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1. INTRODUCTION

This final technical report presents a comprehensive summary of the research

accomplishments supported by Grant #AFOSR-89-0403 over the period July 1, 1989
to November 30, 199" *."•

t e0, The report reviews the objectives of the research in Section

1.1. The status of the research effort is reported in Section 1.2. Section 1.3 of Chapter

1 presents a comprehensive list of written publications resulting from this research

effort. Following this, Section 1.4 presents a recapitulation of the advanced degrees

awarded, a list of thesis titles, and a history of the professional personnel associated

with this grant. Seminars, presented papers, and advisory meetings with Air Force

and other DOD laboratories are reviewed in Section 1.5.

Chapter 2 presents some recent progress in the computational fluid dynamics

research associated with the study. Some additional work dealing with the modeling

of liquid-structure interaction is also described.

Appendix A describes the computer simulation of the test rig using a pendulum

analogy to model the sloshing liquid. Also included is a comparison of the results

with those obtained by another rigid body dynamic modeling package and from

experimental instrumentation of the test rig.

Appendix B discusses the study of the test rig stability which depends on such

physical parameters as the masses, inertias and linear dimensions. The work is based



upon experimental results and computer simulations completed using the software

package SATELL developed at Iowa State University.

Appendices C, D, and E describe the finite element modeling of the test rig to

account for the elastic deformation of the spinning structure in addition to the rigid

body motion. A Lagrangian approach was used to develop the equations of motion

which include nonlinear relationships for the unknown rigid body motions and linear

terms for the relatively small elastic deformations of the members.

Appendix F outlines a sequential implicit-explicit numerical technique developed

to solve the system of nonlinear differential equations which describe the rigid body

and elastic motions of the structure. The technique employs a Newmark algorithm

which is often used in conjunction with finite element methods.

Appendix G describes the basic concepts of the primitive variable coupled strongly

implicit solution procedure that was eventually employed in a revised form in the

three-dimensional surface fitting sloshing code, SLOSH3D. The version described in

Appendix G is applicable to all flow regimes. For use in the simulation of sloshing

flows, the scheme of Appendix G was eventually extended to three dimensions and

specialized to incompressible flow.

Appendix H contains the first numerical solutions obtained for three-dimensional

liquid sloshing using the surface fitting scheme developed under the present grant.

The paper also describes the mathematical modeling required to correctly account

for the general rotating-nutating motion of the container. Results for five different

free surface calculations are presented.

Appendix I presents both experimental and computational results for the slosh-

ing inside a partially filled spherical container undergoing an orbital rotating motion.
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Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a

gradual spin-up from rest are compared with experimental data obtained using a ro-

tating test rig fitted with two partially filled spherical tanks. The numerical solutions

were found to compare favorably with the experimental data.

1.1 Research Objectives

This project has involved the study of the dynamics of spin-stabilized satellites

carrying sloshing liquid stores. It represents a continuation of work completed during

an initial three year funding period from the Air Force Office of Scientific Research.

During the previous three year period, a test rig capable of spinning an assembly

with two liquid-filled spherical tanks was designed, built and instrumented. Initial

experimental runs were completed for a limited number of physical parameter values.

In a parallel effort a computer simulation model was developed which treated the

sloshing liquid as a two degree-of-freedom pendulum. Numerical results showed good

agreement with the empirical data. However, in an attempt to produce an even better

mathematical model, an effort was initiated to replace the pendulum analogy by a

more exact characterization based upon computational fluid dynamics (CFD). The

research conducted during the current three year period has continued the spacecraft

dynamic studies started during the initial phase. The objectives of this continuation

grant have included:

* To define regions of stability for the existing test rig and to evaluate the effect

on stability of such design parameters as tank fill ratios, liquid viscosity, and

moments and products of inertia.
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"* To modify and expand the mathematical model of the satellite simulator to

include a finite element analysis of the precessing and deforming structure.

"* To identify the fluid reaction on its container (tank) by the dynamic modeling

of the sloshing free surface liquid. To fully develop the computational fluid

dynamic model of this free surface liquid with its time-varying reaction on the

spherical tank.

Development of such a model was undertaken to provide a state-of-the-art repre-

sentation of the test rig to accurately predict the motion of the system and its various

elements and to provide insight into the interactive nature of the structural and liq-

uid components. Such a computational model should provide a valuable tool for the

study of parameters and physical phenomena governing the stability and motion of

complex space systems.

1.2 Status of Research

Work under the previous AFOSR grant has provided a solid foundation for the

current effort. During the previous phase of the research, a test rig was built and

instrumented, and a software package (SATELL) was developed to the simulate the

rigid body motion of the test assembly. A pendulum analogy was used to model the

sloshing liquid in that early program. Several numerical simulations were carried out

and results were compared with those from another rigid body dynamics package

called CAMS. Simulation output was also compared with experimental data for a

few select cases (see Appendix A).

Experimental work and numerical simulations using SATELL have continued
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during the current research effort. Attention has been focused on stability analysis

of the test rig's dynamic motion. Various cases have been studied to determine

the influence of physical parameters such as masses, inertias and linear dimensions.

Results have verified the conclusion that stable motion for such a system with energy

dissipation due to flexible members and/or a sloshing viscous liquid requires spin

about the axis of maximum principal moment of inertia. However, certain instances

were discovered when that requirement was not sufficient to guarantee stable motion.

This was found to be true for both experimental and numerical procedures (see

Appendix B).

While the rigid body model provided results that were in general agreement

with the experimental data, a more exact model to account for the elastic and rigid

body motions was needed to better predict the motion of the assembly. A finite

element approach was utilized along with a Lagrangian formulation to develop the

equations of motion. Both the rigid body degrees of freedom and the elastic degrees

of freedom were considered as unknown generalized coordinates of the entire system

in order to accurately reflect the nature of mutually coupled rigid body and elastic

motions. Nonlinear coupling terms between the rigid body and elastic motions were

fully derived and explicitly expressed in matrix form (see Appendices C, D and E).

The equations developed for the overall rigid plus elastic motion described above

contain rigid body motion coordinates that appear in a highly nonlinear fashion along

with small elastic motion coordinates that can be handled adequately by linearized

relationships. Furthermore, the overall system of equations involves time-varying

coefficient matrices which greatly complicate the solution process. A sequential,

implicit-explicit integration method is utilized to handle these difficulties. In this

5



technique, the equation system is first mapped to a subsystem in which the specified

generalized coordinates are eliminated. The subsystem is then partitioned into two

sets of coupled equations. The set describing elastic motion, which is linear with

respect to the elastic generalized coordinates is integrated implicitly. The set gov-

erning the rigid body motion, which contains the highly nonlinear coupling terms, is

integrated explicitly with back substitution of the elastic kinematic properties deter-

mined from the first set of equations. A Newmark algorithm is used to integrate the

second order systems of equations directly (see Appendix F).

Two numerical strategies for computing liquid sloshing flows have been pursued

under this grant. Both provide a numerical solution to the full three-dimensional

unsteady incompressible Navier-Stokes equations which govern the liquid motion.

Both schemes utilize primitive variables and an artificial compressibility approach.

The schemes differ primarily in the way in which the free surface and the grid are

treated.

The most widely tested and "advanced" scheme utilizes "surface fitting" whereby

the free surface becomes one of the boundaries of the computational domain. In this

approach the grid points are moved after each time step. The computer code based

on this approach, SLOSH3D, utilizes a coupled strongly implicit procedure (SIP) to

solve the resulting algebraic equations. The basic concept of the primitive variable

coupled SIP scheme is discussed in a paper by Chen and Pletcher (see Appendix G).

Results from the SLOSH3D code are described in Appendix H and Appendix I.

The second scheme utilizes "surface capturing." The main motivation for pur-

suing this strategy is that surface capturing does not require a moving, surface con-

forming grid. Such surface conforming grids become difficult to generate as the free
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surface topologies become more complex. In addition, the establishment of a new

grid at each time step does require computational resources. The surface capturing

permits the calculation of a more general class of flow than with surface fitting. The

surface fitting approach allows computation of only the liquid in a container whereas

with surface capturing, the flow in both phases, liquid and gas (or vapor) can be re-

solved. In some applications, information on both phases is desired. This formulation

and the results obtained to date are described in Section 2.2.

Calculations of fluid-structure interactions have been successfully carried out.

Two codes developed under this grant, STRUCTURE, which calculates the flexible

system dynamics, and SLOSH3D, which computes the sloshing motion of the fluid

contained in the tank, have been joined into a single unit that enables the transfer

of information between the two component modules at each time step of the simula-

tion. Such interactive calculations permit much more realistic predictions of system

behavior and are likely to become widely used in design procedures in the future.

More details of the formulation and the preliminary results are reported in Section

2.3.

1.3 Publications

Listed below are technical reports previously submitted to the Air Force Office of

Scientific Research:

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1990). "Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites," Technical Report
No. ISU-ERI-Ames 90410, Iowa State University, Ames, IA.

Baumgarten, J.R., Flugrad, D.R., and Pletcher, R.H. (1991). "Investi-
gation of Liquid Sloshing in Spin-Stabilized Satellites," Technical Report
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No. ISU-ERI-Ames 92400, Iowa State University, Ames, IA.

Listed below are technical publications resulting from this work during the current

grant:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). "A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container," AIAA-92-0829, presented at the 30th Aerospace
Sciences Meeting, Reno, NV.

Chen, K.-H. and Pletcher, R.H. (1991). "A Primitive Variable, Strongly
Implicit Calculation Procedure for Viscous Flows at all Speeds," AIAA
Journal, Vol. 29, No. 8: 1241-1249.

Chen, K.-H. and Pletcher, R.H. (1991). "A Primitive Variable, Strongly
Implicit Calculation Procedure," Technical Report Grant No. AFOSR-
89-0403, Report No. ISU-ERI-Ames 91401.

Flugrad, D.R. and Obermaier, L.A. (1992). "Computer Simulation of a
Test-Rig to Model Liquid Sloshing in Spin-Stabilized Satellites," ASME
Journal of Dynamic Systems, Measurements, and Control, Vol. 114, No.
4: 689-698.

Kassinos, A.C. and Prusa, J.M. (1990). "A Numerical Model for 3D Vis-
cous Sloshing in Moving Containers," Proceedings of the ASME Winter
Annual Meeting, Symposium on Recent Advances and Applications in
CFD: pp. 75-86.

Listed below are the papers which have been accepted for publication:

Chen, K.-H. and Pletcher, R.H. (in press). "Simulation of Three-Dimensional
Liquid Sloshing Flows Using a Strongly Implicit Calculation Procedure,"
AIAA Journal.

Hill, D.E. and Baumgarten, J.R. (in press). "Control of Spin-Stabilized
Spacecraft with Sloshing Fluid Stores," ASME Journal of Dynamic Sys-
tems, Measurements, and Control.
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Xu, J., and Baumgarten, J.R. (1991). "A Finite Element/Lagrangian For-
mulation of Dynamic Motion Prediction for a Flexible Satellite Simulator
with Both Rigid and Elastic Bodies," Proceedings of the 2nd National Ap-
plied Mechanisms and Robotics Conference, Cincinnati, OH, November 3
- 6, 91AMR-VIIB-5: 1 - 8.

Xu, J., and Baumgarten, J.R. (1992). "Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part I: General
Theory," ASME Flexible Mechanisms, Dynamics, and Analysis, DE-Vol.
47: 411 - 419.

Xu, J., and Baumgarten, J.R. (1992). "Modeling of Flexible Multibody
Articulated Structures with Mutually Coupled Motions. Part II: Applica-
tion and Results," ASME Flexible Mechanisms, Dynamics, and Analysis,
DE-Vol. 47: 421 - 429.

Xu, J., and Baumgarten, J.R. (1992). "A Sequential Implicit-Explicit In-
tegration Method in Solving Nonlinear Differential Equations from Flexi-
ble System Modeling," ASME Flexible Mechanisms, Dynamics, and Anal-
ysis, DE-Vol. 47: 561 - 566.

Listed below are the papers which are currently under review for publication in the

technical literature:

Chen, K.-H., Kelecy, F.J., and Pletcher, R.H. (1992). "A Numerical and
Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating
Spherical Container," under review by AIAA Journal Thermophysics and
Heat Transfer.

Schick, T.E. and Flugrad, D.R. (1992). "Motion Study of A Spin-Stabilized
Satellite Test Rig," under review by AIAA Journal of Guidance, Control.
and Dynamics.
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1.4 List of Research Personnel, Thesis Titles, and Degrees Awarded

The investigation of rigid body and flexural structure response of the satellite

simulator is directed by J.R. Baumgarten and D.R. Flugrad.

J. R. Baumgarten served as principal investigator for the project until his re-

tirement in June 1992. D. R. Flugrad and R. H. Pletcher have served as co-principal

investigators and have continued to share that responsibility following Baumgarten's

retirement.

J. R. Baumgarten supervised the work of Jiechi Xu, a Ph.D. student who has

developed software to model the elastic and dynamic motions of the satellite test

rig. This is a particularly difficult problem because of the unspecified rigid body mo-

tions of the assembly which are best characterized by nonlinear differential equations

coupled with small elastic deformations of the structure which can adequately be

described by linear relationships. Flexible components of the structure were modeled

by finite element beam members and a sequential implicit-explicit integration tech-

nique was developed to solve the combined system of differential equations. He also

worked with others on the project in developing a numerical procedure for simulating

the interaction between the spinning, elastic structure and the sloshing liquid. Xu is

expected to graduate in May 1993. His dissertation is entitled:

Xu, J., (1993). "Dynamic Modeling of Multibody Flexible Structures,"
Ph.D. Thesis, Iowa State University, Ames, IA.

Troy Schick studied the dynamic stability of the satellite test rig. Under the

direction of D. R. Flugrad he extended the work of Lisa Obermaier. a former M.S.

student who worked on the project during the previous three year grant. Obermaier

10



developed a computer program named SATELL to simulate the rigid body motion of

the test rig using a pendulum analogy to model the sloshing liquid. Schick used that

program to run a number of cases to study motion stability of the system based on

physical parameters such as masses, inertias and linear dimensions. He was also able

to verify expected results experimentally. He graduated in May 1991 and is currently

employed by Olin Corporation in Indianapolis, IN. His thesis title is:

Schick, T. E. (1991). "Motion Study of a Spin-Stabilized Satellite Test
Rig," M.S. Thesis, Iowa State University, Ames, IA.

Tom Thompson joined the project as a Ph.D. student in 1992. Under D. R.

Flugrad's supervision, he has assisted in the experimental work associated with the

effort to combine the rigid body/elastic model and the CFD model to study the

liquid/structure interaction. He expects to graduate in 1994.

The computational fluid dynamics effort was directed by R. H. Pletcher. He was

assisted by Ph.D. students Kuo-Huey Chen, Franklyn Kelecy, and Babu Sethuraman,

Mr. Chen graduated with the Ph.D. in December, 1990. His dissertation was entitled

Chen, K-H. (1990). "A Primitive Variable, Strongly Implicit Calcula-
tion Procedure for Two and Three-Dimensional Unsteady Viscous Flows:
Applications to Compressible and Incompressible Flows Including Flows
with Free Surfaces," Ph.D. Thesis, Iowa State University, Ames, IA.

Mr. Kelecy expects to complete degree requirements in 1993, and Mr. Sethuraman,

in 1994.

1.5 Seminars, Presentations, and Laboratory Visits

J. R. Baumgarten visited Dr. Spencer Wu at AFOSR Bolling AFB in March

1990. The visit coordinated the work of various technical personnel with the mission

11



of the grant. Baumgarten attended the 1990 Supercomputing Institute at AFSC Kirt-

land AFB, 21-25 May 1990. He conducted the seminar titled "Tumbling Satellites"

at Afdeling Werktuigkunde, K. U. Leuven, Leuven, Belgium on Jan. 15, 1990.

R. H. Pletcher held a seminar titled "Numerical Simulation of Unsteady Viscous

Flows" on Jan. 16, 1990 at NASA Lewis Research Center in which he covered the

early results of Mr. Chen's calculations. His host was Dr. Meng Liou, Branch Chief,

Computational Fluid Mechanics.

Kuo-Huey Chen held a seminar titled "A Primitive Variable Strongly Implicit

Calculation Procedure for Two and Three Dimensional Flows " on June 4. 1990 at

CFD Research Corporation, Huntsville Alabama.

R.H. Pletcher held the seminar entitled, "Numerical Simulation of Unsteady

Viscous Flows" at the University of Alabama, Huntsville, Feb. 15, 1991. Results of

liquid sloshing simulations were featured. The seminar was part of the 1991 Propul-

sion/CFD/Mechanical Engineering Series attended by faculty, students, industrial

representatives, and personnel from NASA Marshall Labs. Pletcher visited NASA

Lewis Research Center on three occasions to discuss future research in liquid sloshing.

He visited NASA Ames Research Center in March 1991 to collaborate on research in

turbulence modeling.

D.R. Flugrad and J.R. Baumgarten visited the Federal Microelectronics and

Instrumentation Laboratory, Limrick, Ireland in March while participating in the

seminar FAIM 91. Drs. Flugrad and Baumgarten both presented lectures on path

planning for open chain multiple body mechanisms.

All three principal investigators participated in the 1991 Air Force Office of

Scientific Research Contractors Meeting on Structural Dynamics held in Dayton,

12



Ohio in October of 1991. A presentation of progress and plans was made as a part

of the scheduled program.

During July, 1991, R. H. Pletcher presented a seminar on "Recent Results in the

Numerical Simulation of Unsteady Viscous Flows" at the NASA Lewis Research Cen-

ter. In September, 1991, he presented an invited lecture on "Numerical Simulation

of Unsteady Viscous Flows" at the Fourth Nobeyama Workshop on Supercomput-

ing and Experiments in Fluid Dynamics, Nobeyama, Japan. In November, 1991,

Pletcher presented a seminar at Iowa State University "On the Numerical Solution

of the Compressible Navier-Stokes Equations at Very Low Mach Numbers."

In January, 1992, Dr. K.-H. Chen, a former graduate student participant in the

present grant, presented a paper describing some of our most recent results, "A Nu-

merical and Experimental Study of Three-Dimensional Liquid Sloshing in a Rotating

Spherical Container" at the 1992 Aerospace Sciences meeting in Reno, Nevada.

In November of 1991, Mr. Xu presented a paper entitled "A Finite Element/Lagrangian

Formulation of Dynamic Motion Prediction for a Flexible Satellite Simulator with

Both Rigid and Elastic Bodies" at the 2nd National Applied Mechanisms and Robotics

Conference in Cincinnati, Ohio.
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2. RESEARCH IN PROGRESS

The following sections summarize some of the more recent results obtained in the

present research program. The first section discusses the progress made in the liquid

sloshing calculations using the surface fitting approach. The next section describes

recent advances in the surface capturing approach along with some results for two

test cases. The last section presents some experimental results obtained from the ISU

satellite test rig for the case of a simple orbital spin-up. The experimental data are

comp_.red with numerical solutions obtained from a fluid-structure interaction code.

2.1 Recent Progress in the Surface Fitting Approach

Most of the effort in the surface fitting approach has been directed towards

eliminating some of the problems with the current code and enhancing its overall

capability. The two areas which received the most attention were the handling of

the free surface motion and speeding up the code execution particularly through

vectorization. Progress in these two areas will be discussed below.

2.1.1 Free-surface motion

A key feature of the free surface fitting approach is that the location and shape

of the free surface at each time step is not known beforehand and thus has to be
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evaluated as part of the solution. The free-surface location is obtained by solving the

equation that states the free-surface kinematic (FSK) condition which is based on

the principle that 'particles on the free surface remain on the free surface'.

Knowing the flow solution (the velocity components u, v, and w in the three

directions and the density p) at all the grid points at a particular point in time, the

location of the free surface after one time step must be evaluated. This is done by

solving the free surface kinematic equation, which is of the form:

eOF C PF dF
S= C -, + U2 -- + (2.1)

where F = F(x1, x 2, t) is the free-surface function that describes the location/shape

of the free-surface. In this equation, coefficients C1, C2 , and the source term S are

functions of the flow field and certain other grid related parameters. As we are trying

to estimate F at time step 'n + 1', the flow solution as well as the grid are known

only at the current time level, n. Hence the coefficients, C1, C2 and the source term

S are also known only at the time level n. In trying to solve for Fn+1 (superscript

denotes time level), these coefficients and the source term are 'lagged' to the previous

time level. In short, it can be said that the equation solved was equivalent to

- n = [Cl0" + [C.2 " O + [Sln (2.2)

In the past, this equation was solved just once to get Fn+'. The approach has

been modified in the following way: The above procedure of lagging the unknown

coefficients is used once to get Fn+l. Using the new free-surface information and

the subsequently converged flow solution, the coefficients and the source term are

evaluated at the new time level n + 1. Using the new information, the following
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equation was solved to refine Fn+l:

OF]+ n+1-F

09t At

[cln" + 1" [[F

2

[c2]" + [C] [s] + [[],_+
+ 2 + 2

(2.3)

The system of algebraic equations resulting from approximating the spatial

derivatives by appropriate (one-sided or central, depending on the situation) fi-

nite difference forms, was solved using a two-dimensional strongly implicit procedure

(2DSIP). Terms that did not fall within the 5 point 2DSIP molecule (including terms

from previous time level) were moved to the right hand side in the solution algorithm.

This method, which is more like the trapezoidal or Crank-Nicolson time differ-

encing, was expected to give better results as the scheme is closer to being second

order accurate in time as compared to the first order accuracy of the old scheme. It

should be noted that the above procedure can be repeated (using the latest values

of C1, C2, and S for time level n + 1) until the changes in F are small at each time

step.

As the location of the free surface determines the amount of liquid in the con-

tainer, the more accurate scheme is likely to better conserve mass globally. Numerical

calculations to date tend to support this idea. For one spin-up calculation, the error

between the initial volume of liquid and the final volume was about 10 % when the

free surface calculations were done only once per time step. It was found that this
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error could be reduced to approximately 4 % when the free surface calculations were

done twice per time step, and to sightly below 2 % when the calculations were done

four times per time step.

2.1.2 Contact line boundary conditions

The boundary condition used along the line of contact between the free-surface

and the solid container wall has been changed to avoid some problems associated with

computing higher Reynolds number flows. The grid in the interior of the liquid is

generated algebraically so that the grid lines conform to the shape of the free-surface.

In other words, the free-surface shape is one of the main factors that determines the

placement of interior grid lines.

The free-surface kinematic equation is solved in the interior of the free surface

(i.e. the entire free-surface excluding the line of contact between the free-surface and

the container wall) and the position of the contact line is estimated through separate

procedures. The method that is currently being used is to estimate the contact line

such that the condition 2E = 0 is satisfied. In this condition, h denotes a direction

normal to the wall of the container. This method ensures that the free-surface is

locally normal to the solid wall along the contact line. This is an attempt to avoid

grid cells with very sharp corners near the container wall and associated numerical

instabilities.

The improved method of solving the free surface kinematic (FSK) equation along

with the revised boundary condition has shown much promise. In earlier attempts

at trying to solve some severe spin-up cases, the code displayed a tendency to slow

down in convergence as time marching continued, and eventually blow up. This
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problem was eliminated by using the new approach described above. One spin-up case

corresponding to a Reynolds number of 250 has been successfully computed. Further

numerical experiments are underway to study the usefulness of this procedure.

2.1.3 Code refinement efforts

Earlier attempts at using the SLOSH3D code to simulate spin-ups of spherical

tanks encountered some difficulties beyond a certain range of Reynolds numbers

(based on tank radius and linear velocity of tank center). For a particular case

(Re ;t 180), the calculations suddenly began to diverge, and eventually blew up.

Another problem associated with such calculations was a large difference (more than

10%) between the initial volume of the liquid in the tank and the calculated volume

after sufficiently large number of time steps.

It was felt that the use of a finer grid might eliminate such problems. A major

difficulty associated with grid refinement was that the time taken for the computa-

tions began to grow out of control. At that stage, it was realized that enhancing

the execution speed of the code was vital to the simulation of finer grid and high

Reynolds number cases.

Two different approaches were taken to make the code execution faster. The

first one is a direct consequence of the fact that the code was developed to suit

the capability of the workstations on which the code was primarily expected to run.

These machines had restrictions on the memory size that prohibited the use of finer

grids. So, it was decided to use larger memory vector machines like the Cray Y-MP

with a code that was different in the following ways:

1. Removing repetitive calculations:
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As pointed out earlier, the initial code development was tailored to suit the

capability of workstations available on campus which had very limited mem-

ory. Hence, as far as possible, the code was based on repetitive generation of

the same sets of numbers rather than generating them just once and storing

them in large arrays. The enhanced memory on large computers like the Y-MP,

permitted switching to larger storage and fewer calculations. This eventually

resulted in faster code execution. In fact, a significant speed-up, by a factor

of as many as ten times could be achieved by modifying the code along these

lines.

2. Vectorization:

The SLOSH3D code uses a three-dimensional coupled strongly implicit pro-

cedure (CSIP3D) to solve the system of algebraic equations which results from

the finite difference discretization. This CSIP3D routine is a critical and time

consuming part of the overall calculations. It was realized that this part of the

calculations was responsible for a large fraction of the computer execution time

due to high data dependence of the implicit procedure and the consequent time

consuming scalar execution loops.

The algorithm was vectorized along surfaces of constant index sums (i +J + k =

constant). In other words, the three-dimensional calculations were converted

to two dimensions: surfaces containing points whose indices add to the same

number. Surfaces were identified by their index sums (ranging from i + j + k =

imin + jmin + kmin to i + j + k = imax + jmax + kmax) and each of these
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surfaces contained all the points (one or more) that satisfied the property that

their indices add up to a certain constant. Vectorizing the calculations along

these lines was possible because of the fact that the calculations (in the CSIP3D

procedure) for points lying on any one surface was not dependent on any param-

eters related to any other point on the same surface. Hence, the calculations

for all such points lying on the same surface could be done simultaneously;

this results in more vector operations and consequent higher rate of execution.

The overall execution speed of the code was increased approximately to about

sixteen times the original speed.

2.2 Recent Progress in the Surface Capturing Approach

This section highlights progress made in the development of the surface cap-

turing approach for modeling sloshing flows in moving containers. As discussed in

previous reports [41 [51, the primary motivation for pursuing this strategy is that sur-

face capturing does not require a moving, surface-conforming grid, and hence is free

of the grid generation problems associated with the surface fitting approach. More-

over, multiple free surfaces and complex surface interactions can be handled without

any special treatment.

Initial work on the free surface capturing approach was begun as part of the

ongoing satellite propellant sloshing research at Iowa State University. The evolution

of the present surface capturing methodology has been documented in the previous

annual reports [4] [5]. Many ideas have been tested during the course of the research,

with the goal of obtaining a reliable, robust, and accurate computer code. The most

significant developments will be discussed in the sections below, along with some
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results for two validation test cases

2.2.1 Formulation of the governing equations

Consider a container partially filled with a liquid, the remaining regions being

occupied by a gas. If it is assumed that both the liquid and gas behave as isothermal,

incompressible fluids, the equations which govern the fluid motion within a discrete

control volume Q intersected by the free surface (Fig. 2.1) can be written as follows:

'IpdQ+ j p1 d =0 (2.4)
0 S

d jpV~dQ +fpVV_ dS= fJpBdQ +JT -dS + j odC (2.5)dt
n S n S C

J . dS = 0 (2.6)

where p is the fluid density, V is the velocity vector, T is the stress tensor, B is the

body force acceleration vector, and a is the surface tension.

Equations 2.4, 2.5, and 2.6 represent, respectively, the conservation of mass, the

conservation of momentum, and an incompressibility constraint. Note that the con-

servation of mass and incompressibility constraint equations become identical away

from the interface since the density of each fluid is considered constant.

While the foregoing equations appear unusual at first glance (due to the presence

of an equation for density), they do in fact constitute a solvable set of equations given

appropriate initial and boundary conditions. Detailed discussions of the mathemat-

ical properties of solutions to differential analogs of these equations can be found in
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recent works by Simon [12] and Antontsev et. al [2].

It should be noted that the density is considered here to be a discontinuous

function of space (the discontinuity occurring at the free surface). This comment

also applies to other fluid properties such as the viscosity. As a result, the solution

of Eq. (2.4) provides a means of locating the free surface through knowledge of the

density field.

The inclusion of a surface tension force term into the conservation of momentum

equation is valid only for control volumes containing the free surface. Away from the

free surface (in the single phase regions) this term will vanish. Therefore, in order

for surface tension to be included in the numerical formulation described below, it is

necessary to identify the location of the free surface within the computational domain.

However, for most of the sloshing problems of interest in the present research, surface

tension effects should be small (thus allowing the surface tension force to be neglected

from the formulation).

2.2.2 Numerical methods

The numerical algorithms developed to date have employed the finite volume

method [1]. In the finite volume method, the computational domain is divided up into

a system of non-overlapping control volumes. The dependent variables are assigned

values at node points located at the centroids of these control volumes. Numerical

approximations of the fluid conservation laws (e.g. Eqs. 2.4 - 2.6) may then be

derived for each control volume.

In order to couple the incompressibility constraint with the conservation of mass

and momentum equations, the pseudo-compressibility method of Chorin is employed
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[6]. The pseudo-compressibility approach adds a fictitious pressure derivative term

to Eq. (2.6), yielding

d I Pd + # d o= 0 (2.7)

0 S

where # is a constant parameter, and r is the pseudo-time. It should be noted that

the pseudo-time, which has no physical meaning, is essentially an iteration parameter

for which

lim 0 (2.8)

lim f(r) = f(t + At) (2.9)

where f is any flow field variable. Equations (2.8) and (2.9) suggest that the solution

at any given future time level t + At corresponds to a steady state solution in pseudo

time. For consistency in the formulation, pseudo-time terms are also added to the

other equations. This practice does not affect the solution since all pseudo-time

derivatives are required to go to zero at steady state (in pseudo-time).

The discretized equations form a coupled system containing five (in three di-

mensions) unknowns at each point. The current formulation solves this system using

an LU-factored implicit algorithm similar to that of Yoon et. al. [14]. Transient

calculations are carried out using a constant physical time step in conjunction with

subiteration. The subiterations are needed in order to drive the pseudo-time deriva-

tives to zero, and hence converge the solution at the next physical time level.
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2.2.3 Test case results

Results for two test cases are presented in this section. The first test case is

the "broken dam" problem [13], which was chosen, primarily due to its use by other

authors as a validation case [7] [9] [11], the availability of experimental data [10], and

the complex behavior of the flow field and free surface. In the broken dam problem

(Fig. 2.2), a rectangular liquid column is initially held up by a thin partition (the

dam). At time t = 0+, the partition is removed, thereby allowing the liquid to collapse

under the influenc of gravity. Of interest for comparison with the experimental data

from the literati.-e are the positions of the free surface at the bottom wall (the surge

front) and back wall as functions of time.

"The case presented here employed a square initial liquid profile of length a placed

within a container 5a units long by 1.25a units high by a units wide. The liquid was

assumed to be water and the gas air, both at standard conditions.

In previous calculations of this test case, a three dimensional grid was used.

However, as the major flowfield features are principally two dimensional, the decision

was made to employ a two dimensional version of the original three dimensional code.

This permitted a faster turn around time in the individual calculations (which tended

to be quite lengthy due to the nature of the unsteady flowfield).

In order to examine the effect of grid refinement, numerical solutions were com-

puted using three grid sizes of 80 x 20, 120 x 30, 160 x 40 control volumes. A constant

time step was prescribed for each calculation as follows (time units are dimension-

less): 0.01 for the 80 x 20 grid, 0.0067 for the 120 x 30 grid, and 0.005 for the 160 x 40

grid.

Some selected results derived from the computed solutions are presented in Figs.
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2.3 - 2.6. Figure 2.3 shows the position of the density interface (free surface) at various

times during the transient for the 120 x 30 grid solution. The corresponding velocity

fields are shown in Fig. 2.4. Notice the formation of a large vortex in the vicinity of

the free surface due to the shear induced by the motion of the liquid relative to the

gas. The free surface profiles are quite similar to those shown in photographs from

experiments in Ref. [10].

A more quantitative comparison of the numerical solution with the experimental

data is given in Figs. 2.5 and 2.6. Here the position of the free surface along the

bottom and back walls of the container are plotted versus non-dimensional time. The

agreement between the numerical solution and the experimental data is good con-

sidering the uncertainties inherent in the experimental data and the approximations

used in the numerical solution.

The second test which was recently attempted is depicted in Fig. 2.7. Here, a

two-dimensional, rectangular tank half-filled with water is subjected to a prescribed

horizontal, oscillating acceleration. This acceleration is of the form

a,(t) = Agsin(wt) (2.10)

where A = 0.01 is an amplitude parameter, g is the acceleration due to gravity, and

w = 27rf = 5.592 Hz is the oscillation frequency. The motion of the tank gives rise

to a periodic sloshing motion of the water. This case has been studied numerically

by Huerta and Lin [8].

The calculations were performed on a 48 x 64 control volume grid. The time

step was set to 0.025 (dimensionless time units), and the calculations carried out for

400 time steps.
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Selected plots of the density interface position are presented in Fig. 2.8. The

position of the free surface at the front and back walls of the tank is plotted as

a function of time in Fig. 2.9. The periodic motion of the water waves is clearly

indicated in this figure. Notice that the free surface motions at front and back walls

appear to be out of phase with one another.

2.2.4 Concluding remarks

The encouraging results obtained thus far have spurred additional efforts to refine

the methodology. Current work is focusing on enhancing the stability, accuracy, and

robustness of the method. Application of the method to other test cases and to the

satellite propellant sloshing problem will follow.

2.3 Progress in Fluid-Structure Interaction

Experimental measurements of fluid and structural displacement for the case of

a simple orbital spin-up from rest were recently obtained on the satellite test rig at

Iowa State University. The purpose of these experiments was to provide data for ver-

ifying the accuracy of the fluid-structure interaction computer code (STRUCTURE-

SLOSH3D). A detailed summary of this work is presented in the sections below.

2.3.1 Equipment

The test rig is shown in Figure 2.10. Its upper body, which emulates an orbit-

ing satellite, is mounted on a universal joint driven by a 1/4-horsepower DC motor

through a gear train. In the spin-up tests, a collar was positioned so that the up-

per body could only rotate about a vertical axis. The two 6-inch-diameter spherical
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Figure 2.2: Schematic of the broken dam problem.
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Figure 2.3: Density interface for the broken dam problem:selected times.
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SURGE FRONT POSITION VS TIME
BROKEN DAM PROBLEM
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Figure 2.5: Surge front position versus dimensionless time for the broken dam prob-
lem.
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BACK WALL FREE SURFACE POSITION VS TIME
BROKEN DAM PROBLEM
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Figure 2.6: Back wall free surface position versus dimensionless time for the broken
dam problem.
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Figure 2.8: Density interface for selected times: oscillating tank test case.
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OSCILLATING TANK TEST CASE
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Figure 2.9: Free surface position versus time for front and back tank walls.
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Figure 2.10: The satellite test rig.
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tanks (50% filled with glycerine) were mounted using segments of 5/16-inch threaded

rod extending downward from a horizontal crossbar attached to the upper body axis.

The position of the center of the tanks under stationary and weightless conditions

would be 10 inches from the vertical spin axis and 14 inches below the crossbar.

In order to allow a useful validation of the computer simulation code, the fol-

lowing quantities had to be measured for the spin-up test: angular velocity of the

upper body, displacement of the tank position due to bending of the threaded rods,

and fluid displacement in the tanks. Transducers mounted on the rig itself provided

signals (through slip rings when necessary) to the data acquisition personal computer

as described below. A list of specifications is given in Table 2.1.

A tachometer connected to the drive train of the rig provided a voltage nearly

proportional to the speed of the rig. See the Calibration section for details on the

calibration curve.

Strain gages were mounted on the inboard and outboard sides of both of the

threaded rods on which one of the tanks was mounted. These four strain gages

comprised a Wheatstone bridge which generated a signal proportional to the dis-

placement of the center of the tank from the axis of the upper body. A conditioning

circuit mounted on the upper body amplified the signal before it was sent through

the slip rings to the terminal block on the data acquisition computer. This circuit is

shown in Figure 2.3.1.

Three photopotentiometers were mounted on the tank in order to sense the fluid

displacement of the free surface along vertical sections of the tank. Photopoten-

tiometer 1, 2, and 3 measured fluid displacement along the "inboard," "outboard,"

and "lag" axis, respectively. These sensors were positioned so that their single-valued
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Table 2.1: Description of Equipment

Component Maker Description

Data Acquisiton Computer IBM PS/2 Model 50

Data Acquisition Board National Instruments MC-MIOi 6-9

Power Supply Raytheon QSA10-1.4

0-IOVDC, 0.6A

Photopotentiometers

Light Bulbs SK46

Strain Gages SR-4

Instrumentation Analog Devices AD524BD 8913

Amplifier

DC Motor General Electric Model 5BPB56HAA100

9OVDC, 1/4 hp
1725 RPM
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Figure 2.11: Strain Gage Conditioning Circuit
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Figure 2.12: Photopotentiometer Circuit

range of measurement along these axes would include as much as possible of the fluid

motion during spin-up. They acted as voltage dividers, sending on a portion of the

10-volt input signal in accordance with the amount of light which the moving fluid

blocked. The resulting signal passed through the slip rings to the terminal block of

the data acquisition computer. The circuit diagram is shown in Figure 2.12.

Each of the two tanks was equipped with an SK46 light bulb whose filement was

positioned about 1-1/8 inch below the top of the tank. The two bulbs were wired in

series across the 10-volt power supply, which also supplied power to the strain gage

and photopotentiometer circuits.

Figure 2.13 shows the termination connections of the data acquisition computer

used in the experiment. An IBM PS/2 equipped with a National Instruments Data
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Figure 2.13: Data Acquisition Terminal Block Connections

Acquisition card was used. Specialized data acquisition software was written in Ba-

sic. The scan rate was 100/second, and for the spin-up runs, the strain gage and

tachometer channels were given a gain of 10 in order to improve resolution.

