H319,4a.} NOu &

2q;

. dN) .
= La'q_‘f g, ! We.xq. ‘
(G2 ~ Hi)O,pq i -
(Ef @.44q. | Ef Oiyeq, | E{ O, pedii
NOuq

) .
(Gia =~ Hu19ye q, -

LN IN, ..
[c] W:.-G-Aq.;

(50)

Substituting Eqs. 49 and 30 into Eq. 44 will tesult in the following
final expression of the matrix partial differentiation, as

1otmiq.) _

2 dq

ONy L Ny . ANy ..
M ona i Brona Blo.a
Fqr O i GT Ond GIr Oy

{{Gu = Hy - Ha)N®i, = (G - Hi31@4,47 -
Ef@yeq. - EfO44a,  Ef 9,44, NG, =

3 3
%Z Z(lﬂaw ~ Baolq, - DI}

=1 amt

qrelN.Nlo. q,

GLOBAL LEVEL MOTION EQUATIONS

In the peevious sections, the local level equations of motion have
been derived for an acbitrary elastic beam. [a ocder that those
generalized coordinates at the common connecting bouncaries ate
compact for the adjacent beams, it is necessacy to include the kine-
matic constraints in the equations of motion. The concept of the
compatibility matrix is emploved in the assembiy process so that the
coefficient matnces and the generalized force vectors of cach sub-
system ace compatible. A set of global generaiized coorainaces is
selected among the local generalized coordinates ol each subsystem
such that the global generalized coordinates are independent of each
other.

Compatibilicy Macrix

A matcrix which lineacly celaces the local geaeralized coordinates to
the giobal generalized coordinaces is called the compaubility matzix.
For a system with n global generalized coordinates q. the local gen-
eralized coordinates q, with m components can be expressed as

@=%q(t=L2- V) (52
where the compatibility matrix ®, is aa m x n matrix «hich is in
general a time-varying function of the tigid body generalized coordi-
nates. .V is the total number of the subsystems under consideration.
It is noticed that the compatibility matnx contains the iaformation
of the geometnc boundary conditions which describe the kinematic
constraints for those adjacent subsystems.

Assembly of Motion Equatioans

Differentiating Eq. 52 with cespect to time gives

Q.'Q.-i.-q
&; i+2§.' (].*iiq

(83)
(54)

[]

Qi
%

Rearrangiag the local level equations of motion, one can show that
Eq. 39 takes the following standacd form as

mg; - ‘:!ﬁl ~kq=F, (83)
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where ¢, 1s a damping matrix. k, i a stilfness matrix. F. 15 a yoner-
alized force vector. and thev are formulated as

ld(m,q,)
¢, = m.-i_?;‘__
Jf
k, = n=
kn = o
av,
F, = Q -f - —
Q. -f P

Substituting Eqs. 53 and 34 into Eq. 33 followed by premultipling
Eq. 35 with the transpose compatibility matrix &7 will result in the
following global equations of motion as

M§-Cq-Kq=F (36)
where the global mass. damping. and stiffness macrices and the global:
generalized force vector ate formulated as follows:

N
C=Y (#7Tc.# -287m, ¥)
=t
K=) (#7k# - % cé -#'méd,
=t
K4
F=) &F,

=L

(37)

Structural and/or fluid viscous damping terms can be addec in each
¢, macax. The internai coamecting force terms in =ach F, vector
vanishes automatically ducing the process of mattix assemoly.

CONCLUSIONS

A systematic mathemaucal model predicting the motion of a mult-
body system with efastic members has heen fully developed in the
current paper. The mutually coupled :igid body and eiastic mo-
tions are revealed by inciuding the ndid body generaiized coocdinates
which have not been considered as the unknown degrees of {reedom
until very recent years. The siguuficant complexity in mathematical
formulatioa arises because of the involvement of the unknown ngd
body DOF. Noalineat coupling terms due to Corolis and centniugal
forces. which were neglected hustoricaily. are compietely takea into
account and are decived explicitly 1n matnx form. The conventional
finite element analysis cooperated with the dicect stiffness methoa
is used in the discretization of the elastic members. A third order
polynomial function is adopted in the finite element saape fuactionin
order to exclude these negligible effect of lonmtudinal displacemeat
and axial twisting which are usuaily of higher order in magnitude
compared with the other deformacions in most fexsole structures.
The Lagrange's equation is emploved in which both the n@d body
and the elastic DOF ace tzeated as unknown generalised coordinates
of the system. The elastic deformations of every element in each
elastic beam are measured in the local teference frame so that they
are compatible at the local level. The position vector as well as the
velocity vector are formulated in terms of the moving frame instead
of the usual inertial {rame. This resuits in simple mathematical op-
erations in finding kinetic and potencial energues.

The final form of the system dynamic equations of motion is ex-
pressed in a closed form which shows high sonlineanty and stroag
coatribations of the coupling terms in the time-varying coefficient
matrices and generalized fotce terms. The procedure and method-
ology developed herein are applicable to the dynamic modeling of




the planar mechanisms. as well as the spaual uaconstrained struc-
tures. The application of the theory presented in the current paper s
demonstrated and implemented in Part {I. The extensive simulation
results and the experimental data are also included in Part I of this
work. Numerical techniques which resoive the difficulty in solving
noalinear differential equations involving mixed rigid body variables
with large overall motion and elastic variables with small vibration
are investigated and are presented under a separate paper in which
Newmark predictor-corrector integration schemes are developed.

ACKNOWLEDGMENT

The authors would like 10 acknowledge the financial support of the
Air Force Office of Scientific Research under Grant No. AFOSR-89-
0403.

References

‘I’ Sunada. W.H. and Dubowsky, S., 1981. “The Application of
Finite Element Methods to the Dynamic Analysis of Flexible
Spatial and Co-Planar Linkage Systems,” ASME Journal of Me.
chanicai Design, Vol. 103, pp. 643-651.

2! Sunada. W.H. and Dubowsky. S.. 1983. “On the Dynamic Anal-
vsis and Behavior of Industnal Robotic Manipuiators with Eias-
tic Members.” ASME Journai of Mechanisms, Transm:ssions.
and dutomation in Design, Vol. 103. pp. 42-31.

KE)

3 Naganathan. G. and Soni, A.H., 1986. “Non-Linear Flexibility
Studies for Spauial Manipulators.” IEEE /nternationai Conjer-
ence on Decision and Control, Vol. 1, pp. 373-378.

 Naganathan, G. and Soni, A.H., 1987, “Coupling Effects of
Kinematics and Flexibility in Manipulators,” MIT The Inter.
nationei Journai of Rodotics Research, Vol. 6, No. 1, pp. T3-84.

5. Naganathan. G. and Soni, A.H.. 1987. “An Analvtical and Ex-
penimental [nvestigation of Flexabie Manipulator Periormance.”
[EEE International Conjerence on Robotics and Automation,
Vol. 1. pp. 767-773.

Ca

“oe

'§' Nagasathan, G. and Soni. A.H., 1988, “Nonlinear Modeling
of Kinematic and Flexibility Effects in Manipulator Design.”
ASME Journal of Mechanisms, Transmussions. and dutomation
Desigz. Vol. 110, pp. 243-254.

" Naganathan, G. and Soni. A.H.. “Dynamic Response of a Ma-
nipulator,” ASME 9th Applied Mecaanisms Conference Proceed-
ings. Kansas City, Missouri. Vol. 2, Session XI[.A, pp. I11.1-6.

-8 Simo. J.C. and Vu-Quoc, L.. 1986, “On The Dynamics of Flexi-
ble Beams Under Large Overall Motions-The Plane Case: Pasnt
[.” ASME Journal of dpplied Mechanics, Vol. 33. pp. 849-834.

Simo. J.C. and Vu-Quoc, L., 1986, “On The Dvnamics of Flexi-
ble Beams Under Latge Overail Motions-The Plane Case: Part
1, ASME Journal of Applied Mechanuics, Vol. 33, pp. 833-863.

Sadler, I.P., Yang, Z., and Rouch, K.E., 1988, “The Use
of ANSYS for the Analvsis of Flexible Four-Bar Linkages,”
ASME Trends and Developments in Mechanisms, Machines,
and Robots-1988, ASMEDE-Vol. 15-2, pp. 441-447.

Yang, Z. and Sadler, J.P., 1990, “Large Displacement Finite
Element Analvsis of flexble Linkages.” ASME Jouma!l of Me.
chanicai Design, Vol. 112, pp. 173-182.

Yang, Z. and Sadlec, J.P., 1990, “Finite Element Modeling of
Spatial Robot Manipulators,” ASME 215t Mechanisms, Ma-
chines, and Robots Conference Proceedings, September, 1990,
Chicago, [L.

9

10]

11

13

418

13 Nagacajan. S. and Turcic. D.A.. 1990, ~Lagrangian Formulation
of the Equations of Motion for Elastic Mechanisms With Mutual
Dependence Between Rigid Body and Elastic Motions. Part [:
Element Level Equations,” ASME Journa! of Dynamic Systems,
AMeasurement, and Control Vol. 112, pp. 203-214.

{14] Nagarajan, S. and Turcic, D.A., 1990, “Lagrangian Formulation
of the Equations of Motion for Elastic Mechanisms With Mutual
Dependence Between Rigid Body and Elastic Motions. Part II:
System Equations,” ASME Journal of Dynamic Systems. Mea-

surement, and Control Vol. 112, pp. 215-224.

{15} Gaultier. P.E. and Cleg* orn, W.L.. 1989, “Modeling of Flexible
Manipuiator Dynamics: A Literature Survey,” The ist NVational
Conjference on Applied Mecnanisms and Rodotics, Cincinnati,
Ohio, 83AMR-2C-3, pp. 1-10.

{18] Low, K.H.. 1987, “A Systematic Formulation of Dvnamic Equa-
tions for Robot Manipulators with Elastic Links,” Journal of
Roodotic Systems, Vol. 4(3), pp. 435-436.

[17] Low. K.H., 1989. “Solution Schemes for The System Equations
of Flexible Robots.” Journal of Rodotic Sysiem. Vol. 6(4), pp.
383-405.

718! Logan. D.L. 1986. 4 First Course in The Finite Element Anai-
ysis, PWS Publishers.

{19! Timoshenko. 3. and Gete. J.. 1972. Mechanics of Materrais. Van
Nostrand Reinhold Company.

APPENDIX

Coefficient Matrices
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where I is a 2 x 2 unit matrix and O is a 2 x 2 zero matnx.

Skew-Symmetric Matrix and Properties

For a given vector {1, a corresponding skew-symmetnc matrix Q1
associated with the vector 1 is defined as

-

. 0 -0y M,
Q= Q; 0 -nl
-0, 0, 0 |

whete £1,(t = 1.2.3) are the components of the vector . In an
analogy, a skew-symmetric matrix {d} associated with a given matrix
d is defined as

. 0 -ds dy ]
[d]= d: 0 ‘dl
~d; d; 0 ]




=T

where d is pactitioned as d = df did; *

For simplicicy. two special mateix product operators 3 aad [ ace
inttoduced in the current paper. These special operatocs have the
higher priority over all other matrix operations, and they are defined
as

A3C[(B) ‘A, Bl foc cachsubmatsix
r(B)3 A ‘BA,,] for each submatrix
r7(B) = (B

whete A is a partitioned matrix with the {ollowing focm as

Aty cr et Ada H

Ami 0 ot ot Ama

and the number of column of 2ack A, (i = l....m: j = L....a)
must be squal to the number of cow of matrix B so thac they are
comoatible in matrix operating.

{f q is an n dimeasional vector. and a scaiar ¢ aad aa m dimen-
sional vecior a are the functions of q, the foilowing macrix parcial
denvatives ace defined.

_-{ Al
dq- ~ | dq
.,

Rt
ﬁq.j
{e=1.- =

y
J

whers [39/3q,} is an n dimeasional vector, and Fa..Jq,, is an
n x m matnix ta which t detesmines a tow and ) deterrmines a columa
‘o the matrix. T he following ptooerties of matrix pactiai denvatives
ace denved from the above defnutions.

—={a"b) = =0 - T
dq (a7B) dq* ® aq- ‘
3 -

—(C =C*

Pl q)=C

3 - -
- - c_c.
5?'(41 Caq)={ )a

Jd 39, .7‘03
-—-—("x":) = —91 —

3q-'
3 aa ;b dby l
A T R T

where B = by - by,", a. b, &, 93, and B ace che {unctions of q,
C is a coastant @macax, agd b{i = 1,....n) ate the sudvectars in B.
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ABSTRACT

The application of the svstematic proceduces in the dentvaton of the
equations of motion proposed in Pacc [ of this work is cemoanstrated
and implemented in detail. The equations of motion {or cack suo-
svstem ace decived individuaily and ace assembled unde¢ e corcepe
of compatibility between the incal kinematic progeriies of the siastic
degrees of freedom of those connected eiastic memoers. The spearfic
steuctuce under coasideration is chacacterized as an ope2 looo s¥stem
with spaericai uncoastrained caains being capaole o r3iatag acout
3 Hooxe's oc umiversai joine. The nid bodv mocioa. due o two
uaknrown cotations, aad the elastic degrees of freedom are mutuaily
coupled and induence each otner. The traditional motion superpo-
sition approach is no longer appiicadle heretn. Numencal sxamoples
for severai cases ate presented. 1hese simuiations ace campared with
the expenmental data and good agreement 13 (ncicatea.

INTRODUCTION

Pact [ of this wock aresents the development =i tae squations of
motion (oc an arditracy elastic beam (n a dextoie scructurai svitem
coataining both the ngid and etastic dodies. [n zact L of the pager
the theonies developed in pazt [ aze agplied to a speciic provlem.
The seructucal system is characterized as an opeg i00p system with
spaerical uncoastrained caains being capadle of rocacional matioa.
The equations of mocioa for the rigid bodies ia the system ace de-
rived in a fashioa simuas to the derivation of the squacions of mocion
foe the elastic beams. The infuence of the elastic deformatioas pee-
ceding the rigid body is coasidered. The strategy in the decivadoa
is Rrst to obtain the local level dyuamuc equacions and then to as-
semble the equations at the glooal level. The geometric bouadacy
conditions are implemented to easare the companbilicy betweea the
local displacement. velocity aad acceleration of the elastic degrees of
Geedom thas ace common to two of mote members. Fig. 1 saows
a sacellits test rig built by Cowles |1] and Anderson 12! ac the fowa
Stats Universily. A cocrespoading schematic drawiag of the dysamic
pact of the test rig is saown in Fig. 2. A lower shalt sappocts aa up-
per rotating structute aad is driven by a DC motoce through & driving
chain. Aa upper shaft is conaected to the lower shaft by a Hooke's
type universal joat. A cross bar is fixed oa the too of the upper
shafl to balaace the coning motion. An upper assembly is defined
as those parts of the structuce that are supported by the aniversal
joint, except the upper thalt and the cross bar. The configuration of
the entite rotating upper assembly is axisymmetric adout the spin
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Figure I: A tesc ag

axis of tite lower snait.
COORDINATE SYSTEMS

Fig. 3 saows the coordinate systems associated with the structural
model oi tie test ng 16 assist analyniag the dynamic respoase of tae
scractucal system. Poine O is & umversal joiae ac waick the sagia
of a set of inectial coordinates (dy, éq, &3) i located. (n additioa.
coordinates (i,.Jo, Ko}, 3amed moving coordinates. are also settled
at point O. These moving coordinates ace inicially aligned with the
inerdial coordinates bus are attached to the upper assembly and ace
then rotated with the assembly. Three successive rotating angles
are defined between these two sets of coordinates. One set of co-
ordinates is defined foe each beam, elastic or ngid. aad each taak,
with the cocrespoading ocigins located as each proximal ead of the
beamy and at each geometric center of the tanks, tespectively. All
of the coordinates are locally defined with their i coordinates being
seiected such that they coincide wich the ceater lines of the uade-
formmed beams or they are initiaily pointed to the opposite direction
of one of the maving cooedinates. k,, for each tank.

Three Successive Rotating Angies
A set of three successive rocaung aagles about the universal joine
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Figure 4: Three successive rotating angles
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1s defined between the inertial and moving coordinates as shown
in Fig. 4. Firstly. the upper shaft spins about the &; aws of the
inertial coordinates with an angie of A3 to reach a first intermediate
sysiem (i:,j:.i,). Secondly, the upper assembly nutates about the
3, axis of the first intermediate system with an angle of A, to reach
a second intermediate system (x,i,f:,) Finally, the upper assembly
rotates an angle of A; about the i, axis of the second intermediate
system 10 reach the final moving coordinates (io.jo. ko). These three
successmive rotating angles constitute the base of the ngid body gross
motion which is essential in analyzing the structural deflections and
rotations.

Rigid Body Angular Velocity

Referring to Fig. 4. the tig;id body angulat velocity €1, interpolated
as the angular velocity of the moving frame. can be found by means
of the superposition principle of anguiar velocity, as

=ldyey=-2j, =i, (1)

where A,(+ = 1.2.3) are the corresponding ume rates of three suc-
cessive rotating angles A,(: = 1. 2. 31. By observing the totations. 1t
is found that the following unit vectors are identical. :.e.

éy=k,. j, =i, 1,=1,
Substituting above three identities 1nto Eq. 1 gives

=dyk, ~ A j, = A1 i, (2)

The objective is to transfer E; and i, coordinates into ii,.jo. Ko}
svstern. From Appendix . this can be eanily r-solved and the final
expression can be shown as

A=eéln 3

where &, = {14],Ke}. 4 s8¢ Ol untt vectors of the moving cootdinates.
and 2 1s an angular velocity vector which can be wntten as

0 = Ni {4)

where A = {A;A;A35}7. and N 15 a coeficient matnx contaiung the
information of three successive rotations and 1s defined as

[ NT 0 I -sn
N= f \.’ = cosd; O coshisink,y {3)
L Ni l_ ~sind; 9 cosAjcoshy |

[t has been snown that the configurations of the struciure are axasym-
metrnic. This does not imply. however. the symmetry of the 1nertial
forces about the spin axis. which induce elastic deformations. From
a static force analyus, it 1s found that the tangentiai inertial forces
are non-svmmetric about the spin axis in three orthogonal Cartesian
planes. Each elastic beam must be therefore disctetized using the
different generaiized coordinates.

TANK DYNAMICS

Referring to Fig. 2. a tank assembly or a tank for simpiicity, con-
structed of a spnencal piastic containes, liqud withia the container,
two clamping steel plates which hold the sphericai tank. and some
clamping bolts. 13 conndered as a ngid body system. One tank s
placed on each nide of the test rig-axisymmetnically. Liquid siosh-
ing within the tank is modeied by Computational Fluid Dynam-
1cs{CFD) i3l. The interaction mechanisms between the structure
and liquid are investigated in a joint efforts {rom the flexble struc-
ture model and the CFD model. The resuits are published ander
a separate paper 4]. Due 1o the special construction of the taak
assembiy. some elastic degrees of {reedom of the supporting flexible




Figure 5: Tank assembly

beams connecting the tank assembly ace constrained. The geometric
constraincs are revealed explicitly prior to defining tank generalized
cootdinates. Tank equations of motion are dertved in such a way
that one model accommodates two tanks in terms of proper sud-
stitutions of the corresponding transformation macrices between the
participated coordinates. A position vector of the tank 1s {ormuiated
first followed by the derivation of a velocity vector at the mass cen-
ter of the tank assembly by differentiating the position vector with
tespect to time. The vector expressions are ail relative to the mov-
ing coordinates. The tank transiational kinetic energy are found by
using a standaed formula involving a velocity squaced term. The
tank angular vejocity and the inertia dyadic about cae mass ceates
are formulated prior to calculating tank rotational cinetic energy.
Gravity is the only 2xternal loading under considecation. The in-
stantaneous liquid {ree surface shape and its orientation withia the
tank are suppiied by the output of the CFD modeling. Liquid iner-
tia dyadic 13 updated so as to update the tank kinetic energy. The
mass centee of sloshing liqud 13 caicuiated telative 1o the grometnic
center of the tank. The coefficient mass. damping, aad stiTness ma-
trices and the generalized fotce vectors are formulated by appiving
Lagrange's equation. The denvation of the tank dvnamic equations
can therefore be accompiished.

