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We review the recent theorctical study of the effect of nonequilibn-
um phonons on hot-carrier relaxation and transport. In a quantum well, the
proper treaiment of the clectron-phonon coupling between clectrons confined
to two dimensions (2-D) by phonons traveling freely in three dimensions (3-
D) requires special care because phonon heating produces a bottleneck in the
rate of transfer of energy from the carriers to the phonons. Because the car-
riers interact with phonons primarily when the latter are close 1o the quantum
well, the latier should be described, not by plane waves, but by packets
adapted to the shape of the carrier confinement. A quasi-equilibrium tech-
nique that retains otf-diagonal clements in the phonon wave-vector permits
an unrestricted treatment of the density operator equation. That in tumn leads
to a choice of wave packet that comes from solving the integrodifferential
equations rather than by imposition. Moreover, if the carrier distribution is
assumed in quasi-equilibrium with a given drift and temperature. the coupled
partial differential equations are reduced to coupled ordinary differential
cquations that can be solved with modest computer power. Comparison with
experimental results for stcady flow of cnergy from carriers to phonons, and

for time-dependent relaxation yields quantitative agreement.
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976 M. Lar & W. Cu

1. THE PROBLEM

The production of microelectronic devices by molecular beam cpuaxy. and the high
mobility of carmers parucularly i modulated heterostructures created the importance of this
area of study.  Moreover, for transport in small high mobility systems. moderate voltages can
lead to strong ticlds and non-linear eftects. An excellent review of two-dimensional transport.
with an extensive list of references has been given by Ando. Fowler. and Stern’

There already was experimental evidence by Shah er al~" and Rvan et af’ that the
rate of energy transter trom electrons to phonons was an order of magnitude less than pertur-
hation theory would )'icld.i 7 On the other hand. controversial experimental results were also
reported by Yang et al™ Several causes that may contribute to this reduction of the energy-
loss rate were considered. The first one is the effect of reduced dimensionahity. Theory” )
showed merely nsigniticant dependence ot the energy-loss rate on dimensionalitv, when the
predominant loss 1s by emission of longitudinal-optical (LO) phonons. The second is screen-
ing of electron-phonon interaction by free camers. Screening has been appraised by Ruhle
et al’ 1o play only a minor role up to electron densities of n=10"" ¢cm

It was clearly perceived by the experimentalists, and a qualitative theory was
developed by Price,'” that the inability of the longitudinal optical (LO) phonon system to dis-
sipate heat fast enough was creating a bottleneck. A reabsorption of phonon energy by elec-
trons is presumed to decelerate camier cooling. In fact, this bottleneck effect has been dis-
cussed by Potz and Kocevar'! in the 3D case. In the 2-D case. Price’s theory is qualitative.
because he was forced to introduce an ad hoc parameter - the number of phonons that interact

with an electron: Price recognized the need. and called for a more rigorous treatment.

2. OUR RESOLUTION

During rhat time, I (M. Lax) perceived a need for understanding clectron (and hole)
transport in quantum wells and heterostructures and hired two research associates. W, Cai and
M. C. Marchetti, to work in this area. Cai was already an expert in semiconductor physics
and Marchetti an expert on transport in liquids. My role was advice and cnticism.

We concluded' " that the problem was a general one: how should c¢lectrons. whose
transport is contined to two dimensions. interact with phonons that can propagate freelv in
three dimensions.  More specifically, since the electrons only interact with phonons when they
are n the vicimity ot the quantum weil, 4 plane wave descnpuon for the phonons 15 mcon-
venient. One possibility 1s to retain the plane wave description. but quanuze the phonons tin
the = directuon) over a thickness /. comparable to the well width. But such a treatment would

he equivalent to Price’s with L as the arbitrary parameter.
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Effect of Nonequtlibrium Phonons ... 977

Cai proposed a resolution of this problem by using a basis set for the z direction (nor-
mal to the well walls) that consists in a Gaussian times a set of Hermite polynomials. But 1t
was not known how many terms were needed. The use of a single term. the Gaussian, has as
an arbitrary parameter. the width of the Gaussian.

2.1. Quasi-Equilibrium

After reviewing the work. [ suggested that the shape ot the phonon “‘packet” should
come out of the problem. not be imposed. Marchetti then suggested the use of a quasi-
equilibrium procedure of the sort introduced by Bogolyubov in dealing with classical liquid
transport and by Zwunzig”‘15 in a variety of problems. Sece also Zubarev'® and Peletminskii
and Yatsenko!’ The basic idea is the quasi-equilibrium assumption that the vanables of a
problem can be divided into slow variables and fast ones. The fast vanables are assumed to
be in equilibrium with the current values of the slow variables. When the fast varables are
inserted into the equations for the slow ones. we get an effective set of equations for the slow
variables.

2.2. The Choice of Slow Variables

The success of such a procedure clearly depends on the appropriate choice of slow

variables. The electronic variables a;ka,,g describe the occupancy of a state of transverse

momentumn k in the nth subband. The average of this set of variables
fax (D) = <apgdnk > 2N

is the familiar distribution function for these carriers. These variables must clearly be
included in the slow set.