2.3.2 Calibration

The tachometer, strain gages, and photopotentiometers were calibrated before

the spin-up runs were performed. Photopotentiometers 1 and 2 were calibrated

against pre-computed fluid displacements for steady-state spin velocities. In other

words, for each steady-state spin rate, there is a stationary free-surface position,

which was computed analytically. These values were compared to potentiometer

voltage output at several steady-state spin rates (tanks constrained against radial

displacement) in order to arrive at calibration curves for photopotentiometers 1 (in-
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board) and 2 (outboard). (About 200 data points were taken at each spin rate.)

These curves were then fit with polynomials as shown in Figures 2.14 and 2.15.

All photopotentiometer calibrations and spin-ups were performed with room lights

off and tank-mounted light bulbs illuminated.

At the same time, the tachometer was also calibrated. Precise values of angular

speed were obtained by adjusting the motor rheostat and counting revolutions. After

the speed was adjusted to the desired value, the tachometer voltage readings along

with those of Photopotentiometers 1 and 2 were taken by the computer.

Figure 2.16 shows the tachometer's voltage output, which is nearly linear with

speed. The above procedure did not provide a large enough range for Photopoten-

tiometer 3 (lag), since fluid displacement at this sensor is small for a steady-state

speed. Therefore, this sensor was calibrated manually. The tank assembly was dis-

connected at the cross-bar and was tilted enough to achieve fluid surface displacement

at 0.1 to 0.5-inch increments on a graduation strip along the photopotentiometer.

At each position, the data were recorded by hand. The resulting correlation of

voltage output to free-surface position was fit with a polynomial, and is shown in

Figure 2.17.

Finally, the strain gage circuit had to be calibrated. This was done by inserting

various gage rods between the tanks in order to separate them by a known distance

and sampling the resulting strain gage voltage output.

The gage rods were first fabricated to lengths of 11.50, 12.00, 12.50, and 13.00 -

0.01 inches. Next, the strain gage bridge circuit was balanced by adjusting its balance

potentiometer so that the voltage output was approximately zero when the 12.00-

inch gage rod was inserted (this causes the tank to be in the zero-gravity equilibrium
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position, centered 10 inches from the axis of rotation). Also, the gain potentiometer

on the bridge circuit amplifier was set so that the voltage output would increase

approximately one-tenth volt for each additional 0.5 inches of spread between the

two tanks.

Once the strain gage bridge circuit had been adjusted, calibration could begin.

Each gage rod was inserted between the bottom plates of the tank housings, one-half

inch in from the corners of the plates, on the side of the axis where the terminal

strip is located. For each rod, about 200 voltage samples were taken by the data

acquisition computer, and the process was repeated twice. Figure 2.18 shows the

resulting curve fit, which is quite linear.

2.3.3 Experiments

Three spin-ups were performed at each of the following target speeds: 30, 60,

and 90 rpm (revolutions per minute). Each spin-up procedure consisted of starting

the rig at a near-zero rotational speed and smoothly accelerating the rig to a set

target rotational speed by manually turning the rheostat control of the DC motor.

Since the duration of the acceleration was on the order of one second, significant

sloshing was induced.

Data acquisition began just before spin-up in each case. One hundred samples

per second were taken on each channel for a duration of 4 seconds. The resulting

sample times and voltages were saved to a computer data file.

A FORTRAN program was written to put the raw data into meaningfnl form.

After reading the raw data files, it used the polynomial curve fits from the calibration

to translate the voltages into speed, ration of free surface height to tank radius (h/r),
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and tank displacement. For photopotentiometers 2 and 3, a subroutine was used to

find the solution to the polynomial equations, since photopotentiometer voltage was

plotted in terms of h/r. It then wrote the reduced data to a file.

2.3.4 Results

The results of all three of the 0-30 rpm spin-ups were very similar; the same was

true for 0-45 rpm and 0-60 rpm. Therefore, the results of only the first run at each

speed are presented here.

Figures 2.19, 2.20, and 2.21 show the angular speed, free-surface position, and

tank deflection for these runs. Zeroes are shown on the plots of photopotentiometer 3

for times when its output went beyond the range of calibration. This type of clipping

was also necessary for photopotentiometer 1 (inboard) in the time period just before

t = 1 second because the output voltage dropped below the -7.05-volt calibration

limit. In this range, the calibration was very sensitive.

The general behavior of the system was what one might expect: as the speed

increased from a near standstill, the fluid sloshed toward the outer part of the tank,

resulting in positive readings of h/r on the outboard side, and negative ones on the

inboard. At the same time, the flexibility of the structure allowed the tank to flair out

by about 3/4 inch in the 0-60 rpm case. It is interesting to note the approximately 2

to 3 hz oscillations superimposed on the fluid displacement and tank position curves

in each case. This seems to indicate coupling between fluid slosh and tank position.
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2.3.5 Numerical simulation

Two of the experimental runs described above were taken for comparison with

results from computer simulations. As part of the research on liquid sloshing in spin-

stabilized satellites, two codes have been developed: the first one, STRUCTURE,

calculates the flexible system dynamics and the second, SLOSH3D, computes the

sloshing motion of the fluid inside the tank.

These two codes have been integrated into one unit, where the two can exchange

information about the tank-fluid system. At each time step of the calculations, the

instantaneous positions, velocities, and accelerations (in the three coordinate direc-

tions) of the tank are passed on from STRUCTURE to SLOSH3D. Similarly, STRUC-

TURE gets the location of the mass center and the six components of moments of

inertia of the liquid, as input at the beginning of every time step.

One of the primary inputs to the numerical computations is the rotational speed

of the test rig as a function of time. The data obtained from the experiment were

smoothed to remove measurement noise before being input to the numerical com-

putations. This was done to minimize possible numerical instabilities due to the

oscillatory data. Figure 2.22 a shows the data that was experimentally measured and

the smoothed data that were input to the computations.

The computations were performed on a Cray Y-MP and took approximately 200

minutes of CPU time for each spin-up calculation. The calculations involved marching

the solution in time for 3000 timesteps (each equal to 0.001 seconds) corresponding

to a total time of 3.0 seconds of the actual spin-up experiment.
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2.3.6 Discussion of results

Two computer runs were attempted: one for the final spin-up speed of 60 RPM

and the other for 30 RPM. As the trend of the computed results was similar in both

the cases, only one of them (corresponding to a final spin-up speed of 60 RPM) is

discussed here.

Figure 2.22 shows the comparison of the computed and experimentally measured

results for the 60 RPM case. Figure 2.22b shows the comparison of the free surface

positions (inboard and outboard) between the experimental and computed results

for the 60 RPM case. It can be seen that the transients compare reasonably well for

the inboard end. The outboard data do not compare as well (this aspect is discussed

later in more detail).

Figure 2.22c shows the comparison between the experimental and numerically

computed radial positions of the tank center. It can be seen that the comparison is

reasonably good.

The difference in the final outboard free-surface position between the experiment

and the numerical computation is due to several factors, the more important of

these being the experimental uncertainties in measuring the free-surface position, the

uncertainty in the amount of liquid in the tank (computations assumed a fill ratio

of 0.5), and computation of a tank angle that was too small due to the rigid cross-

arm assumption. The numerical results also seem to be smoother as compared to

the experimental data. This is attributed to the relatively coarse grid used in the

computations (41 x 11 x 11).

The final radial position of the tank appears to have been predicted well by the

code. The most significant source of discrepancy in the radial deflection values is
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probably due to the assumption made in the STRUCTURE code of a perfectly rigid

cross arm on the upper body of the test rig. In reality, a small deflection in this bar

most likely results in a relatively large deflection in the tank position.

The rigid cross-arm assumption could also be responsible for the higher frequency

of oscillation in the computed case, which can be seen in Fig. 2.22c. The transient

oscillations in the first one second of the computed results is due to the initial condi-

tion used and the absence of viscous damping. The numerical computations assume

that, at time = 0.0 seconds, the tank is at its vertical position without any static

load and is suddenly subjected to the load due to the fluid mass at time greater than

zero. This is thought to be the main cause of the oscillations seen in the computed

results.

2.3.7 Concluding remarks

Given sufficient time and resources, the experimental and computational results

for the spin-up case could be brought into even closer agreement. Improvements which

could be implemented include: (1) photovoltaic fluid level sensors, which could be

calibrated more reliably over a broader range, (2) inclusion of a flexible crossbar in

the STRUCTURE code, and (3) a finer grid size for computing high-frequency fluid

oscillations in the SLOSH3D code.
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Figure 2.14: Photopotentiometer 1 Calibration
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PHOTOPOTENTIOMETER 2 DATA AND CURVE FIT 12-4-92
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Figure 2.15: Photopotentiometer 2 Calibration
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TACHOMETER CALIBRATION AND CURVE FIT 12-4-92
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Figure 2.16: Tachometer Calibration
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Figure 2.17: Photopotentiometer 3 Calibration
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SPEED VS. TIME, RUN 0-45 A
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Figure 2.20: Results of Spin-up of 0 to 45 rpm, trial A
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Figure 2.21: Results of Spin-up of 0 to 60 rpm, trial A
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Computer Simulation of a Test Rig
to Model Sloshing in Spin-

D. R. Flugrad Stabilized Satellites
Iowa State University.Ames. IA Certain communications satellites carry liquid stores on board for station tending

and attitude adjustment. However, sloshing of the liquid can cause an undesirable
L. A. Obermaier nutational motion of the spin-stabilized vehicle. In previous work a test rig was

Cateroillar Inc.. designed, built and instrumented to study the interaction between the rotating struc-
Perona, IL ture and liquid. To augment that experimental project, a computer model of the

rest rig has been developed to simulate the dynamic motion of the system for various
parameter values. The sloshing liquid was replaced by a two degree-of-freedom
pendulum in the mathematical model. Simulation results were compared with those
from a general multibody dynamics program and with experimental measurements
of the test rig motion to demonstrate the mathematical model's validity. Good
agreement was achieved in both instances.

Introduction
Extensive research, both analytical and experimental, has resulted in a coning motion of the spacecraft. Hill (1985) used

been conducted on the stability of spacecraft having liquid an equivalent mechanical pendulum model, along with a mass
propellant stores. A rigid body can be stabilized by spinning representing the main body and rocket motor to approximate
about an axis of either maximum or minimum moment of the STAR 48 system. He deve!oped control laws using line-
inertia. Common examples of spin stabilization about an axis arized equations of moeion.
of minimum moment of inertia include a spinning top or a The INTELSAT IV communications satellite also expert-
football. However, systems containing a significant amount enced instability once launched. Slabinski (1978) conducted
of liquid mass, such as the INTELSAT IV (Ma-':in, 1971 and in-orbit testing of the satellite, as weil as a theoretical analysis,
Slabinski, 1978) and the STAR 48 (Hill. 1985) communications to study the sloshing phenomenon inside the tanks containing
satellites, as well as the XM761 artillery projectile (Miller, liquid propellant. He developea relationships between driving
1982), have experienced instability when spun about an axis frequencies and nutation frequencies. Martin (1971) exoeri-
of minimum moment of inertia. Sloshing of liquid payloads mented with tanks of liquid propellant on earth. Martin.
has been suspected of causing instability of the spin-stabilized through his experimental investigations, found that when a
bodies. spinning tank is subjected to angular oscillations about an axis

Viscous dissipation resulting from relative movement be- which is not parallel to an axis of symmetry of the =ank.
tween a liquid and its container tends to reduce the kinetic turbulent fluid motion is excited. However, when the tank is
energy of a system. The body, attempting to conserve angular accelerated rectilinearly, the motion of its contents is relatively
momentum, is then forced to seek a lower energy state. For cairn, like that of a rigid body. Because a sphere is ax.isym-
a given amount of angular momentum, spin about an axis of metric, liquid in a sphere did not experience the turbulent
maximum moment of inertia represents the minimum energy motion that it did in differently shaped tanks. In the spherical
state possible. If a body spun about its axis of minimum mo- tanks, the liquid behaved like a pendulous rigid body.
ment of inertia experiences energy dissipation, it will seek the Many analytical attempts to quantify the movement of liq-
lower energy state and will end up spinning about its axis of uids in tanks have used a pendulum analogy. Such an analogy
maximum moment of inertia if unrestrained. This is known assumes that the liquid inside the tank moves as a spherical
as a flat spin. pendulum would under the same conditions. Sumner (1965)

Agrawal (1981) states that for a body with flexible elements, developed relations to describe a pendulum representing the
the ratio of the moment of inertia of the spin axis to that of liquid in spherical and oblate spheroidal nonrotating tanks as
the transverse axis must be greater than one for stability. Thus, a function of tank geometry and fill fraction. The mass of the
to be stable, a body containing liquid must be spun about an pendulum is not equal to the mass of the liquid in the tank.
axis of maximum moment of inertia. A nonsloshing mass is fixed at approximately the center of the

Several launchings of the STAR 48 communicauons satelites tank. The sum of the nonslosli mass and the pendulum mass
is equal to the total liquid mass. Sayar and Baumgarten (1982)
included a rotational damper and a cubic spring in their pen-

Coombuted by the Dynamic Systems and Control Divisinfoo r publicauoo dulum analogy to improve Sumner's model in the nonlinear
in the Jot0U,.& o, Dirruoc SA"r1g. Ma,.suuucr. . Co.-ntxoL. Manusacnt
received by the Dynamic Systems and Control Divsion NovemOer 1989: revised range.
manusxctc received Anil 1992. Associate Technical Editor: N, S. Natnoo. Zedd and Dodge (1985) examined the energy dissipated by
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mencal simulation. Simulation results were also compared with
- "Anderson's experimental results.

Development of Equations
-" .A schematic drawing of the mechanical system modeled ts

4. --* - shown in Fig. 1. The model contains four rigid bodies. A iower
-. - shaft which rotates in pillow block bearings supports the struc-

'-"~ x 4 - " ×8 ture. The upper assembly is connected to the lower shaft by
- 4- v a Hooke's type universal joint. Two pendula. each with two

- . degree-of-freedom motion representing the sloshing liquid, are
-- symmetrically attached to the centers of the tanks. The pendula

C K• " are assumed to be point masses suspended from the upper

-A note of clarification is perhaps necessary to define ter-
5- Y5 minology of bodies in the system. The "test rig" is defined as

,Z , -3 the structure that encloses the liquid and its associated sup-
"Y-, ×ports, as well as the contained fluid. This basically includes

everything supported by the universal joint on the mecnanical
;3.'. assembly. The "upper assembly" is associated with the math-

Fig. I Schematic of mechanical system ematical model and does not have a direct physical represen-
tation. The upper assembly is defined as the test rig minus the
enclosed liquid plus the nonslosh masses.

liquids in rotating spherical tanks using a pendulum analogy. To develop the equations of motion for the system. a La-
Their model included a pendulum, a rotor, and a viscous dash- grangian formulation was used. Through the use of coordinate
pot. Through this analogy, they developed equations for nat- transformations, position vectors were determined for each of
ural frequencies of the pendulum as functions of tank location, the bodies. The position vectors were then differentiated with
tank fill fraction, and the spin rate of the tank. respect to time to determine velocities for the bodies. The

Cowles (1987) built a test rig to model a satellite containing kinetic and potential energies of the bodies were then devei-
liquid fuel stores. His model consisted of a motor driven shaft oped. Once the equations of motion were determined according
which supported a semi-rigid assembly. The assembly was con- to Lagrange's equations. they were numerically integrated us-
nected to the vertical input shaft by a Hooke's type universal ing a double precision version of DIFFEQ, a numencai inte-
joint. The assembly held two tanks which were partially filled gration program.
with water. By altering the location of the tanks and the di-
mensions of the assembly, Cowles was able to achieve a variety Coordinate Transformations and Body Positions. The po-
of test conditions, including spin about axes of maximum, sitions of the bodies were determined through simple coor-
intermediate, and minimum moments of inertia. When spun dinate transformations consisting of rotations and translations
about an axis of maximum moment of inertia, the assembly of Cartesian coordinates. All coordinate systems used were
was extremely stable, even when perturbed. The assembly, defined to be right-handed.
however, fell immediately into a flat spin when spun about an The 1-.C,•- coordinate system is stationary and is posmonec
axis of intermediate moment of inertia. Though a configu- at the center of the universal joint. The axis is directed
ration was designed and built for spin about an axis of min- vertically upward. Positioning of the i, and. axes is arbitrary.
imum moment of inertia, tests were never completed because Transformation to the i:-.¢:-: coordinate system is achieved
it was felt the assembly might be damaged in a collision with by a right hand rotation about the :, axis. The - co-
the supporting structure if it attempted to go into a flat spin. ordinate system is attached to the lower shaft of the test rig

Anderson (1988) redesigned the mechanical assembly built and its origin is at the center of the universal Joint. The i-4-.-
by Cowles. Anderson's assembly included a restricting collar z: axes are fixed in such a way that when the z. and z: axes
so that even an unstable test assembly could not damage itself are aligned, the .v: components of the position vectors o: tr~e

or the supporting structure. The redesign included instrumen- pendulum supports are zero. Generally, the matix jA ] s
tation in order to acquire quantitative measurements of the defined such that
motion of the assembly and the liquid contained in it. Just as
predicted, Anderson found the case of spin about an axis of(X"
minimum moment of inertia to be unstable. Y A ,,(f

The work described in this study develops the equations of 9motion for the test rig designed and constructed by Cowles V
and Anderson. Equations of motion were derived using La-
grange's equations. State variables were chosen to best match The transformation matrix from the .-h-: coordinate systerr,
the quantities measured by Anderson's instrumentation, to the 1-141-z1 coordinate system. (A 1,., is given in the Ap-

The liquid in each of the tanks was modeled as a two degree- pendix.
of-freedom pendulum. This approach can only account for The rotation of the upper assembly relative to the lower
free surface liquid oscillations which will have natural fre- shaft is defined by the two rotation angles, X. First. a rotation
quencies greater than the coning frequency for the test rig. In by an amount X, about the f.- axis defines the transformation
order to account for lower liquid oscillation frequencies of the to the J33-3-• coordinate system. Then the coordinate system
type associated with internal or inertial waves, a more complete is rotated through an angle X2 about the il axis to arrive at
model would have to be used. This would be important, for the 1i-./A-• system.
instance if one wanted to study oscillations strongly coupled The.4-.,-` coordinate system is fixed to the upper assembly
to the coning motion. in such a way that the 9, components of the position vectors

The equations of motion developed for the pendulum anal- from the universal joint to the pendulum supports is zero. The
ogy were numerically integrated. Results of the numerical sim- origins of the 1i 3-.¾-ý and 14-.4-- systems are located at the
ulation were compared with those from an existing rigid body center of the universal joint. The rotations between tne -.
dynamic analysis program to verify the validity of the nu- and 4 coordinate systems are shown in Fig.

690 I Vol. 114. DECEMBER 1992 Transactions of the ASME



given by [A 1j (A 2j] [A j,]. Since r. - PgL, it can be expressed
as

- .~ ~ r r., ~=po(cos lk sin X I cos X, +sin $ý sin XJ.i1

Z. =3-,-p(sin ~'sin X I cos X.,- cos sin X'J,

+,0 COS CO X, cos 1  (6)

\ / ' -In similar fashion,

(A 121 (A :i] (A )4] (A 45] [A 561[A 6-,] (7)

-~vPermcwiL. I,-1

and

Fig. 2 Rotation coordinates for pendulums

Because the body is assumed to be axisymmetric, the position [A 0,tnt 4A~~tIA.o

vector Of the upper assembly is given by ~I)I
(2)1

where p is defined to be the height of the center of gravity of The position vectors r,,1 and re.,, expressed in terms of world
the upper assembly above the universal joint -hen X, and X, coordinates. are presented in dfie Appendix.
are equal to zero.

The pendula. which represent the water in the spherical Body Velocities and Energies. The translational velocities
tanks, are displaced from the universal joint. The physical of the center of mass of the upper assembly and the two pendula
constants r and (cg) are defined such that the position vector ya edtrie ydfeetatn hi oiinvcosWt
of the support of pendulum I is dx4 - tcl ). Consequently,caedtrmndbdifetatgthrpotonvtrsit

theoriri f te .~-9-~ ystm i deine tobe t r 4 - respect to time. Using the chain rule of calculus,
(cg)&L This is the location of the hinge point of pendulum I . dr ar dq, 9
and alsr the location of one of the nonslosh masses of the d= =: Z q (9)
upper assembly. Similarly, the origin of the i.k. system isTr ad

located d, - rx4 - (cg), which is the location of the hinge Thus, differentiation of Eq. (6) produces
point of -.he second penduiuzn, as well as the second nonslosh w =,o[;11(cos ;ý sin X - sin %i. sin o ,
mass. There are no relative rotations for :s o ~cs-nX o :
and 11-yr-c coordinate systems. X csýoxl Cos X,

The radial rotation of the pendula are defined by the angles, -X(-cos vt sin X I sin X, - sin ij. cos XJ.
9. The angle 81 is defined by right hand rotation of the h-6-*-(do .snX o .sn~ i ,

Ssystern. about the h axis. In a parallel fashion, the angle d,
is defined by right-hand rotation of the .:9 systemn about - ,sin ;. Cos X, Cos X
the ý9 ays. Note that if both penduia are riarea outward from -\(-cos ý, cos X, - sin -' sin X~ ,sin X :)LU!
the unvoersai joint by an amount 6. then 3.=- while 0: Q=ý si X I. cos X, cos X t sin (10)

Circum~ferential (Or tangential) rotations of rhe pendula are Veiocitveorofhepnuaredemidinn etci
describea by the o angles. The .i-y-9-: axes are rotated through fahin' vuetorso thei penduat ares doeterminhed ine ahon idnta
the angle, ol about the .ij axis. The *-.ý-.,- coordinate system faho.Detterlntiesowvteyrehwni
is fixed ic pendulum 1. Simiularly, the . 0 Y- axes, which the Appendix rather than here.
are rixed co pendulum 2. are rotated thro-..;h an angle 0: about Using the addition theorem for angular velocities, the an-
the i.) axis. Rotations of the pendula relative to the upper gular veiocity of the upper assembly can be expressed as a sum
assembly are represented in Fig. 2. of simple components as

The local position vectors of the pendula. r,7, and rvz are W.=* ýikz.Xi - (I

easily defined as or expressed in terms of body fixed axes:

and - (ý cos X I sin X, +X cos X,-);,
Pi (4 .(i4 Cos x, cos X, - X sin X,)-;, (12)

where I is the length of the pendulum. This length is a function ThinradyicoteuprasmbI.aneepesd
of tank size, tank shape, and fill height. Teietadai fteuprasml,1 a e"rse

By direct substitution, the position vectors of the bodies can as
be expressed in terms of world coordinates. Thus, I ,.- = -i Iyyj4-:4

+I,1,, (11;4 + d ) + It (Y !.91 4 ) (13)

where I., is defined to be the inertia scalar of the upper as-

I 'I ,. Note that the body is assumed to have zero products of
'.. ..' . Iinertia about its center of gravity for the x4, and Z.A axes.

The angular velocity of the lower shaft is simply

The overall transformation Matrix. [A ,],;s simplv the product (a (14);
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Table 1 Test rig data for comparison between CAMS and -__"
SATELL. For these runs the transverse principal moments of
inertia were both equal to I,. 2

run total sphere % r (cg) spin I, ,,

slug ft ft ft rpm slug ft slug ft, o N0 ý4111,1

IS 2.0 1 50 1 0 100 2.22 1.39 V , l I' ll
Ic 2.0 1 50 1 0 100 2.22 1.39 .2

3S 2.0 1 50 1 0 100 2.08 3.47
3C 2.0 1 50 1 0 100 2.08 3.47 -,

0 £ 5 II 0 ; '

10 SE TC

Fig. 6 Comparison of circumferenttal rotation *I pendulum 1 given by
e, for CAMS Case IC and SATELL Case IS

00 11 oo ., 1, .,o, A itt-• o .!I/ ! AII , I !,I ,•,,t a

I ,I " W 4 , , 4 I U

SE I

Fig. 3 Comparison of upper assembly rotation given by A, for CAMS 2 '.

Case 1C and SATELL Case IS

. Fig. 7 Comparison of half cone angle, i, for CAMS Case I C and SATELL

I Case Is

Ccoo i' . I-
-: 1 , where m, is the mass of a pendulum and mr. is the mass of

I v; ,u . the upper assembly.
The kinetic energy is expressed in matrix form as

- 'I 1
T=- Ij q IT(M I ) (16)

sEC where the matrix [M], shown in the Appendix, is symmetric.
Fig. 4 Comparison of upper assembly rotation given by A? for CAMS The vector I q I is defined as
Case IC and SATELL Case IS

-,3' , :'

, I , , , ,

3 , ,The potential energy, V. of the system is determined from
the elevation of each of the bodies. Thus,

-,13 V=m..gp cos X, cos X,+mM[I sin X,(sin 01 cos ol

sac +sin 0, cos o,)-I cos X, cos X2(cos 81 cos oI, -cos 0, cos o:)
Fig.S Comparisonofradialrotationof#pendulum v y,.+2(c)cOS 1 COS X:] (18)
Case IC and SATELL Case IS

Lagrangian Formulation. The Lagrangian, L, for the sys-
The relevant term of the inertia dyadic for the lower shaft tem is defined simply as L = T - V. Equations of motion

is the moment of inertia of the shaft about the ZI axis, A,,. can be determined from Lagrange's equations of the second
Because the pendula are assumed to be point masses, their kind as
inertia dyadics are zero.

The kinetic energy, T, of the system can now be calculated d (aL) L =F, r=1..(19)
by summing the rotational and translational kinetic energies Yi T/ F ,q,

of all the bodies: The generalized force, F,,, due to viscous damping can be

T= I I 1 expressed as

2 2 2F 4, = cq, r=1.........(20)I !

. .. (15) where c, is the viscous damping coefficient expressed in di-
"- - mensions of torque per unit angular velocity.
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Table 2 Test rig data for comparison between experimental specifically to solve the satellite problem, it was considerably
results and SATELL. For these runs the transverse principal more time consuming to generate an input data file for CAMS
moments of inertia. 1,1 and IJ, were slightly different. than for SATELL, the specific program written for this study.

run total height spin I, 1,, I,. Several runs were completed using CAMS. However, only two
mass of c.g. speed representative runs are displayed here for brevity.

The physical values of the test rigs used for the analyses are
slug ft rpmn slug f12 slug ft, slug ft: given in Table 1. I, is defined as the moment of inertia of the

IE 0.507 -0.080 - 100 0.223 0.343 0.340 test rig about its spin axis. I, is defined as the moment of inertia
ISE 0.507 -0.080 -100 0.223 0.343 0.340
2E 0.431 -0.121 -70 0.324 0.280 0.289 of the test rig about a transverse axis through its center of
2SE 0.431 -0.121 -70 0.324 0.280 0.289 gravity. For all runs in this section, the center of gravity of

the test rig at its initial speed is located at the universal joint.

Substituting L = T - V into Eq. (19) and noting that V Figures 3-7 compare the output of CAMS and SATELL for

does not depend on q we have a case in which half filled, one ft diameter spheres spin about
an axis of maximum moment of inertia (specifically. ,/L =

d (IT•\ I =T IV 1.6). Results for angles associated with pendulum 2 were very
dt \8q,/ aq, aq, similar to those for pendulum 1, and thus are not displayed.

Since T = 0.5 1 q I r [M] I q I where [M] does not depend on Figure 7 shows the half cone angle versus time for each of the
programs, where the half cone angle, 3, is defined to be theq, the first term on the left hand side of Eq. (21) is determined angle between the t4 and t 2 axes. Mathematically,

aT =cos-'(Cos X, Cos X2) (28)
a= [AI 1 (22) These two runs verify that the motion of the system is stable

mfor spin about the axis of maximum moment of inertia. This
and by the chain rule of calculus, can be seen, for example, in Figs. 3 and 4 where the magnitudes

d (IT - I ( of the oscillating upper assembly rotation angles are decreasing
t1-, = M q23) with time. The effect of decreasing amplitude with time is even

more pronounced for the radial rotation angles for the pendula
For the second term on the left-hand side of Eq. (21), as illustrated in Fig. 5. More important, however, is the ex-

ITI ceptionally close agreement apparent between the CAMS and
T = Iq, qj (24) SATELL simulations. The output motions for the two runs

8q, 2 aq, displayed in Figs. 3-6 are so close, in fact, that they are in-
J, L distinguishable. There is slight disagreement in the half cone

So that the equations of motion become angle curves depicted in Fig. 7. but even that difference is vere
small, with a phase difference of less than 0.01 s appearing
early in the simulation.

4 -- : ($__ ,q, Figures 8-11 compare the results of CAMS and SATELL
,.,.-,,.,- \d q ,q for the case of spin about an axis of minimum moment of

inertia. Both simulations indicate that the resulting motion is

IV unstable as seen in Fig. 10 where the magnitude of the radial
+---=F, r= 1. 7 (25) rotation angle for pendulum 2 is increasing with time. Figureaq, I I shows that the half cone angle also increases as the system

These equations are assembled into a matrix form. seeks to reorient itself to spin about the axis of maximum
rv I,'moment of inertia. Once again, the two simulations agree so

[IM I q I - [M 1q4 - [DELMI "1 q I - = I F,I 26) well that the pairs of curves plotted in Figs. 8-11 are identical
except for a very slight difference that can be detected in the

where [DELM] is defined by half cone angle of Fig. II.

aM,k
DELM,J= q (27) Comparison With Experimental Data. To determine the

k. validity of the mathematical model, output from SATELL was

This system of equations was numerically integrated using compared with Anderson's (1988) experimental results.
a double precision version of DIFFEQ, a numerical itegration In his experiments, Anderson used six-inch plastic spheres.

program. The user of DIFFEQ must supply a subroutine which Physical properties of two of the test rigs used in experiments

computes the derivatives of the state variables with respect to are given in Table 2. In both cases, the spheres were half full.

the independent variable, given the current values of the in- Two transverse moments of inerta are listed, with L, the mo-

dependent variable and the state variable. ment of inertia of the test rig about the i, axis and I,, the
moment of inertia of the test rig about the y•, axis.

Figures 12-15 show a comparison of experimental data and
Simulation Results SATELL output for spin about an axis of minimum moment

To ensure the accuracy of the equations of motion, simu- of inertia, runs IE and ISE. Only about ten seconds of ex-
lation results were compared with those from a multibody perimental data could be acquired before the unstable upper
dynamics program called CAMS. Results were also compared assembly came to rest on a supporting collar.
with experimental data. Figures 12-15 clearly show that the system is unstable for

CAMS (Control Analysis for Mechanical Systems), a three- spin about an axis of minimum moment of inertia with all the
dimensional multibody program, was used to verify the ac- displayed variables increasing with time. Furthermore, as might
curacy of the previously denved equations of motion. To run be expected,the SATELL simulation results do not agree as
CAMS, a user creates a data file specifying the type of con- well with experimental results as they did with the CAMS
nection exisung between bodies, as well as the inertial prop- simulation.
erties. initial positions, and initial orientations of all of the However, the overall results are very sirmlar in a number of
bodies in the system. imoortant respects. For instance. Figs. 12 and 13 show that

Because CAMS is more generic than the program tailored the oscillating magnitudes for the upper assembly rotation
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Fig. 8 Companson of upper assembly rotation given by X, for CAMS Fig. 12 Comparison 0t upper assembly rotation given by X,. for exper.
Case 3C and SATELL Case 3S Imental Case IE and SATELL Case 1SE
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Fig. 9 Comparison of upper assembly rotation given by X2 for CAMS Fig. 13 Comparison of upper assembly rotation given by A2 for exper-
Case 3C and SATELL Case 3S imental Case IE and SATELL Case ISE

V 'j

... ... .°E

•SE s • . r D ,, I.z-: ,

Fig. 10 Comparison of radial rotation of pendulum 2 given by e, for Fig. 14 Comparison of radial rotation of Penculum 2 given by 62 for
CAMS Case 3C and SATELL Case 3S expenimental Case I E *nd SATELL Case 1 SE

:.20 *I

: I : !, • , I ; * • ; i '

a l. it I

010 I I I .I

0.08 0 5)~.\ C 2 '

-T t + !• • , l l i i 351 w

0,0 4 2 ! -

Fig. 11 Comparison of halt cone angle.$.~ for CAMS Case 3C and SA- Fig. 15 Comparison of hailt cone angle. 1, for experimental Case 1E
TELL Case 3S and SATELL Case ISE

angles are quite close as are the primary frequencies, even of Fig. 14 can again be attributed at least partly to a difference
though the initial conditions for the simulation did not exactly in initial conditions.
match those for the experimental run. The half cone angle depicted in Fig. 15 shows quite a bit of

Figure 14 displays rotation angles for pendulum 2 which do difference between the experimental results and the SATELL

not agree as well as the upper assembly rotation angles of Figs. simu.laton. The oscillating magnitude for the experimental run

12 and 13. Once again, though, the curve does show significant appears to be about twice that of the SATELL simulation.
similarities. The overall oscillation magnitude and the fun- Furthermore, the simulation displays a single higher frequency
damental frequency are roughly the same. The phase difference which is approximately twice that of the primaryv frequency.
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found in the experimental curve, although there does appear References
to be a secondary frequency of lower magnitude in the ex- A.rawal, B. N.. 1981, "Stability of Spinning Spacecraft with Liquid-Filled

perimental results. The one significant similarity between the Tanks." American institute of Aeronautics and Astronautics. 19th Aerospace

two curves, though, is the general increasing trend in the half Sciences Meeting. St. Louis. MO.
cone angle associated with the overall unstable motion of the -tnderson, M. D., 1988, "Instrumentation of a Spin-Stabilized Spacecraft

Simulator with Liquid Fuel Stores." M.S. thesis. Iowa State University, Ames,
system. IA.

Even though the comparison results between the SATELL Cowles, D. S.. 1987, "Design of a Spin-Stabilized Spacecraft Simulator with

simulation and the experimental runs are not as dramatic as Liquid Fuel Stores." M.S. thesis. Iowa State University, Ames, [A.
the comparison between the two simulation packages, there is Hill, D. E., 1985, "Dynamics and Control of Spin-Stabilized Spacecraft with

Sloshing Fluid Stores," Ph.D. dissertation. Iowa State University, Ames. [A.
still a good deal of qualitative and a reasonable level of quan- Martin. E. R.., 1971. "Experimental Investigations on the Fuel Slosh of Dual-

titative agreement. Since there were certainly small discrep- spin Spacecraft," COMSA T Technical Review. Vol. 1. No. 1, pp. 1-19.

ancies in parameter values for such things as the masses and Miller. M. C., 1982. "Flight Instabiliies of Spinning Projectiles Having Non-

principal moments of inertia used in the SATELL simulations, rigid Payloads." Journal of Guidance and Control, Vol. 5. No. 2. pp. 151-157.
Sayar. B. A., and Baumgaren. J.. R.. 1982. "Linear and Nonlinear Analysis

it is perhaps surprising that the results agreed as closely as they of Fluid Slosh Dampers." AIAA Journal. Vol. 20. No. L i. pp. 769-7,72.
did. Slabinski. V. J., 1978, "INTELSAT IV In-orbit Liquid Slosh Tests and Prob-

lems in the Theoretical Analysis of the Data." CO.MSA T Technical Review.
Vol. 8. No. I. pp. 1-39.

Conclusions Sumner. I. E.. 1965. "Experimentally Determined Pendulum Analogy ofLiquid Sloshing in Spherical and Oblate-Spheroidal Tanks." Technical Note TN
This work has developed the equations of motion for a test D-2737, National Aeronautics and Space Administration.

rig designed to model a spin-stabilized satellite. The applica- Zedd. M. F.. and Dodge. F. T.. 1985. "Energy Dissipation of L'quids in
bility of the equations of motion to the motion of a satellite Nutating Spherical Tanks Measured by a Forced Motion-Spin Table." NRLbiliy o th eqatins o moionto he otio ofa stelite Report 8932. Naval Research Laboratory.
is based on two assumptions. The first is that the mechanical
assembly is a valid model of a satellite, and the second is that
the mathematical model is a valid model of the mechanical
test rig.

The major accomplishments of the study have included: A P P E N D I X
"* Development of the equations of motion of a spacecraft

simulator using a Lagrangian formulation. cos. -sine 0 01
"* Numerical inte2ration of the developed equations of mo- sin cos 0 0

tion in order to simulate the motion of :he test rig. [A0 ,1] 0 0
"* Comparison with a multibody dynamics program to verify 0 0 0

accuracy of the equations.

"* Comparison with experimental results to determine the " cos X, 0 sin X, 01
validity of the mathematical model.I I 0[A:3] 1 sik 0 01X•O

Basic theories were confirmed. That is, :hat a body con- sinX, 0 cos \ 01
taining a sloshing fluid is stable when spun about an axis of 0 0 0 IJ
maximum moment of inertia and unstable when spun about
an axis of minimum moment of inertia. 0F o i

Comparison of the results of SATELL with the results of (A 0 s ,, os x,
CA,'vMS showed good agreement. The resui:s agreed very closely. sin X, Cos X, j
The relative ease in calcuiating the inpuz values for SATELL 0 0 0 lJ
supports its use over that of CA.%,MS for :his particular appli-
cation. 100 0

Agreement between experimental data and the output of 0 1 0 0
SATELI.. was reasonable. The results showed similar frequen- [5 0 0 1 (cg)
cies and magnitudes. Diff-icuIty in modeiing "he experimental 00 0 1

setup arose in determining values for mass moments of inertia
of the test rig. These values were calculated using formulas F1 0 0 r1
for mass moments of inertia of basic geometric shapes. An- 0 1 0 0
other difficulty was encountered in determining damping coef- [A 81 = 0 1 (cg)
ficients at the universal joint and pendulum supports. 0 00 1

Now that a computer program has been developed to sim-
ulate the dynamics of a spin-stabilized structure carrying liquid

strs ayadditional factors can be studied. For example., cos 01 0 sin 81 0
different size tanks and different inertias can be considered. [A ]= 0 1 0 0
The absence of gravity in outer space can also be simulated -sin 01 0 cos 0,
by simply setting the acceleration of gravity equal to zero. 0 0 0 1
Furthermore, plans call for additional development of the com-
puter program to handle cases where the liquid tanks are not aos i• 0 sin 62 0
perfectly symmetric and may not even hold the same quantity 0 1of liquid. (A•] q91O 0 co 0,

0 0 0 1
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[1 0 0 1+/sin X,_ cos 01 sin 6,)]JIj-i [~dsin k'( -1Icos X, sin ol

(A.9. 0 ] 10 Cos 6_ - 0sin ! -IsinX Xcos01cosQ•,+(cg) sin X2)
0 sin o: Cos * 00
0 0 0 1 -cos ,(1 cos X, sin 01 cOS 01

+/sin X, cos X, cos 81 cos o,-1 sin Xt sin X, sin Q,
r= -Itcos k(cos XI sin 1 Cos 0 + r cos X I + (cg)sin XI cos X2)]

+sin X, cos X2 cos 81 cos 0, -sin X, sin X2 sin o,) + I(sin P( (-I cos XI cos X,_ cos 61 cos o,

+sin V,(cos X2 sin 0l +sin X2 COS 81 COS 60)] +lcos X, sin X2 sin 01

+r cos ' cos X I + (cg)cos X, Cos X :-I sin XI sin 0, cos o,

+ (cg)(cos 4' sin X, cos X. + sin 4, sin X2) ]£, -r sin X, sin X-.J] + X:[sin 4,(1 sinX, cos X2 sin ol

1-I[sin k(cos XI sin 8, cos 0 +/ sin X, sin X2 cos O, cos o,- (cg)sin X, sin X,.)