Geometric Conscraints

Fig. 5 depicts the tank assembiy and its associated structures. Seams
a and b are two flexsdle beams which connect the rifid taak assembly
at the ctamped pownts. D, and Dy. The transverse dedections of
these two beams ia the j,, direction ace equal to each other. The
totation of beam a adout the }.. axis at potnt D4 1s equal to the
cotrespond.ag rotation of beam b about the same axis at poiat Dy.
The rocations of the beams about the k., axis at points D, and. Oy
acte zero because these points ate ciamped on the tank. Thereiore,
the following four geometric boundary conditions are conciuded.

‘.m' = "ﬂ'
$ym, =0 (6

dcm' = dhllvi

Vs = 0;

where the second subscnipe m denotes the last finite element nodef for
both beams) which cowncides with either the poine D, or the point
Dy, dymy a0d dymy are the deflections of beams a and & in the ju
direction, ®omy a0d By, are the rotations aboat the jo, axis. aad
@om: a0d Py, are the rotations about the k.o axis.

The local generalised coocdinates of the tank assembly include the
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ngid bodv degrees of freedom. which result {rom three rotations
about the universal joint. and the elastuic degrees of freedom. whucn
ate due to the elastic deformations at the distal ead 3, of beam :
and the elastic deformations ac the points D, and Di. By appiving
four geometric boundary conditions scated in Eq. 6, a set of local
generalized coordinates is defined as

q = {A\T df}7 ()
where
d_? = {dimySimedim: Pimydamgdam: Pamydrm: } (8)
Thus,
A = O,q
d, = O,q (9

where the coefficient matrices @, and ejd can be easily found by
their definitions.

Tank Position and Velocity Vectors

Referring to Fig. 5 again, poin: T, is a mass center of the correspond-
ing tank assembly. and the vector 77, is the position vector of the
mass center. Thus,

FT} = Lniq - L';« - dtﬂl,jl - dm\.".‘- -

. H 1. -
Li‘!l ‘dimchb - ')"\d‘xm: - d)n.' )k-n -
raty = Pk, = A0, - 3], - ik, (10

whete the A’s ate the relative coordinates of the inscantancous mass
center deviated {rom the initial position dunng the tank motwoa. [t
shouid be noticed that the first four terms in the above equation
determine the position vector of pownt 3. after elastic dedections
of beam , the aext four terms celate a relative position vector of
point £. to point B,. and the last five terms estabiisn a relative
position vector of the mass center T, to poiat £, on the tank. After
transferzing the local coordinates to the moving cootdinates. it can
be shown that £q. 10. in masrix form. becomes

L,
Toer . damy -
1 ;(d'lﬂ: -“-u.-)
Pep = Ay
Tn#‘r‘lby A,v “l)
1 reg = Sa J

tr, =

whete the matuces T,, T, and T,,, ace the rotationai transioc-
mation matricesisee Appendix ) wherein T, is a constant matnx
and T,y is & ume-varnng matrix. Phvscally, beam ¢ is much stfer
than beams a aad b. and hence the T,, matnx is approximately
constant. Differentiating the above equation with respect to ume
vieids a velocity vector as

i‘r, = ‘1'.. { 4.“' } - T,‘) { A dan' }
dim %(douu - dhx)

. Pey += Al
-T...T." A,

reg + Sa

A'
’rnl‘r‘b) { éy 1 -0 L 7} (12)
A




where the A's are the relative velnacity components of the tank mass
centet. which are small compared with the tank overall mouon. The
term associated with these components can then be neglected in the
above velocity equation. {1 is a skew-svmmetric matrnx derived from
the cotresponding rigid body angular veloaity qQ.

Tank Angular Velocity

The tank angular velocity  is & vector summation of the following
three angular velocities,

1. €1, a rigid body angular velocity (&, relative to &,)
3. S, a ngid beam angular velocity (&, telative to &,)
3. &), a tank local angular velocity (#; relative to é4)

Refernag to Fig. 5. it can be shown that the tank angular velocity
{1, takes the following matrix form as

. - _{ ¢|ny§wn.'
Q; = é; N+-Ta i *-ny -
L

[0 1)
Toas |y Pamy } (13)
| T
The local inertia dvadic of the tank assembly about the mass centet
of the tank can be wnitten as

I, =eTLe (14)

where I. is a local inertia matrix about the local tank courdinates.

Substituting the transformation matrices between the moving frame
rs T . . .

and the tank local frame (1,).k,) into the above equation vields

I, =éllL,é, (15)

where
L, = TowwTap, L, T, TT,, (16)

Kinetic Energy
The tank xinetic energy. translational and rotational. can be formu-
lated as

1= =
50,1, 9, an

KE, = %m,e‘;, i, - 3

Substituting Eqs. 9. 12-13. and the expression of 2 into Eq. 17. one
can find that the kinetic energy of the tank assembly becomes

. 1
KE, = 5q,m,q, (18)
where the mass matrix m, i3 written as

T 1
m, = m,e;,\N’(c,.,n,l-n,,-m_x").
t

NO,\, - 07,6,,0,i~m, -
- 1
m,@7,(G,: ~ Hy3 - ;“HM)NO)»‘ -
7

1 .-
m, 0T, NT(GT, - HT, - —H)e,. (19)
]

where m, is the total mass of the tank, m,, is an instantaneous con-
stant mass matnx, G,;, G,;, and G,3 are the instantaneous constant
coefficient matnces. H,, and H,; ace the time-varving symmetric
matnces, and H,3 and H,, are time-varying rectangular matnces.
All these matrices ace similac to the corresponding ones listed in
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Part |. Partial differentiating Eq. I8 with respect to q,. and paruial

differentiating Eq. 18 with respect to q, followed by differentiauing

the result with respect to time will result in che foilowing damping
matrix. as

1d(m,q;,)

= - 20

¢ =m-; R (20)

where the partial differentiation can be obtained following the same
derivation demonstrated in Part |

Potential Energy .

The tank potential energy is constituted of only the tank elevation
in the gravitational field. Following the same procedure in Part |
one can find that the potential energy takes a similar formulation as

PE, =V, -hlq, {21)

where the potential function 1), and the force coefficient vector h,
are the functions of the local generalized coordinates q,. Partial
differentiating the above potential energy equation with respect to
q, vields the following generalized force vectors and stiffness matrix
as
at; Jh,
;=-?—'r-hj; k, = —= (22)
0q; gq;
where the matrix partial differentiations can aiso be obtained in a
similat way as demonstrated in Part .

Tank Equations of Motion

The equations of motion of the tank can now be written in a standard
form as

m,§, ~¢,q, - k;q, = f (23)

where all the coefficient matnces and the generalized force vectors
are alteady denved in the previous sections. Particulatiy. the mass
matnx m,. the stifiness mainx k,, and the generaiized {orce vector
f, ate the functions of the generalized coordinates q; oniy while the
damping matrix ¢, is a function of both the generaiized coordinates
q, and velocities q,.

RIGID BEAM DYNAMICS

Beams 2 and 6(see Fig. 3} are modeled as the ri;id bodies because
they are much more nigid in resisting deflections than other beams.
Following the same concept in the tank dvnamics. oniy one model is
developed to accommeodate two nid beams.

Veloceity Vector

As shown in Fig. 6. point B, is the mass center of the ngid beam
after tie deflections and rotations of the preceding elastic beam.
Point O is the universal Joint at which the moving irame 1s located
A position vector of the mass center of the rigid beam is then written
as

78 = Luske = Liis = dumyds = dim: ks (24)

where L, is the length of the upper shaft, L, is the length of the
preceding elastic beam. and d,m, and dym, are the elastic deflections
at the distal end of the preceding elastic beam. The above vectorial
equation can be rewritten in the matrix form as

0 L,
o= { 0 } —Ta { d‘ﬂ' } (25)
L‘l ‘ﬂl

The local generalised coordinates of the rigid beam are defined as

= AT ) dT (26)
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Figure 3: Rigid beam schematic

where d,, the elastic generalized coordinates of the preceding elastic
beam. are defined as

A7 = {dimy Pums dim: Sumy ) (27)

Differentiating £q. 25 with cespect 1o tume vields the foilowing ve-
locity vector, as

D]
t3, = Tn { dimy } -firs, (28
dims

Inercia Dyadic and Angular Velocity

The inecua dyadic of the nugid beam aoout its mass cencer 3, is
formulated in the foilowing, as

[ =& TALTLe, (29)
whete L{: = [.2.3} is a local inertia matrix about the 'f..j,.i.)

coocainates. The anguiaz velocity of the ugid beam can de wrniten
as

ﬁ. = ﬁ—;.
BimypBim: )
= & a-1, $imy ) {30)
1 ¢l"l.‘ J

where J, is a local angular velocity accounting for the rotations, 9,,.,,
and @, m,, of the preceding elastic beam.

Rigid Beam Equactions of Motion

Following the same procedures stated in the previous sections, one
firse formulaces the kinetic and potential energies in terms of Eqs. 26
- 30, thea derives the mass, damping, and stiffness matrices aad the
geaeralized focce vectors by differentiating the kinetic energy and
potential energy terms with respect to the corresponding quantties,
generzalized cooedinates, velocities, aad time. Finally, one can obtain
the equatioans of motion of the rigid beam in the following form as

mi §~c, q+kog=£ (31

where m;, k;, and £, are the functions of q, only, and ¢, is a function
of q; and §,. These matrices and vectors are sumilar to those denived
in the tank dynamics.
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DYNAMICS OF A BAR-SHAFT ASSEMBLY

The cross bac. the lower shait. and the upper saait(see Fig. 2) con-
sttuct @ bac-shaft assembly. Following the same procedures in La-
grange's approach. it can be shown that the kinetic and potenual
energies of the assembly take the iollowing forms, as

KE, = ; { 1A =M Tmy A = ATmaad )
3
PE,= -my, Gl ~ (;muo - m:b)GLvuTmJ: (32)

where [, is the moment of inertia of the lower shaft about its spin
axis, m,, and m, are the mass matrices of the upper shaft and
the cross bar, respectively, my,, m,, and m., are the correspoading
masses of the lower shaft, the upper shaft, and the cross bar, L,
is the length becween the uaiversal joint and the mass center of the
lower shaft, and T,,33 is an element of the transformartion matrix T,,
which relates the inertial frame to the moving frame. Substituting
above equations into Lagrange's formula gives the foilowing dvnamic
equations of the bar-shaft assemboly, as

{Mae = mw):\ - c':’.\
D‘T'QJ:

1
=6~ 5”‘:: - my)GL,, W

(33)
whete m,e is 2 3 x 3 null matrix except the elemeat at the Jed row
and the Jed column with the value of [;,, £, is a zero force vector
except the Jrd component which refects the unknown 1nput torque
about the vertical axis &3 appiied on the {ower shait. The ume-
Varying mass matrix M,y and damping Matnx ¢, caa be expressed
as
My = M,, — My

1l ofm,\)
3750
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€; = My —

whete M., = Mae = Mo
SYSTEM MOTION EQUATIONS

The equations of motion for the elastic beams ace derived in Parct [
The total degrees of {reedom of the svstem are nineteen 1f each =iastic
beam is modeled bv one finite element. Three of :ne generaiized
:ootdinates resuit {tom the ngid body motion and the cest ace due
to the eiastic deformations. [f each eiastic beam is modeled by two
siements the total number of degrees of {zeedom then increases to
foety three.

Glob

Sy using one eiement for each elastic beam. the glooal generalized
coordinates are selected as

and Local Generalized Coordinates

('\r f dlmy¢lm:d!m: ¢lmy

. d!ﬂ,’!ﬂld’ﬁl: °Smy ;

q =
dimydam; S3mgdam;
i drmydtoms Prmydome }’ (35)

where the first subscripts of each elastic vanable denote the corre-
sponding elastic beams, and the second subscripc m denotes the last
node. Accordingly, the local generalized coordinates are defined in
the follows:

(AT 10 dimyPtmsdimstmy }
{i\r l 0| d!ny’!m:“!ma’lmy}
{AT 1 01 dymy Psmsdime Paemp }
(AT 101 demyPamsdams Pamy}

L 0
Bey e
[}

£
>
]




(AT 0 drmyBrm:drm: Prmy}

q: =
‘u— = {‘\r 0 d‘my¢lm:dlm:¢|n'}
a = (7}
q; = (Ar ! dlny’lm:dlm:°lmy}
Q: = {Ar i dlmy’in:dlnu ‘5!!1'}
qr = {Ar | dimy®im:dims Pimy |

! d!myd:uu q’:nydﬁnu}
qi.o = {‘\T ' dlmy¢lm:d!nu le, }

| drmydrm: @rmydems }

(36)

where q, Qs. Q3. Q4. Q7, and Qg are the generalised coordinates for
the corresponding elastic beams. qg are for the bar-shaft assembly. q;
and qg are for the rigid beams, and q¢ and q;¢ ate for the tanks. The
null vector 0, containing four components, appears in each set of the
generalized coordinates for the elastic beams because the proximal
ends are all clamped in this particular structure.

Compatibility Matrices

By comparing Eq. 36 with Eq. 35. the corresponding compatibility
matrices for each subsystem can be found as

I, 0 0
$ = 0o 0 ¢
_0140
(1. 0 0 0]
3 = 0 0 0 O
.00140‘
fI, 0 0 0]
% = 6 0 0 O
Lo oI, o]
[I, 0 0 0]
&, = 0 0 0 O
L0 0 Iy o]
[1, 0 0
$ = 0 0 0
L0 oI
[I, 0 0
&y = 0 0 O
L0 0 I
60=1-I\0il
_ [1I. 0o o
*"_ono]
_fnn o o o
*"{oono]
[I. 0 0 0 O
& = 0 I, 0 0 O
l o o0 01,0
I, 0 0 0 O
#0 = 6 01, 0 O (37
L0 0 0 0 I

where 0’s are the null matrices, I is a 3 x 3 identity matrnix, Iy is a
4 x 4 identity matrix, and I; and I are defined as

(= BN — ]
L — I — -]

0
0
0
0

QO O —
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Figure 7: Spin profile

100 0
. _loooo
L= 160901 (38)
90 10

Assembly of Equations

The time rates of the compatibility matrices are zero because they
are constant. Following the same procedute developed in Part [. one
can conclude that the global mass. damping, and suffness matnces
and generalized force vectors can be written as

1Q
M = YV #'ms,

1=

19

C = v’rc.i,
=
10

K = Y #7ké,

1=0

10 .
F = :  3EA (39)
=0

The system equations are therefore given as
M3-Cq-Kq=F (40)

[ntegrating the above svstem equations numerically will vield the
solutions of the system dynamic responses which are illustrated in
the following section. A detailed numerical integration method is
developed and is to be published under a separate paper.

SIMULATION RESULTS

The following siructure configutations and material properties are
used in the simualation of dynamic response. The mass density and
the Young’'s modulus are 0.7833 x 10*(km) and 0.21 x 10*3(Pa).
respectively, for all the members. elastic and rigid. The units of the
length(L) and cross-sectional area(.4) are (m) and (m?), respectively.




The specific values foc each of the memoers ace liszed ia the follows:

Ly =Ly =0.183; 4y = 4s=0.12x 10™*
Li=Ls =0.104 47 = 4s =0.019 <0019
l; = Cq =Lr= L. =0.29;

D3 = Dy = Dy = Dy = 0.0057(diameter)
Ly, =0.940; D =0.0254

Ly, =0.127, D =10.0234

Lo = 1.219; 4., =0.00635 x 0.0254

Taak = 0.163 x 9.163 x 0.114

The total mass of the tank, including the solid struciure and liquid,
is 1.96(km).

The input spin velocity of the lower shalt and its cocrespoading an-
gular acceleration profile ate shown in Fig. 7. A sinusoidal functioa
s adopted in the angular velocity prodle 1a whick the sneed of the
lower shait increases gradually {rom zeto to S0RP I after 3 seconds.
[n one case. the upper shait is driven by the lower shait through the
universal joint without any initial tilt while in another case the A,
angle of the upper saait is tilted | degres inicially {rom the spia axis.
The tesults from these two ruas ace compared with ia Tig. 3. The
top figure shows the time domain plots of the rigid dody aagles in
whick two angles are vacying in a range of several degrees iot the
ulted casefthe angie magnitudes for the non-tils case ate too small
:0 show up in the curcent scate). The indueace of the rigid body
motion to the elastic deformatioas cleacly shows up ia thres iguces
‘ollowing the top fAigure. This sec: is expected and accounted for
ia che dynamic modeling. [n the third casetses Tig. 3), one of the
tanks is thrust upward by an imoulse of 1.V after the lower snait
soins 1.3 secoads. The spin profiles acre the t1ame as those in case
1 and case 2 except thac it takes only | second to drive the lower
shait from zero to G0RP M. The upper shait experieaces a relaciveiy
targe nutation befote i1t regains stadility as evidenced dy the large
variations of the coctation angles of A: and A4, and the tank vertical
position relative to the universal joine shown in the top figure. The
sftects of the riqid dody motion is very significanc to tae eiastic de-
fections and rocations in this case. The following :aces figures show
the compansons of the beam tangencial. verticai. and radial dedec-
tions oetween the axisymmetnic points on the tanxs aad the rigid
beams. The most significaat deformacios, overall radial dedection
ac the tank center accounting foc ail the gossioie siasuic dedections
and cotacions peecediag the tanx. is calcuiated aad compared with
tie experirment measutement. A measucred actual srofie of the spin
velocity is used in the computer simulation ana :ne computed cesuit
matches the experntmencal daca very well as uluscraced in Fig. 10.