The phonons are described by the three-dimensional wave vector
Q=@4.q;) (2.2

associated with a plane wave representation exp (iQ-R). The variables to be used in this case

f .
are bq, ¢,bqq7, With average value.
, +
nq(qzqu):<bq_q,bqq;> 2.3)

Marchetti made the crucial proposal to retain the off-diagonal clements in Eq. (2.3).
Although the work starts in the plane-wave representation. by allowing off-diagonal elements
with respect to ¢,. we have prepared the way for an eventual transformation to packets whose
shape is as yet unknown.
2.3. Description of the Hamiltonian
The Hamiltonian / consists in an electron part }Aie,. a phonon part I),,. an electron-

phonon interaction V,,, and a phonon-phonon interaction V with
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978 M. Laz & W. Cua
- .
H, = ZEnk dnk Gnk (2.4)
nKk

where E,;; is the energy associated with the state
W, k(r. 2y = A"’ZC,,(z)cxp(ik-r) s (2.5)

associated with the transverse wave-vector k. and quantum well state n. Here {,(z) is the

n—th quantum state in the well. The unperturbed phonon part is

L

H, = S, babq (2.6)

Q=4 q,)

The electron-phonon interaction is given by the Frohlich interaction '®

V,p = [dR [dR’ e A(R) _|R—1—R’|I_ VPR, X

namely, the Coulomb interaction between the electron charge density en and the charge den-

sity — V-P, where P is the phonon induced polarization, so that

- i - at S N
Vep = —‘—\[—L‘—— E Z Z { bQ Sk’, k+q GunlQ 42) — bQ sk', k-q Grnl@ 1) } An'k Gnk »
A nkn kK Q
(2.8
where the matrix element G takes the form
1T .
Gn’n("s q;) = T I dz C:'(Z) exp( ‘qzz) Cn(z)' 29
Q'L ~
In Eq. (2.8), a is the Frohlich interaction constant!®
o= [2relhmg (1/e. - 1/g9 ]2 . (2.10)

2.4. Form of the Equations of Motion
One can derive the kinetic equations for a set of macroscopic observables, {¥;(t)} from
the quantum-mechanical Liouville equation. Here we choose the following observables:
U} = { fueW). ngtgz.q;. 0} (see Egs. (2.1) and (2.3)). It the Liouville equation is solved
to the lowest order, the rate of change of any function of Y(¢), denoted by F(¥(1)), is given by
df‘()—f”l = %Tri Hoth, FAD) 1pon+

£-0" ™

e 0 .
%} lim | dt e Te{| Vo VDI Potn }
1

2,11

where V(1) is the coupling perturbation in the interaction representation:
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Effect of Nonequilibrium Phonons ... 79

V(1) = expl (i FNH, +Hp)t) V expl (=i FXH, +Hp)t] V (2.12)

and py(r) the unperturbed density matrix. Here, neither the electron nor the phonon svstem is
assumed to be even close to equilibrium. From Eq. (2.11), we obtain coupled integrodifteren-

tial equations of the form

9fnk S ,
- )" =TI T Mifak fake - 1qlds . 42" 1)] (213
or q Gz 0K
nglgy. q.’. 0 | i ] - _ ,
————— =YY 3 fak [1-fux] < | Four terms | . (2.1
ot op nkn'k’q,”

where a typical term is given by

Gn'n(qv q:) G:'n(q~ q:N )

O k- -
K. k-q E"’IEnk—' n'k'_ﬁle

[8g,". 4, *+ nqtq:". q:". 1)l (2.15)

The detailed equations will be presented in the Appendix. Here we emphasize their form. In
particular, let us regard q and g, as parameters. Then Eq. (2.14) with Eq. (2.15) has the form

(for the term shown in Eg. (2.15))

ontq,. t)
o = 0(g,, 1) + K(g, )M (1) (2.16)
where
M) = [H(g,"n(g,”. H)dg,” (217

after all parameters such as q.g,” are suppressed. Multiplication of Eq. (2.15) by H(g.) and

integration leads to the reduced ordinarv differential equation

dM(1)

=1(t) + AM@t) (2.18)
dt

where
1) = [H(g,)0uq,. dg, = A = [H(g,K(q,, dq, (2.19)

2.5. The Shape of the Packet
Not only is the remaining computational task greatly simplified. Eq. (2.17) already

informs us that (aside from a choice of normalizatuon) the phonon wave-packet operators are

Coin ™ Z; G7n(Q. 42)bgq, (2.20)
Yz

If there are § subbands of importance. there is one packet operator for each choice of

(n’.n) or S(S+1)/2 differently shaped packets. For the important case in which only the
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n o= () states parucipate there 1s one such packet (for cach q):

) IF Ly eXPl—ag2)
(u*fﬂ(q. q.) = J ' ..:M: ) ~d: - »'T’
Moo Ny- +y:

I'he shape of this packet in ordinary share mayv be obtained by muitiplication by expuy.z) and

imntegratng over ¢

Y Py e e
_‘R(: = 0d T oach e (2.22)
M
where
, . oxpligaz — 20 ) \ ,
Rtz - =} odge = 2Katg 1z - h 12.23)
\u/' =yt

has the form of a moditied Bessel tunction. This torm arises from the Coulomb nature of the

.

interaction. It we had used a point interaction (q" + qf) would have been replaced by

unity and R(z — ') by &(z - =) so that the packet shape would simply be | Zy(2) [+, More

generally, the packet shape is a convolution of the clectron density |{y(z) |° with

Kotg 1z=2"1) for each g.

2.6. Further Simplifications

We have not written the explicit form of the phonon-phonon interaction \A',,,, by means

of which the relevant longitudinal optical phonons decay into acoustic phonons because we
have replaced that process by a relaxation process of the form

[Onqtas g 0] e @D = B, g .

N T
L f p

op

where the decay time for opucal phonons t., has been estimated in the expenimental pupers”
1o be 7 psec.

. . . . - N . N199)
For times larger than a picosecond it has been found by Monte Carlo calculations=" 23

and by our own guasi-analvtical procedure=* that the electron distribution has equilibrated
relative 1o two macroscopic parameters:  an electron temperature [) and a dnft velocity
v, both of which may be ume dependent. By introducing these parameters, the equation
tor the electron distribution s replaced by ordinary ditferenual equations for these parameters.