+sin 44cos X I si X ,-osi X cos 8, cos X- -I sin X 2 sin 1OS X,[ COS0)C 6 s + cos c,Cosco ý(-I Xos sin 0os +si X.os 01 os ((01os)]
-cos+•,(cos z sin Xcos 2 cosin B cossosO]+ I sin X, sin 61)] 1 [sin I -ocos X( cos 8c c os X ,

+r sin J, cos X, -I/ sin XI cos X. sin 8: Cos 0,)

-, (cg)(sin ,, sin X, cos X: - cos ' sin X.)}• Icos ý sin X, sin 61 cos o,]

-[-/(-sin X, sin 01 cos o, + o,(sin -,(l sin XI sin X: cos o, ÷ I cos X I sin O sin oI

-cos X COS X2 cos 81 cos o0 -Cos XI sin X, sin o0) + Isin XI cos X: Cos 01 sin o0) - Cos ý( - / Cos X, Cos oI
-rsin XI- - (cg)cos XI Cos X ]Z-s +/sin X, cos 8, sin o,)]l. 1 -[•,(Icos X, sin 06 cos o,

/,= { -/[cos tk(cos X, sin 0: Cos 0: -r cos XI -/ sin XI cos X: cos 8, Cos o,

Ssin XI cos X, cos 8 cos o0:- sin XI sin X: sin 0:) - I sin XI sin X. sin o0 - (cg)sin X, cos X:)

-sin ',(cos X: sin o2 +sin X: cos 0: cos o,)] + X:(/1cos X, cos X, sin ol -I cos XI sin X, cos 8 cos o,

-r cos • cos X, - (cg)cos X, sin X:)- ,(1 sinXI Cos 8, Cos o,

(cg)(cos ', sin X, Cos \:-sin 4' sin X:)[.i cos X I cos X: sin 8, cos o0,)

I -/[sin t,(cos XI sin 6. Cos o: -o(/ Cos X sin X: cos o!-! sin X, sin u, sin o0

"-sin XI Cos X, Cos 6: Cos o:-sin XI sin X: sin o:) - Cos X, Cos X: Cos 8, sin o,)]_,

- cos -,(cos X: sin o: -sin X: Cos 8: cos o:)]

-r sin i, Cos X IV,. = 'I4(cos .'(- I Cos X: sin o:-I sin X•: cos : cos o:

- (cg)(sin ý, sin X, cos X: - cos i, sin X:)I., - (cg)sin X:)- sin d(I Cos X, sin 8: cos o:

- 1- (- sin XI sin 8 Cos o0: + /sin Xj Cos X: cos O: cos o:-1 sin X, sin X, sin o0

-Cos XI cos X: cos : Cos o:-Cos X I sin X: sin o,) rcos X (cg)sin X cos X,)]
-r sin X, ..,- (cg)cos X COS X] + X[c+ X ,(Cos sI Cos X Cs X: COS 8: cos 0:

,= f[fcos ;4(-/ cos X: sin o, -I sin X, cos 81 cos o, +I cos X, sin X. sin o:

- (cg)sin X,.)+sin ',(I cos XI sin 8, cos ol + (cg)cos XI Cos X:ý sin X sin 0: Cos o:

+sI sin X I cos )X, cos 8, cos 01 -I sin XI sin X, sin o0 - r sin X, sin X,)1 . ,.[cos ',(1 sin X, cos X, sin o,.

-,,r cos X, I - (cg)sin XI cos X:)] +I sin XI sin X, cos 6, Cos o2

+X[cos' 0(-IcosX , cos X.cos 81 cos o -(cg)sin XI sin X,)+ sin 0,(-/cos X, cos 8: cos o:

+/ cos X, sin Xz sin 0, +l (cg)cos X2 +1 sin X2 sin 62)]

+ (cg)cos XI cos X:-s+I sin XI sin 81 cos ol + 02(Icos (-I COS 0, COS ,s:

-r sin X, sin X2)]+ X2[cos 0,(I sin X, cos X2 sin '0 +I sin XI Cos X2 sin 82 Cos o:)

+I sin XI sin X2 cos 09 cos (, - (cg)sin X, sin X2) +I sin 4, sin X, sin 0, Cos 02]

+sin J,(- I c x, os 82 cos 0O + (cg)cos X2  +- -(cos 0,(1 sin XI sin X, cos t:+/ cos XI sin 82 sin 6.

+ I sin X, sin 61)) + 0 I[cos ',(- I cos XI cos 61 cos o, +I sin XI Cos X, Cos 6: sin o2)

+I sin X,• cos X2 sin 01 cos 01) +I sin ' sin X2 sin8 8 cos d)] + sin '(-I cos X, cos 0: + I sin X,_ cos 8, sin o,.)] .i

-1 ,[cos 0 (1 sin XI sin X, cos 0, +I cos XI sin 8, sin o1 + {[4sin 4( -/cos X, sin 0.-/ sin X, Cos ,: Cos o:

+I sin XL COS X2 cos 8, sin o,)-+sin s,(-I cos X, cos o, + (cg) sin X2)-cos ',(I cos XI sin 8, cos o,
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+1 sin XI cos X2 cOS O cos d.-I sin X, sin X2 sin 0, +cos 02 cos 0, sin o2) +cosX,\ cos X,- sin X,

+ r cos X I + (cg)sin X cos X,)] x (cos" 01 cos2 o1 - sin: o0 + cos2 08 cos2 0, - sin" oz)

+X,[sin ¢/(-I cos X1 cos X, cos 91 COs 62 -sin X I sin X,(cos 01 sin 01 cos0 I0
+Icos X1 sin \ 2 sin 02 + cos 02 sin 0, cos 2,.) - sin X I cos 1\2

+ (cg)cos XI cos X,,+I sin X I sin 0,. cos 60 x(sin 0,1 cos (0 sin o1 +sin 0, cos 0, sino2 )

-r sin X , sin X,)] + X,[sin 0(I sin X I cos X, sin 02 +2m,(cg)2 cos XI cos X, sin X,2+mIr[sin XI cos X2

+1 sin X,, sin X I cos 02 cos 02- (cg)sin X1 sin X,) x (sin 0o - sin 02) + sin X I sin X,(cos 01 cos of

-cos •(-I cos X2 cos 02 cos 02+ (cg)cos) 2  -cos 0 cos 02)A +rMs1(cg)[-cos X I(Cos X

+ I sin X2 sin o2)] + O [sin 0&( - Cos1 CX cos COS 0o -sin 2 X,)(sin o0 + sin o2)- 2 cos X1 Cos X, sin X,

+1 sin X1 COS X2 sinf , cos 02) x (cos 01 Cos 0o +Cos 92 Cos 02) + sin X I sin X2
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Abstract

This paper demonstrates a stability analysis of a spin-stabilized satellite test

rig. Stability requirements are analytically derived by modeling the test rig

as a system of rigid bodies. The stability requirements are numerically and

experimentally verified. Experimental and numerical data is presented which

shows instability for spin about the axis of maximum principal moment of

inertia.



1 Introduction

In the late 1970s the Air Force launched several Star 48 communication satel-

lites. Once in their geosynchronous earth orbit, these simple spin-stabilized

satellites began to nutate and tumble. Hill !1] identified sloshing fluid stores

as the likely source of the attitude control problems on these satellites. Slosh-

ing fluid has also caused stability problems in other satellites, such as the

Intelsat IV, a dual spin-stabilized satellite, which was investigated by Slabin-

ski [2] and Martin 13].

To enable investigation of the sloshing fluid problem, Cowles "41 de-

signed and constructed a test rig with two spherical fluid tanks symmetrically

mounted in a rigid framework. The upper assembly was attached to a lower

drive shaft with a Hooke's type universal joint. Figure 1 shows a schematic

of the test rig that Cowles constructed. The test rig is driven by a 1/4 hp

variable speed electric motor. A collar is used to restrain the universal joint

while bringing the test rig up to speed. Once the test rig has reached the

desired speed, the collar is lowered to allow f""e motion about the universal

joint.

Anderson [51 instrumented Cowles' test rig. A tachometer was used to
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enable measurement of the input spin rate. The pitch and yaw axis rotation

angles of the upper assembly were measured with two rotating potentiometers

that were mounted on the drive shaft below the universal joint. Finally, three

photo potentiometers were mounted on each tank to track the location of

the liquid free surface. The signals from these transducers were transmitted

through a slip ring assembly mounted on the lower drive shaft. Anderson

recorded data from the test rig which produced radial slosh frequencies and

precession rates that agreed with actual in-orbit data for the Intelsat IV

satellite reported by Slabinski.

Obermaier [6] wrote a simulation program, SATELL, which numerically

integrates the equations of motion for the test rig described above. Obermaier

modeled the sloshing fluid in the test rig's spherical tanks by pendulums

as described by Sumner [7] and Sayer and Baumgarten [8]. The equations

of motion for the test rig were derived using the Lagrangian formulation.

Obermaier found excellent agreement between the results of her simulation

program and the experimentally measured response of the test rig. This

agreement makes SATELL very useful for testing different configurations of

the test rig to identify the test setups which warrant experimental evaluation.

Obermaier also identified frequencies from the simulation output that agreed
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well with the predictions of Slabinski and the work of Zedd and Dodge '9i.

In the first part of this study, stability requirements for the test rig mod-

eled as a single rigid body and as a system of rigid bodies are presented.

Agrawal [10] suggests that for stability a spin-stabilized satellite test rig must

be spun about a principal axis with a moment of inertia that is greater than

the transverse principal axes by a calculated margin. This margin was found

by modeling the test rig as a system of rigid bodies and using the approach

of McIntyre and Miyagi [11]. This approach considers the effects of products

of inertia that result from certain sloshing modes of the fluid in the test rig

tanks.

In the final part of this study, experimental and simulation runs are pre-

sented to verify the stability rules. The effects of gravity are also discussed

for each case.

2 Stability Analysis of the Test Rig

According to well-established criteria developed in past experimental research

by Cowles [41 and Anderson [5], a spin-stabilized satellite test rig must be

spun about its axis of maximum principal moment of inertia to be stable.
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Greenwood [121 analytically derived this rule is by assuming that a satellite

behaves as a single torque-free rigid body, and by noting that kinetic energy

is dissipated by the sloshing viscous fluid in the satellite fuel tanks while the

total angular momentum remains constant. Since each axis of the test rig

has a different moment of inertia, the kinetic energy level for spin about each

axis is different for a given angular momentum. To conserve momentum the

test rig will seek to spin about an axis associated with a minimum energy

state as energy is dissipated by the sloshing liquid. For example, if the test

rig is spinning about a given principal axis at a given kinetic energy level

and a lower energy level exists for spin about a different principal axis, the

test rig will try to rotate its spin axis to align with the axis of lower kinetic

energy. The minimum kinetic energy is achieved for spin about the axis of

maximum principal moment of inertia.

As stated earlier, the above stability rule assumes that the test rig behaves

as a single torque-free rigid body. However, in work by Obermaier 16! the

test rig was modeled successfully as a system of rigid bodies consisting of a

center body with two attached pendulums as shown in Figure 2. The two

pendulums model the fluid in the two test rig tanks as described by the

work of Sumner [7]. Agrawal [10] has shown that for stability, spin-stabilized
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satellites must be spun about a principal axis with a moment of inertia greater

than the other principal axes by a calculated margin. Stability rules for the

system of rigid bodies of Figure 2 are found using the approach of McIntyre

and Miyagi [111. This approach again assumes a torque-free condition and

involves considering the test rig balance with respect to the oscillation modes

of the pendulums. The stability rules for this system of rigid bodies verify

Agrawal's conclusions that spinning the test rig or a satellite about its axis

of maximum principal moment of inertia is not enough to insure stability.

McIntyre and Miyagi's approach begins with studying the four fundamen-

tal pendulum oscillation modes shown in Figure 3. These oscillation modes

must be evaluated for nonzero products of inertia. Nonzero products of in-

ertia can cause misalignment between the reference z-axis of the test rig and

the axis of maximum principal moment of inertia or spin axis since the spin

axis will be coincident with the principal axis. The test rig is considered to

be out of balance when misalignment between the spin axis and the z-axis

exists.

Pendulum oscillation Mode 1 from Figure 3 generates one nonzero prod-

uct of inertia, Iy,,. Agrawal [10] shows that the misalignment between the



spin axis and the z-axis resulting from this product of inertia is expressed as

OX ý- "- (1)
O-I.__ IV

where 0), is a rotation of the spin axis about the test rig's x-axis. It is also

important to note that Iv. is the product of inertia of the test rig about its

center of mass, and I. and IL are composite moments of inertia of the test

rig (including pendulums) also about the center of mass.

Pendulum oscillation Mode 2 from Figure 3 also generates one nonzero

product of inertia, Iy. However, this product of inertia does not affect the

test rig's balance.

Since the pendulum oscillation Mode 3 from Figure 3 yields no products

of inertia, it also has no effect on the test rig's balance.

Pendulum oscillation Mode 4 from Figure 3 generates one nonzero prod-

uct of inertia, Iz:. The misalignment between the spin axis and the z-axis

caused by this product of inertia is expressed as

S-Iz -I * (2)

where 0. is a rotation of the spin axis about the test rig's y-axis. As before,

Iz. is the product of inertia of the test rig about its center of mass, and I, and

6



IL are composite moments of inertia of the test rig (including pendulums)

also about the center of mass.

Equations (1) and (2) show that Modes 1 and 4 are the only modes that

offset the balance of the test rig. Continuing with McIntyre and Miyagi's

approach, we must take precautions to prevent these modes from occurring.

First, the products of inertia for Equations (1) and (2) must be defined

in terms of test rig dimensions. Then, stability rules must be developed

with respect to the products and moments of inertia to prevent pendulum

oscillations.

Figure 4 shows the rotation of the spin axis about the test rig's x-axis

that results from pendulum oscillation Mode 1. Equation (1) defines the

angle of rotation .,. The product of inertia. I:, for Equation (1) is defined

in terms of test rig dimensions as

Iu, = 2M,(CG)L sini3 (3)

where MV, is the pendulum mass. Then, for small .3

Iy = 2M,(CG)Li3 (4)

Figure 4 also illustrates that the center of mass of the test rig is moved along

the y-axis as a result of pendulum Mode 1 by the distance Ey. The center of
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mass is located by

E 23, L sin/3 (5)

where Ilt/ot is the total mass of the test rig. Simplification for small 3,

produces

2M1 LB
EY = 2.1 L3(6)

Figure 5 shows a view of the test rig's xy-plane containing the pendulums.

The spin axis intercepts the y-axis on this plane at Y1 where

Y1 = Ey - (CG) tan0-. (7)

Simplification for small angles and substitution for 0, and E. from Equations

(1) and (6) yields

Y1 = -2ML3 ( 1Jt  (CG)) )

Also shown in Figure 5 is the intercept of the extended pendulums with the

y-axis which is given by

Y2 = Rtan3 = R13 (9)

Now if Y1 is larger than Y2, i will increase in the xy plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus, for stability
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Y2 must be larger than YI. With the help of Equations (8) and (9) this

results in the following expression

R3 > -2Ml,3( 1 (CG) 2 (10)

If ,3 is cancelled and terms are rearranged, the stability rule becomes

(CG )2
I:-I > R __ 1 (1

2M.L lo

Figure 6 shows the rotation about the test rig's y-axis that results from

pendulum oscillation Mode 4. This rotation angle is defined by Equation

(2). The product of inertia I,, in Equation (2) is written in terms of test rig

dimensions as

I, = MA,(R+Lcosa)((CG)+Lsina)- (12)

M,(R + L cos c)((CG) - L sin a)

Simplifying for small a and combining terms, one finds

I• = 2M, L(R + L)a (13)

Now, if 0Y is larger than a, a will increase in the xz plane as centrifugal

forces align the pendulums perpendicular to the spin axis. Thus for stability,
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Oy must be less than a. Equations (2) and (13) may be used to develop the

following expression,

2< L(R+L)a < (14)

I- -I.

After cancellation of a and rearrangement of terms, the stability rule becomes

A. - I- > 2M, L(R + L) (15)

3 Verification of Stability Rules

The computer simulation program SATELL, and the experimental test rig

were used to verify that Equations (11) and (15) govern the global stability

of the test rig. As stated earlier, these stability rules were developed for a

torque-free system of rigid bodies, but the test rig is of course subject to

torques produced by gravity. For this reason, SATELL was also used to

study the influence of gravity on the response of the test rig. A zero gravity

environment was created by setting the acceleration due to gravity equal to

zero when running SATELL. Since SATELL results and experimental data

were used extensively, it is necessary to discuss the operational characteristics

of both.

Obermaier [6] modeled the test rig with four bodies consisting of a rigid
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upper assembly attached to a lower support shaft by a Hooke's type universal

joint and two spherical pendulums which are symmetrically attached to the

upper assembly. She compiled the equations of motion for this system of

rigid bodies and developed a computer program named SATELL which is

run with a double precision integration program named DDIFFEQ. Before

SATELL can be run, initial conditions must be specified for the angles that

define the positions of the rigid bodies, and all constants must be defined.

There are four sets of Cartesian coordinates which are used to describe the

orientations of the upper assembly.

The 1 - -- - coordinate system is stationary and is positioned at

the center of the universal joint. The 3i axis is directed vertically upward.

Positioning of the il and ý, axes is arbitrary.

Transformation to the i2 - 92 - 32 system is achieved by a right hand

rotation by an amount ý, about the 3,1 axis. The -;2 - 92 - - 2 coordinate

system is attached to the lower shaft of the test rig and its origin is at the

center of the universal joint. The i2 - Y2 - Z2 axes are fixed in such a way that

when the _', and Z2 are aligned, the ý2 components of the position vectors of

the pendulum supports are zero.

The rotation of the upper assembly relative to the lower shaft is defined
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by the two rotation angles, A. First, a rotation by an amount A1 about the y 2

axis defines the transformation to the - 3 - ,3 - -3 coordinate system. Then,

the coordinate system is rotated through an angle A2 about the ; 3 axis to

arrive at the -i 4 - - -4 system. The i 4 - -4- - 4 system is attached to

the upper assembly as shown on Figure 1. Figure 7 shows the rotations for

the upper assembly on the universal joint about the lower support shaft. It

should be noted that when running SATELL, A, and A2 cannot be initially

set to zero since this will cause singularities when integrating.

The remaining inputs for SATELL are L, R, CG, .M1 I,1 , a,, 4 :,

p, and spin rate. The inertia inputs to SATELL are for the rigid assembly

including the nonslosh masses, not the steady state composite moments of

inertia as defined previously. The constant p is defined to be the height of

the center of gravity of the upper assembly above the universal joint when

A• and A2 are equal to zero. The constant M,, is defined as the mass of the

upper assembly of the test rig including the pendulum nonslosh masses. All

other variables are as previously defined.

The test rig is equipped with nine transducers for making measurements.

There are two rotating potentiometers, one on the i2 axis and the other on

the 12 axis, that enable the measurement of variables that can be used to solve
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for A1 and A2. There are three photo potentiometers on each tank to measure

the fluid free surface location. TUe final transducer is a tachometer that

enables measurement of the spin rate. The signals from these transducers are

transmitted through a slip ring assembly mounted on the lower drive shaft.

An IBM model PS/2 equipped with a National Instruments data acquisition

card was used to collect experimental data from the test rig. Eight channels

of input were utilized to record data from the rotating potentiometers and

the photo potentiometers. A voltmeter attached to the tachometer was used

to set the spin rate.

The first step in the experimental procedure was to perform the trans-

ducer calibrations as described by Anderson [5] with the rig in the desired

configuration. Next, the rig was brought up to speed with the collar up. The

data acquisition program was then started and the collar was released. The

experimental data recorded with the IBM was then down loaded onto a VAX

11/785 mainframe for plotting.

A limitation of the test rig that appears in the experimental data is that

it can only rotate ±.2 radians (11.4 deg) about the ;i2 and ý2 axes. Also, for

safety, the test rig spin rates were kept below 14 i, (133.7 rpm).second--• 137 p)

The global stability of the test rig is governed by Equations (11) and
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(15). Equation (11) must be satisfied to ensure stability about the x-axis or

to restrain the horizontal pendulum oscillation Mode 1 of Figure 3. Equation

(15) must be satisfied to ensure stability about the y-axis or to restrain the

vertical pendulum oscillation Mode 4 of Figure 3.

This section deals with test rig configurations where the steady state

composite center of mass is located at the universal joint. This requirement

insures that gravity produces no net moments on the test rig. Also. this

configuration is nearest to simulating an actual satellite in orbit. Using the

dimensions for the two test rig configurations given in Table 1 in Equation

(15), results in

Iý - I., > O.Ollslug - ft 2  (16)

Since both of the configurations in Table 1 satisfy Equation (11), Equa-

tion (16) governs the stability of these configurations. Run 1 of Table 1 does

not satisfy Equation (16) and should result in an unstable response of A1

about the ý2 axis caused by the vertical pendulum oscillation Mode 4 of Fig-

ure 3. Furthermore, inspection of the steady state inertias in Table 1 for Run

1 shows that the rig is spinning about the maximum principal axis. Figure
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8 shows the experimental response of A, and A, for Run 1. As predicted.

the response of A, increases with time in an unstable manner. This experi-

mentally verifies Agrawal's conclusion that spinning a satellite or a test rig

about its axis of maximum principal moment of inertia is not enough to in-

sure stability. Figure 8 shows the numerical response of A1 and A2 of Run

1 from SATELL. Root mean square difference calculations were performed

on the numerical and experimental responses over the first second with .05

second increments. The results of these calculations were .048 radians rms

difference for A1 and .024 radians rms difference for A2. These small differ-

ences are explained by the difference in the initial conditions for A1 and A2

which were both set at .050 radians in SATELL and a nominal zero radians

on the test rig. The nonzero initial conditions for the SATELL run were

required to avoid singularities when integrating. Figure 8 also shows a sim-

ulated response for Run 1 from SATELL with zero gravity and the same

initial conditions as above. This response also closely matches the experi-

mental with .037 radians rms difference for A1 and .028 radians rms difference

for A2 . When these differences are compared to those for the simulation with

gravity, one finds that gravity does not affect the response of the test rig

provided the center of mass is located at the universal joint.
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Run 2 of Table I satisfies Equation (16) and should, therefore, be stable.

Figure 9 shows the experimental and numerical responses for Run 2 which

are stable for both A1 and A,. The difference between the experimental and

the numerical responses are .013 radians rins for A1 and .008 radians rins for

Figure 9 also shows the numerical simulation response for Run 2 with

zero gravity. This response is stable and differs from the experimental by

.015 radians rms on A1 and .008 radians rms on "2.

Using the dimensions given for the two test rig configurations shown in

Table 2, Equation (11) becomes

I: - I1 > .O03slug - ft 2  (17)

Since both of the configurations in Table 3.2 satisfy Equation (15). Equa-

tion (17) governs the stability of these configurations. The two tanks on the

test rig are located on the x-axis which makes duplicating the four config-

urations in Table 2 with the test rig impossible. For this reason only data

from SATELL is presented.

Run 3 of Table 2 does not satisfy Equation (17) and should be unstable

about the i2 axis as a result of the horizontal pendulum Mode I of Figure 3.
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This statement is verified in Figure 10 which shows the simulated response

of Run 3 for the test rig where A, is steady and A2 is decreasing with time in

an unstable fashion. Since the test rig is spinning about its axis of maximum

principal moment of inertia for Run 3, as shown in Table 2, the unstable

response agrees with Agrawal's stability criteria as previously mentioned.

Figure 10 shows the zero gravity simulated response of A1 and A2 for Run

3 which matches the response with gravity. The similarity between these

two responses implies that the test rig responds similar to an actual satellite

when the composite center of mass is located at the universal joint.

Run 4 of Table 2 satisfies Equation (17) and should be stable. Figure 11

illustrates the stable simulated response of Run 4. Figure 11 also illustrates

the simulated response of A1 and A2 for Run 4 with no gravity. Again. the

zero gravity response is nearly identical to the response with gravity.

4 Conclusions

During this study, a great deal of emphasis was placed on understanding the

motion of the test rig with respect to the sloshing modes of the fluid. As

these relationships became clear, the stability requirements for the test rig
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were developed. Simulation runs with SATELL and experimental runs with

the test rig were made to verify thetstability requirements and to confirm the

understanding of the sloshing fluid oscillation modes.

The major accomplishments of this study include:

"* Stability rules for the test rig were analytically developed and verified

with SATELL and the experimental test rig.

* Numerical and experimental data were recorded for the test rig that

demonstrated instability while spinning about the axis of maximum

principal moment of inertia. This agrees with Agrawal's work.

"* When the composite center of mass was located at the universal joint,

the test rig responded as an actual satellite in orbit. This was verified

by comparing experimental runs with simulation runs for zero gravity.

"* When the moment of inertia for one of the transverse axes was too large

for stability and the composite center of mass was at the universal joint.

experimental and simulation data showed that the test rig attempted to

reorient itself to spin about that transverse axis as predicted by single

rigid body theory.
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Future experimental research will be focused on the the effect that fluid

viscosity has on the stability of the test rig. Also, elastic body effects will be

included in a stability analysis of the test rig by a Lyapunov approach.
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Figure 1: Schematic of mechanical system

Figure 2: Model of test rig

Figure 3: Fundamental pendulum oscillation modes

Figure 4: Spin axis rotation caused by Mode 1

Figure .5: Pendulum oscillation plane for Mode 1

Figure 6: Spin axis rotation caused by Mode 4

Figure 7: Upper assembly rotations

Figure 8: A and A2 versus time for Run 1

Figure 9: A1 and A2 versus time for Run 2

Figure 10: A1 and A2 versus time for Run 3

Figure 11: A1 and A2 versus time for Run 4
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Table 1: Test rig dimensions for Runs 1 and 2
IRun 1 . Run 2

spin rate 1_R 10.5 10.5
M, slug [ 0.03.54 0.0354
L feet 0.1625 0.1625
R feet 0.833 0.833
CG feet -0.7705 1 -0.6973
Mua (dry) slug 0.7254 L 0.6924
i., (upper assy.) slugft2  0.464 0.444
4 (upper assy.) slugft2' 0.253 1 0.233
/:-(upper assy.) slugft2  0.448 0.448
I., (steady state) slugft2  0.516 0.487
Iv (steady state) slugft2  0.374 0.345
Iz (steady state) slugft2  0.518 0.517

Table 2: Test rig dimensions for Runs 3 and 4
Run 3 Run 4

spin rate see 10.5 10.5
M. slug 0.0354 0.0354
L feet 0.1625 0.1625
R feet 0.833 0.833
CG feet -0.4484 -0.4484
M.. (dry) slug 0.5701 0.5701
4, (upper assy.) slugft2  0.200 0.200
iy (upper assy.) slugft2  0.300 0.290

/ (upper assy.) slugft2  0.320 0.320
I, (steady state) slugft2  0.219 0.219
I4 (steady state) slugft2  0.388 0.378
I. (steady state) slugft 2  0.389 0.389
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APPENDIX C. A Finite Element/Lagrangian Formulation Dynamic

Motion Prediction for a Flexible Satellite Simulator with Both Rigid and

Elastic Bodies
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kBSTRACT lishing dynamic equations of a flexible system by co~sidering all
the degrees of freedom of the system. rigid or elastic, as general-

L the present paper a systematic procedure has been conducted ized coordinates. In addition, the procedure in formulation must
Sderi'v dynarruc equations by using Lagrange's formula for a be optimized and simplified so as to accommodate the needs in

ulti- body system involving both rigid bodies and elastic mem- numerical analysis and computer programming.
trs. Finite element analysis with a direct stiffness method has
-en employed to model the flexible subsystems. Nonlinear cou- PREVIOUS WORK
ing terms between rigid body gross motion and elastic deflec-
ons are completely taken into account. Both the parameters Flexible structure modeling, including the effects of elastic de-
om rigid body motion and the components of elastic displace- Fdections and rotations. has been given considerable effort by en-
ents are considered as unknown degrees of freedom of the entire gineers and researchers in the fields of robotics and mechanisms.
,stem. The assumption .i specified gross motion is no longer A finite element method has been chosen over a modal expan-
.cessary in the derivation and the resultant differential equa- sion analysis to discretize the continuous systems due. in a iarge
ons are highly nonlinear. Equations of motion for each indi- measure. to the fact that eigenvalues are not reqwred to solve 'or
dual subsystem are formulated associated with a moving frame the response of the system. An analytical formulation, based on
stead of a traditional inertial coordinate system and are assem- energy methods, is usually applied associated with the firute ele-
ed by means oi a compatibility matrix. The method is primarily ment analysis(FEA) to develop dynamic equations of the system.
eveloped for forward dynamics and it is also applicable in inverse The first to exploit the advantages of the FEA with Lagrangian
inramics. mechanics were Sunada and Dubowsky (I1 (21. Their mooei in.

corporated a Denavit-Hartenburg representation oi the kinematic
NTRODUCTION rigid body transformation excluding kinematic coupling. The de-

grees of freedom of the discretized system were reduced by means
lexible modeling has been an attractive but difficult topic for a of Component Miode Synthesis(CM[S). The equations of all links
ng time. Severely rescncted by the lag of computer speed in the were assembled using a Compatibility Matrix routine. In their
krly years and the complexity of mathematical formulation. tra- illustrative examples. a set of first order equacions was soived
tional designs in robots, mechanisms. etc. have been limited in numerically for a specal case in which the mechanusm's nominal
ie realm of rigid body system. However. the increasing demands speeds and accelerations are much smaller than the component
r higher operating speeds result in a situation that lightweight elastic coordinate velocities and accelerations. (n their later ox-
ructures have to be used. An undesired by-product. the effect tended work. the assembly of dynamic equations was performed in
S flexibility, is now recognized as a critical issue. It becomes symbolic form due to the special form of matrix terms. The Final
ipossible to implement time-consuming numerical integration system equations were solved using a Newm&rk-Beta integration
ithout solid support of sophisticated modern computers with algorithm. Their approach is applicable for these problems where
igh processing speed. nominal rigid body motion is specified by kinematic constraints.

The pasL decade has sen significant advances in dynamic an-,- Emr works by Naganathan and Somu(31l41[.S(61(, developed a
mis for non-ngicd body systems with elastic links. Extensive work fully nonlinear model employing a kinematic representation with
as been conducted in dealing with fexible modeling. Most inves- rigid link based reference. The three-dimensional model was con-
gators employ a common approach that allows elastic deflections structed by accounting for axial. torsional, and Lateral deformaa-
S be superimposed on gross(nouual) rigid body motion due to tions,. Galerkin method was, used with linear shape, functions
it nature of a specific pr6blem. A drawback of that method to represenc the elasticity of the links. Link level matrices were-
that the rigid. body motion must be specified. It is. however, transformed by time-varyingc omp-tibility matrices and cascaded

at always true that rigid body motion can be predefined. espe- ;nto global matrices. Once again, the rigid body gross motion was
ally in some environmaents requring that the motion of a system specified a. the revolute joints due to the nature of these probm-
a predicted. Additionally there are those areas where the flu- lems. The element matrices then became constant a& every time
2ce between gross motion and elastic deflections are sensitive in step in the numerical solutions.
mailysing system stability. In the work accomplished by Sadler and Yang [81 (91 (t0!. a

The purpose of this paper, therefore, is to develop a general total mechanism displacement was defined as a combination of
modeling technique to conduct a systematic procedure for estab- the large rigid body grs motion and small elastic deformations.
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"Their method was applied both to planar multi-linrk mechanisms density and cross section area of each element respectiveiv. .,11(i
and to spatial robot manipulators. The effects of Rayleigh damp- '7.9 is a generic velocity vector in eiement g. As shown ab,..
ing was introduced. (n the michausmn applications. the authors potential energy consists of two terms. The first one is due to c h-
claimed that. their niethci can be employed both in the forward structure elastic deflection and is named the elastic strain enerty.
and inverse dynamics under conditions of either specified input The second one is due to the structure elevation in the Field of
ircing function. or motion of the crank in a four-bar linkage, gravity both in a macro rigid body motion and in a nrucro Plastic
A special treatment mtuzt be made to relate the link orientation vibration. After differentiating both the kinetic and potrntial
angle to the total unknown displacement. This can be done for energy terms and substituting them into Eq. 1. one can ontain
some mechanisms with one rigid body degree of freedom([DOF). the following matrix dynamic equations in the form of s,-,,)id

More recently. N•garajan and Turcic [.1. (L'21 developed a new order nonlinear ordinary differential equations with time-varving
approach to derive - igations of motig.n for elastic mechanism C:oefficient matrices for each separate substructure.
systems. Both the rigid body and the elastic degrees of freedom (m,(q,)J(,,} -- ((cc.( ,)J + fc,,) {+ I.- (k, ,(7,)l{q.}
were ,•onsidered as generalized coordinates in their derivation.
"The equations were first formulated based on eLment level coor- = {I.(q'. ). = 0... i41
dinate system in which elastic nodal displacements are measured. where. N is the total number of the subsystems. Im,1 is a mass
These equations were then transformed to a reference coordinate matrix. (c,,l is a damping matrix due to the Corioiis and ,'-rr,/,t-
system to ensure compatibility of the displacement. velocity, and gal accelerations. [c.., is a viscous damping matrix which is not
acceleration of the degrees of freedom that are common to two derivable analytically. (k,J is a stiffness matrix including the coit-
or more links during the assembly of the equations of motion. ventional structure stiffness, and (M,} is a force vector involving
Due to generality in their work. the equations. both on element the external active nonconservative forces.
and system levels, are complicated and the transformation from With a set of dynamic equations for each substructure in the
element Level to system level takes a great amount of effort which form of Eq. 4. one must assemble them together to form a =et 4t
is necessary for their approach. equations at a global level for the entire system. One must also

A literature survey of flexible models was completed by define a global vector of the generalized coordinates i.' 7i which
Cleghorn (L31. It was observed that the most effective model is chosen from each local vector of the generalized coordinates
is one which incorporates Lagranges equation with the finite ei- ([I, } such that every coordinate in (q} must be independent or"
ement method. This produces a generalized element for easy each other(though some coordrinates in the different vectors t.l,
application to flexible systems. may be overlapped). A relationship between the global vector

and each local vector of the generalized coordinates can then be
M ETHO DO LOGY determined from

{q,} = [,(.{q} ii)
In this section. a systematic procedure will be devoloped. Since where [0,] is a compatibility matrix in which each element is. in
the systems under consideration in this paper involve both rigid general, a function of time. By means of virtual work principie.
and elastic structures. derivations of motion equations will be a1l the system equations at global level can finally be set up as
carried out. Lagrangian. approach is selected to conduct system [XI/{i} + ((CcI -- CI) {f} ({q}r = '
dyna-mscs finEite element analysis with a direct stiffness method

is to be employed to discretize elastic members and to determine FINITE ELEMENT ANALYSIS (FEA)
their DOF and structural stiffness matrix in the potential en-
ergy term. For each individual body, Lagrangian equation can be Each elastic substructure will be modelled by using a predefinect
expressed as beam element. En order to reduce the element degrees of freeuiom

(/,IE. ) L KE, 3PE, without major loss in beam flexibility. two transverse dedections
.".q } " - = (Q, } Il and two rotations are allowed for each node which has in generat

/ {q.} ir six elastic degrees of freedom. .n addition. the foilowing condi-

where KE, and PE, are the is" elastic member kinetic energy and tions are assumed.

potenci&L energy respectively. (Q,} are those generalized forces 9 Elementary beam theory applies and
not. derivable from a potential function. and {q, } is a local vector elastic flexure obeys Hook's Law.
of the generalized coordinates. 9 Each beam undergoes two different bendings in two

For a rigid substructure. the corresponding kinetic and poten- planes and is considered rigid longitudinally.
tial energies are of the following forms. 9 Two orthogonal deflections are not related to

V . - each other and are therefore uncoupled.' = F'• " . Following a conventional direct stiffness method (14]. a displace-

P. = gravitational potential energy (2) ment function with the form of a polynomial function is pre-
assumed first with knowledge of the external loadings. The

where rn, is the body mass. T7l, is a velocity vector at the mass boundary conditions are then applied followed by thedirect appii-

center. i, is an angular velocity vector. and 1i is an inertial dyadic caton of the strain/stress relationships with the sign conventions
about the mass center. The potential energy term is due to con- of the bending moments and shear forces.
serva•ive force fields and only gravity is involved usually.

For an elastic substructure, both the kinetic and potential en- DispLacement Function
ergy terms are different from those of a rigid substructure. They
can be written as From the classic elasticity theory [151, a function of static trans-

verse deflection for a cantilever beam can be determined depend-
ing on external loading acting on the beam. With no distributed

KE. Pi A. 17, 1•i • ds loading, the highest order of the polynomial function is of order
three. Then+..

