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ABSTRACT

The linear stability of an incompressible laminar flow in the blending boundary layer

between the boundary layer in a 900 streamwise corner and a Blasius b)oundary layer well

away from the corner is examined using a locally parallel flow approximation. It is shown

that the influence of the outer boundary conditions associated with oblique modes of dis-

turbances which are anti-symmetric about the bisector plane have a profound effect on the

stability of the flow. As a result, in good agreement with observation, the critical streamwise

Reynolds number, associated with a spanwise location is significantly reduced as the corner

is approached, being Rr = 60 approximately for spanwise distance of z- = 6xr*R-' from the

corner compared with R, = 322 approximately for z* = 20x*R- 1 , where x* measures down-

stream distance from the leading edges. At RI = 600, the growth rate of the most amplified

mode of disturbance at the former location is over six times greater than that at the latter;

the corresponding wave angle at the two locations is respectively 440 and 5', approximately.
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1. Introduction

The secondary flow which arises in the streamwise corners of a wind tunnel has important

bearing on the size of the available test section. InI experiments involving laminar flow in a

two-dimensional boundary layer, for example, the role of the side walls of the tunnel in the

observed transition is not always clear. Further the spread of the secondary flow from the

junction of a wing with the fuselage of an aircraft has implications for laminar flow control

on wings.

A knowledge of the nature of the flow in a streamwise corner and its stability character-

istics is therefore of considerable practical importance. A model flow which has been studied

is that in which the corner is formed by two semi-infinite plane surfaces inclined at an angle,

usually a right angle, to each other with the free stream flow along the corner (figure 1).

The basic flow has a similarity solution which is symmetric about the bisector plane (see Ru-

bin(1966), for example) such that well away from the corner it matches the two-dimensional

Blasius boundary layer flow along the plane surfaces while in the corner it is governed by

fully three-dimensional equations of motion. In between these regions, Rubin( 1966) identi-

fied a 'blending boundary layer' where the influence of the corner decays algebraically away

from the corner. Further. Rubin showed that to leading order the spanwise velocity profile

in this region exhibits a reverse flow in the boundary layer.

Zamir(1981) estimated from experimental evidence that in the absence of pressure gra-

dient, transition in a right angled streamwise corner occurs at a value of the square root of

the Reynolds number, based on the streamwise distance, of R = 100 (henceforth R will be

referred to as the Reynolds number). Unlike the experimental results of El-Gamal and Bar-

clay(1978), Zamir and Young (1979) found breakdown of similarity in the velocity profiles.

Zamir(1981) attributed this as a development of flow instability.

Lakin and Hussaini (1984) derived the equations governing small perturbations of the

basic flow in the 'blending' boundary layer identified by Rubin using a locally parallel flow

approximation. They considered heuristic solutions of these equations based on the critical

layer in the boundary layer.

In this paper, we re-consider the stability of the blending boundary layer for a right

angled streamwise corner, using a locally parallel flow approximation as done by Lakin and

Hussaini and show that the instability is dominantly driven by the outer boundary conditions

associated with disturbances which are, unlike the basic flow, anti-symmetric about the

bisector plane. The spanwise cross-flow turns out to be of too insignificant a magnitude to

account for the observed early transition in the flow, unlike in the case of flow past, a swept

wing, for example.



In section 2, the equations of motion and the boundary conditions are given. The equa-

tions obtained are exactly those given by Lakin and Hussaini (1984) although it has not

been necessary to make any a priori assumptions about the nature of the disturbances. The

equation governing the normal component of the perturbed velocity satisfy a modified Orr-

Sommerfeld equation. Since the basic flow is symmetric about the bisector plane, the outer

boundary conditions need to be applied on the bisector plane rather than at 'infinity'. This

gives rise to the possibility of modes of disturbances which are symmetric or anti-symmetric

about the bisector plane. It is found that the anti-symmetric modes are the most unstable.

The method of orthonormalization is used to determine the eigenvalues of the stability

problem and is briefly described in section 3.