Finally. since we have been dealing with varables such as n,tg..¢") it was con-
venient o ouse 4 owave-packet construction on both lett and night wave-vectors. Thus our

reduced phonon variables are
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Y3 Gralde 4:) ngly:. g 0 Gty 4.0

. dod
4\4,,',,‘ mmlg. V= —-m o T T . 225
F wn. mm\q) =4

where

. { N . - - I ,d T
/'rn'm_ anld) = Jll: i Jll:: \_m'(:l )‘N.,m(zl )E:'(- 2hantak (2.26)

Thus. in general. we will get coupled ordinary differential equations tor 7. v, and

Y

nnom m” )

2.7. The reduced Equations
For simplicity, we shall write here onlv the special case in which onlv the lowest sub-

band contributes.  Thus we shall set
Vaolq. 1) = Nop_ootqg. 1) (2.2
The phonon equation can then be written

dNogtg. 1y Nptg, 1+ 1 Notg, 1) Nolg. 1y = N (T

- S S (2.28)

ot Ty, T () Tatyq. T.) Top

where the rate of phonon emission 1/t, and the rate of phonon absorption 1/1, are given by

b +)
! ral 1 Foo oot@) 166 (@) (2.29)

tlq. T,) g lewootgoop) 12 '

| i
= ex hoy kgT (Y] ———. (2.3
pl fioy kT, ()] g T

where F o gotq) was detined in Eq. (2.26), and the marrix element /'"' is given by

- |
1 (g, Tokt) = o kdk
b ‘ "bﬁzq q jmm 2_ 4, mwoag
1.70% |k (5 + |
> kg - hq
SUEL T e = fE ~ hoy. T, . (2.3

Eq. (2.30) shows that the ratio of rates of absorption and emission 18 governed by the instan-
tancous clectron temperature. Dynamic screeming etfects are contined in the dielectne

response function €gn gotg. o) used in Eq. (2.29),
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982 M. Lar & W. Cua
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Fig. 1. 1/1 as a function of the electron temperature T, for 1,, =0, 2. 5, and 10 psec and (n =0) lowest
subband occupation. Dynamic screening is included (solid curves). The dashed curve shows for com-
parison a calculation for 1,, =0 when static screening is used.”* Comparison between the t=0 (no

bottleneck case) and t= 10 psec shows a reduction of one order of magnitude in the latter case.

2.8. Energy Loss Rate in Steady State Case
The first explicit calculation is made for the steady state case. In that case, the elec-
tron temperature T,.(r) = T, will be independent of ime and assumed given. The problem is
to calculate the rate of energy transfer from the electron gas into the LO phonons, and to
express the result in the form used by the experimentalists. The latter fit their experimental

data with an expression of the form:

h )y

Py = L
()= —=e¢
A= T P T

Then 1. T is plotted as a function of electron temperature.

We calculate 1/t by using the expression:
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Effect of Nonequilibrium Phonons ... 983

hayg on (47,42, 1)
P1) = 4 o - (2.33)
(1) N, % ot P

Comparison with the previous equation yields 1/t. A plot of 1/1 obtained in this manner is
shown in Fig. 1.

We note that in the case in which Top ={. equilibration of the LO phonon modes takes
place instantaneously. Thus no bottleneck effect will occur. But the effective energy transfer
rate is reduced by an order of magnitude if one takes t=10 psec. The dashed curve demon-
strates that neglect of screening would have little effect on the results.

If we apply the steady state condition:

dNotq, 1)
dr -

0 2.3

we can solve for N¢(q), the non-equilibrium phonon occupancy associated with the transverse
phonon wave-vector q.

Using the Planck formula,
No(q) = 1/{expliioy /kpT(q)] - 1} (2.35)

the results can be expressed in the form of a temperature 7 (q) for the phonons of a given
transverse wave-vector q. The results displayed in Fig. 2 show that the predominant heating

occurs for small wave-vector phonons.

300

T T 1 T 7 T T
250} ng=5x10"/em® -
Top = 10 psec
z 2ool—
o 150k
-
100 |-
50
O | 1 I 1 1 i l 1 1
O 1 2 3 4 5 6 7 8 9 10

q (lOs/cm)

Fig.2 **Phonon temperature’” T(g) as a function of ¢ for 50 K < 7, < 200 K and lowest subband

occupation.'’.
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984 M. Lar & W. Cax

We have also made calculations when clectrons and holes are simultaneously
\; . . M .
present.”” and when more than one sub-band is occupied.® A comparison between expen-

ment and theory tor this case is shown in Fig. 3.

Qa3
S T v
|
- .= 7.0x10" cm~?
N ny = 35x10" e 1
- ro=7me {
T, = 16K ‘{
< a2 - -
=
- I
=
o
~ aol -
~
i with hot 1
=~=- without hot phoaons
o+ exp data for e h
L] exp. data for b
3 E
0 NS PYPV SRS PYTY! RS POTY! P VA

1071 o o 10

energy loss rate per carrier (W)

Fig. 3. The carrier temperature is plotted against the energy loss rate per carrier for the clectron and
hole case. For the electron case, the effect of hot phonons is found to be an order of magnitude,

whereas for holes it is much less than an order of magnitude. The points are the experimental data of

Shah et al.?’

In Fig. 3 the curve for electrons is obtained by including only the polar interaction with LO
phonons. The calculation for holes includes polar coupling to LO phonons and coupling to
both LO and TO phonons via the deformation potential. Only heavy holes are considered. It
is shown that the hot phonon effcct is strong for electron relaxation, but is weak for hole
relaxation. This follows because for holes the phonon emission rate 1/t,(q) for given ¢.
which is similar to Eq. (2.29) for 1/1.(¢), is much smaller than that for electrons. From Egs.
(2.29) and (2.31), we see that 1/1.(¢q) is proportional to f(E,. T.(¢)), which is proportional to
1/m, with m the effective mass. The large effective mass of holes leads to a weaker build-up
of hot phonons by the hole gas. On the other hand. heavy holes preferentially emit phonons
with larger momentum q. because of the large etfective mass of hole. Therefore. the phase
space of q that contributes to the total cooling rate for holes is much larger than that tor elec-

trons. This leads to the larger cooling rate for holes than that for electrons.
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2.9. Time-dependent relaxation
Our starting cquations are valid for the time-dependent case. We simply do not
assume time denvatives vanish. The electron energy can he wntten as a sum over the

transverse k vector:

It

<E 0> =

i

CYEx NE T.un (2.36)
k

-—

For simplicity. we again consider here only one sub-band. The raiv of electron temperature

change 1s then given by:

dMe |1 a<kur (2.37)

o CoT.un o

where C,, is the specitic heat: (', = d<E(1)>/dT,(1). Since the phonon equations depend on
the instantaneous temperature T,(¢), we now have coupled ordinary differential equations con-
necting the phonon occupancies Ny(q) and the electron temperature. It is assumed. of course.
that T,(t = () is given. A compartson is given in Fig. 4 of our theoretical results with experi-
ment *.