P5' = t -iqe [kJ., +ravitsaioalpooental enery( where-a4(i = 0. 1.2.3) are the conaLant. coefficents. z and Y are
2 =.the corresponding elastic substructure &.sia and lateral coordi-

where g stands for Inda or iodes . 4V, is the total number of the asea . The asove equation wiU be employed && a displacement
elements. I, is the length of each element, pi and A. are the mass function for each, beam element.
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Boundary Conditions -•

Four boundary conditions foF each element are proposed as fol-
lows:

i = 0 ,tet'-,tion= it and slope=o-
i = I ,lott.rtion=-i, and slope=o"

where s is an -alemnent ,',,rdinate alligned with center line of an
undeformed beam. i, awl .2, (1 = L. 2 ) are the transverse displace-
ments and rotations at the corresponding nodes. respectively, and
i is the length of I he ,-Ilment. Applying above four boundary con-
,litions to Eq. 7. it can he i,-ionstrated. that the final displace-
ment functions in matrix form are of the following expressions.

.- (, )r (s} -T(j
= (s}rtYIr{,J}

,d3) = I-}r[Zl 3} Figure 1: Elastic Deflection of A Generic Flexible Beam

= (j}r[Z1r.}

and relative to the moving frame (iot. J0, icc). which combines the rigid

2 3 } r body motion and elastic vibration.

-/} = ( "•t: • Ij 12v o2: '2- 0 Position and Velocity Vectors

where {d J are the generalized coordinates for each beam element. A position vector describing point P' can be found as
(s} is a generalized function vector. [Y"] and (Z] are constant ma-
tricestsee Appendix A). and {3 }r[Y]r and {(}([Z]r are conven- R9. = +'q

tiona, shape functions for each planar bending. = I} ({R, ?:Tc,{onq}) (R1j3

Structure Stiffness Matrix where {eo } = { ) J k' }T. a unit direction vector. fR,
and {O,g} are the rigid and elastic position vectors, and (T0,. is a

For small elastic deflection, the bending moments and shear transformation matrix between two frames mentioned above. A
forces, in the case of plane .c-y for instance. are found to be corresponding matrix equation formulated in the moving irame

2 = Etakes the following form.

n9(s) = El-2 {r,} = {R,} (To.]{P,,} (W4)

3, •u Differentiating the above equation gives a velocity equation which
3 $a can be written as

where E is Young's modulus and I, is the principal moment of {ig} = (f] ({R,} + (To,l{,q,}) 4- {R,}
inertia about the - axis. According to Eq. 8. an element nodal + [(T06j1h., +
force vector is correspondingly defined as

(f} I h ni1 Its -IV 12y 1 12, m2 vr (10) where {i,9} denotes d{r,9}/dt. {R,}. {p,9}. and IT),] are the
time rates of the corresponding vectors and the transformation

Applying four force boundary conditions for each node in Eq. 9 matrix, and (fl(see Appendix B) is a skew matrix derived from
followed by comparing the following form a rigid body system angular velocity {f(} which can be expressed

a~s

{if} = (k,j(d,, (11) {n} = (V1] {0} (16)

a final expression of the structure stiffness matrix can be obtained where {;\} are the time rates of the rigid body generalized coor-
and formulated as dinates. and (N] is a time-varying coefficient matrix which can

be partitioned' as . 1 ]'r.
k.] (C.djr[k1 ][il + Cy[.hIT(k 2 LJE•]) (12) For a case with no relative motion between the moving and ref-

erence frames. Eq. 15 can be written in the folowing form in detad
where [k,I is a symrnetric matrix. I is the length of an element, after substituting Eqs. 16 and 8 into Eq. 15 foUowed by rearrange-
I is an average value of IV and Is. Cy and C. are two constant ment and a new definition for the i"' beam generalized coordi-
ratios of [V and 1, to I respectively, fOdI and (A3-](see Appendix nates {q,} composed of both rigid body generalized coordinates
A) are two constant matrices with either unity elements or zero {f\} and elastic generalized coordinates {di }. {d}..... (d., }(see
elements, and (k, I and (k2I are the bending stiffness matrices for Eq. 8).
the corresponding planes. r (R,3 + T31

DERIVATION OF DYNAMIC EQUATIONS AT LO- ({iq} = (RI +T , I, 98)A,-
CAL LEVEL (RM2 +T 2 1 P•,.)4V -

As illustrated in Fig. 1. the coordinate system (o0 ,J0 ,k') is a (R-2 + TIPt,8,)i; 1]
Bacing~moving) frame attached to the moving system, and set (R-3 + T3 1 P,.,) V4 [e, , +

(Ra. I + TII ,,)

(8,1,, .k,) is a reference frame for an arbitrary beam i. A, is a
rigid body position vector. which describes the rigid body mo- : (.TI 2 + jET 1 3  (,dAq}4
tion o( the system. 0,9 is a local position vector measured in T+ TI 3 )

the reference frame for an arbitrary point P' in element g after .T(X, T3 + ZTn3)
deflection, which is considered as a position vector due to elastic
deformation. F,9 is an absolute position vector of the point P' I A matrix is also denoted by a letter with underline. i.e...
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[ . 'd ((T,? L 7T3,Z),x, -2e.,Irf -A A.3)• . . - ii, )4_.1,o

L' '-L' +T'•Z )"VL- (--• ---B2)•.gdj I r.\'(e,q (hI It
I f,,•. -r-:Z),.__} 1]
r.,. .- T.-Z)L2.\. ,{ (17) h. . ,

'T;: . Tt'L).. } w ," - 3).nd(D '(.j = L2_3i are
all constant matrices(see Appendix A). Substituting the above

where R,,(j ..) are h •omp.inentsof the rigid body position equation into Eq. 3 followed by rearrangement yields a compact
vo.tor j R, }. , = - 1)1, + i. T,, are the elements in the 3 x 3 equation of the kinetic energy for an elastic beam.
t ransformation matrix T,,,. andti

{, = { :r 1r •".t, - .-. },' =.{, .,, ..o

[AI [. 0-i where [rm. is a symmetric mass matrnx having the following form.
e,. = ([ 0 . ol 0 ] [m = (meI+(,it(XI['v.

= ,(,i + (IT 1" 4•.]) (.,I'18, i %-
'L}= [e ,Vd]{'Ii} (18) r.-(9,,r("I (C2 Er ""

where (G,Aj and [e,9dj are types of compatibility matrices. (7.) [i•r'] =G2 _.
are the generalized coordinates. ([%1 and (1.11 are the 3 x 3 and 7E

6 x S unit matrices respectively, and O's are the zero matrices. I [E1i E3 L .•]) f.vlfe.Ai (211

Ela.stic Beam Kinetic Energy where fm,c] and (G,II are the constant symmetric square matri-

ft can be demonstrated that premultipling the velocity vector(see ces(see Appendix A). [8-j] and (EaI(o.J = 1.2.3) are the con-

Eq. 17) by demonstratposed vtha willresultpinl a velocity square term scant nonsymmetric square matrices. ( Dj,} (. J = 1. 2. 3) are
Eq. 17o) by its transpose vector wi'| result in a velocity square term the constant vectors, and (G,: I is a constant rectangular matrix.
as shown below.

(, (rG'r r RR/ Elastic Beam Potential Energy

"I"-A.t R3 "-R 2 A The total potential energy is & summation of the body forct po-

tentiaL energy and the elastic strain energy. The former ts the
Symmetry negative work done by gravity. The latter can be written as

A2 + Y.

ft[, h"3)Qe.qd' where (k,,91 is a structural stiffness matrix, developed in the pre-
G,-r1.vlr -qr'dI.,2.' vious section. for ;'^ element of beam t. According to Eqs. 12

r, ._" ahd 14. it can be shown that the total potential. energy takes the

-, following form as
SPE. = t-.(q, -i(k,,I{q,} V {h,}r{q, ()3r

[ 4,)r + . .) .d/

-. ed•.,• i.where the term V, and vector (h, are the functions o0 the gen-

r'T A r q eraiized coordinates {q,}. The first term represents the elastic
- - --8-- strcai energy. The last two terms. on the other hand. combine

-. 9 --•- d_--- . J ][e,1 + the body force potential energy in which the term V, is due to the

(1 1+A.2)9Q.0- I, rigid body motion while the term (h,} t q is due to the ela~stic

r 3 1 
deflections.

(e.rvf • r pa [eB,3di + Local Level Dynamic Equations

1 Substituting Eqs. 20 and 22 into Lasgangian formula. Eq. 1. will

[e,,d;T [/:Z.S -. •t -2 -- P -13 A12a " yield a set of dynamic equations in matrix form for the tc" elastic

beam.F + 2 t2aQ)e.,eq. [I,({ii} + ,{4,}4f + (kit (q,} = {. } (24)

[Nv[e•[ + DGia&q4ITr -(.2-, - where jm. is a mass matrix. (c.i is a damping matrix which -L-c-t 4" -suites from Coriols and centrifigalacceleratons. (k.I is a stiffress
matrix accounting for both the structural stiffness due to elastic

deflections and the coupling term between rigd body motion and
I2(.0t 4 -I elastic deformation. and {(,} is a generalized force vector. En

S-(- "- , I genesl. the mas and. stiffmess matrices and. the force vecor are

the functions of generalzed coordcinates {q. } while the damping
Symmetry matrix is a function oa both {q} and {(,}. Furtermoe. theseItN(eaI -+ coellcient matnces and force vectors can be written an

F 1•a •' -r ]_•..,,• Ec = trnd- 2 9{q,}T
(o,al(IT[! -ra ., 1r) Ie• [Jcl = ,,+[l

STeq,,(+.I - A;3) (,il = {),.} +{h., - (I.,) -( {.,

rl r
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where [,ij is the time rate of the mass matrix (m,j. {'es} is a
force vector due to the external loadings. {fc,J is a connecting {F} =
force vectort which would-'ansh automatically in the matrix as-
sembly from the local level to the global level with the condition of where N is the total number of the subsystems. -ýtructural .andl/..r
the selection of the independent global generalized coordinates). fluid viscous damping matrices can be added in each matrix.
and the matrix ý.Jj .uid the voctors {f., } and (1,2j are all de- and the connecting force terms in each (f, } vector will vanish
rived from the potential energy term as shown in Appendix A. automatically during the process of matrix assembly.
The damping matrix -',nsists of a Coriolis term and a cen-
trifugal term. rhe former is a symmetric matrix. The latter is a CONCLUSIONS
nonsymmetric matrix and is derived in Appendix C.

Derivation of motion equations for rigid members in a system A systematic mathematical model predicting the dynamic mo-
can also bp donme by following the procedures demonstrated in tion for a multi-body system including both rigid and elasti,:
the previous iections. First. one should identify a position vec- substructures has been fully developed in this paper. .. ,,n-
ror. like the ,me shown in Eq. 1L4. which will account for elastic ventionai finite element analysis with a direct stiffness method
displacements of the flexible substructures preceding the rigid is used to discretize the elastic continuous subsystems. A third
body. Second. a velocity sqaure term resulted from differentiat- order polynomial function is adopted in the shape function in ,,r-
ing the position vector could be found. Third. it is necessary to der to exclude the effects of longitudinal displacement and bam
obtain an inertial dyadic of the rigid body about its mass center twisting which are usually of higher order magnitudes compared
and an angular velocity vector including the rigid body angular with other deformations in the most flexible systems. The La-
velocity and the elastic rotation rates influenced by deflections. grangian equation is employed, with both the rigid body d-egrees
Ihe final step is to find rigid body kinetic and potential ener- of freedom and the elastic degrees of freedom treated as generai-
gies as shown in Eq. 2 followed by substituting the results into ized coordinates of the entire system. The elastic deformations of
Lagrange's equation. each element are measured at a substructure level, which is based

on a corresponding undeformed body. so that they are compatible
GLOBAL LEVEL DYNAMIC EQUATIONS at the local level. Kinetic energy and potential energy are formu-

lated for both the elastic and rigid members. Nonlinear coupling
In the previous sections. it has been demonstrated that each of terms due to Coriolis motion are completely derived and are ex-
the subsystem has a different set of dynamic equations expressed plicitly expressed in a matrix form.
at the local level. Assembling these subsystem equations at the The final set of system dynamuc equations of motion is !t-
global level will constitute the system dynamic equations. An as- pressed in a closed form showing high nonlinearity with twme-
sembly routine must be found so as that the coefficient matrices varying coefficient matrices and generalized force terms. Numer-
and the generalized force vectors for each substructure are com- ical technique which can solve the equations with nuxed rigid
patible. Geometric constrains between the subsystems must be and elastic variables is under investigation. The procedure devel-
applied. One must also define a set of global generalized coordi- oped in this paper is applicable to the flexible system with planar
nares which are independent of each other, motion. as weU as spatial motion.
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B: Skew Matrix and Matrix Properties where the first term vanishes because [',, is a':onstaric mnatrix.
The second term in the above equation,:an he Wvritten as

Fra given vector. d~. a eiorrospoineing skew matrix iflj is tefined K_____ Al .3( G(-iur(G j)T

1) jQ I .ý

where V. b= L. 2.3) are the components of the vector Q*2 7({q7}1
Cf {i is a vector with n -fimcasion. and aw~alar o and a vector(.fe 'I (Nt,1(.}

{zI with 'n-damensioti, are the (unctictins 1j.i~ the following
maitrx derivatives are then defined. 4s where

="O ={I .= .'(Nf,14. 1 ([ 1
where I is an n-dimensional vector, and (c),t,/-)7.1 is an j {g~~~ ~-
rt x mn matrix where a determines a row and j determuines a column
for the matrix. The following properties of the matrix partial and
derivatives are derived. 3 (G;9 ~ (j. ~I(v(,I~}

Jo 11, = ..V " ( 7~

=[ * (II ( dr r3{(1rT 7'' i - ,, I T

r q)= l(CI j (Cl r)(l i r

=(I~I LLAL[) ye
= (o where

'-[ ~~¶:;~~ (T] ~LIz

where (81 = {6, (6-1 Substituting Eq. 35 and Eq. 36 into Eq. 34 gives

where (.4j. (61. al. 17. and (BI are all the functions of~} C ris a constant matrix, and (b. I(i = 1. .n) are the subMatrices --)VT
in (B1. -dq) -ý('

C. Derivation of ) ((mi QGI)/i -.3 *v!'D

Kinetic energy for the it-* beam is (.!e 2 ( 1} a ~[(q,}:
K.= [ }TfmINO

= FtE,, + Ki + 2KE,2  (29) + 1:-2 ) 3L 4
where 1){q. ý

KE.. = {.t~ng(, (30) vfeI(,
- (I).(2)(37)

= K( 4 rG.I(L;((, (al +. (TI) where (1) &and (2) are used for identification. The second term in

( 1 VfO4{,}(31) the above equaaaontcan be rewritten ina patter AS shown below.

=K&2}~.ITi!T( 2 +.(){} (32) (2 (s. T}

(ii = f2~'~a~]where

(T1 = (Q0 oi +ag.4{TO,}
qf ias4lq-~ +2 ` Cl

Past iadifferentiaing Eq. 29 with respect to vector (qi I gives; * C'3

t. Am +~~

WKE,, .aK'E, 2  (E3) :3({s) +. (Ti)) ac a31  aC 'c, (39)
3{(qi)T .3{q.jr (3q. ) I 9{qi)T afq.)r 7'iq J}r3Tfl



5ubstitucing Eq. 39 into Eq. 38 gives

(2) = •i • , ,"'' .. ';ed.,(\:[,,(•• (40o)

* s ,U )

w here

'1 17. 7 .. ir L[ i + (

=((B " [B..,,Ir) +} {D O.}r(c =1. 2.3) (41)

Substituting Eq. 41 and Eq. 40 into Eq. 37" gives

)IT r jr

((Gau + (s + [TI) [,'[e,j(I4, } +

S. Z -'Z {[(([B. 4 [B..j{)({, + rD..}}

, } r( r{.}r{.Vd}je,0 {#, } (42)

"The last term in Eq. 33 is

2'9KES2

.3('!(eAI{q, t) (,(G.3 + [X)) (4,} +

S{((G.31 
+ [XI) (4.}} (;'le,j]{,}

-•(q, I
.)((lvle,I{<i,}) ([G,,) + T.I) {qt +

-.#(qq,

where

4T~ and (X', l EE.(q,) (44)

Substituting Eq. 44 into Eq. 43 gives

2)KE.2

.3((N(,Iq. Fr)=
HlG,, , 21 + (XD) {4,} +

[t~q L14, iri(Je44}(45)
Substituting Eq. 42 and Eq. 45 into Eq. 33 yields the final result.

as
J4• ( m Jl (q ,},), =

2 (q,}r

{(~ve~ .+,. ( (G•--,d 4 (Lr2-yl )}4
+ + ( +B,.1+E[eugI ) }+

4% I..r.F,; lVlle,%i +
3 3

{..}rte 1dr (,{V, }T rN }(, ed (!46)
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ABSTRACT iced coordinates. This enables antalysis of situations where the rigid

In the present paper a generai systematic modeling procedure ha body -notion needs to be predicted and tne relationship between two

been conducted in denivig dyna~mic equations of motion using La- Motions effects the system stability.

grange's approach for a spatiai miilcabodv structural system involv- The purpose of this paper s to develop a general modeling tech-

in% rigid bodies and elastic members. Both the rigid body degrees nique to conduct such a svstematic procedure for establishing dy-

of freedom and the elastic degrees of freedom are considered as un- aamic motion equations of a 3exsuble systemn with mtituailv depen-

known generalized coordinates of the entire system in order to re- dent rigid body and elastic motions. In additton. the formultation

fiect the nature of mutual~y coupled rigid body Anti l-asctc .tocions. procedure is to be optimized and simnplified so as to accommodate

The assumption of specified rigid body gross i~i~nis ao longer the needs of numerical analysis and computer programmiung.

necessary in the equation derivation and the resui-&i-.q ýffterenttal PREVIOUS WORK REVIEW
equacions are highly nonlinear. Finite elemont anal' stsi FEA)0 with

direct stiffness method has been employed to mod:-! the lembibl sub- The first -o exploit the advantages of the FEA with Lagrangian

structures. Nonlinear coupling terms between the ri~d body and mechanics were Suntada and Dubowsi 1`24. Their model incoc-

elastic motions are fully derived and are explicitly expressed in ma- porated a Densvit-Hattenburg representation of the kinematic rigid

trix form. The equations of motion of each indiviau... iubs vitem are body transformation excluding kinematic coupling. The degrees of

formulated based on a moving frame tinstead of a t~d:.'liner- freedom of -lie discrectied system were reduced by means oi Com-

tiaL frame. These local level equations of motion are semsobled to ponent Mode SynthestisCNIS). The equations of motion of all lints

obtain the system equatioas with the implementation of geometric were assembled using a Compatibility Matrix routine. In their iilus-

boundary conditions by means of a compatibility matrix. trative examples. a set of first order equations was solved numerically
for a special case in which the mechanism's nominal speeds and ac-

INTRODUCTION ceierations are much smaller than the component elastic coordinate

Flexible dynamic modeling has been an attractive but d~ifficuit topic velocities and accelerations. In their later extended work, the as-

for a long time. Severely restricted by the lag of computer processing sembly of dy-namic equations was performed in symboiic iorin due to

speed in the early years and the complexity of mathemnatica. formula- the special form Of Matixz terms. The final system equations were

lion, traditional designs in- robou. mechanisms, and other relatively solved using a Newmark-Beta integration algorithm. Their approach

ftexiblet structures have been limited to the realm of rigid bodiy dy- is applicable for these problems where nomiznal rigid body motion is

mamics. However, increasing demands for higher operating spieeds specified by kintematic constraints.

and better performance result in a situation that the Light weight Early works by -Naganathan and Song(3!r41,[5;iG'7 developed a fully

structures ace objectively desired. A by-product of the flexibility ef- nonlinear model employing a kinematic representation with rigid link

fect is now recognised as a critical issue. It becomes impossible to based reference. The three-dimensional model was constructed by

implement time-.consuminlg numerical integration without soilid sup- accounting for axial. torsional. and lateral deformations. Galerkin

port of sophisticated modern computers with high processing speed method was; used with linear shape functions to represent the elastic-

capability. ity of the links. Link level matrices were transformed by time-varying

The past decade has see. significant advances in dynamic analysis compatibility matrices and cascaded into global matrices. The rigid

for flexible ou~ltibody systems. Extensive work. analytica~lly and ex- body groas Motion was Specified at the revoluite joints, and, subse-.

perisnentally. has been conducted in dealing with flexible, modeling. quenthy. the element matrices became constant at each time Step in

Mlost investigators however employ a commont approach in which the the numetrical integration.

elastic deformaetions are superimposed on the rigid body gross mo- Presented by Simo and Vo-Qssocigli ' 9, a different problem arcose in

ttos doe to the nature Of their specific problems. The application siseulatiing dynamic response of a lexible plane beam subject to large

of that Method is severely limited due to the fact of requirement of overall Motons. Two orthogonal coordinates, measured in an inertial.

predellined rigid body motion. It is therefore very desirable to inves- frame. ware defined io account foc the large overall rigid body mo.-

tignee a new appeoachi in which all the depees of freedom( 'DOF) of ticon and small elastic deformation. Hamilton's dynamics associated

a system. celstic as weilla rigid. are treated as unknown general- with Galerkin spatial discretisation were employed in the formula-
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o.,n. in which the u-e ,f finite wtrain rod the,,ries capable .,; treating where .V, is the total number of the finite elements. i, is the length of
finite rotations was essential. The inherent nonlinear character of the y'5 

element which is usually the same for all the beam elements.
the problem was transferred to the stiffness part of the equations of p, and A, are the mass density and cross sectional area of the beam,
motion, which resulted in the possible numerical implementation by and V,, is a generic velocity vector in element 9. The above equation
means of any commercial finite element codes being able to analyze dearly shows that the velocity squared term plays a major role in
nonlinear structural dynamics. kinetic energy. On the other hand, potential energy, consisting of

In the work accomplished by Sadler and Yangjl0'IllI '12;, a to- body force potential energy as well as the structural strain energy,
tal mechanism displacement was defined to reflect the large rigid can be written as
body gross motion and small elastic deformations in the dynamic "
modeling. Example problems were demonstrated in two different PE, - IC, q. - V,(G) (3)
categories: planar multi-link mechanisms and spatial robot meanip-

ulators. The effects of Rayleigh damping was introduced. In the where the firsit term is the elastic strain energy and the second term
mechanism applications, the authors claimed that the method could is a potential function which accounts for the beam elevation in the
be employed in the forward, as well as the inverse dynamic analyses gravity field in the scopes of both the macro rigid body motion and
if either the input forcing functions or the crank motion are specified. the nucro elastic vibration. After differentiating the kinetic and po-
The link orientation angle must be related to the total unknown dis- tential energy terms and substituting the results into Eq. 1, one can
placement in the formulation, which is possible for the mechanisms obtain the equations of motion in matrix form in the following.
with one rigid body degree of freedom.

%lore recently. Nagarajan and TurcicI3•:1;14! developed a new ap. -mq,)(q, - c,(q,, 4,)4. - k,(q,)q. = f,(q,) (4)
proach to derive equations of motion for elastic mechanism systems. where the mass matrix m, is in general a function of the generalized
Both the rigid bodty and the elastic degrees of freedom were consid- coorintesq matrix m, resultin f the Cnrali

ered as generalized coordinates in the derivation. The equations were coordinates q,. the damping matrix c_ resulting from the Corlis

first formulated based on element level coordinate system in which and centrjuga. accelerations, is a function of the generalized coor-

elastic nodal displacements are measured. The equations were then dinates and velocities, the stiffness matrix k_ including the conven-

transformed to a reference coordinate system to ensure compatibil- tional structural stiffness. is a function of q, only. and the generalized

ity of the displacement. velocity, and acceleration of the degrees of force vector f. involving the external nonconservative forces acting
on the beam. is also a function of q, only.

freedom tnat are common to two or more links during the assembly
A set of global generalized coordinates q is defined first. Theseof the equations of motion. Attempted to be general in their work, coordinates are chosen from the local generalized coordinates q, such

the equations, at element and system levels, are complicated and that every coordinate in q must be independent of each other. The
amount of efort while it is essential for the approach k relationship between the global and the local generalized coordinates

amount ofsethortdehilemitei bssentialofor theeauproach
A literature survey of flexible models was completed by Cleghorn is then determined by the following equation.

15 It was observed that the most effective model is one which q, = 4, q (5)
incorporates Lagrange's equation with the finite element method.
This produces a generalized element for easy application to flexible where 4, is a compatibility matrix which is in general a function of
systems. time. Differentiating the above equation with respect to time fol-

CUR.RENT APPROACH lowed by the substitutions and the pre-multiplication of 4, in Eq. 4,
one can finally obtain the system equations in the following form, as

In the current paper. a method combining Lagrangian dynamics with

finite element analysis is developed in the modeling of dynamic re- M4 - C4 - Kq = F (6)
sponse of multibodv flexible structures. Lagrange's approach is se-
lected to conduct system dynamic equations; finite element analy- In the following sections. more detailed procedures and formulations
sis with direct stiffness method is employed to discretize the elastic are developed step by step. A demonstrative example is illustrated
members in the system and to determine elastic degrees of freedom in Part II in which the simulation results are verified by the experi-
and the structural stiffness matrix which is required in finding elas- mental data.
tic strain energy. Each flexible beam is assumed as a slender beam FINITE ELEMENT ANALYSIS
which is therefore to be modeled by beam element. The generalied
coordinates of an entire system reflect both the parameters from Each elastic beam is to be modeled by using several conventional
the rigid body gross motion and the components of elastic displace- predefined beam elements. The maximum degrees of freedom for
ments. The nonlinear coupling terms in all the coefficient matrices each node in an element are six. They include two orthogonal trans-
and the generalized force vectors are completely defined and formu- verse defections and two corresponding rotations, one longtudinal
lated mathematically in detail. For an individual body, LaStangian displacement, and one twisting about the element axis. In order to
equation in matrix form can be expressed as achieve relatively simple modeling, only the transverse deflections

and rotations are allowed at each node. The contributions of the
d (aKE,' aKE, 8PE, other two displacements are neglected in most cases(it is referred
Wt a-, a .r (a) to [16471? for a complete modeling). The following conditions are

therefore assumed for each element.
where KE, and PE, are the kinetic and potential energies of the
body, Q, are the nonconservasive forces, and q, are the local gener- * Elementary beam theory applies and elastic flexure obeys
allzed coordinates which reflect the degrees of freedom of the body. Hooke's law.
A general expression of kinetic energy of an elastic beam modeled * Each beam undergoes two uncoupled orthogonal deflections and
by finite element can be written as rotamom.

9 Longitudinal displacement and axial twisting are neglected.

K!, = E - ,,A- '', (2) Following a conventional direct stiffness method[l81, a polynomial
21f. displacement function is preassumed with knowledge of the external
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Figure 1: Sign conventions of nodal displacements Figure 2: Sign conventions of nodal forces

loadings. The boundary conditions are applied followed by direct where d,, and o,(i = 1. 2) ace the deflections and slopes in the X-Y
application of the strain/stress relationships with sign conventions of plane while 4. and o,,(i = 1. 2) are the deflections and slopes in the
the bending moments and shear forces. A structural stiffness matrix X - Z plane. It is noted that s"Y" and slZr in Eqs. 3. 9. are the
is obtained by comparing the relationship between the nodal forces conventional shape functions of each orthogonal bending.
and the nodal displacements. Structural Stiffness Matrix

Displacement Function For small elastic deflection. the formulas of the bending moments

It is indicated from the classic elasticity theoryv1g' that a polynomial and shear forces are found to be
function of the static transverse deflection for a cantilever beam can
be determined, depending on the type of external loadings acting .,(s) = Er. ,) V(3) = Er'--!L- 1: 11)
on the beam. With no distributed loading, the highest order of the a d)

polynomial tuncrion is of order three. thar is -here E is Young's modulus. 1, is the przniple moment of inertia.
a. - at z - ajz3 3 and u(s) is a transverse deflection functionqeither ri6) or '(sj ). kc.

- a3Z (7) cording to -Eq. 10. a corresponding vector of generalized nodal forces

where z denotes axial coordinate of the beam, y' is the correspond- is defined as

in; transverse deflection, and ni(i = 0. 1.2.3) are the constant co- f = y(ifmtIt.mtIjzm2sjsmzj2 121
efficients. The above formula is then employed as a displacement
function for each beam element. where f,(t = 1.2) are the nodal forces and moments as shown

Geometric Bouiidary Conditions in Fig. 2. Referring to geometric boundary conditions. four force
boundary conditions are accordingly determined as

As illustrated in Fig. L. four geometric boundary conditions are pro-

posed for each element as follows: j = 0 bending moment = mt; shear force = ft
S= I bending moment = ml; shear force = f• 0 deflection = di; and slope : o

s = I deflection = di, and slope = O Applying these four force boundary conditions for each orthogonal
bending to Eq. 7 and arranging the results in the following standard

where s is the local axial coordinate in an undeformed element seg- form as
ment. d, and o,(i = 1.2) are the transverse deflections and slopes f = k, d. (13)
at the corresponding nodes, respectively, and I is the length of the
element. By applying above four geometric boundary conditions to one can find that the structural stiffness matrix takes the following

Eq. 7, it can be demonstrated that the final displacement functions, expression. as

in matrix form, in each orthogonal plane are of the following forms. =E (C .,l rktjj _ Cj rks,,) (14)

v(s) = dry s = ,eYrd (8) t (

w(s) = d Z 5 = 8' Zrd (9) where k. is a symmetric stiffness matrix. I is the length of the ele-
menw, I is the anithmtic average of . and [,, Cp and Cz are the

where Y and Z ate the constant matrices(set Appendix ), w(s) and constant ratios of f, and 1, to 1, respectively, 31 and J2 are the
U(s) ate the displacement functions in the X - Y and X - Z planes, constant matrices. and kt and k2 are two stiffness matrices (see Ap-
respectively, and d and s are the generalized nodal coordinates of peadix ). The structural stiffness matrix is to be used in formulating
the element under consideration and a generalized function vector, the structural strain energy which is part of the potential energy of
respectively, which ace defined as a moving elastic beam.

d = {ddj~tdshtdsdo,,}
T  LOCAL LEVEL MOTION EQUATIONS

s = (1 J S3 sy} (10) In the present paper emphasis is placed on studying dynamic re-
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a skew-symmetric matriaxsee Appendix ) derived from a rigid body
system angular velocity fn which can be expressed as

fiT = A.NT = ArN, N, N~i (18)

Swhere A is a generalized angular velocity vector containing the time
o .. rates of three rotating angles about the spherical universal joint, and

N is a 3 x 3 time-varying coefficient matrix which can be partitioned
as [NNN3*N," The rigid body system angular velocity il governs
the angular motion of the moving frame 4. which is relative to an
inertial frame 4._ Position vectors R. and A, can be further written
as

RT {=LL P.2 R.3}: (19)
A", 0( , -l) ,

•A r.s t,f = r' (20)

where R,, (j = 1. 2.3) are three rigid body components of vector P,,

PA,. is a rigid body component of vector p,. and r,5 and wv,, are two
Figure 3: Deflection of a generic flexible beam elastic components reflecting two orthogonal deflections as shown

in Eqs. 8.9. Therefore the time rates of the corresponding position

sponse of spherical unconstrained structural systems. Fig. 3 shows a vectors are found to be

generic finite element in an arbitrary elastic beam in such a structural = 0 (21)
system. Two sets of Cartesian coordinates are set up in assisting the ..

representations of the rigid body motion and elastic deformation. It's = (0 r"g } (22)

Set (i..j. k,) constitutes a floattngtmoving) frame of which the ori- For the cases with no revolute joint between elastic beams, the last
gin q is located at a spherical universal joint with three rotations, term in Eq. 17 can be dropped out. A set of generalized coordinates
Set (&,.j,. k,j. which accommodates the arbitrary elastic beam, is a for the i" elastic beam can be defined in terms of three rotation
reference frame which is relative to the moving frame. Vector Ri, is a angles and generalized nodal displacements in each element. Thus,
positioti vector which indicates the position of the origin of the ref-
erence frame under consideration relative to the moving frame. This q =
vector is considered as a rigid body position vector which describes ...

the rigid body motion of the elastic beam. Vector 4,' is a local posi-
tion vector measured in the reference frame for an arbitrary point P' y, -I)y
in element 9 after its deformation. This A, vector features both the = {A'd "d_-.- d d,.V (231
rigid body motion of point P' relative to the moving frame and the
elastic motion relative to the reference frame. Vector F,,. measured where each d,(9 2 I. ..... _V;) contains eight components as de-

in the moving frame, is an absolute position vector which combines fined in Eq. 10. and N, is the total number of elements in the i"

the rigid body and elastic motions of point P'. elastic beam. The relationships between vectors A. d,, and q, are
then established, as

Position and Velocity Vectors

Referring to Fig. 3 again, the absolute position vector of point P A = O, q, (24)

can be found as d", = 0,.,9 q, (25)

R . - - - ,t) (15) where O,.i and OG,, are types of linear compatibility matrices. A
more compatible expression of the velocity vector can be written

where i. = {i.j.}
T

, a unit direction vector of the moving frame, as a function of the time rate of the generalzed coordinates 4 by
substituting Eqs. 8-10 and 18-25 into Eq. 17. Followed by necessary

Rt. and p,, are the reference and local position vectors in matrix rearrangement, there results
form, and T, is a 3 x 3 transformation matrix from the moving
frame to the reference frame, i.e.. 6, = To;-, where CL, is a unit [ R. -tso...NI - (&2s - 7~,21A.INs
direction vector of the reference frame. A corresponding position r,, = (R, - T. 1o..IN, -(R,i - •i•A,.IN, 4,A4.,
equation in matrix from formulated in the moving frame {ij.k.} (Rs-Ts1 0u..lNt -(R., -,T 1, pN 5

takes the following form as r ,T IYTT, ZYTisI 1
r,1 = Rt + T, p (16) A st (Y!T's - ZFT,} e.,, 4q-,

sr.alY
2

Ts . ZYT 5 I

All the vectors in the foUowing sections will also be expressed relative r q.ryOe4(T,,Y. - Tsr, )sNs-

to the same moving frame except where mentioned. Differentiating q/ref((TtsY. - TiZ, IsNI-
Eq. 16 with respect to time gives a velocity formula which can be q.rTO9,((TiY. '.TssZ,)sN'-
written as

-(TssY. - T3Z,)sNs) 1
,+ T A,) T , .t, - r At (17) -(TY, -. 7TsZ, 1)N:) I e,• 4e (26)

-=-7)2Y, - T1 Z.)sN,)

where -,1 denotes dr,,/dt, kt, p.,, and T.o are the time rates of where T.S(a.3 = 1.2.3) are the elements of the transformation ma-
the corresponding vectors and the transformation matrix, and Ift is trix To.
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Velucity Square Term q,;.-,"1N ,Ciq.e!,4 :.:, d =.d , tt,• 4,,

The purpose of formulating the velocity square term is to fnd the -a.k r-a" - a.A ) 4 CIO,, qa.o0,.
beam kinetic energy which is defined as G- ." T Irt fd - 'IG.,, qi) 3 :dtrd)e.2,

iOld' -. +.d dr--ai e r(0,,• q, ) IYG.ý

= I V, d (27) -G 4 -d 1 31)

where V, is the total number of elements. 1i, is the length of the 1 Kinetic Energy

element in the I` beam, ?,, is a velocity vector of an arbitrary point Substituting Eq. 31 into Eq. 23 yields a more compact form of the• " " e~repoin kinetic energy as
in the element. Substituting p,A,d, fot din.1 and rlei or &ji,, foe knt e y

;1 the above kinetic energy equation becomes .E* = ;q. msq (32)

Y w.v. there rn, is a symmetric mass matrix which is formulated as
KE, =lpiA jr . di(28)

o m, a mo- TA (G,, - H., - H.,}MI,
-Oil NX I G, - H,, )G,,4"where ^ and .4, are the mass density and cross sectional area of the -e,,c - HsINGa (III

beam, respectively. E•. 23 indicates that finding the velocity square

term is prior to fnding the kinetic energy. As shown in Eqs. 10 and where
20. the velocity vector in Eq. 25 is also a function of the locaL axial .v
coordinate s. This indicates that it is a challenging task to formulate en.. x e d, d. dz19
the velocity square term properlv such that the integration in Eq. 23 ,o
can be carried out analytically. For stmplicity, Eq. 25 is reiormuiated :1
in a symbolic fashion by the following form. as G., = j,, A. .f .&

i, = '1*0;, '- o2G,44, 3: 0., (29)

where matrices ;.1. '2!, and 3•! represent the corresponding matrices Ad = ,.A. . d,
in Eq. 26 in the same order. ?:emulttiinq the veioctty vector by its j"

transpose vector nill result in the veiocity square term as :'
H "A. r" r0,, q Ia

Cte& W'w :zI - - t'G, ~q.)
-0.5,2 20iO,,~ - %ll[t -i::.:O, ,

3v defining the following terms ,. T
. , Y : .

7 r1 zY 7"1Z, where cm, and G0. are the constant symmetric matrices. G,2 is

- Z a constant rectangular matnx. H.1 and H,2 are cne time-varying

d1 I I F-, syrmmetric matrices, and H,3 is a time-varying rectangular matrix.d = d, -s-e

Ld s .:a Potential Energy

a, ~ R.~-r~1 ,,.The total potential energy of an elastic beam is the summation ot
I 2 the body force potential energy and the elastic strain energ-y. The

1  Rs ,Ail -Thipr , former is defined as the negative work done by gravity. i.e.

it can be demonstrated that the symbolic matrices :(i = 12.3) in Y
Eq. 29 become &i.E&h -.-J -,m 4G.' (35)

j1 = 7i.,(; "2; = d: t'31 -:dl 2 f*(O,•, q,).V

where d =N 4 = =A4*. = -Gai in which ei is the vertical coordi-
whetre fda is a skew-symmetric matrix associated with the matrix eact of the inertial frame (4,, i7, 4s), and ;,, is a position vector as
d(sae Appendix ), and ' and 4D ats matrx operators defined in defined in the previous sections. Substituting Eqs. 7.9.15.20. and 25
Appendix. Thus, into Eq. 35 will result in a compact form of the body force potential

M1 1rf1 1  r ArN.'.N ' 2,r! 2. - d-d energy in matrix form ta
C3I"[3I - ?C'(qy*f•,453(4lr[4). r~e,, q,). cr• = v .4 rq,r (36)
,13[3 I = . r.ra1, r~e4  q, ,

-t,'r21 - NrA., (21r[31 - drp e r(O, qox where V is a potential function which representLs the rigid body po-testial energy and Ci is a force vector due to the elastic de'lecuon.

