
AD-A261 658 7--

DCUMENTATION PAGE N.00-1

1a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified We_________________________

28. SECURITY CLASSIFICATION TMY 3. DISTRIBUTION / AVAILABILITY OF REPORTT17 Approved for public release;
2b. DECLASSIICATION/ DOWNG distribution unlimited.

4. PERFORMING ORGANIZA1 I M UIR(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

__ _ __ _AEOSR-TR. 93 1" 4" 3
U. NAME OF PERFORMING OR ZATION 6b. OFFICE SYMBOL NAME OF MONITORING ORGANIZATION

Department of Psychology (ifapplicable) same as 8a.

6. ADDRESS (City, Scate% and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Stanford University
Stanford, CA 94305 same as 3c.

$a. NAME OF FUNDING/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Air Force Office o (If applicable)

Scientific Researc NL AFOSR-91-0144

S6. ADDRESS (01y, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Building 410 PROGRAM IPROJECT ITASK WORK UNIT
Bolling AFB ELEMENT NO I NO. NO ACCESSION NO.

DC 20332-6448 61102F 3A4

11. TITLE (Include Securty ClaW fication)

Spontaneous Discovery and Use of Categorical Structure

12. PERSONAL AUTHOR(S)
John P. Clapper, Gordon H. Bower

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Afonth, Dey) 11S. PAGE COUNT

Annual Technical FROMOI/15/92 TCQ1/14/931 1993, February 15 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS SUBJECT TERMS (Continue on revere if necessary and ientify by block number)

FIELD GROUP SUB-GROUP unsupervised learning, category invention, attribute,
05 10 value, autocorrelation, feature, default, variable

19. ABSTRACT (Conue on reverse of neceusety and dentify by block number)

These experiments investigated unsupervised category learning using tasks in which subjects --

attempted to memorize the features of training instances from two contrasting categories. On each trial, 00
subjects studied a verbal feature list (training instance) for 24 seconds, after which they were given multi-
pie choice recognition tests to evaluate their memory for each list item. The amount of time spent look- 0 M
ing at each feature during the study phase, and the accuracy of recognition during the test phase, provided I
two separate indices of unsupervised learning on each trial. The main independent variable in these € -

experiments was the specific sequence in which instances from the two categories were presented. The O
effects of these sequence manipulations on learning provided strong evidence for the use of an explicit,
non-incremental, "category invention" process to capture the consistent structure of the stimulus domain.
The present experiments also showed the selective encoding process and enhanced memory for instances
predicted by standard, schema-based, theories of learning.

20. DISTRIBUTION I AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

S UNCLASSIFIEDAJNLIMITED D SAME AS RPT. D3 DTIC USERS Unclassified
22a. NAME OF RESPONSlIL[ INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

John F. Tangney, Ph.D. (202) 767-5021 AFOSR/NL
DO Form 1473. JUN 86 Peviouseftomaweoaol601. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

0 71 2 F98 1990M_



2

Abstract

This research investigates the unsupervised learning of categories, how such learning is affected
by the sequencing of training instances, and how it alters and improves the encoding and retention of
information about particular instances. Two general approaches to unsupervised learning are described,
one based on learning explicit associations among correlated features (autocorrelation) and the other
based on creating separate categories without explicit learning of correlational rules or associations
(category invention). A "study time" procedure was used as an index of learning in these experiments;
category learning is revealed in this task by subjects' preference to study features that differentiate among
instances within a category while neglecting predictable features shared by all category members. These
experiments obtained strong evidence for the use of a non-incremental category invention process in
unsupervised learning. In addition, such learning improved subjects' ability to remember both expected
and unexpected information about individual instances.
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1. Research Objectives and Summary of Progress

This project aims to investigate the learning of categories in unsupervised tasks, in which no
external tutor is present to provide subjects with pre-defined categories and informative feedback. This
has involved several subgoals. First, we have developed new task paradigms and dependent measures for
investigating unsupervised learning; this was necessary due to a lack existing measures of such learning.
Second, these tasks have been employed to help discriminate between two rival theoretical frameworks
describing how categorical structure could be learned and represented in unsupervised domains. One
approach, which we refer to as "autocorrelation", relies on learning direct associations between correlated
features of category members, without partitioning the stimulus set into explicit categories. The other
approach, referred to as "category invention", is based on dividing the input stimuli into explicit
categories and then computing summary norms within each category. A third objective of this research
was to describe how category knowledge, once acquired, alters and improves the evaluation, encoding,
and retrieval of information about individual category members.

In the first year of funding, we focused mainly on a task referred to as "attribute listing", in which
subjects were presented with a series of training instances (pictures of fictitious insects), and asked to list
the distinguishing properties of each instance. These lists were then analyzed over trials to reveal
subjects' induction of generic norms about the experimental categories. An article describing several of
these experiments is currently in press with the Journal of Experimental Psychology: Learning, Memory,
and Cognition.

We have developed a second task paradigm for investigating unsupervised learning, which we
refer to as the "study time" task. This task consists of presenting subjects with a series of verbal stimulti
(lists of features possessed by fictitious tree species) and instructing them to study and attempt to
memorize the features in each list. Following a 24 second study period, a series of multiple choice
recognition questions is presented to evaluate subjects' memory for the features of the preceding instance.
Subjects are only allowed to look at one feature at a time during the study period, and a computer
program records how long they spent studying each one. The program also records their accuracy for
each item on the multiple-choice tests. As subjects learn the consistent, default, features of each
category, they spend less time studying these predictable defaults and more focusing on the unpredictable
variables. The decrease in study times to defaults and the corresponding increase to variables provides an
index of unsupervised learning over trials that closely corresponds to that provided by the attribute listing
procedure mentioned above. Interestingly, the recognition accuracy data provides a similar record of
subjects' learning; accuracy of verifying both default and variable features increases as subjects learn the
consistent features of each category.

One set of experiments was primarily concerned with discriminating between the autocorrelation
vs. category invention approaches to unsupervised learning. These experiments manipulated the
particular sequence in which training instances from two different categories were presented, and
compared the effects of these manipulations to those predicted by the competing theories. These
experiments were similar to some of the attribute listing studies briefly referred to above, and the data
from these new experiments (both study times and recognition accuracy data) were highly consistent with
those earlier results. That is, they provided strong evidence for the use of category invention in
unsupervised learning, and showed sequence effects that could not be accommodated by autocorrelation.
Some of these experiments are described more fully in the detailed report which follows.

A possible criticism of both the attribute listing and the study time experiments mentioned so far
is that they all employed categories in which default features occurred with 100 percent reliability,
whereas many real-world categories are characterized by fuzzy boundaries and unreliable defaults (e.g.,
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Wittgenstein, 1953; Rosch, 1975, 1977). In a second set of study time experiments, we have begun to
extend this procedure to investigate unsupervised learning of categories with probabilistic defaults. In
one experiment, subjects were presented with instances of a single category, characterized by a set of
default attribute values that each occurred in 90 percent of the instances, but were replaced by
"exceptional" values in the other 10 percent. After several trials subjects showed much greater study
times to surprising, exceptional, values than to predictable defaults. They also showed a slight
"dishabituation" effect in which an attribute with a default value received longer slightly longer study
times on a trial following the occurrence of an exceptional value on that attribute. These results imply
that the study time procedure may be used to investigate unsupervised learning of categories with
probabilistic defaults, which could greatly extend the generality of this research.

Two additional experiments were conducted to check whether the sequence manipulations
investigated in earlier attribute listing and study time experiments would have the same effects when
categories were characterized by probabilistic, rather than deterministic, defaults. The results of these
experiments were generally consistent with those earlier results, providing further evidence for a non-
incremental category invention process in unsupervised learning. Work is presently continuing on these
issues.