As the electron gas relaxes, its temperature decreases as shown by the solid curve in
Fig. 5. The associated rise in the phonon temperature is shown by the dashed curve which
merges with the solid curve as the combined system relaxes to the lattice temperature. When
Top is set equal to zero, the phonon bottleneck effect disappears. and the electron temperature

falls more quickly as shown by the dot-dash curve.

aso -

LANANY MANLINAAS M A ANt Mant Mt et It BN INARLAN A
300 |- T.(0)=350 =
n:=10é/cn]1(" E
2s0 Top=7 psec  _
200

180

s0

o
S
3
5
5
€
8
sk
sk
8

¢ (psec)

Fig. 4. Time dependent relaxation of an clectron gas of density n, = 10" ‘cm*® starting at an nitial 1em-
perature of T,(0)=350K. The opucal phonon decay raie has been given the accepted value of T, =7
pscc. The experimentai data are from Ryan et af.' corresponding to a 3D clectron densiy

n=5<10%m * and 10 a maximum power absorbed by the sample of ~ S0 mW.
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330 LBaas | T | B | T
300 Te‘());'riS() K 43
3 . Mo =10/ eme o
250 F e Pp=Tpsec
3 /N i ~
L
- 3 / "N
150 - // =
:\u 3 // ?—g
100 ¢~ ’// 'l"
=
50 = \\ - :
. ~] &
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1073 1072 107t 10° 10" 10t
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Fig. 5. A plot of clectron temperature T, against time (solid curve for t,, =7 psec and dot-dash curve

for 1,, =0 and of the phonon temperature 7,,(q) at ¢ = 1.3x 108cm™!.

3. FURTHER APPLICATIONS OF THE THEORY

3.1. Hot electron transport

When a strong dc field is applied, the electron gas acquires an elevated temperature as
well as a drift velocity. Moreover, the drift mobility is reduced more in the presence of a
phonon bottleneck than in its absence. This issue was studied by Lei and Horing28 and by
us®® The methods described earlier involving the introduction of a phonon packet remain
valid. It is convenient, in addition to separate the center of mass motion of the electron gas
from its relative motion. The density of electrons will again be assumed sufficiently high that
the electron gas can be assumed in quasi-equilibrium with a given drift velocity and a given
temperature. A term. which describes the center-of-mass motion under an applied field should
be added upon to the Hamiltoman described in Sec. 2.3:

H. =P /2M - NeER . .0

with P and R the center-of-mass momentum and coordinate operators, respectively, N the
total number of electrons. and M = Nm, with m the electron etfective mass. The electronic
states are labeled by the 2D wave vector in the relative coordinate system, k. and the discrete
subband index. n: &;,,‘ and d,¢ (Eq. (2.1)) now are the corresponding electron creation and

annihilation operators in the relative coordinates and E,y is the energy of an electron in the
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(n. k) state. Therefore, the energy exchange of electron in the relative coordinates obevs the

vonservation condition:

Enrg — Eng = oy —qv,) . (3.0

with v, the drift velocity of electrons. The intracollisional ettect %4 namely the effect of the

electric ield during the course of a collision can be neglected for the tields considered in our
X - . . . - .

work®? . If only the lowest subband is considered. we obtain a pair of time evolution equa-

tions for the drift velocity v, and the total energy of electrons in the relative coordinates:

oM (1) .
e = =NeE - Y hiqL 1 0(q. 1) . 33
ot
q
oE, ]
= ==Y (hoy —qv,) L. otq. 1) . 3h
ot
e-LO q
Here

2ol
Leiolq, 0= s ‘ YGh Q. ¢.)Go0q. ¢;)
9q:

x{185) (q, oLl + No(@, O] - 155 Q. wLo)No(g. D}, (3.5)

where N(q, r) is defined by Eq. (2.27) and

;
I Q. ) = i IS [ I=forp )] S i .q HE — Eyy * hqv, & fiog) . (3.6
k x’

where the electron distribution function in the relative coordinates fyy(f) is assumed to be a
Fermi-Dirac distribution with temperature T.(r). With the above approximations, the problem
is again reduced to coupled ordinary nonlinear differential equations. Solving Egs. (3.3) and
(3.4) and corresponding equation for N, which is similar to Eq. (2.28), we can determine v,,,
T, as well as No(q)

Results for the mobility reduction and temperature increase in a steady applied field

are shown in Fig. 6.
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Fig. 6. The nomalized mobility of electrons, WE)/uw(E — 0) (solid curves), and the clectron tempera-

wre, T,, (dashed curves) as functions of the cxtemal clectric ficld |E | at 1, =0 and 1, = 7 psec.

The crosses represent the experimental data from Fig. 2(c) of Keever ef a*? at T, = 77 K.
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Phonon heating produced by the strong electric tield is not isotropic. but is more etfec-
tive tfor phonons whose propagation direction is in the direction of mouon of the electrons.
The phonons also acquire a mean ““momentum’™ <¢,>. A contour plot of the phonon tempera-
ture rnise. and an inset of the mean momentum are shown in Fig. 7.