By substituting above expressons, into Eq. 30, :he velocity square Thea two terms can be further formulated a
term becomes

ileer.. V, = uss4 GbrT..(Rw - ' a)
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F " 1 '.where the first term lanishes because in,, in Eq. 43 is a constant
:= b' T,.To, sry; d S ý' 9,V matrix. Referring to Eq. 34. matrices H,1 , H,3. and H, 3 are redefined

7 s Z, 3 zl in the following forms, as

where mn, is the mass of the beam, L, is the length of the beam, T,. f Bit Bi: Bis 1
is a time-v-arying transformation matrix between the inertial frame H,, = rr(q,) B, B,2  B, r

and the moving frame, ar {( 0 0}, and bT = {O 0 1}. The elastic B3, B,, B,,
strain energy is defined as = RIH,1 .,H,a.31  (45)

'---q7(07(7 D Di, D,•o r1q,

(37) D3 D, 3

where k,., is a structural stiffness matrix of the 9" element in the q. Er1
i" elastic beam. as shown in Eq. 14. Therefore, the total potential H., = =H.3HH 3.2 = q. 2 (47)

energy can be found as f qE

PA, = •q k,, q,- V .- r'q, (38) Thus. the second term in Eq. 44 can be written as
2= d(NG•q (G H_ý H.,2NE.q. -

where k,, = •.=t ,k,,O.I.,. a symmetric constant matrix. aq;

Motion Equations L
By substituting the formulas of kinetic and potential energies in OtH, 1 , - H:,. i

Eqs. 32 and 38 into the Lagrange's equation. Eq. 1. the equations N 8G. A4.

of motion of an arbitrary free elastic beam 'at the local level can be B(H.1  - H,1  N0,xq,
written as aq,-H

- 1 l8(m,•) "= 1-2" ,4s

mq, -Ir, - )q,-"" q where 1* corresponds the first term and 2 represents the second

(k,, - . )q, = Q, - f, - (39) term. Then.
cfq: Oq. . dN,. aN " 8N,"1" = .' -'-,Oqq0

The above equations clearly show the nonlinearitv involved in the " "q7 dq- 7 q

time-varying coefficient matrices. Referring to Appendix . some of G,G - H,1 - H,:INeAq,
the matrix partial differentiations can be derived immediately in the di'-'a H . -. , - N, *

follows: 2 = - d , qN.,.,

T- G q( 7 To, s-yr. l ds 4 .3N N, ' qN..,, q,

s"; ZL; I "

v G(0 where 3'. represents the partial diffetentiation in "21 which is then019d~r (40) ..
written as

qr;G (R, - -T. (41) .3 . q 's,. q, D,, q,

0 q' ( 7 ..a 3 q .K B - q , - D , q ,
q aq. q; q.:i3 I, a .f ' .qq

The partial differentiations on the right hand sides of the above - (Baz - B51 -q, DT
equations can be carried out analytically by substituting the spe- B,, - B,• q, -

cific transformation matrix for It.

Derivation of ia(n.4,)/aqB
where Bi Bj.(a = 1.2,3) and D  1=Do~ = 1.2,31. _.ubsti-

Referring to Eq. 32. the formula of kinetic energy of the i'" beam is tuting the expressions of '3! into i2; gives
rearranged in the following, as

3 3
KE.= ;q,mq,=KE,. - AE.,. - KE.2  (42) 32 = (43){(Be -BE,)q,-D 6 }

where • .
T OA :N".x 3T

1,T.

KE.. = ;q. m,,q, (43) Substituting the expressions of [11 and ý21 into Eq. 48 yieids

-- .5KE,1 = ; qe':AN'G,l -H, - H,,)Ne,. Bq KE,1  . 8N1 @ . aNsO . . N, 0
8q r ; 8 qr, " ,aq. i .,l

KE., ;4e,•N7)(G., H,s•),, 4 ; IG,j -, H.1 -- Ha,)NG, q. -

3 2

Partial differentiating Eq. 42 with respect to q7 gives • .a- Bs~lq, -

dKE. I Mfm.q . 8KE,. 8KE., ,aKE., l4 .. ,

-a= -q -- ; - 2-- (4,4.q N 9A4

Oq.. a. e. q.A s , ,(49)
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"rhe last term in Eq. 44 can be written as -here c, is a damping matrix. k, ti a stiffnes matrix. Fr 1 a 4ener-
alized force vector, and they are formulated asS0='~ 0 Ne,.• d, I,.

- ~ d q"f" "-, , - H , ,s O , ,,, q, - I.= d6 (m , 4 h)

yq- - G,sr G - HO,A )G..d 4

3 .4.q. dN5  
,N, = k,. -

7r (9,A4. ! -7 aqq a. 0q, _a v,•
IG. 2 - HaiO,,.a q, - F, = -&-[ET9.,,,4. 1 1i•,q J q7,.

NOAqi (50) Substituting Eqs. 53 and 54 into Eq. 55 followed by premultipling
Eq. 55 with the transpose compatibility matrix 1r will result in the

Substituting Eqs. 49 and 50 into Eq. 44 will result in the following following global equations of motion as
final expression of the matrix partial differentiation. as

1Cl .)M 4-C 4- Kq =F (56)1 OI m, qh

dq ,qr where the global mass. damping. and stiffness matrices and the global.
dNq N? . N, 04. • generalized force vector are formulated as follows:

"dq; dq/ 'q
V{{G.a - H.a - H.a)lNO.• - 1G., - H,1 lOs"i,,l,[,,,"E®,,,N, - M=V:.•m•

,'-. Z ,B.. - B.)q. - D= -

q, f ,>'_kOi f, (1) .'

GLOBAL LEVEL MOTION EQUATIONS ,=t

.1

In the previous sections. the local level equations of motion have F = 7' F,. (57)
been derived for an arbitrary elastic beam. rn order that those 7i
generalized coordinates at the common connecting bournaries are
compact for the adjacent beams, it is necessary to include the kine- Structural and/or fluid viscous damping terms can be added .n each

matic constraints in the equations of motion. The concept of the c, macri.x. The internai connecting force terms in each F, .ector

compatibility matrix is employed in the assembly process so that the vanishes automatically during the process of matrix assembly.

coefficient matrices and the generalized force vectors of each sub- CONCLUSIONS
system are compatible. A set of global generalized coorainates is
selected among the local generalized coordinates of each subsystem A systematic mathematical model predicting the motion of a multi-

such that the global generalized coordinates are independent of each body system with elastic members has been fully developed in the

other. current paper. The mutually coupled ngid body and ejastic mo-
tions are revealed by including the rigid body generalized coordinates

Compatibility Macrix which have not been considered as the unknown deg:ees of freedom

A matrix which linearly relates the local generalized coorcinates to until very recent years. The significant complexity in mathematical

the global generalized coordinates is called the comoatibilit".. matrix, formulation arises because of the involvement of the unxnown rigid

For a system with n global generalized coordinates q. the local gen- body DOF. Nonlinear coupling terms due to Coriolis and centrifugal

eralized coordinates q, with m components can be expressed as forces. which were neglected historically, are completely taken into
account and are derived explicitly in matrix form. The conventionai

q. = i q ( .I 2. Y) (52) finite element analysis cooperated with the direct stiffness methoo
is used in the discretization of the elastic members. A third order

where the compatibility matrix 4, is an m, x n matrix which is in polynomial function is adopted in the finite element shape function in

general a ume-varying function of the rigid body generalized coordi- order to exclude these negligible effect of longtudinal displacement
nates. .Y is the total number of the subsystems under consideration, and axial twisting which are usually of higher order in magnitude
It is noticed that the compatibility matrix contains the information compared with the other deformations in most flemble structures.
of the geometric boundary conditions which describe the kinematic The Lagrange's equation is employed in which both the rigid body

constraints for those adjacent subsystems. and the elastic DOF are treated as unknown generalized coordinates
of the system. The elastic deformations of every element in each

Assembl' of Motion Equations elastic beam are measured in the local reference frame so that they

Differentiating Eq. 52 with respect to time gives are compatible at the local level. The position vector as well as the
velocity vector are formulated in terms of the moving frame instead

4h 4 4i q (53) of the usual inertial frame. This results in simple mathematical op-

h *' 4 + 24• ci, 4. q (54) erations in finding kinetic and potential energies.
The final form of the system dynamic equations of motion is ex-

R.eauranging the local level equations of motion, one can show that pressed in a closed form which shows high nonlinearity and strong

Eq. 39 takes the following standard form as contributions of the coupling terms in the time-varying coefficient
matrices and generalized force terms. The procedure and method-

m. 4- c, 4. - kIq. = F, (55) oinog developed herein are applicable to the dynamic modeling of
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work. Numerical techniques which resolve the difficulty in solving Measurement, and Control, Vol. 112, pp. 203-214.
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where d is partitioned ad = d~ d-dr
For simplicity, two ioecial matrix product operators .3 and r" are

introduced in the current paper. These special operators have the

higher priority over all other matrix ooerations, and they are defined

A ['(B) = A.,,B for each submatrix

r(B)a A = :BA,' for each submatrix

rr(B) = r(B.r)

where A is a partitioned matrix with the following form as

• At..............At.t

A,,........... A,,,

and :he number of column of each A,I(i = .. : =.... n)
must be equal to the number of row of matrix B so t.hat they are
comOatible in matrix operating.

If q is an n dimensional vector, and a scaiar 4 and an -n dimen-

sional vec:or a are the functions .)i q, the foilowing matrix partial

derivatives are deined.

64 L r4 4a Lin.
- . } .jT

n'I in)

"-here (•4,/dq,} is an n dimensional vector, and *3c:. 3,i is an
,t x m Matrix itn which t determines a tow and ) determines a column

:'or the atr. te Wowing properctes of" matrix partial derivatives

are derived from the above definitions.

b) = b, - b
qq- oq-

-- (C q) = C'

(qC) = (C - C) q

3-:i . 34,--•" ih 4.. , "
q-- ,
W(4Ba) = --- 41 -4 a5

)q-* W a 3q

-here B = b• "-b, a. b. 4t, 4,, and S are the functions of q,

C is a constant matrix, and b,(i = it) are the subvectors in B.
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STRUCTURES WITH MUTUALLY COUPLED MOTIONS:

PART 11 - APPLICATION AND RESULTS
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ABSTRACT

The application of the systematic Procedures in the dervaotio of the
equations of motion proposed in Part I of this wock is cemnonstrated
and implemented int detail. The equations of motion -.oc each sub-
system ace derived individually and are assembled under ;he concept 7.
of compatibility between the local cinematic proptrties of the eiastic
deg:-e"s of freedom of those co nectea elastic memaers. --he specific
structure under consideration is characterized as an open Loop vscsem
with samericai unconstrained chains being capaole of rzarn I ou
a {ooze's or universal joint. The rigid boav motion. due to two
unknown cocations. and the elastic degrees of fre-dom are mutuallY /

coupled and influence each other. The traditional motion suoerpo-
sition approach is no longer applicable herein. Numericai exampies i
foe severni. cases are Presenkted. T hese simulations ace c~crrparelc -Victn.
the experimental data and good agreement is inc-icatea.

INTROD UC'TION

Pact ofa this work presents the development -.f the iquations of Figure 1: A.4 test rig
motion (or an arbitrary elastic beam in a zle~bivi scru~cturai system
containing both the rigid and elastic bodies. In :act Er of the paper
the clheories$ developed in pare 1 are applied to a soecilic problem. aids of the lower ihaft.
The structural system is characterized as an open loop system with CODNT YTM
spherical unconstrained chains being capable of rotational motion.CORD AT SY ES
The equations of motion for the rigi bodies in the system ace de- Fig. 3 shows the coordiinate systems associated with the structural
rived in a lasnion Similar to the derivation of the equations of motion model. of the tesi rig to assist analyvnng the dynamiuc :-esponse Of thle
for theo elastic boa=s. The inAmence of the elastic defiormations pre- structurali system. ?*int 0 is a Universal joint at wuitch Cthe Oodii

ceding the rigidi body is considered. The strategy in the derivaciaon of & set of inertial coordinates (itil, ecis) is Located. in addition.
is first to obtain the LOca Level dynacmic equations and then to as- coordinates a amed moving coordinates. are alIso settled
semble the equations at the global level. The geometric boundary at goint 0. These moving coordinates are initially aligned with the
conditions ace implemented to ensure cthe compatibility between the inertiaL coordinates but are attached to the upper assembly sad ago
local displacement. velocity &and acceleration of the elasatic depee of thess rotated with the assembly. Threse successive rotating angles
freedom the& are common to two or maore members. Fig. I snow, ame defined between these two sets of coordinates. One $et of Co-
a satellte tens rig built bF Cowles ;11 and Anderson i?! at cthe to-& ordinates is defined for each beam, elastic or rigid. and ea& Leant.

Skat Uniersiy. Acoerspon inscematic dra ingo the dywnamic with the corresponding origins Located &s. eaech pcoimal end of the
part of the test cig is shown in Fig. 2. A lower shLaf Supports an up- beams and at each geometric center of the talks. respoeively. Al
per rotating structure and is driven by a DC motor through a driving Of ther coordinates are locally defined with their i coordlinates being
chain. An. upper shaft is connected to the lower shaft by a Kfooke's selected SM"tc tlhai they cotneide with the centrses 1141of the nude-
type universaL joint. A croes bar is fixed on the too of the upper (cormed beams or thter are initially' pointed to the opposte direction
shaft to balance the coming motion. An upper assembly is defined of on* of the moving coordinates. It.. for each "ILk~
as thoee parts of the structure that ace supported by the universal beSucsieRoangAq*
joint. exmepc the upper shaft and the cross bar. The comnigurzation, of TreScesv oaigAge
the entice rotating upper assembly is aicieymmetric aboust the Spin A see of three sucessive rotating angles about thes uniersal joint,
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is defined between the inertial and moving coordinates as shown
in Fig 4. Firstly. the upper shaft spins about the &i ax.s of the
inertial coordinates with an angie of As to reach a first intermediate
system (i.J. k.). Secondly, the upper assembly nutates about the
j. axis of the first intermediate system With an angle of .Ai to reach
a second intermediate system (ijk.). Finally, the upper ssembly

rotates an angle of A2 about the i. axis of the second intermediate
system to reach the final moving coordinates (i..j.. k.). These three
successive rotating angles constitute the base of the ngid body gross
motion which is essential in analyzing the structural deflections and
roLations.

Rigid Body Angular Velocity

Referring to Fig. 4, the rigid body angular velocity 6, interpolated
athe angular velocity of the moving frame, can be found by means
of the superposition principle of angular velocity, as

Figure 2: Schematic of the test rig where A,(, i 1. 2.3) are the corresponding time rates of three suc-
cessive rotating angles A,(& = 1. 2. 31. By observing the rotations, it

is found that the following unit vectors are identical. :.e.

- = k. =~, 1.- 1

Substituting above three identities into Eq I gives

,s 0 -Alji. - A7 i, 21

The objective is to transfer li and j* coordinates into io..o, .ko

system. From Appendix , this can be easily r-solved and the final

expression can be shown as

fl~e~fl31

wnere i= a set oi unit vectors oi the moving coordinates.

and r1 is an angular velocity vector Which can be written as

n = Ni (4)

"where A = {Ai1 ,A3}'. and N• is a coefficient matrix containing the
"S information of th'.ree successive rotations and is defined as

Figure 3: Coordinate systems = = coSA,7 0 cosX•ssn • 5)
NJ L -sinA, 0 cosAt CSA2J

It has been shown that the conflautations of the structure are axisym-
Smetric. This does not imply, however, the symmetry of tLie inertial

forces about the spin axis. which induce elastic deformations. FromX3 (.3) (J.' rma(JO")
,'.) - ) )a static force analysis, it is found that the tangential inertial forces

0 , are non-symmetric about the spin axis in three orthogonal Cartesian
planes. Each elastic beam must be therefore disceutsed using the
different generalized coordinates.

TANK DYNAMICS
"A. Referring to Fig. 2. a tank assembly or a tank for simplicity, con-

A J2(.*) \ structed of a spherical plastic container. liquid within the container,
s : ") \ A al 'io') two clamping steel plates which hold the spherical tank. and some

\ --- clamping bolts. is considered as a rigid body system. One tank is

placed on each side of the test rig-a.symmetrscalyl Liquid slosh-". -inA within the tank is modeled by Computaional Fluid ynam-.

ics(CFD) ;31. The interaction mechanisms between the structure
and liquid are investigated in a joint efforts from the flexible struc-
ture model and the CFD model. The results are published under
a separate paper '41. Due to the special construction of the tank
assembly, some elastic degrees of freedom of the supporting flenble
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rigid body degrees of freedom. which result from three rotations
about the universal joint. and the elastic degrees of freedom. whLca

k.1' k. are due to the elastic deformations at the distal end 8, of beam

A and the elastic deformations at the points D. and D%. By applying
a . -" four geometric boundary conditions stated in Eq. 6, a set of local

"generalized coordinates is defined as

q, = .r dr} 7)
€ where

Thus.

, -D. , = OJ.q,

T. dy Odq= (9)

- where the coefficient matrices 0O.% and 1jd can be easily found by

their definitions.

Figure 5: Tank assembly Tank Position and Velocity Vectors

Referring to Fig. 5 again, point T, is a mass center of the correspond-

beams connecting the tank assembly are constrained. The geometric ing tank assembly. and the vector Fr, is the position vector of the
constraints are revealed explicitly por o definin tank generalied mass center. Thus.

coordinates. Tank equations of motion are derived in such a way 'r, = L..k.k - L,i, - d,, j, - d,, k, -
that one model accommodates two tanks in terms of proper su•-

stitutions of the corresponding transformation matrices between the 2- d,,.vi• - ' Id,.. - . )k., -

participated coordinates. A position vector of the tank is formuiated - -1, (101
first followed by the derivation of a velocity vector at the mass cen-
ter of the tank assembly by differentiating the position vector with where the A'_j are the relative coordinates of the instantaneous mass
respect to time. The vector expressions are all relative to the mov- center deviated from the initial position during the tank motion. [t
ing coordinates. The tank translational kinetic energy are found by should be noticed that the first four terms in the above equation
using a standard formula involving a velocity squared term. The determine the position vector of point 3, after elastic defiections
tank angular velocity and the inertia dyadic about the mass center of beam &, :he next four terms relate a relative position vector of
are formulated prior to calculating tank rotational kinetic energy, point E. to point B,. and the last five terms estabiish a relative
Gravity is the only external loading under consideration. The in- position vector of the mass center T, to point E, on the tank. After
stantaneous liquid free surface shape and its orientation within the transferring the local coordinates to the moving coordinates. it can
tank are supplied by the output of the CFD modeling. Liawd iner- be shown that Eq. 10. in matrix form. becomes
tia dyadic is updated so as to update the tank kinetic energy. The f L

mass center of sloshing liqtud is calculated relative to the geometric = -T0 J. v
center of the tank. The coefficient mass. damping, and stiffness ma- r,•, = 0 -=

ences and the generalized force vectors are formulated by appiving
Lagrange's equation. The denvation of the tank dynamic equationsrt
can therefore be accomplished. T_.f d..•v

Geometric Constraints 
(d, d,

Fig. 5 depicts the tank assembly and its associated structures. Beams T,,T, -, (11)
a and bare two flexible beams which connect the rigid tank assembly r

at the clamped points. D, and D%. The transverse dedections of
these two beams in the j.6 direction are equal to each other. The where the matrices T., T..b and T.1, are the rotationai transfoC-

rotation of beam a about the j.# axis at point D. is equal to the mation matricesisee Appendix ) wherein T_, is a constant matrix

correspond:.s; rotation of beam b about the same a.xs at point Di. and T.., is a time-varying matrix. Physically, beam i is much stiffer

The rotations of the beams about the ki, axis at points D. and Dk than beams a and b. and hence the T_&, matrix is approximately

ace zero because these poinu are clamped on the twsk. Therefore. constant Diferentiating the above equation With respect to time

the following four geometric boundary conditions are concluded, yields a velocity vector as

= {,(0 / { 0
4.... :o0; 0,=0 (6) ir, = T. d... -T._ di..

where the second subscript m denotes the last finite element nodeafor J 't - .
both beams) which coincides with either the point D, or the point -T. 5 T.1 7  ,
Di. .,w and d., are the defiections of beams a and b in the j-. r.a + A.

direction. 4.., and 
4

i., ae the rotations about the j.,ais and & a.

4...eo and 4%, are the rotations about the k.6 a1. .-T."T.;, rr, (12)
The local generalised coordinates of the tank assembly include the .
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where the A's are the relative velocity components of the tank maiss Part I. Partial differentiating Eq. 18 with respect to qc, and partial
center. which are small compared with the tank overall motion. The differentiating Eq. 18 with respect to 4, followed by differentiating
term associated with these components can then be neglected in the the result with respect to time will result in the following damping
above velocity equation. fl is a skew-symmetric matrix derived from matrix, as
the corresponding rigid body angular velocity C* 1 ((m20)

Tank Angular Velocity cj = M - q- (20)

The tank angular velocity 11 is a vector summation of the following where the partial differentiation can be obtained following the same
three angular velocities, derivation demonstrated in Part 1.

1. li, a rigid body angular velocity (i. relative to i.) Potential Energy

2. a rigid beam angular velocity bi, relative to i.) The tank potential energy is constituted of only the tank elevation
in the gravitational field. Following the same procedure in Part I

3. -P, a tank local angular velocity (4, relative to i.j.) one can find that the potential energy takes a similar formulation as

Refernng to Fig. 5. it can be shown that the tank angular velocity PE, = - h~q, (21)
n, takes the following matrix form as

where the potential function V, and the force coefficient vector h,
4"'.'" are the functions of the local generalized coordinates q, Partial

• = e t- T.. 4 ,.v - differentiating the above potential energy equation with respect to
4.... qj yields the following generalized force vectors and stiffness matrix

*1 _h _ _,

at: _3hlT n ){}" )J a q":
T ,( - hj k,- (22)

The local inertia dvadic of the tank assembly about the mass center where the matrix partial differentiations can also be obtained in a

of the tank can be written as similar way as demonstrated in Part 1.

- ,Tank Equations of Motion
S(141 The equations of motion of the tank can now be written in a standard

where I. is a local inertia matrix about the local tank coordinates. form as
Substituting the transformation matrices between the moving frame mi,q - c. 4, - k:q = q; (23)
and the tank local frame ( into the above equation yields where all the coefficient matrices and the generalized force vectors

f; •15) are already derived in the previous sections. Particuiarly, the-mass
matrix =,. the stiffness matrix kt, and the generaiized force vector

where f4 are the functions of the generalized coordinates q, oniy while the

I,,= T, T ,6, I, 116T damping matrix c, is a function of both the generalized coordinates
q, and velocities q•,.

Kinetic Energy RIGID BEAM DYNAMICS

The tank kinetic energy. translational and rotational, can be forms- Beams 2 and 6(see Fig. 31 are modeled as the ricid bodies because

lated .a I - they are much more rigid in resisting deflections tnan other beams.
KEr = M irr , - , 0 ,T FoUlowing the same concept in the tank dynamics, only one model is

developed to accommodate two rigid beams.
Substituting Eqs. 9. 12-15. and the expression of fl into Eq. 17. one

can find that the kinetic energy of the tank assembly becomes Velo9ity Vector

S- As shown in Fig. 6. point B, is the mass center of the rigid beam
'E, = lq mq, (18) after tne deflections and rotations of the preceding elastic beam.Point 0 is the universal joint at which the moving frame is located

where the mass matrix m, is written as A position vector of the mass center of the rigid beam is then written

as
-A ,i -FHizt- -L,- f.,-=L.,k.-L, - d , - d,, it. (24)

N9., _ or G,•z•, - -n,- where L.,. is the length of the upper shaft. L, is the length of the
- I preceding elastic beam. and d,-,e and d,, are the elastic deflections

1552 ~d(GJZ - Hs- - 4)NG,.\ - at the distal end of the preceding elastic beam. The above vectorial
equation can be rewritten in the matrix form as

J2-H, -H; , (19)
to . T_ d_(5

where m, is the tota mass of the tank, mn, is an instantaneous con- -d, (5
stant mass matrix, G, 1 , 0,,, and G, are the instantaneous constant

coefficient matrices. H,1 and H,2 are the time-varying symmetric The local generalized coordinates of the rigid beam are defined a
matrices, and H,3 and H14 are time-varying rectangular matrices.
All these matrices are similar to the corresponding ones listed in qi IT dT (25)
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DYNAMICS OF A BAR-SHAFT AbSEMBLY

Sk The cross bar. the lower shaft, and the upper shaftisee Fig. 2) con-
struct a bar-shaft assembly. Following the same procedures tn La-
grange's approach. it can be shown that the kinetic and potential

energies of the assembly take the following forms, as
I

:E° = A'( 11, - r, 
3 r..

PE. = -isu,G[lt, - ( ";,.. - .)GL,.,T,o 3 3  (32)

where ri, is the moment of inertia of the lower shaft about its spin
axis m,,, and meb are the mass matrices of the upper shaft and
the cross bar, respectively, MNu,, M-, and m.b are the corresponding
masses of the lower shaft, the upper shaft, and the cross bar. L,
is the length between the universal joint and the mass center of the
lower shaft, and T,,m is an element of the transformatton matrix T,_
which relates the inertial frame to the moving frame. Substituting

above equations into Lagrange's formula gives the following dynamic
Figure '5: Rigid beam schematic equations of the bar-shaft assembly, as

(M. - m.)! - cA
where d,_ the elastic generalized coordinates of the preceding elastic 1 3T.13
beam. are defined as =f - (3 0, -- -6)GL., )A- (33)

dT = {d,.-,, d,,4..,} (27) .where mn_ is a 3 x 3 null matrix except the element at the 3rd row
and the 3rd column with the value of !r,. f. is a zero force vector

Differentiating Eq. 25 with respect to time yields the foilowing ye- except the 3rd component which :edects the unknown input torque
locity vector, as about the vertical axis &C aopiied on the lower shaft. The time-

varying mass matrix m._ and damping matrix c, can be expressed

1 d, =fT r 3, (28) a

Inertia Dyadic and Angular Velocity e, = in,, 2 o A" f34)

The inertia dyadic of the rigid beam abOUt its mass center B, is where mi, = mn- - m_.
formulated in the foilowing. as

SYSTEM MOTION EQUATIONS
/= , (29) The equations of motion for the elastic beams are derived in Part 1.

h t The total degrees of freedom of the system are nineteen if each eiasticwhe re 140 = 1.-2. 3) is a loc al iner tia m atrix abou t the ýt,. J, k .) 6eam is m odeled by one inite elem ent. T:hree oi : .te 3eneraiized

.oorainates. The angular velocity of the :igid beam can De written
as :oordinates result from the rigid body motion and the rest are due

to the eiastic deformations. 1f each elastic beam is modeled by two
= - elements the total number of degrees of freedom then increases to

forty three.

fl-T • (30) Global and Local Generalized Coordinates1 "3y using one element for each elastic beam. the global generalized

where -;, is a local angular velocity accounting for the rotations. 4,,, coordinates are selected as

and 4,_,, of the preceding elastic beam. {Ar

Rigid Beam Equations of Motion ds.,*s.d s.v .

Following the same procedures stated in the previous sections, one d3,..•..43-Vd4-1 !
first formulates the kinetic and potential energies in terms of Eqs. 26 dr-,r-, .,4., r (35)
- 30, then derives the mass, damping, and stiffness matrices and the
geneealized force vectors by differentiating the kinetic energy and where the first subscripts of each elastic variable denote the corre-
potential energy terms with respect to the corresponding quantities. sponding elastic beams, and the second subscnpt m denotes the last
genetalized coordinates, velocities, and time. Finally, one can obtain node. Accordingly, the Local generalized coordJinates are defined in
the equations of motion of the rigid beam in the following form as the follows:

in 6 4- c, It k. q. = (31) qt {Ar 1 0

where mE, It., and & are the functions of q, only, and c, is a function qr = {Ar 1 0 I

of q, and 4,. These matrices and vectors ae similar to those derived 4 = {Ar : 0 1 d3-,43-1,41' 43-y
in the tank dynamics. q4 ( = 10 1

425



J4. (AI 0tI .,,,..1.l,

q = {Q 0 Je.,4s...ds ,+s...} CCLf~(.OWCSC

q; = {Ar I d t.v,4_i, -d..,4 *t,}j

,. {Ar

1 d..,ds..j 3 ..,d .4 1 } ,/qlo {jr*: ds_.r4s.:ds_,4s., I T
to dT.,dT.:7,. 4mdi,+im,,

(36)

where q1 , qs. q3, q4 , q7, and qg are the generalized coordinates for 0
the corresponding elastic beams. qo are for the bar-shaft assembly. q3
and qe are for the rigid beams, and q9 and qjo are for the tanks. The
null vector 0. containing four components, appears in each set of the a 3

generalized coordinates for the elastic beams because the proximal -.- se sauc,
ends are all clamped in this particular structure. Figure 7: Spin profile

Compatibility Matrices

By comparing Eq. 36 with Eq. 35. the corresponding compatibility
matrices for each subsystem can be found as 1 10 001

00 0 (30
0 Id 0

1,I 0 0 01
= 0 0 0 0 Assembly of Equations

0 0 I4 0 The time rates of the compatibility matrices are zero because they
I1 0 0 0 are constant. Following the same procedure developed in Part I. one

43 = 0 0 0 0 can conclude that the global mass. damping, and stiffness matrices
0 0 I1, 0 and generalized force vectors can be written as
1, 0 0 0]1

44 = 0 0 0 0 to
0 0 I'j 0 M 7 +";m,4,

Ix 0 001 - 07
4. = 0 0 0 j K f

0 0 Ir ,=

41 0 0 0 K = .'k,*,

0= ?IOi 1o

F = f,= (39)

" 1, 00 0 0 The system equations are therefore given as
0 0 14 0

r1% 0 0 0 01C Kq
= [0 1, 0 0 0 M•-Cq-Kq= (40)

0 0 0 14 0

[ 0~ 0 0 0 ]1 Integrating the above system equations numerically will yield the

Flo= 0 0 14 0 0I (37) solutions of the system dynamic responses which are illustrated in

0 0 0 0 1, the following section. A detailed numerical integration method is
developed and is to be published under a separate paper.

where W's are the null matrices, I.% is a 3 x 3 identity matrix, I4 is a SIMULATION RESULTS
4 x 4 identity matrix, and I, and IV' are defined as

The following structure configurations and material properties are

1 0 0 01 used in the simulation of dynamic response. The mass density and

0 0 0 0l the Young's modulus are 0.7833 x 10
4
(km) and 0.21 x 10i(Pd).

0 1 0 0 respectively, for all the members, elastic and rigid. The units of the

0 0 1 0 length(L) and cross-sectionai area(A) are (m) and (m3), respectively.
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I he specific valuies for each of the niernoers ace listed in the f4liuwi:

Lt= Ls 0.165; A, = As = 0.T 72 x0 SO
L Z 0- 104; A2 = . = 0. 019 A 0. 019

ZL3 =L 4 =L r=Le 0.29; z
D3= D4 = D7 Dg = 0.005 (diameter)

Lf, = 0.940; D 0.0254
L_= 0.127; D = 0.0254 ___

L~,= 1.219; A.t, = 0.00635 x 0.T254
Tank = 0. 165 x 0. 165 x 0. 114 ___

LAMOAI (1 060a
The total mass of the tank, including the solid structure and Liquid, - - O*.2h 0(I 0')

is 1.96(kilm).I a3
The input spin velocity of the lower shaft arid its corresponding an- TIIE (SICi

gular acceleration profile are shown in Fitg. 74. A sinusoidal function
is adopted in the angular velocity profile in Wb~icbh the speed of the
lower shaft increases gradually from Sero to 60RPMI after 3 secontds.
In one ease, the upper shaft is driven by the lower shaft through the______________
universal joint without any initial tilt while in anotfter caue the At ~
angle of the upper shaft is tilted I degree initially from the spin axis. -,e~5t

The results from these two runs ace compared *xith ia Fig. S. The
top figure shows the time domain plots of the rigid body angles in
which two angles are varying in a range of several degrees for the L ý
tilted casefthe angie magnuitudes for the non-tilt case ace too small zT
to show up in the current scale). The influence of the rigid body ýA
anotion to the elastic deformtations clearly shows up in three figures *

following the top figure. This effect is excected and, accounted for
;a the dynamic modeling. (in the third casetse% Fit. 91. one of the
tanks is thrust upward by an impulse of IY after the lower shaft __________

spins 1.5 seonds. The spin profiles are the samne as those in case TM SC
I and case 2 except that it takes only I second to drive the lower id(5C

shait~~~~~~ foseot RP.heuper shaft experiences a relatively

large nutaction before it reguans stability as evidenced by the large
variations of the rotation angles of A.' and Al. and the tank vertical 0
position relative to the universal joint shown in the too figure. The

iFfect~s of the rigid body motion is very tsignificanti to the ejastic de-
flections and rotations in this case. 7he following three figures show 41

the comoantsons of the ibeam tangential. vertical, and radial dedec-

tionis between the axi~symmetiri points on the tartis and the rigtd ½h__
beams. 'The most significant deformation. overall "Wds deflectiont-
at the tank center accounting for all th~e oossoiei elastic deflections
anid rotations preceding the tank, is calcuiaceo anid compared with _____7________

the expieriment mleasurement. A. measured actual profiie of the span
velocity is used in the computer simulation ant nhe computed result -

matches the experimental data very wellI as illust rated in Fig. 10. - - pl

CONCLUSIONS rm SE
It is recalled that in the proposed approach the inherent character of
mutual influence between the rigid and elastic motions is revealed by
including the rigid body degrees of freedom in the system general.-____________________
tied cooroinates. This approach resuits in equations of motion with , tr
highly nonlinear coupling terms, especially those associated with the I ceini miL

time rate vector of the generalised coordinates. The equations of
motion foe eacit rigid subsystem are derived individually and are as-
sembled along with the equations of motion foe the elastic beams
to obtain the system equations. The elastic defocirmations age comn-
pletely considered in the dynamic response foe the subsystems down
the chaina due to thet nature of the open loop system- The nutmerical, if .ki-- -

simulations clearly show a good indication thiat the predicted results
front numerical integration match the measured experimeaWs data
very well. A. detailed numerical method is discussed and developed-
ja a forthcomzing publication.A2L
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Figure 9: Case* 3 (with impulse)
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c o !10 - S i n q .kr r 1

T =% sit h co iG.
0 0 i

where 9,, 9,, 94 are the rotating angles about the 1, J, and i axes
respectively.