A third area of research has involved using the attribute listing and study time tasks to study the
acquisition of multi-layer conceptual hierarchies in unsupervised domains. As people acquire expertize
within a given domain, they learn rich hierarchies of interrelated categories and subcategories at multiple
levels of specificity. Such hierarchies may provide a foundation for inferences based on property
inheritance, as well as efficient memory organization and fact retrieval. There have been few
demonstrations of learning of multi-level categories or even reliable methods for observing such learning,
especially within unsupervised learning tasks.

A first study time experiment attempting to demonstrate unsupervised learning of a simple two-
layer hierarchy has produced encouraging results. The stimuli in this experiment were divisible into two
general categories (A vs. B); category A could then be further divided into two more specific
subcategories, which we referred to as Al and A2. We found that subjects were able to learn default
expectations at both superordinate and subordinate levels of generality, and that this learning
considerably improved their memory for the features of individual instances.

Experiments during the 1993 funding year will be aimed at several issues. First, we wish to
further investigate and clarify the conditions required for category invention, as well as other learning
processes such as autocorrelation, particularly as they apply to learning categories with probabilistic
defaults. Second, we plan to extend our initial work on multi-layer conceptual hierarchies, in particular
investigating the progressive learning and elaboration of more specific (subordinate) categories within a
domain and the organization of the resulting database in memory. And third, we plan to extend the study
time task to obtain reaction time as well as accuracy data from the recognition-memory tests. These
reaction times should be useful for investigating how information about categories and instances is
organized in memory. In particular, we plan to follow up earlier results described in Clapper & Bower
(1991) suggesting an explicit segregation between category and instance information in memory; such
segregation would have important consequences for information storage and fact retrieval.
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Instance and Category Learning in Unsupervised Tasks

The ability to learn and use categories is fundamental to human intelligence. Categories may be
acquired under two general classes of training conditions, referred to as supervised and unsupervised
learning. In a typical supervised learning experiment categories are defined in advance by the
experimenter, who also provides relevant feedback (reinforcement) so that subjects can gradually learn to
match these categories to the correct class of training instances. By contrast, in unsupervised learning
tasks subjects are not given predefined categories or feedback from an external tutor. Rather, subjects
must discover categories for themselves as they examine a series of training instances, basing such
categories on any patterns or regularities observed among these stimuli.

A rich research tradition has evolved in the study of supervised learning (see, e.g., Goodnow,
Bruner, & Austin, 1956; Millward, 1971; Smith & Medin, 1981), but there have been comparatively few
empirical studies of unsupervised learning. One reason for this paucity of research may have been a lack
of reliable measures of category learning within such tasks. For example, accuracy in choosing among a
set of predefined categories, the primary measure used in studies of supervised learning, is by definition
inapplicable to unsupervised learning.

Clapper and Bower (1991, 1993) developed and tested an index of unsupervised learning,
referred to as "attribute listing". In the present article, we introduce a second method for investigating
unsupervised learning; this procedure generates two distinct indices of learning on each training trial.
This new method employs the same basic strategy or approach as the attribute listing task, and is based on
similar assumptions. Below, we briefly review the earlier attribute listing studies, their underlying
assumptions, and how attribute listing was used to provide discriminating tests between two competing
theoretical approaches to unsupervised learning. We then describe the new task, showing how it may
provide converging evidence concerning the rival theoretical approaches, and in addition provide
information about how category induction alters and economizes the processing of individual instances.

Measures of Unsupervised Learning

One empirical strategy, described in Clapper and Bower (1993), is to study unsupervised category
learning within instance discrimination tasks, by using the priority or weighting given to different
features of the presented stimuli as an indirect index of category learning. This approach depends on two
assumptions: (1) categories are defined in terms of correlated (consistently co-occurring) properties
within a stimulus domain; and (2) correlated properties are mutually redundant for distinguishing among
individual instances within a domain, and so they should receive a lower weighting or attentional priority
than uncorrelated properties.

Regarding the first assumption, we begin by adopting a conventional vocabulary describing
training instances in terms of abstract dimensions or attributes, each of which can assume a number of
concrete values (Clapper & Bower, 1991, 1993). For example, people differ in the attribute of hair color,
with blond, brown, red, and black being possible values of this attribute. A specific value of an attribute
possessed by a given instance is also referred to as a feature of that instance. In principle, attributes may
be either additive (with two values, present and absent) or substitutive (with any number of alternative
values, such as the different hair colors listed above; see, e.g., Tversky, 1977). Attributes may also be
discrete or continuous (e.g., ordered dimensions such as height or weight). In this article, only the
discrete, substitutive case will be considered, although the methods described should also be applicable to
other cases.
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Given a stimulus domain described in terms of a particular set of attributes, categories may be
defined within this domain in terms of correlations among the values of these attributes (see Figure 1).
Such correlational structure (Garner, 1974) provides an inductive basis for partitioning a domain into
separate categories, each corresponding to a particular set of correlated features. Importantly, it also
provides the learner with predictive power -- given that one or two correlated values are observed, the
presence of the others can be readily inferred. To the extent that a subject discovers and learns such
correlational patterns without feedback or other assistance from an external tutor, we consider that
unsupervised learning has occurred.

Insert Figure 1 about here

Regarding the second assumption listed above, we argue that the learning of correlation-based
categories can be studied using tasks in which subjects' instructed goal is to learn to discriminate among
(identify) the individual training instances, i.e., in which category learning is not presented to subjects as
an explicit goal of learning (Clapper & Bower, 1993). In such instance discrimination tasks, the objective
is to learn unique responses to each individual instance, which in turn depends on learning how that
instance differs from all other presented stimuli. Each feature (attribute value) of an instance would be
evaluated in terms of its informativeness or utility for making such discriminations.

Within a particular stimulus set, there are two factors which, in principle, would determine an
attribute value's discriminative informativeness: (1) the probability that an instance possessing that value
is the target instance and not a lure, i.e., the proportion of lures eliminated by possessing that attribute
value rather than an alternative value, and (2) the redundancy of the discriminations provided by the
present feature with those provided by other features. If two attribute values are perfectly correlated
within a domain, then they distinguish the target instance from identical sets of lures, and discrimination
would not be improved by knowning both values rather than only one.

Insert Figure 2 about here

A rational or ideal subject in a such a task should allocate attention (cognitive capacity) among
the features of an instance on the basis of their discriminative informativeness. Specifically, features that
provide little discriminative information should receive a low attentional priority (weighting). The
attributes within the stimulus domain illustrated in Figure 2 are equated in terms of their baseline
probability of occurrence, but differ in their degree of redundancy. Mutually redundant, correlated,
values should be regarded as less informative than the uncorrelated values, and should therefore receive a
lower priority. If subjects did in fact pay less attention or otherwise assign a lower priority to these
correlated values, this would be evidence that they had internalized the correlational patterns. Hence, an
observable index of feature weighting could provide an indirect index of learning correlational patterns in
unsupervised tasks.

In Clapper and Bower (1991, 1993), attribute listing was used as an index of feature weighting.
Specifically, subjects were presented with a series of training instances (pictures of fictitious insects) and
asked to write down the features that would be required to distinguish each one from prior instances they
had seen. They were told not to list features that would be uninformative for such discriminations, even
if the omitted features were highly prominent or noticeable. Subjects in this task preferred to list
uncorrelated features over correlated features; this preference evolved gradually over trials as subjects had
the opportunity to discover and learn the correlational patterns within the stimulus sets. This preference
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was interpreted as a quantitative index of learning, and could be plotted over trials to display acquisition
functions for each category.

Theoretical Approaches to Unsupervised Learning

We distinguish two general approaches to learning and representing in memory the types of
correlational patterns depicted in Figures 1 and 2; these approaches follow directly from our definition of
categories in terms of correlational patterns.

