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1. INTRODUCTION

This interim report covers the period June 24, 1991 to June 28, 1992, and

describes the scientific progress on Contract F1 9628-90-0133 entitled "Data
Analysis Support for the SPREE Instruments on the TSS-1 Shuttle Flight." The

objective of this contract is a scientific sturdy of the interactions between the first
flight of the Tethered Satellite System (TSS-1) and the ionosphere to increase

understanding of the structure and current characteristics of high-voltage

sheaths in the ionosphere.

During the second year of this contract, we examined electron collection and
presheath structure by a positively biased, conducting sphere in the ionosphere

moving at orbital velocity, including the effects of the earth's magnetic field. We

examined the current collection capabilities of the TSS-1 subsatellite
considering the revised conductivity measurements. And we provided support

for the TSS-1 program.

During the second year of this contract, we prepared a paper describing some

of the work during the first year for the AIAA 30th Aerospace Sciences Meeting
in Reno Nevada in January 1992. This paper is in Attachment 1 to this report.

The technical staff who contributed to the research described in this report are I.

Katz, M. J. Mandell, and G. A. Jongeward.
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2. POSITIVE ORBITAL PROBE COLLECTION

2.1 Introduction

This attachment describes a collection of algorithms leading toward a theory of
sheath structure and electron collection for a large orbital probe at high-positive
potential. Presently, algorithms do not take into account magnetic field effects,

except insofar as such effects may cause scattering and thermalization of

electrons. Magnetic effects in the sheath will be included at a later date.

The theories assume that turbulent and scattering effects take place on a scale

comparable to a debye length, so that the large-scale structure has a quiescent

steady state. The main feature of the problem is a "stagnation surface" at which
the ion density peaks. Within (or behind) the stagnation surface is a high-
voltage region, in which the ion density drops extremely rapidly, and space

charge consists of electrons in transit from the stagnation surface to the probe.

Outside the stagnation surface (in the "presheath region") the plasma is
assumed to be a "quasi-neutral" resistive medium, with transport of charge and

energy by electrons. The challenge is to calculate the shape, density, and

temperature of the stagnation surface, consistent with the physics in the
presheath region, in the high-voltage region, and on the stagnation surface
itself.

We have developed analytic and numerical methods to attack this problem, and

have had some success at coupling these together. These include:

1. An analytic estimate for the local density at the stagnation surface, as a

function of Mach number and angle of attack;

2. A particle-tracking "waterbag" computer code which, for known or assumed

potentials, can estimate the shape of the stagnation surface, the density in

the presheath region, and the density correction at the stagnation surface

due to finite geometry (trajectory spreading) effects;

3



3. An axisymmetric code (specialized to a sphere) to estimate the shape of

the stagnation surface and the total current transported from the stagnation

surface to the probe, approximately consistent with the potential and

space-charge structure in the high-voltage region.

4. An axisymmetric code (not necessarily specialized to a sphere) to estimate

the potential and temperature fields in the presheath region for specified

density and resistivity.

For various reasons (mostly numerical but occasionally physical), it is difficult to
couple all of these techniques together to achieve a fully self-consistent

solution. In particular, the presheath code probably requires a nonlinear (i.e.,
current dependent) resistivity in order to reasonably match a sensible current

boundary condition at the stagnation surface. Nonetheless, the results here

provide some insight into the density and potential structure for this problem,

allow some estimate to be mr:da for the current collection by the probe, and
allow some evaluation of the assumptions in the theories.

2.2 Estimate of Ion Density at the Stagnation Surface

Suppose the stagnation surface to be locally a plane equipotential whose
normal is at angle V? to the flow direction. We can ignore ion motion along the

surface. In the direction normal to the surface, the ion velocity distribution is a

gaussian centered about V cos V (where V is the spacecraft velocity), so that

the stagnation surface potential is mV2 cos 2 ir / 2e.

p2 =m
Let 2e-

and omit the cos W factor (which always appears with V). The density at the

stagnation surface is then given by



_= v v 2  (V V)2 dv

2-V f0  (1 +u/13V) eu
no j•- u(1+ u/2 3V) e-du

(Note that OV is the Mach number.)

For OV >> 1, we get

no6=1.4464(fV)2 +0 5

For 13V << 1, we get

-1=l+ OVno -(V2+.

(Expressions are equal for OV = 0.16.)

Figure 1 is a plot of the stagnation surface density (calculated using the two
approximate forms) vs. angle-corrected Mach number, V cos Nr / (2e0 / i)" 2.

5.

4,

21.

2.

.E+00 2. 4. 6. 8

Angle-Corrected Maich Number

Figure 1. Theoretical estimate of relative density at the stagnation surface vs. angle-corrected
Mach number, V cos V / (2e6 / mr)1/2 .
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2.3 Particle-Tracking Waterbag Code for Ion Densities

For the purpose of illustrating the stagnation surface and calculating trajectories
in the presheath region, we developed a code that tracks cold, constant velocity

parallel ions inward in an axisymmetric electrostatic potential. Analysis of these

trajectories gives three pieces of information:

1. Inspection of the trajectories shows immediately that space is divided into

a region with ions and a region inaccessible to ions, with a sharp
stagnation surface. Figure 2 shows the ion trajectories for a coulomb

potential. (For reasons to become apparent later, we separate the potential

plots into incoming and outgoing portions.)

2. For low impact parameter ions, the point of closest approach is on the

stagnation surface. The ratio of the trajectory's initial radius to the closest

approach radius gives the factor for density reduction due to trajectory

divergence. For the coulomb potential, this ratio is plotted in Figure 3.

3. The number of ions in the volume formed by two adjacent trajectories at

two adjacent timesteps is constant. We can obtain the density at a point
due to incoming particles by finding the two closest trajectory segments

passing to its right and its left, and taking the ratio of the initial segment
volume for those trajectories to the segment volume at the point of interest.

The density due to outgoing ions can be found similarly. Figure 4 shows

the calculated ion density field for the coulomb potential. In doing such a

calculation, a maximum density must be set, and an arbitrary grid will make

the results appear noisy at the sharp dropoff beyond the stagnation line.



(a)

(b)

Figure 2. Particle trajectories for ram ions incident on a spherical equipotential at the stagnation
energy: (a) trajectories up to closest approach to sphere; (b) trajectories beyond
closest approach to sphere. The potential field is Laplacian.
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Relative Radius

Figure 3. Trajectory divergence in a Laplacian potential. The ordinate is the distance from the
symmetry axis divided by the radius of the spherical equipotential at the stagnation
energy. The density is reduced by the square of this factor.
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Marked Levels

A 0.20
B 1.00

Q C 1.80
D 2.60

Figure 4. Calculated density contours for ram ions incident on a spherical Laplacian potential.
The contour increment is 0.2, with the outermost relative density being 1.2.
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2.4 Estimate of Stagnation Surface and Current for a

High-Voltage Sphere

If we have a high-voltage sphere (- 5000 volts), the electrostatic potential must

drop to a small value (- 5 volts) at the stagnation surface due to the space

charge associated with the current flowing from the stagnation surface to the

probe. If we assume that the current emitted from a segment of the stagnation

surface is a function only of its angle, 0, relative to the ram, and that the potential

structure in the high-voltage region depends only weakly on what assumptions

we make governing the presheath region, we can predict the shape of the

stagnation surface without explicitly considering the physics or ion dynamics in

the presheath region. (Note: In the remaining sections, we use the symbol 13 for

the angle specified as i• in section 2.)

The calculation proceeds as follows:

1. Construct a spherical, axisymmetric grid such that the grid lines follow lines

of constant radius, R, and angle, a.

2. Express the stagnation surface, Rstag(a), as

Rstag(a) = ao + a20x2 + a4a 4 + a6a 6

a)Rstag(aX) / ;Za = 0 at a =R

It follows that

13(a) = arctan[(Rstagsin(a) - aiRstag / o). cos(a)) / (RstagcOS(a) + aRstag / ok. sin(a))].

Initially, we choose the stagnation surface as a sphere and set 13 = a.

