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We review the recent theoretical study of the effect of nonequilibri-

urn phonons on hot-carrier relaxation and transport. In a quantum well. the

proper treatment of the electron-phonon coupling between electrons confined

to two dimensions (2-D) by phonons traveling freely in three dimensions (3-

D) requires special care because phonon heating produces a bottleneck in the

rate of transfer of energy from the carriers to the phonons. Because the car-

riers interact with phonons primarily when the latter are close to the quantum

well. the latter should be described, not by plane waves, but by packets

adapted to the shape of the carrier confinement. A quasi-equilibrium tech-

nique that retains off-diagonal elements in the phonon wave-vector permits

an unrestricted treatment of the density operator equation. That in turn leads

to a choice of wave packet that comes from solving the integrodifferential

equations rather than by imposition. Moreover, if the carrier distribution is

assumed in quasi-equilibrium with a given drift and temperature. the coupled

partial differential equations are reduced to coupled ordinary differential

equations that can be solved with modest computer power. Comparison with

experimental results for steady flow of energy from carriers to phonons. and

for time-dependent relaxation yields quantitative agreement.
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1. THE PROBLEM

The production of microelectronic devices by molecular beam epitaxy. and the high

mobility of carrners particularly in modulated heterostructures created the importance of this

area of stud\. Moreover, for transport in small high mobility systems, moderate voltages can

lead to strong fields and non-linear effects. An excellent review of two-dimensional transport.

%kith an extensive list of references has been -liven by Ando. Fowler. and Stern:

There already was experimental evidence by Shah et al-- and Ryan eit ati that the

rate of energy transfer from electrons to phonons was an order of magnitude less than pertur-

bation theory would yield. On the other hand. controversial experimental results were also

reported by Yang et al.' Several causes that may contribute to this reduction of the energy-

loss rate were considered. The tirst one is the effect of reduced dimensionalitv. Theoryv-

showed merely insigniticant dependence of the energy-loss rate on dimensionality, when the

predominant loss is by emission of longitudinal-optical (LO) phonons. The second is screen-

ing of electron-phonon interaction by free carriers. Screening has been appraised by Rihle

et a/9 to play only a minor role up to electron densities of n = 1017 cm .

It was clearly perceived by the experimentalists, and a qualitative theory was

developed by Price,In that the inability of the longitudinal optical (LO) phonon system to dis-

sipate heat fast enough was creating a bottleneck. A reabsorption of phonon energy by elec-

trons is presumed to decelerate carrier cooling. In fact, this bottleneck effect has been dis-

cussed by P6tz and Kocevarit in the 3D case. In the 2-D case, Price's theory is qualitative.

because he was forced to introduce an ad hoc parameter - the number of phonons that interact

with an electron: Price recognized the need. and called for a more rigorous treatment.

2. OUR RESOLUTION

During that time. I (M. Lax) perceived a need for understanding electron (and hole)

transport ii quantumn wells and heterostructures and hired two research associates. W. Cai and

M. C. Marchetti, to work in this area. Cai was already an expert in semiconductor physics

and Marchetti an expert on transport in liquids. My role was advice and criticism.

We concluded' 2"l' that the problem was a general one: how should electrons, whose

transport is confined to two dimensions, interact with phonons that can propagate freel\ in

three dimensions. More specifically, since the electrons only interact with phonons when they

arc in the \icinity of the quantum well. a plane wave descnption tor the phonons is irt.ion-

%enient. One possibility is to retain the plane wave description. but quantize the phonons (in

the : direction) over a thickness 1. comparable to the well width. But such a treatment would

he equivalent to Prices with L as the arbitrary parameter.
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Cai proposed a resolution of this problem by using a basis set for the : direction (nor-

mral to the well walls) that consists in a Gaussian times a set of Hermite polynomials. But it

was not known how many terms were needed. The use of a -single term. the Gaussian, has as

an arbitrary parameter. the width of the Gaussian.

2.1. Quasi-Equilibrium

After reviewing the work. I suggested that the shape of the phonon "'packet- should

come out of the problem. not be imposed. Marchetti then suggested the use of a quasi-

equilibrium procedure of the sort introduced by Bogolyubov in dealing with classical liquid

transport and by ZwanzigtIe t5 in a variety of problems. See also Zubarev16 and Peletminskii

and Yatsenko17 The basic idea is the quasi-equilibrium assumption that the variables ot a

problem can be divided into slow variables and fast ones. The fast variables are assumed to

be in equilibrium with the current values of the slow variables. When the fast variables are

inserted into the equations for the slow ones, we get an effective set of equations for the slow

variables.

2.2. The Choice of Slow Variables

The success of such a procedure clearly depends on the appropriate choice of slow

variables. The electronic variables antkak describe the occupancy of a state of transverse

momentum k in the nth subband. The average of this set of variables

fnk(t) = <anfkantk> (2.1)

is the familiar distribution function for these carriers. These variables must clearly be

included in the slow set.

The phonons are described by the three-dimensional wave vector

Q = (q, qz) (2.2)

associated with a plane wave representation exp (iQ-R). The variables to be used in this case
are bq.qz qq'z with average value.

nq(qz, q'z) = <b .q bqq' (2.3)

Marchetti made the crucial proposal to retain the off-diagonal elements in Eq. (2.3).

Although the work starts in the plane-wave representation. by allowing off-diagonal elements

with respect to q,. we have prepared the way for an eventual transformation to packets whose

shape is as yet unknown.