We also studied the time evolution of electrons beginning from ‘switch on” of a
applied electnic tield unul amrival at a steady siate. Fig. 8 displays the results. The presence of

hot phonons leads to time delay in arriving at a steadv state.
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Fig. 8. The drift velocity of electrons, |v, | (solid curves) and the clectron temperature, 7, (dashed

curves) as functions of time ¢. The parameters arc the same as those of Fig. 6.

3.2. Relaxation of the electron-hole plasma

When an undoped quantum well device is illuminated by a high-power laser. photo-
excited electrons and holes are produced simultaneously. Therefore. it is necessary to study
the cooling process of a photo-generated electron-hole plasma. This process involves, not only
the carrier-phonon coupling, but also the electron-hole interaction. This issue was studied by
Pétz'* in bulk GaAs. and then by Marchetti and Potz* in a GaAs-GaAlAs quantum well
using the approach described above. since hot-phonon reabsorption can also slow down con-
siderably the carmmier cooling in the electron-hole plasma.

The energy of photo-excited electrons is assumed below that of the L vallev. so inter-
valley scattering is not included. The carrier distributions are modeled as a tme-dependent
Fermu-Dirac distribution tunctions. The temperatures in the distribution tunctions for electrons
and holes are allowed to be different to account for noninstantancous energy transfer between

two carrier systems. The equations for the time cvolution of total clectron energy (£,) and
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hole energy (£,) is derived as

oE, . ;
3 ==R, s—Ro._Lo+R] . 1.7
ot

and
-aﬂ—m —Ru_Lo—Ry_To+R? (3.8)
o - TRe-n=Ra-Lo=Rr-to+RL - 3.

Here R._, is the power loss by electrons to holes via the screened Coulomb interaction.
R._Lo and R, | are the rate of energy loss by carmers to LO phonons via the polar Fréhlich
coupling, Ry, _1( is the rate of energy loss by hole to TO phonons via the deformation poten-
tial coupling. Rf and R} are the power input from the laser to electrons and holes, respec-
uvely. Only the lowest subband in the quantum well is considered.

The corresponding time evolution equations for non-equilibrium LO and TO phonons
{similar to Eq. (2.28)) are coupled to Eqgs. (3.7) and (3.8). Therefore. the temperatures T,. T,

and the phonon distributions, N;';O (q) and Ngo (g), can be determined as function of time 1.

.“.vxf‘r‘v]vrrr

lattice out o'f equilibrium

solid line: 2.5 nm well

dot-dashed line: 5nm well
dashed line: 10.0 nm well
dctted line: 20.0 nm well

1
R B S S

CARRIER TEMPERATURE (K)

4 [
TIME (ps)

Fig. 9. Electron and hole temperatures as functions of time for n.p=0.5%10'> cm? and four values of
well thickness: L =25 A, solid line: L =50 A, dot-dashed linc: L =100 A, dashed line: L =200 A. dotted
line. The four curves starting at T=200K represent hole temperatures, the others represent clectron

temperatures. This figure is Fig. 1 from Marchetti and Pétz.*
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In Fig. Y. the electron and hole temperatures are displayed as tunctions of time tor dif-
ferent layer thickness L. The exchange of energy between electrons and holes plays an impor-
tant role in the inital stage of the relaxation. The main portion of the photon excess energy Is
given to the photogenerated electrons. Initially. the kinetic energy of excited holes is below
the threshold for optical phonon emission. However, the ¢ —h coupling rapidly transters energy
from electrons to holes and thus ensures signiticant participation ot the holes in the cooling
process. This energy loss channel is also important after the buildup of LO-phonon modes
which couple to electrons slows the cooling of electrons. Reabsorption of phonons becomes
important within less than a picosecond after the onset of the laser pulse and leads to a con-
siderable reduction of the carner cooling rate in the later stage of the relaxation.

One can see. from Fig. 9. that the carrier cooling rate is rather insensitive to variations
in the well thickness, if the sheet density is kept constant. This result is in agreement with
experimem.”. On the other hand. their calculation®® indicates that for given layer thickness
and times beyond 0.5 ps, cooling occurs at a slow rate at higher values of sheet density.
because of a strong buildup of nonequilibrium optical phonons at higher sheet density.

3.3. Electron-hole Transport and Negative Mobility

The luminescence measurements of the photoexcited electron-hole (e-h) plasma in
quasi-2D quantum wells and the relative theoretical study, which was discussed in Sec. 3.2.
are important to derive information about relaxation of this system. On the other hand. tran-
sport measurements of a photoexcited electron-hole system under an applied electric field
have also provided some interesting results.’®37 Recently, Hopfel. Shah. Wolff. and Gos-
sard®’ found that in a such system the minority electrons, which are injected by laser pumps
on the p-modulation-doped quantum wells, can move in the direction of the external electnc
field. This negative absolute mobility of clectrons occurs because of strong electron-hole
drag. This subject was theoretically studied by Cui. Lei. and Horing®® and by us®?.

We first briefly discuss the condition for negative absolute mobility of eiectrons in the
region of weak electric field where the conductivity is linear. In the steady state we have the

force balance equation for carriers:
nye E-PY —prl =g (3.9)

where E is the external electric field. F*™" represents the frictional force due to the carrier-
lattice interaction and F*™ represents the frictional force upon the p-type camers due to the
carrier-carrier interaction with the v-type carriers. It is obvious that F*Y = - F¥ " In the

region of linear conductivity we have
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PL—L

nyAR by, (3100

F’J—V

nyn ARV vy — vy, (3.1

where v, is the drift velocity of p type of carriers, A u-b represents the contribution to the
resistivity (per carrier) from u—L scattering, and A*™Y relates to the contribution 1o the resis-
tivity (per carrier y) from p—v scattering normalized to per carrier v. From Egs. (3.9) - (3.11)

we immediately obtain the mobility tor electrons, ...