Three transformation matrices encountered in- the current paper
are formulated as

Tý 0 T2 01
0 0 T33

[0 0 9%31
"T = 0 t,2  0

t3t 0 0

T~•= [ 0 1 -G

where T,, and t,, are equal to etther I or -1, and the twisting angle
( is defined as

9 1 , -
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APPENDIX F. A Sequential Implicit-Explicit Integration Method in

Solving Nonlinear Differential Equations from Flexible System Modeling.
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A SEQUENTIAL IMPLICIT-EXPLICIT INTEGRATION METHOD
IN SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

FROM FLEXIBLE SYSTEM MODELING

Jiechi Xu and Joseph R. Baumgarten
Department of Mechanical Engineering

Iowa State University
Ames, Iowa

ABSTRACT 
plicit methods are usually stable numerically, permitting large timeThe dynamic equations of motion obtained in the modeling of flex- steps. and ate effective for linear systems. Explicit methods, on theible structural systems with unknown rigid body gross motion are other hand. tend to be effective for nonlinear systems with low natu-often highly nonlinear and possess time-vsrcyng coefficient matrices. ral frequencies in assuring the numerical stability which depends onThe inherent characters of nonlinear large overall rigid body motion the highest natural frequency of the system. However, neither classand linear small vibration are also involved in the system equations. seems very efficient by itself in dealing with the systems with mixedNeither the implicit nor the explicit algorithm seems optimally suited properties arising from the nonlinear and linear motions.and efficient by itself in dealing with these kinds of equations. This [n analogy to the problems under investigation in th:s work. manypaper, therefore, presents a sequential impUcit-exp.icit method in methods have been developed in which ic is attempted to sminita.which it is attempted to achieve the attributes of both classes of -ieously achieve the attributes of both ciasses of methods in a s:.-algorithms. The equation system expressed in matrix form is first gie algorithm. In the time integration of structure-media problems.mapped to a subsystem in which the specified generalized coordi. Belytschko er ai 'l: have presented three techniques for enhancingnates are eliminated. The subsystem is then partitioned into two computational efficiency: explicit-explicit(E-E) partitions, explicit-sets of coupled equations. One set of equations. describing the elastic implicit(E-l) partitions. and implicit-implicit(I-l) partitions. Themotion. is linear with respect to the elastic generalized coordinates mesh, resulted from the discretization in space by the finite elementand is integrated implicitly. The other set of equations. governing method, is subdivided into two subdomains in which each domain isthe rigid body motion, contains the highly nonlinear coupling terms integrated by a different method. The nodes are partitioned into twoand is integrated explicitly with the back substitutions of the elas- groups. explicit and implicit: and the elements are partitioned intotic kinematic properties already calculated in solting the first set of three groups. explicit. implicit, and interface, accordingiy. In the E-Iequations. A Newmark algorithm is employed to integrate the second partitions. :he explicit subdomain is integrated first and the resultsorder system of differential equations directly. A predictot-corrector are subsequently used as boundary conditions for the integration ofscheme also coming from the Newmark algorithm is applied to the the implicit subdomain. In the E-E and 1-[ partitions, either theexpiicit integration. The procedures developed in the current paper interpolation or the extrapolation must be performed. respectively.are applied to simulating dynamic response of a compiicated flexible Hughts and Liu!2,3: introduced a simplified method in which tnesystem with mutually dependent rigid body unconstrained spherical mesh is grouped into explicit and implicit elements only. The no-motion and small elastic deformation. tions of interface elements and the node categories are avoided. The

INTRODUCTION improved implicit-explicit algorithms are claimed to be amenable tostability and accuracy analysis, and. at the same time. be simply andTraditioally, the dynamic modeLing for the flexible systems involv, concisely implemented. The stability analysts are also carried outing elastic bodies is focused on these problems in which the gross, for the implicit, explicit, ad implict-explicit algotithms. [n theiror nominal, rigid body motion is predefined or can be derived. The formulation, the Newmark family of methods is used to define theresulting system equations, therefore, only include the eiaistic gener- implicit method. A predictor-corrector scheme, constructed from thealised coordinates. The mutually coupled terms between the rigid Newmauik family, is employed in defining the explicit method. Thebody sad elastic motions are missed or neglected by assuming them developments described in their papers &ce restricted to linear struc-small. However, for those problems with unknowi- rigid body moo- tural dynamics. In a later paper published by Hughes et -,44, thetion. the corresponding rigid body degrees of freedom must als be impiicit-.ex'plicit finite element concept is extended to nonliear• tran-included in the system generalised coordinates, and two motions ace sient analysis. An effective static problem is formed in the iterativetherefore influenced and dependent of each other. Consequently, procedures in terms of the unknow" displacement, which is in turndifficulties arise in the numerical analysis. The inherent kinematic linearized. A predictor-multicorrector scheme is proposed to achievefacts, reflecting the large overall nonlinear rigid body motion and second order accuracy.smell Linear vibration, need to be accounted for at each time step in In an effort contributed by Chang and Hamilton i5! (63, a methodthe integration. Basicsily, there are two clasesa ofalgorithms for the for simILIaxing systems with two inerctally coupled motions, a slowtime inItgration (or dynamic problems: implicit and explicit. Im. motion and a fast motioa, is presented. The concept of implicit-
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explicit algonthm is applied to integrating the coupled system in a and the corresponding driving forces become unknown. The number
sequential fashion. The fast motion equations are integrated first of unknown generalized coordinates is less than the number of the

by the implicit method in which an effective static problem is also equations though the total number of unknown variables still equals

formed in terms of displacement. By assuming the negligible changes the number of the equations. The equation system can not be inte.

of variables of slow motions for each time step, the time-varying grated directly and must be restructured to be suited for the direct

coefficient matrices are replaced by the corresponding ones at the integration.
previous time step. The slow motion is updated by integrating the
nonlinear equations explicitly, in which a predictor-corrector scheme
is employed. Eq. I can be rewritten in the following sub-matrix form, as

The current paper proposes an implicit-explicit sequential time in-
tegration method. This is designed to simulate systems with mnutu- rM11  M12  M13  01 'i
ally coupled large overall nonlinear rigid body motion and small Lin- M 2 1  M 2 2  M 2 5 j 52 -

ear elastic motion arising in the dynamic modeling of flexible struc- M 3 1  M 3 2  M 3 3  P3
tural systems. The original differential equauon system, which is
capable of handling the forward and inverse dynamic analyses, is [ C1 1  C 1 2  C 13  1 f
mapped into a subsystem by eliminating these specified rigid body C 2 1  C 2 2  C 23  52 2
degrees of freedom in a forward like dynamic analysis. The subsys- C 3 1  C 3 2  C 33 j •3
tern is then partitioned into two equation groups. suggested by the
inherent characteristic of the flexible dynamic motion. One group is r Kll K 1 2  K 1 3 i { PF 1

defined to describe the linear elastic motion and the other group is de- K2 1  K 2 2  K2  P2 = F-, (2)

rived by including the nonlinear rigid body motion and the coupling K 3 1  KI 2 K3 3  P3 F3

terms. The Newmark implicit algorithm is applied to the first set where the generalized sub-coordinates P2 are supposed to be those
of equations to integrate the elastic motion. Two distinct schemes, specified degrees of freedom of the rigid body motion, and the un-
direct and iterative integrations. are introduced. The direct integra- known driving forces are involved in F 2 . It can be easily shown that
tion leads to a direct substitution of the displacement and velocity Eq. 2 could be mapped to the following system which inciudes two

in the equations in terms of the acceleration. and the values of the sets of equations as
coefficients at (t - %t) are replaced by the predicted values based on
the current time. The iterative integration, on the other hand. leads -Mil M 1 3  01 }-
to an effective linear problem in terms of the acceleration, which is L M 3 1  M 3 3  L 3
in turn linearised. A predictor-multicorrector scheme is employed to
enhance a second order accuracy without adverse effect on the sta- C11  C1 3  01 P K 11  K 13  11
bility condition. The explicit algorithm, incorporated with a single IC3 3  13 - K 1  K 3 3I '
pass predictor-corrector scheme, is proposed to integrate the second

set of nonlinear rigid body equations of motion. The elastic quan- -- - - K,2p3
tities involved in the coupling terms are back substituted by the - F3 - M 3 2 0s2 - C3 2 02 - K 3 2 P 2
values calculated from the first set of elastic equations of motion.
The rigid body variables at the future time step are substituted by 3
the predicted values accordingly and are corrected using the same F" = ' (M2i1i - C.ii - KniPi) (4)
Newmark algorithm. The method developed in this paper possesses i i

improved implementation properties and is aimed to be applicable to

any dynamic systems with the mixed rigid body and elastic degrees Eq. 3 can be solved first by the proposed integration algorithms in

of freedom. the following sections. The results are subsequently used for the
vectors 0j, •i, and pi(i = 1.2.3) in Eq. 4 to dete:mine the unknown

DYNAMIC EQUATIONS driving forces involved in the force vector F 2 .

A standard form of the structural dynamic equations can be written substse Partition
in the following matrix form. as

In Lagrange's approach. the formula of kinetic energy can be written
M(p)o - C(p. 0)0 - K(p)p = F(p) (1) in a standard matrix form as

where the mass matrix M is usually a symmetric matrix and is a KE = 1p Mp (5)
function of the generalized coordinates p which include the rigid 2
body and elastic degrees of freedom. The damping matrix C, re- where M is a symmetric mass matrix. 0 is a vector resulted from
suited from the Corsolis and centri.ugal accelerations, is a nonsym- the derivatives of the generalized coordinates with respect to time.
metric matrix and is a function of both the generalized coordinates
and their time rates p. The stiffness matrix K is a nonsymmetric The damping matx can be derived and expressed as

matrix and is a function of the generalized coordinates only. The C = M - M (6)
generalized force vector F is also a function of generalized coordi-
nates in general and includes the external loadings which initiate where M are the time rates of the mass matrix M. and M is a
the motion and drive the system. In an inverse dynamic analysis nonsymmetric matrix which is defined as

the driving forces are specified and the rigid body motion is to be
determined. The above equations of motion need not to be modified M=- (M 0) (7)
because the force terms appear at the right hand side of the equa- 2 4(p(
tions and the number of generalized coordinates is equal to the num-
ber of the equations. In a forward-like dynamic analysis, however. Therefore. the damping matrix C is a nonsymmetric matrix wherein

the rigid body degrees of freedom, are partially or totally specified IM is a symmetric matrix. The viscous damping matrix can be added
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to MI matrix. In analogy to Eq. 3. the system equations can be Two impicit algorithms. direct and iterative. are demonstrated in
partitioned in the following form as the following two sections. In the direct method the values of the

displacement and velocity at the future time step are replaced by the
rMrr Mr: 4 qr ', predicted values and Eq. 17 is integrated in terms of the acceleration.

Mer Me. 4e The displacement and velocity are in turn corrected by a \ewmark
algorithm, but the acceleration is not corrected. In the iterative[Mrr -M1rr "r; -I re NI r 4r }_ method the values of the displacement and velocity are predicted

Mer - Mer -Mee - Me tqe first. Eq. 17 is then integrated by forming an effective lir.ear problem

r0 Kr. qr - I I in terms of the acceleration. All the variables are finally corrected by
Kee qe - (8) the Newmark algorithm also. Multiple iterations can be performed

to increase the accuracy.
where qr are the rigid body generalized coordinates, qe are the Direct method: The 'Newmark algorithms can be written in the
elastic generalized coordinates, and Kee is a symmetric structural following forms as
stiffness matrix. The sub-matrices associated with the rigid body
generalised coordinates in the system stiffness matrix are null be- d.,%, = dt~a, - -1t-3d:a• (18)
cause there is no stiffness for the rigid body motion. The above , = - - - (191
equations can be separated into two sets of equations as shown be-

low. and
Mrr~r - Mrete = fr (9)

Mer~r - Mee.e - Mee.e - Keeqe f'e (10) d = d, - .%tde - 3-lt'(l - 22)d, (20)

where de..It, = d - .At(I - -r)dl (21)

fir = Qr - (Mrr ýM•r)Cr where .- t is the size of time step, the subscripts t and f - .1a denote

-(are - Mr-)0e - Kreqe the current and future time. 3 and -, are two Newmark parameters.
d. d. and d are the displacement. velocity., and acceleration vectors.f'e = Qe - (L'Ver - ,M•er)C4r - ,MVeecle (11)

respectively, and d and d are the predicted displacement and ye-
Rewriting Eq. 9 in the following form as locity vectors. The values of the matrices Mes and ..ee and the

vector tes in Eq. 17 at the future time t - At can be evaluated by
4 = Mrr(fr - Mre.e) (12) the substitutions of the predicted values as shown in E.ns. 20 and

21. Subststuttng Eqs. 18 and 19 into Eq. 17 results in the foilowing
and substituting the above result into Eq. 10 will ",ieid equation as

M~es~e - Me.4ee - Keeqe = Fes (13) Mei.:-AOe.:-i = f eL:.Xt 122)
where 2ve0 and fei are the effective inertia matrix and the effective

where force vector. respectiveiy, and they are defined as
-les = Mee - MerMrMre (14)

and Mes.t.-nt = -'es.t-t- - -,ee.t-4t

fes = Fe - MerMr'fr (15) -At.3Kee :-At (23)

The modified system therefore takes the following form as: fet.t-a = t es.t-At - Mee.-.j.qe :-.t

M"4x - Mreqe = fr (16) -Kee.. ,e.t-a .24

Mesae - Meele - Keeqe = f"s (17) Once the acceleration vector is solved from Eq. 22. the dispiacement
and velocity vectors can be corrected from Eqs. 18 and 19. This leads

In general, the mass submatrices Mrr, Mre, and Mes are nonlinear to updating the rigd body motion by explicitly integrating Eq. 16
functions of qr and qe; matrix Mee is a nonlinear function of qe and to advnce to the next time step.
and 4e; the structural stiffness matrix Kee is a constant matrix: Iterative method: The accuracy can be improved by using the
the generalized force vectors fr and fe, include not oniy the external iterative method with the trade off of performing iterations. The
loading but also the Coriolis and centrifugal forces and are nonlinear superscript notation (&) is used in the following quantities to denote
functions of qr, qe, 4r, and 4e. The above two sets of equations are the iteration. The same Newmark algonthms are empioyed in the
coupled through the inertia matrix Me, and the force terms. Eq. 16, development of a predictor-multicorrector scheme.
which governs the rigid body motion, is nonlinear vith respect to qr Before iterationli = 0), the predicted values of the displacement
and qe while Eq. 17, which governs the elastic motion, is linear with and velocity axe assigned as the initial values for the future time while
respect to qe. the corresponding imtial acceleration can be obtained by integrating

ALGORITHIM DEVELOPMENT Eq. 17, i.e.

In the following sections an implicit-explicit sequential time integra- i = 0 (25)
tion algorithm will be developed to solve the system with coupled (26)• ~~~~qý.t,t = e.+,(6
nonlinear second order ordinary differentiai equations as expressed 40)
in Eqs. 16 and 17. Eq. 17 is numerically integrated first by an im- qe.,5 a = q.,.., (27)
plicit method to find the kinematic values of the elastic motion. The -_I MS l
results are subsequently used in integrating Eq. 16 to update the e .
rigid body motion.

Implicit phase -Kees.•iqe.t..,) (28)

563



Substituting Eqs. 13 and 19 into Eq. 17 yields

--. ~•ttqe.,+&c

ge(.) "- (29)

where M" is an effective inertia matrix which can be expressed as

"M = M A..' + 7

+At2K(el., . A,(30) X2 <

Let A&e be an acceleration increment during each iteration, i.d.

Aq.e _ - (31)

and Af be an effective force increment during the same interval of

iteration, i.e.
f-M- -A t)

K(At ) K) 
1  

(32) Figure 1: Schematic of A Rotating System

Eq. 29 can then be rewritten as Once again, the rigid body displacement and velocity vectors are

M"A•e = Af (33) ready to be corrected as follows:

Solving Eq. 33 gives the values of the acceleration increment A&e. qr.t-n. : qr.t-n: - At'
23r.t.-a (41)

The results are then subsequently used to find the corrected values qr.n: -r.t-a - - (42)

of the displacement, velocity, and acceleration. i.e.
where the acceleration vector qr.i.A: is solved in Eq. 39. The proce.1.e -i t) -( U)

qe. 1 -Al = qe.,-, - Aqe (34) dures in the explicit phase are summarized as predicting the values
through Eqs. 37 and 38, solving Eq. 39 for the acceleration vector.

&t= qe.,-at - 1t1qe.,.&t (35) and correcting the values through Eq%. 41 and 42.
q = qe3-I - . .A2. -t) (36) At this point, the imolicit-explicit sequential time integration algo-

rithms introduced to solve the equation system. Eqs. 16 and 17, are

In summary. Eqs. 25-28 construct a predictor phase, Eqs. 30. 32, derived completely. The solutions of the original dynamic equations.

and 33 form an effective linear problem, and Eqs. 34-36 construct Eq. 1, are hence obtained.

a corrector phase. If additional iterations are to be performed. i is NUMER.ICAL RESULTS
replaced by t- 1, and calculations resume with Eq. 30. Either a fixed

number of iterations may be performed, or iterating may be termi- A Fortran computer code has been written to simulate the dynamic

nated-when 44, or Af satisfy preassigned convergence conditions. response of a spatial structure system with the impLementation of

When the iterative phase is completed. the solution at the future the numerical algorithms developed in this work. In the analyses to

time t - at is defined by the last iterated values. At this point, the follow, the direct method, rather than the more accurate iterative

current time t is replaced by the future time t - -At. and calculations method, is employed in the implicit phase because of the limitations

for the next time step may begin, in computing storage and time. Illustrated in Fig. 1. the dynamic

part of the structure under consideration in the model is supported
Explicit Phase by a Hooke's type universal joint at point 0. The lower shaft con-

After performing the implicit integration for Eq. 17. the kinematic nected to the joint, driven by a D.C. motor, spins vertically about

values of the elastic displacement, velocity, and acceleration at the its own central axis. The structure rotates about the joint with two

future time are obtained, and the results can be substituted into unknown rigid body rotating angles At and A,. Tanks I and 2 are

Eq. 16. The rigid body displacement and velocity vectors at the two rigid body assemblies which contain the sloshing liquid. Beams

future time can be predicted using the following formulas as: 1, 3, 4, 5, 7, and 8 are modeled as elastic bodies while beams 2 and 6

and the cross bar are treated as rigid bodies. More detailed modeling
tr.it qr, t- A1tr.t - 211%(1 -

2 3
)4r t (37) and application are referred to Xi and Baumgarten [71•'](9;.

2 A modal analysis for the structure model has been accomplished

using the MSC/NASTRAN finite element package. The natural fre-

r = r., "At(l - v)4r.t (38) quencies range from 23 Hs to over 1000 Hs. The critical size of the

It is noticed that Eqs. 37 and 38 are analogous to Eqs. 20 and 21. time step with I being equal to 0.5 is about 0.0002 seconds, if using

By substituting the above predictor vectors along with the results the explicit integration method only(see Hughes and Lin i2]). By

from solving Eq. 17, the acceleration vector of the rigid body motion considering the accuracy in showing the effect of the highest natural

in Eq. 16 can be solved through the following equations, as frequency, the time step size could be as small as 0.0001 seconds.

Based on the sequential implicit-explicit time integration method, a

Mrr.t+&Ar, +.= frE.,+,%t (39) time interval of 0.005 seconds is chosen for integration. The simu-
lations are performed on a networked DECstation 3100 workstation

where using the MIPS Fortran 77 compiler running under RISC-based UL-

fr.t fr.t t - Mre ,nite.s÷n, (40) TRIX 4.1. It takes about 5.21 seconds of CPU time for one real-
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time step. The total number -)f the degrees of freedom of the model
is equal to nineteent. in which each elastic beam is mode led by one PI041
beam element with a third order polynomial shape function.

Asinutsoidal function is used as a spin proifile of the lower shaft C_ _I_

in the simulation. Statting from Zero, tihe anigular Velocity increases i 1
gradually and reaches 60 RPMP over the time base t.. In Caseqil -

an initial tilt of A, = 1 degree is set to induce off balanced rota:
tion, and t. is see to 3 seconds in the spin proifile. The numerical-
results of two rigid body rotating angles and velocities are compared '

with for the rigid and fiezible models. As shown in Fig. 2, the wal. .
uies of the flexaibe model (dashed line) deviate iigniticantly from the- ----

correspociduig values ot the rigid body model(solid line) after a few 51 23
seconds. Another run with &An impulse acting on one of the tanks TIME (SM
but with no initial tilt is performed; here t, = I second is used in the
spin profile. The impulse is applied vertically after 1.3 seconds with
the magrutude of I. Y. This run lasts for 10 seconds in order that________________________
the peak value of off balanced motion is developed thoroughly. The
soiid Lines representt the results with Newmnark parameters of-' = 0.6
and 3 = 0.303 while the dashed lines are for -Y = 0.3 and J = 0.25.
.A. phenomenon of 'numerical damping' is reconfirmed in the plots
in Fig. 3. By increasing -? to 0.6, the high frequencies engendered I____ ________

by the stiff components are damped out. OIY and M3Y are the
circumferential deftecutons of beam I and beam 3 at the distal ends.
respectively(note the diffecrent scales in the figutes i. D IZ is the Yert-___ ___ ____ ________

tical deflection of beam I while D3Z is the radial detiectton of beam
3. The initcial elastic deformations for each lembibe beam are set to
zero to avoid over estimation in the simuliation, l.

Mwe (Sec)

COK~CL US ION

An impdici t-explicit sequential time integration algarithm has been 't BI
developed in the present paper. The method is intended to soive -=
second order nonlinear ordinary differential ea ' ations derived from s __________

the modeling of flexbLe structural systems with mutually dependent
rigid body and elastic motions. The original dynamic equations are ~. .Vk I
transferred to a subsystem which is composed of two coupled sets Of 2
mnocton equations. One set of equations governs the atonineac rigid VJ
body motion while another set of eauations is defined to describe the t'
linear elastic vibration. Two aigorithms. implicit and explicit. ate
proposed to integrate the subsystem, in which the eiastic vibration
is soived fiStu during the implicit phase, and the rigid body, motion ,
is then updated subsequently during the explicit phase. The New- 3
mark algorithm family is employed in both the implicit and explicit TI(S MCI
integrations in which a multiple pass predicteo-correc-or scheme is
used in the implcici method while a singie: pass predictor-corrector
scneme is used in the explicit method. An example is presented - . - - . - - -

in simulating dyunamic response of a soartai system with unknown I
rigid body motion. The d=numeica integrations are carried out, and_____ ____ ____ - ±
the results ate compared with for a rilid body model &and a flexble
model. fin the second run case an impulse is applied on the structurea
to exicte the elastic beam oscillations iLn which the higher frequencies
cana be damped out by increasing the value of 7 Newmark parame-
ter. The computation efficiency is demonstrated using the current . I
method.. The accuracy (which is at most the second order herein) can L________
be further improved by introducing higher order predcictor-corrector .10
scheme&-- .~e~
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Primitive Variable, Strongly Implicit Calculation Procedure for
Viscous Flows at All Speeds

K.-H-. Chen* and R. H. Pletchert
Iowa State University, Ames, Iowa 50011

A coupled solution procedure Ls described for solving the compressible form of the time-dependent. two-
dimensional tNavier-Stokes equations in body-fitted curvilinear coordinates. This approach employs the strong
conservation form of the governing equations but uses primitive variables Cu, Y, p, 71 rather than the more
traditional conservative variables (p. pa, pv, e,) as unknowns. A coupled modified strongly implicit procedure
(CMSIP) is used to efficiently solve the Newton-linearized algebraic equations. It appears that this procedure
is effective for Mfach numbers ranging from the incompressible limit CM. - 0.01) to supersonic. Generally,
smoothing was not needed to control spatial oscillations in pressure for subsonic flows despite the use of central
differences. Dual-time stepping was found to further accelerate convergence for steady 11ows. Sample cMlCU1a-
tions, including steady and unsteady low-Mach-number internal and external flows and a steady shock-boundary-
layer interaction flow, illustrate the capability of the present solution algorithm.

Introduction propagation or pressure signals. But this soace marching pro-O VER the past two decades, a number of different finite- cedure is only effective for flows within a diominantc flow di-
difference' schemes have been proposed to solve the Na- rection. Recenrtly, a similar :dea. although different in detail.

%ier-Stokes eauations.' Traditionally, they have been classi- was proposed to alleviate the above pr-oblems usting a seey-
fied as methods for either compressible or incompressible regated algorithm. Fens! and MYerklel also empolyed pressure
flows. Most of the formulations for compressible flows have as a primary variable in a scheme that utiiized'a orecondi-
utilized conservative variables.--' which include density, in- tioning teclunicue co scale ail eigerivaiues of the couiolec sys-
stead of pressure. as a primary variable, and the equations ern of equations to the same order of matnitude in order to
have generally been solved in a coupled (simultaneous) man- accelerate convergence for Low- Mach- numbe r steady flows.
net. Arn exception to this is the recent worKv of Karki and The approx~imate factorization procedure was avoided in
Pacankar and Van Doorrnaai et aLA5 the present work by using a modified form of Stone's strongly

Methods for incompressible flows, on the other hand, have imolicit procedure (SIP)'0 to soive the algebraic eauations in
employed a wider ranee of dependent variables, including the plane. T he modified form of the SIP algorithm (IMSIP)
derived as well as primitcive, and the equations have generally- proposed by Schneider and Zedarr1 exhibitts faster conver-
been solved in a segresated (one variable at a ttme) manine-. izence and te-ss sensitivity to the relaxatton-rvue parameter of
The derived varaiaoe apporoaches usually eitner involve more -,he method than the original SIP aisgorithm. The MSIP ai-
unknowns than contained in the original 'Navier-Stokes eaua- gorithma was extended torhandle a coupled 4 x 4 block system
tions or become too complicated to easily extend to three- in the oresent work.
dimensional flow calculations. There are many applications in which it would be conven-

Numerical methods develooed for compressible flows are ienit to use :he same algorithm for Mach numbers raniging
not, in general. suitable for effi;ciently solvine low-Mach-num- from incompressible to transonic. Tne search for an algorithm-
bet or incompressible flows. The reasons usually offered for suitable for all speeds goes back at least to tne work of Harlow
this are 1) roundoff error due to using density as a primary arid .Amde=.'2 More recent work on the subject includes
variable,' 2) truncation errors due to applying approximnate contributions from Karki and Patankar, arid Van Doorinaal
factorization in mulutipe dimensional pro'olems.ý and 3) a time et alA. The main contribution of the present work is to point
step (or CFL number) constraint due to near infinite acoustic out a solutioa strategy that could be applied to a numoer of
speed.' differeace formulations to permit efficient comoutanon over

To circumrvent some of the above problems, pressure can a wider range of Mach numbers. The specific difference stencil
be chosen as a primary variable instead of density because used in the present work may not be optimum for all cases
the variation of pressure is generally significant for all. flow (particuLarly at very high Reynolds number), and can clearly
regimies. This idea has been used* in solving low-Mach-num- be improved.. The form used, however, does serve to illustrate
ber steady flows by a coupled space marching procedure that the adivantages of the overall approach.
involves using. multiple sweegs to account for the ucstream In the present paper. a coupled strongly implicit procedure

for solving the two-dimensional. unsteady compressible con-
__________servation-law form of the Navier-Stokes eguations with pri-

Presented as. Paper 90-1521 at the AIAA 21st -Fluid Dynamics. mitive variables. i.e.. u and Y velocity components. pressure.
Plasma Dyisamics. and Laswn Conference. Seattle. WA. June' 18- and. temperature. is described. Incompressible test cases arm
20, 1990: received June 25. 1990: revision received Dec. 18. 1990: computed from this formulation simply by setting the Mach
&=epted for publication Dec. 27, 1990. Copyrignt 0 1990 by the- number to a very low vajue. Since all variables, including
authors. Publihed by the American Institute oi Aeronautics and pressure-. are computed simultaneously in the algorithmf. there-
Astrotanaucs. Inc.. writh perintision. is no need to use'a seoarate pressure Poissofr ecuation. and

*Research Assistant, Deoaruteoc of Mechanical Engineering and the continuity equation is automatically satisfied'. Some con-Comoueaconal Fluid Dynamics Center. 2M2 H. M. Black Engi- vertence enhanc .ement tectinioues far .steady-state solutionsneernn; Budlding; currently at the University of T olectodNASA Lewis
ResercbCentr. leveand OH.Memer AAA.will also be described, Several steady-state results including

?Proteasr. Deoartment of Mecnianicai Engineering and Comou- two low-.Macn-numoer incomoresstibe flows and one suoer-
canonai Fluid Dynamics Center. 2M2 H. M1. Black Engineening Buiid- sonic flow will be given. One unsteady suosonic flow is aLSO
ing. Memoer AfAA. discussed-.
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Numerical Approach The above nondimensional variables were defined in the fol-

Governing Equlowing manner (dimensional quantities are indicated by a tilde):

Aiter replacing the density by pressure and temperature 9 a
using the equation of state (p - pIRT), the nondimensional t = - X ,=

form of the unsteady, two-dimensional compressible Navier- z.;, m

Stokes equations can be written in generalized nonorthogonal 7 5 .. L _, "
coordinates' as P P 7. =

8Q(q_) aE(q) aF(q) 0 (1)
=T di &n (= CC- , c -~

where /

q=(~, ___ __ _

pu The Reynolds number, Mach number, and Prandtl number

T were defined as

p V p .f u, ,.L ,. Ul ,, C ,ýz
T Re = M. - - . Pr
P = _V.-yRT,., k

1 -u: I p- : Here. L,.f is a flowfield characteristic leneth: x and y are the
(C,- R)p - Cartesian coordinates: u and v are the respective Cartesian

velocity components. p is the density; p is the static pressure:
i. is the dynamic viscosity: T is the static temperature: R is

U R -;the gas constant, C, is the constant pressure soecific heat: kT RpE, - (L•u - , is the thermal conductivity; -y is the specific heat ratio: and

P!VU - Rpt, - (,.7. C, and C. are the Sutherland constants. The suoscript "ref'
7 denotes the reference quantities rinat are the upstream bulk

1 properties for internal flow cases. or the freestream properties
E for external flow cases.

Cp" P u 2 U AJl sampie caicuiations were performed for dry air at am-F. - 4bient temperature and pressure using the following fluad prop-
-, , - (,v - ) - , erry constants.

R C , ;L.7-RC--". [(• - )," •• - •,•.), A• :37 m/!(s: K). •,= .

PrRe '7m,~-)

R. = 1.458 x 10-6 kF/(m s vXZ). 1: - 110.4 K-TuV - R pD'n - ( ,, q :•

EuV ... "p-q - ,-. ) Discretization of the Equations
R -V "T'he discretization wtll be described for the form of the

F - -. equations given by Eq. (1). A first-order forward difference
F - " - V was used for the nime terms. Central differences, in general.T Z ""were used for the soatial denvatve terms in the equations.

-%u..- - ( - ".11 For example, the first-order spatial derivative term of the
RC,) continuity equation in the j direction was differenced by
P rR- [ ( L Y 6 4 .7, 0) T + ( n ! + I )a1]

"- [2(L,, + ,1,u,) - (Lv', )] a+I ;40 ,, e70/,.,T -. ,
3 Re

where. At - 1 was assumed. However. the deferred correc-

2- R. r2(~,e ~vtion formula proposed by Khosla and Rubin'3 was also used%' Y' 39e (t +, t-n,v,) -(u,)] for the convective terms in the momentum and energy equa-
tions for one of the cases presented in this paper (driven cavity

- • [flow). For example.

U - F== + t, Y V T.u + , T ' ,
at T 77 . ,. •

Laminar flow was assumed and the viscosity for air was de- (pU\ "* _' . U
termined by the Sutherland formula1 as follows: - E _,pu

" (T-C.J (2) for U > 0 (3)
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- fruko - - (pur/- (6)

+ uT)___" for U<O0 (4) T
"',- Jwhere k is the iteration index and n indicates the time level.

For time-accurate calculations, the linearization error can
The uowind-differencing part of the above expression was be effectively removed by iterating at each time level. For
evaluated implicitly on the left-hand side of the equations and steady-state calculations, iterations were not required at each
the central-differencing part was evaluated explicitly on the time step since the time marching scheme is itself a relaxation
right-hand side of the equations. When the solution con- procedure. All terms were treated in an impiicit way (at level
verges, the second-order central difference is recovered. n -,- 1, k + 1) except the viscous dissipation terms (in the

The second-order spatial derivative terms in the E direction energy equation) that were evaluated at the level (n - 1. k).
were differenced as After linearization, the four variables. u, v, p. and T. appear

in all of the equations and the resulting equations takes the
a . ( (6 following form:

where 6 is the dependent variabie. a reoresents a combination A?,q,., - .-t., - A,, -- (7)
of metric terms and viscosity in tne viscous terms in the mo-
mentum equations and the coefficient to the conduction terms +- q,.,q .. - Abq. , =
in the energy equation. (i - V.'21 indicates a location halfway
between iand(i - I). and(i - l12)denotesaiocationhalfway and can be expressed in a matrix form as
between (i - I) and i. The values ot a_.,: and a, were
determined as [A]q = b (8)

a, = a,, - a,.i,1). a..,,: = -(a,, a- j wherea,., ,t.I A3,1 .AI., A'i.,
and the first-order derivative terms at the half-nodal oinit [A) = A.4, A,', A., A •, A?, A,, A?, A, A,.,
were evaluated as .40,,.,. A... A.4,5._, A .... 1

(--b ]--is the coefficient matrix with a 4. x -t block in each element

wz (':' ,- - and

3 "'' q = [(u. te.,. T•.(u.v.p. T). ..... (u.v.p. .

) -,.- b = [0.,. b,. b,. br)r......(b.,. 0 b ,. b-,-)T, .....

Similar expressions for the terms in the Tn direction are eval- (ba, b. b,. .
uated in the same way. The secona-order soatial cross deriv-
ative terms are exoressed as are the unknown vector and the right-hand side vector. re-

specuveiy. Figure 1 shows the comoutanonal molecuie for A'.
- ~•-/-b\) A. . -.A.- and AV.

Boundary Condtions

The above central-difference representations for the spartal All boundary conditions were created implicitly. In general.

derivative terms can also be interpreted as evaluating the flux except for noslip boundaries. the governing equations were

quantities (Eand Fin the Eq. (I)l atthe face oicontrol volume written on boundary points. This procedure usually needs

by simply averaging the flux quantities at two nodal points. field variables at the points outside the domain. The way the
e.g.. c,... - E,. " E,_,,).. All. metri terms or the unknowns at these extra points are determined varies with

transformation at the interior points were evaluated by sec- the boimdary and flow types. The various boundary condi-tidons ar- discussed as follows:
ond-order central differences satisfying the geometric con-
servation law." lnr

After differencing, all nonlinear terms were linearized by For bonifw, .s
a. Newton method.' However. it should be noted that an For subsonic flows. u. v. and Twere specified. Pressure

equivalent formulation can be developed using conventional was extrapolated from interior points. For supersonic flows.

Jacobian acices2s The representations for two typical non- all variables must be soecified.
linear terms, such as the nine term-in the continuity equation Ougow Bouw.ary
and one of the convective terms in the momentum equations. For subsonic flows, pressure was specified at this boundary
are illustrated as and extrapolanon was used to ootain other variables. For

sucersoucc flows, all variables were extrapolated from interior
points.
Far-Reid Boundarv

-- T•' -" -e (5) For subsonic flows. freestream velocity. pressure. and tem-
peraurwe were specifed and tfle v component of velocity was
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A and upper-block triangular matrices, each of which has onivIA j+1 t five nonzero diagonals. The following procedure was used tobj+t otain theunknown vector q. Lettng 81 1-*1i = q-.- _
q*I.k and a residual vector R"-i• = b - [A ]q-l Eq. (9)
becomes

[A + P1 .'k." = R'-" (10)

_______A_ _ _ Replacing (A + P] by the [L][LU product gives- . I

Defining a provisional vector W by '' = --
the solution procedure can be written in two sten:

Stec 1:I A 
j-1

Fig. 1 Computational molecule for A :, A...A'1.
[U5Iki= (13)

obtained by extrapolation from interior points. For supersonic The detailed formulation of this procedure can be found in
flows reoorted in this paper, all variables were specified. Andersen et ai..' Stone's onrignal paper."0 and Schneider and

Zedan" for scalar equations. The couoled formula. which is
S.vmmerr. Bowtuanr a straitghtorward extension from its scalar counterpart. can

The governing equations were written at this boundary as be obtained from Chen-$ or Zedan and Schneider.' "tis pro-
described above. All variables at the points outside the do- cedure treats the unknowns for the entire domain in a strongly
main were ootained by the symmetry condition for u. p. and implicit manner that enhances the robustness of the solution
T and the antsvinmetrv condition for t% aigorichm. It should be noted that the present work may be

one of the first attempts to solve compressible Navier-Stokes
Wail Boundarv eQuations by the C.MSfP scheme. Ao6lication of the CMS[P

Instead of writing the governing equations at this boundary, scoeme to nytperboLic eouaions has been studied by Walters
noshia conditions were used for velocity comoonents. E-ither wt ats' 7 . where a stabiiity anal.sis snowed that the SIP scheme
isothermal or a heat flux condition was used for the boundary was unconditionally stable for the three-.imensional wave
condition for T. For pressure. the favored treatment is to equation.
wrnte the normal momentum eouation at :mis aoundarv and
appiy the nosiio conditions to simplify it. The resuiting equa- Smoothing
non will relate mn normal derivative of pressure to vejocity When a nonscaggered (collocated) grid arrangemenc is used
enivacive terms. The treatment wil become more compli- with centrai differences. a soatial oscillation in oressure due

cated for irregular or curvilinear boundaries but it may en-
hance the coupling between the pressure and velocity flelds in t reture-ve o, e as frequently been reported
and avoid spurious pressure solutions. This idea will be dis- l the iterature'i for low-Macn-number and incomoressibie
zoossed further i the results secuon. flows. This tvpe of hMih-ireouency oscillation is also found

For internal steady-flow calculations, the treatment for the near a shock wave in suoersonic flows. In most cases, for low-
pressure boundary condition at the inflow and outflow de- Macn-number flow calculaoons, it appears that this pressure
serves speciai attention. For a compressible formulation ued oscillation can be removed by prooer treatment of the bound-
in ths study, the pressure level calculated at the inflow bound- ary conditons and the form of governing equatons used.
ary must. be adjusted (due to density variation) as the cat- aihough the generality of this finding is still being studied.
cuoano proceeds if the specified Reynolds number is to be If the oressure decoupting occurs, the following explicit
maintained. The. same adjustment must be applied to the- smoothing procedure (or "filter't1) is suggested-
pressure everywhere. including the outflow pressure- This i4a60 _a!6
pressure adjustment procedure maintains a constant and pre- " tb"_ 4 -+ W (14)
determined mass flow race. Without this adjustment. the Rey- an:
nolds number of the tnal converged solution may drift from
the desired value. This drift was found to be more severe for
Low-Reynolds-number flows. where 6 is the variable to be smoothed.