2.3. Description of the Hamiltonian

The H-amiltonian f! consists in an electron part HI,.. a phonon part /I,. an electron-

phonon interaction V.P, and a phonon-phonon interaction I,, with
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He = XEnk ank ak (2.4)
nPk

where Enk is the energy associated with the state

Tn. k(r. z) = A -' 2 ,2tz )exp(ik-r) , (2.5)

associated with the transverse wave-vector k. and quantum well state n. Here Cn(z) is the

n-th quantum state in the well. The unperturbed phonon part is

Hp = YX/•0W 2btbQ (2.6)
Q

Q = (q, qz)

The electron-phonon interaction is given by the Fr6hlich interaction is

fP dR fJdR' e n(R) - IR -- 'PR'). (2.7)

namely, the Coulomb interaction between the electron charge density en and the charge den-

sity - V.P, where P is the phonon induced polarization, so that

I .a t'fl

'Lp = k - I I Q8W ~ n'n~q qz) 6W, k-. G*:.q, 'ii)ank5.

(2.8)

where the matrix element G takes the form

Gjn(q, q2) f dz ý*,(z) exp( iqzz) ý,(z). (2.9)

In Eq. (2.8), a is the Fr6hlich interaction constant' 8

a = 121ire 2 oL(l/._ -lf/E) 111/2 . (2.10)

2.4. Form of the Equations of Motion

One can derive the kinetic equations for a set of macroscopic observables. {jy(t)} from

the quantum-mechanical Liouville equation. Here we choose the following observables:

= {fk(t), nq(qz4qi, t)} (see Eqs. (2.1) and (2.3)). If the Liouville equation is solved

to the lowest order, the rate of change of any function of 'At), denoted by F(Qt)), is given by
= "T H0 r.I''~i lim • t"T{ 'tl'F)l9~)

=F(yTt)) TrH (1) F ('t)) 1,P^0,(t)+ I - dr e TriI 1^'m. I VF') I

(2.11)

where V(T) is the coupling perturbation in the interaction representation:
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V(T) = exp[ (i, h)(I11 + Ip)TI V exp i-i, hi)(He +ip)t T" V 2.12)

and [()(t) the unperturbed density matrix. Hlere. neither the electron nor the phonon system is

assumed to be even close to equilibrium. From Eq. (2.11), we obtain coupled integrodifferen-

tial equations of the form

, X- M MlIfnk -,'k', nflq. q.. ( 11 2.13)
1 q qzqýnk'

'onq(qz'q,,,'t) =Y YYX..nk II-In'k'] <'I Four terms 1 2.141
w I~ e nIkn'k'q,"

di

where a typical term is given by

6k'. k-q G _ iEqk -- EG'k" - tOL, 18q". qz + q(iq:", q:'. It)1 2.15)

The detailed equations will be presented in the Appendix. Here we emphasize their form. In

particular, let us regard q and q, as parameters. Then Eq. (2.14) with Eq. (2.15) has the form

(for the term shown in Eq. (2.15))

an(qz, t)

at = O(q2, 0) + K(qz)M(t) (2.16)

where

Mt) = f H(q,")n(qz". t)dqz' (2.17)

after all parameters such as q, q,' are suppressed. Multiplication of Eq. (2.15) by H(q, and

integration leads to the reduced ordinary differential equation

dM-) = 1(t) + AMt) (2.18)

dt

where

1(t)= JH(q,)O(qz, t)dq, a = fH(qK(q,)dq, (2.19)

2.5. The Shape of the Packet

Not only is the remaining computational task greatly simplified. Eq. (2.17) already

informs us that (aside from a choice of nonnalization) the phonon wave-packet operators are

"Y X G q.n(q, qz)hq.q, 1_.12)

If there are S subbands of importance. there is one packet operator for each choice of

(n'. n) or S(S + 1)/2 differently shaped packets. For the important case in which only the
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ýt= () states participate there is one Such packet ffor each q):

(; ~ ~ ~cq.( q. J 2v;I /7- 2.21l
+

[he shape of* this packet in ordinary ,hare may he obtained by Multiplication by expui i, I and

integrating over (V.

JR: - :d I 1:' - 2.221)

Shere

R CX=2A' 4q I-.-'):'f,= K( 2,23)

has the form of* a tmodified 1Bessel function. This formn arises fromn the Coulomb nature of the

tinteraction. If' we had uised a point interaction (iq + (1: would have been replaced hy

unitv and R(: by 6t: - :'so that the packet shape would simply be I ~Z .More

generally, the packet shape is a convolution of the electron density 2uZ with

K d)q I z-: hfor each q.

2.6. Further Simplifications

We have not written the explicit form of the phonon-phonon interaction I.. by means

of* which the relevant long'itudinal optical phonons decay into acoustic phonons because we

have replaced that process by a relaxation process of the form

[~~Jlq(z~qi '~ -tq~t~.qzfl~~, qfl(2.24)

L rDt j0

where the decay time for optical phonons T..., has been estimated in the experimental paesl

to be 7 psee.

For times larleer than at picosecond it has been found by Monte Carlo calculations' 0 23

and by our own quasi -analytical procedure tl that the electron distribution has equilibrated

relative to two macroscopic parameters: an electron temperature F,.it) and a drift velocity

v.i.boith oif which miaN be t tue dependent. By introdUC ii g these para meters, the eq Uatton

for the electron distributiotn is replaced by ordinary differentital equations for these parameters.

Finally, since we have been dealing with vartables such as n,tq.. tq I. it )xxas con-

%en tent to uise a x% ave packet co nst rutictIon on hboth leftt antd rig it %%axe - ectors. Thius our

reduced phonon variables are
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where

F"n'n n' k/ f'- q - :ý tn( (2.26)

Thus. in ueneral. we %%ill get coupled ordinary differential equations tor Fu i. v, w. and

2.7. The reduced Equations

F~or simrplicity, we shall write here only the special case in which only the lowest sub-

1han'J contributes. Thus we shall set

%\,)(q, t h V ,4o (K) (q, t) (2.27)

The phonon equation can then he written

ON)N11(q. ) .VO(q, it + I .V0(q, t) NV1(q, t ) - V1.(T. IT11

where the rate of phonon emission I/ re and the rate of phonon absorption I1/T, are given by

t(q, T,.) h1 q I cqx),*uo(q, WO 12

-1 -. exp I hcoij,.kRTe,(t)I 1~ (2.10)

where F(H),)M)(q) was defined in Eq. (2.26), and the manix element P" is given by