3. Set the charge density in the grid, assuming that current flows radially

inward from the stagnation surface. Thus, we have

p(R,a) = J(P) (Rstag(a) / R)2 sec(13 - cc) / (2eo / M)1/2

10



for points within the stagnation surface. For 0 < n / 2, we take

J(J3) = CJth(N(0),0(13)). We have taken C = 1 (though it can be argued that it

should be 2), and N(0) as given by the theory above. 0(13) may be taken as
E cos 2 p / log (N / No) or as 0 max cos 13. For 13 > n / 2, we take

N(P) = No exp(-V2 ), where V is the angle-corrected Mach number. Outside

the stagnation surface, we assume linear screening with some

computationally convenient Debye length (- 10 cm). (Coincidentally, the

total current to the probe can be calculated.)

4. Solve for the electrostatic potential in the grid. For each grid-angle, a for

which 13(a < x / 2), find the radius at which the potential drops to E cos 2 0(a).

Fit Rstag(cz ) to these points, and update P((a) accordingly. (To achieve

convergence, we heavily damp the movement of Rstag(ax ) and 13(a•) from

their previous values.)

5. Return to 3.

Figure 5 shows an example of potentials thus calculated. The sphere (1 m in

radius) was at 5 kV. We take the ambient density and temperature as

1 x 1012 M-3 and 0.1 eV. The ram energy, e, was 5 eV, and the stagnation

surface temperature was 1 eV x cos 13. The stagnation surface can be seen to

extend well wakeward of the sphere. The fitting parameters for the stagnation

surface were

ao = 2.574

a2 = 0.07493

a4 = 0.09155
a6 = -0.00644

The total current to the sphere was 4.6 amperes.

To get some insight as to the variation of current with problem parameters and

comparison with other results, a suite of problems were run using the alternate

choice of effective temperature, 0(13) = E cos 2 13 / log (N / NO). The results are

11



Marked Levels

flA 10.00

S B 200.00
0 C 5000.00

Figure 5. Calculated potential contours for a 5000 volt, 1 m radius sphere in a 5 eV ram plasma.
(See text for other computational parameters.) (The negative potential island at
center-right is an artifact of the gridding.)

given in Table 1. The 10 cm result is directly comparable to a full PIC calculation

that gave a current of 3.84 mA. The 5 cm results are directly comparable to
ground test measurements by Lebreton et al. in 1985 (using argon at a velocity

of 8 km -sec'), which gave results of approximately 7 mA and 2.5 mA. For
comparison, the static space-charge-limited currents are 0.7 mA for the 10 cm

case, and 2.0 mA and 1.4 mA for the two 5 cm cases. Thus, results calculated by

this theory are generally in the range of results obtained by other means and

several times the static space-charge-limited current.

12



Table 1.

Selection of results for calculated electron current to a positively biased orbital probe.

Radius Potential N (m-3 ) 0 (eV) Current (A)

1 m 5000 1 x 101 2  0.1 6.2

1 m 2000 1 x 101 2  0.1 3.4

1 m 1000 1 x 101 2  0.1 2.4

1 m 5000 1 x 101 2  0.3 4.1

I m 2000 1 x 101 2  0.3 2.2

1 m 1000 1 x 101 2  0.3 1.6

10cm 10 1 x 1011 0.1 0.0023

5cm 50 3.4 x 1011 0.12 0.0083

5cm 30 3.4 x 10 1 1  0.12 0.0060

2.5 A Model for a ResistIve Presheath

Because the temperature and density are both enhanced at the stagnation

surface, the current to the probe is well in excess of the ambient plasma thermal
current over the same area. Additionally, the presence of a high density of ions
within the electron-attracting region requires a means for charge neutralization
in order to achieve a quiescent potential structure. Therefore, we postulate that
the plasma in this region has sufficient electron scattering and thermalization to
maintain quasi-neutrality and can be treated as a resistive medium.

2.5.1 The Current Definition Equation

The current is proportional to the difference between the electric and thermal
diffusion forces

J = -a grad -(o / N) grad (ON)

The conductivity, o, is given by

y = Lo COp 2 / V

and we assume v = azp and further assume a = 0.51 / 2n. (Later we may allow

a to decrease.)

13



2.5.2 The Equation for the Potential

The equation for the potential is

div J = 0

- diva grad =-div (a / N) grad (ON)

2.5.3 The Heat Flux Definition Equation

The heat flux consists of a conductive and a convective portion:

Q = - ic grad 0 - 5/2 JO

and we take K = 3/2 otO in accordance with the Weidemann-Franz law.

2.5.4 The Equation for the Temperature

The equation for the temperature is

div 0 = j2 / a

It is convenient to cast this into an equation for 02 and multiply by 4/3:

- div a grad 02 = 4/3 J2 / a•+ 10/3 div (JO)

- div a grad 02 = 4/3 J2 / a - 10/3 div [Oa grad 0 - (Oa /N) grad (NO)]

In addition, we must account for a heat loss of 2 JO from the inner boundary.

2.5.5 Scaling

Note that, for given fields 0, 0, and N, every term in both the potential and
temperature equations is proportional to a. It follows that changing the value of
x will scale the current while leaving 0 and 0 unchanged.

Also, each term goes inversely with the square of the characteristic distance in

the problem. Thus, if the linear size of the problem is decreased by a factor of

14



10, the potential and temperature contour plots will appear unchanged, but the
current will be increased by a factor of 10.

2.5.6 Finite Element Solution

The potential and temperature equations are of the form required to use the
finite-element method. The matrix for

-,dV div a grad 0
is the matrix for

fdV a Igrad 012

This allows us to construct the matrix of equations corresponding to the left-
hand side and the operators needed to evaluate the right-hand side. We use
ICCG to alternately solve the potential and temperature equations, with the
right-hand sides calculated using existing values. To obtain convergence, after
solving for 02 we mix a small fraction of the new temperature with the old
temperature and run many iterations.

2.5.7 Definina a Problem

The following sequence defines a problem:

1. Define a grid for the region in which the above equations are expected to
hold. The region's outer boundary will be fixed to constant (ambient)
potential and temperature. The inner boundary is fixed in potential (not
necessarily constant).

2. Define a quasi-neutral density, N, throughout the region. Define initial
potentials (e.g., Laplacian) and initial temperatures (e.g., constant).

3. The density is assumed to drop abruptly to zero (i.e., the medium becomes
collisionless) beyond the inner boundary. Convective heat loss through the
boundary is subtracted from the right-hand side of the temperature
equation. The total current through the inner boundary is computed.

4. The current should be consistent with the thermal current characterizing
the final density and temperature at the inner boundary. This result can be
achieved by adjusting a.
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2.5.8 Example 1: A Spherical Stagnation Surface

As a preliminary example, we did a sphericalized version of a probe in a flowing

plasma. We constructed an axisymmetric grid (Figure 6) representing the space

around a sphere with radius 2.3 m. The sphere was set at 0 = 5 volts and the

outer boundary at 0 = 0 volts and 8 = 0.1 eV. We solved for Laplacian

potentials, kL, and set the densities by

N / No = [5.5 / (5.5 - 00)11/2

which gave a relative density at the sphere surface of 3.32. The ambient

density, No, was set to 1012 M-3 . The potential and temperature equations were

solved, leading to the contours shown in Figures 7 and 8. The total current was

1.77 amperes, and the temperature at the sphere surface was 0.95 amperes.

The calculated total current should be compared with the total thermal current

over a spherical surface at the density and temperature used here. For this case,
the total thermal current is 5.78 amperes, more than three times the calculated

current. This suggests that the scattering parameter, a, should be reduced by

about a factor of three. In reality, a should not be a constant. One class of model

would be that a is a function of the local current and thermal current, increasing

T!I

Figure 6. Axisymmetric finite element grid used for spherical stagnation surface example. The
grid is composed of biquadratic elements. Symbols "1" and "2" label the outer
(ambient) and inner (stagnation) boundaries, respectively.
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sharply as the current reaches the thermal current. Such a scattering parameter
model would tend to produce the local thermal current at the stagnation surface.
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Figure 8. Calculated equithermal contours for the spherical stagnation surface example. The
contour increment is 0.05 eV. A broad temperature maximum of about 1 eV appears
outside the stagnation surface.
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2.5.9 Example 2: A Realistic Stagnation Surface

Now, we are prepared to solve the resistive presheath problem for the
stagnation surface calculated above with the model for the high-field sheath
region. We proceeded as follows:

1. The fit to the stagnation surface calculated in section 4 was used to

construct points on the stagnation surface from a = 0 to a = 2. The surface
was extended by hand to a plane 4 m wakeward of the cube center.