First, the correlations may be represented directly, as a set of correlational rules or within a
correlational matrix. This approach is illustrated by some of the connectionist models of J. A. Anderson
(Anderson, 1977; Anderson, Siverstein, Ritz & Jones, 1977) and McClelland and Rumelhart (1985;
Rumelhart, McClelland & the PDP Research Group, 1986). It is also instantiated in rule-based systems
such as those of Billman and Heit (1988) and Davis (1985). We will refer to this as the autocorrelation
approach (Clapper & Bower, 1993). By keeping a record of the correlations between all possible pairs of
attribute values, a learner could capture the correlational structure of stimulus sets like those in Figures 1
and 2 without actually partitioning the domains into explicit categories. Any information that would be
provided by such a classification would already be implicit in an exhaustive correlational record; in fact,
explicit categorization would actually lose or obscure certain correlational information by averaging over
individual correlations to arrive at a single number for each attribute value (that value's probability of
occurrence within the category).

The second approach is to capture the correlational patterns by partitioning the stimulus set into
separate categories, as shown in Figure 1. General norms or expectations about each category are then
stored in separate data structures, such as prototypes or schemas. There are many theories that assume
that people represent category norms within such structures (e.g., Posner & Keele, 1968; Reed, 1972;
Minsky, 1975; Rumelhart & Ortony, 1977; Schank & Abelson, 1977; Schank, 1982; Anderson, 1991),
although most were not specifically intended to handle unsupervised learning. The schema or mental
model of each category is assumed to contain generalizations about the range of expected values for each
attribute. When a particular value is present in all or most of the instances within a category, subjects
learn to expect that value to occur in future instances; we refer to such highly expected values as the
default values of a category. By contrast, uncorrelated values that occur infrequently or probabilistically
within a category will be referred to as variables.

By sorting stimuli containing different correlational patterns into different categories, and then
computing averages or frequency distributions within these categories, it is possible to capture much of
the same information contained in a direct correlational record. We refer to such theories as the "category
invention" approach to unsupervised learning. Whereas autocorrelation models require only a single
learning process (for updating correlational rules or associations), category invention requires two distinct
processes, one for partitioning the conceptual space into separate categories and the other for computing
norms across instances within each category (Michalski & Stepp, 1983).

It is probably unrealistic to assume, as do many statistical clustering models (see, e.g., Michalski
& Stepp, 1983; Fried & Holyoak, 1984), that human learners can scan an entire set of stimuli at once and
then compute an optimal classification scheme based on this overall analysis. It is more realistic to
portray people as examining a set of training instances one at time and updating their conceptual
knowledge in response to each. Given this sequential learning assumption, the major practical issue faced
by the category invention approach is deciding when, and on what basis, to create new categories during
training.
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When the goal is to learn category summaries or schemas, and sequential learning is assumed,
then a learner must use the match or mismatch of each stimulus to existing categories to decide when to
invent a new category (e.g., Schank, 1982; Holland et al., 1986; Anderson, 1992). We assume that
subjects create a new category at the start of an experiment to describe the first training instance. Further
training instances are then assimilated to this reference category until an instance is encountered that
mismatches the category in excess of some internal criterion. When this occurs, the subject creates a new
category to describe the anomalous instance. If further instances similar to this initial "triggering"
instance are later encountered, they will also be assigned to the new category. Separating the norms for
different categories in this way allows new patterns to be learned without discarding or distorting
knowledge of old patterns.

In Clapper and Bower (1993), the attribute listing task was used to provide discriminating tests of
the autocorrelation versus category invention theories of unsupervised learning, described above. These
tests depended on the vulnerability of the category invention process to initial distortions or errors in
learning, depending on the particular sequence in which training instances are presented. The data
showed that learning was much better if one category was learned thoroughly prior to encountering any
instances of the other category. Under such conditions, the mismatch between the well-learned norms of
the first category and the contrasting features of the second category was highlighted, and subjects readily
learned to separate them. (This was reflected in a rapidly-evolving preference for noting uncorrelated
variables over correlated defaults in the listing task). By contrast, learning was greatly reduced when
instances of both categories were presented together, in a mixed input sequence, from the start of training.
In this case, the contrast between the two categories was apparently much less salient, and it appeared that
many subjects simply lumped all the stimuli together into a single, overgeneralized category. Because
this single category averaged together instances containing different correlational patterns, such
correlational information would have been lost in the aggregated norms. Subjects in such mixed
sequence conditions showed much. less preference for listing variables over defaults than did subjects who
learned the categories separately.

Perceived contrast does not affect learning within the autocorrelational approach, since such
models simply increment correlational strengths without imposing any classification scheme upon the
stimulus domain. In other words, autocorrelation is a strictly data-driven ("bottom up"), inductive,
learning method, without the potential for distortions or errors implicit in the inherently theory-driven
("top down") process of partitioning a domain into separate categories. Autocorrelation models do not
necessarily expect superior learning when categories are separated in the training sequence, compared to
situations in which they are presented in mixed alternation.

Autocorrelation models could be constructed in which different correlational patterns interfered
with each other's learning; this would be consistent with much research on associative interference in
paired associate learning and sentence memory tasks (see, e.g., Postman, 1971; Anderson, 1983). Such
interference could explain why a category might be learned better if presented alone than if presented in a
mixed sequence with instances of a different category. However, it does not explain several results
reponed in Clapper and Bower (1993) which are readily explained by the category invention approach.
For example, interference effects should occur in both blocked and mixed sequences, according to this
interference hypothesis. In fact, certain connectionist autocorrelators predict much greater interference in
blocked than in mixed sequences (McCloskey, 1989; Ratcliff, 1990). By contrast, evidence of significant
interference was obtained only in the mixed conditions of these experiments. Other apparent violations
of incremental correlation learning were also observed; for example, under certain circumstances learning
of a category could be improved simply by reducing the number of instances presented from that
category, a result difficult to accommodate within a strict autocorrelational framework. Overall, the
results of these experiments were strongly supportive of category invention, and could not easily be
rationalized in terms of simple autocorrelation.
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A Performance-Based Measure of Unsupervised Learning

A primary goal of the present research was to extend the results reported in Clapper and Bower
(1993) to a new task in which the indices of learning were based on actual performance and capacity
limitations, rather than on subjects' preference for including one type of attribute rather than another in a
free listing task. However, this task is based on the same principles that underlied attribute listing, e.g.[,
that subjects would assign greater weight to uncorrelated than correlated attribute values when trying to
distinguish among individual training instances.

Subjects were presented with training instances composed of several attributes, some of which
had correlated values. (defining two contrasting categories), and some of which did not. In the attribute
listing studies, the training stimuli were pictures of fictitious insects; in the present experiments, they
were lists of verbal features supposedly possessed by different species of trees. For example, a given tree
species might be described as having dark grey bark, a high commercial value, fast growth, and so on.
Subjects were required to study these feature lists for a fixed study interval; during this time, the display
was set up so that the person could only look at one feature at a time. After the study period, subjects
were tested on their ability to recognize which features had occurred in the previous instance, i.e., for
each attribute such as "bark color", the subjects would have to decide which of several alternative values
(e.g., dark grey, deep brown, mossy green, or light tan) occurred in the last instance.

These lists were presented on a microcomputer screen, which allowed two types of data to be
collected: (1) the time spent looking at each attribute value during the study period, and (2) the accuracy
of verifying each value during the testing phase. Interestingly, both types of data provide information
about category learning similar to that provided by attribute listing. Thus, we expected that subjects who
learned the categories within a given stimulus set would spend more time studying variables than
defaults, because the variables were more distinguishing of each instance and because these features
could not be inferred based on category norms or correlational rules. This preference for studying
variables over defaults would be given the same interpretation as the corresponding preference for listing
variables over defaults in the attribute listing task, i.e., as indications of learning categories or
correlational patterns.

A second index of learning was provided by the recognition-memory data in the present
experiments. Subjects who learn categories should show improved memory for defaults, since they
would be able to retrieve these features from generic norms when they were needed for the memory tests.
Interestingly, subjects should also show improved memory for variables, compared to a control condition
in which all attributes of the stimuli are uncorrelated. This improvement should occur as a result of the
preference, predicted above, for increasing the portion of the study period spent looking at (rehearsing)
variables at the expense of defaults. This extra study time should improve subjects' memory for
variables, without affecting verification accuracy for defaults. Thus, default learning should produce both
the direct benefit of improved memory for defaults, and the indirect benefit of better memory for variables
(see Clapper & Bower, 1991).