I)(q, Te(t)) f kdk O
X q__n~o 1k2  + iO-)-it2

hqj 2 hq

'jEk. !>ft)l I - 1t(Ek - h~on. T,(M)I (2.31)

Fq. (2.30) shows that the ratio of rates of absorption and emission is -,oernedi bý' the itnstan-

(iCnOUS electron temperatuire. D~ynamic screenling! ettecis aire c~ontained in the dicelccnc

response function r~hw,,pq. (i), ) used in Eq. (2.29).
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102
ne 5x 10lO/cm 2

-,

Top = 2 psec

5 psec

TOP 10psec

50 1OO 150 200 250 300

Te (K)

Fig. I. l/t as a function of the electron temperature Te, for top =0, 2. 5, and 10 psec and (n=0) lowes1

subband occupation. Dynamic screening is included (solid curves). The dashed curve shows for com-

parison a calculation for top=O when static screening is used.13 Comparison between the t=O (no

bottleneck case) and t= 10 psec shows a reduction of one order of magnitude in the latter case.

2.8. Energy Loss Rate in Steady State Case

The first explicit calculation is made for the steady state case. In that case, the elec-

tron temperature Te(t) = Te will be independent of time and assumed given. The problem is

to calculate the rate of energy transfer from the electron gas into the LO phonons. and to

express the result in the form used by the experimentalists. The latter fit their experimental

data with an expression of the form:

P,.(t) -.. exp I2.32)

Then I , is plotted as a function of electron temperature.

We calculate I /t by using the expression:
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PM= rL . on.(qz, qz, t) p -(2.33)N, q at

Comparison with the previous equation yields 1/i. A plot of 1;t obtained in this manner is

shown in Fig. 1.

We note that in the case in which T,,p =(0. equilibration of the LO phonon modes takes

place instantaneously. Thus no bottleneck effect will occur. But the effective energy transfer

rate is reduced by an order of magnitude if one takes -c= tO psec. The dashed curve demon-

strates that neglect of screening would have little effect on the results.

If we apply the steady state condition:

dNo)(q, t) -N= )0 (2.34)

dt

we can solve for Nn(q), the non-equilibrium phonon occupancy associated with the transverse

phonon wave-vector q.

Using the Planck formula,

N 0(q) = I/{exphic)Lo/kB T(q)l- 1} (2.35)

the results can be expressed in the form of a temperature T (q) for the phonons of a given

transverse wave-vector q. The results displayed in Fig. 2 show that the predominant heating

occurs for small wave-vector phonons.

300 T I I 1 1

250- Te 250 e 0 K n.=5 x101 1,/M2 _

200- I e 200K T r,: 10psec

o 150 e15K

100

50 T 0

00 I 2 3 4 5 6 7 8 9 10

q (l0 /cm)

Fig.2 "Phonon temperature" T(q) as a lunction of q lor 50 K <_ T, 3(X) K and lowest subband

occupation.13.
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We have also made calculations when electrons and holes are simultaneously

present.- and when more than one sub-band is occupied.-• A comparison between expen-

ment and theory tor this case is shown in Fig. 3.

oao3 O.Q3............................................1

N n. = 7.OxOt cr-'

n N = 3.5xi10 cm-'

N \ 7". il
NTL = 16 K

U'ý

S... ith t hot PhW.M

exgp.data for •
* exp. data for b

I 1 .. I , . .. ,,l . . , . .N 1-1

lOr-U 10-1 fOr-Me i0-'

energy low rate M carrier (W)

Fig. 3. The carrier temperature is plotted against the energy loss rate per carrier for the electron and

hole case. For the electron case, the effect of hot phonons is found to be an order of magnitude.

whereas for holes it is much less than an order of magnitude. The points are the experimental data of
Shah et ale.27

In Fig. 3 the curve for electrons is obtained by including only the polar interaction with LO

phonons. The calculation for holes includes polar coupling to LO phonons and coupling to

both LO and TO phonons via the deformation potential. Only heavy holes are considered. It

is shown that the hot phonon effect is strong for electron relaxation, but is weak for hole

relaxation. This follows because for holes the phonon emission rate l/Th(q) for given q,

which is similar to Eq. (2.29) for I /T,(q), is much smaller than that for electrons. From Eqs.

F2.29) and (2.3 1)t we see that I pte(q) is proportional to f(Ek, Tpec)r, which is proportional to

lem, with m the effective mass. The large effective mass of holes leads to a weaker build-up

of hot phonons bi the hole gas. On the other hand. heavy holes preferentially emit phonons

with larger momentum q. because of the large effective mass of hole. aThereforen the phase

,pace of q that contributes to the total cciling rate for holes is much larger than that for elec-

trons. This leads to the larger cooling rate for holes than that for electrons.
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2.9. Time-dependent relaxation

Our starting equations are valid for the time-dependent case. We simply do not

assume time derivatives vanish. The electron energy can be written as a 4urn over the

transverse k vector:

<E,.(t)>= YEk /(Ek r,(t)) (2.36)
k

For simplicity. we again consider here only one sub-band. The rc:< of electron temperature

change is then given by:

'T" I rk<E(t)>-:- - ( _37 )
it (',(Te(t)) 0t

where C1, is the specific heat: C, = o<E(t)>1dT,.(t). Since the phonon equations depend on

the instantaneous temperature l'e(t), we now have coupled ordinary differential equations con-

necting the phonon occupancies NO(q) and the electron temperature. It is assumed, of course.

that Te.(t = 0) is given. A comparison is given in Fig. 4 of our theoretical results with expert-

ment

As the electron gas relaxes, its temperature decreases as shown by the solid curve in

Fig. 5. The associated rise in the phonon temperature is shown by the dashed curve which

merges with the solid curve as the combined system relaxes to the lattice temperature. When

tp is set equal to zero, the phonon bottleneck effect disappears, and the electron temperature

falls more quickly as shown by the dot-dash curve.