2. An axisymmetric grid (Figure 9) was constructed exterior to the stagnation
surface. The boundary conditions on the exterior grid boundary are

0 = 0.1 eV and 0 = 0.

3. Potentials on the stagnation surface were set to max(0.1, e cos 2 1)

(e = 5 eV), and Laplace's equation was solved in the grid.

4. Relative densities at the grid points were set to min(nstag, (C / (E - )1I2),

where nstag is the stagnation surface density for 0 = cos-1 (q / e)1/2. This
gives a density field that is smooth and reasonable but neither strictly
correct nor strictly consistent with the sheath region calculation leading to
the stagnation surface. Figure 10 shows the resulting density contours.

5. The resistive presheath model was run, leading to potential and

temperature fields shown in Figures 11 and 12. We see that there is a
large region of 1 eV temperature near the "nose" of the stagnation surface,
and both the potential and temperature fields are long-ranged.

As with the spherical model for a similar scale problem, we expect that the

calculated current will be less than the thermal current integrated over the
stagnation surface. In this case, the two currents were 0.34 and 2.6 amperes,
respectively, suggesting that we have overestimated the scattering parameter,

(x, by about a factor of eight. (Note that the integrated thermal current is well

below that calculated in the earlier model, primarily because the stagnation

surface density was set below nstag for P > 150.)
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The next logical step would be to set ion densities consistent with the calculated

potentials and rerun the resistive model. This was not done, in part, because it

is believed that the model is reasonably insensitive to the precise density

values and, in part, because our faith in the theory is not sufficient to justify the

additional effort. However, it is satisfying to close the problem by calculating

"waterbag" trajectories and densities in the final potentials. These are shown in

Figures 13 and 14. It is seen that the proposed stagnation surface is not too far

off from that shown by the particle trajectories, with the actual stagnation surface

being wider in the wake region. The trajectory divergence (Figure 15) indicates

a factor of two drop in density (relative to the theoretical result we have used) at

the nose of the stagnation surface. Also, note that (ignoring the noise right on

the stagnation line) the density enhancement profile in front of the stagnation

surface appears fairly uniform.

(a) (b)

Figure 13. Particle trajectories for ram ions incident on the resistive presheath potentials shown
in Figure 11: (a) trajectories up to closest approach to sphere; (b) trajectories beyond
closest approach to sphere.
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Figure 15. Trajectory divergence for the trajectories of Figure 13, as a function of distance from
the symmetry axis. (Compare with Figure 3.)
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3. CONSISTENT SOLUTION FOR CURRENT TO ORBITAL PROBE

In the previous report, we approached the calculation of the current and sheath
structure about a probe such as the TSS-1 satellite from several points of view.
First, we showed that the shape of the ion stagnation surface in the ram

direction and its distance from the probe can be estimated by a sheath
calculation that takes account of the space charge due to current drawn from the
stagnation surface and collected by the probe. The calculation requires models
for the density and temperature at the stagnation surface and predicts the
collected current. Second, we showed that, in the limit of strong electrostatic
scattering (resistive limit), we can calculate potentials and temperatures
external to the stagnation surface. This calculation requires models for the
plasma electrical and thermal conductivities, the location and potential of the
stagnation surface, and ion density values external to it. With the models
chosen, the temperature and density fields were independent of the scattering
rate coefficient, so that this coefficient could be determined by equating the
resistive model current to the plasma thermal current through the stagnation

surface. Finally, we could track ram ions to determine if the supposed
stagnation surface was consistent with the potentials predicted by the resistive
presheath model.

The above calculations used ion densities predicted with a theory that took
account of thermal spreading but assumed a short-range potential. The
predicted presheath potentials were long-ranged (similar to Laplacian or
coulombic) in nature, which prompted the investigation into coulomb potential
ion densities during this report period. It was found that, for the Mach-number
range of interest, very little ion density enhancement actually took place, with
the peak densities being only -30 percent above ambient.

Consequently, we proceeded to calculate a solution that was consistent in the
following senses:

1. The ion density was taken to be equal to the ambient density, which is
reasonably adequate for a long-range potential and realistic Mach-
number.
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2. The stagnation surface temperature used in the sheath calculation was
consistent with the predictions of the resistive presheath.

3. The distance of the stagnation surface from the probe was determined by
the sheath calculation.

4. The stagnation surface was taken to be a parabola, with curvature chosen

to make it reasonably consistent with trajectory calculations.

5. The potential of the stagnation surface was taken as E cos 2 p (with E the
ram energy and P the angle between the surface normal and the ram),
which is correct both for a short-range potential and for the coulomb
potential.

The problem parameters were the same as in the previous report: a sphere 1 m

in radius at a potential of 5000 V, orbiting in an 0+ plasma of density 1012 m-3

and temperature of 0.1 eV. The ram energy is 5 eV, and the Mach number is
about 7.

Figure 16 shows the results for the interior sheath calculation. The stagnation

surface temperature was taken as

es = 0.061 + 0.103 cosp + 1.411 cos 2p

The distance of the stagnation surface from the probe center was found to be

Rs = 2.776 + .09685 a 2 + .06815 0i4 - .004936 (X6

where a is the actual polar angle. The current was predicted to be 3.5 amperes.

Figure 17 shows the calculated temperature and density fields in the presheath.

The presheath surface was taken as a parabola given by

z = 2.776 - 0.24584 r2
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in cylindrical coordinates. (For comparison, the stagnation surface for a

coulomb potential centered at the probe would be z = 2.776 - 0.09 r2 .) The
predicted stagnation surface temperature was

Os = 0.039 + 0.276 cospt + 1.241 cos 2p3

which is adequately close to the expression used in the inner sheath

calculation. The resistive current was calculated as 0.45 amperes, while the
total thermal current was 3.25 amperes (indicating that the standard scattering
coefficient was a factor of 7 too high).

Figure 18 shows the ion trajectories in the calculated potentials, indicating
reasonable consistency between the ion trajectories and the assumed

stagnation surface.
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Figure 16. Potentials about the moving probe calculateo using the inner sheath model: (a)
logarithmically spaced contours; (b) uniformly spaced contours.
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Figure 18. Ion trajectories in the potentials of Figure 17.
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4. ION STAGNATION IN A REPULSIVE COULOMB POTENTIAL

4.1 Introduction

To gain some insight into the peak density and density structure of ions near a

positively charged body in ionospheric orbit, we have studied the tractable
problem of stagnation in a coulomb potential. The coulomb field is a
representative long-ranged potential. While we do not ordinarily expect charged

bodies to have long-ranged potentials under ionospheric conditions, the
penetration of ram ions (at 5 eV energy) well inside the electron-collecting

sheath leads to a fundamentally unstable situation, which may resolve itself by

a long-ranged presheath potential. For example, if we suppose the presheath to
be quasi-neutral and resistive, the potential is determined by div J = 0, leading

to a field similar to the coulomb field.

The plan of development is as follows:

1. For zero temperature (or infinite Mach number) we define and determine

the stagnation surface.

2. We calculate the density along the symmetry axis for infinite Mach number,

and with thermal spread in the orbital direction only. (It is also possible to
calculate approximately the density near the stagnation surface with

thermal spread in the orbital direction only.)

3. We write the equations for the density at an arbitrary point with infinite

Mach number and calculate the density field for various finite Mach

numbers.

4.2 Nomenclature

We will try to consistently maintain the following symbols in the development:
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r,z Cylindrical coordinates, with z

in the orbital direction

(r2 + Z2)-12

V The negative of the orbital
velocity

8 Energy of ion (eV)
F. 0 Energy of ion with velocity V

V arc cos (uz)

a Radius of equipotential e, with
a0 = 1 the radius of

equipotential co

r. Initial (z = cc) value of r for a

particle trajectory

p Local density (relative to

ambient)

0 Plasma temperature (eV)

M Mach number, (eoI/)1/2

4.3 Stagnation Surface at Zero Temperature

The stagnation surface is the surface at which incoming orbits change to

outgoing orbits. An orbit can be identified as incoming or outgoing by a
neighboring orbit of slightly higher angular momentum being on its left or on its
right. The stagnation surface is therefore the surface at which infinitesimally

close orbits cross.