In sum, the present instance-memory task was designed to provide two measures of unsupervised
learning on each trial, both consistent with the earlier attribute listing measure. In addition to providing
similar information about the time course of category learning, the present task provides additional
information about how category learning affects the processing of and memory for individual training
instances. This is important because category and instance learning do not appear to be totally
independent processes. Clapper and Bower (1991) argued that the changed processing of instances that
results from category learning (i.e., the shift of attention away from predictable defaults and toward
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unpredictable or surprising properties of the instance) could facilitate the learning of further categories
within a domain. This might occur both as a result of improved instance memory (better "raw data"
obviously permit more accurate and reliable generalizations), and because subjects would be more likely
to discover subtle, non-obvious features and patterns within a stimulus domain once they shifted their
attentional resources away from the more obvious defaults. We argued that these attentional shifts were
an important factor underlying the heightened episodic memory (e.g., deGroot, 1965, 1966; Chase &
Simon, 1973), and progressive elaboration of default hierarchies (see Holland, Holyoak, Nisbett, &
Thagard, 1986) shown by domain experts.

Overview

The goals of the following experiments were two-fold.

First, we hoped to provide evidence for the basic validity and usefullness of the instance memory
procedure as a method of investigating unsupervised learning. To do this, we conducted two experiments
similar to attribute listing studies described in Clapper and Bower (1993). If the results of these
experiments were consistent with those of the earlier attribute listing studies, this would provide evidence
for the reliability of both tasks and the basic stability of the underlying processes they attempt to
investigate.

The generality of our methods and theoretical conclusions would be further bolstered by the fact
that the present experiments differed from the earlier attribute listing studies in several ways. For
instance, the present studies used verbal stimuli with a larger number of attribute dimensions than were
employed in the pictorial attribute listing stimuli. It is important to include both verbal and pictorial
stimuli in research on unsupervised learning because previous research indicates that verbal stimuli may
be remembered (Pavio, 1971; Kosslyn & Pomerantz, 1977) and compared (Gatd & Tversky, 1984)
differently than pictorial stimuli, which could also mean that they are categorized somewhat differently.

Our second objective was to provide further evidence relevant to discriminating between the
autocorrelation versus category invention approaches, described above. The earlier attribute listing
studies provided strong support for the category listing position, which we hoped to replicate in the
present experiments. To that end, the main independent variable in the present experiments was the
particular sequencing of training instances. If the present sequencing manipulations replicate those of
Clapper and Bower (1993), this replication would strengthen the case for a non-incremental, contrast
based process of category invention.

Experiment 1

The main goals of this first experiment were to evaluate the instance memory task as an index of
unsupervised learning, and to provide evidence to discriminate between the category invention versus
autocorrelation theories. There were three conditions in this experiment. In two of these the stimulus set
was partitioned into contrasting categories (A versus B) based on correlations among the values of nine
attributes, while the remaining three attributes varied independently. These are referred to as correlated
conditions. The same stimuli were presented in both of the correlated conditions; the only difference
between them was the particular order in which training instances occurred. In the Blocked condition, a
block of twelve A-instances was followed a second block of twelve B-instances. Following these two
"pure" blocks was a mixed test block consisting of four instances from each category, presented in
random order. In the Mixed condition, the same first twenty-four instances were presented as in the
Blocked condition, but these instances were presented in random order rather than being separated by
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category. The same test block was used as in the Blocked condition.

The third condition was a control group. The stimuli were equated with those of the correlated
conditions in the number of values associated with each attribute, but there were no correlated values, and
hence no categories, in this group. Thus, this condition served as a baseline for evaluating any learning
observed in the other two groups.

The two correlated conditions provided a test of the category invention versus autocorrelation
theories. As noted above, category invention expects better learning when instances are blocked by
category, because this allows subjects to learn strong expectations about Category A prior to encountering
tihe first instance of Category B. Category invention predicts that subj,.:ts should have difficulty
separating categories in the Mixed condition, and that they would be likely to aggregate both types of
instances into a single overgeneralized category containing no strong default expectations. If this
occurred, then subjects should show a greater preference for studying variables over defaults, as well as
better memory for both defaults and variables, in the Blocked condition,.

The autocorrelation framework can accommodate reduced learning in a Mixed sequence
(compared to a condition in which categories are learned alone) by including assumptions about
interference among correlational rules or associations. However, if such an interference process reduced
learning in the Mixed condition, it should also influence the pattern of results from the Blocked condition.
First, prior learning of Category A should interfere with later learning of Category B in the Blocked
condition, analogous to the negative transfer (or proactive interference) commonly observed in paired-
associate learning tasks (e.g., Postman, 1971). Second, correlation learning during the Category B block
should produce retroactive interference on earlier learning of A correlations, causing a reduction in A-
learning during the final test block.

Method

Subjects

The subjects were 43 undergraduate students of San Jose State University participating in partial
fulfillment of their Introductory Psychology course requirement.

Procedure

Subjects were tested in groups of 10 to 15 for a single one-hour session. Each subject was seated
in front of an individual microcomputer terminal, which administered all aspects of the experiment. After
subjects read the instructions presented on the computer screen and signed a form indicating their
informed consent to participate, the main portion of the experiment began.

Each trial consisted of two phases, the study phase and the test phase. At the beginning of the
study phase, a list display was presented in the middle of the CRT screen. At the top of the list was the
name of a fictitious tree species (these were arbitrarily selected Latin names from a plant identification
guide), below which appeared a list of twelve verbal feature descriptors. At the start of the trial, each
descriptor was masked by a row of X's (see Figure 3a). Starting from a random position in the list,
subjects studied the descriptors by pressing a designated "line forward" or "line backward" key to
examine each list item. This allowed subjects to examine the features in any order they wished, and to
spend as much time as they wished on any particular item within the constraints of the prespecified study
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period (24 seconds). The computer recorded the total amount of time spent looking at each attribute.

Insert Figure 3 about here

Each list item was a verbal description of a specific value of a particular stimulus attribute. For

example, the attribute "color of bark" had several alternative values, such as "dark grey" and "mossy
green". The attributes were presented in the same serial order on each trial, although different values of a
particular attribute could occur on successive trials.

After a study interval of 24 seconds, the list disappeared and the test phase of the trial began.
During this test phase, subjects were tested on their memory for all twelve of the attribute values of the
preceding instance. The test items were presented one at a time in a multiple-choice format (see Figure
3b). The name of the most recent instance appeared at the top of the multiple-choice display, with four
alternative answers below. These alternatives were always different values of the same attribute, e.g.,
four different habitat preferences or growth rates. Subjects decided which of these values occurred in the
last-studied instance and typed in the number corresponding to that choice on their computer keyboard.
Following this response, the computer displayed either a "correct" or an "incorrect" prompt under the test
display, which remained on the screen. If the response was incorrect, the correct choice was indicated by
an arrow in the display (see Figure 3c). A designated key was then pressed to show the next test question.

After they had answered all twelve test questions about a given instance, subjects received
summary feedback for the trial. The percentage of items answered correctly on that trial was displayed,
and below this the cumulative percentage correct averaged over all test trials completed up to that point.
If the trial score was higher than the cumulative score, the message "Good job! You beat your overall
score!" appeared on the screen; if not, the message "Try to beat your overall score next trial" was
displayed. If the subject answered all the test questions correctly on a given trial, the message "Good job!
Your score was perfect!" was displayed.

The twelve attributes were tested in a different random order on each trial, and the order in which
values were listed in the multiple-choice display was also randomized separately on each trial. The
experiment consisted of a total of 32 such study-test trials. Following this, a written debriefing was
shown which informed subjects about the purpose and methods of the experiment.