350

30 T, (0) = 1450OK
ne = I0 /cm-

250 Top 7 psec

-' 200

150

-. 100

50

0 0 20 30 40 s0 60 "0 s.0 90 100

1 (psec)

Fig. 4. Time dependent relaxation o1 an electron gas of density n, = I0t)2 'cm, starting at an initial tem-

pcrature of T,(O)=.350K. The optical phonon decay rate has been given the accepted value 11 t,, = 7

psec. The experimental data are from Ryan et al. corresponding to a 3D electron density

n = 5, IO' em ' and to a maximum fx)wer absorbed by the sample of - 50 mW.

181



986 M. Lar x' W. Caj

350

300 T,(0) ý5OK

10"" /"cm-
250 A ie psec

150'

500

0 '

Fig. 5. A plot of electron temperature T', against time (solid curve for tp=T psc and dot-dash curve

for TP =0) and of the phonon temperature TP(q) at q = 1.3 x 10Ocm-1.

3. FURTHER APPLICATIONS OF THE THEORY

3.1. Hot electron transport

When a strong dc: field is applied, the electron gas acquires an elevated temperature as

well as a drift velocity. Moreover, the drift mobility is reduced more in the presence of a

phonon bottleneck than in its absence. This issue was studied by Lei and Horing.s and by

us'9 The methods described earlier involving the introduction of a phonon packet remain

valid. It is convenient, in addition to separate the center of mass motion of the electron gas

from its relative motion. The density of electrons will again be assumed sufficiently high that

the electron gas can be assumed in quasi-equilibrium with a given drift velocity and a given

temperature. A term. which describes the center-of-mass motion under an applied field should

be added upon to the Hamiltonian described in Sec. 2.3:
I/,, = P-/2M - NeE'R .3.1)

with P and R• the center-of-mass momentum and coordinate operators, respectively, N the

total number of electrons. and M = Nrn, with rn the electron effective mass. The electronic

states are labeled by the 2D wave vector in the relative coordinate system, k, and the discrete

,,ubband index. n: an,, and aJ,k (Eq. (2.1)) now are the corresponding electron creation and

annihilation operators in the relative coordinates and EA, is the energy of an electron in the
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(n, k) state. Therefore. the energy exchange of electron in the relative coordinates obeys the

conservation condition:

E'k' - Enk = h(ow. - q'v,.) , 3.2)

with Ve the drift velocity of electrons. The intracollisional effect' (. nanmely the etfect of the

electric field during the course of a collision can he neglected for the fields considered in our

work 9. If only the lowest subband is considered. we obtain a pair of time evolution equa-

tions for the drift velocity v,. and the total energy of electrons in the relative coo~rdinates:

OMV,,(t)
. -NeE - Y hqL~t., t (3.3)

q

_E__ y- (hio) - q'v,)L4,LO(q, 1) 3.4)
t -LO) q

I lere

L,--U(q, 0 21ca 2 ý Y'G&)(q, qý)Goo(q, qz)]
LeLO(q, 1)=

x{/•)(q, WOu))Ii + NO(q, t)l - Iý) (q, (OLO)NO(q, t)} (3.5)

where NO(q, 1) is defined by Eq. (2.27) and

IQ(q. (or) - foJk(t) I I -fO'k'(t)] 'k'.k~q S(E•k - E('k," hq've + h(oL) • (3.6)

where the electron distribution function in the relative coordinates foA(t) is assumed to be a

Fermi-Dirac distribution with temperature Te(t). With the above approximations, the problem

is again reduced to coupled ordinary nonlinear differential equations. Solving Eqs. (3.3) and

(3.4) and corresponding equation for No, which is similar to Eq. (2.28), we can determine v,,

Te as well as N0 (q)

Results for the mobility reduction and temperature increase in a steady applied field

are shown in Fig. 6.
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fle~8Xi'Cfl~ ~ 1000ne =78x lO0"crff t

'.0 8.7 x I0 Cm 2/Vseic:
TL z 77 K

l. Top=7psec

. I

100

-Cp 7 'PSE O

0 ,II I 1 I , I i I 0

0 500 1000

E (V/cm)

Fig. 6. The normalized mobility of electrons, t(E)ft.(E 0 0) (solid curves). and the electron tempera-

turn, Te, (dashed curves) as functions of the external electric field I E I at T,,,= 0 and t,,p 7 psec.

The crosses represent the experimental data from Fig. 2(c) of Keever et a32 at TL = 77 K.

-I

qq,

Fig. 7. "Optical phonon temperaturc". /,,,lq). as j lunction of q (unit. f10 cnm i at

I E I = 5(X) V/cm. The q,-qv plane represents T, 77 K. the peak value of T, is 69h K. InsLt:

"The average wave vector of nonequilibrium 1.O phonons. < q, >. as a function of the electric field.
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Phonon heating produced by the strong electric field is not isotropic. but is more effec-

tive for phonons whose propagation direction is in the direction of motion of the electrons.

The phonons also acquire a mean "momentum" <q,>. A contour plot of the phonon tempera-

ture rise. and an inset of the mean momentum are shown in Fig. 7.

W e also studied the time evolution of electrons he ginnin g from \wutch on' of a

applied electric field until arrival at a steady siate. Fig. 8 displays the results. The presence of

hot phonons leads to time delay in arriving at a steady state.2 5 1 1 1 , 5 0 0
2 0 - -. •• 

T 0 0 = O 4 0 0' • • _ To p = 7 psec

15 - 300 -
E /T.p 7 psec

2 =0 1002 -
//p

5 /E 
= I kV /cm - 10 0

T= 7 7K K
0 5 10 15 20 25

t (psec)

Fig. 8. The drift velocity of electrons, Iv, I (solid curves) and the electron temperature. T, (dashed

curves) as functions of time t. The parameters are the same as those of Fig. 6.