We start with the equation above (3-46) of Goldstein,I which, for incoming orbits
parallel to the z-axis, can be written

= arc cos [-a / (a2 + 4r02 )1/2] ± arc cos [-a + 2ur02) / (a2 + 4ro2 )1/2 ]
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where the ± divides the orbit at closest approach to the center of potential
(maximum value of u). Neighboring orbits cross when o4/aro = 0 for fixed u. The

equation for the stagnation surface is thus

0 = aoI/aro = [2a 2/(a2 + 4r0
2 )] ± 2(1 - au - ro2 u2)-"/2[au - (1 + 2ro2 u/a) / (1 + 4ro2/a 2 )]

whose solution is

u = a / (a2 + r02)

r = 2ro

z = a(1 + ro2/a 2) = a(1 + r2/4a2 )

Thus, the stagnation surface is a parabola. Figure 19 shows numerically
calculated orbits for a coulomb potential. The orbit crossing structure shown in
Figure 19(a) becomes simplified when the orbits are divided at the stagnation

surface into incoming [Figure 19(b) and outgoing (Figure 19(c)] portions.

Figure 19(a). Ram ion trajectories in a coulomb potential, showing trajectory crossings.
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Figure 19(c). Outgoming portion of the trajectories of Figure 19(a).
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4.4 Density Along the Symmetry Axis

We start out with one trajectory being well-known: a particle coming in exactly
along the symmetry axis will slow down, turn around, and exit along the symmetry
axis, traversing a trajectory (r,z) = [0, zo(t)]. A particle coming in slightly off (by

distance 8) the symmetry axis will execute a trajectory (r,z) = [w(t)8, zo(t)], with

w(-o) = 1 and w(0) = 2. The density along the axis will then be

p(0,z) = (1 - coao/ez)-1/ 2 (w_ (Z)- 2 + W+(Z)-2)

where w_ are the values of w for the incoming and outgoing portions of the

trajectory. The density then follows immediately from finding the function w(z).

First, we find the relation between z(t) (dropping the "0" subscript) and t:

dz/dt = +[(2e/m)(c - eoao/z)]1/2

(Ez2-Eoaoz)-l/ 2zdz = ±(2e/m)l/ 2 dt

[ez(ez - 0oao)]1/ 2 + £oao log [(ez/eoao)1/ 2 + (•z/roao - 1)1/2] = -(2ee/m)l/ 2Et

By considering the radial acceleration by the coulomb field, we find that the

function w[z(t)] satisfies the equation

w[z(t)] = 1 + .ldt1 ft" dt2 (e/m)aoeow[z(t2)]z- 3 (t2)

which, by changing the order of integration, can be written as a single integral

w[z(t)] = 1 + f._ dt2 (t - t2)(e/m)aoEow[z(t2)]z- 3 (t2)

Since we have already expressed t and dt in terms of z and dz, w(z) is readily

found by integrating along the trajectory. The function w(z) is shown in
Figure 20. Finally, the density p(0,z) can be constructed.
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Figure 20. The function w(z), giving trajectory spread along the symmetry axis. Lower branch is
for incoming trajectories, and upper branch for outgoing trajectories.

If we know the density along the axis, po(O,z) for ions of energy E0, the density

for ions of energy c is given by

p(O,z) = PO(O,EZ/Fo)

The density at a point z on the axis is then obtained by integrating over the

ambient velocity distribution, leading to

p(O,z) = (nt-1 2) J.•-112 dv p2 0 (O,z) e-(vM) 2
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Figure 21 shows the density along the axis for zero temperature (infinite Mach
number) and for Mach number M = 7. It is seen that the finite temperature case

has a broad density peak at the relatively modest value of 1.3, and that this
peak occurs well beyond the stagnation point. Also, there is substantial ion
density within the stagnation point.

2,1 Coulomb Potential

.5

.E+O0 .5 1. 1.5 2. 2.5 3.

Position on Axi

Figure 21. Density along the symmetry axis for Mach 7 (broad curve) and Mach -o (sharply peaked
curve).
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4.5 Density at an Arbitrary Point

The orbit equation allows us to solve (at least in principle) for the origination

radii, ro, of the incoming and outgoing orbits at an arbitrary point
(r,z) = (sinW/u,cosV//u). The separation between two orbits originally separated
by dro is dro/ IVrol , and

Vro = (-u2aro/au, uaro/oy)

(Note that, since an orbit is a path of constant ro, Vro is necessarily

perpendicular to the orbit.) Thus, the density at a point is given by

pE(r,z) = (1 - au)-1/ 2 (ro/r) I Vro I

By taking the cosine of the orbit equation, it is simplified somewhat to

0 = a2(1 - cosV) - 4r02[cosN, ± (1 - au - u2ro2 )1/2] + 2uar02

This equation is solved numerically for r02 , (and thus ro) and will have either (1)

two roots for the %" branch, (2) one root for each branch, or (3) no roots. Once ro
is known, differentiating the equation by u or by W gives a linear equation for the
derivatives required to find Vro. (Note: it appears numerically that the density
contribution from incoming ions exceeds that from outgoing ions by exactly the
ambient density.)

To find the density for the finite Mach number, we must integrate over the
thermal velocity distribution, which is a 3-dimensional gaussian about the ram
velocity. For each point in velocity space, we rotate the coordinate system so

that the z axis is parallel to the particle velocity, giving a transformed polar

angle, W', of

(Vx2 + Vz2 )1l 2cosjy' = vz cosW + vxsi ncoso
(0 < $ < 2x)

where vx and vz are the velocity components perpendicular and parallel to the
ram direction. After de-dimensionalizing, the entire expression becomes
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1t3/ 2 p(r,z) = 12,, dvz e'(VzM)2 Jo VxdVx e-V2 Jf do pe(u,i')

e = (Vx2 + Vz2)O

Figure 22 shows a sequence of ion density contour plots for various Mach

numbers. For Mach 1, we can still see remnants of the spherical Mach 0 case,
with contours of substantial density closing in the near wake. By Mach 3, the

stagnation structure has become very recognizable, but there is no peak in the
ion density. At Mach 7, the ion density shows a broad maximum of about 1.3,
with the peak density occurring well outside the stagnation line. With further

increase in Mach number, the density gradients tighten around the stagnation
line, with modest rise in the peak density. The peak density rises to about 2.3 at

Mach 30 and about 4.1 at Mach 100.

Marked Levels

EE. A 0.05
B 0.25

E C 0.45

"E D 0.65
XE E 0.85

EE~s

0 - Di

* Density

Figure 22(a). Ion densities for Mach 1. The boundaries of the figure are 0 < r < 1 Oao and
-10 < z/ao < 3, with an excluded sphere of radius 0.5ao.
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Figure 22(f). Ion densities for Mach 100.
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5. SHEATH STRUCTURE ABOUT A SPHERICAL PROBE

IN THE CHAOTIC LIMIT

5.1 Introduction

Several authors 2 ,3 have recently shown that many electron trajectories in the
vicinity of a positively charged sphere in a magnetic field exhibit chaotic

behavior. This finding justifies the use of orbit-limited theory to calculate the

contribution of such chaotic orbits to the electron density at a point. In the further

approximation that the plasma is very cold, the charge density due to the

chaotic orbits completely dominates the problem, since it is proportional to T- 1/2 .

In this report, we calculate the space charge density and potential fields around

a spherical probe with parameters appropriate to the TSS-1 subsatellite. We

find that, for realistic temperature, potential, and magnetic field, the sheath

becomes fully compacted at a density orders of magnitude below the density

expected in flight.

5.2 Chaotic Orbits and Orbit-Limited Density

Among the characteristics of a chaotic orbit is that it completely fills the

"magnetic bottle" to which it is restricted by its energy and angular momentum.

Conversely, a point in phase space will be traversed exactly once by each
chaotic orbit to which it is accessible. (If a point were traversed more than once

by an orbit, the orbit would be periodic.) We can then use Liouville's theorem

(that phase space density remains constant along an orbit) to calculate the
space charge density at a point associated with the set of orbits assumed to be
chaotic.

The first question to be addressed is what orbits are chaotic in the low

temperature limit. We limit consideration to orbits having zero or slightly positive

energies.
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1. All orbits having canonical angular momenta within the Parker-Murphy

limiting value are not chaotic. Their magnetic bottles have a finite

intersection with the spherical probe, so that they will be collected before

they can fill space. (It is possible to construct potentials such that not all
magnetic bottles intersect the probe. We shall see that our final self-

consistent potentials will not be pathological in that way.)