CONCLUSIONS

{t is cecalled that in the pragosed aopcoacn the iakes=ac character of
mutual induence between the rigid and elastic motions is revealed by
including the agid body degrees of freedom in the svstem general-
1zed coorainates. This appeoach tesuits ia equations ol macioa with
higaly noaiinear coupling terms. especially those associated with the
time race vector of the geaeralited coordinates. The equatioas of
motion for each rigid subsystem ace derived individuaily aad are as-
sembled along with the equatioas of motion foc the elastic beams
0 obtain the system equations. The elastic defocmacions ace com-
pletely considered in the dyaamic response foc the subsystems down
the cBain due 10 the nature of the open loop system. The numerical
simulations clearly show a good indicacion thac the predicted resuits
from numerical integration match the measured experimencal data
very well. A detailed aumerical method is discussed and developed
ia & forthcoming publicatioa.
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APPENDIX

If (ij.k)

is a Cartesian coordinate system and (&, é;. &;3) is an-

other Cartesian coordinate system after rotating an arbitrary angle
© about one of the axes of the system ({.j, k), the following three
totational transformation matrices ate defined, as

1 0 1]
T(8,) = 0 <cot®, -sing,
0- sin®; cos®
. cos®, 0 sinO,
T(®,) = 0 1 0
~3i08; 0 coa8,




costh,  -sintd, 1)
Ty = sndy  cos@, )
[ 0 ot ]
where 9., 9,, O, are the rotating angles about the i j, and k axes
respectively.
Theee transformation mattices encountered in the carrenc paper
are formulated as

[T 0 0
Ta = 0 Ty O

L 0 0 Ty

[0 0 ¢t
Teas = 0 ¢t 0

L tn 0 0

[ 0 Pymy
Tasy = 0 I -0

L —®amy © 1

where T,, and t,, are equal to etther ! or -1, and the twisting angle
© is defined as

1
- E}‘(dau; - dbm:)
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Solving Nonlinear Differential Equations from Flexible System Modeling.
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ABSTRACT

The dynamic equations of motion obtained in the modeling of flex-
tble structural systems wich unknown rigid body gross motion ate
often highiy nonlinear and possess time-varying coefficient matrices.
The inhecenc chacacters of noalinear lacge overall rigid body mocion
and linear small vibration are also involved in the svstem equations.
Neither the implicit not the explicit algorithm seems optimally suited
and efficient by itself in dealing with these inds of equations. This
Paper. therefore, presents a sequenciai impiicit-explicit method in
which it is attempced to achieve the atiributes of both classes of
algorithms. The equation system expressed in matrix form is first
Mmapped to a subsvstem in which the specified generalized coordi.
Nates ate eliminated. The subsvstem is then partitioned into two
sets of coupled equations. One set of equations, describing the elastic
motion. is linear with respect to the elastic generalized coordinates
aad is integrated implicitlv. The other set of 2quations. governing
the rigid body motion, contains the nighly nonlinear coupling terms
and is integrated explicitly wich the back substicutions of the elas.
lic kinematic propersies already caiculated in salving the fiest set of
equations. A Newmark algotithm is employed to integrate the second
otder system of differential equacions directly. A predictot-corzector
scheme also coming from the Newmark algorithm is applied to the
expiicit integration. The procedures deveioped in the curreat paper
are applied to simulating dynamic tesponse of a compiicated flexible
svstem with mucually dependent tigid body uncoastrained spherical
motioa and small elastic deformation.

INTRODUCTION

Teaditionally, the dynamic modeling for the Aexible systems involv.
1ag elastic bodies is focused on these problems in which the gross,
or nominal, rigid bady motion is predefined ot can be derived. The
tesulting system equations, therefore, only include the elastic gener-
alized cootdinates. The mutually coupled terms between the rigid
body aad efastic motions are missed ot neglected by assuming them
small. However, for those problems with unknown tigid body mo-
tioa, the corresponding rigid body degrees of freedom must also be
included in the system generalized coordinates, and two motions ate
therefore influenced and depeadent of each other. Consequently,
difficaities arise in the numerical analysis. The inherent kinematic
facts, reflecting the large overall nonlinear rgid body motion and
small linear vibration, need to be accounted for at each tirne step in
the integration. Basicaily, there are two classes of algorithms for the
time iategracion foc dynamic problems: implicic saad explicit. [m-
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plicit mechods are usually stable numerically, permitting large time
steps. and are effective for linear syscems. Explicit methods. on the
other hand. tend to be effective for nonlinear systems with low nacu-
ral frequencies in assuring the aumerical stability which depeads on
the highest natural frequency of the system. However, neithet class
seems very efficient by itseif in dealing with the systems with mixed
properties arising from the nonlinear and linear motions.

[n analogy to the problems under iavestigation in this work. many
methods have been developed in which it is attempted to simuita-
1eously achieve the attributes of boch ciasses of methods ia a s:a-
gie algoricnm. In the time integration of sttucture-media problems.
Belytschko 21 al (1) have pessented three techniques for enbancing
computational efficiency: explicit-expiicit(E-E) partitions. explicit-
implicit(E-I) partitions. and implicic-implicit({[-1) partitions. The
mesh, resulted from the discretization in space by the fnite e!ement
method. is subdivided iato two subdomains in which sach domain 1s
integrated by a different method. The nodes ace partitioned into two
groups. explicit and implicit: and the elements are partitioned into
theee groups. explicic. implicit, aad interface. accoedingiv. In the E-{
pacutions. :he explicit subdomain is integrated fiest and the zesults
are subsequencly used as boundary conditions for the integration of
the implicic subdomain. In the E-E and L-[ pactitions, euhgr the
interpolation or the extrapolation must be performed. respectively.

Hughes and Liu,2!{3! introduced a mmplified method in which the
mesh is grouped into explicic and implicit elements only. The no-
tions of incerface elements and the node categories ace avoided. The
improved implicit-explicit algorithms are claimed to be aqenable to
stability and accuracy analysis, and. at the same time, be simply and
concisely implemented. The stability analyses are aiso carried out
for the implicit, explicit, and implicit-expiicit aigorithms. [n their
formulation, the Newmark famuly of methods is used to define the
implicit method. A predictoc-cocrector scheme, constructed from the
Newmark family, is employed in defining the explicit method. The
developments described in their papers ace resincted to linear struc-
tural dynamics. [n a lacer paper published by Hughes et ad4), the
implicit-explicit finite element concept is extended to aonlinear traa-
sient analyyis. An effective static problem is formed in ““. iterative
procedures in terms of the unknown displacement, which is in tm
linearized. A predictor-multicotrectoe scheme is proposed to achieve
second order accuracy.

In an effort contributed by Chang and Hamiiton i8] [6], a method
for simulating syscems with two inernally coupled motionf. a ?lg?-
motion aad a fast mocioa, is presented. The concept of impliat-




explicit algorithm is applied to integrating the coupled svsiem in a
sequential fashion. The fast motion equations are integrated first
by the implicit method in which an effective static problem is also
formed in terms of displacement. By assuming the negligible changes
of variables of slow motions for each time step, the time-varying
coefficient matrices are replaced by the corresponding ones at the
previous time step. The slow motion is updated by integrating the
nonlinear equations explicitly, in which a predictor-corrector scheme
is emploved.

The curreat paper proposes an implicit-explicit sequeatial time in-
tegration method. This is designed to simulate systems with mutu-
ally coupled large overall noalinear rigid body motion and small lin-
ear elastic motion arising in the dynamic modeling of flexible struc-
tural systems. The original differential equation system, which is
capable of handling the forward and inverse dynamic analyses, is
mapped into a subsystem by eliminating these specified rigid body
degrees of freedom in a forward like dynamic analysis. The subsys-
tem 13 then partitioned into two equation groups. suggested by the
inherent characteristic of the flexible dynamic motion. One group is
defined to describe the linear elastic motion and the other groupis de-
rived by including the nonlinear rigid body motion and the coupling
terms. The Newmark implicit algorithm is applied to the first set
of equations to integrate the elastic motion. Two distinet schemes,
direct and iterative integrations. are introduced. The direct integra-
tion leads to a direct substitution of the displacement and veiocity
in the equations in terms of the acceieration. and the values of the
coefficients at (¢ — At) are replaced by the predicied values based on
the current time. The iterative integration. on the other nand. leads
to an effective linear problem in terms of the acceleration. which is
in turn lineatized. A predicror-multicorrector scheme is emploved to
enhance a second order accuracy without adverse effect on the sta-
bility condition. The explicit algorithm, incorporated with a single
pass predictor-corrector scheme. is proposed to integrate the second
set of nonlinear rigid body equations of motion. The elastic quan-
tities involved in the coupling terms are back substituted by the
values calculated {rom the first set of elastic equations of motion.
The rigid body variables at the future time step are substituted by
the predicted values accordingly and are corrected using the same
Newmark algorithm. The method developed in this paper possesses
improved implementation properties and is aimed to be applicable to
any dvnamic systems with the mixed rigid body and elastic degrees
of freedom.

DYNAMIC EQUATIONS

A standard form of the structural dynamic equations can be wnitten
in the following matrix form. as

M(p)p - C(p.p)P ~ K(p)p = F(p) (1

where the mass matrix M is usually a symmetric matrix and is a
function of the generalized coordinates p which include the ngid
body and elastic degrees of {reedom. The damping matrix C, re-
sulted from the Cormolis and centrifugal accelerations. is a nonsym-
metnc matrix and is a function of both the generalised coordinates
and their time rates p. The stifiness matrix K is a nonsymmetric
matrix and is a function of the generalized coordinates only. The
generalized force vector F is also a function of generalized coordi-
nates in general and includes the external loadings which initiate
the motion and drive the system. [n an inverse dynamic analysis
the driving forces are specified and the rigid body mouion is to be
determined. The above equations of motion need not to be modified
because the force terms appear at the right hand side of the equa-
tions and the number of generalised coordinates is equal to the num-
ber of the equations. In a forward-like dynamic analysis, however,
the rigid body degrees of freedom, are partially or totally specified
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and the corresponding drnving forces become unknown. The number
of unknown generalized coordinates is less than the number of the
equations though the total number of unknown vanables still equals
the number of the equations. The equation system can not be inte-
grated directly and maust be restructured to be suited for the direct
integration.

System Mapping

EQ. 1 can be rewritten in the following sub-matrix form, as

My; Mpz My3 l§11

Mz; M2z Moy P2 (-

M3; M3z Mjg 531

Ci1 C12 Cis P1 |

C21 Caz Coas P2 -

C31 Cs3z2 Cas paJ
K13 Kj2 K3 P1 Py
21 Kaa Koaj Pz =4 Fa (2)
K31 K32 Kjs P3 F3

where the generalized sub-coordinates pa ate supposed to be those
specified degrees of freedom of the rigid body motion. and the un-
known driving forces are involved in Fa. It can be casily shown that
Eq. 2 could be mapped to the following s¥siem which inciudes two
sets of equations as

[ M31 Myg J { 1 }_

[ M3; Mgj3 P3
}'Cn C13’{ 1 }_fifu Klsi{ 31 }
! C31 Cs3 J P3 ' K31 K33 !l ps3

Fy - Mj3pa - Cy2p2 - Kj2p2 |
F3 - M3apa - C32P2 - K32p2

|

Fa= Y (Myp; — Caib; — Kaypil

1=

and

-

EQ. 3 can be solved first by the proposed integration aigornithms in
the following sections. The results are subsequently used for the
vectors By, P, and pi(i = 1.2.3) in Eq. 4 (o determine the unknown
driving forces involved in the force vector Fa.

Subsystem Partition

In Lagrange’s approach. the formula of kinetic energy can be written
in a standard matrix form as
KE= %p"Mb (5)
where M is a symmetric mass matrix. P is a vector tesulted from
the derivatives of the generalized coordinates with tespect to time.
The damping matrix can be derived and expressed as
C=M-M (6)
where M are the time rates of the mass matrix M. aad M 1s a
noasymmetric matrix which is defined as
. 1 4
= -= = (Mp T
M= -3 57 (M8) (7)
Therefore. the damping matrix C is a nonsymmetric matrix wherein
M is a symmetric matrix. The viscous damping matrix can be added




to M matrix. (n analogy to Eq. J. the system equations can be

pactitioned in the following form as

Myrr Mre ] { ar } N

Mer Mee qe
[ Mer — Mer
Mer ~ Mer Mee = Mee Qe

[0k ]{e)={&)

l\:'lre?mre ]{ qr }_

(8

whete qr are the rigid body generalized cootdinates, ge are the
elastic generalized coordinates, and Kee is a symmetric structural
stiffness matrix. The sub-matrices associated with the rigid body
generalized coordinates in the system stiffness matrix are null be-
cause there is no stifness for the rigid bodv motioa. The above
equations can be separated into two sets of equations as shown be-

low.
Mreqr ~ Mrede = fe (9
Merdr — Meede — Meede - Keeqe = fe (10)
where
fr = Qr- (Mrr = Mee)ar
=(Mre = Mre)de - Krege
fe = Qe —(Mer— Mer)qr - Meeqe (1
Rewriting Eq. 9 in the following form as
dr = M7t (fr - Mrede) (12)
and substituting the above result into Eq. 10 will vieid
MesGe — Meede - Keeqe = fes (13)
where
Mes = Mee = MerM;t Mre (14)
and
fes = fo - MerMyife (13)
The modified system therefore takes the following form as:
Mrerdr — Mrede = fr (16)
Mesqe - Meede — Keege = fas (17)

[n general, the mass submatrices Mer, Mre, and Meg ace nonlinear
functions of qr and qe; matrix Mee is a nonlinear function of qe
and qe; the structural stiffness matrix Kee is a constaat matrix:
the generalized foece vectoes fr and feg include not oniy the external
loading but also the Coriolis and centrifugal forces and ace nonlinear
functions of qr, qe, Qr, aad qe. The above two sets of equations are
coupled through the inertia matrix Mag and the focce terms. Zgq. 16,
which governs the rigid body motioa, is nonlinear with respect to qr
and qe while Eq. 17, which governs the elastic mocioa. is linear with
tespect to qe.

ALGORITHM DEVELOPMENT

In the {ollowing sections an implicit-explicit sequential time integra-
tion algorithm will be developed to solve the system with coupled
noalinear secoad order otdinacy differential equations as expressed
in Eqs. 16 and 17. Eq. 17 is numerically integrated first by an im-
plicit method to find the kinematic values of the elastic motion. The
results are subsequently used in integrating Eq. 16 to update the
rigid body motion.

Implicit phase
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Two impiicit algonthms. dicect and iterative. ace demoastrated in
the following two sections. In the dicect method the values of the
displacement and velocity at the future time step ace repiaced by the
predicted values and Eq. 17 is integrated in teems of the acceleration.
The displacement and velocity are in tura corrected by a Newmark
algorithm, but the acceleration is not corrected. In the iterative
method the values of the displacement and velocity are predicted
first. Eq. 17 is then integrated by forming an effective linear proolem
in terms of the acceleration. All the variables are finally corrected by
the Newmack algorithm aiso. Mulciple iterations caa be periormed
to increase the accuracy.

Direct method: The Newmark algorithms can be written in the

following forms as

diese = deaae = M3 3d,.a, (18)
dewse = demse = Mrdense (19
and
dieae = do - tdo — 52631 - 29)d, (20)
&u.u =d, = A1 - 7)d, (21

where At is the size of time step, the subscripts ¢ and ¢ — At denote
the current and futuze ume. J and + are :wo Newmark parameters.
d. d. and d are the displacement. velocity. and acceieration vectors.

tespectively, and d aad d ate the predicted displacement and ve-
locity vectors. The values of the matrices Mes and Mee and the
vectot feg in Eq. 17 at the future time ¢ = At can be esvaiuated by
the substitutions of the predicted values as shown in Egs. 20 aad
21. Substicuting Eqs. 18 and 19 into £q. 17 resuits in the foilowing

equation as

Mer:a:Qez-at = fer:eae

(22)

whete Meg and fo; are the effective inertia matrix and the efective
force vector. respecuveiv, and they are defined as

Megrear =

-\-’Ies.x-.\: - A‘ﬂ"'iee.:-.u

-At*IKee :-a: (2N
fettoar = fesi-ac— Meeriacde:-a:
~Kee.:xa:3e:-ac (24

Once the acceleration vector is solved from £q. 22. zhe dispiacement
and velocity vectors can be cocrected from Zgs. 18 and 19. This leads
to updating the ngd body motion by expiicitly integrating £q. i6
aad 0 advaace to the next time step.

[teractive method: The accuracy can be improved by using the

iterative method with the trade off o performing iterations.

The

superscript notation (i) is used in the following quantities to denote
the 1teration. The same Newmark algorithms ace empioved in the
development of a predictor-muiticorrector scheme.

Before iterationi: = 0), the predicted values of the displacement
aad velocity are assigned as the initial values for the future time wiule
the corresponding initial acceleration can be obtained by integrating

Eq. IT, i.e.
= 0 (25)
Aheae = Qeara (26)
s = derear (21
&ﬁ,’...\. = M;sl.um(fﬂ-wu
‘&(ee.t-.\c‘ie.u.\l
~Keet+atderear) (28)




Substituting Eqs. 13 and 19 into Eq. 17 vields
o=fi i o li :
M q(e.)lq-a: = tgs).tbm -Mé)e.chlqe.l+A|
~KiL cardessar (29)
where M* is an effective inertia matrix which can be expressed as
M. = M‘e‘;.lQAl + A‘7MS)Q.IOA!
+A03Kee 0a: (30)
Let AGe be an acceleration increment during each iteration, i.e.
Ade= &g?l‘vhl - ag-::)m 31
and Af be an effective force increment during the same interval of
iteration, f.e.
Af= f‘e.l.u-m = Mg)s.uma(el.)um -
Mg,e.:-Au‘ig.)rvAx - K‘e‘)e.:-mqg.):.m (32)
Eq. 29 can then be rewritien as

M’Ade = A . (33

Solving Eq. 33 gives the values of the acceleration increment Age.
The results are then subsequently used to find the corrected values
of the displacement. velocity, and acceleration. t.e.

PY(C ]} (i -

q(el.l-)A| = qg.’..m - AQe {34)
o {i= d w{i=l -

Bl = desear - andiitl, (33)
(=D = Gesear - AU3FETY,, (36)

In summary. Eqs. 25-28 construct a predictor phase, £qs. 30, 32,
and 33 form an effective linear problem, and Egs. 34-36 construct
a corrector phase. If additional iteraticns are to be periormed. i is
replaced by 1~ 1, and calculations tesume witk Eq. 30. Either a fixed
number of iterations may be performed, or iterating may be termi-
nated-when Age or Af satisfy preassigned convergence conditions.
When the iterative phase is completed. the solution at the future
time t = At is defined by the last iterated values. At this point, the
current time t is replaced by the {uture time t ~ At. and calculations
for the next time step may begin.

Explicit Phase

After performing the implicit integration for Eq. 17, the kinemazic
valyes of the elastic displacement, veiocity, and acceleration at the
future time are obtained, and the resuits can be substituted into
Eq. 16. The rigid body displacement and velocity vectors at the
future time can be predicted using the following formulas as:

- R 1 -
qriear = qre = Otqry = itl"(l ~23)qr. (37

ér,gam = qr. + A1 = v)dr.: (38)

It is noticed that Eqs. 37 and 38 are analogous to Eqs. 20 and 21.
By substituting the above peedictac vectors along with the results
from solving Eq. 17, the acceleration vector of the rigid body motion
in Eq. 16 can be solved through the following equations, as

Mrrasatdrisar = frecsar (39)

whete )
fressar = fravar = Mreroatdersac (40)
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Figure 1: Schematic of A Rotating System

Once again. the rigid body displacement and velocity vectors are
ready to be corrected as follows:

Qra-ac = Greeac = 387 3dr.eca (41)

dre-ar = Qreeas = A7dri-a (42)

whete the acceleration vector §r .4, is s0ived in Eq. 39. The proce-
dures in the explicit phase are summarised as predicting the values
through Egs. 37 and 38, solving Eq. 39 for the acceieration vector.
and correcting the values through Eqs. 41 and 42.