Materials and Design

As noted, the training instances were verbal descriptions of fictitious trees, presented in a list
format. The instances were characterized in terms of twelve substitutive attributes, each of which had
four possible values, defining a a possible stimulus set of 412 distinct instances. For nine of these twelve
attributes, only two of the four possible values were presented in the training instances, although all four
values appeared as responses in the multiple choice tests.

Subjects were randomly assigned to three different conditions. In the two correlated conditions
the values of the nine two-valued attributes were perfectly correlated across different training instances.
The instances could be partitioned into two distinct subsets or categories based on these correlated values.
These can be denoted by letting serial positions in a numerical sequence correspond to particular
attributes, while the numbers appearing in those positions indicate specific values of each attribute.
Within this notation, the categories can be described as Category A = 111111111 xxx and Category B =
222222222xxx, where the x's indicate uncorrelated attributes that vary independently through all four
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values across different instances of a category. As noted above, the correlated values characteristic of a
given category are referred to as defaults, while the values of the non-correlated attributes are called
variables.

The two correlated conditions differed in the order in which instances were presented. In the
Blocked condition, the first twelve instances were all members of Category-A and the second twelve
instances were members of Category-B. The remaining eight trials consisted of four A-instances and four
B-instances presented in a randomly intermixed sequence. The Mixed condition differed from the
Blocked condition only in the order in which the first twenty-four instances were presented. In this
condition, these instances were presented in a randomly ordered sequence rather than being blocked by
category. The randomization procedure was so constrained that no more than three instances from the
same category appeared in a row. The final eight trials were identical to those of the Blocked condition.

The third condition in this experiment was referred to as the uncorrelated or Control condition.
In this condition, all the attributes of the training instances varied independently. As in the correlated
groups, nine of the twelve attributes varied through only two values in the training instances, while the
remaining three attributes varied through four values. Due to the lack of correlations among attribute
values in this conflition, there was no structural basis for partitioning the stimuli into separato categories.
A total of 2 x 4 = 32,768 distinct instances are possible in this condition, compared to 4 x 2 - 128
possible instances in the correlated conditions.

The final eight instances presented in the Control condition were identical to those of the two
correlated conditions. That is, these instances contained correlated values, unlike the preceding twenty
four instances. This final block of correlated instances will be referred to as the test block in all three
groups.

Balancing

The stimuli for all the subjects in a given condition were generated by the testing program from
the same input file, which contained coded specifications for generating the instances presented on each
trial. Stimuli generated from these codes were presented in the same order in which they occurred in the
file, i.e., in the same order for all subjects in a given condition. The correspondence between serial
positions in the codes and the order in which an attribute was listed in the training instances was
randomized for each subject. These random assignments were undertaken to balance out any
idiosyncratic effects of particular attributes, values, or combinations of values on the experimental data.

Results and Discussion

The two dependent variables recorded on each trial of this experiment were (1) study times for
default and variable attributes during the study phase, and (2) recognition accuracy for defaults and
variables during the test phase. Since the total duration of the study period was a constant 24 seconds, 2

any increase in study times (STs) to variables would be reflected in a corresponding decrease in default
STs. Therefore, in this article the ST results will be described in terms of the difference in study times
between variables and defaults on a given trial, i.e., ST(variables minus defaults). Following Clapper &
Bower (1993), we will refer to these differences as preference scores, since they reflect subjects'
preference for attending to variables rather than defaults. The data for this experiment are shown in
Figure 4.
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Insert Figure 4 about here

Beginning with the Blocked condition, the mean ST for defaults was 1.78 seconds and that for
variables was 2.91 sec, for an average difference of 1.13 sec. This difference was highly significant
according to a within-subjects t-test, t(14) = 4.27, p < .001. Examining the difference scores plotted over
trials in Figure 4a, it is apparent that the bias in favor of studying variables increased throughout the A-
category block, from .18 sec on the first trial to 2.01 sec on the twelfth and final trial of this block. The
within-subjects test for a linear trend during this block was statistically significant, t(14) = 2.86, p < .02.
This learning did not appear to reach assymptote by the twelfth trial, and more learning might have been
observed if additional A-instances had been presented prior to the Category B block.

Learning seemed to occur somewhat more rapidly during the Category B block, and reached
assymptote by about the 6th B-instance. Default STs exceeded variable STs on the first B-trial by 0.125
seconds; the decrease in difference scores from 2.01 on the final trial of the A-block to -0.125 sec on the
first B-trial was highly significant, t(14) = 4.01, p < .01. The increased learning over the first six B-
instances was significant at the .01 level, t(14) = 4.04, but no significant change occurred over the next six
B-instances, t(14) = -0.37, p > .50. The trend computed over all twelve trials of the B-block was also
significant, t(14) = 4.48, p < .01.

The bias in favor of attending to variables decreased somewhat when the first A-instance was
presented during the mixed test block, compared to the average of the preceding six B-instances (t(14) =
3.71, p < .01), but it is clear from Figure 3a that preference scores remained positive throughout the test
block. This effect was highly significant averaged over the eight test trials, t(14) = 3.05, p < .01. This is
an important result because it indicates that the learning effects observed earlier in the training sequence
were not due merely to localized habituation to "runs" of repeated default values, but rather to the
acquisition of stable norms for the two categories.

The autocorrelation-plus-interference hypothesis, described earlier, predicts that learning of a
second category in a blocked sequence should produce strong retroactive interference on memory for the
first. Such interference implies that preference scores during the test block should be lower in instances
of Category A than in B-instances. However, excluding the first A-instance, there was no significant
difference in preference between A- versus B-instances during the test block, t(14) = 0.04, p > .50. The
slightly lower preference scores for instances of both categories during this block, compared to the eight
preceding B trials (t(14) = 2.62, p < .05), were probably due to the need to sample enough of the default
features to confidently categorize the instance on each trial of the test block. During the earlier blocks,
category membership was constant over long series of trials, and thus subjects may have spent less time
checking the categorization of each instance during these trials.

Turning to the Mixed condition, no significant difference was observed between variable and
default STs (means of 2.04 and 2.07 sec, respectively, t(14) = 0.60, p > .50). The preference scores
showed no apparent trends over the thirty two trials of the experiment; any variation appears merely due
to random fluctuations from trial to trial. The data for the uncorrelated Control condition were similar to
those of the Mixed condition. Variable STs averaged only about .06 sec greater than default STs, a non-
significant effect (t(12) = 0.669). There were no significant learning trends in this condition.

In addition to the foregoing within-groups analyses, several between-groups analyses were
undertaken to directly compare the different conditions. The average preference score of 1.14 seconds
observed in the Blocked condition was significantly greater than the 0.06 second effect observed in the
Control condition, t(26) = 3.63, p < .01. The same comparison was were also statistically significant when
averaged over only the eight-trial test block, t(26) = 2.81, p < .01. Preference scores in the Blocked
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condition also exceeded those in the Mixed condition overall (t(28) = 4.29, p < .001) and during the test
block (t(28) = 2.78, p < .01). No comparison between the Mixed and Control conditions approached
significance.

The pattern of study time results was strongly replicated by the recognition memory data (Figure
4b). In the Blocked condition, recognition improved for both defaults and variables over the first several
trials of both the A- and B-blocks. Averaged across defaults and variables, overall accuracy increased
from 0.66 on the first A-instance to an assymptote of about 0.92 on the ninth trial. Accuracy dropped to
0.71 on the first B-trial; the difference between this trial and the preceding A-trial was significant at the
.001 level, t(14) = 6.47. A similar pattern of increasing accuracy was observed over the succeeding B-
instances.