(n, — ny)ASTH + AML
AC‘LAh“L + nc.“ \.‘—hAL‘-L + nhAc-h-“h_L

Me (312

Equation (3.12) indicates that for electrons a negative absolute mobility is only possible when
n, < ny. (The corresponding statment for hole mobility could require ny, < noo [t is deter-
mined by the difference between the density of electrons and the densuty of holes. and the
competition between electron-hole drag and hole-lattice scattering. At low temperature and
under a weak electric field, the former dominates, so the mobility of electrons is negative.
When the lattice temperature or the electric field increase, the latter tends to dominate and the
mobility of minority electrons becomes positive.
The carrier dynamics is derived in a similar way as discussed in Sec. 3.1 and Sec. 3.2.
We separate the center-of-mass motion of each type of carrier from its relative motion. The
2D momentum for p-type carriers in the relative coordinates is detined as kik = fik — m,v,
and a Fermi-Dirac distribution function is assumed at temperature T, ﬁ;(T“). in the relative
coordinates. The exchange of momentum and energy in the relatve coordinates can then be
written as
k-k'=q, Ejf-Ev=Ho-qv,). (3.13)
A set of coupled equations for the time evolution of the drift velocities of the center-of-mass

and energies in the relative coordinates for each type of carrier can be derived. We obtain

anym, v (1)
SR e n,E - SPL) - Py (14
ot L
and
- -1 e
0E" ) CoE' T aE' ) (3LS)
ot T o g o

| ST Eq. (3.14) represents the frictional force due to carrier-lattice (impurity) interaction.
The expression of, for example. LO phonons is similar to Egs. (3.3) - (3.6). Here. the camer

interactions with LO. TO. acoustic phonons. and impurities are considered. Also. the hot-

188




Effect of Nonequilibrium Phonons ... 1493

phonon effects for 1.O and TO phonons are included. F*™. which represents the frictional

torce due to e-h scattering, with v a different tyvpe of carmier than [, is given by

n u ooV A B :
B n XX Y X g fa =ty 'f:p“—’:'p') iV y,tge W Ok 4% p-q
" ek plp

Al

v v .
‘&Etlk + E:P' - ["xfk' - l{"p' + g v —v, i 1316

where the term iqetv,—v,) appears in the last 6 function because the energies £ for clectrons
and holes are detined in ditferent coordinates. and @ = (E‘:lg - [-.":‘-g'b i The fast terman Eq.
(3.15) represents the energy loss rate in the relative svstem due to e-h scattering, An equation
tor the rate of energy loss can be obtained by replacing F¥™ in Eq. (3.16) by —at™ iy ot
and the pretactor hg on the right hand side of Eq. (3.16) by E‘:Jk - Et{k'.

The term \-',':i ;4q. @i in Eq. (3.16) represents the 2D screened scattenng matrix
between carriers. Here, one should be caretul in treatment of screening effect when two kinds
of carmiers coexist. The unscreened electron-clectron. hole-hole. and electron-hole scatterings
occur via Coulomb interactions given by
2ne ey

V“v( Ciogn =
I Wiy £9gA

v
Ff"x. /'/(q) ’ (31N

where the form factor FYY /4q) is given by Eq. (2.26). and g, is the static dielectric constant.
Since the strength of the electron-hole interaction is of the same order as the electron-electron
interaction and the hole-hole interactions, the dynamic screening effect should be expressed
by a more complex form than that in the case of a single type of carrier. These interactions
are shown in Fig. 10 in the random phase approximation (RPA). According to Fig. 1. the
screened carrier-carrier scattering matrix. V™Y satisties the tfollowing equation:

~ v

R 3l s AR (3.18)

n

where T17 is a diagonal matnix. its elements are the density-density correlat:on functions for

2D carniers. If we detine

Vo= . } . I1 = . Vo= . RAL)
vl \hh t 0 llh ‘ .
J

The screened carrier-carmer scattering matrix can then be expressed in matnx torm:

V= t=VIr) (3200
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When only the lowest band for electrons and holes are occupied. \' can be straightforwardly

writien as

) | ![ (l-\'hh”h)\'“‘&\ chnh‘-hc \-ch
A { [ (l_"cc[‘lc)"nh¢"nc”c‘w:n {
with
(RPN § LAWE PSR s LEWSR U LRSS o O (3.2
e e
€ ee £ € ee g K ee eee eh he
H = >——< + >——©=< + >——<>=<
e e e e e e e e h e
h e h e h e h
®\ eh eh ee  eh eh  hh
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H = >——< + M +
h h h h h e h h h h

Fig. 10. Diagrams for screeming ctfect of camer-camier potentual in the RPA. The single and double
horizontal solid lines represent. respectively, the unscreened and screencd carmer-carrier interaction,

v and V™. The bubble represents the density-density correlation function, IM*,

Solving a set of coupled equations. Egs. (3.14) and (3.15) and corresponding equations
for hot-phonons. we can determine the v,, v,. T,. T, as well as the distribution of hot-phonon
wavepackets (LO. TO). The mobilities for both carniers in a weak electric field are shown in
Fig. 11 as functions of lawice temperatre, T;. Fig. 12 shows the weak field mobility of elec-

trons and holes as tunctions of the electron density, n,..
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4. OTHER THEORETICAL WORKS

4.1. Monte Carlo Simulation of Nonequilibrium Phonon effect

In the above discussion a simplifving assumption tor the carrier distribution tunction,
namety. that s 4 Fermi-Dirac tunction at the cammer wemperature 7. is assumed. This assump-
tion usually s a good one for the high carrier density and for the ume scale larger than
pecosecond.  However. recent progress in ultratast experiments leads to processes i which
the carner distnibution can not be regard as 10 quasi-equilibrium.  Use of Monte Carlo tech-
mgues 1o solve the dvnamical equation on the supercomputer 1s the way of obtuning the
nonequilibrium carner distmbution. Lugli er af have presented a series theoretcal resuits on
nonequilibrium phonon ettects based on a novel Monte Carlo atgorithm. ™ **™** Thev have
calculated the results for both the bulk and quantum well cases. In the case of a guantum
well. the effect of several subbands has been included. iowever. a simple model was used.
that is. that the ¢,. components of the phonon distribution are localized in a region of wave-
vector space of extent 1/L. with L the width of well,