At this point. the implicit-explicit sequential time integration algo-
rithms introduced to solve the equation s¥stem, Eqs. 16 and 17, are
derived completely. The solutions of the original dynamic equations.
Eq. 1, are hence obtained.

NUMERICAL RESULTS

A Foriran computer code has been written to simulate the dynamic
response of a spatial structure svstem with the impiementation of
the numerical algorithms developed in this work. In the analyses to
follow, the direct method. rather than the more accurate iterative
method, is emploved in the implicit phase because of the limitations
in computing storage and time. [llustrated in Fig. 1. the dynamc
part of the siruciure under consideration in the model is supported
by a Hooke's tvpe universal joint at point O. The lower shaft con-
nected to the joint. driven by a D.C. motor, spins verticallv about
its own central axis. The structure rotates about the joint with two
unknown rigid body rotating angles Ay and A;. Tanks 1 and 2 are
two rigid bady assemblies which contain the sloshing liquid. Beams
1,3.4, 3,7, and 8 are modeled as elastic bodies while beams 2 and §
and the cross bar are treated as rigid bodies. More detailed modeling
and application ate referred to Xu and Baumgarten [7}(8](9:.

A modal analysis for the strocture model has been accomplished
using the MSC/NASTRAN finite element package. The natural fre-
quencies range from 23 Hi to over 1000 Hz. The critical size of the
time step with 4 being equal to 0.5 is about 0.0002 seconds. if using
the explicit integratiorn method only(see Hughes and Liu {2]). By
considering the accuracy in showing the effect of the highest natural
frequency, the time step sise could be as small as 0.0001 seconds.
Based on the sequential implicit-explicit time integration methed, a
time interval of 0.005 seconds is chosen for integration. The simu-
lations are performed on a networked DECstation 3100 workstation
using the MIPS Fortran 77 compiler running under RISC-based UL-
TRIX 4.1. It takes about 5.21 seconds of CPU time for one teal-




time step. The total aumber o the degrees of (teedom of the modet
is equal to nineteen. in which each elastic beam is modeled by oae
beam elemeat with a thitd order polynomial shape function.

A sinusoidal functioa is used as a spin profile of the lower shaft
in the simulatioa. Stacting {rom zero, the angulac velocity increases
gradually and reacaes 50 RPM over the time base t,. [a Casexl,
an initial twlt of Ay = 1 degree is set to induce off balanced rota-
tion, and ¢, is set to 3 seconds in the spin profile. The aumerical
resuits of two rigid body rotating angles and velocities are compared
with for the rigid and flexible models. As shown in Fig. 2, the val-
ues of the flexible model (dashed line) deviate significantly from the
corresponrding values of the rigid body model(solid line) after a few
seconds. Another rua with an impulse acting on oae of the tanks
but with no initial tilt is performed; here ¢, = | second is used in the
spin profile. The impulse is aoplied vertically after 1.3 seconds wich
the magnitude of | V. This run lasts for 10 seconds in order that
the peak value of off balanced motioa is developed thoroughly. The
soiid lines represent the resuits with Newmack pactameters of v = 0.6
and 3 = 0.303 while the dashed lines ace foc ¥ = 0.5 and J = 0.25.
A paenomenon of “aamerical damping” is reconfirmed in the plots
in Fig. 3. By increasiag v to 0.5, the high {requencies eagendered
by the sciff componeats ace damped oue. D1Y and D3Y are the
circumiecencial deflecsions of beam | and beam J ac the distal ends,
tespectively(noce the difecent scaies in the igures). D12 is the vec-
tical deflection of beam | whiie D37 is the radial defiection of beam
3. The initiai elastic deformatioas for eaca Rextvie beam are set to
zeto to avoid over estimation ia the simulacion.

CONCLUSION

An implcit-expiicis sequential time iategration aigoritarm has deea
deveioped in the presenc paper. The method is incended to soive
second ocder nonlinear ocdinacy differential equatioas derived from
the modeling of flexible structural systems with mucually dependent
tigid body and elastic motions. The originai dynamic equacioas are
transierred to a sudsystem waich is composed of two couoied sets of

motion equations. One set of squations governs the noalineac rigd -

body mocioa waile anocher set of equations is defined to describe tae
linear elascic nbracion. Two aigoatams. imolicit and explicic. ace
2coposed (o ntegrate the sudsystem. in wnica the siastic videation
is soived first during the impiicit paase, aad the rigid dbody motion
is then updacted suosequently during the explicic phase. The New-
mack algonthm (amily is emploved in both the implicie and explicit
integratioas (n waick a muitipie pass predictoc.cocrectoc scheme is
ased in the impiicic method wnile 2 singie pass peedictoc-corrector
scneme is used iz the explicit method. An example is presented
in simulating dynamic cespoase of a spatiai syscem with unknown
rigid body motion. The aumerncal integracions ace carried out, aad
the resuits ace compared with for a cigid body model and a fexible
model. [a the second run case aa impuise is aoplied ca the structure
to excite the dastic beam oscillations 1n waich the higher {requencies
can be damped out by increasing the vaiue of v Newmark patame-
ter. The compatation efficieacy is demonstrated usiag the current
method. The acenracy (which is at most the secoad order herein) can
be (arther impraved by introduciag higher otder predictor—corrector
sChemes.
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Primitive Variable, Strongly Implicit Calculation Procedure for
Viscous Flows at All Speeds

K.-H. Chen* and R. H. Pletchert
- lowa State University, Ames, [owa 50011

A coupled solution procedure is described [or solving the compressible (orm of the time-dependent, two-
dimensional Navier-Stokes equations in body-fitted curvilinear coordinaces. This approach employs the strong
conservation form of the governing equations but uses primitive variables (u, v, p, T) rather than the more
traditional conservative variables (p. pu, pv, ¢) as unknowns. A coupled modified strongly implicit procedure
(CMSIP) is used to efficiently solve the Newton-linearized algebraic equations. It appears that this procedure
is effective for Mach numbers ranging from the incompressible limit (M, —~ 0.01) t0 supersonic. Generally,
smoothing was not needed to control spatial oscillations in pressure for subsonic flows despite the use of central
differences. Duai-time stepping was found to further accelerate convergence for steady tiows. Sampie caicula-
tions, including steady and unsteady low-Mlach-number internal and externai flows and a steady shock-ooundary-
layer interaction flow, illustrate the capability of the present solution algorithm.

Introduction

VER the past two decades. a number of different finice-

difference scnemes have been proposed to solve the Na-
vier-Stokes equations.' Traditionally, they have been classi-
fied as methods for either compressibie or incompressible
flows. Most of the formulations for compressiole flows have
utilized conservatve vanables.>? which include density, in-
stead of pressure. as a pnmarv variable. and the equations
have generally been solved in a coupled (simuitaneous) man-
aer. An exception to this is the recent worx of Karki and
Patankar* and Van Doormaal et al.}

Methods for incomopressidle flows. on the other hand. have
empioved a wider range of dependent vanabies. including
dentved as well as pnmicve, and the 2quatioas have generaily
been solved in a segregated (one vanable at a ume) manner.
The denvead vanable approaches usuallv 21tner invoive more
unknowns than contained (n the onginal Navier-Stokes equa-
tions or become too compiicated to easiv extand o thres-
dimensional flow caiculanons.

Numerical methods developed for compressiole flows are
not, in general. suttable for efficientiy soiving low-Mach-num-
ber or tncomoressibie flows. The reasons usuaily offered for
this are 1) roundoff error due to using density as a primary
vanable.® 2) truncacion errors due to applving approximate
factonzadon in mulaple dimensional prootems.” and 3) a time
step (or CFL numoer) constraint Gue to near infinite acoustic
speed.!

To circumveat some of the above problems, pressure can
be chosen as a primary variaole instead of demsity because
the vanadon of pressure is generally significant for all flow
reqimes. This idea has been used® in soiving low-Mach-num-
ber steady flows by a coupled space marching procedure that
involves using. multiple sweeps to account for the upstream

Preseated as- Paper 90-1521 at the AIAA 21st Fluid Dynamues.
Plasma Dynamics. and Lasers Coaference. Seactle. WA, June 18-
20, 1990: recewved june 2S. 1990: revision received Dec. 18. 1990:
accepeed for publicanon Dec. 27, 1990. Copyngnt @ 1990 by the
authors. Published by the Amencan [nsutute of Aeronauncs and
Astraogautics, [nc.. with permission.

“Research Assistant. Departmeant of Mechanical Eagineenng ana
Comoutatonal Fluid Dynamics Center. 2025 H. M. Black Eag-
neenng Building; currendy at the Universicy of ToleaoNASA Lewns
Research Center. Clevetand. OH. Memoer AJAA.

*Prodessor. Devartment of Mecnamical Engineenng and Comou-
tatnonal Fluid Dynamics Cencer, 2025 H. M. Blacx Enqineenng Butid-
ing. Memoer A[AA.

propagation of pressyre signals. But this space marching pro-
cedure is only effective for flows within a dominant flow di-
recuon. Recently, a siquiar :dea. although different in detaul.
was proposed (0 alleviate the above probiems using a seg-
regated aigorithm.® Feng and Merkle’ aiso employed pressure
as a pnmary vanaole n a scneme that utiiized 3 precondi-
noaung techruque to scale ail eigenvaiues of the couplea sys-
tem of equauons to the same order of magnitude in order to
accelerate convergence far low-VMach-number steady flows.

The approximate factonzation procsdure was avoided in
the present work by using a modified form of Stone’s strongly
implicit procsdure (SIP)' 0 soive the aigedraic equauons in
the plane. The modified form of the SIP algorithm (MSIP)
proposed bv Schneider and Zzdan‘' exhibits faster conver-
gence and iess sensitivity o the relaxation-iype parameter of
the method than the onginal SIP aigontnm. The MSIP ai-
gonchm was extended to handle a2 coupled 4 x 4 block system
i the preseac work.

There are many applicauons 1n which it would be conven-
lent to use the same aigonthm or Mach numbers ranging
from incompressiole to transonic. The search for an algorthm
suttadle for ail speeds goes back ac least to the work of Hariow
and Amsdea.’* More recent work on the subject inciudes
contriputons from Karki and Patankar- and Van Doormaal
et al.’ The main contnbuaon of the present work is to point
out a soludon strategy that could be applied to a numoer of
differsace formulatioas 0 permut efficient computanoa over
awider range of Mach numbers. The speaiic difference stencil
used in the present work may not be opumum for all cases
(particularty at very high Reynolds number), and can clearty
be unproved. The form used, however, does serve ta illustrate
the advantages of the overall approach.

In the preseat paper, a coupied strongiy implicit procedure
for solving the two-dimensional unsteady compressible con-
servaton-law form of the Navier-Stokes equations with pn-
midve variables. i.e.. u and v velocity components. pressure.
and temperature, is descrioed. [ncompressible test cases are
computed from this formulatoan simply by seming the Mach
gumber to a very low vaiue. Since all vanables. wnciuding
pressure, are computed simuitaneously in the aigonthnr. there
is no aeed to use a separate pressure Poissow equanon. and
the condnuiry equatoa 1s automaacally satstied. Some con-
vergence eahancement tecnniques for steady-state solutions
wiil also be described. Several steadv-state results including
two low-Macn-numoer incomoressible flows and one suoer-
sonic low wil be given. One unsteaay suosonic flow 1s IS0
discussed.
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Numerical Approach
Governing Equations
After replacing the density by pressure and temperature
using the equadon of state (p = p/RT), the nondimensional
form of the unsteady, two-dimensional compressible Navier-
Stokes equations can be written in generalized nonorthogonal
coordinates® as

30(q) _ 3El9) , Q) _

ot 3 on (1)
where —
u
g={"
14
T
r pu
- ]
ﬂ
1 T
=
_lpw 1p¥
( %_uU <~ Rpg, = (&7 = &7aa) W
BvU = Reg, = (&7 ~ &)
E.U'
£-7 ol p¥
G777V
=Eus, = (Ev = &, — &7,
RC, . .
| P,R:L [(& - 8T, - (&n, = £&n,)7T.)
[ %uV - Rom, = (MTer = MTr)
%uV = Rpn, - (M7 = M7y
2
F = .1. / T‘_-/
7 cp-2K.2 z)
4 T: T2
-nur,, - (v + nu,, R
RC,
PrR: [(en + &n)T + (03 + ﬂ.)T-.]j
T = 3‘5 2(8uy + nu,) = (Ev¢ + nv,)]
2R
T = 3—5‘ (2067, + myva) = (Gte + )]

ey [(Ey“( ni,) = (Evg + )]

U=¢gu+§yv

Laminar flow was assumed and the viscosity for air was de-
termined by the Sutherland formulal as follows:

V= qu-+ny

e
ale @
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The above nondimensional variables were defined in the fol-
lowing manner (dimensional quantiues are indicated by a tlde):

fet LA _d &
- Ln/“nl Lnl' y __ LM' B uml
= -‘7— = i - _.E-—— T = l
Taw P T o P T ey T
T Le]
po= C.‘&. C, = <
Forer Foret Tt
Re —0 oL
(Uied Trer) YMZ
C = ¢ _ 1
P (i Tor) (¥ = LM

The Revnolds number, Mach number. and Prandtl number
were deiined as

u, L Ure Cpbl
Re = p—"!—".—"" M. = ‘—_’ Pr = —_
Foret VYRTR' X

Here. L, is a flowfield characreristic length: x and y are the
Cartesian coordinates: u and v are the respective Cartesian
vejocity components. p is the density; p 1s the stauc pressure:
w is the dvnamic viscosity: T is the static temperature: R is
the gas constant; C, is the consiant pressure specific heat: &
is the thermal conducuvity; v is the specific heat rato: and
C, and C. are the Sutherland constants. The suoscnpt “ref™
denotes the reference quantities that are the upstream bulk
properties for internal flow cases. or the fresstream properues
for external flow cases.

All sampie caicuiations were performed for drv air at am-
bient temperature and pressure using the following flwd proo-
erty constants.

R = 287 m*(s* K).

¢, = 1.458 x 10~ kg/(m s VK). ¢, = 102K

Discretization of the Equations

The discretization will be described for the form of the
equanons given by Eq. (1). A first-order forward difference
was used for the ume terms. Central differences. in generai.
were used for the spatial denvauve terms in the equations.
For example, the first-order spatial derivative term of the
continuity equation in the £ direction was differenced by

i(?ﬂ)"’ “lj<p—u)nol _ (ﬂ)n.l]
#E\JT/,, qNIT/ us T/,
where. A§ = 1 was assumed. However, the deferred correc-
tion formula proposed by Khosla and Rubin*? was also used

for the convective terms in the momentum and energy equa-
tons for one of the cases presented in this paper (driven cavity

flow). For example.
i(P—u'(—l)nol.lol . (M)nOIJOI _ (M -ol.&ol}
#E\JT /, INJIT /., T/ )

Y p_g) z(P“U> e "
ANIT /.., JT T i

vty

forU>0 (3)
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The upwind-differencing part of the above expression was
evaluated implicitly on the leit-hand side of the equations and
the central-differencing part was evaluated expliatly on the
right-hand side of the equations. When the soluuon con-
verges, the second-order central difference is recovered.

The second-order spatial derivative terms n the ¢ direction
were differenced as

LR a~l =1
( aﬂ ( 6¢) ( ao)
= (a7 - |la—
og\ 3¢/ “ a€, L.ty 98/ a2,
where o is the dependent variabie. a represents a comoinauon
of metnc terms and visCosity in the viscous ierms in the mo-
mentum equations and the coetficient to the conduction terms
in the energy equaton. (i — 1/2) indicates a locanon haifway
betweeniand (¢ = 1). and (¢ — 1:2) denotes a iocanoa haifway
between (¢ — 1) and {. The vaiues of a,.,- and a,_,~ were
determned as
al”b‘:.j = f(av.[ - a.-'—l.l)' a~-l'24 = ‘!(al_[ - ai-l.l)

and the first-order derivacive terms at the half-nodal point
were evaluated as

o\
(-:— = af:ild - ®::.|

OE ity

Vet A=l
k‘ﬂ) = on - o,
5§ 1=y

Similar expressions tor the terms in the n direction are evai-
uated in the same wav. The sscong-order spatial cross deriv-
ative terms are expressed as

vAawl
ab(dd .
E(;)“ = oMol = &I = ST = o)

The above central-difference representauons for the spatal
derivadve terms can aiso be interpreted as evaluadng the flux
quancities (£ and F in the Eq. (1)] at the face of conrrot volume
by simply averaging the dux quantaaes at two nodal points,
2., Eerny = XE,,.\;, + E,-,,)- Al metric terms of the
transformadon at the interior points were evatuated by sec-
ond-order central differences sausiying the geometnc con-
servaton law.**

After differencing, all nonlinear terms were linearized by
a Newton method.! However, it should be noted that an
equivalent formulation can be developed using conventonat
Jacobiaa martrices ' The representaaans for two typical non-
linear terms. such as the time term in the condnuity equaton
and one of the convecave terms in the momentum equations.
are illustrated as

E' aeilel I aelh
& -F

_ ‘& amik oaer e- LAY
(&) = (&) (5
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puU Avlke] pU pu Ak .
&) ~Fee) e

avlk U nelk
pu (u
-— —_— vn-l.k-l -— —— nei kel
( ™) T) ?
Avlk aelk
- P_“U ekl p_"U (6)
ye JT
where % is the iteration index and n indicates the time level.
For time-accurate calculations, the linearization error can
be eifectively removed by iterating at each time level. For
steady-state calculations. iterations were not required at each
trme step since the nme marching scheme is itself a relaxation
procedure. All terms were treated in an implicit way (at level
n + 1, k& + 1) except the viscous dissipation terms (in the
energy equation) that were evajuated at the level (n <= 1, k).
After linearization. the four variaoles. u. v, p, and T, appear
in all of the equations and the resulting equauons takes the
following form:
Aé

igi=tg=1 - A:’.:Qiou-l A:[qi‘l.l'l ;.Ai’.,q.'-l.,

-“i:q.-u - AvsAlql—LIOI (7)
= AlLG. *ALGa - = b,

- Alq, +

and can be expressed in a matrix form as

[Alg = & (3
where
rAy, AiL AL AL 1
(A) = 142, A8 A AL A, AN AL AL A% |
‘ A A AL AL

1s the coetficient matnx with a 4 x 4 block in each element
and

g={(w.v.0.D,...... (u.v.p. T, ..

b= ((b.. b by onl . (b.. .. 6,. br)],
(b.‘. 'a.n b;- bT)Jn.m]r

are the unknown vector and the nght-hand side vector. re-
spectively. Figure 1 shows the computacional moiecuie for A,
4% 44 ... and A .

Boundary Conditions

All boundary conditions were treated implicitly. In general.
excepc for noslip boundaries. the goveming equations were
written on boundary points. This procedure usuaily needs
feid variables at the points outside the domain. The way the
unknowns at these extra points are determined vares with
the boundary and flow types. The vanous boundary condi-
tdoas are discussed as follows:

Inflow Boundary

For subsonic flows, u. v. and T" were specified. Presure
was extrapolated from interior points. For supersonic flows.
ail variables must be specified.

Outflow Boundary

For subsonic flows, pressure was specified at this boundary
and extrapolanon was used to ootain other variables. For
suoersoaic flows, ail vaniables were extrapolated from interior
points.