The increasing linear trend in accuracy was significant over the first six instances of both
categories (t(14) = 3.94, p < .01 for Category A, t(14) = 4.71, p < .001 for Category B). By contrast, there
was no significant trend over the last six instances of either category (for Category A, t(14) = 1.12; for
Category B, t(14) = -1.32). A slight decrease occurred during the first few trials of the mixed test block,
and overall memory performance during this block differed somewhat from assymptotic performance
during the preceding Category B block (computed by averaging the last six trials of that block and
comparing this mean to the average of the eight test trials; t(14) = 3.29, p < .01). However, when the first
A-instance was excluded there was no overall difference in memory between the two categories during
this test block, t(14) = 1.07, p > .15. Thus, there was little evidence for strong retroactive interference of
Category B on memory for defaults of Category A.

While the overall pattern of results over trials was similar for defaults and variables, memory for
defaults was greater overall (0.93 vs 0.83, t(14) = 5.45, p < .001). This advantage could have been due to
(1) subjects' ability to retrieve correlated default values from their category norms, while the values of
variable attributes had to be recorded from scratch for each instance, or (2) the greater ease of guessing
the correct value of attributes that had only two values presented during the study phase, compared to
those that had four presented values.

By contrast, there were no clear trends in the memory data from the Mixed condition. Overall,
defaults were recognized with an average accuracy of 0.65 and variables with an accuracy of 0.60; this
difference was significant at the .01 level (t(14) = 3.01). Since there is no other evidence of default
learning in the data, it seems likely that this difference was due to the greater ease of guessing the correct
value of two-valued as compared to four valued attributes, rather than to subjects having learned the
correlations among the two-valued attributes.

In the Control condition, memory was at about the same level as in the mixed condition (0.620
versus 0.625, respectively), and showed no clear changes over trials. Recognition was about eight percent
more accurate for two- than for four-valued attributes, comparable to the corresponding difference in the
Mixed condition. This difference was statistically significant at the .01 level (t(14) = 3.83).

Directly comparing memory accuracy from the Blocked vs. Control conditions, we found that
accuracy in the Blocked condition was significantly greater than that of the Control condition (t (26) =
7.07, p < .001). When the recognition data was separated into defaults vs. variables, accuracy was greater
for both types of attributes in the Blocked condition. This improvement averaged 27 percent for defaults
(t(26) = 8.53, p < .001) and 24 percent for variables (t(26) = 5.44, p < .001). The amount of improvement
for defaults did not significantly exceed that for variables, t(26) = 1.07, p >. 10.
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The fact the category learning (in the Blocked condition) increased memory for both defaults and
variables indicates that such learning facilitates encoding of both predictable and unpredictable features
of instances. This replicates earlier results showing that category knowledge improves memory for both
default and non-default properties of instances (Clapper & Bower, 1991), and provides support for the
encoding assumptions of standard schema theories and their variants. Such theories assume that learners
focus on those aspects of an instance that are surprising or unpredictable with respect to norms stored in
the category schema, while ignoring or backgrounding expected defaults (see, e.g., Bower, Black, &
Turner, 1979; Graesser, Woll, Kowalski, & Smith, 1980). This was what was observed in the study time
data from the present experiment, and the recognition data provided further verification.

The overall pattern of memory data from the Mixed condition was very close to that of the
Control condition, as would be expected from the ST data indicating that no category learning occurred in
the Mixed condition. None of the comparisons between Mixed and Control group data approached
statistical significance in this experiment.

To summarize, the pattern of results from both study times and verification accuracies show
much better learning in the Blocked condition than in the other two groups, and this finding lends support
to the category invention approach. There was no evidence for proactive interference due to learning
Category A upon subsequent learning of Category B in the Blocked condition; in fact, assymptotic
learning was reached at least as quickly in the second category as in the first. This lack of interference
contradicts a prediction of autocorrelation, i.e., if interference occurs between categories in a mixed
sequence, then it should also affect learning in a blocked sequence. The autoconelation-plus-interference
hypothesis also expects that learning of Category A during the test block should have been reduced by
retractive interference from Category B. However, after the temporary surprise of seeing the first A-
instance, subjects showed no difference in learning of the two categories during the test block. The
present results are difficult to accommodate within a strictly autocorrelational framework, and imply that
people in unsupervised learning tasks accommodate unfamiliar stimuli by inventing new categories.

Experiment 2

This experiment aimed to provide further evidence for category invention. Subjects were
randomly assigned to two conditions. In the first, referred to as the Contrast condition, sixteen instances
of Category A were presented prior to a mixed block of twelve A-instances and twelve B-instances. We
expected that subjects in this group would learn strong defaults for Category A during the first, or
pretraining, block, and that the contrast between these well-leamed defaults and the features of the first
B-instance would cause a new category to be invented when that instance was encountered at the
beginning of the second, or test, block. Due to this partitioning, the defaults of Category B should be
learned quickly and without interference from Category A in this group.

The Practice condition of this experiment was essentially a replication of the Mixed condition
from Experiment 1. Here, eight A-instances and eight B-instances were presented in random order during
pretraining, after which the same mixed test block of twenty four A- and B-instances was presented as in
the Contrast condition. In this case, category invention models expect that subjects would have difficulty
perceiving the contrast between the two categories, and be likely to assimilate both types of instances to a
single set of aggregated norms. The result would be greatly reduced learning, compared to the Contrast
condition.

Autocorrelation predicts a different pattern of results, particularly with regard to the learning of
Category B. Eight instances of Category B were presented during pretraining in the Practice condition,
whereas no B-instances occurred in the pretraining block of the Contrast condition; the same number was
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presented to both groups during the test block. Due to this larger number of instances, learning of
Category B should be superior in the Practice condition. This prediction can be derived not only on the
basis of greater practice of B correlations, but also from a consideration of expected interference (transfer)
effects. A larger number of A-instances are presented in the first block of the Contrast condition than in
the Practice condition; this should result in greater interference upon subsequent B-learning, and, again,
better learning of Category B in the Practice condition.

Category invention predicts that transfer in this experiment should be positive from Category A
to Category B, i.e., B-learning should be improved by increasing the number of A-instances in the
pretraining block from eight in the Practice condition to sixteen in the Contrast condition. At the same
time, transfer from Category B to Category A should be negative, i.e., replacing eight of the A-instances
presented in the Contrast condition with eight B-instances, as in the Practice condition, should decrease
later learning of Category A. These seemingly contradictory predictions make little sense within the
framework of simple autocorrelation, but are easily rationalized in terms of category invention.

Method

Subjects

The subjects were 31 students of San Jose State University participating in partial fulfillment of
their Introductory Psychology course requirement.

Procedure

The experimental procedure was identical in most respects to that of Experiment 1. Subjects
were tested in groups of 10 to 15 for a single session lasting approximately one hour. Each subject was
individually seated at his or her own computer terminal in a single large testing room. The entire
experiment, consisting of 40 trials plus instructions and debriefing, was administered by computer.

Materials

The tree description were designed according to the same general specifications used in
Experiment 1. Each instance (individual species) was described in terms of twelve attributes, and the
stimulus set was partitioned into two categories based on correlations among the values of nine of these
twelve attributes. These categories can be denoted as Category A = 11111111 lxxx and Category B =
222222222xxx, where each serial position represents a particular attribute, 1 and 2 are the default values
of Categories A and B, respectively, and the x's indicate attributes that vary independently through all
four possible values. The assignment of particular attributes to the default or variable condition was
performed randomly for each subject.

Design

Subjects were randomly assigned to two conditions, which differed only in the sequencing of the
training instances. In the Contrast condition, instances of Category A were presented for the first sixteen
trials, referred to as the pretraining block. Following this pretraining, a mixed test block was presented in
which twelve instances of each category were presented in a random order (these sequencings were re-
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randomized for each subject). In the Practice condition, the pretraining block consisted of a mixed block
of eight A-instances and eight B-instances presented together in a random order. The same mixed test
block was used as in the Contrast condition.

In both conditions, instances were so constructed that all four values of each variable attribute
occurred an equal number of times within each category; within this constraint, values of these attributes
were assigned randomly. The same stimulus set was presented to all subjects in a given condition, but the
order of specific instances within the pretraining and test blocks was re-randomized for each subject.