The results of the investigation are presented in section 4. As expected, it is found

that the critical Reynolds number, R, decreases with decrease in spanwise distance from

the corner, it being given by R, = 54 for a spanwise distance of z* = 6R-'x* compared

with R = 322 for z* = 20R-'x*; the growth rate of the the most unstable disturbance at

R = 600 is over six times greater at the former location than that at the the latter while

the corresponding wave-angle is over nine times greater. Further, it is found that in the

proximity of the corner, the three-dimensional modes of disturbance are unstable at a lower

Reynolds number than that for two-dimensional ones.

2. Basic Equations and boundary conditions

We define Cartesian co-ordinates (x*,y*,z*) as shown in figure 1, with the two semi-

infinite rigid planes intersecting at right angle in the line Ox*. A viscous incompressible

fluid of uniform density flows along the corner with the undisturbed velocity away from the

planes given by (U*, 0, 0) where U* is a constant. The undisturbed flow is symmetric about

the bisector plane y* = z* so that it is only necessary to consider the flow in the region

between this bisector plane and the rigid plane y* = 0, say, with appropriate boundary

conditions on the two planes. The fluid velocity satisfies the exact non-dimensional equations

(ui* = UJ*u(x, y, z), t' = U 1 t, x__* = 1x_,p* = p*U*2 p where 1 denotes the downstream

distance of the location under consideration):

_ + U.VU = -V + -V U()

an d

V. U= 0, (2)
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where R = (U*ll/v*)'/ 2 is the Reynolds number. The boundary conditions to be satisfied are

_(x, 0, z, t) = 0, u,(X, oo, oo, t) = (1,0, 0), (3)

together with appropriate boundary condition on the bisector plane r = Z.

We consider a small perturbation about a basic steady flow, so that

R = R() + A(x, t), p = P(_) + K(E, t). (4)

On substituting (4) into (1) and respectively equating zeroth order and first order terms in

fi and i to zero we have

T.vh + VP± = 2-V2T (5)

09i, + il.Vf + ft.Vf= -Vp + IV 2  
(6)

V.I= 0, V.i =0 (7)

with, writing _ (U, V, W),

%(X,0,Z) = 0, U(x,' n, 0o) = (1,0,0)

Oy = z VzWony= (8)

and

ft(x,0,z,t) = 0, 1(x, 0n, 0n) = 0 (9)

together with appropriate boundary conditions on ft at y =z.

In region 6 < z << x, where b is the non-dimensional thickness of a Blasius boundary

layer, 6 = 4.9x 1/ 2R-', Rubin (1966) has shown that for a steady flow, syni:netric about the

plane y = z, (5) has an approximate similarity solution,

-1 22

_ = (f'(7) + O(R-'), R-'-9(77), R-'(T(7) +o (-f))) + O(F- 2 ) (10)

where a prime denotes differentiation with respect to the dcpendent variable i; =yR/v/x

and ;U = - f), T = aog(i7) and f and g satisfy

f +-ff -0; f(O)=f'(O)=O; f'(no)-l (=1)

g,, 1 , 1

g + -(fg) = 7; g(0) = 0;g( g ) = -1 (12)

with ao = .86039. Here the streamwise pressure gradient is o(R-1). Thus the approximate

basic flow corresponds to a Blasius boundary layer flow with an imposed cross-flow, R-Th.
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associated with the normal component of velocity in the boundary layer on the other rigid

plane.

We consider the location x = 1(x* = 1), z = R 0-zo (z0 > 5), and introduce the concept

of locally parallel flow. Without loss of generality, we consider a disturbance centered oil

(1,y, R-1 zo) on an appropriate scale of O(R'). We write

x = +R-lxl, y = R-•i +±O(R,-), z = R-(zo + zi), t = R-1 t 1  (13)

and note that 71 = 71, + O( R' d, V = RVI etc. Thus locally, in the vicinity of

(I, y, R-'zo),

R =(f'(,)R-T1 (,), R-(i)) + O(R-2). (14)

If we write fi = (u, v, tv), then on substituting (14) and (15) into (6) and (7), we obtain after

some manipulation,
1 0 fi,1

[(L+ i)v, - -fv oY = 0, (15)

OIL dv Ow
x-- + + 0, (16)

f,, Ov 1 ,Ov
£¢ + Rz 0 (17)

where = - , a is the normal component of perturbed vorticity and
0 1 .•x

= 4- +T.V, - IVi . (18)