2. All orbits with sufficiently large angular momenta (i.e., large impact

parameters) are insufficiently perturbed by the potential to be chaotic. For a
long range potential (such as a coulomb potential) a temperature-

dependent transition into this region must be formulated. We shall see that

our self-consistent potentials drop off in such a way that no such

formulation is needed.

3. We assume that all orbits with angular momenta beyond the Parker-

Murphy limit, and within the range of the potential are chaotic or, rather,

that the nonchaotic orbits within this range form a set of measure zero.

We express the density in terms of the parameters:

r Radius (cylindrical)

* Potential

p(r,o) Local charge density

PO Ambient charge density
T Ambient plasma temperature (energy units)

B Constant magnetic field (along z)

0 eB/m

Pe Canonical angular momentum, mr2 (co + aO/•t)

U (pr2 + pz2 )/2m

P 1, P2  Lower and upper bounds for chaotic orbits

The orbit-limited density is then given by4

p(r,o) 1 Jp2dpoo e~en- U]

Po P721 mxr2T3 T
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_ (pemr2 co/2)Oeft = e (130 - m2°/)

2mr 2

The magnetic bottle for angular momentum Pe is defined by Oeff > 0. Inside the

magnetic bottle, the integral over kinetic energy, U, gives T. Outside the

magnetic bottle the integral vanishes at low temperature as exp(eoeff/T).

Ignoring terms which vanish at low temperature, we have

P0 ý rT

Plower max {P, (m r2 /2)[1- m2r2

Pupper2min{P2 (mr2ro/2)[1+ m802r2]}

5.3 Transformation to Dimensionless Units

It is convenient to work in units of the probe radius, a, and the magnetic energy

unit mo)2 a2/8e. Also, we replace the angular momentum variable with a

dimensionless variable, w. The new variables are then:

Position (a, 4) = (rna, z/a)
Potential V= 8e0/m0j2a 2

Temperature = 8eO/mo 2a2

The equation for the local charge density becomes:

P(G. W~)I/ 130 a (w upper - W lower)
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where

Wlower = max {(1 + i-iO) 4o2W1-• 1 / }

Wupper =Max{(10 + 4'FWH) /a 2i + ýVI/ a}

and Wo is the dimensionless potential on the probe.

In terms of the dimensionless variables and the density ratio, Poisson's
equation becomes:

-Oop(o,14)-V2 -0 = CW

PO

Q : 8epo
mW (2 £o

For the parameters of the TSS-1 subsatellite, the physical and dimensionless

values are:

Table 2.

Physical Dimensionless

Value Value

Probe radius 0.75 m [unit distance)

Magnetic field 0.4 gauss

Probe potential 5000 V WO = 252.8

Plasma temperature 0.1 eV T= 5.06 x 10-3

Plasma density 1 x 1012 m-3  Qo = 513.9

Parker-Murphy radius 3.08 m aPM = 4.11

Lanomuir-Blodoett radius 3.64 m =LB 4.85
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By comparing the Parker-Murphy (magnetic limiting) and Langmuir-Blodgett

(space charge limiting) radii, we see that the two processes will be competitive

in forming the sheath structure.

5.4 Computational Results

Calculations were done using a 2-dimensional (R-Z) finite element code with

biquadratic quadrilateral elements. The computational grid (Figure 23)

represents a sphere contained in a cylinder of radius 20-sphere radii and height

40-sphere radii, taking advantage of azimuthal and mirror symmetry. Self-

consistent solutions to Poisson's equation (with space charge in the chaotic

limit) were obtained for dimensionless ambient densities, Q0 up to 0.69. Even at

this density, three orders of magnitude below ionospheric parameters, the

sheath edge occurs sufficiently close to apM to make difficult solutions for further

density increases.
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Figure 23. Computational grid of biquadratic elements, representing the region outside a sphere
and within a cylinder of radius-20 sphere radii and height-40 sphere radii. Azimuthal
and mirror symmetries are assumed.

Figure 24 shows electron density contours (p/PO) when the potential satisfies
Laplace's equation. The peak density is about 80 times ambient, and the
"sheath radius" occurs at the computational boundary. Figures 25 - 28 show the

potential and electron density contours for successively higher values of
ambient density. With increasing ambient density, the sheath radius contracts

toward the Parker-Murphy radius, and chaotic electron orbits are confined to the
magnetic bottle for field lines between the Parker-Murphy radius and the sheath

radius. Table 2 shows the sheath radius and the peak density ratio as a function
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of ambient density. Because the total sheath charge can increase only slowly
with increasing ambient density, the peak density ratio as well as the sheath

volume decreases.
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Figure 24. Electron density ratio contours calculated for potentials obeying Laplace's equation.

Table 3.

Density 00 Sheath Radius Peak (p/po)

0.00 20 80

0.12 8.0 34

0.28 6.1 25

0.42 5.6 23

0.69 5.1 20
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Figure 25. Potential contours (a) and electron ratio contours (b) for density Qo = 0.12.
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Figure 26. Potential contours (a) and electron density ratio contours (b) for density Qo 0.28.
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Figure 27. Potential contours (a) and electron density ratio contours (b) for density Q0 = 0.42.
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Figure 28. Potential contours (a) and electron density ratio contours (b) for density 0 = 0.69.
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Figure 29 shows the inner and outer radii of magnetic field lines that contribute

electron density to points on the symmetry plane. The equilibrium potential
structure is such that both the upper and lower bounds are monotonic functions

of radius, so that points within the sheath are forbidden to electrons from field
lines that do not pass through the sheath. This means that the calculation is
insensitive to a precise criterion for the sheath condition.

l8.

2'

4.,1 2. 3. 4. 5. 6. 7. a. 9. 10.

Masurement Radius

Figure 29. Radii of magnetic field lines contributing to densities at various radii on the symmetry
plane. Outermost envelope, O0 = 0.12; second envelope, Go - 0.28; third envelope,
0o = 0.42; innermost envelope, 0 o = 0.69.

5.5 Conclusions

We have calculated the sheath structure for a magnetic probe under the

assumption that all orbits which enter the sheath and cannot be collected are
chaotic. For the parameters considered, the sheath dimension normal to the
magnetic field approaches the Parker-Murphy radius at rather low ambient

density. A region of high electron density fills the magnetic bottle for electrons

entering the sheath between the Parker-Murphy radius and the sheath radius.

As the density increases further, the contribution of collected electrons and the
presence of ambient ions will modify the sheath structure.
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6. THREE-DIMENSIONAL MAGNETIC SHEATH CALCULATIONS

We used the DynaPAC computer code to perform 3-dimensional calculations of

a 0.8 m radius, 1000 V sphere moving through a plasma with a magnetic field.
The orbital motion was taken as 7500 m/sec in the x direction, and the magnetic
field was 0.4 gauss in the y direction. The plasma density was
1012 M-3, and the plasma temperature was 0.1 eV. The ion species was taken
to be O+.

Figure 30 shows the wake of the uncharged object. The calculation uses a
shadowing algorithm to obtain the "neutral approximation" results, then applies
an electric field correction.

Sphere Wake Calculation Date: 03-19-92
Slice Z = 10.0000 Time: 17:00:14
Units: METERS (1.OOOE+00 meters)
Min= 1.OOOOE-06 Max= 9.9245E-01

10. COLOR LEGEND

9. .E+00
2.E:03f
1. 5.E-03

7. .1-E02".""'

S.6.X '•, .2
>- 5. .5

4. 
.7

1.1
3. 2.

3.
2. 4.

1.

2. 4. 6. 8. 10. 12. 14. 16. 18. 20.
X-AXIS

Figure 30. Plasma wake densities for an uncharged, 0.8 m radius sphere.
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Figure 31 shows the electrostatic potential calculated using the object-wake ion

densities. The calculation takes account of reduced screening due to low ion

density in the wake as well as reduced wake-side electron currents. Thus, the

high positive potential extends into the wake.

Sphere Wake Calculation Date: 03-20-92
SliceZ= 10.0000 Time: 08:59:49
Units: METERS (1.000E+00 meters)
Min= -1.6896E-02 Max= 1.0009E+03

10. COLOR LEGEND

9. -100
"-0.5

8. -0.41:......

S7. -0.2

oo 6..1......
X I

<' 5.
>05. 20.

100.
40o.