The physics of the dynamical evolution of the carrier-phonon system is very similar to

what we have discussed. The coupled Boltzmann equations are given by

s t) a 1) a i)
o |k fe | | 1)
Jat ot ot 4
c-ph c=c © -1imp
At ) )
()ﬁqji _ al)‘ll_ ¥ 8I;q 4.2
ot N e Y donoph

where the superscripts ¢ and j indicate, respectively, the tvpe of carrier (electron or holes) and
of phonon modes (LO. TO. . . .) considered. (dN q)/0r |ph_p,1 is obtained by relaxation time
approximation. given by Eq. (2.24). Fig. 13 shows the evolution of the electron total energy
as a function of time in an n-type quantum well during and after the laser pulse. The excited
clectrons lose energy mainly through the interaction with the background clectrons and
through the emission of LLO phonons. A much slower relaxation is found when nonequili-

brium phonon ctfects are included. Fig. 14 shows the LO-phonon distribution at ditterent

times.
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Fig. 13. Average clectron energy, measured in equivalent temperature, as a tunction of time dunng and
after the laser excitation for two different excitation sheet densities. The position ol the energy levels in

the well is shown in the insert. This figure is Fig. 12 from Lugli et al.*
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Fig. 14, LO-phonon distnbution as a tunction of total paraticl momentum ttor ¢, =0y for umes during

and after the laser excitation. This figure is Fig. 13 from Lugli et al.’*
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When the laser photon energy 15 about 2 eV, photon-excitation 1n bulk GaAs includes
transition trom three hole bands. The energy distribution of photo-excited clectrons 1s charac-
terized by three distinet peaks, as shown in the insert of Fig. 15, In GaAs. about 60% ot the
photoexcited carriers transfer 1o the satellite vallevs during the laser pulse (the average time
tor I' =1 transinon via phonon emission or absorpuon is about 80 ts). Carriers return slowly
to the I" vallev, with charactenistic time of 2 or 3 ps, because of smaller effective mass in the
I valley. This leads a slow nise of luminescence in GaAs. as shown in Fig. 15.% In Fig. 15. a
comparison to the InP case is also provided. where the £ valley are located at a much high
energy, and do not signiticantly contribute to the cooling process. By titing data with the
Monte Carlo calculation, 1t is determined that the ['-/. deformaton potenual Dy . is
(0.3 + 1.5410% ¢V/em. This -1 exchange depletes the 1 electron distribution in GaAs in the

Mgh-energy region. above 0.3 eV. as shown in Fig. {6,

T 1 1 7T T 7T T T T T T T ¥
a)
L
1"\ A!
i
SO
HH tH 0 10 20 ps
i i A 1 )
‘_b)
. ..‘
o A o !
¢

JESCEMNCE INTENSITY (au)

»
v

LUMI

-5 0 5 10
DELAY (ps)

Fig. 15, Luminescence ntensity at 300 K vs delay. G GaAs at 145 ¢V qexpenments) (b the solid
curve s the same as () on expanded scale: the filled circles show the spectrally integrated intensity;
ter InP, same as (b Results of ensemble Monte  Carlo calculations are also shown: ()
Dy =4 6. and B)x 10 eV/em tor GaAs (losenges., crosses, and open circles, respectivelyy and (¢) InP.

This tipure s Fig. 2 from Shah er al.!
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Fig. 16. The Monte Carlo results of the Energy distribution tunction tor [™-valley clectrons in tay GaAs
and (b) InP at three different time delays after the excitation. The excitation density is S¥10'% em ! and

the lattice temperature is 300 K. This figurc is Fig. 16 from Lugli ez al.*?

4.2. Effect of LO-phonon renormalization

A series of works by Das Sarma and his coworkers**™* studied the hot-clectron relax-
ation by emission of LO phonons in both 2D and 3D cases. In addition to the hot-phonon
effect and dynamical screening, they found that many-body renormalization of the 1.O pho-
nons also plays a crucial role in the power-loss process at low electron temperatures. Due to
phonon-plasmon coupling, the density states of an LLO phonon has three branches: (1) the
bare-phonon-like branch near the bare-phonon energy. (2) the plasmoniike branch near the
plasmon energy, and (3) the low-energy quasiparticle-excitation-like branch in the
quasiparticle-excitation region. Even though the oscillator strength of plasmonlike and the
quasiparticle-excitation-like branchs are extremely small. they dominate the power-loss pro-
cess at low enough electron temperatures that most electrons have energy below the threshold
for bare LO phonon emission. This produces an enhancement of the power loss at low clec-
tron temperatures by many orders ot magmitude relative to the power loss to bare 1.0 pho-
nons.