Equations (15)-(17) have a solution of the form

[v(x,y,z;t),((x,yz;t)] = [vi,(m ),, i(, )l CvXI+f/3.-cvct (19)

where v, and (I satisfy the de-coupled equations:

)2 3 /10 20
[(D-A 2)2 - (TD + + iR(cf' + - ac))(D 2 - A2 ) + iR(af"' +-T )]v,=0 (20)

[i*R(af' + T- a•c) + uD - (D 2 -A 2 k + iR(lf" - R'v, = 0. (21)

Here D - d/dzl an(I A2 ' a 2 + 132. Equation (20) corresponds to the Orr-Sommerfeld

equation for a basic flow U = U + ý;- it is usual to drop the terms involving TandF', but

these are retained here consistent with retaining R-'T in the basic flow. Retaining these

terms makes minor changes in the stability characteristics. Equation (20) is the same as

given by Lakin and fHussaini (1984) although in deriving it, it has not been necessary to

make any a priori assumption about the nature of the disturbance.
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Boundary conditions

The approximate basic flow in (20) is independent of the spanwise location z and it is

tempting to obtain (as is usually done in the case of the Orr-Sommerfeld problem associated

with the Blasius boundary layer) the outer boundary conditions from (9) and from the

limiting form as 71 --+ oo of (20)and apply these at a large value of il; the limiting form of the

fourth order equation (20) has two exponentially growing solutions and two exponentially

decaying solutions, one solution in each category being viscous and the other inviscid in

character. C'are, however, is required in the present case since the basic flow is regarded

as being symmetric about the bisector plane y = z so that the outer boundary condition

must strictly be applied at this plane, instead of at some large value of r/T as the restriction

4.9 < zo << R imply that the normal to the plane y = 0 at the spanwise location z = R-'zo

meets the bisector plane at r71 =_ qlot = z0 , where 4.9 < 71,out << R. It is through this

requirement that the dependence of the stability characteristics on the spanwise location

enters into the problem.

Although the basic flow is symmetric about the plane y = z, no such restriction applies

to the perturbations. Accordingly, the perturbation velocity " = (u, v, w) may satisfy one

of four possible basic sets of boundary conditions on y = (i) v = w,(ii) =0•,L (ii u~ 0,v , iv
OU, v = -w, (iii) u = 0, v w, (iv) u'= 0, v = -w. Conditions (i) and (ii) imply that u is

symmetric while v - w is respectively anti-symmetric and symmetric in y = z. Conditions

(iii) and (iv) imply that u is anti-symmetric while v - u) is respectively anti-symmetric and

symmetric in y = z. It is found that the most unstable mode of disturbance corresponds

to condition (iii). We therefore consider only this case in detail here; the other cases may

be considered similarly without any difficulty. In view of the continuity equation, it follows

from condition (iii) that we must have

(D + ifl)v = O oni 71 =zo (22)

Next, we note that in spite of the restriction on its range, 7l1ot still lies outside the boundary

layer so that we may consider the limiting form of (20) as ti -4 zo >> 1 in determining the

second outer boundary condition. Hence,

(D'2 - A2)(D - X)v = 0 on 1 = zo >> (23)

where X = !(V(oo) - (J 2(oc))+4(A 2 +iR(a+c±fv-(oo)/R)))'/1 ). The choice (23) means that of

the four solutions to the limiting form of (20) described above, we only discard the viscous

exponentially growing solution, the growth rate of this solution being much greater than the

S. .. ...... .......... . . . . • • . • numn nm nm ~ n nuumm n Un'•T • ""



corresponding inviscid solution. The conditions at the surface 7 j1 = 0 are

vi(0) = Dv1 (O) = 0 (24)

3. Numerical method

The linear equation (20) together with the boundary conditions (22)-(24) is solved using

the technique of orthonormalization (see for example, Davey (1973)) which allows the use

of standard shooting methods. We first express (20) as a system of first order ordinary

differential equations:
4

E= Za , (i = 1,...4) (25)

where

1 = VI, €2 =€1, €3=€2-A2€,

04 = ¢3, (26)

and the non-zero elements of the matrix aij are:

a 1 2 = a 2 3 = a 3 4 = 1, a 21 = A2

a4l = -iR(af"' + O"/R)

a 4 3 = A2 + iR(af' + OI/R - ac) + -W, a 44 = (27)