800.3. 4000.•

1000

2. 4. 6. 8. 10. 12, 14. 16. 18. 20.
X-AXIS

Figure 31. Electrostatic potentials calculated with the sphere at 1000 volts and the ion densities
of Figure 30.

It is apparent from Figure 31 that the initial wake calculation is wrong. The wake

of a positive object is formed not by the object surface, but by the much larger
ion stagnation surface. The ion stagnation surface coincides with the 5 V

contour level in the ram direction and drops to lower potential values on the

sides of the sheath since the electric field is oblique to the ram velocity. Figure

32 shows wake ion densities calculated as in Figure 30 but now using the ion

stagnation surface as the shadowing surface.
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Sphere Wake Calculation Date: 03-23-92
Slicez= 10.0000 Time: 09:53:26
Units: METERS (1.000E+00 meters)
Min= 0.OOOOE+00 Max= 3.9240E+00

10. COLOR LEGEND
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Figure 32. Ion densities calculated using the ion stagnation surface as a shadowing surface.

Figure 33 shows potentials calculated using the wake ion densities of
Figure 32. Also, the calculation uses a new space-charge formulation that

allows the wake region to be electron rich. We see the positive potentials
extending further into the wake, and negative potentials down to about a half
volt negative.
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Sphere Wake Calculation Date: 03-20-92
Slice Z = 10.0000 Time: 15:29:41
Units: METERS (1.OOOE+00 meters)
Min= -3.9942E-01 Max= 1.0008E+03

10 COLOR LEGEND
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Figure 33. Electrostatic potentials calculated using ion densities similar to Figure 32, and a space
charge formulation allowing the wake to be electron rich.

Finally, we add a magnetic field along the Y axis. To determine self-consistent

potentials in a magnetic field requires generating electrons at a "sheath surface"

and tracking them to determine self-consistent electron densities within the
sheath. Figures 34(abc) show the resultant electron densities, and
Figures 35(abc) show the potentials. The three electron density plots show low

electron densities near the ±Y sides of the sphere but relatively higher densities

in the other directions. This indicates that a belt of electrons is now orbiting the
sphere in the X-Z plane. This belt of electrons has little effect on the ram side
(where its charge is neutralized by the ions), but on the wake side (where there
were previously no ions or electrons) it squeezes the sheath boundary close to

the object, as is seen by comparing Figures 35(abc)with Figure 33. It also
reduces the Z sheath dimension relative to the Y sheath dimension, although for

these parameters the asymmetry only becomes apparent wakeward of the
sphere. (Rough calculations for other parameters show far more apparent

asymmetry.)
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Figure 34. Tracked electron densities in the sheath region, with a magnetic field of 0.4 gauss in
the y direction: (a) X-Y plane; (b) X-Z plane; (c) Y-Z plane.
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7. ANALYSIS OF HIGH RESISTANCE PAINT ON THE TSS-1

SUBSATELLITE SHEATH

The laboratory results of Lebreton, recently corroborated by Carruth and
Vaughn, indicate that the paint on the TSS-1 subsatellite is not a conductor for
the plasma conditions anticipated during flight. In this brief note, we present
calculations and aaialysis of the asymmetric electron collecting sheath for the
subsatellite as presently configured, that is with a conducting belly band,
conducting screw heads, and including snapover on the paint. We compare the
sheath structure with that calculated for a perfectly conducting sphere. For high
applied potentials, the conducting belly band is shown to cause a sheath about

50% of that for a conducting sphere. The analysis assumes that secondary
electrons from the paint are collected by the exposed conductors (snapover of
the paint); essentially, none of the current is collected through the paint.
Numerical calculations of the 3-dimensional sheath show that at 1000 V the
average satellite surface potential is 500 V and the sphere collects about two-

thirds the current of a conducting sphere.

Two modifications to the subsatellite that increase sheath symmetry and

collected currents are under consideration . The first is to cover the paint with an
indium tin oxide (ITO) layer. The second is to expose additional conducting

strips on the subsatellite surface and use secondary electron transport to

equilibrate surface potentials. Both modifications to the subsatellite are
analyzed and test parameters are suggested to verify the efficacy of the
proposed solutions. Tests must be performed at the appropriate plasma current

density and exposed conductor geometry if we are to be certain that TSS-1 will

accomplish its scientific objectives.

7.1 Analysis and Calculations of the Present Subsatellite

Configuration

In its present configuration, the TSS-1 subsatellite has an exposed conducting

belly band as well as numerous exposed conducting screw heads. We have
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performed a simplified analysis of the size and symmetry of the potential field
surrounding an isolated conducting ring with the dimensions of the belly band.
The analysis predicts that an isolated ring would have the about 60% the

charge of a perfectly conducting sphere; the sheath potentials would have

asymmetries greater than a factor of two. Numerical calculations of the 3-
dimensional electron-collecting sheath support the analytical results. The

conclusion is that only small modifications may be required to substantially

symmetrize the subsatellite sheath potentials.

7.1.1 Analysis of the Sheath Potentials Surrounding the Belly
Band

Previously, we have documented how secondary electron transport reduces the
effect of insulating surfaces on the potentials near conductors biased positive

with respect to a surrounding plasma.5 If we ignore the insulating surfaces

completely, we can calculate the capacitance of a conducting ring the
dimensions of the belly band. With this approximation, we estimate the total

sheath charge is about 60% of a conducting sphere. The sheath asymmetry,

estimated by comparing potentials the conducting ring produces at the poles of

the satellite, is greater than a factor of two.

Assume the belly band is a circle of radius R formed out of conducting wire of

radius a. If R>>a, we can assume that all of the charge is contained in a line of

charge in the middle of the wire. The potential on the outer surface of the wire is

obtained by integrating the line charge using the free space Green's function,

-ring = 1 ij XdO
4xang -I ý (a + + R2 -2(a +R) Rcoso

where the total charge on the ring is

Qring = tRdO=2RRt .
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The potential on the outer edge of the belly band is calculated using the law of

cosines.

The total ring charge is linearly dependent upon the major radius, R , and only
logarithmically on the ratio of a to R. The capacitance of the conducting ring is

Cring = ring = 2cR 'c

O ring 1 rdO
4ne0 4(a + R)2 + 92 - 2(a + R)Rcose

It is useful to discuss the ring capacitance in terms of an effective radius,

Cring= 41eReff

where

Reff =RX /,1 Rdo
de04(a,/R+lf) + 1-2(a/R + I) osO

=Rf(a/R) .
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The subsatellite has a radius of 0.8 meters. We estimate the belly band radius is

somewhere between 2 cm and 5 cm. The ratio function, f (a/R), varies between

0.55 and 0.67 for this range of radii. Thus the ring has between one-half and
two-thirds the capacitance of an ideal conducting sphere. The potential

asymmetry is larger, however, because the distance from the ring to the poles is
,r2-R.

2.1, < ring .; 2.6 .

Opole

These analytical results should be tested on a small laboratory sphere

completely covered with Goddard white paint, except for an exposed equatorial,
conducting ring. The sphere should be biased to potentials above 300 V and

exposed to a ionosphere-like plasma. If the results agree with this analysis, they

indicate that, although the paint will impair the sheath symmetry, substantial

electron currents will be collected by the present subsatellite configuration.

Three-dimensional computer calculations were performed to examine

numerically the sheath asymmetries and reduced electron collection caused by

the poor conductivity of the white paint on the subsatellite surface. In order to
perform the calculations in the limited time available, the following assumptions
were made:

1. The only significant exposed conductors were a 10 cm wide belly band

and the cells of screw heads at the edges of the eight panels. Total

exposed conducting area is just under 12%.

2. Both motion and magnetic effects on the sheath were ignored (as opposed

to the calculations we presented at the May IWG).

The calculations were run using the NASCAP/LEO code, which solves

Poisson's equation using analytical formulations of space charge and surface

secondary electron transport. 6 Plasma conditions chosen were
ne = ni = 1012 ms 3 , Te = 0.1 eV, typical of the daytime ionosphere expected

during the TSS-1 mission. The calculations were performed for satellite
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potentials of 200 V and 1000 V. The 200 V results overestimate the degree of
snapover on the subsatellite surface; potentials on the surface varied between
the applied potentials and 0 volts. The 1000 V case showed a minimum surface
potential of 300 V. The attached figures are for the 1000 V case and show the
satellite model where the gold and aluminum surfaces were conducting, the
calculated distribution of surface potentials including snapover, and a cross

section through the sheath showing the degree of asymmetry of the calculated
sheath. The calculated space-charge-limited current (ignoring motion and
magnetic field effects) is 0.38 amperes compared with .56 amperes calculated
using NASCAP/LEO for the same sphere entirely at 1000 V. Analytical
Langmuir-Blodgett predicts 0.5 amperes for the same thermal electron current
density. The NASCAP/LEO calculations are representative. Laboratory testing
and more detailed calculations are required in order to determine the actual
current collection by the TSS-1 subsatellite as presently configured.