Results and Discussion

The same type of data was collected in this experiment as in Experiment 1. This data is displayed
in Figure 5.

Insert Figure 5 about here

We begin with analyses of the Contrast condition. The ST data showed strong evidence of
learning in this condition. Overall, variables were studied 1.33 seconds longer than defaults; this
preference was significant at the .001 level, t(16) = 4.11. Recall that only instances of Category A were
presented during the pretraining block in this condition. During this time, preference scores increased
from -0.16 on the first trial to 2.08 sec on the sixteenth trial. A within-subjects contrast computed over
this interval showed a significant linear trend (t(16) = 2.72, p < .02). Thus, strong learning of A-norms
appears to have occurred during pretraining.

Following the pretraining block (i.e., after the first B-instance had been presented), preference
scores appeared to decrease for the first few A-instances of the test block. However, this decrease did not
attain conventional levels of statistical reliability. For example, when comparing the last three trials of
pretraining to the first three A-trials of the test block, no significant difference was observed (2.00 sec vs
1.65 sec; t(16) = 1.22,p > .10). Comparisons between various other intervals of trials in this region of the
training sequence also failed to show a significant change in ST preference scores. Linear contrast
analyses reveals no increasing or decreasing trend in the subsequent A-trials during the test block (t(16) =

0.70, p > .40).

Preference scores did decrease significantly on the trial when the first B-instance was presented,
compared to the preceding A-trial (2.08 sec vs -0.19 sec, t(16) = 3.90, p < .01). This means that subjects
regarded the new defaults of the B-category as highly informative on that trial, and allocated them equal
attention to the variables. The linear trend over the twelve B-instances in the test block was highly
significant (t(16) = 4.3 1,p < .001), implying strong learning of the B-norms during this block.

Overall, the ST data for the Blocked condition show strong learning of Category A during the
pretraining block, no significant reduction of this A-learning during the test block, and strong B-learning
during the test block.

The Practice condition was essentially a replication of the Mixed condition from Experiment 1,
and produced similarly little evidence of significant learning. Overall, four-valued attributes were studied
slightly longer than two-valued attributes in this condition, but this difference did not approach statistical
significance. The preference scores averaged 0.23 seconds overall (t(13) = 1.69, p > .10), 0.33 seconds for
Category A (t(13) = 1.69, p > .10), and 0.13 sec for Category B (t(13) = 1.28, p > .10). Thus, there was
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no statistical evidence of learning in the ST data from this condition.

In summary, strong evidence for category learning was obtained in the Contrast condition but not
in the Practice condition. This difference in learning was further supported by direct statistical
comparisons between the two groups. The mean ST preference score of 1.33 seconds in the Contrast
condition was significantly greater than the corresponding 0.23 second preference in the Practice
condition (t(29) = 2.89, p < .01). When this comparison was restricted to the test block (which was
identical in both conditions), the effect remained highly significant (t(29) = 3.01, p < .01). The differences
between the Contrast and Practice conditions were also significant when the two categories were analyzed
separately (t(29) = 2.99, p < .01 for Category A and t(29) = 2.94, p < .01 for Category B).

The memory data from the Contrast condition showed evidence of category learning similar to
that of the ST analyses (Figure 5b). Defaults were recognized with a mean accuracy of 94.3 percent,
compared to 83.7 percent for variables (t(16) = 5.76, p < .001). Accuracy changed over trials with a
pattern similar to that of the ST data from this condition. When default and variable means were
averaged, a linear contrast over the first eight trials of the pretraining block showed a highly significant
increase in subjects' memory accuracy, from 48.5 percent on the first trial to 88 percent on the eignth trial
(t(16) = 8.35, p < .001). Following this initial increase, memory for A-instances remained fairly stable
thereafter. Accuracy decreased sharply on the first B-trial, compared to the preceding A-trial (t(16) =
6.87, p < .001). Following this, accuracy increased significantly over the first eight B-trials, from 68 to
about 93 percent (t(16) = 3.86, p < .01). This pattern of gradually improving memory for both categories
provides a converging measure of learning that is highly consistent with the ST measure described above.

Turning to the Mixed condition, recognition accuracy was significantly greater for defaults (71.8
percent) than for variables (63.9 percent), t(13) = 3.19, p < .01. Accuracy increased significantly over the
first four trials (t(13) = 2.31, p < .05), and remained approximately stable thereafter. Since the ST data
shows no evidence of learning in this condition, the greater accuracy in verifying defaults compared to
variables was probably due to the greater ease of guessing the correct values of the defaults, as discussed
for Experiment 1.

The conclusion that significant learning occurred in the Contrast condition but not the Practice
condition was further supported by direct comparisons of recognition accuracy between the two groups.
Accuracy was greater in the Contrast condition both for defaults (t(29) = 8.04. p < .001) and for variables
(t(29) = 4.66, p < .001). Defaults were recognized 10.6% more accurately than variables in the Contrast
condition, while the corresponding difference in the Practice condition was 6.9%. A direct comparison
between showed no statistically significant different between these two effects (t(29) = 1.31, p > .10).
The finding that memory for variables was improved about as much as memory for defaults is consistent
with the fact that subjects in the Contrast condition spent more time attending to variables than defaults
during the study period. Such an increase in study time to variables would be expected to result in
improved verification.

The finding of better learning in the Contrast condition, especially of Category B, provides strong
evidence in favor of category invention. Autocorrelation cannot accommodate the finding that decreasing
the number of instances seen from a given category could increase learning of that category, as shown in
the present experiment. A strictly autocorrelational approach also cannot account for the lack of
interference between categories in the Contrast condition, compared to that which occurred in the Practice

condition.
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General Discussion

The present experiments, along with earlier attribute listing studies, provide strong evidence for
the use of an explicit category invention process in unsupervised learning. In both of the present
experiments, subjects were better able to distinguish between two categories when given the opportunity
to thoroughly learn one category prior to being exposed to any instances of the other category. We
interpret this result as due to a sort of "learned contrast" effect: When norms for one category are well-
learned, it is easier to see the contrast between these norms and an instance from a different category.
This, in turn, increases the likelihood that the person will create a separate category to describe this
mismatching stimulus, rather than assimilating both types of instances to a single set of aggregated
norms.

The autocorrelational approach was shown to be unable to accommodate the present results. In
particular, it cannot explain how simple manipulations of the training sequence determined interference
effects between the categories, creating strong interference in some conditions while completely
eliminating it in others. It also cannot explain the finding in Experiment 2 that reducing the number of
instances presented from a given category can greatly improve learning of that category.

The present data support the commmonsense observation that people invent new mental models
in response to the failure or inadequacy of old ones. This is illustrated by scientific research, in which
new theories are generally proposed in response to a mismatch between a pre-existing category (theory)
and a particular instance or case (data) to which it is unsuccessfully applied (e.g., Popper, 1959). In this
paper, we operationalized the "failure" of a model as the occurrence of improbable or surprising values
instead of expected defaults -- analogous to seeing a pink, furry elephant when our norms for this
category predict hairless, grey, skin, or to obtaining a set of measurements that contradict standard theory
in a physics experiment. We assumed that people would not discard or throw away their previous norms
when such exceptional cases are encountered, but that they would instead construct new norms to apply
specifically to these cases.

These results, together with the attribute listing results of Clapper and Bower (1993), provide
strong evidence for the generality of the category invention process. Evidence for category invention has
been obtained with three different measures (attribute listing, study time, and recognition accuracy) in
two different tasks, and with two different stimulus types (pictures of objects versus verbal feature lists).
The task demands also differed across the two types of experiments. The attribute listing task measured
subjects' evaluation of different features according to the criterion of instance discrimination, but subjects
were never asked to demonstrate actual memory performance in those experiments. By contrast, the
indices employed in the present experiments were closely tied to actual discrimination performance. The
recognition tests directly evaluated subjects' ability to remember how each instance differed from the
others, and the study time index directly reflected how subjects allocated their attention while preparing
for the recognition tests.