Far-rieid Boundary

For subsonic flows, fresstream velocity. pressure. and tem-
perature were specified and the v component of velocity was



1244 . K.-H. CHEN AND R. H. PLETCHER

AL Ay A4
j+1

AL A Al

— j
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\ i1
i1 i il

Fig. 1 Computationai molecule for A}, AL, . . . . AL,

obtained by extrapolation from interior points. For supessonic
flows reported in this paper. zil vanables were specied.

Svmmerry Boundary

The 2overning squations were written at this boundary as
descnioed above. All vanables at the points outside the do-
main were odtained by the svmmetry condition for u. p. and
T and the antisymmetry condition for v.

Wall Boundary

Insiead of wnung the governing eguations at this boundary,
noslip conditions were used for velocity comooneats. Zither
isothermal or a neat flux condigon was used for the boundary
condition for 7. For pressure. the {avored treatment is to
write the normal momentum eguation at :nis doundary and
appiy tae nosiip conditions to simplifv it. The resuiung equa-
aon wiil refate the normal denvauve of pressure to veiocuy
genvative terms. 1ne treatment wiil become more compli-
cated for irreguiar or curviiinear boundanes but 1t may en-
hance the coupling between the pressure and veiocicy Selds
2nd avoid spunous pressure solutions. This idea will be dis-
cussed further in the resuits section.

For intemmal steady-flow calculations. the wreatment for the
pressure boundary coandidon at the inflow and outdlow de-
serves special attenton. For 2 compressible formulacon used
in thts study, the pressure level caiculated at the inflow bound-
ary must be adjusted (due to density variagon) as the cai-
culaton proceeds if the speciied Reynoids number is to be

mawmcaned. The same adjusument must de appiied to the

pressure everywhbere, including the outflow pressure. This
pressure adjustment procedure maintains 2 constant and pre-
determined mass flow rate. Without this adjustment, the Rey-
noids qumber of the final converged soluton may drift from
the desired value. This drift was found to be more severe for
low-Reynoids-number flows.

CMSTP Solutioa Procedure

The above algebraic equadons with the specified boundary
condidons, which has a2 4 x 4 block in each eiement, were
soived by the CMSIP procedure. This procedure inroduces
an auxiliary mamx (P] to both sides of the above mamx
squadon {Eq. (8)] as

(A = Plg=t4=t = (Plg='4 = b 9)

where (A =~ P] can be conveniently decomposed into lower-
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and upper-block triangular matrices, each of which has only
five nonzero diagonals. The following procedure was used to
ootain the ugknown vector ¢. Latting §7=!«~! = greta=i
g°~'* and a residual vector R*~'* = 5 — [A]g"~'*, Eq. (9)
oecomes

[A - P}s;.""" = Reelx (10)
Replacing {A + P] by the [L][U] product gives
[L][ms'lOI.lvl = R4 (11)

Defining a provisional vector W by Wr~i4=i = [[/]gr=14=1,
the solution procedure caa be written in two step:
Step L: :

[L]WNOl.kOI = Ra=tx (12)

Step 2:

[U}snou-l = Wrelik=1 (13)

The detailed formulation of this procsdure can be found in
Andersen et al..' Stone’s onginal paper.’? and Schneider and
Zsdan'! for scaiar equations. The coupied formula. which ts
a straigntforward extension from its scalar counterpart. can
be obtained from Chen** or Zedan and Scineider.'® This pro-
cedure treats the unknowns for the entire dornain in a strongiv
implicit manner that enhances the robusiness of the solution
aigonithm. [t should be noted that the present work mav ve
one of the first attemots to solve compressible Navier-Stokes
equauons by the CMSIP scheme. Apolication of the CMSIP
scoeme (0 nvperbolic equations has been studied by Walters
et al.'”. where a stabiiity anaivsis snowed that the SIP scheme
was uncondidonally stable for the thres-gimensional wave
egquation.

Stnoathing

Whea a nonstaggered (cotlocated) grid arrangement is used
with centrai differencss. a spaual osculation 1n pressure due
10 pressure-veiocity decoupling nas frequendy bes=n reported
in the literature!® for low-Macn-numoer and incomoressibis
fiows. Thois cype of hign-irequency oscillation is also found
near a shock wave in supersonic flows. [n most cases. for low-
Maca-number dow calculanoas, it appears that this pressure
oscillation can be remaved by proper treatment of the bound-
ary coanditions and the form of governing equations used.
aithough the generality of this finding is sdll being studied.
If the pressure decoupling occurs, the following explicit
smoothing procedure (or “filter’"'?) is suggested-

o = g 4 u(*“’“‘ - ;‘:_‘:‘:)

4 4
& T (14)

where ¢ is the variable to be smoothed.

Smoothing was generally not needed in the subsonic flow
calculadons. The excepuon was for the cylinder cases where
smootiing was required for the.pressure. For those cases. the
pressure doundary conditions were obtained by serung the
pressure derivadve normal to the body equal to zero rather
tan the more usual procedure of evaiuating the pressure
derivagve fronr the momentum equatons. A vaiue of w be-
tween 0.05 and 0.2 was found to be sadsfactory. For the
supersonic case, all dependent vanables were smoothed using
w = (.005. The widely used imoplicit smoothing method* was
aiso mied and it was found that the present explicit smoothing
was |ess sensidve to the smoothing parameter w.
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Convergence Criterion

The convergence criterion was based on the norm of all
variables in a coupled sense. This criterion is as follows:

s o awd ol o 0.5
z &= d:[:\

- PR

=) nel a:mi

= (13)

where k is the iteration level. n the variable index. im the
number of grid points in the r direction. jm the number of
grid points in the y direction, g, 3 component of the unknown
vector ¢, and q. ., the root-meaa-square value of g,. The
cntenion £ was generally set equai to 1.0 x 10-*.

Convergence Acceleration Technique

As with most central-difference schemes, the time term
serves to enhance the diagonal dominance, especially if the
contnuity equation is solved coupled with the system. When
central differences are applied to the spatial denvauve terms
in the continuity equation, the time term must be retained to
avoud a singulanty in the matrix svstem. Unlike the momen-
tum and energy equatioas that possess nonzero diagonal terms
trom the diffusion and conguction terms. the time term in the
conunuity equation bears all of the burden of providing the
diagonal dominance 1n this equation. Although the present
method solves equations in a couplea mananer. and the re-
sulting coefficient matnx s (n block {orm. the diagonai dom-
inance requirement for 1 singie 2quacion can sull provide a
good guidelines o assure convergence of the coupled equa-
tons. Golub and Van Loan* provide the detinition of the
diagonal dominance for a block system, but it was found
impractical to use in the present work.

Consistent with the above observauons. the present authors
found that if the steadv-state solution is the onlv concern.
dual time can be used to acceierate the convergence rate tor
low-¥Mach-numboer flow calculations when an isothermal con-
ditton is assumed. This dual-ume technique appiies a much
smaller ume step for the conunuity equaaon than for mo-
meatum equacions. For this current formulation. the ume steo
for the conunuity equation was apout tne order ot M3 for
low-VMlach-numoer flows. This dual-time procedurs s equiv-
alent to using different relaxauon factors {or differeat equa-
nons. This technique assures that the rapiudlv oropagating
pressure signal in fow-Macn-aumber flows s r2soived by the
smaller time step used in the continuity eguauon. waich can
be thought as an equation for oressure.

The local ume steg'® was aiso used in the momencum and
energy equanons to further acceierate the convergence for
steady state calculaaons.

Sample Results

Sample results are presented for four subscnic cases and
one supersomc case. The four subsonic cases include two
steady-state internal flows, one steady-state external flow. and
one unsteady external flow. The resuits for these five test
cases are briefly described in the next several sections.

Subsoqic Steady-State Flows

Deveioping Flow irr a Channel

Because of the symmetrical nawre of this probiem. only
the upper haif-channei was calculaced. Four cases with Rey-
nolds numbers of 0.5, 10..75, and 7500 and a Mach aumber
of 0.05 was studied. The Reynolds number is based on the
iniet veloaity, bulk density, and half-width of the channel.
Gnds of 21 x 11,21 x 11,31 x 11, and 41 x i1 pownts and
nondimensional channel lengths of 2. 4. 30. and 3000 were
used for Reynolds numbers of 0.5, 10. 75. and 7500. respec-
uvely. The grnd points were clustered near the iniet and tne
uoper wail. The centertine velocity distnbution aiong the flow-
deveiooment region 1s shown in Fig. 2. The agresment be-
tween che present resuits and those oy TenPas and Pletcher.”
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Morihara and Cheng,*' McDonald et al..= and Bodoia and
Osterle= is good. The convergence history of these four cases
is shown in Fig. 3. It should dbe noted that for steadv-stats
calculauons, iterations were not used at each ume step so that
the number of iterauons shown in the f1gure is equal to the
aumber of tune steps. Heat transter at Re = 300 and Pr =
0.72 was also studied for this case. The results have been
reported in Chen and Pletcher™* and will not be presented
here.

Driven Cavity Flow

The two-dimensional driven cavity problem was studied
very extensively and served as a benchmark test case for the
incompressible Navier-Stokes calculations. Resuits were ob-
tained for Reynolds aumbers of 100. 1000. and 3200. respec-
tively, under an isothermal condizion and a Maca number of
0.05. Figure 4 shows the u velocity component along the ver-
tical centerline. and Fig. 5 snows the v veiocity componeant
aiong the honzontal centeriine for these three Reynolds aum-
bers. The agreement with the results by Ghia et al.” and
Goodrich and Soh** is excellent for Re = 100 and 1000 and
is good for Re = 3200. The effects of gna refinement are aiso
shown. Figure 6 compares the pressure distnoution along the
stationary wall obtained by the present method with those
obtained by Ghia et al.¥ The absaissa in Fig. 6 reoresents
distance along the parameter of the cavity, measured as in-
dicated in the insert.

The streamiine pattern, oressure contours, the velocity vec-
tors for Re = 3200 are shown in Fig. 7. For the gnd points
used (indicated in the figures), the coavergence rate for Re

———— P rYeaNt RPSUS
[ 3 TenPas ana Plercner
> 3 Monnara andg Cheng
13~ a o
r °
L
Sy
9
S bk
=z } 3
R k]
E jg
cE _::;:vf—aws
= a2 = =
LX)
10 0! 19 10’ a

2/h/Re

Fig. 2 Predicted centerline velocity distribution {or developing flow
in a (wo-dimensionai channel inlet.

Numoer ni itreatinns

Fig.3 Coavergence history for deveioping flow in a two-dimensionai
chaanet inbet.
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Fig. 4 Predicted u velocity component along the vertical centerline
of the two-dimensional driven cavity for Re = 100, 1000. and 3200.
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Fig. 5 Predicted v velocity component aiong the horizontal centerline
of the two-dimensional driven cavity for Re = 100. 1000. and 3200.
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Fig. 6 Predicted pressure coefficient C, along the statiomary walls of
the two-dimensional driven cavity for Re = 100 (C, = Re X (5 -
Pre B

= 100 and 1000 compares very favorably with that reported
by Mansour and Hamed® where a coupied scheme in pn-
mutive variables was used for the incomoressible Navier-Stokes
equations. Usually less than 200 iterations were sufficient.
For the Re = 3200 case, slow convergence fora 71 x 71 grids
was encountered. A similar difficulty at this Reynolds number
was also reported by Napolitano and Waiters.* [t is suspected
that the siow convergence at this Revnoids number is due to
the strong transient nature of the flow where several signifi-
cant secondary flows appear and interact with the main ar-
culaung vortex. Goodrich et al.* have found the flow to be
unsteady at Re = 5000.

<)

Fig. 7 Results for the two-dimensional driven cavity flow for Re =
3200: a) streamlines, b) pressure contours, and c) veiocity vectors.
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Fig. 8 Local Nusseit number at the top moving wail of the rwo-
dimensional driven cavity.

Table I Mach number effect for cavity flow
Re = 100, 21 x 21 grid

Mach aumber 0.2 0.1 0.05 10-: 10-* 10-+
No. of iterauons 25 27 33 85 8s 8s

Heat-transfer results were obtained for Reynolds numbers.
of 100 and 1000, respectively, and a Mach number of 0.0S.
Figure 8 shows the local Nusseit number aiong the top moving
wall that is hotter than the statonary wall for Re = 100 and
1000 with Pr = 1.0. The results for Re = 100 were compared
with those obtained by Chen et al.*' and Burggraf.”* The good
agreement is obvious. The results for Re = 1000. however,
do oot agree well with those of Chen et al.’’ near the lent
corner of the top wall. Further research is needed to resolve
this discrepancy.

In order to study the effect of Mach number, the driven
cavity case for Re = 100 with a 21 x 21 gnd was computed
with Mach numbers ranging from 10-*-0.2 and 2n sothermal
conditon. The numoer of iterations (time steps) for all Mach
numbers is listed in Table 1. It shows that for Mach number
lower than 10-? the number of iterations required increases
by a factor of more than two. Even with this increase. this
algorrthm s still very effiqient for this range of low-Mach-




AUGUST 1991

aumber cases. at least compared with the results reported by
Mansour and Hamed.*® The solutions for the above Mach
numbers were almost identical.

For all cases computed for the cavity flow. no pressure
oscillation was detected using central difference even tor the
high Reynolds number case. This unexpected result might be
attniouted to 1) uscge of the compressible form that contai s
the pressure information in the time and the first-order de-
rivative terms and 2) the treatment of the pressure boundary
condition at the wall, which employs the momentum equa-
tons to evaluate the pressure derivative at the wall in an
implicit manner. Both of these procedures enhance the pres-
sure-velocity coupiing, thus tending to remove the pressure
oscillation. The present authors also found the above pro-

edures successful in removing the pressure oscillation in three-
dimensional cavity flow. aithough the three-dimensional cav-
ity resuits will not be presented here.

Unsteady Flow over a Circular Cylinder, Re = 100

Before solving this unsteady vortex shedding flow. the pre-
sent aigorithm has been tasted for a flow over a circular cyi-
inder with Reynolds numboer of 40 (based on diameter), which
Is considered®® as the upper limit for a steady-state flow to
exist for this flow configuration. The solution and etficiency
of the present algonthm for this case has been discussed by
Chen and Pletcher®* and will aot be included here.

This vortex shedding case was used (0 demoastiate the
appiication of the present procedure for unsteady tlows. This
flow has been studied very extensively in the literature. -
An O-type 81 x 101 grid was used with mesa clustering near
the wall and in the wake region. The outer boundary was
located 20 diameters from the cylinder. Since the final periodic
unsteady solution was of primary interast. the initial condition
was effictently generated by the steady-state tachmque that
quickly set up a tflow pattern with a little asymmetrv. The
asymnmernc tngger tecnnique suggested by Lecointe and Piquet?
was not needed. Starting from this initial solution. a constant
nondimensional time step of 0.02 was used to march the so-
lution in time. [terations were used at ¢ach time step o elim-
inate :he lineanizanon error. [nitially about 13 icarations were
needed per tme step but this numoer quickly drooped to two
ior most of the time marching historv. The computation was
stopped arter several penudic cycles were ooserved. Figure 9
shows the final four cvcles of the lift coefficiznt having a
constant ampiitude of abouc J.31. which is 2imost identical
1o the resuit reported by Vispai.* The Strouhai numoer based
on this is about 0.167. This result is located within the ex-
penmentai range 0.16 ~ 0.17 reporred bv Roshko.?”

Figure 10 shows the resulits for streamlines and vorticity
contours. respectiveiy. in the final cvcle. The Mach number
used was 0.2,

v

&

aos

.18

— Ty

] bi ] L] [ J

Nondimeusioaal time

Fig. 9 Tlime history of the lift coefficient for the final four cycies of
the vortex shedding patterns (or R¢ = 100.
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b) Vorticity coatours

Fig. 10 Vortex shedding pattern for the final cycle for Re = 100: 3
streamiines. and b) vorticity contours.

Shock-Boundary-Layer Interaction Problem

This case demonstrates the shock-caoturing caoability of
the present procedure. This case has besn studied ov severai
other researchers.’? and a more detailea descripuon of this
problem can be obtained from their work. The fresstream
Mach number is 2 and Reynolds number. based on the dis-
tance from the leading edge to the pownt ac whicnh the im-
pinging shock intersected the piate, is 0.296 x 10°. The swrength
of the impinging shock is strong enough to cause the laminar
boundary laver to separate. The angle of this impinging shock
is 32.6 deg. An 81 x 81 grid was used.

The grid was uniform in the main flow direcdon and stretched
in the cyoss-stream direction witn the minimum nondimen-
sional grid increment of 1.0 x 10-* next to the wall._The
computatonal domain began five grid points ahead of the
leading edge of the plate. and top boundary extended far
eaough to allow the leading-edge shock to pass through the
outflow boundary: This trearment eliminates the need for
using noareflective boundary conddons at the top boundary.

Freestream conditions were specified at the inler boundary
below- the impinging shock. The postshock conditions were
specified at the inlet boundary above the impinging shock and
along the top boundary. Extrapolation was used ac the out}low
boundary. Noslip conditions, zero normal pressure gradient.
and an adiabagc wall temperacure were used at the wall.

The resuits are shown for wail-pressure and skin-friction
distnoudons in Figs. 11 and 12. respecavely. The pressure
contours are shown in Fig. 13. The aoove resuits compare
reasonably well with the results in the literarure="-*"and
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Fig. 11 Pressurecoefficient, C, (=5/p.), distribution aiong the wall.
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Fig. 12 Skin-friction coefficient. C,(=27_Re). distribution along the
wall.

Fig. 13 Pressure contours for shock-boundary-iayer interaction
problern.

demonstate the shock-capruring capability of the present
scheme. About 1000 iteragons were required to obtain the
preseat converged solutioas.

For this supersoaic case, smood’ung was needed for all var-
iables instead of pressure only as for low-Macn-numoer cases.
Clearly, the shock resoiuuon obained by this method can be
improved, but the present results suggest that the formuianon
of the scheme 1s fundamentally correct and sutficient for cap-
tunng snocks.

Most of the aoove caicuiagons were performed on tne Apoilo
DN 10.000 workstauon. The CPU ume was approximatety
0.0048 wnodesiterauon.
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Conclusions

A coupled solution strategy for the time-dependent com-
pressible form of the Navier-Stokes equations that appears 10
be effecuve for Macn numbers ranging from the incompres-
sible lmut (M. — 0.01) 10 supersonic has been deveioped.
The approach employs the swong conservadon form of the
governing equations but uses primitive (i, v, 5, T) variables
rather than the miore traditonal conserved (p, pu, pv, e,) .
varniables as unknowns. This choice of variadles simplifies the
treatment of viscous terms and ennances effectiveness at low
Macn numbers by allowing the deasity to be removed from
the difference equations. A coupied modified strongiv implici:
procedure was used 1o efficiently soive the Newton-hnearized
aigebraic equadons. Geaeraily. it was found that smootaing
was not needed to coowol spadal osciilations in pressure for
subsonic flows despite the use of central differences. Duaj-
ume stepping was found to furter acceierate convergence
for steady dows. Generally good agreement betweea the pre-
dicaons and results in the literature was observed for severai
test cases including steady and unstzady low-Macn-numboer
internal and external flows and a steaay shock-dboundary-laver
interacaon flow on a flat piate ia a supersonic stream. The
extension of this aigonithm to thres-dimensional {low caicu-
lauons is currentiy being invesugated.
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SIMULATION OF THREE-DIMENSIONAL LIQUID SLOSHING FLOWS USING
A STRONGLY IMPLICIT CALCULATION PROCEDURE

Kuo-Huey Chen*
The University of Toledo/NASA Lewis Research Center, Cleveland, Ohio, 44135
and
Richard H. Pletcher!
Iowa State University, Ames, Iowa 50011

Abstract

A coupled strongly implicit solution strategy for unsteady three-dimensional free surface flows
has been developed based on an artificial compressibility formulation for the incompressible
Navier-Stokes equations. A pseudotime term has been used in the continuity equation to permit
time accurate calculations to be achieved. The scheme appears capable of tracking the free surface
reasonably accurately inside a partially-filled spherical container undergoing a general rotating
motion characteristic of that experienced by a spin-stabilized satellite. Five different free surface
calculations have been presented. Some of the results exhibit an interesting Reynolds number
dependent oscillatory behavior which is believed to be physical although no experimental results

appear to be available for verification to date.