7.1.2 Analysis of ITO Coatina on the Satellite

Ideally, the surface of the subsatellite should be perfectly conducting. It has
been proposed to cover the existing, poorly conducting surface with an ITO
layer, which would conduct the electron current to the aluminum skin through a

series of grooves cut into the white paint. ITO has been used on high altitude
spacecraft to control surface charging. Typical deposition thickness is a few
hundred angstroms with measured surface resistivity of 5 K ohms on a
30 cm x 30 cm FEP teflon sample. Higher conductivity is observed over glass
substrates, but the FEP results are probably representative of what can be
expected on the large area TSS-1 panels. If the distance between grooves in
the paint were 10 cm, then the resistance would also be the order of 5 K ohms.
The peak expected electron currents, including sheath focusing, are of order

10-5 amps/cm 2 , the current to a 10 cm x 10 cm square is 10-3 amps. This

corresponds to only a few volt potential drop, better than necessary for TSS-1.

Several issues concerning the ITO coating must to be resolved before the

satellite is modified.

1. Does the ITO resistance increase after exposure to vacuum as does the

existing white paint. Bear in mind that both are metal oxides (the paint is
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ZnO), and it is the thinness of the ITO that makes it appear transparent. The

ITO layers are typically 1/10,000 of the present paint thickness.

2. Will the ITO layer be damaged due to local heating. For the example cell

size, the heating at 1000 V is the order of a watt for 10-4 cm3 . Testing must

be performed, after days of outgassing. at the highest expected current

levels.

3. Is the ITO layer mechanically robust enough to maintain electrical

continuity after launch and deployment.

Bear in mind that ITO coatings were developed for the same nano-ampere per

square centimeter, geosynchronous charging, currents as the present,
inadequate paint. It is also disturbingly close in chemical formulation. ITO over

the paint must be tested thoroughly at extreme flight current levels.

7.1.3 Electron Collection by Surface Snaoover

An alternative approach to enhancing the TSS-1 current collection is to take

advantage of the fact that ZnO has a high secondary electron yield (Ymax - 6.0)
and that secondary electrons can transport incident electron fluxes to exposed

conductors. For metal oxides, incident electrons with energies between -60 eV

and -- 5000 eV emit more than one secondary electron per incident electron.

Electric fields parallel to the surface accelerate the secondary electrons toward

exposed conductors. There exists a stable potential distribution such that for

each incident electron, a secondary electron is collected by a nearby exposed

conductor. This phenomenon has been studied extensively in conjunction with

electron collection by high voltage solar arrays, where it enhances electron

current collection by spreading interconnect potentials on to coverslips. It has

been observed both in the laboratory and in LEO by the PIX-II solar array flight

experiment. 7 For TSS-1, snapover is exactly the desired effect-spread the

subsatellite chassis potential onto the surface of the paint and collect the

plasma current from the paint surface by secondary electron transport. The

effectiveness of this process can be tested on small samples in the laboratory

by covering them with either a grid of wires or scoring a grid pattern through the

paint. Scoring requires that the grooves be wide compared with the thickness of
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the paint; other than that, the surface potentials are very insensitive to the
groove width. Thus, an increase of only a few percent of exposed conductor
would be required. The theory shows that the number of grid lines per object is
the driving parameter, not the absolute spacing of the grid. As with the ITO,
extensive testing at high current densities and applied voltages is mandatory. In
this section. we present a simple theory of how to scale results from small
samples to TSS-1, a discussion of the uniformity of the resultant sheath.

We have developed a very simple theory of how the surface potential

distribution depends on sphere size, wire (or groove) separation, and wire (or
groove) radius. Let the subsatellite be a large sphere of radius Rsat, covered
with wires of radius a, separated by spacing 2d.

Assume Rsat >> d >> a. If the satellite had been a perfectly conducting sphere of
potential Osat, the mean electric field over the surface would be

(E) . 'sat
Rsat

If only the wire conductors (or exposed conductors) have significant charge,

then they would have a surface field enhanced by the inverse of the fractional
area of exposed conductor,

Econd - d~sat
a Rsat
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The potential drop at the midpoint between conducting wires is approximately

Ocon -_mid =4= ad In(d)

Note that the diameter of the wire (or groove) enters only logarithmically. Thus a
mesh of very thin wires acts as an equipotential surface but can be almost

100% transparent. Vacuum tube designers have known this for almost a

century. For TSS-1, the fractional area of exposed conductor need not be large
for snapover to occur; the length of groove needs to be long compared with
spacing, or else they have to be in a grid pattern.

For TSS-1, if we want snapover by 200 V, we want the midpoint to be at

potential greater than the first crossover of the secondary yield curve, i.e.,
around 50 V. For example, at an applied 200 V potential, all surface potentials

would greater than 140 V for the following parameters.

a = 0.5 x10- 3m

d =5 x 10-2 m
Rsat = 0.8m

S200 x 5 x 10- 2 In( 5 x 10-2

0.8 0.5 x 10-3

A =57V

This suggests that the sphere would have snapped over by 200 volts. Again, the

snapover potential depends on there being more than one conductor whose
length is long compared with spacing (or else the logarithmic dependence goes

over to a stronger function of wire thickness), and the spacing must be small

relative to the object radius.

The potential field appears very uniform just a short distance from the surface.

We can write the potential above a planar array of wires as

4xY) = (urface) + 7. A o(xxexp(_2rny,)

6) 2d)
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where the first term is the average field, and the second term represents the

variation along the surface in the x direction and how the variation dies off

exponentially above the surface, in the y direction. This potential satisfies
Laplace's equation. The term which extends the farthest above the surface is

the first harmonic in 2d, the wire spacing. Even this term is down by two orders

of magnitude at a distance equal to the wire spacing above the surface. That is

only 10 cm from the surface for the example above. Again, designers of gridded

vacuum tubes have known and used this phenomenon for most of this century.

7.2 Conclusions

The present paint and geometry of exposed conductors will lead to a TSS-1

sheath reduced by almost half, with over a factor of two asymmetry. Two

possible approaches to increase the subsatellite electron collection and sheath
symmetry have been analyzed. Neither should be implemented without

substantial laboratory tests at TSS-1 current density levels (0.1 amps/m2 ),
TSS-1 potentials (1000 - 3000 V) and TSS-1 vacuum duration (heat and

vacuum for 3 days). Application of ITO is the simplest conceptually, but it may be
risky because ITO has not been tested at LEO current electron current densities

or for large areas applied over painted surfaces after long duration to space
conditions. Taking advantage of surface snapover requires laboratory

confirmation that exposed conductors will indeed spread the subsatellite

potential onto the surface of the paint.
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ATTACHMENT 1

Paper titled "Predicted Potentials and Currents for TSS-1," presented at the
AIAA 30th Aerospace Sciences Meeting, Reno, Nevada, January 9, 1992.
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PREDICTED POTENTIALS AND CURRENTS FOR TSS-1

V. A. Davis, I. Katz, T. T. Luu

Maxwell Laboratories, Inc., S-Cubed Division, P. 0. Box 1620, La Jolla, California 92038

M. R. Oberhardt

Geophysics Directorate, Phillips Laboratory, Hanscom Air Force Base, MA 01731

Abstract to emit electrons at times during the experiment. Two
electron guns (core guns) are tied directly to the tether