3.2. Relaxation of the electron-hole plasma

When an undoped quantum well device is illuminated by a high-power laser, photo-

excited electrons and holes are produced simultaneously. Therefore. it is necessary to study

the cooling process of a photo-generated electron-hole plasma. This process involves, not only

the carrier-phonon coupling, but also the electron-hole interaction. This issue was studied by

P6tz 33 in bulk GaAs. and then by Marchetti and P6tz34 in a GaAs-GaAIAs quantum well

using the approach described above, since hot-phonon reabsorption can also slow dow,.n con-

siderably the carrier cooling in the electron-hole plasma.

The energy of photo-excited electrons is assumed below that of the L \alley. No inter-

valley scattering is not included. The carrier distributions are modeled as a time-dependent

Fermi-Dirac distribution functions. The temperatures in the distribution functions for electrons

and holes are allowed to be different to account for noninstantaneous energy transfer between

two carrier systems. The equations for the time evolution of total electron energy iE,.) and
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hole energy (Eh) is derived as

oE,
-=Re-h-Re-LO+RLt . (3.7)at

and

aEhh_t = + Re-h - Rh-LO - Rh-TO +R . (3.8)

Here Reh is the power loss by electrons to holes via the screened Coulomb interaction.

RL-O and RhLO are the rate of energy loss by carriers to LO phonons via the polar Fr6hlich

coupling, Rh-TO is the rate of energy loss by hole to TO phonons via the deformation poten-

tial coupling. R'j and RL are the power input from the laser to electrons and holes, respec-

tively. Only the lowest subband in the quantum well is considered.

The corresponding time evolution equations for non-equilibrium LO and TO phonons

isimilar to Eq. (2.28)) are coupled to Eqs. (3.7) and (3.8). Therefore. the temperatures T,. Th

and the phonon distributions, NL (q) and Ng (q), can be determined as function of time t.

400 , ?•, , , I . . . I . . .I, I. . . .I I I . . ..

lattice out of equilibrium
- ' solid line: 2.5 nm well

dot-dashed line 5nm well
300 - dashed line: 10.0 nm well

F • dotted line: 20.0 nm well

200~~'

o 2 4 6 8 to

TIME (ps)

Fig. 9. Electron and hole temperatures as functions of time for nD =0.5•i0i 2cm-" and four values of

well thickness: L = 25 k solid line; L = 50,A. dot-dashed line; L = 100 A. dashed line; L = 20 ,A. dotted

line. The four curves starting at T=2(X)K represent hole temperatures, the others represent electron

temperatures. This figure is Fig. I from Marchetti and P6tz.34
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In Fig. 9. the electron and hole temperatures are displayed as functions of time for dif-

ferent layer thickness L. The exchange of energy between electrons and holes plays an impor-

tant role in the initial stage of the relaxation. The main portion of !he photon excess energy is

given to the photogenerated electrons. Initially, the kinetic energy of excited holes is below

the threshold for optical phonon emission. However, the e-h coupling rapidly transfers energy

from electrons to holes and thus ensures significant participation of the holes in the cooling

process. This energy loss channel is also important after the buildup of LO-phonon modes

which couple to electrons slows the cooling of electrons. Reabsorption of phonons becomes

important within less than a picosecond after the onset of the laser pulse and leads to a con-

siderable reduction of the carrier cooling rate in the later stage of the relaxation.

One can see, from Fig. 9, that the carrier cooling rate is rather insensitive to variations

in the well thickness, if the sheet density is kept constant. This result is in agreement with

experiment.3 5. On the other hand, their calculation-34 indicates that for given layer thickness

and times beyond 0.5 ps, cooling occurs at a slow rate at higher values of sheet density.

because of a strong buildup of nonequilibrium optical phonons at higher sheet density.

3.3. Electron-hole Transport and Negative Mobility

The luminescence measurements of the photoexcited electron-hole (e-h) plasma in

quasi-2D quantum wells and the relative theoretical study, which was discussed in Sec. 3.2.

are important to derive information about relaxation of this system. On the other hand. tran-

sport measurements of a photoexcited electron-hole system under an applied electric field

have also provided some interesting results. 36'37 Recently, Hopfel. Shah. Wolff. and Gos-

sard37 found that in a such system the minority electrons, which are injected by laser pumps

on the p-modulation-doped quantum wells, can move in the direction of the external electmc

field. This negative absolute mobility of electrons occurs because of strong electron-hole

drag. This subject was theoretically studied by Cui, Lei, and Horing38 and by us39.

We first briefly discuss the condition for negative absolute mobility of electrons in the

region of weak electric field where the conductivity is linear. In the steady state we have the

force balance equation for carriers:

nteE - 1-v _ F1L-L = ), (3.9)

where E is the external electric field. F"-L represents the frictional force due to the carrier-

lattice interaction and FP-v represents the frictional force upon the 4i-type carrers due to the

carrier-carrier interaction with the v-type carriers. It is obvious that F" _ = Fv " In the

region of linear conductivity we have
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P'-L =, nA4-LvP 10 t 1i)

IF-" n.,nvA"_'-Vtu - V •, ',3.11)

where v. is the drift velocity of a- type of carriers, A,4-L represents the contribution to the

resistivity (per carrier) from uL-L scattering, and A-V relates to the contribution to the resis-

tivity (per carrier Ig) from a,-v scattering normalized to per carrier v. From Eqs. (3.9) - 13.11

we immediately obtain the mobility for electrons. p,:

(n, - hl)A -h + A h-L

,leLA h--L + r 'e•."-h eL + nhAe-hhU3.12'

Equation (3.12) indicates that for electrons a negative absolute mobility is only possible v.hen

ni < nh. (The corresponding statment for hole mobility could require nh < ?I,.) It is deter-

mined by the difference between the density of electrons and the density of holes, and the

competition between electron-hole drag and hole-lattice scattering. At low temperature and

under a weak electric field, the former dominates, so the mobility of electrons is negative.