The boundary conditions (22)-(24) take the form:

ý 2(zO) + 1if3 1(Zo) = 0

04(ZO)- X03(ZO) = 0

01(0) = 02(0) = 0 (28)

Equations (25) are to be integrated from ql = z0 for various values of z0 to 17, 0. The

steady flow, characterized by f', TY and T, is evaluated at 2M points by integrating (14)-(17)

using fourth order Runge-Kutta integration.

Corresponding to the two outer boundary conditions given in (28), two independent

solutions satisfying these conditions and the four equations (25) can be chosen. We denote

these by vectors 0 (j = 1,2) where

S= [00)0



with starting values at 17 = z0 given by:

ý(I) I [, _i 13, 0, 01 T

0(1) (0,.0, I,xIT (29)

With these initial values the system (25) is integrated using M-point fourth-order Runge-

Kutta integration. The general solution is a linear combination of these two solutions:

bI40) + b2 0(21 (30)

where bi are chosen to satisfy the two remaining boundary conditions at z = 0. Since

the boundary conditions at z = 0 are homogeneous, this requires that the determinant of a

certain 2 x 2 matrix, whose elements are the appropriate elements of the vectors 6(J)(j = 1, 2),

vanish.

However, since the eigenvalue problem is stiff, rounding errors cause the base solutions

0(j) to lose their linear independence fairly quickly during the integration. To circumvent

this difficulty, the base vectors are orthonormalized every ten integration steps, say (a total

of (2M/10) - 1 orthonormalizations since no orthonormalization is performed at the final

integration step). Thus, every ten integration steps, ( is replaced by ý(j) where

(2 = 1 (31)

with I[ in the denominator denoting the modulus of the bracketed numerator. In satisfying

the boundary conditions at 71, = 0, the determinant of the corresponding 2 x 2 matrix, whose

elements are now the appropriate elements of 0/, (j = 1, 2) is required to vanish. If the

eigenfunctions are needed, it is necessary to keep an account of all the orthnormalizations.

However, to determine the eigenvalues it is only necessary to solve iteratively the non-linear

equation,

f(a, fl, R,c) = 0 (32)

corresponding to the vanishing determinant at rh = 0. This is done here using Muller's

method.

4. Results

We have restricted consideration to solutions corresponding to the most unstable dis-

turbances. The neutral curves, which represent the projections onto the - - R plane of

the contours of the neutral surface, given by fi = constant, corresponding to three values
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of the spanwise stations zo (z 1R-'zo with * = 1) are shown ill figure 2(a)- (c). (on-

tours are plotted for values of 3 in the range 0 _< 3 < ý3c- . where Jr, is that value of 3
which corresponds to the critical Reynolds number, R,.. As is expected, 1)roximity to the

corner has a destabilizing effect. In the cases shown, instability to three-dimensional distur-

bances in the above range of spanwise wavenumber occurs at a lower Reynolds number than

it does for a two-dimensional disturbance, this feature being more pronounced at stations

closer to the corner than those away from it. Proximity to the corner also has a destabli-

lizing effect on the two-dimensional mode of disturbance (;3 = 0). It ma*y be noted that at

z0 = 6, terms neglected in the basic flow in (14) may become important and inclusion of

these terms will modify the stability characteristics at this location. Ilowever, we expect

that the characteristics depicted in figure 2(c) will still be approximately correct. For values

of zo < 6 approximately, we expect that it will be necessary to consider the exact, fully

three-dimensional basic flow.

It is interesting that the instability is driven by the outer boundary conditions, the most

unstable disturbance having a finite value of ,3. This is consistent with Dhanak (1981) where

it was shown that spanwise waviness in one of the walls of a channel has a destabilizing effect

on the plane Poiseuille flow through the channel. The effect is much more pronounced in

the present case in view of the presence of the other wall.