Introduction

The liquid sloshing motion inside a container has long been of interest to engineers and
researchers. Liquid sloshing occurs in many important practical applications such as in oil tankers,
railroad tank cars, missiles, satellites and spacecraft!?>. A particular goal of the present study has
been the simulation of sloshing motion in a spherical container undergoing motion characteristic
of that experienced aboard a spin-stabilized satellite. The major concem about the liquid sloshing
motion within a container is that a substantial periodic force may be generated which may affect
the stability of the moving vehicle. If the sloshing frequency is near the natural frequency of

the vehicle structure, resonance may increase the likelihood of structural damage or instability
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Brook Park, OH 44142,
tProfessor, Department of Mechanical Engineering, Member AIAA.




resulting from the motion.

The sloshing motion of liquid usually involves the presence of a free surface which is the
interface between the liquid and air or other type of gas. The presence of the free surface
adds another difficulty in analysis to an already complicated fluid motion, since the free surface
position usually is not known a priori and has to be determined as part of the solution. The
container may undergo several different kinds of motion ranging from a simple linear acceleration
or rotation to more complicated combinations of these. To conveniently analyze the motion, it
is usually necessary to transform the goveming equations to a non-inertial coordinate system®.
The motion of the liquid is generally three-dimensional, time-dependent and sufficiently complex
that no major simplification to the general equations (incompressible Navier-Stokes equations) is
possible. The accurate simulation of such motion is a formidable problem primarily because of the
computational resources required, and few, if any, three-dimensional time-dependent simulations
have been reported in the literature.

Chakravarthy® investigated laminar incompressible flow within rotating liquid filled shells
under rotation but without the presence of free surfaces. Vaughn, Oberkampf and Wolfe* solved
the three-dimensional incompressible Navier-Stokes equations for a fluid-filled cylindrical canister
that was spinning and nutating. In their work, the equations were transformed to a non-inertial
frame. Again, the container was completely filled with liquid and no free surface was present.
In a review of the literature, very few articles dealing with the liquid sloshing within a spherical
container were found. Perhaps most relevant to the present study is the work of Kassinos
and Prusa®, where a general motion of a spherical container was accounted for by a complete
coordinate transformation using several successive axis rotations and a translation. Some liquid
spin-up problems have been restricted to either the rectangular’ or the cylindrical® configurations.

The present study utilizes a surface fitting approach®®:!? for the free surface and the artificial
compressibility formulation of the equations. In this method a fictitious time derivative of pressure
is added to the continuity equation so that the solution of the set of conservation equations can
be marched in time. Originally, this method was thought to be only applicable to steady flow
problems''. For these, the entire time dependence was fictitious, but the solution approached
the correct steady state solution asymptotically with time. More recently, investigators'? 131

have suggested that the procedure can be made accurate with respect to time by considering the




time like variable appearing in the fictitious time term added to the continuity equation to be a
pseudotime. For each physical time step, the pseudotime is advanced several increments in an
iterative fashion. When the variables no longer change with pseudotime, the fictitious time term is
zero and the equations satisfy the compatibility condition for incompressible flow at the specified
physical time. The coordinate treatment of Kassinos and Prusa’, which is applicable to sloshing
phenomena under a variety of conditions, is adopted in this study. A coupled strongly implicit

procedure (CSIP), initially proposed by Stone'*''¢

, is used to solve the resulting algebraic system
of equations with the specified boundary conditions. A similar solution procedure has been used
previously by the present authors to solve coupled two-dimensional equations and was found to
be efficient and robust for several diverse problems'’. Unsteady results for five liquid sloshing
problems in a rotating half-filled spherical container are presented. In the following sections, the
mathematical formulation, boundary conditions, numerical solution algorithm and the results will

be discussed in detail.

Mathematical Formulation

Governing equations

The incompressible Navier-Stokes equations with an isothermal condition can be written as:

au,-

azi - 0 (1)
au,- 311.,' _ 1 ap az‘u.'
Bt T YBa, = pon T Voa02; (2)

where u; is the velocity component, p is the thermodynamic pressure, g; is the acceleration of
gravity, p is the density (constant), v is the kinematic viscosity and z; represents the spatial
coordinates.

At least two different approaches can be used to formulate this problem for numerical solution.
First, the above equations can be solved in the form indicated above together with the proper
treatment of the boundary conditions in accordance with the rotating-nutating motion of the
container at any instant of time. Ideally, this treatment is workable for a simple motion of the

container, but will become impractical and difficult for describing the motion and interpreting the

results if a general rotating-nutating motion is encountered. Actually, such a general motion can




arise in the interaction between a satellite structure and the liquid sloshing in a partially filled
container. Therefore, it is more appropriate to handle the general motion of the container with
terms within the equations themselves. That is, the motion of the container relative to an inertial
frame can be implicitly accounted for by proper coordinate transformations. This is the second
approach and the one that will be adopted in this study. A schematic diagram of the partially filled
rotating-nutating container is shown in Fig. 1.

Following the approach outlined in Kassinos and Prusa®, several steps are needed to transform
the govemning equations from an inertial frame to a non-inertial frame. They are described in
the following several sections. In addition to those transformations, a generalized nonorthogonal
coordinate transformation is applied to the resulting equations to handle the irregular geometry of

the boundaries.

The rotating-nutating coordinates: z, coordinate system The original three-dimensional

incompressible equations will be labeled with a subscript 0 to indicate that they are in z¢ inertial

frame and rewritten as

Ono; _

ain - 0 (3)
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The container may undergo a motion with nonzero angular velocities or accelerations with
respect to each axis at any instant of time. If a coordinate frame, z,, is attached to the spacecraft
(or other vehicle) undergoing this general motion, then three successive coordinate rotations will
reflect this motion. The procedure to perform the three coordinate rotations is described in detail
in Chen'® and Chen and Pletcher'®. Also, since the container may be attached to another structure
(satellite or spacecraft, for example) by an elastic bar, another translation is required to move the
origin of the r, coordinate to the location of the container by the length of the elastic bar h;. After

combining the three successive rotations and the translation, The relationship between z¢ and z; is
T2 = ajzo; — hi  or  zoi = aij(x2; + hj) (5)

where a;; represents the elements of a 3 x3 transformation matrix, [T}, between zo and z, frames,

resulting from the above successive rotations. The transformation matrix, {T], is expressed as




follows:
C:C3 51501 —C\S; CiC3S; + 515,

[T] = | (2853 851553+ C\C3 C5:53 — 5,Cs
—52 5102 CICZ

where C; = cos¥y; and S; = sin ;.
After applying the chain rule to the derivative terms in Egs. (3) and (4) using Eq. (5), the

governing equations in the z, frame can be expressed as:

Ouy; .

Bz 0 (6)
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where uy; = ajiuoj, gu = igoi, h; = dh;/dt and 6y = day /dt.
To more conveniently describe the solutions and apply the boundary conditions, a new relative

velocity is defined as follows:
ugr = uy + ajiae(Tu + ki) — b

This new relative velocity is always zero at the wall of the container no matter what kind of motion
the container may undergo. The introduction of this new relative velocity can greatly simplify
the treatment of the boundary conditions. Substituting the above definition of the relative velocity
into Egs. (6) and (7) and omitting the primes, we have the following equations written in terms of

relative velocity components:

Ouy;
Oz (8)
0 0
—a% + UZia%Z — 2Bergitizi — Beti(z2i + ki) — Bepai(z2i + ki)
1 ap 621121
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where B, i = ajiaji, Boii = @1, Bepti = Mt Qhi — Ak OnjOkjani, Ey = 2aq0ai;h; — by,

i&[ = ({zhl/dtz and a; = Jzaﬂ/dtz.

Free surface tracking coordinates: z; coordinate system When the container undergoes a

rotating-nutating motion, the free surface shape will change continuously with time. Equations




(8) and (9) can be used to model this motion; however, a third coordinate rotation is preferred
in this study for the following two reasons. First, the kinematic equation which is used in
this study to update the free surface at each time step requires that the free surface height be a
single-valued function of the other two coordinates. Therefore it is important to keep this free
surface a single-valued function by rotating the coordinates as required at each computational time
step. Second, rotating the coordinates in response to changes in the orientation of the free surface
facilitates the establishment of the computational grid by the present algebraic grid generation
scheme.

At any instant of time, the free surface may move to a new position with respect to the z;
coordinates as shown in Fig. 2. It is desirable to have the z,; axis remain normal to the free surface
in an average sense. One way to accomplish this is to let the z, coordinates rotate an angle ¢.
counterclockwise about the z,, axis and a successive counterclockwise rotation angle, ¢!, about
the z4, axis as shown in Fig. 2. A transformation matrix, [S], is required to transform from the z,

to the =3 coordinates. The expression for this transformation matrix, [S], is:

cosp, sing.singd. —sing.cosd,
[S] = 0 cos ¢, sin ¢,
sing, —cos@,sing. cos ¢, cos .

The relationship between the z; and =3 coordinates is:
T = 3,’_,'173_,‘ (10)

where s;; is an element of [S].
The chain rule is then applied to Egs. (8) and (9) using Eq. (10) and the resulting governing

equations in the z3 coordinates are:

Ous;
— =0 11
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Generalized nonorthogonal coordinates: z coordinate system It is desirable to establish

a new coordinate system having the property that the coordinate lines fit the boundaries of the
problem domain of interest, i.e., the liquid itself enclosed by the container wall and the free surface.
Let this new coordinate system be designated by (7, z;). The relationship between the (¢3, z3;) and

(7, z;) coordinate systems can be expressed as:
T =13 z; = zi(z31, 32, T33, £3)

By applying the chain rule to the time and spatial derivative terms, the final governing equations

in generalized nonorthogonal coordinates can be written as:

Ous;
Nigm— =0 (13)
" dz;
Ousn . Ousn Op
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where 7; ; = 0z;/0z3; and 7; j; = 8%2;/8z3;0x3; are the metric terms and 3; = Jz;/0t; is the
grid speed term. The detailed expressions for the metric terms and the grid speed terms are
documented in Chen'®. It shpuld be noted that Egs. (13) and (14) have been nondimensionalized
before performing the generalized nonorthogonal coordinates transformation by the following

nondimensional quantities:

T3 . U3; t . P— Do (15)

. _ _ . _ —_
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where L..; is the radius of the sphere, V;.; is the reference velocity (will be defined later),
Pres=pV2 s+ tref=Lres/Vees and po = atmospheric pressure or saturated vapor pressure above the
free surface. The superscript * has been dropped for convenience in Eqs. (13) and (14) and the
Reynolds number, Re, in Eq. (14) is defined as:

v

Re =




Boundary Conditions

All boundary conditions are treated implicitly. In general, except for noslip boundaries, the
governing equations are written at boundary points. There are only two types of boundaries for this
three-dimensional configuration (see Fig. 3.) They are the solid wall of the container and the free
surface. Four boundary equations are required at each boundary to close the system of equations.

At the wall of the spherical container, a noslip condition is used for three velocities (u3; = 0)

and the normal momentum equation for pressure. The normal momentum equation is formed by

performing the inner product of the local unit normal vector and the three momentum equations,

Eq. (14). The resulting normal momentum equation after simplifying with the noslip condition
can be found in Chen'® and Chen and Pletcher'®.

At the free surface, strictly speaking, five equations are needed at this boundary since one more
equation is required for an additional unknown, i.e., the free surface position, which is part of the
solution. The so-called dynamic equations will be discussed first. These equations, which will be
coupled with the Navier-Stokes equations for the interior points, are derived based on the following
conditions. First, it is assumed that the two tangential shear stresses along the free surface are
zero since no external tangential forces are applied to the surface. Second, the normal shear stress
must be continuous across the free surface boundary, and finally, the continuity equation must be
satisfied at this boundary. For the continuous normal stress condition, a further assumption for air
is made to only retain the pressure contribution to the normal stress equation, since the viscous
stress contribution is small for air compared with the corresponding terms for the liquid.

These four equations in nondimensional form are:

1. Continuity equation

Ous;
771'.:"5';;‘ =0 (16)

2. Zero tangential shear stress (two equations)

ou, JdUu, _

o + n + U1 =0 (17)

ou, 0dU,

B, + S + Uk =0 (18)
3. Continuous normal shear stress

2 U, 1
P~ Reon we 0 (19)
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where n, 7} and 7; denote distances normal to the free surface and along the 1st and 2nd tangential
directions at the free surface respectively. U,, U,, and U,, denote velocity components along the
n, 71 and 7 directions, respectively, at the free surface. The «;, x; and « denote local curvature
terms and We is the Weber number defined as

- Pvrzef L.y

We T

where T’ is the surface tension coefficient. The detailed derivation of the above quantities can be
found in Chen's.

Finally, the additional unknown, i.e., free surface position, is determined from the kinematic
equation which is derived from the Lagrangian point of view?. Basically, it represents the fact
that fluid particles which lie on the free surface must remain on it. Letting F' be the free surface
height which is a function of time , and the z3; and z3; coordinates, the condition that a particle on

the free surface must remain on the free surface can be written as:

D
D—tz{F(l‘sh T3z, t3) — 3} =0

Using the chain rule to express this in terms of the generalized nonorthogonal coordinates gives

the following representation for the free surface kinematic condition:

oF
3 = {u3s + faezae}
) oF
—{21 + (us1 + frezae)m, + (us2 + fzkicsk)ﬂl,z}—jl
] oF
—{z2 + (u31 + fiezae)n21 + (us2 + fzkf'lsk)flz,z}a—z2 (20)

In the above equation, the free surface coincides with the z; = constant surface (see Fig. 3).

The free surface kinematic equation, Eq. (20), was used to explicitly establish a new free
surface position after the flow solution for the entire domain was obtained. Central differences
were used to represent the spatial derivative terms in Eq. (20). Equation (20) is only valid for
the interior points. At the edge of the free surface, i.e., t = 1,imaz, ] = Jmaz aNd k = kppnq., the
second-order Lagrangian extrapolation formula was used in the physical domain in the z; (radial)
direction to obtain the free surface positions for all § directions from the free surface position at

the interior points.




The implementation of the boundary “equations” discussed in this section is not trivial and
can be seen in detail in Chen'®. Also, there were several types of singularities in this coordinate

system (see Fig. 3) where special treatment was necessary'®'!%.

Numerical Solution Algorithm

The artificial compressibility method

The final governing equations, Egs. (13) and (14) together with the boundary equations at the
wall and at the free surface, Egs. (16) to (19), close the system of equations once the free surface
position is updated by the kinematic equation, Eq. (20). In this study, a form of the artificial
compressibility method (first proposed by Chorin'') was used to solve these equations. The four
unknowns, u3; and p, are obtained simultaneously by this procedure.

The first step is to add an artificial time derivative of pressure, 9p/dr*, to the continuity
equation. This artificial pressure term not only provides a linkage between the time variation of
pressure and the divergence of the velocity, but also ensures that the coupled system is nonsingular

if central differences are used in the continuity equation. The final equations become:

Op Ous;

Ousi 21
or* + 0z; 0 (21)
and
au3n . au3n 61’
z; + mjiusi + 05k = (fai + 22ni)usi + 0z
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1 62u3n au3n
— == (MiMei g i) = TIniT3 nifi — gsn + En 22
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where * is a pseudotime. Note that this pseudotime is also added to the free surface continuity
equation, Eq. (16).

It is important to add this artificial time term to the continuity equation after the generalized
coordinate transformation is applied instead of before if the grid is moving in time. Pan and
Chakravarthy’ have pointed out that for a moving grid system the divergence of the velocity would
not be zero if this term was added before the generalized coordinate transformation even in steady

state calculations.
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Discretization of the equations

The discretization will be described for the form of the equations given by Eq. (22). A
first-order forward difference was used for the time terms. Central differences were used for the
spatial derivative terms in the equations. All metric terms of the transformation were evaluated
by second-order central differences satisfying the geometric conservation law?!. The grid speed
terms were evaluated by a first-order forward difference. All nonlinear terms were linearized by a

Newton method??. The representation for the nonlinear convective term is illustrated as:

au3" )n+| (u )n+| ( au3ﬂ )n+l au3"

(usi g~ 0z; +(5. 0z;

Ousn
)n+l( 3i)n+l _ (ﬁSz au:

2

)n+| (23)

where (i3;)"*' and (%‘j}_‘)"“ are the values from the previous iteration level of the current time
level, n + 1. The linearization error was effectively removed by doing subiterations at each time
level. After linearization, the four variables, u3; and p, appear in all the equations and the resulting

system of equations takes the following form:

b - s — w —y P u—y
AlnGiih-1 + Al kGii-te + AL kGi-1jk + A7 Gk

+ A5k Girr e + AL a Gtk + AfjGigers = bijk (24)

which can be rewritten in vector form as;

[Alg=b (25)

where the coefficients A® to A! are 4 x4 matrices and { is the vector of unknowns (dependent
variables), (u3;,p)7, and b is the RHS vector. The difference molecule can be seen in Fig. 4. The
A’s are the coefficient matrices for the unknowns at the positions indicated in the figures. The
resulting algebraic system of equations, Eq. (25), coupled with the boundary equations was solved
by the CSIP method which will be described below.

Coupled strongly implicit procedure

Following Stone'®, a general iterative formula for Eq. (25) may be obtained by adding an

auxiliary matrix | P] to each side of Eq. (25) and adding iteration numbers to ¢ as:

[A+P] il k+l _ [P] 'ﬂ+|k+g (26)
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where n is the time level and k is the iteration level. In the Stone’s SIP method'*''S, [ P] is chosen
that [A + P] can be decomposed as:
[A+ P] = [L][U] (27)

where [L] and (U] are, respectively, lower and upper triangular matrices, each of which has
only four nonzero elements for the three-dimensional 7-point formula in each row. A partial
cancellation parameter was introduced to reduce the influence of this extra [ P] matrix by a Taylor
series expansion (see details in Stone'*'¢). After [L] and [U] are obtained, the following procedure
is used to obtain the unknown vector q.

Letting §™+!%+!1 = gn+lk+l _ antlk and a residual vector R™'* = § — [A]g**!"*, Eq. (26)

can be written as

[L][U]gn+l'k+l — R’n+l,k (28)
Defining a provisional vector W by Wn+lk+! = [[/]§"+1k+1 the solution procedure can be written
in two steps:
Step 1:

[L]Wn+l,k+l — Rn+l,k (29)
Step 2:

T1&n+Lk+l _ 1irntlk+1
4l W (30)

The process represented by Eqgs. (29) and (30) consists of a forward substitution to determine
Wr+tk+ followed by a backward substitution to obtain 5"+!#+!. The coefficient matrix (4], and
so the [L] and [U] matrices, need to be updated at each iteration since they contain unknowns due
to the linearization procedure.