When the lattice temperature or the electric field increase, the latter tends to dominate and the

mobility of minority electrons becomes positive.

The carrier dynamics is derived in a similar way as discussed in Sec. 3.1 and Sec. 3.2.

We separate the center-of-mass motion of each type of carrier from its relative motion. The

2D momentum for gt-type carriers in the relative coordinates is defined as hk = hk - mv•v

and a Fermi-Dirac distribution function is assumed at temperature T.. Jf,(T,). in the relative

coordinates. The exchange of momentum and energy in the relative coordinates can then be

written as
k - k' = q, k'i - E_' = h( (o - q'v) (3.13)

A set of coupled equations for the time evolution of the drift velocities of the center-of-mass

and energies in the relative coordinates for each type of carrier can be derived. We obtain

an tm -( e) - F - L(t) - IgV(t) _ (3.14)

L

and

EE (t) (_ _ tt ( E -(t) E3.15)

Fp-L in Eq. (3.14) represents the frictional force due to carrier-lattice timpurity) interaction.

The expression of, for example, LO phonons is similar to Fqs. (3.3) - (3.6). Here. the camer

interactions with LO. TO, acoustic phonons, and impurities are considered. Also. the hot-
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phonon effects for 1.0 and TO phonons are included. FV. which represents the frictional

force due to e-h scatterine, with v a different tvpe of carrier than Pi, is given by

i = t (0) 1 ( .k q6 p.p*q

q I', k'Vk pp

LL /. - A '- ' + iiqi(v,-v,. I 13.16)
6 Elk + f-p A' +

where the term hq'v 11 -vV I appears in the last 6 function because the enerzies E for electrons

aind holes are defined Ii different coordinates. .and ) = (E -Ii k h. The last term in Eq.

(3.15) represents the energy loss rate in the relative system due to e-h scattering. A n equation

for the rate of energy loss can he obtained by replacing FPV Iii Eq. (3.16) by -, oF ) Wl

and the prefactor hq on the right hand side of Eq. t3.16) by I-k - F'

The term I,- ,.,(q, (o) in Eq. (3.16) represents the 2D screened scattenng niatrix

between carriers. Here, one should be careful in treatment of screening effect when two kinds

of earners coexist. The unscreened electron-electron, hole-hole, and electron-hole scatterings

occur via Coulomb interactions given by

W2n'eev Fv. ' (q) (3.17 )
eoqA •

where the form factor F,,v. ,(qi is given by Eq. (2.26). and Ef is the static dielectric constant.

Since the strength of the electron-hole interaction is of the same order as the electron-electron

interaction and the hole-hole interactions, the dynamic screening effect should be expressed

by a more complex form than that in the case of a single type of carrier. These interactions

are shown in Fig. 10 in the random phase approximation (RPA). According to Fig. I0. the

screened carrier-carner scattering matrix. V, , satisfies the following equation:

Vv =v + ,nnV n t. l3.IX

where 101 is a diagonal matrix. its elements are the density-density correlatvon functions tir

2D camers. If we define
1' ' " h If 

II<' 
, •

-= II 'h 1= l1,- _- - . 3.f

- hh I h hte k, 01=,- L I t

[he screened carner-carrer scattering matrix can then he expressed Itt matrix ormll:

I - I Ii t I '3.20
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When only the lowest hand for electrons and holes are occupied. I can he straightforwardly

w ritten as

I I - hh Ih )I'ee +1 ehl ilIlie ell

wkith

_t I-i l I hh1  - t' lhhe le 3.22)

e e e e e e e eh e

e e e e e e e e h e

e h e h e h e h

e h e h e e h e h h

h h h hh h h h h

h h h h h e h h h h

Fig. I0. Diagrams for screening ellect ol camer-carmer potential in the RPA. The single and double

honiontal solid lines represent, respectively, the unscreened and screened carrier-carrier interaction.

I "" and V,. The bubble represents the density-density correlation function. [il.

Solving a set of coupled equations. Eqs. (3.14) and (3.15) and corresponding equations

for hot-phonons. we can determine the ve, vh, T,. Th as well as the distribution of hot-phonon

wavepackets (LO. TO). The mobilities for both carners in a weak electric field are shown in

Fig. I I as functions of lattice temperature, TL. Fig. 12 shows the weak field mobility of elec-

trons and holes as functions of the electron density, n,..
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20,

16 r- 7.--

122

-04

- ITH HOT PHONONS
-0 - WTOUT HOT PHONONS

0 05 10 15 20
TL (lOOK)

Fig. 11. Mobility of electrons. g, and mobility of holes . Ph. ais functions of lattice iempevrature. rF in

a weak electric field. Data [or electron mobility come from 1-fipfeI el alt>
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4. OTIiER THEORETICAL WORKS

4.1. Monte Carlo Simulation of Nonequilibrium Phonon effect

In the above discussion a simplifying assumption Ior the career distribution tunction.

namely, that is a Fermi-Dirac function at the carmer temperature T. is assumed. This a1,,1ump-

lion usually is a good one for the higzh carrier density and for the ttle scale lareer than

pecosecond. Hlowever. recent progress in ultrafast experiments leads to processes in \,hich

the carner distribution can not he regard as in quasi-equilibrium. Use of Monte Carlo tech-

niques to solve the dynamical equation on the supercomputer is the wa, of obtaining the

nonequilibrium carner distribution. lugli et al have presented a series theoretical resuits on

ioneqnUlibrium phonon effects based on a novel Monte Carlo algorithm."'- Thev have

calculated the results for both the bulk and quantum well cases. In the case of a quanttun

well, the effect of several subbands has been included. However. a simple model ,.',as used.

that is, that the qz, components of the phonon distribution are localized in a region of wave-

vector space of extent I IL. with L the width of well.