Smoothing was generally not needed in the subsonic flow
calcuLations..The exception was for the cylinder cases where

CMSZ Soludoa Procedmre smoothing was required for theapressure. For those cases, the
"The above algebraic eciutions with the specified boundary pressure boundary conditions were obtained by setting the

conditions, which has a 4 x I block in each element, were pressure derivatve normal to the body equal to zero rather
solved by the CMSIP procedure. This procedure introduces mhan the more usual procedure of evaluamag the pressure
an auxiliarv matrix (PJ to both sides of the above matrix derivative frourr the momentum equations. A vaiue-ofi w be-
equation (Eq. (8)] as tween 0.05 and 0.2 was found to be satisfactory. For the

supersonic case, all dependent variables were smoothed using
(A - Pj'"-*" =- (Pjq'"'* " b (9) w = 0.005. The widely used imolicit smoothing method' was

also tried and it was found that ine oresent =exlicit smoothing
where (A - PI can be conveniently decomposed into lower- was less sensitive to the smoothing parameter w.
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Convergence Criterion Morihara and Cheng,:' McDonald et al.." and Bodoia and
The convergence criterion was based on the norm of all Osterleý' is good. The convergence history of these four cases

variables in a coupled sense. This criterion is as follows: is shown in Fig. 3. It should be noted that for steady-state
calculations, iterations were not used at each time step so that

, _ *• .•the number of iterations shown in the figure is equal to the
q'~, Knumber of time steps. Heat transfer at Re =500 and Pr""x <- c (15) 0.72 was also studied for this case. The results have been~4x im x fm reported in Chen and Pletcher:" and will not be presented

where k is the iteration level. n the variable index. im the here-

number of grid points in the x direction. im the number of Dnven Cavu. Row
grid points in the y direction. q. a comoonent of the unknown The two-dimensional driven cavity problem was studiedvector q, and q,.,,, the root-mean-square value of q.. Thevcrteor q. wasnd erallysethe ro-eaqua r vau of0 x14. T very extensively and served as a benchmark rest case for the
criterion e was generally set equal to 1.0 x 0=. incompressible Navier-Stokes calculations. Results were ob-
Convergence Acceleration Technique tamed for Reynolds numbers of 100. 1000. and 3200. respec.Convergence celeraionTechnqe scheme.tively, under an isothermal condition and a Mach number of

As with most central-difference schemes, the time term 0.05. Figure 4 shows the u velocity component along the ver-
serves to enhance the diagonal domin',ice, especially if the tical centerline, and Fig. 5 snows the v veiocity component
continuity equation is solved coupled with the system. When along the horizontal centerine for these three Reynolds nur-
central differences are applied to the spatial derivative terms bers. The agreement with the results by Ghia et eld and
in the continuity equation. the time term must be retained to Goodrich and Sogr is excellent for Re = 100 and 1000 and
avoid a singularity in the matrix system. Unlike the momen- is good for Re = 3200. The effects of grid refinement are aiso
turn and energy equations that possess nonzero diagonal terms shown. Figure 6 compares the pressure distribution along the
from the diffusion and conduction terms, the time term in the stationary wall obtained by the presens method wst ti thoseconunuity equation bears all of the burden of oroviding the obtained by Ghia ll al.e' bThe apscissa in Fig. 6 reoresents
diagonal dominance in this equation. Although the present distance along the parameter of the cavity, measured as in-
method solves equations in a coupled manner, and (he re- dicated in the insert.
suiting coefficient matrix is in block form. the diagonai dom- The streamline pattern. pressure contours, the velocity vec-
inance requirement for a single equation can still provide a tors for Re = 3200 are shown in Fig. 7. For the grid points
good guidelines to assure convergence of the coupled equa- used (indicated in the figures). the convergence rate for Re
tions. Golub and Van Loan:o provide the definition of the
diagonal dominance for a block system, but it was found
impractical to use in the present work.

Consistent with the above observations, the present authors 1.7
found that if the steady-state solution is the only concern. -A a,,nw,,,u,

dual time can be used to acceierate the convergence rate for P 3 ?.P•u, f,.d.aw[" Z mamm•a am C."=
low-Mach-number flow calculations when an isothermal con-
dition is assumed. This dual-time technicue applies a much 9 o 01 al/
smaller time step for the continuity equation than for mo-
mentum equations. For this current formulation. :he time step 1.3 - -7500
for the continuity equation was about me order of M. for
low,-Macii-numoer flows. This dual-time procedure s eciv 7_aient to usingt different relaxation factors tor dirferent eaua-• .- A F ",a

tions. This technique assures tniat the raptidl prooagatting
pressure signal in low-Macn-number flows is resolved by the"-- -
smaller time step used in the continuity equation. wnich can "._
be thought as an equation for oressure. 140 4'

The local time steals was also used in the momentum and
energy equanons to furtner accelerate the convergence for 1.iRe
steady state calculations.

Fig. 2 Predicted centerline velocity distribution for deveioping flow

Sample Results in a two-dimensionai channel inlet.

Sample results are presented for four subsonic cases and
one supersonic case. The four subsonic cases include two
steady-state internal flows, one steady-state external flow. and ,o'
one- unsteady external flow. T'he results for these five test
cases are briefly described in the next several sections.

Subsonic Steady-State Flows

Deveiooing Flow i&r a Channel
Because of the- symmetrical nature of this problem. only

the upper half-channel was calculated. Four cases with Rey-
nolds numbers of 0.5. 10..75. and 7500 and a Mach number
of 0.05 was studied. The Reynolds number is based on the 's
inlet velocity, bulk density, and half-width of the channel. t.o s
Gridsof21 x 11.21 x 11. 31 x 11. and41 x Il pointsand
nondimensional channel lengths of 2. .. 30. and 3000 were ,o.
used for Reynolds numbers of 0... 10. 75. and 7500. resoec-
tvelv. The grid points were clustered near the inlet and tne
uooer wall. The centerline velocity distmbution aione the flow- " ni 'v""•n*"
develooment region is shown in Fig. _. The agreement be- Fig.3 Convergence hutory for developmi flow in a two.dimensional
tween the present resuits and those by TenPas and Pletcher.' cnalne, infM
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Fig. 4 Predicted u velocity component along the vertical centerline i

of the two-dimensional driven cavity for Re = 100. 1000. and 3200. ~ \.: '

I

0.9 Pr71X71W iSSeS 32X Fig. 7 Results for the two-dimensional driven cavity flow for Re

---------- Pr~ reut 21 X21 3200: a) streamlines, b) pressure contours. and c) velocity vectors.
Gra et al. 129XI29
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Fig.9 . Fig. 8 velocit componen alongr the toheoa cenerin moin wal ofteto

Pr~o et 21 x~ dimensional driven cavity.

a6R~o Table 1 Mach number effect for cavity flow
- Re =100. 21 x 21 grid

SMach number 0.2 0.1 0.05 10-:, 10-' IO-~
No. of iterations 25 27 33 85 85 a5

Prg

D~isiance along the pefillneter of the stsazooary, wall Heat-n-ansfer results were obtained for Reynolds numbers.
Fig. 6 Predicted preaure coeffcient C, along the stationary walls of of 100 and 1000, respectively, and a Mach number of 0.05.
the two-dimensiona driven cavity for Re = 100 (C, = Re X (fi - Figure 8 shows the local Nusseit number along the too moving

wail that is hotter than the stationary wall for Re =* 100 and
1000 with Pr -1.0. The results for Re - 100 were compared
with those obtained by Chen et al.3

1 and Burggraf."The good
-o 100 and 1000 compares very favorably with that reported agreement is obvious. The results for Re -1000. however.
by Marisour and Hamed~l where a coupled scheme in pri- do not agree well with those of Chen et al."' near the left
mnutve variables was used for the incompresible Navier-Stokes corner of the top wail. Further research is needed to resolve
equations. Usually less than 200 iterations were sufficient. this Idsisrepancy.
For the Re - 3200 case, slow convergence for a 71 x 71 grds In order to studv the effect of Mach number, the driven
was encountered. A simnilar difficulty at this Reynolds number cavity caseL for Re *= 100 with a 21 x 21 grid was computed
was also reported by Napolitano and Walters. - It is suspected with Mach numbers ranging from 10-4-0.2 and an isothermal
that the slow convergence at this Reynolds number is due to condition. The numoer ot iterations (time steps) for all Mach
the strong transient nature of the flow where several signifi- numbers is listed in Table 1. It shows that for Mach number
cant secondary flows appear and interact with the main cir- lower than 10-1 the number of iterations renuired increases
culating vortex. Goodnic'h et al."' have found the flow to be by a factor of more than two. Even with this increase, this
unsteady at Re -5000. algorithm is still very efficient for this range of low-Mach-
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number cases. at least compared with the results reported by
Mansour and Hamed.:3 The solutions for the above Mach
numbers were almost identical.

For all cases computed for the cavity flow, no pressure
oscillation was detected using central difference even for the
high Reynolds number case. This unexpected result might be
attributed to 1) us.ge of the compressible form that conta-s
the pressure information in the time and the first-order de-
nivarve- terms and 2) the treatment of the pressure boundary.
condition at the wail, which employs the momentum equa-

tions to evaluate the pressure derivative at the wall in an
implicit manner. Both of these procedures enhance the pres-
sure-velocity coupling, thus tending to remove the pressure
oscillation. The present authors also found the above pro-
cedures successful in removing the pressure oscillation in three-
dimensional cavity flow. although the three-dimensional cav-
ity results will not be presented here. a) Streamlines

Unsteady Flow over a Circular Cylinder, Re = 100
Before solving this unsteady vortex shedding flow. the pre-

sent algorithm hias been tested for a flow over a circular cyl- , >Z C
inder with Reynolds number of J0 (based on diameter), which _ _ _ _ _

is considered"3 as the upper limit for a steady-state flow to
exist for this flow configuration. The solution* and efficiency
of the present algorithm for this case has been discussed by
Chen and Pletcher-' and will not be included here.

This vortex shedding case was used to demonstrate the
apptication of the present procedure for unsteady flows. This '• '
flow has been studied very extensively in the literature.2, (,,
An 0-type 81 x 101 arid was used with mesh clustenng near '
the wall and in the wake region. The outer boundary was - I
located 20 diameters from the cylinder. Since the final oeriodic .
unsteady solution was of primary interest, the initial condition \ _
was efficientlv generated by the steady-state technicue that
quickly set up a flow pattern with a little asymmetry. The " 1
asymmetric trigger technique suggested by Lecointe and Piquet0s
was not needed. Starting from th.;. initial solution, a constant
nondimensional time step of 0.02 was used to march the so- -_I

lution in time. Iterations were used at each time step to tim- b) Vorticity Contou
inate :he linearization error. Initially about 15 iterations werenee ec er ime ste bu ths n mbe qu ckl dr ooe to two Fit. 10 V ortext shedding pattern for- the fine| cycle for Re = 10 0: a,
needed net time sledi but this number ouickiy dropped to two streaomines. and b) vorticity contours.
for most of the time marching history. The computation was
stooped after several periudic cycles were observed. Figure 9
snows the final four cycles of the lift coeffic:ent having a Shock-Boundary-Layer interaction Problem
constant ampiitude of about 0.31. which is aimost identical This case demonstrates the shock-caotunng caoability of
to the result reported by Visbai.' The Strouhai number based the present procedure. This case has been studied by severai
on this is about 0.167. This result is located within the ex- other researchers, -'-J and a more detatiea description of this
penmental range 0.16 - 0.17 reported by Roshko9 . problem can be obtained from their work. The frerstream

Figure 10 shows the results for streamlines and vorticit Mach number is 2 and Reynolds number, based on the dis-
contours, respectively. in the final cycle. The Mach number tahnce from the leading edge to the point at which the im-
used was 0.2. pinging shock intersected the plate. is 0.296 x 106. The strength

of the impinging shock is strong enough to cause the laminar
boundary layer to separate. The angle of this impinging shock
is 32.6 deg. An 81 x 81 grid was used.

The gdid was uniform in the main flow direction and stretched
in the cross-st'eam direction wit.i the minimum nondimen-
sional grid increment of 1.0 x 10-4 next to the wall. The
computational domain began. five grid. points ahead of the
leading edge of the. plate, and. top boundary extended far
enougth. to allow the leading-edge shock to pass through the
outflow boundary-. This treatment eliminates the' need for
using nonreilectve boundary condtions at. the top boundary.

A,5 Freesteam conditions were soecified at the inlet bounda'r"
below- the impinging shock. The postshock conditions were
specified at the inlet boundary above the impinging shock: and
along the top boundary'. Extrapolation was used at the outflow

78 boundary. Noslip conditions, zero normal pressure gradientr.
and an ad.iabanc wall temperature were used at the wall.

The results are shown for wall-oressure and skin-friction
.euojmjumeaol t. distributions in Figs. 11 and 12. respectively. The pressure

Fig. 9 Time history of the lift coefficient for the final four cycle of contours are shown in Fig. 13. The aoove results compare
the vortex shedding patterns for Re - 100. reasonably well with the results in the literature";-'-"- and
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~ ~ (8 X81)Conclusions
1.5 a E=wenment (H.akluflef tl.) ~ A coupiled solution strategy for the time-dependenE COMn-

~ pressibie form of the Navier-Stokes equations mat appears to
~be effective for Mach numbers ranging from the incompres-

Q auelowsible diimi (M- - 0.01) to supersonic has been clevetooed.
1.2 The approach employs the strong conservarion form or- the

z Zgoverning1 eouations but uses primitive (u, v, p, T) variables
rather than the more traditional conserved (p, pu, pv, e,)
variables as unknowns.. This choice of variables siamolfies the

1.1treatrent of viscous terms and enhances effectiveness at low
Mach numbers by allowing the density to be removed from
the diffecrnce ecuations. A coupled modified strongly imolicz:
procedure was used to effciently solve the Newton-iinearized

o~o 0.s . . . algebraic equations. Generally. it was found chat srnoocikung
was nor needed to control spatial oscillations ins pressure for
subsonic flows despite the use oi central differences. Dual-

Fig. 11 Pressure-coeffcient. C, (pp..d~itribution along the wall. time stepping was found to further acceierare convergence
for steady flows. Generally grooo agreement between tne pre-
dictions and results ins the Literature was observ-ed for severai.10. test cases including steady and unsteady low-Macri-nuziber,

Preset reults(81 8 1)internal and externail flows and a steaov sh~ock-boundary-layer
0 Excegirmenu (81kiiena X81) interaction flow on a fiat otate in a supersonic stream. -the

A nna extension of this aieorsthm to three-dim'ensional flow caicu-
a ama amn lations is currently being investigated.
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APPENDIX H. Simulation of Three-Dimensional Liquid Sloshing

Flows Using a Strongly Implicit Calculation Procedure.
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Abstract

A coupled strongly implicit solution strategy for unsteady three-dimensional free surface flows

has been developed based on an artificial compressibility formulation for the incompressible

Navier-Stokes equations. A pseudotime term has been used in the continuity equation to permit

time accurate calculations to be achieved. The scheme appears capable of tracking the free surface

reasonably accurately inside a partially-filled spherical container undergoing a general rotating

motion characteristic of that experienced by a spin-stabilized satellite. Five different free surface

calculations have been presented. Some of the results exhibit an interesting Reynolds number

dependent oscillatory behavior which is believed to be physical although no experimental results

appear to be available for verification to date.

Introduction

The liquid sloshing motion inside a container has long been of interest to engineers and

researchers. Liquid sloshing occurs in many important practical applications such as in oil tankers,

railroad tank cars, missiles, satellites and spacecraft"' 2'3. A particular goal of the present study has

been the simulation of sloshing motion in a spherical container undergoing motion characteristic

of that experienced aboard a spin-stabilized satellite. The major concern about the liquid sloshing

motion within a container is that a substantial periodic force may be generated which may affect

the stability of the moving vehicle. If the sloshing frequency is near the natural frequency of

the vehicle structure, resonance may increase the likelihood of structural damage or instability

*Senior Research Associate, Member AIAA, Mailing address: Ohio Aerospace Inst. 2001 Aerospace Parkway,
Brook Park, OH 44142.

t Professor, Department of Mechanical Engineering, Member AIAA.
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resulting from the motion.

The sloshing motion of liquid usually involves the presence of a free surface which is the

interface between the liquid and air or other type of gas. The presence of the free surface

adds another difficulty in analysis to an already complicated fluid motion, since the free surface

position usually is not known a priori and has to be determined as part of the solution. The

container may undergo several different kinds of motion ranging from a simple linear acceleration

or rotation to more complicated combinations of these. To conveniently analyze the motion, it

is usually necessary to transform the governing equations to a non-inertial coordinate system4 .

The motion of the liquid is generally three-dimensional, time-dependent and sufficiently complex

that no major simplification to the general equations (incompressible Navier-Stokes equations) is

possible. The accurate simulation of such motion is a formidable problem primarily because of the

computational resources required, and few, if any, three-dimensional time-dependent simulations

have been reported in the literature.

Chakravarthy5 investigated laminar incompressible flow within rotating liquid filled shells

under rotation but without the presence of free surfaces. Vaughn, Oberkampf and Wolfe4 solved

the three-dimensional incompressible Navier-Stokes equations for a fluid-filled cylindrical canister

that was spinning and nutating. In their work, the equations were transformed to a non-inertial

frame. Again, the container was completely filled with liquid and no free surface was present.

In a review of the literature, very few articles dealing with the liquid sloshing within a spherical

container were found. Perhaps most relevant to the present study is the work of Kassinos

and Prusae, where a general motion of a spherical container was accounted for by a complete

coordinate transformation using several successive axis rotations and a translation. Some liquid

spin-up problems have been restricted to either the rectangular 7 or the cylindrical' configurations.

The present study utilizes a surface fitting approach 6 9,"° for the free surface and the artificial

compressibility formulation of the equations. In this method a fictitious time derivative of pressure

is added to the continuity equation so that the solution of the set of conservation equations can

be marched in time. Originally, this method was thought to be only applicable to steady flow

problems". For these, the entire time dependence was fictitious, but the solution approached

the correct steady state solution asymptotically with time. More recently, investigators 12,13,14

have suggested that the procedure can be made accurate with respect to time by considering the
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time like variable appearing in the fictitious time term added to the continuity equation to be a

pseudotime. For each physical time step, the pseudotime is advanced several increments in an

iterative fashion. When the variables no longer change with pseudotime, the fictitious time term is

zero and the equations satisfy the compatibility condition for incompressible flow at the specified

physical time. The coordinate treatment of Kassinos and Prusa6, which is applicable to sloshing

phenomena under a variety of conditions, is adopted in this study. A coupled strongly implicit

procedure (CSIP), initially proposed by Stone' 16, is used to solve the resulting algebraic system

of equations with the specified boundary conditions. A similar solution procedure has been used

previously by the present authors to solve coupled two-dimensional equations and was found to

be efficient and robust for several diverse problems'7 . Unsteady results for five liquid sloshing

problems in a rotating half-filled spherical container are presented. In the following sections, the

mathematical formulation, boundary conditions, numerical solution algorithm and the results will

be discussed in detail.

Mathematical Formulation

Governing equations

The incompressible Navier-Stokes equations with an isothermal condition can be written as:

Oui(

Oui 0u( 1 ap )__
Ot + --- + v-- - i (2)atp ax xi axjaxj

where ui is the velocity component, p is the thermodynamic pressure, gi is the acceleration of

gravity, p is the density (constant), v is the kinematic viscosity and xi represents the spatial

coordinates.

At least two different approaches can be used to formulate this problem for numerical solution.

First, the above equations can be solved in the form indicated above together with the proper

treatment of the boundary conditions in accordance with the rotating-nutating motion of the

container at any instant of time. Ideally, this treatment is workable for a simple motion of the

container, but will become impractical and difficult for describing the motion and interpreting the

results if a general rotating-nutating motion is encountered. Actually, such a general motion can
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arise in the interaction between a satellite structure and the liquid sloshing in a partially filled

container. Therefore, it is more appropriate to handle the general motion of the container with

terms within the equations themselves. That is, the motion of the container relative to an inertial

frame can be implicitly accounted for by proper coordinate transformations. This is the second

approach and the one that will be adopted in this study. A schematic diagram of the partially filled

rotating-nutating container is shown in Fig. 1.

Following the approach outlined in Kassinos and Prusa6 , several steps are needed to transform

the governing equations from an inertial frame to a non-inertial frame. They are described in

the following several sections. In addition to those transformations, a generalized nonorthogonal

coordinate transformation is applied to the resulting equations to handle the irregular geometry of

the boundaries.

The rotating-nutating coordinates: X2 coordinate system The original three-dimensional

incompressible equations will be labeled with a subscript 0 to indicate that they are in xO inertial

frame and rewritten as
40xoi _oL0 (3)

Otoi +  UOj 1 O oa + V 82uoo goi (4)
at0  (9Z03  P ax0, a&o,~x03 (4

The container may undergo a motion with nonzero angular velocities or accelerations with

respect to each axis at any instant of time. If a coordinate frame, r I, is attached to the spacecraft

(or other vehicle) undergoing this general motion, then three successive coordinate rotations will

reflect this motion. The procedure to perform the three coordinate rotations is described in detail

in Chents and Chen and Pletcher' 9 . Also, since the container may be attached to another structure

(satellite or spacecraft, for example) by an elastic bar, another translation is required to move the

origin of the x 1 coordinate to the location of the container by the length of the elastic bar hi. After

combining the three successive rotations and the translation, The relationship between xO and x 2 is

X2i = a•,ixo - hi or xo, = aij(x2, + hj) (5)

where aj represents the elements of a 3 x 3 transformation matrix, (T], between zo and x1 frames,

resulting from the above successive rotations. The transformation matrix, (T], is expressed as
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follows: C2C3 SS20-C S3 CC3S2+SS3

[T] = C2S 3 SIS 2 S 3 +C 1 C 3 C 1S 2 S 3 -S1C 3

-S 2  S, C2 CC 2

where C, = cos 4i and S, = sin -0,.

After applying the chain rule to the derivative terms in Eqs. (3) and (4) using Eq. (5), the

governing equations in the X2 frame can be expressed as:

OU92i

OUL . Ou2j _ 1p 02U2
IN2 alti~jQu2 j + [&jiacjk(r2k ± hk) - hi h,+ -_I -- P +21 +• Vg92jI92j 2 (7)

where u2i = atjiuoj, 921 = Caagoi, hi = dhi/dt and &iq = daa/dt.

To more conveniently describe the solutions and apply the boundary conditions, a new relative

velocity is defined as follows:

U21' " U21 ± cjia•jk(Z2k + hk ) - hi

This new relative velocity is always zero at the wall of the container no matter what kind of motion

the container may undergo. The introduction of this new relative velocity can greatly simplify

the treatment of the boundary conditions. Substituting the above definition of the relative velocity

into Eqs. (6) and (7) and omitting the primes, we have the following equations written in terms of

relative velocity components:
a9U2i 0 (8)

OU21 8U21
49--- + U2iu2i - 2/3c,,it2i -- 1t,,i(z2i + hi) - Ocp,li(a.2i + hi)
8ýt2  I9X2i

1 8p 022
-- P + V 02U21 921- g El (9)

where 13c.,u,,u &j , f3i, = &jCt3 ji, /p,, = &kt&i - 641 6&jCkj .i, El = 26,cij h3 - hit,

h, = d~h1/dt 2 and &jg = d2aj1 /dt 2.

Free surface tracking coordinates: X3 coordinate system When the container undergoes a

rotating-nutating motion, the free surface shape will change continuously with time. Equations

5



(8) and (9) can be used to model this motion; however, a third coordinate rotation is preferred

in this study for the following two reasons. First, the kinematic equation which is used in

this study to update the free surface at each time step requires that the free surface height be a

single-valued function of the other two coordinates. Therefore it is important to keep this free

surface a single-valued function by rotating the coordinates as required at each computational time

step. Second, rotating the coordinates in response to changes in the orientation of the free surface

facilitates the establishment of the computational grid by the present algebraic grid generation

scheme.

At any instant of time, the free surface may move to a new position with respect to the X2

coordinates as shown in Fig. 2. It is desirable to have the X23 axis remain normal to the free surface

in an average sense. One way to accomplish this is to let the X2 coordinates rotate an angle 4,

counterclockwise about the X22 axis and a successive counterclockwise rotation angle, 0',, about

the x1l axis as shown in Fig. 2. A transformation matrix, [S], is required to transform from the x2

to the X3 coordinates. The expression for this transformation matrix, [S], is:F cos4', sin 0, sin k' - sink, coss 0',1
[S] = 0 cos0, sin k0 I

sin O, - cos 0, sin 0' cos 0, cos .0'

The relationship between the X2 and X3 coordinates is:

X2i = SijX3j (10)

where sij is an element of [S].

The chain rule is then applied to Eqs. (8) and (9) using Eq. (10) and the resulting governing

equations in the X3 coordinates are:

-0T3i

S-± (UN +± fjX3j) 4 -- (fi ± 2+Dni)UN - rl,niX3i - "2,nihi

1 ap __2U__

= + V g3n + E. (12)
P 19X3n a 31Oa 3 j

where u3j = SijU2i, g3n = Stng2l, fi- = .-- i4kj, Ani = O. rijjiStn, "r,ni = ( 3 t,11 + -pU)s/-sji,

T2,ni = (/ 3 t.,i + 3,pji)Sin and En = s1nE 1
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Generalized nonorthogonal coordinates: z coordinate system It is desirable to establish

a new coordinate system having the property that the coordinate lines fit the boundaries of the

problem domain of interest, i.e., the liquid itself enclosed by the container wall and the free surface.

Let this new coordinate system be designated by (r, zi). The relationship between the (t3 , X3) and

(r, zi) coordinate systems can be expressed as:

Tr = t3 Zi = Zi(T31,X32,X33,t3)

By applying the chain rule to the time and spatial derivative terms, the final governing equations

in generalized nonorthogonal coordinates can be written as:

OUNi
W's azj -0 (13)

19U3.0---+ (ij + 71j.iUNi + •77,ifikX3k,)cOu3--n - (fj+2O)~i+1j, p
aZj (fi92zi)~ j~n~

1 8 2u3n 8 u3,,

•(?j,i~jk,i M.n "•+ 7 k,ii le = TlniX3i + 2 ,'nihi - g3n + En (14)

where rij = 1zi/0a3j and 1i~jj = 82zi/81r3jax3j are the metric terms and ii = 8iz/8t 3 is the

grid speed term. The detailed expressions for the metric terms and the grid speed terms are

documented in Chen'8 . It should be noted that Eqs. (13) and (14) have been nondimensionalized

before performing the generalized nonorthogonal coordinates transformation by the following

nondimensional quantities:

*N 713i t p* - PO (15)XUi -7 U3i i - 7-y t* -= , * -
L-e! ' tre! Pref

where Lre, is the radius of the sphere, Vre is the reference velocity (will be defined later),

Pref-=PVj,, tref =Lre!/Vre! and po = atmospheric pressure or saturated vapor pressure above the

free surface. The superscript * has been dropped for convenience in Eqs. (13) and (14) and the

Reynolds number, Re, in Eq. (14) is defined as:

Re = VreiLre!

7



Boundary Conditions

All boundary conditions are treated implicitly. In general, except for noslip boundaries, the

governing equations are written at boundary points. There are only two types of boundaries for this

three-dimensional configuration (see Fig. 3.) They are the solid wall of the container and the free

surface. Four boundary equations are required at each boundary to close the system of equations.

At the wall of the spherical container, a noslip condition is used for three velocities (u3N = 0)

and the normal momentum equation for pressure. The normal momentum equation is formed by

performing the inner product of the local unit normal vector and the three momentum equations,

Eq. (14). The resulting normal momentum equation after simplifying with the noslip condition

can be found in Chen"8 and Chen and Pletcher' 9.

At the free surface, strictly speaking, five equations are needed at this boundary since one more

equation is required for an additional unknown, i.e., the free surface position, which is part of the

solution. The so-called dynamic equations will be discussed first. These equations, which will be

coupled with the Navier-Stokes equations for the interior points, are derived based on the following

conditions. First, it is assumed that the two tangential shear stresses along the free surface are

zero since no external tangential forces are applied to the surface. Second, the normal shear stress

must be continuous across the free surface boundary, and finally, the continuity equation must be

satisfied at this boundary. For the continuous normal stress condition, a further assumption for air

is made to only retain the pressure contribution to the normal stress equation, since the viscous

stress contribution is small for air compared with the corresponding terms for the liquid.

These four equations in nondimensional form are:

1. Continuity equation

71j,i =9-0 (16)

2. Zero tangential shear stress (two equations)

19T + - + Unl =0 (17)
iOUi On,

8 + 72 + ± Ur- 2  0 (18)

3. Continuous normal shear stress
2 ou. 1

P R-0nWe= 0 (19)
Re 9n We
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where n, r, and r2 denote distances normal to the free surface and along the 1st and 2nd tangential

directions at the free surface respectively. U[. U,, and U,, denote velocity components along the

ii, F, and F2 directions, respectively, at the free surface. The r 1, .2 and r denote local curvature

terms and We is the Weber number defined as

We = pV,"fLtej

r

where F is the surface tension coefficient. The detailed derivation of the above quantities can be

found in Chen'8 .

Finally, the additional unknown, i.e., free surface position, is determined from the kinematic

equation which is derived from the Lagrangian point of view2°. Basically, it represents the fact

that fluid particles which lie on the free surface must remain on it. Letting F be the free surface

height which is a function of time , and the X31 and X32 coordinates, the condition that a particle on

the free surface must remain on the free surface can be written as:

D2 IF(31, X32, W) -- X33I = 0

Using the chain rule to express this in terms of the generalized nonorthogonal coordinates gives

the following representation for the free surface kinematic condition:

OF8 F = J U33 +} f3kXZ3ke

OF
-fit + (U 3 1 + flkX3k)77l,l + (U 3 2 + f2kX3k)•l,21 -aF

-{Z2 + (U3 1 + flkx3k)772,1 + (U32 + f2kX3k)772,2} a- (20)
aZ2

In the above equation, the free surface coincides with the Z3 = constant surface (see Fig. 3).

The free surface kinematic equation, Eq. (20), was used to explicitly establish a new free

surface position after the flow solution for the entire domain was obtained. Central differences

were used to represent the spatial derivative terms in Eq. (20). Equation (20) is only valid for

the interior points. At the edge of the free surface, i.e., i = I i__x, = jr,,a and k = kma,,, the

second-order Lagrangian extrapolation formula was used in the physical domain in the z2 (radial)

direction to obtain the free surface positions for all 0 directions from the free surface position at

the interior points.

9



The implementation of the boundary "equations" discussed in this section is not trivial and

can be seen in detail in Chen'$. Also, there were several types of singularities in this coordinate

system (see Fig. 3) where special treatment was necessary"', 9.

Numerical Solution Algorithm

The artificial compressibility method

The final governing equations, Eqs. (13) and (14) together with the boundary equations at the

wall and at the free surface, Eqs. (16) to (19), close the system of equations once the free surface

position is updated by the kinematic equation, Eq. (20). In this study, a form of the artificial

compressibility method (first proposed by Chorin 11) was used to solve these equations. The four

unknowns, u3N and p, are obtained simultaneously by this procedure.

The first step is to add an artificial time derivative of pressure, Op/O&r, to the continuity

equation. This artificial pressure term not only provides a linkage between the time variation of

pressure and the divergence of the velocity, but also ensures that the coupled system is nonsingular

if central differences are used in the continuity equation. The final equations become:

Op Ou3i
=r* + 77j'i azj 0 (21)

and

Ou3, 0113, Op
9U3-' ± (.j + 77j,i3i + 71j,ifikX3k) 8 (fin + 2A.•i)U3i + ±7j,n --

1 O2U3. Ou3.

e(17jrk0i + 7 )kii = T'j,.iX3i + r 2 ,.ihi - g3, + E. (22)Re azj~k 19

where r* is a pseudotime. Note that this pseudotime is also added to the free surface continuity

equation, Eq. (16).

It is important to add this artificial time term to the continuity equation after the generalized

coordinate transformation is applied instead of before if the grid is moving in time. Pan and

Chakravarthy 5 have pointed out that for a moving grid system the divergence of the velocity would

not be zero if this term was added before the generalized coordinate transformation even in steady

state calculations.
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Discretization of the equations

The discretization will be described for the form of the equations given by Eq. (22). A

first-order forward difference was used for the time terms. Central differences were used for the

spatial derivative terms in the equations. All metric terms of the transformation were evaluated

by second-order central differences satisfying the geometric conservation law21 . The grid speed

terms were evaluated by a first-order forward difference. All nonlinear terms were linearized by a

Newton method22 . The representation for the nonlinear convective term is illustrated as:

91 - u3n _n+_

(U3N ) (ii3i)n+l )n+n + ((O 3 )n+1(UN )n+I - (ii__ (23)
S -jzj (u- 9zj

where ()i3i)+ and 3 )n+1are the values from the previous iteration level of the current time

level, n + 1. The linearization error was effectively removed by doing subiterations at each time

level. After linearization, the four variables, U3N and p, appear in all the equations and the resulting

system of equations takes the following form:

Aý- ± + A" Aij,0-I~j,k + APAi~~kq~jk-I+ i,j, kq,,j-l,k + Aiw~q-~~ + i,j,kqi,j,k

i,j,k;i+I,j,k + Ai,j,kqi,j+i,k + A'i,J,ki , - bi J,k (24)

which can be rewritten in vector form as:

[A = (25)

where the coefficients Ab to At are 4x4 matrices and jis the vector of unknowns (dependent

variables), (ui, p)T, and b is the RHS vector. The difference molecule can be seen in Fig. 4. The

A's are the coefficient matrices for the unknowns at the positions indicated in the figures. The

resulting algebraic system of equations, Eq. (25), coupled with the boundary equations was solved

by the CSIP method which will be described below.

Coupled strongly implicit procedure

Following Stone' 5 , a general iterative formula for Eq. (25) may be obtained by adding an

auxiliary matrix [P] to each side of Eq. (25) and adding iteration numbers to 4as:

[A + p]i+I,k+I , =[p]•+,,k + (26)
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where n is the time level and k is the iteration level. In the Stone's SIP method'" 6 , [P] is chosen

that [A + P] can be decomposed as:

[A + P] = [L][U] (27)

where [L] and [U] are, respectively, lower and upper triangular matrices, each of which has

only four nonzero elements for the three-dimensional 7-point formula in each row. A partial

cancellation parameter was introduced to reduce the influence of this extra [P] matrix by a Taylor

series expansion (see details in Stone15 .16). After [L] and [U] are obtained, the following procedure

is used to obtain the unknown vector q-

Letting gn+I.k+[ = 4-,+lk+l - a,,vetk and a residual vector/in+1,k = 9_ [A]4+'.k, Eq. (26)

can be written as

[L][[U]'+l'k+l = - n+1,k (28)

Defining a provisional vector W by 'r''+,k+l = [U]6"+1Ak+1, the solution procedure can be written

in two steps:

Step 1:

[L] WVn+lk+l = 1 n+lk (29)

Step 2:

[UT]gn+lk+t = 'V-n+Ilk+l (30)

The process represented by Eqs. (29) and (30) consists of a forward substitution to determine

T+1,k+ 'I followed by a backward substitution to obtain f,,+l,k+l . The coefficient matrix [A], and

so the [L] and [U] matrices, need to be updated at each iteration since they contain unknowns due

to the linearization procedure.

In the artificial compressibility method, the time term in the continuity equation is artificial (in

pseudotime) even for time accurate calculations. It was found that convergence was enhanced by

using a local pseudotime. This local pseudotime was determined based on the following criterion:

0' -(31)

where A.j.,k are the off-diagonal coefficient terms in the continuity equation and the summation

is over the six neighboring points at each i, j, k location. The At" is a local value and varies in

space. The a is a constant to further control the time step. The choice of o, is problem-dependent.

Usually a value of the order of one will give satisfactory results.
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The convergence at each physical time step was based on the maximum value of the divergence

of the velocity field. For the results presented here, this criterion is

IV. f7l = 17uj,3i a 1 5 x 10-4 (32)
-3

The solution procedure for the three-dimensional liquid sloshing flow calculations can be

summarized as follows:

1. Set initial conditions.

2. Update the free surface position at each time step by the kinematic equation based on the

flow solution at the previous time step.

3. Generate the grid under the new free surface position.

4. Construct the coefficient matrix [A] and the right-hand-side vector b.

5. Call the CSIP solver to update solution (u31, p); go back to step 4 and subiterate (until

convergence) to create a divergence-free field at each time step.

6. Go back to step 2 and move to the next time step.

Results and Discussion

Before solving the more complicated three-dimensional unsteady liquid sloshing problems, the

present algorithm was evaluated by solving the 3-D driven cavity problem for a Reynolds number

of 100. The steady state results were compared against the data in the literature and satisfactory

agreement was observed' 8 . Several cases for which the steady state solution is known analytically

will be discussed in the following sections.

Axisymmetric spin-up

Three axisymmetric spin-up problems were studied. For this type of spin-up, the tank rotates

with respect to its own axis of symmetry (hi=0). Due to the symmetry of this problem, the solution

should be independent of position in the circumferential direction. This provides one easy check

on the validity of the code. As the spinning is initiated, the liquid and free surface begin to
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move relative to the container and eventually reach a steady-state equilibrium condition in which

solid-body rotation prevails. Computations were made for three different types of spin-up, all for

normal earth gravitational acceleration. The three types of spin-up are described as follows:

1. Initially capped spin-up: Initially, the spherical container half-filled with a liquid has

been spun about a specified rotation axis in a constant rotational speed and has reached a

solid-body rotation. A cap covers the liquid surface to prevent it from rising up. At time

zero, the cap is suddenly removed (or broken) and the liquid surface starts to rise (or drop)

until another equilibrium position is reached. The initial absolute velocity is distributed

according to the condition of the solid-body rotation. This case was computed for two values

of Reynolds number.

2. Gradual spin-up: At time zero, the spherical container half-filled with a liquid gradually

starts to rotate with the rotational speed from zero to a desired constant value about a

specified rotation axis. The initial absolute velocity is zero everywhere.

3. Impulsive spin-up: At time zero, the spherical container half-filled with a liquid impulsively

starts to rotate with a constant rotational speed about a specified rotation axis (the axis of

symmetry of the container, for the axisymmetric spin-up case). The initial absolute velocity

is zero everywhere except at the wall of the container.

For the same rotational speed of 60 rpm, the spin-up phenomena were found to be quite different

for these three spin-up types. Results for these three axisymmetric spin-up cases are given below.

Initially capped spin-up This case was computed for two Reynolds numbers, Re=21.9 and

2254.7, where the Reynolds number is based on the radius of the sphere and a reference velocity

equal to the radius times the rotational speed in radians per second. These two Reynolds numbers

can be achieved through the rotation of a sphere 6.4 cm in radius at 60 rpm using glycerin and

kerosene as the fluids, so the two cases will be referred to as the glycerin and kerosene cases. Other

characteristic dimensionless parameters of the problem include the Froude and Weber numbers.

"The Weber number has been defined previously. The Froude number is Fr=V,,f/ v/g, where

Vre is the same as used in the Reynolds number, h is the initial maximum free surface depth and

g is the acceleration of gravity. The Froude number was 0.51 for both of these initially capped
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cases. For the Re=21.9 case, We=207.6 and for Re=2254.7, We=284.9. The capped spherical

container was initially spun about its axis of symmetry at a constant rotational speed until solid

body rotation prevailed in the liquid. Since the liquid surface was covered by a cap, there was no

free surface motion at all. The initial absolute velocity distribution is as follows:

V,=0 Ve=rw V,=O

where Vr is the velocity component in the radial direction, Ve is the velocity component in the

circumferential direction, V. is the velocity component in the direction normal to the previous two

directions, r is the distance in the radial direction away from the line of symmetry and w is the

rotational speed (60 rpm) (w.r.t. X23 axis). It should be noted that the governing equations were

expressed in terms of the relative velocity (relative to the final solid-body rotation) and therefore

U3i--0 was actually used as the initial condition for velocities.