The neutral curves for /3 =/ 0, associated with four spanwise stations are shown in figure

3 for comparison. The neutral curve for a Blasius boundary layer (/, = 0) is also included

in the figure. (Note, however, that in this case, contrary to normal practice, the O(R-1 )

normal component of the basic flow is retained in the associated Orr-Sommerfeld equation,

consistent with (20); this has the effect of shiftinig the neutral curve for this case slightly

towards higher Reynolds number.) The critical Reynolds number decreases and the range of

the unstable streamwise and spanwise wavenumbers increases as the corner is approached.

The values of the critical parameters are given in Table 1. The values of the critical Reynolds

number of 60 for z0 = 6 and 110 for z0  7.5 are consistent with the experimental prediction

of transitional Reynolds number of R= 100 by Zamir (1981). The value of' j3 , increases

while a,, decreases, so that the critical wave-angle c,, tan-= (/•/r) increases, as the

corner is approached;c,, = 480 for zo = 6 compared with €, = 5' for z0 = 20. As can be

seen from figure 3, the neutral curves for finite values of z0 approach the neutral curve for

the Blasius boundary layer as z0 becomes large.

It is expected that the most unstable mode of disturbance will dominate the initial

development of the instability. The growth rate of the most unstable disturbance is plotted

as a function of the Reynolds number for each spanwise station Zo in figure 4. At z0 = 6 the

growth rate increases from aeci = 0 at R = 54 to ic, = 11.3 x 10- " at R 600. At R = 600
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the growth rate of the disturbance is over six times greater at : 0 = 6 than it is at z 20.

The variation of the wave-angle ( = tan- (iI/<) correspondI fing to thle most uinstalble

mode of disturbance with Reynolds nmml)er is shown inI figure 5. The value of this wave-

angle increases as the corner is approached; at R , 600, .= -.1.1 for Z0 = 6 coimipared witlh

S= 5" at z0 = 20. ( decreases at first as R is decreased from its value of 600, buit then

increases somewhat as the critical Reynolds number is approached. the final increase being

most significant for the case z0 = 6- c 48' at, the critical Reynolds number for z0 = 6.

5. Conclusions

It is shown that the instability of the flow in the vicinity of a streamwise right angled

corner is dominantly driven by oblique disturbances which are anti-symmetric in the bisector

plane. The magnitude of the cross flow is found to be too small to be a significant factor

in the observed early transition of this flow. It is found that close to the corner, three-

dimensional disturbances in a particular range of spanwise wavenumbers are unstable at a

lower Reynolds number than two-dimensional disturbances. Close to the corner, the critical

Reynolds number has a value of around R - 50 compared with R - 300 for the Blasius

boundary layer far away from the corner. This is consistent with the experimental prediction

(Zamir, 1981) of transitional Reynolds number of R = 100 for this flow. At R = 600

the growth rate of the most unstable disturbance is over six times greater at a distance

z* = 6R-1 x* than it is at z* = 20R-lx* while the corresponding wave-angle is over nine

times greater.
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Z0  RcT Ocr i
3 cr (Ocr)cr (cr

6 5:3.95 0.122:3 0.1:360 0.0616 48.0
7.5 115.27 0.1283 0.1015 0.0553 :38.3
10 210.90 0.1449 0.0806 0.0590 29.1
20 :321.91 0.17:36 0.0141 0.0684 4.6
oc 324.43 0.1741 0. 0.0685 0.

Table 1: Critical values of the stability parameters. The values in tile last row are for a
Blasius boundary layer and are evaluated using the corresponding Orr-Sommerfeld equation
in which terms propotional to T, P' are retained.
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Figure 5. Wave-angle for the most unstable disturbance as a function of the Reynolds
number at various spanwise locationszo. The corresponding wave-angle is zero for a
Blasius boundary layer flow.
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Rcr - 60 approximately for spanwise distance of z* - 6x*R-1 from the corner compared
with Rcr - 322 approximately for z* - 20x*R-1, where x* measures downstream dis-
tance from the leading edges. At R-600, the growth rate of the most amplified mode
of disturbance at the former location is over six times greater than that at the
latter; the corresponding wave angle at the two locations is respectively 440 and
50, approximately.
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