The physics of the dynamical evolution of the carrier-phonon system is very similar to

what we have discussed. The coupled Boltzmann equations are given by

a)fk a I 1 + [ft, + [ji 1 4.1)

L 1-ph at r' -Imp

S.... ph-. + [ ýý ]p-ph

where the superscripts i and i indicate, respectively, the type of carrier (electron or holes) and

of phonon modes (LO. TO. . . .) considered. (aNq)/at I ph-ph is obtained by relaxation time

approximation, given by Eq. (2.24). Fig. 13 shows the evolution of the electron total energy

as a function of time in an n-type quantum well during and after the laser pulse. The excited

electrons lose energy mainly through the interaction with the background electrons and

through the emission of L0 phonons. A much slower relaxation is found when nonequili-

brium photnon effects are included. Fig. 14 shows the LO-phonon distribution at dhfferent

times.
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Fig. 13. Average electron energy, measured in equivalent temperature. as a function of time dunng and

after the laser excitation for two different excitation sheet densities. The position of the energy levels in

the well is shown in the insert. This figure is Fig. 12 from Lugli et al.
42

a 10 OS

20 0 14 ps

0 40 ps

10 A

0

0 2 h 6 8 10

q(l0 6m-1)

Fig. 14. LO-phonon disthbution as a lunction of total parallel momentum (for q: =0l) for times during

and alter the laser excitation. This ligure is Fig. I. from l.ugli et atl. 1
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When the laser photon energy is about 2 eV. photon-excitation in hulk .aAs includes

transition from three hole bands. The energy distribution of photo-excited electrons is charac-

terized hv three distinct peaks, as shown in the insert of Fig. 15. In GaAs. about ,0'(1 of the

photoexcited carriers transfer to the satellite valleys during the laser pulse (the average time

for I'-/ transition via phonon emission or absorption is about 80 ts). Carriers return slowly

to the F" valley, with characteristic time of 2 or 3 ps. because of smaller etfective mass in the

F valley. This leads a slow rise of luminescence in GaAs. as shown in Fig. 15 .i2 hi F[ig. 15. a

comparison to the InP case is also provided, where the L valley are located at a much high

energy, and do not signiticantly contribute to the cooling process. By titting data with the

Monte Carlo calculation. it is determined that the I"-I. deformation potential D)I ,. is

(.S * I.5), 1(0 eV/cm. This F-I. exchange depletes the F electron distribution in GaAs in the

high-energy region, above 0.3 eV. as shown in Hig. 16.

Io,..,

z

H-p"- 000 ýOP

b)

20

LU

LU

D

-5 0 5 10
DELAY (ps)

Fig. 15. Luminescence intensity at .;(X) K vs delay, ia) CaAs at 1 45 eV0 (expenments) (b) the solid

curve is the same as tal on expanded scale: the filled circles show the spectrally integrated incnsltvy

c tlli. same a, (hi: Results ot ensemble Monie (Carlo c:alculations are also 'hown: bN

Ij 1, =(4.6. and8)kl() eV/cm nr (;aAs ilo/enges. crosses, and open circles. rcspectively) and (tc InP.

This figure is Fig. 2 from Shah t al.H
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Fig. 10. The Monte Carlo results of the Energy distribution function for I-vallev elections i (a) GaAs

and (b) InP at three different time delays after the excitation. The excitation density is 5 10" cm ' and

the lattice temperature is 300 K. This tigure is Fig. 16 from Lugi et al"'

4.2. Effect of LO-phonon renormalization

A series of works by Das Sarma and his coworkers 43-4 studied the hot-electron relax-

ation by emission of LO phonons in both 2D and 3D cases. In addition to the hot-phonon

effect and dynamical screening, they found that many-body renormalization of the LO pho-

nons also plays a crucial role in the power-loss process at low electron temperatures. Due to

phonon-plasmon coupling, the density states of an LO phonon has three branches: t I) the

bare-phonon-like branch near the bare-phonon energy, (2) the plasmonlike branch near the

plasmon energy, and (3) the low-energy quasiparticle-excitation-like branch in the

quasiparticle-excitation region. Even though the oscillator strength of plasmonlike and the

quasiparticle-excitation-like branchs are extremely small, they dominate the power-loss pro-

cess at low enough electron temperatures that most electrons have energy below the threshold

for bare LO phonon emission. This produces an enhancement of the power loss at low elec-

tron temperatures by many orders ot magnitude relative to the power loss to bare L) pho-

nons.

The phonon density of states. A (q. oD1 is given by

A(q, (t)w=-ix 11nD(q. j4.3

where D is the phonon propagator. For bare phonons. D is replaced by D').
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IY) (q. (1) = -) - 44

aind miDlq 0 =-I 16(m-W(0;) - t(0+o~ (0/1, which has vanishing %Neighi everywhere except

at the hare eneruy. By introducingI- the phonon-plasmnon coupling in the random phase approxi-

miatton (RP.'\. the renorinalized phionon propagator is obtained by

sý here .14, is the cicerron-phonon miatrix clement, and lb q. tom is the electron densitv-dcnsits

w:rrelation function. Heu. 17 displays the renonrinalized phonon spectral tunction for the 31)

and 2D cases. Thiree branches oit' phonon modes are shown '.that the scale faictor y in

Hei. 17 is different for different curves. The strmngtf of the plasnionlike phonon is % cry

"small, thle Lluasi particle -excitation -l ike iQIIL-like) mode is also weak. H owever, It is founid

that the QPE-like phonons dominate the hot-electron power-loss process at low electron tem-

peratures.

n=5.0 x 101l C.-2
T=50K
0 =2.2xI~m ~.. x 105 cm'

Q 1. 3Xi10 6 cml I le qnxocml
4 - -y~)3

.. * ~ ,O3.6X 105 Crn1  1
0-i!5030 45

0i1 30 45 (m WeV
w (meV)

Fig. 17. (a) Phonon spectral function for three wave vector% in a 3D electron gas at an electron tem-

perature of T =50K (Tt1 0). For Q=-2.2x i& cm the OPE branch extends from f0 to 7 mieV. and

there are 6-tunction peaks near the plasmon encrg\' ((,,, 14 meVi and the phonon energy 136.8 nieV .