The present results are also strongly supportive of the general episodic processing assumptions of
schema-type theories (see also Bower, Black, & Turner, 1979; Graesser, Woll. Kawalski, & Smith, 1980)
and with the literature concerning episodic memory abilities of domain experts (e.g., deGroot, 1965,
1966; Chase and Simon, 1973). Schema theories usually assume that subjects encode an instance (e.g.,
descriptions of individuals based on personality stereotypes, or of routine activities based on internalized
scripts) by referring to the generic schema in memory (by encoding some sort of "pointer" to that schema,
e.g., Graesser et al.) and then encodipg only those features of the instance that could not be predicted
from the schema, i.e., that are inconsistent with schema defaults or that pertain to variable attributes for
which no defaults have been learned. In the present experiments, this would imply that subjects should
encode each tree description by encoding the category membership of the tree, and then selectively
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recording those variable values not inferrable from this categorization. In other words, subjects should
look at the default values only long enough to classify the instance, and should then spend the remainder
of the study period focusing on variables. Our finding that subjects spent more time studying variables
than defaults is generally consistent with these expectations of schema theory and its variants.

One advantage of such "schema-based encoding" of instances is that memory for each instance is
improved; this was illustrated in the present experiments by the improved memory that occurred in the
blocked conditions, in which subjects were best able to tell the categories apart. The improvement is due
to the fact the subjects only need to learn the features of each instance that are not already stored as
default expectations in their category norms. As subjects learn the default features of a category, and are
better able to focus on variable features, memory for these variables increases, as does the accuracy of
verifying defaults. This improved learning may provide a model explaining the much greater retention of
detailed information within a given domain by people who are accomplished experts in that domain,
compared to novices (deGroot, 1965, 1966; Chase & Simon, 1973). Experts have a finely elaborated
system of categories and subcategories pertaining to their chosen domain, and these categories provide
default assumptions against which particular situations can be matched and evaluated, increasing memory
for both expected and unexpected information.

Another advantage of selectively ignoring default values once a stimulus has been categorized is
that this frees attentional resources to attend to other, non-default, features of the instance. This, in turn,
may facilitate the discovery of new regularities among these non-defaults, and might also lead to the
discovery of new attributes (previously unnoticed dimensions of variation within a given stimulus
domain). To illustrate, once having learned to separate oak trees from maple trees, a learner would be
better able to attend to the more subtle properties that distinguish different types of oaks because they
would no longer attend to features common to all oaks. In naturalistic learning, people often consider
known categories as "background" and proceed to focus on finer distinctions between instances that might
form a basis for learning more differentiated categories. Thus, the attentional backgrounding of expected
features may play an important role in the development and elaboration of default hierarches by domain
experts (e.g., Holland, Holyoak, Nisbett, & Thagard, 1986). The same backgrounding phenomenon
would also facilitate feature discovery and improvements in so-called "perceptual learning" within a
domain (see E. Gibson, 1963, 1969).

In addition to these theoretical issues, a major objective of this research was the development of
the empirical methods or task paradigms themselves, because obtaining detailed records of empirical
phenomena and regularities within a scientific domain necessarily precedes and supports substantive
theorizing about that domain. The present methods should be applicable to the investigation of several
issues related to unsupervised learning, e.g., how subjects determine criteria for inventing new categories
in different situations, how this depends on factors such as prior learning, sequencing of training
instances, stimulus structure, training conditions, mental set or task strategy and so on. The present
memory tasks can also be applied to issues relating to use of category knowledge for learning instances,
and how this would depend on the reliability of category defaults, the degree of match between an
instance and category norms, and many other factors. These issues should provide productive topics for
future research.
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1. The correlation of features within a category need not be perfect for that category to have
positive utility, since some predictive power is gained by recording any correlational patterns that recur
with greater-than-chance reliability. This is a significant point, because the features of natural categories
are generally considered to be probabilistic rather than deterministic (Wittgenstein, 1953; Rosch, 1975,
1977). This means that properties generally true of a category are subject to exceptions; for example,
although the ability to fly is one of the most characteristic features of birds, there are a few species that
lack this ability. However, flight occurs frequently enough in conjunction with the bundle of properties
that define the category "birds" to remain a highly reliable generalization about the class as a whole.

2. The computer checked the elapsed study time whenever a subject looked at a different feature
of a given instance. Thus, the list display could only disappear when the subject moved on to a different
feature, but not while they continued to look at the same feature. Because of this, the total study time
sometimes exceeded 24 seconds by a small amount. However, this slight discrepancy did not affect the
pattern of results and will not be discussed further.

3. In this sense, the present learning may be a little different than that which occurs in scientific
research, since in science new observations sometimes cause old theories to be completely discarded or
reformulated. However, scientists, like other people, are quite conservative about discarding a favored
theory that has worked well in the past, and will often modify or elaborate the theory to accommodate
special cases, rather than giving the theory up. This conservative strategy is reasonable from the
perspective of cognitive economy, since it allows old beliefs to be retained without the costly errors that
would result from misapplying them, without the cognitive effort that would go into creating an entirely
new theory.
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Figure Captions

Figure 1. Sample stimulus sets illustrating how categories are defined in terms of correlated attribute
values.

Figure 2. Sample stimulus sets illustrating how the current value of each attribute of the target instance
distinguishes that instance from a particular set of lures. Note that the first five attributes, which are
correlated defaults, all distinguish the target instance from exactly the same set of lures.

Figure 3. Computer display as it appeared during each phase of Experiments 1 and 2.

Figure 4. Study time and verification accuracy data from Experiment 1. In this figure, the function
connecting the "0" points is from the Blocked condition, that connecting the "*" points is from the Mixed
condition, and the "." points are from the Control condition. Trials are shown in their original order in
this figure; the functions are disconnected to indicate ,vhere the A- and B-blocks are separated in the
Blocked condition, and where the test block begins in all conditions.

Figure 5. Study time and verification accuracy data from Experiment 2. The "0" points are from the
Contrast condition while the "*" points are from the Practice condition. Pretraining trials are shown in
their original order, but test trials are separated by category in both conditions.
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Attribute

Instance 12345678

1 1 1 1 1 1 1 1 <-- Target Instance
2) 1 1 1 1 1 1 1 2
3) 11111121
4) 1 1 1 1 1 1 2 2 Lures excluded by the current
5) 1 1 1 1 1 2 1 1 value of each attribute of the
6) 1 1 1 1 1 2 1 2 target instance
7) 1 1 1 1 1 2 2 1
8) 11111222
9) 2 2 2 2 2 1 1 1 1 : 9, 10, 11, 12, 13, 14, 15, 16
10) 2 2 2 2 2 1 1 2 2 : 9, 10, 11, 12, 13, 14, 15, 16
11) 2 2 2 2 2 1 2 1 3 : 9, 10, 11, 12, 13, 14, 15, 16
12) 2 2 2 2 2 1 2 2 4 : 9, 10, 11, 12, 13, 14, 15, 16
13) 2 2 2 2 2 2 1 1 5 : 9, 10, 11, 12, 13, 14, 15, 16
14) 2 2 2 2 2 2 1 2 6 : 5, 6, 7, 8, 13, 14, 15, 16
15) 2 2 2 2 2 2 2 1 7 : 3, 4, 7, 8, 11, 12, 15, 16
16) 2 2 2 2 2 2 2 2 8 : 2, 4, 6, 8, 10, 12, 14, 16
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a. Aralia
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
dark grey bark
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Press INS or DEL to see next item

b. Aralia

1. deep brown bark
2. dark grey bark
3. mossy green bark
4. light tan bark

*Enter a number from 1 to 4*

C. Aralia

1. deep brown bark
->2. dark grey bark
3. mossy green bark
4. light tan bark

INCORRECT

Arrow indicates correct choice

Press RETURN to go on
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