The phonon density of states. A (¢g. @) is given by
Alg, wy=-n 'ImDg.on (4.3

where D is the phonon propagator. For bare phonons. D is replaced by D"
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0 sz
Dg.on = ——-5 . b
[0l O 7
and ImD"(g.w)=- 1|3 — oy ) - dw+ ey )|. which has vanishing weight everywhere except
4t the bare energy. By introducing the phonon-plasmon coupling in the random phase approxi-

mation tRPA), the renormalized phonon propagator 15 obtained by

2(.0[. _
Dtgon= ~ — =y == . 4.5
W - wj -2y Mg, o

where M, s the electron-phonon matrix element. and Tltg. w) is the electron densitv-density
correlation tunction.  Fig. 17 displays the renormalized phonon spectral tunction tor the 3D
and 2D cases. Three branches of phonon modes are shown. \. thar the scale factor v 1n
Fig. 17 is different for ditferent curves. The strength of the plasmonlike phonon v very
small, the quasiparticle-excitation-like (QPL-like) mode is also weak. However, It is found

that the QPE-like phonons dominate the hot-electron power-loss process at low electron tem-

peratures.
j T TT T T T — T T
(a) | n=1.0 x 107 em3 ()
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Fig. 17. (a) Phonon spectral function for three wave vectors in a 3D clectron gas at an clectron tem-
perature of T=50K (T, =0). For Q=22x10"¢cm ', the QPE branch extends from 0 to 7 meV. and
there are 8-function peaks near the plasmon energy (w, = 14 meV) and the phonon energy (36X meV).
which are not shown expliatly in order 10 avord too much detail. bor O =326 100 em ' the QPE
branch cxiends to - 14 meV. and there s agamn a d-lunchion peak (not showm at oy, . For
Q=1.3-10"¢m * the plasmonlike phonon is Landau damped. and the QPE-like phonons exiend all

i

e N ] . - y
wav up to @y The clectron density is 107 ¢m b giving a Fermi vector ot 14-10°cm ' iy Phonon

spectral function lor two dilferent wave vector ina 2D clectron gas. For ¢ =62.7-107¢cm ¥ there s a
S-tunchion peak (not shown) at oy . The clectron density is S-107 em = mving o Fermi sector of

Iy em b This Figure is Fig 4 trom Das Samma, '
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At low temperature (about 50 K) the number of electrons which can emit phonon with
bare-mode  phonons becomes extremely small. However. phonon-plasmon coupling creates

new low-energy modes, even though its strength is rather small. they could make important

contribution in energy loss at low electron temperature. In this case. Eq. (2.32) for the energy
loss rate is no longer valid since it was derived by considering only bare 1.0 phonon modes.
Instead. Das Sarma ar al derived the following expression tor power loss by generalizing the

Kogan formula*’ to including phonon self-energy correction:

P=Y j dTm(oMs [, 1) — npto)] Imlltg. enlmD(y. ) . (4.6
4
where ny =|exptw/kgT) - lI’lA
In order to include the hot-phonon effect. one must tirst rewnite kg. (4h.6) as
P=Y | dowR (g, o) np(w), 7
q

then replace R(q.®) in the integrand by R(q, @)/[1+7T,,R(g. 0. Das Sarma et al suggest

that only the bare phonon mode is important for hot-phonon etfects.
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Fig. 18. Power loss as a function of the inverse clectron temperature for 3D clectron gas (solid linesy.

the dashed lines correspond to power loss to bare LO phonons only. The doted hines give the power

Joss 10 acoustic-phonon modes. For dotted curves, the uppermost curve i for 10 em L the muddle

one for 10'"cm *. and the lowest one tor 107 cm . 7, =0, and the power loss is expressed in walts

per cammer. This tigure 1s Fig 3 trom Das Sarma er al.'®
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Density=3x10"¢m™?

log,, (Watts s Carrier)

Fig. 19. Power loss as function of inverse electron temperature for two quantum wells (width 50 and
200A) calculated in 3D phonon approximation (3DPA) and in slab-model. T; =0, and the power loss is

expressed in watts per carmier. This figure is Fig. 1 from Das Sarma et al®

At high temperatures (T250 K) the bare LO phonons dominate the power loss, at
intermediate temperatures (20<7T <50 K) power is lost predominantly to the plasmonlike or
QPE-like branch of the LO-phonon spectrum, and at still lower temperatures (7 <20 K) the
acoustic phonons become important. Fig. 18 shows the power loss for 3D electron gas at lat-
tice temperature T; =0. Fig. 19 shows the results in quantum wells.

Recently, M. W. C. Dharma-wardana®® deals with the same subject using nonequili-
brium Green’s function approach. He considers not only the coupled-mode spectral density,
but also the coupled-distribution functions. In contrast to Das Sarma and co-workers, he found
that the energy-loss rate is significantly suppressed by coupled-mode formation and quasiparti-
clelike modes do not contribute to the energy-loss rate. The underlying physical picture is that
although the coupled-mode phonon spectral density has some weight in the quasiparticlelike
region of energies, these coupled-phonon modes are effectively at electron temperature, not at
lattice temperature. Hence there is no enhancement. Nevertheless. coupled-mode phonons are

hotter than bare phonons and this leads to a suppression of energy-lose rate.
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5. SUMMARY

We have reviewed in this paper the eftect of reabsorption of nonequilibrium opucal
phonons on the carmier relaxation and transport. Both expenments and theorencal study
confirm that the build-up of hot-phonons is mainly responsible tor reducing the cooling rate
of photo-excited electrons, while the dimensionality and dvnamical screening etfect play only
a minor role. In the case of heterojunctions or quantum wells. our approach can determine
the accurate shape of the phonon wave packet and produce a simple procedure for calculating
the effect of nonequilibrium phonons. Our results are 1n quanttative agreement with expen-
ments. On the other hand, the cooling of photo-excited camers is 4 nich tield. which may 1n-
volve the electron-hole (three kind of holes) interaction. multi-valleyvs and mulu-subband tran-
sitions, multi-scattering processes. from very high temperature down to very low-temperature.
As examples, we refer to the effects of ['-L wansitions, which delay the build-up of hot I’
electrons in a ultrafast process, and what is the role of phonon-plasmon modes. There are
many other factors, which may atfect the relaxation process. such as phonon modes {intertace
and slab modes in quantum wells)*> and LO phonon relaxation mechanism.*! This subject is

worthy of further study.

ACKNOWLEDGMENT
The work in the City College of City University of New York was partly supported by
the U. S. Army Research Office and the U. S. Department of Energy.

Appendix
In this appendix the complete expressions for Egs. (2.13) and (2.14) are given as tol-

lows:
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