Ainch are riot sho~n csplicitl% in order to as nid too niuch detail. Ior f(9 = ,n h 1ff C1m h, 111 lF:

hranich extends to 14 meV. and there is again a 6-1Iunction peak (not shown)i at to), . [-or

- ' IM f n i ;the p1 asmonl ike phonon is L andau dam ped. anid the t)P F -Iike phionoits e \ iend '111

.av u p t o 0) Fhe electron densit is 101' cm '. _nvini! a Fermi xsector ot 1 4 lit0" cmn hi hI'1honon

spectral lunction for two diticrent s"ave vector in a -21) electron gas. F-or q = o2,7 - 10 cm i here is a

6-hIinletion peak inot shown) at to1 , The elect ron densi t s s 5 -101 rni -' in in. Iý Femi s ector ofI

I s, lt0" em '[hits Figure is Fig.4 from Das Sarma."
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At low temperature (about 5() K) the number of electrons which can emit phonon with

bare-mode phonons becomes extremely small. However. phonon-plasmon coupling creates

new low-energy rhodes, even though its strength is rather small. they could make important

contribution in energy loss at low electron temperature. In this case. Eq. (2.32) for the energy
loss rate is no longer valid since it was derived bh considering only bare [.0 phonon mnodes.

Instead. Das Sarma at al derived the following expression for power loss by generalizing the

Kogan formula17 to including phonon self-energy correction:

p =f %M [nIL"),,-nF-o)) lmil(q, o)ltmD(q. (o) 0.6)
n

where n,= Iexp(Wo/knT)- 11-1.

In order to include the hot-phonon effect. one must first rewrite Eq. (4.6) as

P -=• Y fto o)R (q, 0) n,/- (w~) ,-7

q

then replace R(q, o) in the integrand by R(q, (o)/11 +pR(q,o)R . Das Sarma et at suggest

that only the bare phonon mode is important for hot-phonon effects.

I I I I ]

•'- -9

4--

SIX 107 CM
18--3 - 12- 1' CM 170-

0 ......

0 0.02 0.04 0.06

I/T (K-1)

Fwi. 19, Power loss as a function of thc inverse electron temperature for 3D) electron gas ,olid lines).

the dashed lines correspond to power loss to hare L.O phonons only. The doted lines give the Power

loss to acoustic-phonon modes. I[or dotted curves, the uppermost curve is Ior I11 i cm ý. the middle

oner lftr )1' cm ', and the lowest one for l01 cm 1. Tt. = 0. and the power loss is expressed in watts

per camer. This figure is Fig 5 (rom Das Sarma et al.'h
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Density= 3 I0" cm--
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Fig. 19. Power loss as function of inverse electron temperature for two quantum wells (width 50 and

200A) calculated in 3D phonon approximation (3DPA) and in slab-model. TL =0, and the power loss is

expressed in watts per carrier, This figure is Fig. I from Das Sarma et al.45

At high temperatures (T Ž50 K) the bare LO phonons dominate the power loss, at

intermediate temperatures (20<T:550 K) power is lost predominantly to the plasmonlike or

QPE-like branch of the LO-phonon spectrum, and at still lower temperatures (T <20 K) the

acoustic phonons become important. Fig. 18 shows the power loss for 3D electron gas at lat-

tice temperature TL =0. Fig. 19 shows the results in quantum wells.

Recently, M. W. C. Dharma-wardana48 deals with the same subject using nonequili-

brium Green's function approach. He considers not only the coupled-mode spectral density,

but also the coupled-distribution functions. In contrast to Das Sarma and co-workers, he found

that the energy-loss rate is significantly suppressed by coupled-mode formation and quasiparti-

clelike modes do not contribute to the energy-loss rate. The underlying physical picture is that

although the coupled-mode phonon spectral density has some weight in the quasiparticlelike

region of energies, these coupled-phonon modes are effectively at electron temperature, not at

lattice temperature. Hence there is no enhancement. Nevertheless, coupled-mode phonons are

hotter than bare phonons and this leads to a suppression of energy-lose rate.
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5. SUMMARY

We have reviewed in this paper the effect of reabsorption of noncqulihinum optical

phonons on the carrier relaxation and transport. Both experiments and theoretical study

confirm that the build-up of hot-phonons is mainly responsible for reducing the cooling rate

of photo-excited electrons, while the dimensionality and dynamical screening effect play only

a minor role. In the case of heterojunctions or quantum wells, our approach can determine

the accurate shape of the phonon wave packet and produce a simple procedure for calculating

the effect of nonequilibriutn phonons. Our results are in quantitative agreement with expen-

ments. On the other hand, the cooling of photo-excited carriers is a rich field, which may in-

volve the electron-hole (three kind of holes) interaction. multi-vallevs and multi-subband tran-

sitions, multi-scattering processes, from very high temperature down to very low-temperature.

As examples, we refer to the effects of F-L transitions, which delay the build-up of hot F

electrons in a ultrafast process, and what is the role of phonon-plasmon modes. There are

many other factors, which may affect the relaxation process. such as phonon modes tinterface

and slab modes in quantum wells)45 and LO phonon relaxation mechanism.41 This subject is

worthy of further study.
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Appendix

In this appendix the complete expressions for Eqs. (2.13) and (2.14) are given as fol-

lows:

[f k 2a 2 DY(,q),(,q
at / An

SJep q qq,'n'k'

(0 fnlk'(t)[ I -Ink (1)1 8 k'',k*q(En'k• - E.k - iofL)

-Jnk(t)llI -]n'k'(t0J~k'.k-q&(Enk - EV'k - h(JL) l }6qzqz" + n q (qz, q.'. t)l

+ l ,n'k(1) I -nk(t)ljk'.k-q8(En'k' - Enk +ho)_t
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