In the artificial compressibility method, the time term in the continuity equation is artificial (in
pseudotime) even for time accurate calculations. It was found that convergence was enhanced by

using a /ocal pseudotime. This local pseudotime was determined based on the following criterion:

(AT (31)

. o
Vg = =
2 i
where A, ;. are the off-diagonal coefficient terms in the continuity equation and the summation
is over the six neighboring points at each ¢, j, k location. The Ar* is a local value and varies in
space. The ¢ is a constant to further control the time step. The choice of o is problem-dependent.

Usually a value of the order of one will give satisfactory results.
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The convergence at each physical time step was based on the maximum value of the divergence

of the velocity field. For the results presented here, this criterion is

- Jus;
V- V1= Insig 2| <5 x 107 (32)
J

The solution procedure for the three-dimensional liquid sloshing flow calculations can be

summarized as follows:

1. Set initial conditions.

2. Update the free surface position at each time step by the kinematic equation based on the

flow solution at the previous time step.
3. Generate the grid under the new free surface position.
4. Construct the coefficient matrix [A] and the right-hand-side vector b.

5. Call the CSIP solver to update solution (u3;, p); go back to step 4 and subiterate (until

convergence) to create a divergence-free field at each time step.

6. Go back to step 2 and move to the next time step.

Results and Discussion

Before solving the more complicated three-dimensional unsteady liquid sloshing problems, the
present algorithm was evéluated by solving the 3-D driven cavity problem for a Reynolds number
of 100. The steady state results were compared against the data in the literature and satisfactory
agreement was observed'8. Several cases for which the steady state solution is known analytically

will be discussed in the following sections.

Axisymmetric spin-up

Three axisymmetric spin-up problems were studied. For this type of spin-up, the tank rotates
with respect to its own axis of symmetry (h;=0). Due to the symmetry of this problem, the solution
should be independent of position in the circumferential direction. This provides one easy check

on the validity of the code. As the spinning is initiated, the liquid and free surface begin to
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move relative to the container and eventually reach a steady-state equilibrium condition in which
solid-body rotation prevails. Computations were made for three different types of spin-up, all for

normal earth gravitational acceleration. The three types of spin-up are described as follows:

1. Initially capped spin-up: Initially, the spherical container half-filled with a liquid has
been spun about a specified rotation axis in a constant rotational speed and has reached a
solid-body rotation. A cap covers the liquid surface to prevent it from rising up. At time
zero, the cap is suddenly removed (or broken) and the liquid surface starts to rise (or drop)
until another equilibrium position is reached. The initial absolute velocity is distributed
according to the condition of the solid-body rotation. This case was computed for two values

of Reynolds number.

2. Gradual spin-up: At time zero, the spherical container half-filled with a liquid gradually
starts to rotate with the rotational speed from zero to a desired constant value about a

specified rotation axis. The initial absolute velocity is zero everywhere.

3. Impulsive spin-up: At time zero, the spherical container half-filled with a liquid impulsively
starts to rotate with a constant rotational speed about a specified rotation axis (the axis of
symmetry of the container, for the axisymmetric spin-up case). The initial absolute velocity

is zero everywhere except at the wall of the container.

For the same rotational speed of 60 rpm, the spin-up phenomena were found to be quite different

for these three spin-up types. Results for these three axisymmetric spin-up cases are given below.

Initially capped spin-up This case was computed for two Reynolds numbers, Re=21.9 and

2254.7, where the Reynolds number is based on the radius of the sphere and a reference velocity
equal to the radius times the rotational speed in radians per second. These two Reynolds numbers
can be achieved through the rotation of a sphere 6.4 cm in radius at 60 rpm using glycerin and
kerosene as the fluids, so the two cases will be referred to as the glycerin and kerosene cases. Other
characteristic dimensionless parameters of the problem include the Froude and Weber numbers.
The Weber number has been defined previously. The Froude number is Fr=V,.;/\/gh, where
Vies is the same as used in the Reynolds number, 4 is the initial maximum free surface depth and

g is the acceleration of gravity. The Froude number was 0.51 for both of these initially capped
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cases. For the Re=21.9 case, We=207.6 and for Re=2254.7, We=284.9. The capped spherical
container was initially spun about its axis of symmetry at a constant rotational speed until solid
body rotation prevailed in the liquid. Since the liquid surface was covered by a cap, there was no

free surface motion at all. The initial absolute velocity distribution is as follows:

where V; is the velocity component in the radial direction, Vj is the velocity component in the
circumferential direction, V/, is the velocity component in the direction normal to the previous two
directions, r is the distance in the radial direcﬁon away from the line of symmetry and w is the
rotational speed (60 rpm) (w.r.t. z3 axis). It should be noted that the governing equations were
expressed in terms of the relative velocity (relative to the final solid-body rotation) and therefore
u3;=0 was actually used as the initial condition for velocities.

At time zero, the cap is suddenly removed (or broken) and the free surface starts to rise, from
its initial position, near the wall of the container and drop near at the center of the free surface in
response to the sudden change of the pressure field. Some selected velocity vector plots illustrating
the general flow pattern at different times are shown in Fig. 5. The results shown are in the z;
= 0 plane. The time shown on the figures has been nondimensionalized using a characteristic
time based on the radius of the container and the rotational speed at the wall. The dotted lines
inserted in Fig. 5 indicate the analytical steady state equilibrium (relative to the z, frame) free
surface position. The analytical steady state equilibrium free surface solutions were derived by
the present authors and are listed in Chen'®. The velocities are largest near the free surface and
significantly smaller near the bottom of the container. As time continues, the fluid eventually
passes (or overshoots) the equilibrium position. By time = = 1.62, the magnitude of the flow has
been reduced and the flow pattern has begun to reverse itseis. This can be seen in Fig. 5b and more
clearly in Fig. Sc. This flow continues to oscillate about the equilibrium position but damps very
quickly until the new equilibrium position is reached at about = 15.96 in Fig. 5d (see also Fig.
6). It should be noted that the magnitude of the velocities in Fig. 5d has become very small as the
final solid-body rotation is approached. The velocities shown here are relative to the solid-body
rotation expected at steady state, as pointed out in a previous section. The steady-state numerical
free surface position matches exceptionally well with the analytical solution.

To permit a more detailed analysis of the flow pattern under this spin-up condition, the time
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histories of the free surface positions at the wall of the container and at the center of the free surface
and the =23 component of the velocity were recorded for three different grids, i.e, 11x11x11,
21x11x21,31x11x31. Figure 6 shows the free surface position at the wall and at the center of
the free surface for glycerin during the spin-up process. The free surface position can be seen to
oscillate about the equilibrium position. This oscillation is damped out quickly by the viscosity of
the fluid. Figure 7 illustrates the same phenomena but shows the time evolution of the component
of the velocity normal (z23 component) to the free surface at the center of the container. The
grid refinement study indicated in Figs. 6 and 7 shows that the unsteady free surface positions
and velocity were relatively insensitive to the grid distribution in the circumferential and height
(vertical) directions. It is well known that for viscous free surface flow simulations, there exists
an extremely thin boundary layer (or singularity) near the liquid-gas-solid contact line. In our
grid refinement study, the effect of this singularity tended to become more evident and eventually
caused the numerical calculations to break down as the grid spacing in the radial direction was
refined.

For this spin-up problem, the number of subiterations at the first time step was about 50 but then
quickly dropped to less than 10 after 20 time steps and finally became 1 as the solution approached
the final steady state. It took about 2 hours CPU time on the Apollo DN 10,000 workstation for
the course grid case. A nondimensional time step of 0.015 was used throughout the calculation.

The initially capped spin-up calculations were repeated for a Reynolds number of 2254.7. This
was achieved by keeping all rotation parameters the same and decreasing the kinematic viscosity
of the fluid by a factor of about 100 to a value corresponding to the viscosity of kerosene. The
final analytical equilibrium free surface position is then expected to be the same as for the glycerin
case. With this less viscous fluid, the flow pattern was found quite similar to the previous case and
will not be repeated here; however several interesting results deserve further discussion.

Figure 8 indicates the variation of the free surface position at the wall and tank center as a
function of nondimensional time during the spin-up process for kerosene. Since the viscosity
of kerosene is a factor of 100 less than that of glycerin, the free surface oscillations appear to
damp out much more slowly than was observed for glycerin. This behavior is believed to be real
although no experimental data had been found to date to clarify this point. The final computed

steady state position of the free surface agrees reasonably well with the analytical solution. Figure
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9 shows the computed velocity component normal to the free surface at the center of the container
as a function of time. Slowly damped oscillatory motion is evident. The spin-up with kerosene
took about four times longer than that with glycerin to reach final steady state solid-body rotation
(Both cases had the same reference time and this was estimated from the plots shown previously).
The kerosene calculations were made with the same grid as used to obtain the glycerin results.
During the course of early computations, it was found that the free surface developed a saw-toothed
profile of small amplitude in the radial direction which appeared to slow convergence at each time
step. The saw-toothed profile might have been due to the use of central differences in the spatial
derivative terms in the kinematic equation at the higher Reynolds number. If the use of central
differences at high Reynolds numbers was the source of the problem, it could have been remedied
by the use of a finer grid which, of course, would have increased the required computational effort
considerably. Instead, a small amount of smoothing was added to remove this undesired profile
and stabilize the calculation. The smoothing was of the following form:
52 Fold

new __ pold
FreY = Fo7 4 ( 32

) (33)

where s is the smoothing parameter, F' is the free surface height function (see free surface
kinematic equation) and z; is the radial direction. A value of s =9 x 10~3 was used for this case.
The second derivative in the expression above was represented, of course, in difference form.
It should be noted that the use of the smoothing of the free surface height function, F, for this
calculation resulted in less than 1% loss of the initial total volume. Although this discrepancy may
be considered insignificant for most purposes, ways of avoiding this loss deserve further study in
the future.

Gradual spin-up; liquid: glycerin As mentioned before, the high frequency free surface

oscillations were possibly due to natural overshoots arising from the sudden removal of the
cap during the spin-up process. To further understand this phenomenon, a third test for this
configuration was conducted for glycerin again in the following way. The container was spun up
with the rotational speed being gradually increased from 0 to 60 rpm by a sine function of time

during the nondimensional time interval from zero to five. This rotational speed was specified as:

w =30(siné + 1) rpm, for0 <r <5

where 6 = gr —
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and

w = 60 rpm, forr>5

Figure 10 indicates the variation of the free surface position at the wall and tank center as a
function of nondimensional time during the gradual spin-up process. The oscillatory phenomena
in Fig. 6 disappeared and instead, a nonoscillatory ramp-up of the free surface at the wall and drop
at the tank center was observed. The final steady state free surface positions agree very well the
analytical solution.

Impulsive spin-up; liquid: glycerin At time zero, the spherical container half-filled with

glycerin impulsively starts to rotate about its axis of symmetry. The initial absolute velocity was
zero everywhere except at the wall of the container at which a rotational speed of 60 rpm was
suddenly applied. Due to the use of the relative velocity in the formulation, a negative distribution
of the solid-body rotation velocity was specified everywhere initially except at the wall where a
zero relative velocity was specified. A 11x11x11 grid was used again for this case. The free
surface positions at the wall of the container and at the center of the free surface are shown in Fig.
11. No free surface overshoots were observed in this case. Being spun up impulsively, the flow
reached the final steady state equilibrium position earlier than for the previous gradual spin-up

case.

Asymmetric spin-up

When the rotation arm, h;, is nonzero, the solutions will no longer be symmetric. A schematic
diagram for this type of spin-up is shown in Fig. 12. This case belongs to the initially capped
spin-up type as explained in the previous section. The same container as before was half filled
again with glycerin. It was initially covered by a cap and rotated in an orbit with a constant
rotational speed under the condition of solid-body rotation. At time zero, the cap was removed to
allow the liquid surface to move under this spinning condition. The rotational speed was 30 rpm
and the rotational arm, h; (z2; component of k;), was 12.8 cm which was twice of the radius of the
container. Based on the above physical quantities, the characteristic nondimensional parameters
are:

Re=219 Fr=051 We=2076
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where the reference velocity, V,.;, was based on the rotational speed of the center of the container,
i.e, Vies = why.

A 41x11x11 grid was used to compute this case with the 41 points being placed in the
circumferential direction. A constant nondimensional time step of 0.01 was used for this
calculation. At the first time step, 170 subiterations were required for convergence, but the
number of subiterations required dropped rapidly and varied between 10 and 15 for most of the
calculation. Compared with the previous axisymmetric cases, this calculation was more difficult in
two respects. First, the free surface was asymmetric and more grid points were required to resolve
the solution in the circumferential direction. The solution would sometimes diverge suddenly if
the resolution of the grid was not fine enough or if the grid distribution after the grid adaptation
procedure contained a locally steep slope. Second, more computational effort was required to
obtain the solution at each time step.

In this calculation, the value of ¢, in the the free surface tracking coordinates was no longer
zero. Therefore, the present test case also served as a check for this transformation. For this case,
the computation was carried out until the final solid-body steady state solutions were obtained.

In Fig. 13 a series of results showing the free surface position at different instants of time are
presented. The centrifugal force is larger at the right hand side (RHS) (far away from the spin
axis) of the tank in Fig. 13 than at the left hand side (LHS) (closer to the spin axis). In response to
this sudden change, the free surface begins to rise at the RHS and to depress at the LHS from its
initial position, becoming curved as can be seen in Figs. 13d-13f and finally assumes a parabolic
equilibrium shape at about r = 7.2.

Some selected velocity vector plots for different times in the z2,=0 plane are shown in Fig. 14
with the analytical equilibrium free surface position'® superimposed. The largest velocity vectors
occurred near the free surface. The computation was carried out until the nondimensional time
equaled 7.2 at which time solid-body rotation prevailed. The final free surface position can be
seen to agree fairly well with the analytical solution.

Again, the numerical steady state free surface positions at the wall of the container were plotted
against the analytical solution. Figure 15 shows the time evolution of the free surface position at
the wall for positions of 0 (LHS) and 180 (RHS) degrees (see also Fig. 12). This plot indicates

the free surface rise at the RHS and drop at the LHS from its initial position (equal to zero for
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half full container). The small discrepancy between the current numerical solution for the free
surface position and the analytical solution is probably due to the relatively coarse grid used in this
calculation. Further studies with a finer grid may help to resolve this discrepancy. This calculation

took about 22 hours of CPU time on the Apollo DN 10,000 workstation.

Conclusions

A coupled strongly implicit solution strategy for unsteady three-dimensional free surface
flows has been developed based on an artificial compressibility formulation for the Navier-Stokes
equations. A pseudotime term has been used in the continuity equation to permit time accurate
calculations to be achieved. The scheme appears capable of tracking the free surface reasonably
accurately although further verification of the procedure is desirable. An algebraic procedure
for adjusting the grid between time steps has proven to be adequate. Five different free surface
calculations have been reported. The initially capped cases exhibited an interesting Reynolds
number dependent oscillatory behavior which is believed to be physical although no experimental

results appear to be available for verification to date.
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APPENDIX I. A Numerical and Experimental Study of

Three-Dimensional Liquid Sloshing in a Rotating Spherical Container.
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Abstract

A numerical and experimental study of three dimensional
liquid sloshing inside a partially-filled spherical container
undergoing an orbital rotating motion is described. Solutions
of the unsteady, three-dimensional Navier-Stokes equations
for the case of a gradual spin-up from rest are compared with
expenmental dara obtained using a rotatng testrig fitted with
two liquid-filled spherical tanks. Data gathered from several
expeniments are reduced in terms of a dimensioniess free
surtace height for comparnison with transient results from the

numernical simuiations. The numerical soiuuons are found to
compare favorably with the experimentai dara.

Iotroduction

The modon of a sloshung liquid inside a moving container
has fong been of interest to engineers and researchers. Lig-
uid sloshing arises in maay important practical applications.
including the design of oil tankers. railroad tank cars, mis-
siles. satellites. and spacecraft'=+4-. The present study is
concerned with sioshing flows inside spherical containers
undergoing motions characteristic of spin-stabilized satei-
lites. Previous research® in this area has shown that satellites
conuaining parually-tiled liqud stores can exhibit an unsta-
ble coning motion shortly after being released in space. This
instability is thought to arise from the sloshing force induced
by the free surrace mouon inside the fuel stores themselves.

One of the distinguishing characteristics of slosning flows
is the presence of one or more free surtaces. A free surfacs.
in the present context. is defined as the interiace between
the liquid and another fluid (usually a gas) which fills the
regions not occupied by the fluid. The fres surface adds an
additional difficuity to the anaiysis of the fluid motion since
its position is usually not known a priori. and thus must be
computed as part of the solution.

The modon of the liquid is govemed by the three-
dimensional, incompressible Navier-Stokes equations. To
conveniently anaiyze the fluid modon. one can empioy a co-
ordinate transformation which takes a moving, non-inertial
coordinate system in physical space to 2 non-moving coor-
dinate system in computational space. The free surface is
then placed at one boundary of the computational domain
(a practice known as “surface fitting™). Both the coordinate
transformagion and the desire to accommodate arbitrary mo-
tons of the container uitimately give rise to a large number
of terms in the governing equations’. As a result. unsteady
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calculations based on this approach require enormous com-
putarional resources in order to obtain accurate solutions in
both time and space.

A numerical model has been developed by the present
authars® for studying complicated three-dimensional liquid
sloshing flows in rotating spherical conwiners. This modet
employs the coordinate transiormation/surtace fiting ap-
proach described above in conjunction with the artficiai
compressibility formulation for incompressibte lows’. The
resulting system of discrete eguarions is solved using a
coupled strongly implicit (CSIP) procedure. Some resuits
obtained with this model have been presented in Ref. 8. Al-
though these results appear qualitanvely comrect, a rigorous
assessment of thetr accuracy has not been made due to the
lack of reliable experimental (or other numerical) data.

To date. only a few three-dimensional. transient free
surface simulations using the incompressible Navier-Stokes
equations have been reported in the open literarure. Partom:2
discussed the numerical simulation of three dimensional fow
in a partally-filled cylinder. His work employed a three-
dimensional extension of the volume ot fluid (VOF) method
of Hirt and Nichols!!. Some resuits for several cases (both
with and without the induence of gravity) were presented:
however, no comparisons with experimental data were made.
Sicilian and Tegart'? descnibed transient fres surface resuits
for free surface motion n a partaily-filied container during
acongolled free fall. Although their predicted forces agreeg
with the trends in the measured data. significant discrepancies
sall existed.

[n an effort to provide data for the present study, use
was made of an existing experimental facility which was -
originally developed to study the kinemarics and dynamics of
spin-stabilized satellites*’. The facility consisted of a mator-
driven rotating shaft on which two liquid-flled spherical
containers were mounted. The insoumentation included
sensors for measuring the wansient free suriace position at
the walls of the containers. [t was recognized that dam
obtained with these sensors could be directly compared to
numesical resuits, thereby providing a means of validating
the numerical model.