The Tethered Satellite System I (TSS-1) is scheduled to current, and an additional two electron guns are driven by an
fly on the space shuttle in mid-1992. The Shuttle Potential independent power supply.
and Return Electron Experiment (SPREE) has been designed
to monitor orbiter potential with respect to the ambient Phillips Laboratory is providing the Shuttle Potential
space plasma, measure return currents to the orbiter, and and Return Electron Experiment (SPREE). SPREE will
determine wave-particle interactions during the TSS- I measure the ion and electron distribution functions in the
mission. The orbital motion induced v x B will generate energy range from 10 eV to 10 keV, for fluxes ranging from
substantial potentials across the 20 km conducting tether. 107 to 1016 m' 2s-1 .
This work reports our preflight calculations of the
distribution of voltages among the tethered satellite system Three-Dimensional Calculations

elements and the tether currents for the range of plasma of Orbiter Ion Collection

conditions expected during the mission. Ion collection by
the orbiter was calculated in three dimensions for several We examined orbiter ion collection as a function of

orientations, potentials, and plasma conditions using orientation, potential, and plasma conditions using the three-

NASCAP/LEO. The calculated orbiter collection along with dimensional analysis code NASCAPILEO.*12

the core electron gun perveance were incorporated into NASCAP/LEO examines the interactions between high-

EPSAT, which integrates models of spacecraft environment potential spacecraft and the plasma environment in low-

interactions, to perform a mission analysis. The analysis Earth orbit, including geometric and orientational effects.

shows potentials over 2 kV are expected on the subsatellite
surface when the ionospheric plasma density is low. The The surface of the orbiter is primarily insulating, heat-
orbiter may charge as much as a kilovolt under these resistant tiles. The insulating surfaces remain at the plasma

conditions. When the gun is not operating, the orbiter could potential in the high-density, low-temperature plasma of

charge over I kV, if care is not taken. Currents as high as low-Earth orbit. Ion collection by the orbiter engine bells is

250 mA are expected for peak ambient density. The orbiter the only significant current source, other than the electron

ion-collecting sheath impedance ranges from 10 to 100 kQ. guns. The orbiter model used in the calculations is shown in

We also examined the possibility of current enhancement by Fig. 1.
the subsatellite neutral gas thrusters. We examinca ion collection as a function of orientation.

Into.Lion Fig. 2 shows the orientation and the rotation axis. Fig. 3
shows the variation in current collected with angle. For

The Tethered Satellite System I (TSS-1) is a space these calculations, an ambient plasma of 1012 r- 3 and

shuttle-based experiment that is scheduled to fly in mid- 0.1 eV was used. An orbiter potential of -300 V and a ram

1992. The project involves several American and Italian velocity of 7500 ms-1 is used. At 00, the orbiter is traveling

research groups. A meter-radius, spherical subsatellite will with its belly facing the ram directly and the engine nozzles

be reeled out upward from the orbiter on the end of a 20 Im in the wake; thus, little current is collected. As the orbiter

conducting tether. The induced v x B along the tether wire rotates, more of the engine nozzles are exposed to the ram

can be 5 kV. The current flow through the tether will be side of the orbiter and more current is collected. At 900, the

limited by the ability of the orbiter to collect current (collect orbiter is moving sideways to the ram, and the sides of the

ions and emit electrons) and the subsatellite to emit current nozzles are exposed to the ram. The current to the nozzles'

(collect electrons). Four electron guns will be on the orbiter sides peaks at this point and remains steady. At 1800, the
nozzles face the ram direction, and the current to the faces of

Copyright © !990 American Institute of Aeronautics and the engine nozzles peaks. Unless the engine bells are in the
Astronautics. Inc. All rights reserved. ram, little ion current is collected.
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Fig. 1. Paaan model of orbiter used for NASCAPI.EO calculations of ion collection.

We also examined ion collection as a function of
potential and plasma density. The results are in Fig. 4. The
bay-to-ram orientation is 180" and the belly-to-ram
orientation is 0. At the higher potentials, the orbiter
orientation is less critical. This is because as the sheath

Rotation .i: grows larger, the fraction of the sheath edge obstructed by
* the rest of the orbiter (other than the engine bells) shrinks.

fHigh potentials are needed in order for the orbiter to
collect substantial currents. Fig. 5 shows the effective
impedance for the same cases shown in fig. 4. The effective
impedance is near 100 kLQ at low density.

Mission Analysis

A mission analysis without geometry effects has been
completed using the EPSAT computer code.3 The
subsatellite and orbiter potentials and the tether current vary
as the plasma density changes over the orbit. EPSAT is
designed specifically to perform this type of study. The code
contains a system defu.ition module, an orbit definition

• • module, natural environment modules, system-generated
environment modules, and analysis modules. Each module
has access to the results of calculations performed by the

Fig. 2. Orbiter orientations used in these calculations. other modules. The modules used in these calculations
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Fig. 3. Ion currents versus rotation angles.

include the ORB orbit generator, MSIS-86 neutral densities, determine if enough neutral atoms will be outgassed from
IRI-86 plasma densities, as well as S-Cubed-developed the subsatellite to present a risk of bulk ionization, we
system definition, floating potential, and nozzle modules. examined outgassing densities for the case where all the
The floating potential model includes models for particle surfaces emit 0.5 W m- 2. This is the outgassing rate of
collection by sheaths and emission by electron guns. G- 10 after exposure to air and provides an upper bound.

Fig. 7 shows the neutral densities about the subsatellite due
The subsateflite collects electrons from the ambient to outgassing at this rate. The column density of outgassed

plasma through a sheath. The orbiter engine bells collect neutrals from a point just outside the subsatellite to a point
ions from the ambient plasma through a sheath. The 2.88 m away (the Parker-Murphy radius for a 3.6 kV sphere)
electron guns emit electrons. The floating potential is the is 1.6 x 1017 m-2. With a cross section of 3 x 10-20m.2,
potential at which no net charge is accumulated. The current the ionization fraction (number of ionizations as a fraction
collected by the subsatellite at this potential is the tether of the number needed to cause ionization) is 0.0048. EPSAT
current. estimates the ionization fraction to be 0.15 when the space-

charge sheath size is used as the average path length.
Fig. 6 shows the variation in subsatellite floating Breakdown is expected when the ionization fraction

potential and tether current over a few orbits. The core gun approaches 1. Since the the outgassing rate used in these
with a perveance of 3.8 x 10-6 is operating during the entire calculations is orders of magnitude higher than expected and
period. The net resistance of the subsatellite paint, tether the sheath size is the largest expected, no bulk ionization is
wire, and shunt is taken to be 10 MQ. (A shunt is placed in expected from outgassing alone.
the circuit to control the tether current.) The tether current
varies from 75 mA to 250 mA. Over the same period the The EPSAT nozzle model was used to model one nozzle
subsatellite potential varies from 150 V to 2.3 kV. of one of the 2 N in-line thrusters on the subsatellite.

Figs. 8 show the gas density about the subsatellite with
Bulk Ionization at the Subsatellite operation of one nozzle. The column density for a 2.88 m

(the Parker-Murphy radius) column offset from the axis of the
We also used EPSAT to examine the neutral densities and nozzle by 0.51 m is 5 x 1020 m-2 . This gives an ionization
the likelihood of breakdown at the subsatellite due to fraction greater than unity, implying sheath ionization is to
ouLgassing, leaking thrusters, or thruster firings. In order to be expected during operation of even one thruster.

81



100

10

..BaY OD rarn at to0t11

Say to mum at 10.e12

Ion Current (mA) 1

-6 M~Y to ramt at 10.e12

0.1

0.01 .
10 100 1000

Orbiter Potential (V)

Fig. 4. Ion currents versus potential for various conditions.
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The small conducting area of the orbiter limits the ion
current that can be collected. The effective impedance can be

-0.05 - as high as 100 kLQ at low plasma densities. The orientation
of the orbiter can affect the current collected by a factor of 7.

During operation of the core gun, the tether current will
,- 0 -vary from 75 mA to 250 mA as the orbiter moves through

regions of high and low plasma density. The subsatellite
V J LJ• potential will vary from 150 V to 2.3 kV, and the orbiter

-I A ipotential will vary from -400 V to -1.1 kV.

Using upper bounds on the outgassing rate, outgassing
does not provide enough gas density for sheath ionization to-0.20 •occur. However, the firing of even one thruster generates
enough gas for sheath ionization.

-0.25 , During thruster firings, the current collected by the
30000 40000 50000 60000 subsatellite will dramatically rise. The tether current will be

Time ;nto Mission (sec) limited by the electron gun perveance and the tether

impedance. In addition, caution will need to be exercised to
ensure that the sheath ionization will not damage the

Fig. 6b. Variation in tether current over a few orbits. subsatellite equipment.
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