At time zero, the cap is suddenly removed (or broken) and the free surface starts to rise, from

its initial position, near the wall of the container and drop near at the center of the free surface in

response to the sudden change of the pressure field. Some selected velocity vector plots illustrating

the general flow pattern at different times are shown in Fig. 5. The results shown are in the X22

= 0 plane. The time shown on the figures has been nondimensionalized using a characteristic

time based on the radius of the container and the rotational speed at the wall. The dotted lines

inserted in Fig. 5 indicate the analytical steady state equilibrium (relative to the X2 frame) free

surface position. The analytical steady state equilibrium free surface solutions were derived by

the present authors and are listed in Chen"8 . The velocities are largest near the free surface and

significantly smaller near the bottom of the container. As time continues, the fluid eventually

passes (or overshoots) the equilibrium position. By time r- = 1.62, the magnitude of the flow has

been reduced and the flow pattern has begun to reverse itsel. This can be seen in Fig. 5b and more

clearly in Fig. 5c. This flow continues to oscillate about the equilibrium position but damps very

quickly until the new equilibrium position is reached at about T = 15.96 in Fig. 5d (see also Fig.

6). It should be noted that the magnitude of the velocities in Fig. 5d has become very small as the

final solid-body rotation is approached. The velocities shown here are relative to the solid-body

rotation expected at steady state, as pointed out in a previous section. The steady-state numerical

free surface position matches exceptionally well with the analytical solution.

To permit a more detailed analysis of the flow pattern under this spin-up condition, the time
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histories of the free surface positions at the wall of the container and at the center of the free surface

and the X23 component of the velocity were recorded for three different grids, i.e, II x 11 x 1 ,

21 x lI x 21, 31 x lI x 31. Figure 6 shows the free surface position at the wall and at the center of

the free surface for glycerin during the spin-up process. The free surface position can be seen to

oscillate about the equilibrium position. This oscillation is damped out quickly by the viscosity of

the fluid. Figure 7 illustrates the same phenomena but shows the time evolution of the component

of the velocity normal (x23 component) to the free surface at the center of the container. The

grid refinement study indicated in Figs. 6 and 7 shows that the unsteady free surface positions

and velocity were relatively insensitive to the grid distribution in the circumferential and height

(vertical) directions. It is well known that for viscous free surface flow simulations, there exists

an extremely thin boundary layer (or singularity) near the liquid-gas-solid contact line. In our

grid refinement study, the effect of this singularity tended to become more evident and eventually

caused the numerical calculations to break down as the grid spacing in the radial direction was

refined.

For this spin-up problem, the number of subiterations at the first time step was about 50 but then

quickly dropped to less than 10 after 20 time steps and finally became I as the solution approached

the final steady state. It took about 2 hours CPU time on the Apollo DN 10,000 workstation for

the course grid case. A nondimensional time step of 0.015 was used throughout the calculation.

The initially capped spin-up calculations were repeated for a Reynolds number of 2254.7. This

was achieved by keeping all rotation parameters the same and decreasing the kinematic viscosity

of the fluid by a factor of about 100 to a value corresponding to the viscosity of kerosene. The

final analytical equilibrium free surface position is then expected to be the same as for the glycerin

case. With this less viscous fluid, the flow pattern was found quite similar to the previous case and

will not be repeated here; however several interesting results deserve further discussion.

Figure 8 indicates the variation of the free surface position at the wall and tank center as a

function of nondimensional time during the spin-up process for kerosene. Since the viscosity

of kerosene is a factor of 100 less than that of glycerin, the free surface oscillations appear to

damp out much more slowly than was observed for glycerin. This behavior is believed to be real

although no experimental data had been found to date to clarify this point. The final computed

steady state position of the free surface agrees reasonably well with the analytical solution. Figure
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9 shows the computed velocity component normal to the free surface at the center of the container

as a function of time. Slowly damped oscillatory motion is evident. The spin-up with kerosene

took about four times longer than that with glycerin to reach final steady state solid-body rotation

(Both cases had the same reference time and this was estimated from the plots shown previously).

The kerosene calculations were made with the same grid as used to obtain the glycerin results.

During the course of early computations, it was found that the free surface developed a saw-toothed

profile of small amplitude in the radial direction which appeared to slow convergence at each time

step. The saw-toothed profile might have been due to the use of central differences in the spatial

derivative terms in the kinematic equation at the higher Reynolds number. If the use of central

differences at high Reynolds numbers was the source of the problem, it could have been remedied

by the use of a finer grid which, of course, would have increased the required computational effort

considerably. Instead, a small amount of smoothing was added to remove this undesired profile

and stabilize the calculation. The smoothing was of the following form:

Fnew = Fold +( 2 Fold33)

where s is the smoothing parameter, F is the free surface height function (see free surface

kinematic equation) and z2 is the radial direction. A value of s = 9 x 10-3 was used for this case.

The second derivative in the expression above was represented, of course, in difference form.

It should be noted that the use of the smoothing of the free surface height function, F, for this

calculation resulted in less than 1% loss of the initial total volume. Although this discrepancy may

be considered insignificant for most purposes, ways of avoiding this loss deserve further study in

the future.

Gradual spin-up; liquid: glycerin As mentioned before, the high frequency free surface

oscillations were possibly due to natural overshoots arising from the sudden removal of the

cap during the spin-up process. To further understand this phenomenon, a third test for this

configuration was conducted for glycerin again in the following way. The container was spun up

with the rotational speed being gradually increased from 0 to 60 rpm by a sine function of time

during the nondimensional time interval from zero to five. This rotational speed was specified as:

w = 30(sin 0 + 1) rpm, for0 < r < 5

where 0 = Mr-
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and

w = 60 rpm, for r > 5

Figure 10 indicates the variation of the free surface position at the wall and tank center as a

function of nondimensional time during the gradual spin-up process. The oscillatory phenomena

in Fig. 6 disappeared and instead, a nonoscillatory ramp-up of the free surface at the wall and drop

at the tank center was observed. The final steady state free surface positions agree very well the

analytical solution.

Impulsive spin-up; liquid: glycerin At time zero, the spherical container half-filled with

glycerin impulsively starts to rotate about its axis of symmetry. The initial absolute velocity was

zero everywhere except at the wall of the container at which a rotational speed of 60 rpm was

suddenly applied. Due to the use of the relative velocity in the formulation, a negative distribution

of the solid-body rotation velocity was specified everywhere initially except at the wall where a

zero relative velocity was specified. A 11 x 11 11 grid was used again for this case. The free

surface positions at the wall of the container and at the center of the free surface are shown in Fig.

11. No free surface overshoots were observed in this case. Being spun up impulsively, the flow

reached the final steady state equilibrium position earlier than for the previous gradual spin-up

case.

Asymmetric spin-up

When the rotation arm, hi, is nonzero, the solutions will no longer be symmetric. A schematic

diagram for this type of spin-up is shown in Fig. 12. This case belongs to the initially capped

spin-up type as explained in the previous section. The same container as before was half filled

again with glycerin. It was initially covered by a cap and rotated in an orbit with a constant

rotational speed under the condition of solid-body rotation. At time zero, the cap was removed to

allow the liquid surface to move under this spinning condition. The rotational speed was 30 rpm

and the rotational arm, hI (X2 1 component of hi), was 12.8 cm which was twice of the radius of the

container. Based on the above physical quantities, the characteristic nondimensional parameters

are:

Re=21.9 Fr =0.51 We =207.6
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where the reference velocity, Vrei, was based on the rotational speed of the center of the container,

i.e., Vrej = whl i.

A 41 x 11 x 11 grid was used to compute this case with the 41 points being placed in the

circumferential direction. A constant nondimensional time step of 0.01 was used for this

calculation. At the first time step, 170 subiterations were required for convergence, but the

number of subiterations required dropped rapidly and varied between 10 and 15 for most of the

calculation. Compared with the previous axisymmetric cases, this calculation was more difficult in

two respects. First, the free surface was asymmetric and more grid points were required to resolve

the solution in the circumferential direction. The solution would sometimes diverge suddenly if

the resolution of the grid was not fine enough or if the grid distribution after the grid adaptation

procedure contained a locally steep slope. Second, more computational effort was required to

obtain the solution at each time step.

In this calculation, the value of k, in the the free surface tracking coordinates was no longer

zero. Therefore, the present test case also served as a check for this transformation. For this case,

the computation was carried out until the final solid-body steady state solutions were obtained.

In Fig. 13 a series of results showing the free surface position at different instants of time are

presented. The centrifugal force is larger at the right hand side (RHS) (far away from the spin

axis) of the tank in Fig. 13 than at the left hand side (LHS) (closer to the spin axis). In response to

this sudden change, the free surface begins to rise at the RHS and to depress at the LHS from its

initial position, becoming curved as can be seen in Figs. 13d-13f and finally assumes a parabolic

equilibrium shape at about r = 7.2.

Some selected velocity vector plots for different times in the X22=-0 plane are shown in Fig. 14

with the analytical equilibrium free surface position's superimposed. The largest velocity vectors

occurred near the free surface. The computation was carried out until the nondimensional time

equaled 7.2 at which time solid-body rotation prevailed. The final free surface position can be

seen to agree fairly well with the analytical solution.

Again, the numerical steady state free surface positions at the wall of the container were plotted

against the analytical solution. Figure 15 shows the time evolution of the free surface position at

the wall for positions of 0 (LHS) and 180 (RHS) degrees (see also Fig. 12). This plot indicates

the free surface rise at the RHS and drop at the LHS from its initial position (equal to zero for
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half full container). The small discrepancy between the current numerical solution for the free

surface position and the analytical solution is probably due to the relatively coarse grid used in this

calculation. Further studies with a finer grid may help to resolve this discrepancy. This calculation

took about 22 hours of CPU time on the Apollo DN 10,000 workstation.

Conclusions

A coupled strongly implicit solution strategy for unsteady three-dimensional free surface

flows has been developed based on an artificial compressibility formulation for the Navier-Stokes

equations. A pseudotime term has been used in the continuity equation to permit time accurate

calculations to be achieved. The scheme appears capable of tracking the free surface reasonably

accurately although further verification of the procedure is desirable. An algebraic procedure

for adjusting the grid between time steps has proven to be adequate. Five different free surface

calculations have been reported. The initially capped cases exhibited an interesting Reynolds

number dependent oscillatory behavior which is believed to be physical although no experimental

results appear to be available for verification to date.
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APPENDIX I. A Numerical and Experimental Study of

Three-Dimensional Liquid Sloshing in a Rotating Spherical Container.
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and
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Abstract calculations based on this approach require enormous com-

A numerical and experimental study of three dimensional putaional resources in order to obtain accurate solutions in
liquid sloshing inside a partially-filled spherical container both time and space.
undergoing an orbital rotating motion is described. Solutions A numerical model has been developed by the present
of the unsteady. three-dimensional Navier-Stokes equations authorss for studying complicated three-dimensional liquid
for the case of a gradual spin-up from rest are compared with sloshing flows in rotating spherical containers. This model
experimental dataobtained using a rotating test nri tted with employs the coordinat transformation/suriace fitting ap-
two liquid.filled spherical tanks. Data gathered from several proach described above in conjunction with the artificial
exoeriments are reduced in terms of a dimensionless free compressibility formulation for incompressible flows'. The
surface height for comparison with transient results from the resulting system of discrete eouations is solved using a
numerical simulations. The numerical solutions are found to coupled strongly implicit (CS!P) procedure. Some results
compare favorably with the experimental data. obtained with this model have been presented in Ref. 8. Al-

though these results appear qualitatively correct, a rigorous
Introduction assessment of their accuracy has not been made due to the

The motion of a sloshing liquid inside a moving container lack of reliable experimental (or other numerical) dam
has long been of interest to engineers and researchers. Liq- To date, only a few three-dimensional. transient free
uid slohing arises in many imoortant practical applications. surface simulations using the incompressible Navier-Stokes
including the design of oil tankers. railroad tank cars. MIs- equations have been reported in the open literature. Partom-0
siles. satellites, and Spa caft...3s4 ,5 . The present study is discussed the numerical simulation of three dimensional flow
concerned with sloshing flows inside spherical containers in a partially-filled cylinder. His work employed a three-
undergoing motions characteristic of spin-stabilized satel- dimensional extension of the volume of fluid (VOF) method
lites. Previous research" in this area has shown that satellites of Hirt and Nichols"1 . Some results for several cases (both
containing parually-dilled liquid stores can exhibit an unsta- with and without the influence of gravity) were presented:
ble coning motion shortly after being released in space. This however, no compasons with experimental data were made.
instability is thought to arise from the sloshing force induced Sicilian and Tegart1 1 descnbed transient free surface results
by the free surfacre motion inside the fuel stores themselves, for free surface motion in a partaily-filled container during

One of the distinguishing characterisucs of sloshing flows a controlled free fall. Although their predicted forces agreed
is the presence of one or more fre surraces. A fre surfa1c. with the trends in the measured data. significant discrepancies
in the present context. is defined as the interface between still existed.
the liquid and another fluid (usually a gas) which fills the In an effort to provide data for the present study, use
regions not occupied by the fluid. The free surface adds an was made of an existing experimental facility which was
3dditional difficulty to the analysis of the fluid motion since originally developed to study the kinematics and dynamics of
its position is usually not known a priori, and thus must be spin-stabilized satellites&3. The facility consisted of amotor-
computed as part of the solution. driven rotating shaft on which two liquid-filled spherical

The motion of the liquid is governed by the three- containers were mounted. The instrumentation included
dimensionaL incompressible Navier-Stoakes equations. To sensors for measuring the transient free surface position at
conveniently analyze the fluid motion, one can employ a co- the walls of the containers. It was recognized that data
ordinate transfortion which takes a moving, non-inertial obtained with these sensors could be directly compared to
coordinate system in physical space to a non-moving coor- numerical results, thereby providing a means of validating
dinate system in computational space. The free surface is the numerical model.
then placed at one boundary of the computational domain In the following sections. the mathematical formulation
(a practice known as -surface fitting"). Both the coordinate of the numerical model are briefly discussed, along with an
t-ansformanon and the desire to accommodate arbitrazy mo- overview of the numerical solution algorithm. Additional
tions of the container ultimately give rise to a large number detail of the formulation and algorithm are provided in

of terms in the governing equatons7. As a result. unsteady Ref. 8. The experinenmn setup and test procedure am then
described, followed by a presentation of some numerical and

'Sm Rem AsacMae Memb AtAA. experimental results.
tP.aac A isa Depuawnt o Meacal Eng•ee•ing.
ZPIUeinw Deaaranei oMaduamW al EnewmrlMember AIAA.

CapynghL (01"I1 by the amhon. Pubisbed by the Amerian lnasue of
Aeomima uad Asonuw&c. for- wit petusue
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Figure 2: Notaniorn for the S u"ansfarmanoa..
Figure 1: Schematc of a partially filled romcang-nungF 2 i

container movinm relative to an mienial frame.
4

Mathematical Formulation

Governing euations "

The incomuressible "4avier-Stokes eauanons for an
isothermal. lamunar flow can be written as . =,_

7T azi P dziaz ,;z
-Uai = 0p= • g (1) ..-.

where u, are the velocity comoanents. p is the thermody- / to-~ Nou
namic pressure. gi is the ac~c.lcianion dlue tom -vir.. p is Efe, ,,.-,--,,-,

densitv. i/ is the knematic viscosiry. and z; are the sua•al co-
ordinates. As mentoned previously. several t-anstormaLions Figure 3: Coordinate system for liquid sloshing probia.
of the 2overnn equatuons are required in order to accom-
modate oath the fee surface and a general morion of the
container with respect to an inertial coormnate system (see are the generalized coordinates. r is the physical time. r"
Fit. 1). These transformations are well documented in Refs. is the useudaome employed in the aruficial compressibility
7 aind 8. and therefre will not be repeaed here. The final metod,. rx,1 and i•,, am meic terms. and 4 is the grid
governing equanons. written in a generalized non-orthogonal speed. Other quantities atpeanng in the above equanons cancoodnae with respect to a non-ineral reference fr-ame. be attibuted o te transformation ofte governrg equanims
a fm an inertial to a non-iernai frame. Additionaict31. tam

Op 0given inRefs. 7 and 8. It should be noted that the freesurae
+ L -i. = 0 (3) racking Coordinate txansfornnzon descibed in Ret 8 has

been modified in this paper to account for tangential free
surface defrmanon (which appais in the cas exmnmed
in the present study). The new -mns••oinanon maix (SJ is

. 4 j+ 7%1,u~ + fI~ ~ ) LI-3- ddined as follows-
aa, , azy,

-(A .-z•,,,,, ,•,, I• '(""" a,.ll [-os = ,• sins4 ,'cosi, -••sin46 Cs"2..)ui+ Ii. -V 7Mh i- 0

( Z*, 2 :lu5m S 0 s sinCo ; s cosin
+ ," -n ,A.z3j + g,. -9., + E,, (4) sn Cs0 i 6, Cso o

azt, 'Me aono for this new -amsfomnnton is shown in Fiur
where w iste relaievelocity compoonentinz3 coordinam 2.
syste (see Fig. i). JU is the Reynolds number based onth
r'aius of th sphatcal contatna and the rtnonal speed. z.,

2



A k + ,Numerical solution algorithm

3,.T + Equations (3) and (4), together wlt the boundary con-
ditions, yield a closed system of equations once the free

A. surface position has been updated by the kinemanc equa-
t ,ion. A form of the artificial compressibility method (first
proposed by Chorin~) is used to solve the equations in a

4,, Icoupled manner. In discretizing the equations. first-order
S -forward differences are used for the nine terms, and second-

-i +jorder central differernce for the spanaldenvatves. The
AbI memc terms have been carefully formulated in the present

- case so that the geometric conservation law" is satisfied
numerically.

Figure 4: Three-dimensional computational molecule for All nonlinear terms are linearized usmi the Newton tin-
A.-A,j, A, . earizanon approohc This linearization produces a compled

set of algebraic equations for the unknowns u-, and p. These
equations can be written

Boundary conditions

AU boundary conditionsare treated implicitly. Since there + A.,,,.j- + _ I...,
amefour unknowns in the governimg equations. four boundary +Ai.jh +A: ,
eaua•ions ae reouired to close the system. The present • _(6)
2eomct'v (Fig. 3) contains only two types of boundaries: (1)
the solid wall of the container, and (2) the free surface. For
the solid wall boundary condition, the no-sLip condition for or. more compactly,
the veiociry is invoked. The fourth equation (the boundary
conditon forpressm'e) is derived from the normal component [A]f= b (7)of the vector moment~um equation at the wail: where the coefficients A4 to A' are 4x4 matrcs and f is

M . - the vector of unkmowns (dependent variables). (UN, P)T, and
b is the RHS vector. The difference molecule assoated

Here. M., denotes the normal momentum eauation. 6 is the with Eq. (7) is depicted in Fig. 4. The resulting system of
local unit normal vector at the wall. and M represents the algebraic equations. Eq. (7), which includes the discmazed
three momentum equations in a vector form. boundary equations. was solved by the CSIP method 7.

At the free surface. several constraints are imposed to The solution procedure for the three-dimensional liquid
obtain We boundary equations. First. the two components of sloshing calculations can now be summarized as follows:
Langeenal shear stress along the free surface are assumed to
be zero. This is justified since the external tangential forces I. Prescribe the initial conditions.
exerted by the gas overlying the free surface are negligibly
small. Second. the normal component of the shear stress is . Update the free surface position (using the kiUitanc
assumed to be contnuous across the free surface. A further equanon) based on the flow solution at the previous
assumotion for air is made that only the pressure contribution time step.
is sigMncanL since the viscous stress contribution is small
for air compared with the corresponding terms for the liquid 3. Generat a new computational grd under the update
Finally. the coninuity equation. Eq. (3), must be satisfied at free surface position.
the free surface.

Expressions for the above boundary conditions can be 4. Construct the coefficient mamx (A] and the nght-hand-
formulated in tumns of the general coordinate transformation side vector b.
described previously. Specific expressions are provided in
Ref. 7. 5. Call the CSP solver to update the solution (t,. p); go

The free surface position is determined by solving the back to step 4 and iterate (until convergence) to aante
kinematic equation . The icnematic equation essentially a divergence-fee velocity field.
represents the fact tha fiuid partcles which Lie on the free 6. Gobacktostep2andmovetothenexttimestep.
surf-ac must remain on i Leting F denote the fre surface
height (which is a function of the coordinates z=i and Z32
and arne), the kinematic condition for the f= surface may Experimental Setup
be expressed as

A schematic of the test rig used in the orbital spi-up
D-- F(Z31, Z}33 = 0 (5) expeiments is shown in Fig. 5. Two ciear-plastic speical

D 2conmnern of radius r = 7.41 cm were positioned a radial
distance h = 25 cm (with rspect to the citer of the conmer)

This equation is used to update the free surface at each time from the axis of rotation. Both conti were half-filled
step once the velocity field has been determined from the with iqud at room temperatme. Glycerin was chosen nthe
Navier-Stois solution, test fluid for the case d ssed in this paper.

3



The spherical containers were spun in a simple orbital
motion about the axis of rotation (te drive shaft) by a
DC motor connected througn a series of gear boxes. The
plane of this orbital motion was kept normal to the axis as
shown. Trhe rotational speed was controUed manually using
a transformer. and was measured by a tachometer connected

* to the motor drive train.
The instrumentation for a typical. spherical container is

illustrated in Fig. 6. Each sonere was titted with three
I' light-sensitive photopotentomneters to sense the inboard (1).

outboard (2) and tangeential (3) free surface positions at the
- ~wall of the container. All three photoootenuometers were

oriented normal to the equatorial. plane of the sphere at the
imdicated circumrrerentiaL positions (90 dezrees apar). By

1-1 wi ......... tinting the liquid to block light transmission. Whe voltage
output from the photopotenuioreters was made proportional

to the fracton of photopocentiometer suriace covered by the
by a 6 volt light sourre located at t6e top of the spherical

_____container.
i ALI data were collected and staredl using a rniaocornputer

outfitted with a high speed data acquisition board. The data
OC ~acquisition hardware was conngsured to accept eight channels

- of bipolar voltage signals. with maximum sampling rate of
90000 samples per second.

The phocopocentioneters were dvnarmically calibrated to
______________ SON=_ obtain a voltage versus free surface height relationship for

use in data reduction. This calibration was - -comolished by
spinnuing the rig up to a specified rotational speed. waiting
for steay state conditions to be established., and recording

Figure 5: LUusoanon of cunrentsateiLte test rig contiguration. thle output Voltage produced by the pnotopooenuometmr.
The steady state position of the fresurface (which was
determined from the analytical solution for a given rotational
speed) was then correlated with the knowncirufenta
positions of the photopotenuometers.

Results and Discussion

Comoutations were carried out for the two types of spin-
up descrbed below. In both cases. terrestrial gravity was

AIM S.u.c - included in the acceleration field.

- 1. Intially capped spin-up: A spherical container half-
6lled with a liquid is spun about a specifed axis of

- - rotation at a constant rotational speed until solid-body
rotation ofthe liquid is achievedi. A cap covers the

AI liquid surface to prevent it from rising up. At time zero.
the cap is suddenly removed (or broken) and the liquid
surt=c stairts to rise (or drop) until another eqmLibriuwn

doiton is readed. The initial absolute velocity is
- ~distibuted ==mding to the condition of soLid-body

rotation.

_____ _ ____ I2. Graduaispin-up: A spherical container half-filled withL
a Liquid is gradually spun up from rest to a presabed
steady state rotational speed. The plane of the motion

&VAN ( rOAU06is normnal to the axis of rotation. This case corresponds
to the conditions of the experimentaL study.

Fipmu 6: Schematic of spherical container and insamnenca- Izta~j pedonu
uion.

A schematic of this this case is shown in Fig. 7. The radius
of the container is 7.62 cm. and the distanci: from the axis of
rotation to the center of the contmaie is "4.7 cm. 'The fluid
is prescribed as giycein at room tempwitirvue

4



(a) r 0.0 ( r1.8
Figure 7: Schematic for asymmenic sman-uu: container __________ _________

half-Eiled with glycerin.

The chanitcistic nondimaisional pwiinet= for this sit-
uationi are:

Re = 181.4 Fr= 3.25 We= 12-002.1

werem Re is the Reynolds number. Fr is the F-oude number.
and We is tlhe Weber number. The Fmouae a.nd Weber
numbers are defined as________ _ _________

(C) r 2.7 d) r 4.5

We = V.L.,/

where V, 1t is the same as used in the Reynolds number. h is
the initial maximum fre surface depth. g is tile ac~lerazion
due to gravity. and r is the surface tension coefficient.
Since the Liquid surface was covered by a c~.there was no
initial free surface motion. However. it should be noted that
while the irudai, relative velocity was z--o everywncre. the ...
absolute velocity was nonzer and distributed accrding to I ý
the conaition at solid-body rotation.

A 51SII x lII grid(51 poiis in the curumferential.direc-
tion)~. and a constant non-dimensional time steo of 0.0 1 were (e) r 6 .3 (f) r 8.1
used for this calculation. The extremely high centrfugal
force fleld associated with this case caused the free surface
to rise (drop) almost to the top (bottom) of the tank during
the IaIhietIL In addition, the motion of the free surface
app~eare to be more abrupt than in the cases reporte by Ref.
8. This abrupt free surface motion gave rise to numerical
instabilitiCS which,. in tixn. resulted in a sudden divergence
of the solution afteir a long period of time in the calcula-
lion. Upon investgating the cause of these instabiliijes. the
following reitedfie were introdiced into the algorithm.

F=rL. it was found that the free surface tacking angle.
0,. must be handled caefully (01 is zero in this cuse. since
there is no tangential acceleration). As d~esribed in Ref.
8. the purpose of thea Wxing angle is to both facilitawe() 13.5S (h)r 34-2
the present gind geniatnon proceduire and to keen the free
surface height funcuaon F. single-vaiued. The influenc of
the uxackng angle (and its time rain of change) is cOfiwlner Figure; 8: Selected free surface plots for the initially caped
in various ternis of the trnusbanned govenig eqa~s span-up of a sphericaL container half-filed with giyceiz.
For this pzculx cas. it was observed that the free surface
(and also 4k,) tWaded to oscillate afternoinesos timeA.
-r- 1.8. wherepon the; urn rate of qý, ()began to grow
rapidly. The magnlWde of the tonm itiunfle by 4a, in the
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(a) r' 0.0 (b) r 1.8 z

Figure 10: The time history of the nondimensional free
surface height for the initially capped spin-UD of a spherical
container half filled with glycerin.

.. governing equations finally became dominant and resulted
Win the solution diverging. To reduce the sensitivity of the

solution to this effect. the calculation of o., was modified byK. . averaging angles at two time levels. This treazrent smoothed
out the temporal variations in both 0. and 6_. which. in turn.
helped eliminate the potential for unstable behavior.

(c) r = .7 (d) -. 4,5 Another phenomenon observed in the present case was the
appearance of a local saw-toothed profile in the free surface
at a non-dimensionaL Lime of r = 2.6. This profile propagated
to neighboring points, which eventually resulted in a very
unfavirable gtrid distrbution. and ultimately to solutio'n
divergence. The cure for this problem was to employ first-
order upwind approximations to the spatial derivative terms
differences.

The final calculations for this case were c*ried out on an
/ Apollo DN10000 workstaion, and required about 58 hours

of CPU time to reach steady state. The computed solution
is presented in Figs. 8-11. A series of results showing the
free surtace position at different instants or time are shown

in Fis. belFieved sthaysate thcopndyitos aeiathe uetted us aoft
(e) r 6u3 -34.e uwhind cor frespcnds in theroxinmatel oeqrvouaion o

(obt)of the lcoa nteroaioner prevocdty uvedctor afr te presene
inurenl ben invesrtashogaited.9

The tfpit sufacrositiondpat thenwlei hwznd inaFi.of
___________ __________ Te anumbtica of= surfie pstion frequ hed ateady stite. stepis-

(g~~~~~r=bd 135r()1=4p otateioni codi.o Thesuddetaincraedfo Refsub .Irtioans
nbedseen t.siomel tismeac xss between3anSwsfod th e opthed
rslted osthte free surface anioscition dntesaaltcribe soutone.

9: ~ ~ ~ ~ ~ ~ ~ ~ ~~~I Seecs veoiteeto lieavz)pan o Frt ed thaotyo thes dicoepuatinyi hewever lesso than 10 o
tiur sbthlieartiont erpoato n rceueeded. rnserte

thurac initials cfrpe spi-u ofd ari sperca cohane halfiWyso
illed wliithin tlycere problee dom cuinet indiite thenvestiGgdatesd.-u

anaiyu ~ ~ ~ ~ ~ ~ Th fresumbpstin Asres of exp ieraients wreqirred out wath thme stept rig
W 135 () r 4.2ploto d eaine aigraua spnupfomr1. The vadninraeins triations of

6odmnoa ie ewe n a on ob h



So0 TACHOMETER DATA: 30 RPM
FLUID -GLYCERIN: FILL LEVEL 0 05

600

E0 2

a 10 20 30

Nondimensiofaii time 2

Figure 11: The time history ofthe number of subiterazions at !ZI
each tine step for the initially capped spin-up of a spherical
container half filled with glycerin.

the rotational speed was controlled manually with the aim 0SMOOTHED DATA

of proaucing a transient of about one to two seconds. The 2 3 5 6
recoroed rotational speeds (obtained from the tachometer) TM SC
were then used as input to the computer progarm.

Due to the symmetry of the configuration. photopoten- Figur 12: The tranient rot~ational speed curve for the
tiometer data were obtained for one sphere only. During the
course of calibration. it was found that the signal from the gradual spin-up of a spherical container half filled with
tangenuial photopotentiometer (#3) was too small to provide glycerin: 30 rpm case.
a reliable indication of the free surface level. This was due
primarily to the small free suriace deflection at that position
for the tests conducted. Also. the length of the photopoten-
tiometers (as well as other effects) limited the range of fre
surface deflection for which reliable calibrations of the other
photopotenuiometers could be obtained. Ways of extend-
ing the sensitivity and range of the photopotentiometers are TAHMEE DATA: 60 RPM
currently being studied. FLUID -GLYCERIN: FILL LEVEL -. 0S

Two sets of data (three runs per set) were obtained for 70
nominal steady state speeds of 30 rpm and 60 rpm. One ____________

run from eachi set was then selected for simulation with
the computer propara. Appropriate initial and boundary 60 -. al
condiuons were prescribed for each case. and the rotationalii-
speed as a function of time was specified using the tachometer 6s
data from the experiment. It should be noted that the .
tachometer data were smoothed prior to use in the progra J
in order to filter out the noise in the signal. 'Me resulting - ___

smoothed and unsmoothed (raw) data are shown in Figs. J IS
12-13.

The numerical solutions were performed using a
41lx IIx Il grid (41 grid points in the circumferential di- 4
rection) for 3000 non-dimensional time steps (4r = 0.03). 20

Both solutions were initiated at aphysical timneof 1second Is ---

(the time at which the sphere begins to move in the exper- 10 ~cOEEROT
imental time frame). The total elapsed physical time was a TCOEADT
about 4 seconds. The calculations were carried out on a - SMOOTHED DATA
DECstation 50001M0. and consumed about 23 hours of MP' 2 3 1
time in both case.2

For comparison with the experiment, a non-dimensional TIME NESC)

free surface height. 1/i. was defined, where I is the height
of the ftm surface above the equatorial plane (see Fig. 6). Figure 13: The tranisient rotatonal speed curve for the
Values of If/r at the inboard and outboard positions were gradual spin-up of a spherical container half filled with
computed and stared at prescribed time intervals for later glycerin: 60 rpm cam.
analysts. For the cases discussed below, the maximum
experimental wsiwetainty in the values of if/r was estimated
to be between 2x 10-2 and 3 x 10-2.
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OUTBUARO FREE SURFACE HEIGHT COMPARISON: 60 RPM
FLUIO GLYCERIN : FILL LEVEL. 0.5

10

.NBOARO FREE SURFACE HEIGH4T CcUPARISON: 30 RPM I I
FLUID - GLYCERIN: FILL. LEVEL. .5 0.4

S0.8
Io Io, I II' I

0051 .-.-.- w 0.7= " I I
S ._ _" 0.6

I 1 J1T : °' O

(1.3 I-- - J0 ,jl0
IIY I -. ,

,2 0 17 1 Iý.- I __.

43 EXEIMN .0 is 2.0 Z-5 30 3.5 A,0 45 540

, ___ __ _ 0.1 PoEREMENT

F 0 NUMERICAL TIME (SEC)

-340 . -- -,_
.!! 2.0 2 30 35 s 0 45 5 Figure 16: The time history of the nondimensionaloutboard

TIME ISEC) free surface height for the gradual spin-up of a spherical

Figure 14: The Lime history of the nondimensional inbord container half filled with glycerin: 60 rpm case.

free surface height for the gradual spin-up of a spherical
continer half fled with glycerin : 30 rpm case. ~The soluron for 30 rpm case is presented in Figs. 14-15. In

Figs. 14-15. the computed inboard and outboard free surface
heights are compared with their experimental counterparts.
It can be seen that the computed results are in reasonable
agreement with the experimental data. In particular, the
delay between the initiation of the rotation and the response
of the free surface appears to be well predicted. as is the

OUTBOARO FREE SURFACE •E.4GHT CCMPARISON" • RPM general rate of change of the free surface position with time.
,LUI-GLYCERIN FILLLEVEL. 5 There does. however, appear to be some smoothing of the

0 ,onumerical response relative to the experimental data. The
differences between the numencal and exerzmental results

o •sare attributed to both the coarse 2nd used in the numerical
sunulalion and the uncertainties inherent in the expermnentalS•30 ' data.

"z 0 •.,The solution for the 60 rpm case is presented in Figs.
,i .16-18. For this case. the deflection of the free surface atS025 I the inboard position exceeded the calibration range. and thus

aj could not be used. A comparison of the computed outboard
020 free surface height response with the experimental data is

U) shown in Fig. 16. Again. the ageenent of the computations
0.15with experiment is generally good. although. as in fth 30

Inrpm case. the response appears somewhat smooth.
It is observed in both cases that the free surface uazn-

sient roughly corresponds to the u~inent in the rotational
speed. This behavior is the result of the high viscosity of

a EXPEPRIMENT the test fluid (glycerin), the geometry and rotational speeds
SI - .employed in the tests, and the length of the rotational speed

I o S 2.0 2.5 3.0 35. k s s4 o U5-ansient. For less viscous fluids or faster transients. the mo-
rime am uon will become more complex, with notceable secondary

oscilationo peistaig for some time after the steay state
Figure 15: The time history of the nondimensionaL outboard romioal speed has been achieved.

Selectel plots of the f6ee surface and velocity fields arefree surface height for te gradual spin-up of a spherical presented in Figs. 17-18. As the container begins to accel-container half filled with glycerin: 30 rpm case. e-ate. the fuid initially sloshes both tangentially (r•wwrd)
and radially (outward). thus cremang a highly distorted free
surface topology. Eventually. as the steady state conditions
am approhed. the free surface "sat out into its stedy

8



- -.... . . . . . .

(a) WmI.498 sec (b) 1=1-996 sec (a) t-1l.498 sec (b) t-I1.996 see

(c)t-2-4945 (d) t2..991 se (C)t-2.494 sec (d) 2.99isec

(e) t=3.499 sec (f) -3.989 se (e) t-3.489 sc(f) t-3-989ow

Fitre 7: eletedfre sufae patsfortheuadai pinupFigure I8: Selected velocity ve r plots at z22-0 plane for
oFiur 17:herl cotindier surfaced pwots fo tenn 60us spmnu the gadual spin-up of a spkhecal container half filled, with
ofam spglcycceirihn-f:edwt gyern 0 p 60 rpm case (he dotted line indicates the initWa

fem surface position.
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state contfiguraton. rational Physics. 2. pp. 12-26. 1967.

Conclusions 10. Parrom. I. S.. "Application of the VOF Method to
the Sloshing of a Fluid in a Partially Filled Cylindrical

Numerical solutions far two classes of three-imnensional Container." International Journalfor Numerical Methods in
sloshing dows inside patnially-filled spherical containers Fluid Mechanics. 7. pp. 535-550. 1987.
were presented. The calculated transient free surface po-
sitions for the gradual spin-up case were compared with 11. Hirt. C. W.. and Nichols. B. D.. "Volume of Fluid
corresponding experimental data. and found to be in reason- (VOF) Method for the Dynamics of Free Boundaries." Jour-
able agreement. Discrepancies between the numerical and nal of ComputatonalPhyszcs. 39. pp. 201-225. 1981.
experimental results were attributed to both numerical ewrors 12. Sicilian. J. M. and Tegart. 3. R.. "Comparison of
and experimental uncertainty. Despite these discrepancies. FLOW-3D Calculations with Very Large Amplitude Slosh
however, the essential behavior of the fluid appeared to be Data.- PVP-Vol. 176. Computational Expenments. pp. 23-
well predicted by the present numerical model. 30. Presented at the 1989 ASME Pressure Vessels and Piping

Work is in progress to improve both the numerical and Conference. Honolulu. Hawaii. July 23-27. 1989.
experimental results presented in this paper. Specifically.
the numerical solution procedure is being developed further 13. Anderson. M. D.. Motion Study of a Spin Stabilized
so that accurate solutions can be obtained on finer grids. Par- Satellite Test Rig. Master thesis. Iowa State University. 1988.
ticular attention is being focused on the vectonizanon of the
CSIP algorithm. Improvements in the present experimental 14. Lamb. H.. Hydrodynamics. Dover Publications. 1945.
facility will include extending the accuracy and range of the
photopotentiometers. and installing additional insarunenta- 15. Hingman R. G.. "Generanzed Coordinate Forms of
tion (such as pressure transducers) at selected positions on Goverrmg Fluid Equations andi Associated Geometrcally
the sphaercal container. Induced Errors." AIAA Journal. 20. No. 10. pp. 1359-1367.

1982.
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