In the following sections. the mathematical formulation
of the numerical model are briefly discussed. along with an
overview of the numerical solution algorithm. Additional
details of the formulation and algorithm are provided in
Ref. 8. The experimennl setup and test procedure are then
described. followed by a presentation of some numerical and
experimental resuits.
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Figure 1: Schematic of a partally filled rotaring-nutating
container moving relative to an wnertial frame.

Mathematical Formulation

Governing equations

The wncompressible Navier-Stokes equations for an
isothermal. lamunar flow can be written as

3z (1)
Gui  Gwi _ ldp & )
Gt dz; = podz uaz‘.-éz‘.- g (@

where w; are the velocity components. p is the thermody-
namic pressure. g, is the acceleranon due to gravity, p is the
density. v 1s the kinematic viscosity. and z; are the spatial co-
ordinares. As menaoned previously. several transformations
of the governing eguations are requured in order to accom-
modase both the free surface and a general moton of the
container with respect (0 an inerual cooruinate system (see
Fig. 1). These wansformations are weil documented in Refs.
7 and 8. and therefore will not be repeated here. The final
governing equanons, written ina generalized non-orthogonai
coordmm with respect {0 a non-inerual reference frame.

ap aﬂi,
3 Mgy =0 3)
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7;' + (25 + nj,5u3 + njifinz) 3 :

ap (P 'alug,.
dz; Re(ﬂ"'m"az,-az;

={fue = 2Ani) 83 + Njin

duya
i t; } = N, 0023 + Tnilti = P3n + Ea (4)

where u3; is the relative velocity component in 23 coordinate
system (see Fig. 1), Re is the Reynolds nomber based on the
radius of the sphenical container and the rocanonal speed. z;
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Figure 3: Coordinate system for liquid sloshing problem.

are the generalized coordinates, r is the physical time,
is the oseudotime employed in the artificial compressibility
method. 7, ; and 7;,;; are memic terms. and Z; is the grid

Other quantities appearing in the above equations can
be anributed to the gansformaton of the governing equations
from an inextial to a non-inernal frame. Additional details are
givenin Refs, 7 and 8. It should be noted that the free surface
tracking coordinate transformation described in Ref. 8 has
been modified in this paper to account for tangential free
sumcedefarmanon(wmmappmmmem examined
in the present study). The new transfarmation mamix [S] is
defined as follows:

cos ¢, sing,sing, —sind,cosdl
(s]1= 0 cos ¢, sin ¢,

The notation for this new transformation is shown in Figore
2.
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Boundarv conditions

All boundary conditions are treated implicitdy. Since there
are four UNKNOWNS in the goveming equanons. four boundary
2quanons are required to close the system. The present
2eometry (Fig. 3) contains only two types of boundanies: (1)
the sold wall of the container. and (2) the free swrtace. For
the solid wall boundary condition, the no-skip condition for
the veiocity is invoked. The fourth equation (the boundary
condition for pressure) is derived from the normal component
of the vector momentum equarion at the wall:

M..:ﬁ-b?

Here. M, denotes the normai momentum equaron. 71 is the

locai unit normal vector at the wall. and A represents the
three momentum equations in a vector form.

Al the free surtace. several consmaints are imposed (o
obtain the boundary equanons. First, the two components of
tangennal shear stress along the free surface are assumed to
be zero. This is justified since the external tangential forces
2xerted by the gas overiying the free surface are negligibly
smail. Second. the normai component of the shear stress 1s
assumed to be contunuous across the free surtace. A further
assumpaon for atr 1s made that only the pressure contribution
1s sigmuficant. since the viscous stress contrtbution is smail
for air compared with the corresponding terms for the liquid.
Finally. the continuity equation. Eq. (3), must be satisfied at
the free surface.

Expressions for the above boundary conditions can be
formulated in terms of the general coordinate transformarion
descrnibed previousty. Specific expressions are provided in
Ref. 7.

The free surface position is determined by solving the
kinematic equation'. The kinematic equation essentially
represents the fact that fluid particies which lie on the free
surface must remain on it. Letting ' denote the free surface
height (which is a functon of the coordinates zy; and zj;
and tme), the kinematic condition for the free surface may

be expressed as
(5)

This equanon is used to update the free surface at each time
step once the velocity field has been determined from the
Navier-Stokes solution.

-D%{F(23l.z3z.tz) ~ 233} =0

Numerical solution aigorithm

Equations (3) and (4), together with the boundary con-
ditions, yield a closed system of equanons once the free
surface posiuon has been updated by the kinemartic equa-
tgon. A form of the artificial compressibility method (first
proposed by Chorin®) is used to solve the equarions in a
coupled manner. In discretizing the equanons, first-order
forward differences are used for the ame terms. and second-
order central differences for the spanal denivatives. The
mexric terms have been carefully formuiated in the present
case so that the geomewic conservanon law's is sarisfied
numerically.

All nonlinear terms are linearized using the Newtoun lin-
earization approach!®. This lineanization produces a coupled
set of algebraic equations for the unknowns uy; and p. These
equanons can be written

b - - -
A jadiga=t + AL adig-1h + AT 4 G- 15
+AT WG T AL aG e AT G

+Ai adigae = g«.,‘,u ©)

or. more compacuy,
(Alg=5 (7)
where the coefficients A® to A* are 4 x4 marrices and § is

the vector of unknowns (dependent variables). (us;, p)7. and

b is the RHS vector. The difference moiecule associated
with Eqg. (7) is depicted in Fig. 4. The resulting system of
algebraic equations. Eq. (7)., which inciudes the discreuzed
boundary equations. was solved by the CSIP method’.

The solution procedure for the three-dimensional Liquid
sloshing calculations can now be summanzed as follows:

1. Prescribe the initial conditions.

=. Update the free surface position (using the kinemanc
equanon) based on the tiow solution at the previons
tume step.

3. Generate a new computational grid under the updated
free surface position.

4. Construct the coefficient marmix (4] and the right-hand-
side vector b.

5. Call the CSIP soiver to update the solution (u3;. p); go
back to step 4 and iterate (unal convergence) to create
a divergence-free velocity field.

6. Go back to step 2 and move to the next time step.

Experimental Setup

A schematic of the test rig used in the orbital spin-up
expenments is shown in Fig. 5. Two clear-plastic spherical
congziners of radius r = 7.41 cm were positioned a radial
distance A = 25 cm (with respect to the center of the container)
from the axis of rotation. Both contziners were half-filled
with liquud at room temperature. Glycenn was chosen as the
test fiuid for the cases discussed in this paper.
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Figure 5: [llusgauon of current satetlite test ng congguranon.
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Figure 6: Schematic of spherical container and instrumenta-
uon.

The spherical conwiners were spun in a simple orbitat
modon about the axus of rotaton (the drive shaft) by a
DC motor connected througn a series of gear boxes. The
plane of this orpital mouon was kept normal ta the axis as
showm. The rotagonal speed was controtied manually using
a transformer, and was measured by a tachometer connected
to the motor drive gain.

The insgumentanon for a rypical spherical continer is
ilustrated in Fig. 6. Each spnere was fGtted with three
light-sensitive photopotentiometers 10 sense the inpoard (1),
outbcard (2) and tangenual (3) free surTace posiuons at the
wall of the container. All three photopotenuometers were
oriented normal to the equatonat plane of the sphere at the
indicated circumferental posiaons (90 degrees apart). By
tinting the liquid to block light ransmission. the voltage
output from the photopotenuometers was made proportional
to the fracuon of photopotenoometer surtace covered by the
liquid. The sensidvity of this arrangement was enhanced
by a 6 volt light source located at th2 1op of the spherical
container.

All dara were collected and stored using a microcomputer
outfitted with a high speed data acquisioon board. The data
acquisition hardware was configured to accept eight channeis
of bipolar voitage signals, with maximum sampling rate of
90000 sampies pex second.

The photopotenaometers were dynamucally calibrated to
obtain a voltage versus free surface height relatnonship for
use in daa reduction. This calibration was accomplished by
spinning the ng up 10 a specified rotauonal speed. waiung
for steady state conditions to be established. and recording
the output voltage produced by the photopotenoometess.
The steady state position of the free surtace (which was
determined from the anaiytical solution for a given rotational
speed) was then correlated with the known cucumferential
positions of the photopotenuometers.

Resuits and Discussion

Compurtations were carried out for the two types of spin-
up descnibed bejow. [n both cases, terresmal gravity was
included in the acceleranon geld

1. Initially capped spin-up: A sphenical container half-
filled with a liquid is spun about a specified axis of
rotation at a constant rotational speed until solid-body
rotation of the liquid is achieved. A cap covers the
liquid surface 10 prevent it from nsing up. Attime 2e10, ~
the cap is suddeniy removed (or broken) and the liquid
surtace starts to nse (or drop) until another equlibnum
posidon is reached. The initiai absolute vetocity is
distributed according to the condition of solid-body
rotation.

2. Graduai spin-up: A spherical container haif-filled with
a liquid is gradually spun up from rest to a prescribed
steady state roational speed. The plane of the motion
is normat to the axis of rotarion. This case corresponds
{0 the conditions of the experimental study.

Initiallv-capped spin-up

A schemaric of this this case is shown in Fig. 7. The radius
of the conainer is 7.62 cm. and the distance from the axis of
rotanon (0 the center of the contawner 18 44.7 cm. The fluid
1s prescribed as giyeenn at room temperanre.




Figure 7: Schematic for asymmemic spwn-up: container
half-filled wath glycerin.

The characteristic nondimensional parameters far this sit-
yation are:
Re=1814 Fr=325 We=12002.1
where Re is the Reynolds number, Fr is the Frouds number,
and We is the Weber number. The Froude and Weber
numbers are defined as

FP:V,.,/m

We = vac[chf/r

where V,., is the same as used in the Reynolds number. A is
the inidal maximum free swirace depth. ¢ is the acceleration
due o gravity, and [ is the surface tension coefficient.
Since the liqud surtace was covered by a cap. there was no
initial free suxface moaon. However. it shouid be noted that
while the tunai refanve veloaty was zero evervwhere. the
2bsoiute veiocity was nonzero and dismouted accarding to
the conaidon of solid-body rotaaon.

ASlx1llx]l gnd (51 powntsn the curcumfierennal direc-
tion), and a constant non-dimensional time step 0of 0.01 were
used for this calculagon. The exmemety high centrifugal
force deld associated with this case caused the free surface
to rise (drop) almost to the top (bottom) of the mnk during
the Tansient. [n addition. the motion of the fres surface
appeared to be more abrupt than in the cases reported by Ref.
8. This abrupt free surface motion gave rise to numerical
insabilities which. in twm. resuaited in a suddea divergence
of the solution aiter a long period of time in the caicula-
uon. Upon investiganng the cause of these instabilities, the
following remedies were introdoced into the aigontm.

First. it was found that the free surface oacking angie.
¢». must be handled carefully (¢, is zero in this case, since
there is no tangental acceleration). As described in Ref.
8. the purpose of the tracking angle is to both facilitate
the present grid generation procedure and to keep the free
surface height function. F, singie-valued. The inftuence of
the racking angie (and its time rate of change) is contained
in various terms of the transformed governing equarions.
For this pardcular case, it was observed that the free surface
(and aiso ¢,) tended 10 oscillate after noadimensional time,

r=1.8. whereapon the time rate of ¢, (¢,) began 0 grow
rapidly. The magnimde of the terms infioenced by @, in the

@ r=135 (h)yr=1342

Figure 8: Selected fres surface plots for the initially capped
spin-up of a spherical container half-filled with giycerin,
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Figure 9: Selected velocity vector plots at 2+2=0 plane for
the initially capped spin-up of a spherical container half
filled with glycerin (The dotted line indicates the steady state
analytical free surtace position)
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Figure 10: The time history of the nondimensional free
surface height for the initially capped spin-up of a spherical
container half filled with glycerin.

goveming equations finally became dominant and resuited
In the soluaon diverging. To reduce the seasitivity of the
solution to this effect. the calculation of o, ¥as modified by
averaging angles at two time levels. This trearment smoothed

out the temporal variations in both ¢, and &.. which. in tumn.
heiped eliminate the potential for unstable behavior.

Another phenomenon observed in the present case was the
appearance of a local saw-toothed profile in the free surface
atanon-dimensional time of r=2.6. This prodle propagated
to neighboring points. which eventually resuited in a very
unfavorable grid distribution. and uitimatzsly to solution
divergence. The cure for this problem was to empioy first-
order upwind approximations to the spatial derivative terms
in the free surtace kinemaric equation rather than cenoal
differences.

The final calculations for this case were carried out on an
Apollo DN10000 workstauon. and required about 58 hours
of CPU time to reach steady state. The computed solution
is presented in Figs. 8-11. A senies of resuits showing the
free surface position at different instants of time are shown
in Fig. 8. Final steady state conditions are acnieved at about
=34, which corresponds t0 approximately one revoluton
(orbir) of the container. The velocity vectors are presented
in a similar fashion in Fig. 9.

The free surface position at the wall is shown in Fig. 10.
The analytical free surface position for the steady state. solid-
body rotation condition was obtained from Ref. 7. It can
be seen that some discrepancy exists between the computed
steady state free surface position and the analytical solution.
1t is believed that this discrepancy is either doe to the use of
first-order upwind differencing in the kinemaric equation or
to the linear interpolation procedure used to transfer the free
surface points from the old grid to the new grid. Ways of
eliminating these problems are currently being investigated.

The number of subiterations required at each time step is
plotted in Fig. 11. The sudden increase in subiterations at
nondimensional tires between 3 and 5 was found t0 be the
resuit of the free surface angle oscillation described above.
For the majority of the computation. however, less than 10
subiterations were needed.

Gradual spin-up

A series of experiments were carried out with the test rig
to examine a gradual spin-up from rest. The variation of
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Figure 11: The time history of the number of subiterations at
each ume step for the initially capped spin-up of a sphernical
container half filled with glycerin.

the rotational speed was controlled manuaily with the aim
of producing a mansient of about one to two seconds. The
recorded rotational speeds (obtained from the tachometer)
were then used as input to the computer program.

Due to the symmetry of the configuration. photopoten-
tiometer data were obtained for one sphere only. During the
course of calibration. it was found that the signal from the
tangenual photopotentiometer (#3) was too small to provide
a reliable indication of the free surface level. This was due
pnmarny to the small free surtace detlection at that position
for the tests conducted. Also. the length of the photopoten-
tiometers (as well as other effects) limited the range of free
surtace deflection for which reliable calibrations of the other
photopotentiometers could be obtained. Ways of extend-
ing the sensitivity and range of the photopotentiometers are
currendy being studied.

Two sets of data (three runs per set) were obtained for
nominal steady state speeds of 30 rpm and 60 rpm. One
run trom each set was then selected for simulation with
the computer program. Appropriate initial and boundary
conditions were prescribed for each case. and the rotational
speed as a function of time was specified using the tachometer
data from the experiment. It should be noted that the
tachometer data were smoothed prior to use in the program
in order to filter out the naise in the signal. The resuiting
sr;o%med and unsmoothed (raw) data are shown in Figs.
12-13.

The numerical solutions were performed using a
41x11x11 grid (41 grid points in the circumferential di-
rection) for 3000 non-dimensional time steps (Ar = 0.03).
Both solutions were initiated at a physical time of 1 second
(the time at which the sphere begins to move in the exper-
imenual time frame). The total elapsed physical time was
about 4 seconds. The calculations were carried out on a
DECstation 5000/200. and consumed about 23 hours of CPU
time in both cases.

For comparison with the experiment, a non-dimensional
free surface height. I/r. was defined, where ! is the height
of the free surface above the equatorial plane (see Fig. 6).
Values of [/r at the inboard and outboard positions were
computed and stored at prescribed time intervais for later
analysis. For the cases discussed below, the maximum
expenmental uncertainty in the values of {/r was estimated
to be between 2x10~2 and 3x 102,
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Figure 12: The transient rotational speed curve for the
gradual spin-up of a spherical container haif filled with
glycerin : 30 rpm case.
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Figure 13: The transient rotational speed curve for the
gradual spin-up of a spherical container half filled with
glycerin : 60 rpm case,
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Figure 14: The time history of the nondimensional inboard
free swrace height for the gradual spin-up of a spherical
conuainer half filled with glycenin : 30 rpm case.
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Figure 15: The time history of the nondimensional outboard
free surface height for the gradual spin-up of a spherical
container half filled with glycerin : 30 rpm case.
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Figure 16: The time history of the nondimensional outboard
free surface height for the gradual spin-up of a spherical
container half filled with glycerin : 60 rpm case.

The solution for 30 rpm case is presented in Figs. 14-15. In
Figs. 14-15, the computed inboard and outboard free surface
heights are compared with their experimental counterpans.
It can be seen that the computed resuits are in reasonable
agreement with the experimental data. In particular, the
delay between the initiation of the rotation and the response
of the free surface appears to be well predicted. as is the
general rate of change of the free surface position with time.
There does. however, appear to be some smoothing of the
numerical response relative to the expenimental daza. The
differences between the numerical and expenmental results
are aributed to both the coarse grid used in the numerical
sunulation and the uncertainties inherent in the experimental
data.

The solution for the 60 rpm case is presented in Figs.
16-18. For this case. the deflection of the free surface
the inboard position exceeded the calibration range. and thus
could not be used. A comparison of the computed outboard
free surface height response with the expenmental data is
shown in Fig. 16. Again, the agreement of the computations
with experiment is generaily good. although, as in the 30
rpm case. the response appears somewhat smooth.

It is observed in both cases that the free surface tran-
sient roughly corresponds to the transient in the rotational

This behavior is the resuit of the high viscasity of
the test fluid (glycerin), the geometry and rotational speeds
empioyed in the tests, and the length of the rotational speed
wransient. For less viscous fluids or faster ransients. the mo-
tion will become more compiex, with notceable secondary
oscillations persisting for some time after the steady state
rotational speed has been achieved.

Seiected plots of the free surface and velocity fields are
presented in Figs. 17-18. As the container begins 0 accel-
erate, the fluid initially sioshes both tangentiaily (rearward)
and radially (outward), thus creating a highly distorted free
surface topology. Eventnally, as the steady state conditions
are approached, the free surface flattens out into its steady
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Figure 17: Selected free surface plots for the gradual spin-up
of a spherical container half-filled with glycerin : 60 rpm
case.
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Figure 18: Selected velocity vector piots at z22=0 plane for
the gradual spin-up of a spherical container half filled with
glycerin : 60 rpm case (The dotted line indicates the initial




state configuraton.

Conciusions

Numenical solutions for two classes of three-dimensionai
sloshing fows inside parually-filled spherical containers
were presented. The calculated transient free surface po-
sitions for the gradual spin-up case were compared with
corresponding experimental data. and found to be in reason-
able agreement. Discrepancies between the numerical and
experimental results were attributed to both numencal errors
and experimental uncertainty. Despite these discrepancies.
however, the essential behavior of the fluid appeared to be
well predicted by the present numerical model.

Work is in progress to improve both the numerical and
experimental resuits presented in this paper. Specificaily,
the numerical solution procedure is being developed further
50 that accurate solutions can be obtained on finer grids. Par-
ticuiar artention is being focused on the vectorizanon of the
CSIP aigorithm. Improvements in the present experimental
facility will include extending the accuracy and range of the
photopotentiometers. and installing additional instrumenta-
tion {such as pressure gansducers) at seiected positions on
the spherical container.
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